
Feedforward N e u r a l N e t w o r k D e s i g n

w i t h A p p l i c a t i o n to Image Subsampl ing

by
A d r i a n a Dumitra§

M.A.Sc., "POLITEHNICA'
,
 University of Bucharest, Romania, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Electrical and Computer Engineering)
We accept this thesis as conforming

to the required standard

T h e U n i v e r s i t y of B r i t i s h C o l u m b i a

October 1999

© Adriana Dumitra§, 1999

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, 1 agree that the Library shall make it
freely available for reference and study. 1 further agree that permission for extensive
copying /of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

•OCT- i 8 , ' l o o - > - j

(Signature)

Department of g f e o r ^ ^ A U & < ^ H \ P O re<i_
The University of British Columbia
Vancouver, Canada

Date 2-1,

DE-6 (2/88)

A b s t r a c t

Feedforward artificial neural networks (FANNs) , which have been successfully

applied to various image processing tasks, are particularly suitable for image sub-

sampling due to their high processing speed. However, the performance of F A N N s in

image subsampling, which depends on both the F A N N topology and the F A N N train­

ing algorithm, has not been acceptable so far. High performance image subsampling

is important in many systems, such as subband decomposition systems, and scalable

image and video processing systems.

This thesis addresses the design of F A N N s with application to image subsam­

pling. More specifically, we focus on both the topological design of F A N N s and the

training algorithm, so that efficient F A N N structures, yielding good performance in

image subsampling, are obtained. That is, we aim at obtaining compact F A N N s that

yield good subsampled versions of the original images, such that if reconstructed,

they are as close as possible to the original images. Moreover, we aim at obtaining

better performance-speed tradeoffs than those of the traditional lowpass filtering and

subsampling methods.

First, we propose a design method for F A N N s , which leads to compact tridi-

agonally symmetrical feedforward neural networks (TS—FANNs) . Next, in order to

n

address the problem of artifacts that generally appear in the reconstructed images

after FANN-based subsampling, we propose a training method for F A N N s . When

applied to first-order (FOS) and multi-stage first-order (M F O S) image subsampling,

the F A N N s trained using our method outperform the traditional lowpass filtering

and subsampling (LPFS) method, without requiring pre- or post-processing stages.

Motivated by our observation that the computational demands of the M F O S pro­

cess increase approximately linearly with the image size, we then combine the pro­

posed methods and evaluate the performance-complexity tradeoffs of the resulting

T S - F A N N s in F O S and M F O S . We show that our T S - F A N N s - b a s e d subsampling

has important advantages over subsampling methods based on fully connected F A N N s

(F C — F A N N s) and L P F S , such as significantly reduced computational demands, and

the same, or better, quality of the resulting images.

The main contributions of this thesis consist of a method for F A N N design

with tridiagonal symmetry constraints, a training algorithm for F A N N s applied to

image subsampling, the design and evaluation of the performance-speed tradeoffs of

F C — F A N N s in image subsampling, and the design and evaluation of the performance-

speed tradeoffs of T S — F A N N s in image subsampling. The F A N N performance in

image subsampling is evaluated objectively (using the peak signal-to-noise ratios),

subjectively (by visual examination of the subsampled and of the reconstructed im­

ages), and in the context of a video coding application. The speed and memory

demands of the designed F A N N structures are evaluated in terms of the subsampling

time and the number of F A N N parameters, respectively.

i i i

C o n t e n t s

A b s t r a c t n

C o n t e n t s i v

L i s t o f T a b l e s i x

L i s t o f F i g u r e s x i i

L i s t o f A c r o n y m s x i x

L i s t o f S y m b o l s x x i

D e d i c a t i o n x x i i i

A c k n o w l e d g e m e n t s x x i v

1 I n t r o d u c t i o n 1

1.1 Thesis objective 5

1.2 Thesis structure 6

iv

2 Background
 7

2.1 Characteristics of Feedforward Artificial

Neural Network Models 7

2.1.1 The Processing Node 8

2.1.2 The Activation Function 10

2.1.3 The Topology H

2.1.4 The Data Model and the Cost Function 13

2.1.5 The Training Algorithm 14

2.2 F A N N Learning, Generalization, Evaluation 16

2.2.1 F A N N Learning and Generalization 16

2.2.2 Criteria for F A N N Model Evaluation. Optimal F A N N s 22

2.3 F A N N Design Methods 24

2.3.1 Growing Methods 26

2.3.2 Pruning Methods 29

2.3.3 Onthogenic Hybrid Methods 37

2.4 Image Subsampling 38

2.4.1 The Subsampling Domain 38

2.4.2 The Subsampling Grid 41

2.4.3 The Subsampling Order 44

2.5 Summary 45

3 Symmetrical Pruning for F A N N Design 48

3.1 Motivation 48

3.2 Proposed Algorithm 52

v

3.2.1 Tridiagonal Optimal Brain Damage (T O B D) Algorithm 52

3.2.2 Algorithm Discussion 57

3.2.3 Complexity Issues 59

3.3 Simulation Example 60

3.3.1 Simulation Details 61

3.3.2 Simulation Results 63

3.3.3 Comparisons 64

3.4 Summary 66

4 Application of FANNs to First- Order Image Subsampling (FOS) 67

4.1 Motivation 68

4.2 FOS Using 2 x 2 Input Blocks 70

4.2.1 Proposed F A N N - B a s e d Subsampling (FABS) Algorithm . . . 71

4.2.2 Examples 74

4.2.3 Relationship to Other Methods 77

4.2.4 Implementation Issues 79

4.3 FOS Using Larger Input Blocks 80

4.3.1 Generalized F A B S Algorithm: Fixed Threshold 80

4.4 Experimental Results: F A B S Algorithm 81

4.4.1 Subsampling of Sti l l Images 83

4.4.2 Subsampling of Luminance Video Frames 92

4.4.3 Subsampling of Noisy Images 93

4.5 Application: Video Coding 95

4.6 Experimental Results: G F A B S Algorithm with Fixed Threshold . . . 101

vi

4.6.1 Subsampling of Stil l Images 101

4.7 Discussion 102

4.7.1 F A N N Generalization 102

4.7.2 Speed and Memory Comparisons 103

4.8 Summary 105

5 Application of FANNs to High-Order Image Subsampling (HOS) 106

5.1 F A B S Algorithm 107

5.2 G F A B S Algorithm: Fixed Threshold 108

5.3 G F A B S Algorithm: Adaptive Threshold 109

5.3.1 Experimental results 110

5.3.2 Computational Demands 120

5.4 Tridiagonally Symmetrical F A N N s and

the G F A B S Algorithm 123

5.5 Discussion 133

5.5.1 F A N N Generalization 133

5.5.2 Computational Demands 136

5.6 Summary 139

6 Conclusions and Future Work 140

6.1 Thesis Contributions 140

6.2 Future Research. Directions 142

Appendix A 143

Appendix B 145

vii

Appendix C 147

Bibliography 1 6 7

vin

L i s t of Tables

2.1 Onthogenic growing methods for F A N N design. The acronyms N / L

and F C / P C denote the element added in the network (Node/Layer)

