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ABSTRACT

A study is made of some of the existing techniques
for determining the positions and excitations of the elements
in an array, in order to produce a desired radiation pattern.
A new method based on numerical quadraturé is proposed. Equal-
sidelobe patterns are synthesized‘and»a comparison of thé
methods is made on this basis. Results indicate that the
proposed quadrature method is an improvement over the other
tested methods in two wéys, (i) it produces a more
accurately synthesized pattern and (ii) it is simple to
compute. It is therefore useful for synthesizing arrays con-
taining large numbers of elements.

However, for the particular radiation pattern select-
ed, none of the methods gave an improvement over the corres-

ponding uniformly-spaced array.
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1. INTRODUCTION

Antenna systems composed of a family of identical indivi-
dual radiators are termed arrays. The field produced by an
antenna system as a function of some spatial variable, gene;ally
in one of several principal planes, is called the radiation pat-
tern, though this name is also given to the curve relating the
power radiated and the spatial variable. The main factors in-
fluencing the radiation‘patterns of such a system are the tyfev
of radiators, the distribution and orientation of radiators
and their current excitation in amplitude and phase. The theory
of two and three-dimensional arrays follows readily from one-
dimensional array theory by the principle of pattern multiplic-
aticn and so only linear array theory will be discussed here.

Antenna synthesis is the problem of determining the para-
meters:of an antenna system that will produce a radiation pat-
tern which accurately approximates some desired pattern. For
the linear-array synthesis of a given pattern, it is required
to find, in general, the positions of the radiators along a
line and their current excitations in magnitude and phase. This
presents great difficulty, however. Present practice is to
simplify the problem by making two aSsumptions, (i) that the
element spacing is uniform and (ii) that the phase of the
current excitation is not a design variable. This reduces the
parameters to the magnitudes of the current excitations and the
constant spacing. The purpose of this work is (i) to study

some of the recent synthesis methods that have the non-uniform



spacing of the elements included in the design parameters,

(ii) to evaluate the relative usefulness of these methods and
(iii) to propose a new synthesis method based on numerical
gquadrature.

The radiation pattern of an antenna system depends on the
individual patterns of the elements composing the system. In
the case of a linear array the principle of pattern multiplic-
ation applies and so the system pattern is the product of the
element pattern and the array factor. This latter is the
pattern of a similar array containing isotropic elemeﬁts, and
is nearly always.the more directive pattern. As there is no
conceptual difficulty in taking the element pattern into account,
array theory is generally based on isotropic sources.

Throughout this work the effects of mutual coupling
between the elements of the array are not considered. Some

work on this topic has been done by Allenz.

1.1 Beam Scanning

Antennag radiation patterns consist in general, of a main
beam and a number of smaller beams, the sidelobes. In many
applications spatial scanning of the main beam is required.
This is achieved by two main techniques, mechanical and elec-
tronic scanning. The former requires no elaboration. ZElec-
tronic beam scanning in arrays is realized by arranging that
contributions from the elements are all in phase in a
direction other than broadside or endfire. A uniform pro-

gressive phase shift along the aperture will produce this effect.



P

When all elements of a uniformly-spaced array are in phase,

P,

the array factor is

E(9) = I oJfndcose 1.1

where In is the magnitude of the current excitation
of the nth element,
d is the constant spacing of the elements,
0 is the angle from the line of the arrayj

N+1 is the number of elements .,

B = g% , A being the wavelength .

Broadside
Direction
rd
2 Endfire
B Direction
X N3 Nomrme e X X
@—————— Aperture e

Fig. 1.1 Array Geometry
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th . .
element is now -na where « is a

If the phase of the n

constant, then the pattern becomes

N
E(e) = :Z_ Inejn(Bdcosg - a)
n=0

If 90 is the angle between the array and the direction of the

main beam, then

Bd cos 90 =
N
hence E(6) = E I gJnpdu 1.2
» n=0
where u é

cos © - cos 90

The "visible" region of the pattern lies between ¢ = + % .

For the broadside direction this corresponds to values of

u in the range 1 » u » -1. The region having values of u in
the range 1 < u ¢ 2 is termed the "scanning" region, since,
when the main beam is scanned from broadside to endfire, side-
lobes from this region move into visible space. Hence if an
array is to have beam scanning out to endfire, then the sidelbbe
level (defined as the height of the highest sidelobe) must be
controlled for all u values in the range -2 ¢ u < 2. If no
scanning is required then only the sidelobe level for u values
between -1 and 1 need be controlled. Thus scanning requirements
need to be taken into consideration when pattern synthesis is

being attempted.



1.2 Previous Work

With the advent of radio communicationé, the dmportance
of directive antennas was realized. It was not until 1937
however, when Wolff4 showed how %o determine the radiating
system that would produce a specified directive characteristic,
that the first significant step was taken. In 1943
Schelkunoff5 published his classic paper on the mathematical
theory of linear arrays in which he put forward a synthesis .- .
technique of a completely different nature from that of Wolff.
He also demonstrated that the effect of using different current
excitations on elements in an array was to alter both the width
of the main beam and the level of the sidelobes. The next
logical step was the optimization of these two parameters, a
problem overcome by Dolph6 who utilized the equal-ripple
property of Chebychev polynomials. Dolph (1946) showed that
the minimum beam width for a given sidelobe level is obtained
when all the sidelobes are of equal height, and also gave a
method for determining the element excitations required to
attain this optimum.

In the decade that followed Woodward7 and Woodward and
Lawson8 produced a synthesis method based on the addition of
terms of the §l§—9— type, each term having its main beam in a
different direction. This proved to be a useful technique. Work
has also been done on apertures containing continuous current
sources. Taylor9 (1955) showed how to determine the continuous-

current excitation function which would have the optimal



property as defined by Dolph. Realizability limitations
prevented an ideal solution but Taylor showed how the ideal
equal-sidelobe pattern could be obtained arbitrarily closely.

Previous to 1956 all discrete arrays were assumed to
consist of uniformly-spaced elements, but in that year UnzlO
proposed that the use of arbitrarily positioned elements would
be advantageous since it gives the array designer an extra
degree of freedom, namely, the element positions.

In view of this extra degree of freedom Unz suggested
that the non-uniformly-spaced array needs, in general, fewer
elements in order to achieve the same performance as an array
with uniformly-spaced elements. Also in this paper Unz .
proposed a synthesis method for non-uniformly-spaced arrays
based on a Fourier-Bessel expansion. In 1960, King et al:ll
did some numerical studies on empirically designed non-~
uniformly-spaced arrays and demonstrated that some advantages
could be obtained over uniformly-spaced affays with respect
to the number of elements required and the scanning properties.

12

Andreasen™“ (1962) has done similar studies using both analog

and digital computer techniques and has produced arrays with

beam scanning over wide angles, a modest sidelobé level and a
significant reduction in the number of elements. An optimal

design procedure put forward in Andreasen's paper was in-

13

dependently applied by Lo~ -, who pointed out that, at best,

the solution is only locally optimum. This technique was,

however, used in the design of the University of Illinois

14

radio telescope which appears to be the only practical



application of non-uniformly-spaced arrays to date.
Further work on the synthesis problem was done by

Harrington15

(1961) who used a perturbation approach by
assuming that the element positions of the non-uniformly-
spaced array were not far removed from those of some

16 (196O)Vand Willey17 (1962)

uniformly-spaced array. Sandler
also conducted their synthesis procedures from the basis
of a reference pattern produced by a uniformly-spaced array.
Ishimarul8, Maffett19 and others considered a continuous-
current distribution to be the source of their reference
pattern and directed their analytical synthesis procedures

accordingly.

A great deal of work has been done that is not

referred to above. Notably, Lo20 (a probabilistic approach),
Pokrovskii et al <. (an "optimal" theory), Unz22, Ma®> and
Yanpolskii24 (synthesis methods) have contributed to the

theory of the subject.

Before discussing the theory of some of the non-
uniformly-spaced array synthesis methods, the simpler
problem df synthesizing uniformly-spaced arrays will be

discussed.

1.3 Synthesis of Uniformly-Spaced Arrays

There are two basic methods for synthesizing uniformly-
spaced arrays. The first, due to Schelkunoff, is based on
the fact that the space factor of a linear array is character-

ized completely by an associated polynomial in a complex
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variable, whose range is the unit circle. The second utilizes

the Fourier series representation of the space factor.

1.3.1 Schelkunoff's Method

The space factor of a uniformly-spaced array of N

elements is given by
N-1
B(d) - jgi I, e3d81s1n¢
i=0

where the coefficients Ii may be complex to allow for the

phasing of the elements.

Let : z é edeSin¢
N-1

then E(z)= E Iizl
i=0

i.e. we have expressed the space factor as a polynomial
in a complex variable z. This polynomial has N-1 roots and

can therefore be expressed in normalized form, as

Bl = |2 = 29| |2 - 25| -«0v |2 = 24|

t

The locus of z corresponding to real space is that part of
the unit circle given by z values ranging from z = 1 to
s - otJ2pd

The synthesis problem then becomes the question of

the location of the roots of the polynomial in the complex

plane. The zeros for a uniform broadside array as shown



in Figure 1.2.

wO

04
vl

Fig. 1.2 Complex Plane for 6 Element Uniformly-Spaced Array

As P moves round the unit circle, the space factor.
has nulls when P passes through each root and a maximum when
P is at A. A corresponds to the centre of the main beam and
the regions between the roots correépond.to the sidelobes.
The separation of Pl and P5 is a measure of the width éf the
main beam, so for a narrow beam these should be close to—
gether. However for low sidelobes the remaining roots should
be situated close together, so from the above diagram it can be
seen that by clustering the roots towards the L.H. plane the
side-lobe level will be reduced but the main beam width will

be increased.
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In a classic paper, Dolph6 derived the excitation
function which yields the optimum relationship between beam-
width and side-lobe level, and this has been the basis for

many designs in the past twenty years.

1.%.2 Fourier Series Method

Consider an array of N = 2M + 1 elements; its space

factor is
2M

B - Z Iizi 1.3

i=0

Dividing through by ZM, which leaves |E| unéhanged,

LM
2M

|E| = | IOZ—M + Ilz

-M+1

..l 1.4

Taking fhe phase reference at the centre of the array and
assuming a progressive phase shift from one end of the array,
it can be seen that symmetrically corresponding elements have
complex conjugate excitations, enabling pairs of terms of

equation (1.4) to be added:

k k

MakZ = ak(z + z_k) + jbk(zk—z—k)

Z + I

= 2a, cos kY - 2b, sin kﬂf (where zkzeJkV)

°

M
. . |E| = Z{a—g + Z [akcosk\lr + (—bk)sink\l/]} 1.5
k=1
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Any radiatioh pattern, f(ﬂ/), may be expanded as a Fourier
series. Thus by equating terms in f(NV) with those in equation
(1.5) the excitation distribution required to approximate the
radiation pattern can be found.

The Fourier series representation of the desired
pattern, as used here, is also the basis of the first of the
methods of synthesizing non-uniformly spaced arrays, as

described in the following chapter.
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2. THEORY OF THE SYNTHESIS METHODS

In its general form, the synthesis problem is the
determination of both the complex excitg@ions and the element
positions yielding an array factor, E(ds, which accurately
approximates the deéired pattern,.F(¢). The approach to the
problem is determined mainly by the mathematical forﬁ of the
specified pattern, F(@), and it is thiS‘form whiqh-will be used
to characterize‘the three basic types of methods.