and the connectivity of the added element (Fully Connected/Partially

Connected) 28

2.2 Onthogenic pruning methods for F A N N design. The acronyms C/N

denote the element pruned by the method (Connection/Node). 31

3.1 Training and test normalized mean square errors, and average test

P S N R values before and after T O B D and O B D 64

3.2 Number of parameters (weights and biases) and test times for neural

structures given by T O B D and O B D . The test time corresponds to the

F A N N s having the average number of parameters 66

4.1 Test P S N R [dB] using still images, when the F A N N was trained to sub-

sample the 256 x 256 image LENA. The acronym int. denotes bilinear

interpolation ^ 84

ix

4.2 Test P S N R [dB] using still images, when the F A N N was trained to

subsample the 256 x 256 image L E N A . The acronym int. denotes cubic

interpolation 84

4.3 Test P S N R s [dB] for spatial F A N N subsampling of the 144 x 176 video

frames 92

4.4 P S N R s [dB] for different coding rates (8 kbits/sec and 24 kbits/sec),

when using Telenor's H.263 low bit rate encoder. Notation Y stands

for the luminance frames, U and V stand for the chrominance frames. 100

4.5 Test P S N R [dB] on chrominance frames, generated by direct R G B to

Y U V conversion. Each of the two F A N N s was trained to subsample

a 256 x 256 block of the corresponding 512 x 512 L E N A chrominance

frame (U or V , respectively) 101

4.6 C P U times on an UltraSparc 2 computer, number of floating point

operations and memory requirements 104

5.1 Test P S N R [dB] for M F O S using still images. The F A N N was trained

using the G F A B S algorithm with fixed threshold. The training set

consists of the 256 x 256 image L E N A 109

5.2 Training P S N R [dB] for FOS of still images. The 16-8-4 F A N N was

trained using 256 x 256 regions of these images and the G F A B S al­

gorithm with adaptive threshold. The size of each image is equal to

512 x 512 pixels, with the exception of the image GOLD which has the

size equal to 576 x 720 pixels '. 113

x

5.3 Test PSNR [dB] for FOS using 512 x 512 still images. The 16-8-4

FANN was trained using 256 x 256 regions of the images shown in

Table 5.2 and the GFABS algorithm with adaptive threshold 113

5.4 Test PSNR [dB] for FOS using large JPEG-2000 still images. The

16-8-4 FANN was trained using 256 x 256 regions of the images shown

in Table 5.2 and the GFABS algorithm with adaptive threshold. . . . 115

5.5 Training PSNR [dB] for MFOS. The 16-8-4 FANN was trained using

256 x 256 regions of these images and the GFABS algorithm with adap­

tive threshold. The size of each image is equal to 512 x 512 pixels, with

the exception of the image GOLD, which has the size equal to 576 X 720

pixels 116

5.6 Test PSNR [dB] for MFOS. The 16-8-4 FANN was trained using 256 x

256 regions of the images shown in Table 5.5 and the GFABS algorithm

with adaptive threshold 116

5.7 CPU test times [sec] for FOS and MFOS on an UltraSparc 2 computer.

The 16-8-4 FANN was trained using 256 x 256 regions of the images

shown in Table 5.5 and the GFABS algorithm with adaptive threshold. 124

5.8 Test PSNR [dB] for FOS and MFOS using a 16-8-4 tridiagonally sym­

metrical FANN and 512 x 512 still images. The FANN was trained

using 256 X 256 regions of the images illustrated in Figure 5.5 (a) and

the GFABS algorithm with adaptive threshold, and pruned using the

TOBD algorithm. For MFOS, the notations (a)-(d) refer to the ex­

periments illustrated in Figure 5.13 128

xi

List of Figures

2.1 A general model of a simple perceptron (processing node) 9

2.2 The McCulloch-Pi t ts simple perceptron 9

2.3 A classification of A N N mezo-structures 12

2.4 Block diagram of a feedforward neural mezo-structure 12

2.5 (a) Supervised, (6) semi-supervised, and (c) unsupervised learning. . 15

2.6 A n M-H-N multilayer perceptron F A N N 16

2.7 Training error and testing error as functions of the number of hidden

nodes 21

2.8 The relationship between learning, generalization and model complexity. 23

2.9 Subsampling lattices, sublattices, and corresponding subsampling ma­

trices: (a) separable subsampling by 2 in each direction, (6) nonsepara-

ble subsampling by 2 and by 4, respectively, (c) separable subsampling

by 3 in each direction, and (d) quincunx subsampling 43

xi i

2.10 A s imple example of f i rs t -order subsampl ing , where (a) one p i x e l is

selected as the representative of a l l pixels i n the input b lock , and (b)

the output p i x e l is obtained by a p p l y i n g an a r i t h m e t i c operat ion (AO)

on the input pixels 45

2.11 (a) F i r s t - o r d e r subsampling of a 2 X 2 block, (b) first order subsampl ing

of a larger i n p u t block, (c) single-stage h igh-order subsampl ing , and

(d) m u l t i - s t a g e f i rs t -order subsampl ing. In each case, a rectangular

subsampl ing g r i d is employed 46

3.1 A n example of a (a) n o n - s y m m e t r i c a l , and (b) t r id iagonal ly s y m m e t r i ­

cal F A N N . T h e corresponding i n p u t - h i d d e n weight m a t r i x is shown be­

low each F A N N structure. T h e dotted lines indicate where the weight

m a t r i x is padded w i t h zeros so that i t becomes a square m a t r i x . N o t e

that the number of weights i n each case is equal to 10. T h e arrows

i l lustrate a s imple z i g - z a g scanning rule that can be employed i n order

to read the non-zero weight values 51

3.2 A n example of a p p l y i n g the t ransform on the padded weight m a t r i x i n

the T O B D a lgor i thm. W e assume that the m i n i m u m saliency weight is

W33. (a) is the weight m a t r i x before a p p l y i n g the t ransform, (b) is the

weight m a t r i x after the m u l t i p l i c a t i o n to the left w i t h the transform

m a t r i x , and (c) is the weight m a t r i x after the result of (b) is m u l t i p l i e d