For an antenna having avbontinuous current distri-
bution over its aperture, the far field radiation pattern is

25

readily obtained from the Fourier transform relationship and

as a result; mény continuous current distributions yielding
useful patterns are known, The far field pattern of such a
continuous distribution may be the pattern required to - be

synthesized.

In this case we have

A o | '
F(g) = f g(x)eJBXSln¢dx 2

X

where x represents a position in the aperture, the limits of the
aperture being X, and X,.
Alternatively, the desired pattern may be given as

that of a uniformly spaced array, in the form

; N
P(g) = Z InejBndSin¢ 2.2
n.—.O
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A third form for .F(@) is the complex Fourier series

whose coefficients can be obtained for any periodic function:

R(g) = » oy e 2.3

= —M
Synthesis requires the matching of one of. these three

expressions to that of a npn—uniformly spaced array,
N . .
jBx_sing
E(@) = E Ie n 2.4

n=0

where x_ is the position of the n™ element.

2.1 Methods Based on the Fourler Serles Representatlon of the
Degired Pattern I _

2.1.1 Unz's Method

The first non—uniformly-Spaced array synthesis technique
was put forward by Unz in 1956 and utilizes a Fourier-Bessel

expansion to match equations (2.3) and (2.4).

The expression for generating Bessel functioﬁsz6'

is |

%z(t- %

t J
mn=-o
. id \ 1 A .
Putting t=eY”, then +(%t- %) = jsing and we obtain
. o0 »
ej281n¢ _ :E: ejm¢ Jm(z)
m=~0m

Using this relationship equation (2.4) can be transformed:
N jBx_sing §§: ® .
n _ jmg
:Ej I, e = . I, :E: e Jm(an)
n=0 n=0 m=—t
giving

E(g) = z > 1, I (Bx,) o Juf 2.5

N
m=—a n=0
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It can be seen that this is the form of equation(2.3)if

the series is truncated to 2M+l terms. For equivalence

ZInJm(BXn) = Cm ’ 2.6

where the c, are the complex Fourier coefficients of the

we then require

desired pattern. Equation(2.6)represents a set of non-linear
transcendental equations which are to be solved for N+1 values

of the x, and/or I,

2.2 Methods Based on the Line-Source Representation of the
Desired Pattern ‘

2.2.1 Ishimaru's Method

A procedure which relates equations(Z.D and @.4)is
described by Ishimarul8 and is briefly as follows.

The non—uniformly—Spaced array pattern is given in equation

@.4) as _
N jBx, sing
B(@) = » Ie 2.7
n=1 :
and can be rewritten as
N
E(2) :::E: f(n) 2.8
n=1

The Poisson Sum formula is
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Applying this to equation 2.8 we obtain

o0 N
B(g) = > J £(v)ed?™ gy 2.10
m—=—0o
0 _
(where the integration is from O to N since f(v) vanishes for
v< Oand v> N).A.
The source position function, s = s(v), gives the

position of the nth element when v = n and fhe gsource number
function, v = u(s), gives the numbering of each element when

s is at the correct position of the element.

[ 71 S

'Y
‘U'\ —r . ———— — ——— ———

Figure 2.1 Plot of a Typical Source Number Function

Transforming equation (2.10) we obtain

S
© Sy .
B(g) = > f(s) %‘—; ed2mmv(s)yy 2.11
m= -

o



If equation (2.7) is rewritten as 16

B = S E (), 2.12
M= —o .
where
S
Em(¢) _ J‘N A(s) %% e—j@#(S)—2mnv(s))est sing ds,
So

2.13

then the physical significance of the formulation can be seen.
(A(s) is a function which yields An, the‘amplitude of the
current in the n'® element, at s=s , and Y (s) is a function
which yields ‘qfn, the phase of the current, at s:sn). BEquation
(2.13) is similar in form to equation (2]) and represents the
pattern due to a continuous current distribution of amplitude
A(s)'%g and phase Y (s)-2mnv(s).

Thus the non-uniformly~.spaced array pattern has been
reduéed to an infinite series whose terms correspond to con-

tinuous current distributions. Normalizing the variables as

follows:

u = Basinfd

2a = sy- S, (the array aperture)

x = x(y) (normalized source position
function)

v = y(x) (normalized source number function)

equations (2.12) and (2 .13) become

m

Bw) = 2 (-1 g () 2.14
m = - .
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and
l -
B_(u) = %f a(x) L mIWOHJml(y-x)  J(nsmall)x g
=1
2.15
The actual position of the nth element is
s, = ax(yn)
For odd N, i.e. N = 2M+1,
n
Vp = Wag n=0,+1, +2,...2 M
For even N, i.e. N = 2N,
1
- A==
In =W n> 0
1 n=+1, +2,... M

The total length of the array is then

L, == [X(yMQ —‘X(y_M) ].

Ishimaru then argued that the series of equation(2.l4)
is so rapidly convergent that; to a good approximation, it may

be truncated after the first term, so that

E(u) Z_EO(u)

Considefing the uniformly-excited broad-side array,
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where A(x) = 1 and \p(x) = 0, we have

1

d jux
E(u) = Eo(u) =+ a% eJ dx ,

2.16
4

which is the radiation pattern of a continuous-source distrib-

ution of amplitude %% and zero phase shift. Hence if the con-

tinuous source distribution giving the desired pattern is

known, the element positions in the equivalent non-uniformly-

spaced array can be calculated.

2.2.2 Maffett's Methodl®

If the pattern to be synthesized is generated by a
symmetrical line source g(x) of aperture length I then

instead of equation (2.1) we have
[

E(w) = 2 ‘[ g(x) cospux dx 2.17
‘ 0

(using the normalized variable u = sin¢).