to the right by the inverse of the transform m a t r i x 55

x i i i

3.3 A simple example that shows (a) the initial FANN structure and its

input-hidden weight matrix below, and (b) the FANN structure after

the permutation of the hidden nodes, so that node 3 becomes node

l', and its input-hidden weight matrix below. The shadowed boxes

indicate the weight having the minimum saliency. The circled weight

values indicate the neighbors of the minimum saliency weight 58

3.4 Training and test chirp signals 62

3.5 A neural structure given by OBD. Dotted lines indicate deleted con­

nections/nodes 65

3.6 A neural structure given by TOBD. Dotted lines indicate the deleted

connections/nodes. Connections with the same weights have been

drawn with the same lines 65

4.1 Block diagram of a conventional first-order image subsampling system. 69

4.2 Block diagram of a feedforward neural network-based first-order image

subsampling system 69

4.3 Shapes taken into account in the pattern-matching algorithm 72

4.4 A simple example using 2x2 blocks. The FANN desired output values

have been selected using our algorithm 76

4.5 A simple example using a 16 x 16 block from the 256 x 256 image

LENA. The FANN desired output has been selected using our algorithm. 77

4.6 Subsampled and cubic interpolated 512 x 512 image BOAT. The FANN

was trained on the 256 x 256 image LENA using a 2 x 2 non-overlapping

window 85

xiv

4.7 Subsampled and cubic interpolated 16 x 16 block from the 256 x 256

image LENA 86

4.8 Subsampled and cubic interpolated 16 x 16 block from the 512 x 512

image BOAT 87

4.9 Original, subsampled and cubic interpolated 512 x 512 block of the

1200 x 1524 image T O O L S 88

4.10 Histograms of the original, filtered, subsampled and cubic interpolated

512 x 512 image BOAT. The images used to computed the histograms

in the rightmost column have been computed as the difference between

the original image and the subsampled and cubic interpolated images. 89

4.11 Histograms of the original and FANN subsampled and cubic interpo­

lated 16 x 16 block from the 512 x 512 image BOAT 90

4.12 Original, subsampled and cubic interpolated 512 x 512 block of the

1200 x 1524 image F08-200 91

4.13 Subsampled and cubic interpolated MOTHER-AND-DAUGHTER with

salt-and-pepper noise 94

4.14 Subsampled and cubic interpolated MOTHER-AND-DAUGHTER with

Gaussian noise 95

4.15 Block diagram of the chrominance subsampling system. All the avail­

able video sequences have the chrominance frames already subsampled

and we need therefore to upsample them before testing our FANN

subsampler. Upsampling has been performed by cubic interpolation. . 97

xv

4.16 Gray level representation of the chrominance frames. In order to allow

the interpretation of the pictures, the transform (frame-min(frame)) /

(max(frame) — min(frame)) has been applied to the frames before

displaying, where min(frarne) and max(frame) denote the minimum

and the maximum values of the pixels in the original frame, respectively. 98

4.17 Peak signal-to-noise ratio [dB] with respect to rate in low bit rate

experiments using Telenor's H.263 video encoder 100

5.1 (a) Training and (b) test images. The 16-8-4 FANN was trained using

256 X 256 regions of the images (a). The test images (6) have the same

size as the images (a) I l l

5.2 Original 512 x 512 image B I R D 117

5.3 Subsampled image B I R D by (a) FANNS, (6) LPF1S, and (c) MEDS.

The size of each subsampled image is 128 x 128 117

5.4 Reconstructed 512 x 512 image B I R D by cubic interpolation after (a)

the 16-8-4 FANN and (b) LPF1S have been applied twice to achieve

HOS 118

5.5 Reconstructed 512 x 512 image B I R D by cubic interpolation after the

median subsampler has been applied twice to achieve HOS 119

5.6 Test time [sec] for FOS of large images. The FANN has a size of 16-8-4.121

5.7 A section of Figure 5.6, illustrating the FANNS, LPF1S and MEDS

test times for large images 121

5.8 Number of floating point operations (FLOPS) for FOS of large images.

The FANN has a size of 16-8-4 122

xvi

5.9 Test time [sec] for HOS of large images on an UltraSparc 2 computer.

The 16-8-4 FANNS, LPFS and MEDS have been applied twice to

subsample the test images 122

5.10 Learning curve for a 16-8-4 FANN pruned using the TOBD algorithm.

The peaks indicate the first 5 pruning steps. The FANN has been

trained for 100 epochs after each pruning step 125

5.11 (a) Subsampled image BIRD by tridiagonally symmetrical FANN sub-

sampling and (6) subsampled image BIRD by tridiagonally symmetrical

FANN subsampling followed by median filtering using 2x2 blocks. The

size of each subsampled image is 256 X 256 126

5.12 Reconstructed 512 x 512 image BIRD by cubic interpolation, using the

subsampled image illustrated in Figure 5.11 (b) 127

5.13 Multi-stage FOS options using pruned FANNs. The notations FC -

FANN and TS - FANN stand for fully connected FANN and tridi­

agonally symmetrical FANN, respectively 130

5.14 Subsampled image BIRD using (a) a 16-8-4 TS-FANN and a FC-

FANN for each of the FOS stages, respectively. The image (6) was

obtained by inserting a median filtering stage after the first FOS stage. 131

5.15 Reconstructed 512 X 512 image BIRD by cubic interpolation using the

subsampled image illustrated in Figure 5.14(6) 131

5.16 Subsampled image BIRD after (a) the first FOS stage using a 16-8-4

TS-FANN and (b) the second FOS.stage using a 4-2-1 FC-FANN.

The sizes of these images are equal to256x256 andl28xl28, respectively. 132

xvn

5.17 Reconstructed 512 x 512 image B I R D by cubic interpolation using the

subsampled image illustrated in Figure 5.16 (6) 133

5.18 CPU times [sec] for MFOS on an UltraSparc 2 computer using a 16—8—

4 TS—FANN. For HOS the notations (a)-(d) refer to the experiments

illustrated in Figure 5.13. The acronyms FC and MEDS denote the

16-8-4 fully-connected FANN and the median subsampler, respectively. 138

xvm

List of A c r o n y m s

ANN Artificial Neural Network

FABS FANN-Based Subsampling algorithm

FANN Feedforward Artificial Neural Network

FANNS FANN-based image subsampling

FC-FANN Fully connected FANN

FANNS+int. FANN-based image subsampling followed by interpolation

FOS First-order subsampling

GFABS Generalized FANN-Based Subsampling algorithm

HOS High-order subsampling

int. Interpolation (cubic interpolation, if not specified otherwise)

LPF Lowpass filtering

LPF1, LPF2, LPF3 Lowpass filtering using three different filters

LPFS Lowpass filtering followed by subsampling

LPFS+int. Lowpass filtering, followed by subsampling and interpolation
LPF1S, LPF2S, LPF3S Lowpass filtering using LPF1, LPF2, LPF3, respectively,

followed by subsampling

xix

MEDS Median filtering-based image subsampling

MFOS Multi-stage first-order subsampling

med Median operator

OBD Optimal Brain Damage algorithm

PSNR Peak signal-to-noise ratio

TOBD Tridiagonal Optimal Brain Damage algorithm

TS-FANN Tridiagonally symmetrical FANN

xx

List of Symbols

C(w) Cost funct ion

/ T h e node's act ivat ion funct ion

D Subsampl ing m a t r i x

Vk Learning rate at step k

H N u m b e r of F A N N h i d d e n nodes

H Hessian m a t r i x

n T o t a l number of F A N N parameters

M N u m b e r of F A N N input nodes

N N u m b e r of F A N N output nodes

J Jacobian m a t r i x

P T o t a l number of t r a i n i n g patterns

sq
Saliency

w = [w1,w2, • • ., WM] Weight vector

W Weight m a t r i x

W T h e weight m a t r i x W padded w i t h

it becomes a square m a t r i x

x x i

x = [xi,x2, • • -,xM]

xc(t)

x[n)

i

y = [yi,y2,---,yN]2

FANN input vector

Continuous time signal

Discrete sequence of samples

Index of the FANN training patterns

FANN output vector

xxii

To my parents with all my love.

X X l l l

A c k n o w l e d g e m e n t s

I have understood for a long time that we are, essentially, solitary creatures and that

most of our learning experiences are lonely journeys. And yet, during the learning

journey leading to the present thesis, I was fortunate to meet very special people,

who have helped me shape the way and touched my heart.

First and foremost, I would like to thank my supervisor Professor Faouzi

Kossentini for his generous advice and professional help during the past three years. I

would like to thank him for enthusiastically exposing me to different, challenging and

professionally rewarding experiences, such as the research projects in collaboration

with the National Sciences and Engineering Research Council of Canada (NSERC)

and the National Research Council of Canada (NRC), and the projects related to

our involvement in the MPEG-7 standardization activity. I am grateful for his pro­

fessional and financial support that allowed me to participate and present our work

at IEEE conferences and standardization meetings all over the world, as well as for

the financial support provided during all my Ph.D. research activity. Finally, I am

grateful for his advice not only as my supervisor, but also as a friend.

I would like to thank the members of my departmental thesis committee, Pro­

fessors Peter Lawrence, Ian Cumming and Rabab Ward, the members of my univer-

xxiv

sity thesis committee , Professors Takahide N i i m u r a , Jose M a r t i , M i c h a e l Davies and

James L i t t l e , as wel l as the external examiner , Professor Anastasios Venetsanopoulos

f r o m U n i v e r s i t y of Toronto, for their useful comments a n d suggestions on the thesis.

I w o u l d l ike to thank Associate Professor Y u H e n H u from the U n i v e r s i t y of

W i s c o n s i n - M a d i s o n , Assistant Professor B r i a n Evans f r o m the U n i v e r s i t y of Texas

at A u s t i n and Associate Professor Hussein A l n u w e i r i f r o m the U n i v e r s i t y of B r i t i s h

C o l u m b i a for their useful comments related to C h a p t e r 3 of the thesis.

I a m grateful for receiving continuous and fr iendly encouragements over m a n y

years f r o m Associate Professor Y u H e n H u f r o m the U n i v e r s i t y of W i s c o n s i n - M a d i s o n ,

Professor Vasi le Lazaxescu and Associate Professor Nico lae Tomescu f rom the "Po-

l i t e h n i c a " U n i v e r s i t y of Bucharest , R o m a n i a .

I thank m y long t i m e friends E u g e n i a Radulescu , C r i s t i a n M u n t e a n u and Jas-

m i n a Sabolovic for delet ing the thousands of miles between us w i t h their w a r m emails

and letters. I w o u l d l ike to thank m y fr iend S h a h r a m S h i r a n i for reading the first

chapters of the thesis, for our challenging discussions, for sharing his w i s d o m and

good heart. I would l ike to thank a l l of m y colleagues i n the Signal Processing and

M u l t i m e d i a G r o u p at the U n i v e r s i t y of B r i t i s h C o l u m b i a , especially G u y Cote and

A l e n Docef, for their fr iendship.

Last but not least, I would l ike to thank m y parents for their uncondi t ional

love, help and understanding. I owe you a l l that is good i n me.

ADRIANA DUMITRA§
The University of British Columbia

October 1999

X X V

Chapter 1

Introduction

Effective and efficient processing of large amounts of digital data has become more im­

portant in recent years due to an increasing number of multimedia applications. Par­

allel and distributed processing models, such as the artificial neural network (ANN)

models, have been proposed in order to address the performance and speed require­

ments of such applications. The initial interest for the ANN models was mainly due

to the belief that these models can mimic the basic functionalities of the human brain.

However, the existing artificial neural models are only simplified models of the biolog­

ical neural structures, with functionalities which are still far from those of the human

cognitive structures [1,2]. Despite these limitations, the ANN models in general, and

the feedforward artificial neural network (FANN) models in particular, have been

successfully applied over the last decades to various digital signal processing tasks [3].

In particular, FANNs can be applied to image subsampling.

The importance of image subsampling is manifold. First, it provides efficient

representation of images, by simple lossy compression [4]. The resulting low resolution

1

images may be processed using less computations and memory, while certain areas

of interest in the image may be retrieved and processed later at higher resolutions

[5, 6], [7]-[9]. Second, subband decomposition systems [10]—[12], as well as systems

that build image pyramids [13]—[15], involve subsampling. The former approach uses

analysis filter banks to produce the subbands, each of which is further filtered and

downsampled as many times as desired. The latter builds a representation using a set

of lower resolution copies of the image, obtained by iterative filtering with a generating

kernel and decimation [15]. Third, several applications in digital television require

sampling structure conversions of the video signal [16, 17]. Such sampling conversion

usually involves upsampling, lowpass filtering and then downsampling of the signal.

Fourth, scalable image and video processing systems address the various bandwidth

constraints by providing several spatial and temporal resolutions of the images/video.

These are obtained by successively downsampling and upsampling the image/video

and by encoding the resulting pictures. The access to the lower resolution images

does not require the decoding of the higher resolution images [5, 8, 9, 18]. Finally,

hierarchical search methods [8], which are particularly popular in motion estimation

and compensation, involve subsampling of the present video frame and the previous

(reference) video frame successively in the spatial domain. The search process starts

with the lowest resolution frame, and the motion vector estimated at such resolution

level is used as the starting point for motion vector estimation at the next resolution

level. Clearly, the accuracy of subsampling, in this case, has a strong impact on

motion vector estimation.

In most of these image subsampling applications, the subsampled images are

2

obtained by lowpass filtering and downsampling. However, when lowpass filtering is

being applied to the input image, most of the high frequency information is perma­

nently lost. Moreover, due to most of the existing subsampling methods being based

on pixel neighborhood operations [19], the images reconstructed using the subsampled

versions may often contain significant distortion, usually expressed in terms of visible

blockiness in continuous features of the image [19, 6]. Of course, several good post­

processing techniques for eliminating blocking artifacts have been proposed [20], but

the associated processing cost is often quite high. Last but not least, the number of

computations required by the lowpass filtering stage is often too high for applications

where high processing speed is demanded.