Define a normalized current density,

then the cumulative current distribution is

X

y(x) :f p(%)d?s , —%gxg% $2.19

(ST

In equation(2.17) putting x=x(y), i.e.
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ax = %% dy, and differentiating equation (2.19)

in ¥ _
we obtain T = P(X>'4
Changing the variable of integration in(é.l7)we get
1

2 J\ A p(x)cosBux %%ET

E(u)

Il

1

ZAL[\ cospux dy where x=x(y) 2.20
1
z

This is approximated by the trapezoidal rule to yield the

approximate pattern F(u). The increment in y is chosen to
1 . .
be 5% 0 L-e- M+l points are chosen at Vo = %,yl,yz, ,,,,, yle,
then "
Flu) = A ;E: cospux
- 2M n s
n=1

where the X, are given by

n

y, =% +f p($)a% n=0,1,2....M 2.21

o;

For some distributions, equation(2.19) can be inverted to

give X, explicitly?7; but in general iteration techniques.
have to be used.

2.3 Methods Based on the Uniform-Array Representation of the
Desired Pattern
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2.%3.1 Harrington's Method

15

A perturbation approach was used by Harrington who
determined the fractional change from uniform spacing required
to synthesize the desired pattern.

For a uniformly spaced and excited array of N elements,

we have
1 nu '
A n
‘ - N-1 ‘
. N even N
- Il::l,3,5,..- - 'y |
where zz:means < N-1 tor » U = Bdsing
n ZE: N odd v
~0.2 l n=0
\ n=0,2,4 and a =
2 n 0

For non-uniform spacing a convenient "base" separation,

d, can be chosen and the element spacing expressed as

n : . X
X, = (2 + en)d , i.e. €, is the fractional change

from uniform spacing.

F(u) = 5 Z dn cos {(g— + sn)u}
n

Expanding the cosine and assuming e U is small (so that

Then

(o

cos e u ¥ nd sin eu ¥ e u
s g,u ¥ 1 and sin g 0 )
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Using a Fourier expansion of the right hand side we obtain
1,%,5,...N-1, N even

(Eu—F(u))sin nudu , n =
2,4,6,0..N'—l, N Odd

Bm
Il

al=

Ok_—)

sl

2.23

Hence the positional perturbations can be calculated.

2.3.2 Willey's Methoa''

The pattern of a symmetrical uniformly-spaced array can

be expressed as

E(g) = ZE: A e , where u = BdMsing

m ® . k
igu (35w
e = W
k=0
= K
E(u) = ZQEL L 2.24
kT ko,
k=0
: k th
where y, = Am(%) is the k'~ moment of the excitation

-M
function.
Consider a uniformly-excited non-uniformly-spaced array,
whose pattern is given by

JBx;sin @
e . (N = no. of elements in

) array)

F (@)

Il
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Expanding as before

. \K
F(g) = L) 2,25

3]

N
X,
where u E _ﬁ is the kth moment of the non-uniformly -
i=1

spacedharray excitation function. For equivalence of the

\
patterns of equations(2.24)and(2.29, we req_uire»pk = Uy i.e.

N k

g\ - m, ¥ z ks 2.26
i > &&= (—5¢)
— i=

Th;s set of non-linear algebraic equations can be solved for

N, ithe number of elements required in the non—uniformly—

spaéed array, and the positions, X5 of the N elements.

)
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3. ARRAY SYNTHESIS USING NUMERICAL QUADRATURE

3.1 Introduction

In chapter 2 the theory behind some existing techniques
of array synthesié was investigated. In this chapter a novel
procedure is proposed. The basis of the method is numerical

quadrature, a technique for evaluating definite integrals.

3.2 Quadrature Theory

The problém of finding the numerical value of the
integral of a fﬁnction of one variable, because of its geo-
metrical meaning, is often called quadrature.

Consider an integral of the form

) :

J\ F(x) dx

a

This might be approximated by dividing the interval into n equal
segments and evaluating F(x) at n equally spaced values of x,
one within each segment. This gives the approximation

b

n
uf F(x) dx = Qﬁé ZE? F(Xj) 3.1

J 5=1

More generally the Xj could be irregularly spaced. Then
each of the F(Xj) would be multiplied by a weighting factor,

Hj’ and the integral could be written in the form
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where A is a residual error term. Since there are 2n unknowns
in the quadrature sum it might be suspected that the Hj and Xj
could be chosénvsuch that A be zero for all polynomials of '
order 2n-=1 or less. Krylov28 has shown that this is in fact the
case. The quadrature methods that have this degree of accuracy
for polynomials are termed Gaussian. For Gaussian quadrature,

a set of 2n equations in the 2n unknown constants can be
obtained by substituting F(x) = Xk, k =0,1,... 2n-1 into
equation (3.2) and setting A=0. Instead of considering the set
of the X5 it is convenient to consider the polynomial, Pn(x),
which has these as roots. It is also convenient to consider

the integrand of expression (3.1) to be broken up into two

factors, w(x) and f(x). The quadrature expression then becomes

w(x) f(x) dx =~ ZE: Ak f(Xk) 3.3

¥ P, (x)
Ak =J\ W(X) \ (X ax
a

24

Utilizing the Christoffel-Darboux identity yields

A - Tnil 1

K =

: = where a, is the
a, By (x )P 5 (%)

30

coefficient of x° in Pn(x). Use of the recursion relationships

for orthonormal polynomials alters this expression to
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an 1
A == - 3.4
n-1 Pn (Xk)Pn—l(Xk)

3.3 Gauss-Chebychev Quadrature

By a linear transformation, the limits (a,b) of the
region of integration can be transformed into an chosen segment
of the x-axis. In order to make use of the symmetry of the
nodes X and of the coefficients Ak’ the standard segment will
be taken to be (-1, 1). By judicious selection of the poly-
nomial type, the coefficients Ak can be greatly simplified.