A solution to simultaneously reduce both information loss and blockiness, and

increase processing speed, is to apply FANN models to image subsampling. The

FANNs are especially suitable for image subsampling due to the following reasons:

(a) they inherently subsample the input images, for given dimensions of the neural

structure, and (b) they can perform high speed parallel processing. The efficiency and

performance of FANN models in image subsampling depend on their sizes, connectiv­

ities, and associated training algorithms. The aim of most FANN topological design

methods is the optimization of the size and connectivity of the neural structure. Many

FANN design algorithms, that are based on empirical, statistical, growing, pruning

or hybrid methods, have been developed. The outcome of the growing algorithms

is generally a large, fully connected and symmetrical structure. The result of the

pruning algorithms is generally a simple, partially connected, and non-symmetrical

structure. For efficient processing, partially connected FANNs are desirable. For

3

hardware and software implementations, in applications which are very demanding

in terms of computations (e.g., high-order subsampling of images having large sizes),

symmetrical neural structures are especially desired.

The effectiveness of any FANN structure designed using topological methods

depends significantly on the selected FANN training algorithm. Several supervised,

semi-supervised and unsupervised training algorithms have been proposed, each of

which employs a training data set in order to determine the optimal FANN parame­

ters. Supervised training algorithms also require a set of desired output values, which

is used as a reference during FANN training. In image processing applications, the

FANN desired outputs generally consist of the gray-level values corresponding to pix­

els having fixed positions within each of the local processing windows. These pixel

values and their corresponding positions are usually selected prior to the training

process. Unfortunately, the pixel gray-level values do not provide any geometrical

information to the FANN during training. Moreover, the fixed positions of the desired

output pixel values do not allow the FANN to extract the geometrical information

during training. Therefore, the image subsampling performance of FANNs trained us­

ing such standard methods has not been acceptable so far, as the images reconstructed

after FANN subsampling often exhibit blocking and/or ringing artifacts. In order to

improve the quality of the FANN subsampled and reconstructed images, the local ge­

ometrical information is required during FANN training. For high efficiency, adaptive

methods which obtain the local geometrical information during FANN training are

desired.

4

1.1 Thesis objective

The main objective of this thesis is the design of efficient F A N N s with high image

subsampling performance. More specifically, our goal is to obtain compact F A N N

structures that yield a good subsampled version of the original image, such that if

reconstructed, it is as close as possible to the original. To achieve our objective, we

focus on the F A N N topological design and the F A N N training algorithm. We apply

our designed F A N N s to first-order (FOS) and multi-stage first-order (MFOS) image

subsampling, showing that they achieve better performance-speed tradeoffs than the

traditional lowpass filtering and subsampling methods.

In the first part of the thesis, we propose an algorithm for the design of F A N N

structures with tridiagonal symmetry constraints. The algorithm employs a House­

holder transformation of the F A N N weight matrix. In the second part of the thesis, we

propose a training algorithm for F A N N s . Our method is based on a pattern matching

approach to select the F A N N desired output values during the supervised training

stage. In the third part of the thesis, we combine the proposed methods in order to

design tridiagonally symmetrical F A N N s (TS—FANNs) which are fast and effective

when applied to FOS and M F O S .

The performance of the F A N N s in image subsampling is evaluated objectively,

subjectively and through a video coding application. Our objective performance

evaluation of the interpolated images is based on the peak signal-to-noise ratio values.

Our subjective performance evaluation is based on the visual examination of the

subsampled images [21] and on the visual examination of the reconstructed (bilinear

or cubic interpolated) images. We also evaluate the performance of the F A N N s in

5

chrominance subsampling within a video coding application. The efficiency of our

designed FANNs is evaluated using the subsampling time and the number of FANN

parameters.

1.2 Thesis structure

In Chapter 2, we review the main concepts that will serve as background material

throughout the thesis. In particular, we discuss the characteristics of the FANNs,

the most popular design methods for FANN topology, as well as review basic image

subsampling concepts. Chapter 3 introduces a new algorithm for FANN design with

tridiagonal symmetry constraints. In the same chapter, we evaluate the performance

and complexity of this algorithm using one-dimensional signals. In Chapter 4, we

introduce a new training algorithm for subsampling using FANNs, and we then apply

our trained FANN structures to FOS. We also evaluate the performance of our trained

FANNs in chrominance subsampling within a low bit rate video coding system. In

Chapter 5, we employ our design algorithm in order to reduce the connectivity of the

FANN structure. We also modify our training algorithm by including an adaptive

threshold, and we then show that this leads to better image quality when applied

to MFOS. In the same chapter, we evaluate the performance and complexity of the

resulting TS—FANNs in MFOS. Finally, in Chapter 6, we highlight the contributions

of the thesis and suggest future research directions.

6

Chapter 2

Background

In this chapter, the fundamental concepts related to feedforward artificial neural net­

works (FANNs), the existing FANN design methods, and the main concepts related

to image subsampling are reviewed. In Section 2.1, the characteristics of feedforward

artificial neural networks are presented. In Section 2.2, FANN learning, generaliza­

tion, and optimal selection are addressed. A review of the existing methods for FANN

design is included in Section 2.3. We discuss image subsampling in Section 2.4. A

summary of the chapter is included in Section 2.5.

2.1 Characteristics of Feedforward Artificial

Neural Network Models

Due to the various sources of inspiration (biological, physiological, psychological) and

the independent development of the artificial neural network (ANN) models in vari­

ous research communities, such as neurobiological, mathematical, computer science,

7

etc., a synonymic ANN terminology1 and various ANN definitions exist [1]—[26]. In

this thesis, we will employ the terms "artificial neural networks" and "neural net­

works", both referring to the artificial neural network models. We will also employ

the ANN definition proposed in [2]: "Artificial neural models are parallel and dis­

tributed processing structures, consisting of processing elements, interconnected by

signal channels, known as connections. Each processing element has a single output

connection. Processing is performed locally by each processing element".

A feedforward neural network model is defined by the characteristics of the

processing node, the network topology, the data model, the cost function, and the

training algorithm. These are discussed next.

2.1.1 The Processing Node

A general model of a simple perceptron (processing node) is illustrated in

Figure 2.1. This model has basic characteristics that are similar to those of the

biological neuron [27]. More specifically, it models the intensity of the biological

synapses via the "weight" values and it provides the output signal value y(t) by

performing an arithmetic operation on the input signals. If this arithmetic operation

consists of a summation of the input signals, followed by a comparison of the result

with a selected threshold, then the McCulloch-Pitts model of the simple perceptron,

which is illustrated in Figure 2.2, is obtained. The notations x = [xi, x2,. • •, XM\ ',

w = [wi,w2, • • • ,WM\ ', /, and y stand for the input vector, the weight vector, the

node's activation function and the output signal, respectively. The output value y
1
For instance, connectionist models, parallel and distributed processing models, neuromorphic

models, are all equivalent names for artificial neural networks [22].

8

X l
WI

X l
w 2

 x

y~~~\ yft)
X 2

XM
w M /

XM
^— Arithmetic

operation

Figure 2.1: A general model of a simple
perceptron (processing node).