The weight function that is orthogonal to the Chebychev

polynomials is
w(x) = (1 - X2)

Using the Chebychev polynomials in equation (3.4)

it can be readily shown that the Ak are_donstant, i.e.

The X being the roots of the nth order Chebychev polynomial,

are given by

2k-1
X, = COS ( 5 ) ®w

Thus the complete Gauss-Chebychev quadrature formula is

L n

_flx) ax = & Zgj f(cos(2k_l)n) ' 345

n 2n
71 1-x° k-1
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This will be illustrated by means of an example, the evaluation

of 1

I = dx

-1

Using n=4 in equation (3.5)

8 8
+ cos + COs

ol3

I« % cos8

wla

1

0.834

The actual value of the integral is

T
I = j cos® © d6 = 0.859
-

wld

8
+ cos

ol

The use of a 5-point quadrature will yield the result:

~ & 8 m_ 8 3z 8 2x
I ~ 5 cos 10 + CO0S 10 + cos 50

8 9u
+ COS lo

8 Tu
+ COS 10 +

= 0.859

3.4 Application of Gauss-Chebychev Quadrature to

Array Synthesis

The pattern of a symmetrically excited line source in a

normalized aperture is given by

F(u) =
-1

normalized current-distribution function. Putting G(x)

2 .
g(x) &/ 1-x° , we obtain 1

g(x) cos ux dx , where g(x) is the

A

F(u) = -{ (1—22)—? G(x) cos ux dx.

-1
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This is of the form

1
1
' -z
J‘ w(x) f(x)ax , with w(x) = (l—xz) being the
-1
weight function of Chebychev polynomials. Hence the quadrature
formula is
F(u) =~ Z?r Ak f(xk) , where f(x) =
k=1
&(x)cos ux and the x, are the roots of the n®® order Chebychev
polynomial. As stated previously (and shown by Krylovgl) the

coefficients are all equal to % and so

n
Plu) = % j{: G(Xk) cos ux, 3.6
k=1

(A

This is of the same form as the radiation pattern of a

non-uniformly-spaced symmetric array with the elements positioned

at + X and having normalized excitations given by % G(Xk>.
Thus the excitation of the kth element, Ik’ is given by
I, = g(x.) 1 - x 72 3.7
k ~ k k ‘

By this procedure the pattern of a continuous line source
has been transformed into that of a non-uniformly-spaced array,
enabling the element positions and current excitations to be
readily calculated.

It is worth noting that though the resulting array is non-
uniformly-spaced, this spacing does not depehd on the desired pat-

tern but only on the number of elements in the array. In this
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respect this method is similar to the uniformly-spaced array in

which the spacings are preassigned.
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4. RESULTS

4,1 Introduction,
1.

This chapter begins by specifying a certain antenna
pattern to be synthesized. Iach of the various methods of
Chapters 2 and 3 is then applied to the synthesis of thig pattern
and the success of the methods in approximating the pattern is

examined.

4,2 Choice of Pattern to be Synthesized

Tn order to be able to make a critical comparison of the
various methods, it is desirable

(i) that the pattern to be synfhesized can be math-
ematically represented as the pattern of a line source, as the
pattern of a uniformly-spaced array and as a Fourier series sum

(ii) fhat parametric variations of the pattern function
will give rise to a wide range of pattern forms. |

The pattern chosen was an equal-sidelobe pattern. Dolph
hags determined the element excifations of a uniformly-spaced
array which will give this pattern, and his work has been
generalized by others. The continuous current source counter-
part of this array has been determined by Taylor. However,
the line source prodﬁcing this ideal pattern with constant
level sidelobes for all values of n, is unrealizable in
practice since the remote sidelobes do not decay. Taylor
resolved this problem by making the pattern have equal side-

sin u

lobes up to a point and then causing them to decay as . .
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The transition point at which the sidelobes start to decay can be

placed at will so that the ideal pattern can be approached arbi-
trarily closely. This transition point can be placed outside the
visible and scanning regions of the pattern,thus effectively pro-
ducing an equal-sidelobe pattern. The theory behind Taylor's

line source is complicated and a summary is given in Appendix I.
Thus the equal-sidelobe pattern satisfies the first criterion
above., By varying the parameter controlling the sidelobe level,
patterns can be obtained ranging from the.bindmial array with no
sidelobes, all the way to the interferometer case with sidelobes*
equal in height to the main beam, thus satisfying the second

criterion.

4.3 Unzfs Method

Unz's method synthesizes both the positions and excit-
ations of the elements and requires the solution of the

following set of equations:

I, J_y(Bx ) + I T y(Bxy)eeees + Iyd_y(Bxy) = C_y
I, 9, (B;co) + LI (Bxy) o.nn. Indo(Bxy) = C
I, JM(BXO) + IlJM(BXl) INJM(BXN) = Cy

Where the Xi are the element positions, the Ii are their excit-
ations and the Ck are the Fourier coefficients of the desired
radiation pattern. In general, the solution of this set is
extremely difficult. To gain insight into the solution, a

simple pattern, F(@) = 32 cos4¢, was synthesized using 5
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elements in a 2A aperture. Since the chosen pattern has

symmetrical Fourier coefficients the resulting array will be
symmetric about the centre element. This reduces the unknowns
to one spacing (that of the inner pair of elements) and three

excitations, i.e.

IJ, (Bxy) + 12J4(2n) -1=0
IlJ2 (Bxl) + I2J2(2n) - 4 =0
I,J, (Bxl) + I2Jo(2n) -6 + % I,=0

Solutions can be obtained graphically as shown in fig. 4.la.