X l

x 2

WI

w 2
 x y

1
XM

w M /
v— ^ ^ '

Figure 2.2: The McCulloch-Pit ts simple perceptron.

of the McCulloch-Pit ts model is given by y = f w;£;J • We note that, if the

simple perceptron presented above is a component having the position j in a m u l t i -

node structure, then its output value is given by yj = fj (j2iLi

To summarize, in the McCulloch - Pitts simple perceptron with the position

j , the weighted sum of the input values is first computed and passed as an argument

to the activation function fj. Next, the value of the activation function is evaluated.

The activation function is the Heaviside step function, having a value equal to 1 for

an argument greater than bj and 0 otherwise, where bj is a threshold [27]. The output

9

value of the McCulloch - Pitts node after the comparison with the threshold has been

performed is given by yj = fj (Z^o WijXij.

Other perceptron models can be obtained from the general model illustrated

in Figure 2.1, simply by choosing various activation functions. This is discussed in

the next section. We also note that other models of the simple perceptron can be

obtained by including local feedback in the structure [2, 28].

2.1.2 T h e A c t i v a t i o n F u n c t i o n

As mentioned above, the activation function of the simple McCulloch - Pitts percep­

tron is the step function2. Therefore, the output value of the simple perceptron can

only be equal to 0/ +1 (for a binary step function) or — 1/ +1 (for a bipolar step func­

tion). Other activation functions have also been proposed. Generally, an activation

function can be linear or nonlinear, and monotonic or non-monotonic. An activation

function can have a step, ramp, triangular, trapezoidal, sigmoidal, polynomial shape,

or a shape of a radial basis function such as Gaussian, Mexican hat, spline, sigma-pi,

etc. Finally, the output value of an activation function can be continuous or discrete,

and binary or bipolar or other. Examples of activation functions often employed in

practical applications are the unipolar and bipolar sigmoidal functions defined by

f (net) = -.—• , and (2.1)
J y ' 1 + exp (-5 net) ' v ;

2
We note that, due to the selection of the step activation function, the McCulloch - Pitts node

is also known as the "conventional" or "Socratic" nede. As stated in [29], "World is invaded by

Socratic thinking, which is based on dichotomies and polarities (plus/minus, true/false, all/none)".

10

f(net) =
1 — exp (—s net)

or 1 + exp (— 5 net) '

/ (net) = tanh (s net)
1 — exp (—2 s net) (2.2) 1 + exp (—2 s net)

where s denotes the slope of the activation function /, and net is the weighted sum

From the structural point of view, FANN micro-structures, mezo-structures and

macro-structures can be defined. A micro-structure consists of a simple neural pro­

cessing node. A mezo-structure consists of interconnections of simple nodes accord­

ing to a selected topology. A macro-structure consists of interconnections of mezo-

structures according to a selected topology [31]. The network topology is defined by

its geometry and interconnection scheme [32].

A general classification of ANN mezo-structures is illustrated in Figure 2.3.

The feedforward neural mezo-structure is illustrated in Figure 2.4, where the nota­

tions x = [xi, x2,. • •, 2TJW] T and y = [yi, y2, • • •, J / J V] T stand for the input and output

vectors (respectively), is the weight vector between the input nodes and the output

node j, Wij is the weight of the connection between the nodes i and j , W is the weight

matrix having as columns the vectors Wj, and F is a nonlinear function. The output

value of the neural structure is given by y(k) = F [WT
 x(&)j, where k is the discrete3

3
We here assume a discrete system. For a continuous system, this relationship becomes y(t) =

of the input values, given by net = w
T
x = Y^iLo

 w

i
x

i [27, 30].

2.1.3 T h e T o p o l o g y

11

ANN
structure

"Feedforward"

"Feedforward-Feedback"

"Feedback"

Fully
connected

Partially
connected

With local
feedback

With global
feedback

Figure 2.3: A classification of ANN mezo-structures.

x(t) y(t)
p.

x(t)
F[W x(t)]

y(t)
p.

^ F[W x(t)]

Figure 2.4: Block diagram of a feedforward neural mezo-structure.

12

time index [25]. By adding a feedback connection between the output and the input

of the mezo-structure illustrated in Figure 2.4, the feedback neural mezo-structure

is obtained. The characteristics of feedback mezo-structures and related issues are

discussed in [1, 2, 25].

As mentioned earlier, a neural F A N N macro-structure is the interconnection

of several mezo-structures. The topology of a macro-structure and related issues are

discussed in [1, 2].

2.1.4 T h e D a t a M o d e l a n d t h e C o s t F u n c t i o n

The data model and the cost function describe the application that is being solved

using the F A N N model. More specifically, the cost function represents a hypothesis

on the distribution of the input data. The cost function for F A N N s is usually denoted

by C(w), and it is defined on the parameter (weight) space. The goal is to determine

the weight vector w £ 3?n for which C(w) is minimized, that is,

Minimize the scalar cost function C(w) subject to w 6 3J n , (2.3)

where the LT-dimensional weight vector may also include other network parameters,

such as the thresholds bj that have already been mentioned in Section 2.1.1. The cost

function must satisfy the following theorem [24]:

Theorem 1 Let V 2 C (w) be a Hessian matrix, nonsingular in w*. If the Jacobian

matrix V C (w*) = 0 and if the Hessian matrix V 2 C (w*) is symmetrical and positively

F [WT x(<)].

13

defined, then C (w*) < G (w) for each w which satisfies the condition 0 < |[w —

w*|| < e, e > 0.

2.1.5 T h e T r a i n i n g A l g o r i t h m

In biological systems, learning is generally defined as a change in behavior [25, 31], In

artificial systems, learning is generally defined as a set of parameter modifications due

to an adaptation process [25]. The goal of these changes performed during learning

is the minimization of a cost function. The result of the learning process is a set of

parameter values.

The effectiveness of FANN learning depends on the careful selection of the

simple processing nodes (discussed earlier) and on the training algorithms. These al­

gorithms usually update the weights locally, at the simple node level, according to a

training rule. The training rule may be supervised, semi-supervised or unsupervised.

Supervised training rules, also known as "learning with a teacher", are illustrated in

Figure 2.5 (a). Supervised training rules employ a training data set {x (£), d (£)},

where {x (£)} are the input values, {d (£)} are the corresponding desired output val­

ues, 1 < if < P is the index and P is the number of the training patterns, respectively.

The aim is to minimize the distance between the actual output values y (<f) and the

desired output values d(£), using the selected cost criterion [33]. Semi-supervised

training rules, also known as "learning with a critic", are similar to the supervised

training, except that the desired output values d (£) are not defined. Instead, the net­

work receives a mark which quantifies how well it has learned the previous training

patterns [22]. In other words, the learning process in the FANN is reinforced or pe-

14

nalized. In Figure 2.5 (6), r denotes the reinforcement/penalty signal. Unsupervised

training rules, illustrated in Figure 2.5 (c), update the network parameters using only

the input data. No desired output values are provided in this case.