P Px' * x 95

L

(3) (b)

Fig. 4.1a Example of Unz's Method
4.1b Array Synthesized by Unz's Method

It is of interest to note that one value of Xy corresponds to

I2 = 0. In HAhat case the outer elements are redundant. This

happens when Bxl = 2.9; i.e._xl = 0.47\N. The centrgl element
then has twice the current excitation of the outer elements.

Several array configurations were taken from Fig. 4.13 the

array yielding the best pattern is shown in Fig. 4.1b. Its
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Fig. 4.2 Unz Synthesis of F(#) = 32 cos’p
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pattern and the desired pattern are shown in Fig. 4.2. Agreement
between the two patterns is good over the range plotted, i.e.
the vigible and‘scanning regions., |

A far more difficult problem is the synthesis of the
pattern F(@) = 210 cos (g cos @), which is the pattern of an 11

element binomial array in a 5\ aperture. The equations reduce

to
I J2n(BX3) + Id,, (Bx,) + I3d,, (Bx) =3 C,pr 021
I

-3 + I, I (Bxg) + I, (Bx,)  + Id (x)

I
ol
Q

Approximate solutions were found by graphical means and
final values were reached by correcting these. The synthesized
array is shown in Fig. 4.3 and the corresponding patterns are

shown in Fig. 4.4.

\ Y by LY by
(@) VR SV SRV SRV RS- ¥ e *——x
! 1o 45 120 210 252
1 LotbA L elA 6lX y y y
( ) ~ ta) ad a) K Ead 7a$
21 106 236 304

Fig. 4.3 (a) Uniformly-Spaced Binomial Array and
(b) Non-Uniformly-Spaced Synthesized Array.

For each pattern, the magnitude of the array factor is
plotted against u = cos © - cos GO, for u in the range 0 € ug 2,

which represents the complete visible and scanning regions.
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The correspondence of the two patterns is excellent
throughout the visible region (within 1%), but deteriorates
rapidly in the scanning region.

Thus the pattern due to the array of Fig, 4.%a 1is an
excellent approximation to that of the binomial array of
Fig. 4.%a if no beam scanning is required and also saves four
elements. However the computation involved in producing this
array is very lengthy and becomes prohibitiﬁe for larger

arrays.

4.4 Ishimaru's Method

As indicated in equation (2.16) this method assumes
that the excitations are uniform and requires the solution for

X of an equation of the form

y = f(x), for each of the elements.

The solution could be obtained by inverting this equation, but
a Newton-Raphson iteration procedure is used here. Con-
vergence is good and results are readily obtained for small
arrays. For arrays of more than about thirty elements éonvergence
is much slower.

Arrays were synthesized to produce 15 dB sidelobes
using from 11 to 21 elements. Usually only the sidelobe
envelope is of importance when considering the sidelobe region
and so only the envelopes of the six synthesized arraYs are
shown in Fig. 4.5, which shows the "visible region" for an
array of aperture 10\. The full patterns for 15 and 21 elements
are shown in Figs. 4.6 and 4.7, for the complete visible region

and scanning region of an array of aperture 10A. The element
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1.0
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Fig. 4.5 Ishimaruis Synthesis of 15 4B EQuél—Sidélobe Pattern
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arrangements in these two arrays are shown in Fig. 4.8.

ARRAY
CENTRE

LINE
15 element array

LV2 3.

.66 -68M T2 a7 B6A Ys) 24

X
h 4
x

>x
E 3

21 element array
J47) 48X .45} .51\ B4\ B2\ + €3\ 3% -SoX  t0&h

M. V3 V3 X oL
K LJ Eal X 4] * 3 \,(,\(

X

Fig. 4.8 Array Configurations for Ishimaru's Method

The beamwidths of the resulting patterns are in very close
agreement with the Taylor pattern beamwidth and the close-in
sidelobes are at the designed level. In the case of the 15
element array, deterioration'of the pattern sets in after
the first three or four sidelobes; the increased sidelobes
thereafter are unacceptable. As would be expected, the
approximation improves as the number of elements increase
such that with él.elements in the broadside configuration,
the array pattern is within a few percent of the desired
pattern out to 61° from broadside. However, if the only
requirement is that all sidelobes be below the‘designed level,
then the main beam produced by this array may be scanned to
+ 48O from the broadside direction without the appearaﬁce of
sidelobes larger than 15 dB.

A further interpretation of Fig. 4.7 is that by reducing

the size of the array aperture from 10\ to 7.5\, an array can
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be obtained whose main beam may be scanned to within + 90°
of the broadside direction without the appearance of lobes
larger than 15 dB. The cost of this, howeﬁer, is an increase
in the width of the main beam. This use of aperture reduction,
for extending the constant sidelobe region at the expense of
the main beam width, can be applied to all the patterns that
follow. |

An attempt was made to reduce the secondary maximum
which appears in the scanning region of the preceding patterns
by considering the second term in the series expansion of
equation 2.14. However this gave only a very slight improve-

ment.

4.5 Maffett's Method

The procedure is similay to the previous method but the
convergence of the equations for the x values 1s somewhat
slower. The pattern envelopes for arrays of from 11
to 21 elements are shown in Fig. 4.9, over . the
visible region corresponding to a 10\ aperture,and two full
patterns are shown in Figs. 4.10 and 4.11. The improvement
with increasing number of elements is easily seen. The
results obtained by this method show little, if any, improve-
ment over the previous method.