ANN y x

ANN y
w

i

Evaluation d Evaluation
(cost measure) ,4 r (cost measure)

(a) (b)

X ANN >

w
ANN

(c)

Figure 2.5: (a) Supervised, (b) semi-supervised, and (c) unsupervised learning.

15

2.2 FANN Learning, Generalization, Evaluation

In this section, we first discuss the FANN learning as an approximation / optimization

process. Next, we address the FANN generalization ability. Finally, we comment on

the optimal selection of a FANN structure. We will restrict our discussion to the

supervised learning in a multilayer perceptron FANN structure that is illustrated in

Figure 2.6.

*V

—•(V A ~^kf) ^

'jff) •

—•(

Input layer Hidden layer Output layer
(M nodes) (//"nodes) (N nodes)

Figure 2.6: An M-H-N multilayer perceptron FANN.

2.2.1 F A N N L e a r n i n g a n d G e n e r a l i z a t i o n

FANN Learning as an Approximation Process

Supervised FANN learning of a data set {x (£) , d (£)}, with d(£) = F(x(£)) and
1 < (< P, can be viewed as the approximation of the function F (x) by the function

16

F (w; x) implemented by the FANN model. The goal is to determine the set of

parameters w* that leads to the best approximation F (w*; x) of the function F (x),

given the input data set.

Important issues need to be addressed here, such as the classes of functions that

can be effectively approximated by F (w; x) and FANN overtraining. The former is

a representation problem. From this perspective, FANNs are nonlinear models that

are able to perform "universal approximation", that is, they can approximate any

continuous input-output relationship. This powerful property, which also motivates

our selection of FANNs as neural models in this work, is based on Kolmogorov's [34]

theorem of existence. This theorem states that two hidden layers are sufficient for

designing a FANN universal approximator. However, the theorem does not provide

the details that are necessary to build the neural model.

FANN overtraining is a phenomenon which consists of a decrease of the train­

ing 4 error simultaneously with an increase of the testing error. In other words, the

FANN approximates well the relationships in the training data set, but generalizes

poorly when using the testing data set. A small size of the training data set and a

large number of FANN parameters as compared to the number of training patterns,

are some of the reasons that can lead to overtraining. Hence, the estimation of the

testing error during training (so that FANN training is terminated when the value

of the testing error increases) and the limitation of the number of FANN parameters

are possible solutions to avoid overtraining.
4
The training/testing errors are averages of the cost function values computed for all of the

training/testing patterns, respectively.

17

F A N N Learning as an Optimization Process

When viewed as an optimization process, the goal of FANN training is to obtain the

set w* of optimal parameters which solves the minimization problem (2.3) stated in

Section 2.1.4. The weights w* are determined by searching in the space of all possible

network configurations. If the cost function C (w) is additive, then the minimization

problem (2.3) becomes

P N p

Minimize the cost function C (w) = ̂]P Cj (w; x (£)) = ̂ C (w; x (£))
e=i j=i i=\

subject tow E 3?n,

where 1 < £ < P are the FANN training patterns. The cost function C (w) must

satisfy Theorem 1 in Section 2.1.4. Moreover, the cost function C(w;x) must be

convex, that is C [(1 - 7) a + 7 b] > (1 - 7) C (a) + 7 C (b), with7 G [0,1] [24].

Supervised F A N N Learning Algorithms

In most algorithms that are used to solve the optimization problem stated above,

the cost function and its derivatives are evaluated. Next, a minimum of the cost

function is obtained and the search in the weight space is further refined around

this minimum. Let us assume that the search for the minimum of the cost function

C (w) in the parameter space is linear, with [wi, w2, ..., wxi] T the vector of FANN

parameters, and that it is performed in discrete time. Moreover, let us assume that

the search starts from the initial point w0 in the direction5 d, and that the search
5
The notation for the direction must not be confused with that used for the vector of the desired

output values d in the FANN.

18

follows the straight lines defined at each step k by w^+i = w^-f^fc dk, where w*, w^+1

and r)k are the weight vectors at the steps k and k + 1, and the learning rate at step

k, respectively. The search direction dk can be determined by applying deterministic

(e.g., based on the computation of the first or second order derivatives of the cost

function) or stochastic methods (e.g., "simulated annealing").

First order deterministic methods compute the search direction based on the

value of the local gradient. Therefore, these methods are also called gradient descent

or steepest gradient methods. A well-known example is that of the backpropaga-

tion algorithm [1]. Second order deterministic methods compute the search direction

based on the second order derivatives of the cost function C (w). The conjugate

gradient method, Newton's method, quasi- and pseudo-Newton methods are exam­

ples of second order derivative based search methods. In particular, all versions of

Newton's method are based on the idea that the cost function can be approximated

locally by a quadratic function. Moreover, this quadratic function can be minimized

exactly. The rule for updating the F A N N parameters in the Newton method is given

by Wfc + i = wj, — H _ 1 (wjt) J (wjt), where J and H denote the Jacobian and Hessian

matrices of the cost function, respectively. The rule for updating the F A N N parame­

ters in quasi-Newton methods is given by w^+i = Wk — J^Hj" 1 V C (w;t), where H - 1

is an approximation 6 of the inverse Hessian matrix H _ 1 (computed recursively) and

r]k is the learning rate at each step k, given by [24, 35]

rjk = arg min C (w* - T/H* 1 V C (w*)) • (2.4)

6
Quasi-Newton methods employ approximations of the inverse Hessian matrices, thus attempting

to address the problem of high cost of Newton method. More specifically, the Netwon method

converges theoretically in II 3 steps, with II the number of FANN parameters. At each step k, the
inverse matrices H of size II x II must be computed [24].

19

Finally, pseudo-Newton methods are equivalent to applying the Newton rule sepa­

rately, for each weight. In pseudo-Newton methods, the elements outside the main

diagonal of the Hessian matrix H are ignored.

F A N N Generalization

During the testing stage, the FANN generalization ability is evaluated by computing

the error on the testing data set. Generalization can be defined as "the ability to

estimate quantitatively the characteristics of a phenomenon that was not met pre­

viously, based on its similarities with other known phenomena" [22, 36, 37]. FANN

generalization can be improved by avoiding the overtraining process that has been

described in Section 2.2.1. As stated earlier, one solution is the selection of a small

number of FANN parameters. Assuming that the FANN's input and output layers

have fixed sizes, the selection of the number of FANN parameters becomes the se­

lection of the number H of hidden nodes so that overtraining is avoided. This is

illustrated in Figure 2.7.