It can be seen that both of the preceding methods fail
to give a good approximation to the desired pattern throughout
the visible and scanﬁing regions even when using 21 elements,
és in the corresponding uniformly-spaced array. Thus there is

no element saving in these cases.
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1.0 N

0.8' -

ro.6 -

0.5

"Fig. 4.10- 15 element Array by Maffett's Method

cy



1.0 W

08 -

0.6 -

04-

02 __}_ ___ __w1sos oA DN AL S S U
0 a.5 1.0 1.5 2.0

Fig. 4.11 21 element Array :by Maffett's Method

¢y



44
4.6 Harrington's Method

The underlying assumption of this method is that the
inter-element spacings deviate only slightly from the uniform
case; hence the values of €, calculated from equation (2.23)
should be such that §n<§ d. A 15 element array was
synthesized to give 15 dB equal sidelobes and the resulting
pattern is shown in Fig. 4.12. The values of €, corr-
esponding to this array do not all satisfy the above criterion,
e, &« 4; in fact for some values of n, e, > do

The restriction on the € implies a restriction on the
pattern to be synthesized. For small €, the difference between
the pattern to be synthesized and the unperturbed pattern,

i.e. the pattern of the uniformly-spaced, uniformly_excited
array,~musf'not be too large. It follows from this that
sidelobe levels significantly lower than the 13.2 dB of the
uniform array cannot be obtained by this method.

A problem more suited to this method is the reduction
of the first few sidelobes of the uniform array, rather than
a complete pattern synthesis. The term Pl;gigl in equation
(2.23) represents the normalized difference between the desired
pattern and the pattern of the uniform array. For reducing a
number of sidelobes, this function may be regarded as the sum
of a series of impulses positioned at the corresponding side-
lobes. This is shown in Fig. 4.13 for the reduction of the

first two sidelobes.
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4 EumFo

Fig. 4.13 Impulse Functions for Sidelobe Reduction

If there are K impulses and the kth has a height of

E -F(n)
2 and is situated at u=u, , then —Qa———— may be approximated
by
k
E-F ,
uu - % EE: 8y S(u—uk), where & is
k=1

the unit impulse function.

Applying this to equation (2.23%) we obtain

N K sin nuk
¢ = 1 Zgj 2k Uy
k=1

An example of the reduction of the first four sidelobes is
given. The values of €, are tabulated in Fig. 4.14 and the
complete pattern is shown in Fig. 4.15. A further use of

this method is for the elimination of the grating lobes
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associated with uniformly .spaced arrays.

E, |-0048|-0176 |-0.354 |-0.518 | —0-c03 |-06/6 |-05¢) |-0-3268 | 0153 | 0780

Fig. 4.14 Perturbation Parameters

4.7 Willev’s Method

In this method the excitations are assumed uniform
and the set of equations represented by equation (2.26)
is solved for the element positions. As with Unz's method
the solutions are very difficult to obtain. The pattern of
an 11 element binomial array was synthesized using 7 elements
in a 3.5\ aperture. The resulting pattern is shown in
Fig. 4.16. Arrays of more than 7 elements could not be
synthesized by this method due to the difficulty of solving

equation(2.2a;

4.8 The Quadrature Method

Synthesis by this procedure is very convenient numeric-

ally since the element positions are given by the roots of
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the Chebychev polynomial and the current excitations are
obtained byvevaluafing a function at these‘roots. Thus there
are no iteratioﬁszﬂﬁ‘solutions of equations‘réquired. The
properfies of the Chebychev polynomials give thevsynthesized
arrays an invefse space taper, i.e. the elements tend to be
closer together at the ends of the array than they are in
the centre. This appearé to be a characteristic 6f'me%hods
that start from a line-source pattern.

Patterns have been obtained for arrays of 11 to 21
elements; their'sidelobe envelopes are shown in Eig. 4.17
and the actual'pétferns of the 15 and 21 eléﬁent arrays are

shown in Figs. 4.18 and 4.19 respectively.

4.9 Summarv of Results

A table‘demonstrating the properties of the different
methods is shown in Fig. 4.20 and an evaluation 6f their
results follows. |

. Unz's method, starting from the Fourier sefies
formulation of the desired pattern, has given good results
for small arrays, though computationally the method is tedious.
For arrays of more than about seven elements the solution
of the set of e@uafions (2.6) becomes exceedingly difficult.
The two methods based on the uniform-array representation of
the desired pattern are generally unsatisfactory. Willey's
method becomes increasingly difficult for larger arrays and
Harrington’s method fails in synthesizing patterns far
removed from the pattern of a uniformly-excited, uniformly-

spaced array.
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PROPERTY ELEMENT REFERENCE SYNTHESIZED RESULTING MATHEMATICAL COMPUTING RANGE OF U FOR WHICH
NUMBER PAT TERN PARAME TERS ELEMENT TECHNIQUE  |FEASABILI TY FOR| SIDELOBES ARE WITHIN 2%
RESTRIC TION FORMULATION EXCITATION FOR SOLUTION | LARGE ARRAYS OF DESIGN LEVEL FOR 21
ME THOD ' ELEMENT ARRAY
FOURIER POSITIONS SOLUTION OF VERY W
UNZ NONE . SERIES AND NON-UNIFORM SET OF POOR
SUM EXCITATIONS SIMULTANEOUS :
. EQUATIONS
NUMBER OF NUMERICAL IMPRACTICAL TO
UNIFORM SYNTHESIZE
ELEMENTS | EVALUATION
HARRING TON CIN ARRAY POSITIONS UNIFORM OF AN FAIR [ ARRAYS OF MORE THAN
UNPERTURBED PAT TERN INTEGRAL ABOUT SEVEN ELEMENTS
ARRAY
SOLUTION OF :
. UNIFORM | | SET OF VERY
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PATTERN EQUATIONS ' J
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' OF
ISHIMARUY NONE SOURCE POSITIONS  UNIFORM SINGLE 600D 0§ U g 075
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' PATTERN EXCITATIONS FUNCTION
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Fig. 4.20 Properties of the Methods -
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The methods starting from the line-source fomulation,i.e.
with the desired pattern in the form of an integral, are
much easier to apply to larger arrays. The methods yield
qualitatively similar results in that the approximation is
excellent from the main beam out to a point, after which the
side lobes depart rapidly from the equal-sidelobe design.
0f these three methods the guadrature method gives the

largest region of good approximation, while'still offering no

element saving over the uniformly-spaced array.

4,10 Comparison with Uniformly-Spaced Array

The question has been posed as to whether it might be
advantageous to use a non-uniformly-spaced array in place of
a uniformly-spaced array. The pattern of a uniformly-spaced
array, a 21 element Dolph-Chebychev array in a 10\ aperture,
is shown in Fig. 4.21 for a sidelobe level of 15 dB. The main
beam produced by this array may be scanned to within half a
beamwidth of end~fire without an increase in the sidelobe. level,
None of the synthesis techniques have produced arrays with
the same beamwidth and scanning capabilities. If beam scanning
is not required,i.e. only the visible region of the pattern need
be considered, then the quadrature method will produce a 17
element array in a 10N aperture with equal-level sidelobes.
However, if no scanning is required, the number of elements
in the Dolph-Chebychev array can be decreased until the second
main beam has moved into the edge of the visible region. The
pattern of an 11 element array (one wavelength spacing) is

shown in PFig. 4.22. Thus it would appear that no element
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saving can be made using these synthesis methods.

Snover et al.27 have designed arrays by a trial and
error methodﬂﬁhich they claim to be an improvement on the
Dolph—Chebychev array for a given number of elements and a
given sidelobe level. However, the sidelobe levels which
they Quote for their arrays hold only in the visible region
and therefore should be compared with a Dolph~Chebychev array
of one wavelength spacing, not half-wavelength spacing as they
have done. If this is done than there is no saving of

elements.
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5. CONCLUSIONS

The preceding chapters have examined the theory of five
existing methods for the synthesis of non-uniformly-spaced
:arrays. The methods were categorized according to the
mathematical formulation that the required pattern takes iqeo
either a Fourier series sum, the pattern of a ﬁniformly—spaced
array or the pattern of a line source. In the course of this
examination a new synthesis technique falling into the last
of the given categories was devised.

Previous workers have made 1little study of the usefulness
of the existing methods. As a result, the practical value of
non-uniformly—spaced arrays is in some doubt. Furthermore,
some invalid comparisons with uniformly-spaced arrays have
resulted in misleading claims.

A comparison of all these methods has demonstrated that
the new technique based on numerical quadrature ié superior
in two respects. Firstly it produces a more accurate synthesis
of the.equal?sidelobe type of pattern, and secondly it is the
.simplest method to use. This second characteristic makes the
method especially useful for handling arrays with large numbers
of elements.

Despite this, no improvement over the uniformly-spaced
array was demongtrated éince Dolph-Chebychev arrays could
always be found which used fewer elements for the same pattern;
This might be due in part to the particular choice of the

pattern to be synthesized, since a uniformly-spaced array can
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produce an equal-sidelobe pattern exactly, whereas a non-uniformly
spaced array cannot. For larger arrays synthesized by the quad-
rature method, it was found that their performance improved as
the-number of elements increased. This may indicaté that an
improvement over the uniformly spaced array might be achieved

when extremely large arrays are being considered.

The value of non-uniformly-spaced arrays is clearly in
doubt. "However no final verdict is possible until a true
optimization procedure is found: one which adjusts the posit-
ions, the amplitudes and the phases of the elements.- to achieve
the best combination of beamwidth and sidelobe level. This
problem has resisted the efforts of many workers, and earlier

attempts by this author were no more successful.
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APPENDIX T

1. The Taylor Line Source
2 i
i

This]is based on the equal-ripple property of the
Chebychev polynomials,(as is its discrete source counterpart,
; .

the Dolph-Chebychev array). Taylor combined two polynomials

to give the form of Fig. A.l.

d We

The function is

2 2
W2N = TN(B - a°z%)
where a is a constant, B = cosh zhA A = L arc cosh bein
= N A =g n. 1 g

the height of the main beam.
Since TN(z) — cos(N arc cos z) the zeros of W2N are
given by
1
Zn:ia[B"COS —2N)}

Letting the order, N, tend to infinity but keeping the position
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of the first zero fixed, the zeros become

o}
~—
N
—
INES

z, = % [AZ + (n =

The corresponding space factor has unity amplitude sidelobes and

2 main beam amplitude, n and is

1

' 2
COS m(zz;A2)

F(Z) =C y
cosh ma
or, putting C = cosh ma,
1
z
F(z) = cos {n(z2 - A2) J

Since the rémote'sidelobes do not decay, this 'ideal' space
factor is unrealizable. If the z scale is stretched by a
factor & , so that the close in zerog of the ideal space
factor are approximated closely, then at some point, A, a
Zero occurs due.to the stretching. If then,from.this trans-
ition point on, the zeros occur at + n, the approximate space

factor has zeros

z, =tn ’ n¢§¢n«<o

The approximate space factor is then

n-1

F(Z) _ Slﬁzﬁ Z I I 1l
2
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As N = oo the approximate space factor approaches the-.ideal

space factor. The stretchout parameter, ¢, is

The sidelobes are nearly constant (and smaller than the main
beam by a factor n ) up to @ and then decay as % o'

The line source producing this approximate space factor
is found by the Woodward synthesis technique, and as a Fourier

series 1s given by

n-1-
glp) =1 +2 E F(n) cos np (p= 2%2, and L is
n=1 the aperture

length) ,

2
[(n-1)!] W n
F(l’l) = (l - '_§>
(a-1l+n) ! (n-1<n)! %n

where
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