A solution to reduce the number of FANN parameters is regularization, which

consists of imposing constraints on the input-output function implemented by the

FANN. Assume, for instance, that the cost function is given by C (w) = \Ctraining (w)+

l C c o m p i e x i t y (w), where Ctraining-, Complexity, w, x, A, 7 are the standard error term,

the regularization term, the FANN parameters, the input vector, and the regulariza­

tion parameters, respectively [26, 34]. If the first component of the cost function is,

for instance, the L2 norm of the error, and if the numbers of input and output values

are equal to M > 1 and N-l (respectively), the training error may be computed

by

20

> Number of
hidden nodes

Figure 2.7: Training error and testing error as functions of the number of
hidden nodes

Ctratnmg (w) = i £ [d (0 - y (Of = lJ2[d(0-F (w; x (0)] 2 , (2.5)
Z £=l 1 £=i

Various forms of the regularization (penalty) term Ccompiexity (w) are discussed in [38].

If the penalty term causes some of the FANN weight values to decrease, the FANN

structure is reduced. This is known as a weight decay regularization [39]. In addition

to regularization, other solutions for the selection of the number of FANN parameters

are provided by FANN design methods, which are discussed in Section 2.3.

Finally, the selection of the number of FANN parameters is directly related to

the selection of a sufficient number of training patterns. In other words, sufficient

data must be available in order to impose constraints on the FANN parameters during

the training stage. The relationship between the number of FANN parameters and

21

optimal

the necessary number of training patterns can be determined by assuming, in the

design methods presented in Section 2.3, that the FANN size is fixed and known.

2.2.2 C r i t e r i a f o r F A N N M o d e l E v a l u a t i o n . O p t i m a l F A N N s

Structural FANN design consists of the selection of a particular FANN network and

the evaluation of the network size. Ideally, the result of the design stage is an optimal

network. In this section, we first comment on the criteria for FANN model evaluation.

Next, we discuss the criteria for the evaluation of FANN optimality. Finally, we

comment on the reasons for reducing the model's complexity.

Parsimony, data coherence, consistency with a priori knowledge, and dimen­

sionality, which are criteria for general model evaluation [40], can also be applied for

FANN model evaluation. The "parsimony principle", also known as "Ockham's ra­

zor principle", has been formulated by the medieval philosopher William of Ockham

(1300-1349), and it states that "there must not exist more entities than necessary".

This idea expresses a fundamental principle of modern science, which is the necessity

to simplify the scientific theories. In particular, this idea applies to FANNs as fol­

lows. Given two FANNs and a common training set, the network having the smallest

number of parameters generalizes better [41]. The data coherence criterion requires

that the neural model be able to learn the given data set according to a selected

cost criterion. Consistency with a priori knowledge is required if a priori knowledge

has been employed in order to build the neural model. The dimensionality criterion

places an upper bound on the size of the dataset that is necessary to obtain a good

estimate of the model parameters (weights, thresholds).

22

Optimal neural

structure
Learning

ability

^ Complexity of

the neural model

Generalisation
ability

Figure 2.8: The relationship between learning, generalization and model com-

A FANN model that is designed so that the above mentioned criteria are met

is, ideally, an optimal FANN structure. The optimality of the obtained FANN can be

evaluated by using the average generalization error, the size of the neural structure

(evaluated by the number of connections/nodes), or other criteria. As Figure 2.8

illustrates, these optimality criteria are not independent [42]. For instance, better

generalization is clearly obtained when reducing the complexity of the FANN model.

Additionally, this implies faster testing, and lower implementation costs.

plexity.

23

2.3 FANN Design Methods

The optimization of the FANN neural structure for better performance is a funda­

mental design problem [39]. The general design rule (2.3) requires that the size of

the FANN be minimized subject to the FANN being able to learn the training set.

Consequently, FANN design is accomplished by specifying the number of hidden lay­

ers, the size (number of nodes) in each layer, and the connectivity of the structure so

that this requirement is met.

Based on the representation theorem mentioned in Section 2.2.1, a maximum

number of two hidden layers is necessary so that the FANN is able to approximate

any nonlinear input-output function employed in current applications. In practice

FANNs with more than two hidden layers may be selected, in order to avoid a large

number of hidden nodes in each of the hidden layers.

Determining the size of the hidden layer, i.e. number of hidden nodes, is a

difficult problem. If the number of the hidden nodes is too large, then the FANN

has too many parameters and generalizes poorly [43]. However, if the number of

hidden nodes is too small, then the number of weights that can be modified during

the training stage is not sufficient. Consequently, the FANN model is unable to learn.

The sizes of the input and output layer can usually be determined quite easily. More

specifically, the size (i.e., number of nodes) of the FANN input layer is normally set

to the size of the training patterns. The size of the output layer depends on the

application problem. For instance, in a classification problem, the size of the output

layer is equal to the number of classes. Finally, the FANN may be fully connected, if

each simple node i in layer L is connected with each node in layer L + 1, and partially

24

connected otherwise.

A simple solution for the design problem stated earlier is to train several FANNs

using the same training set, until the cost criterion is met. Then, the structure having

the minimum size is selected. Although simple, this method is time consuming.

Instead, several design methods have been proposed, all of which evaluate the size

of the hidden layer(s). These methods can be empirical, statistical, or onthogenic.

Empirical methods generally depend on the application problem [1, 2, 31, 35, 44, 45].

Statistical FANN design methods aim at obtaining a tradeoff between the complexity

and the generalization performance of the FANN model. The model complexity is

evaluated by the number of independent parameters. The generalization performance

is generally evaluated by the average generalization error [46, 47]. The statistical

criteria proposed for FANN selection in [39], [46]-[52] can be expressed by the general

form C(w) = Chaining(w) +7 C c o m p i e x i t y (w) , where C (w), draining, and Ccomplexity are

the cost terms that denote the overall complexity of the model, the training error, and

the penalty for the model complexity, respectively. The term CCOmViexity is different

for various statistical criteria.

Onthogenic methods are based on modifications of the FANN topology by

growing, pruning or hybrid methods. The topology can be changed by adding/deleting

layers, nodes, or connections. When the FANN topology is modified, the size of the

FANN structure is usually modified as well. Growing methods start from an initial

small structure and successively add nodes and/or layers, until a desired cost crite­

rion is met. On the other hand, pruning methods delete nodes and/or layers from a

network with a reasonable size, until the cost constraint is violated. Hybrid methods

25

are based on combinations of the growing and pruning methods, usually improving

performance. The onthogenic design methods, particularly pruning methods, are

discussed next.

2.3.1 G r o w i n g M e t h o d s

As stated earlier, the growing methods for FANN design are onthogenic methods that

start from an initial small structure and successively add nodes and/or layers, until a

desired cost criterion is met. The resulting FANN is generally a large, fully connected

and symmetrical neural structure.

FANN growing can be formulated as a search in the functional space. The goal

of this search is to determine the size of the FANN which is able to approximate the

desired input-output function based on the training data set. The initial and the final

FANN structures, the type of elements (connections/nodes/layers) that are added in

the neural structure, the number of the added elements, the connectivity of the in­

serted elements, and the stop criterion for the searching process in the functional space

[43, 54] are specific to each growing design method. Many growing methods start from

an initial structure with no hidden nodes or no direct input-output connections. The

final structure, which can implement satisfactorily the desired input-output function,

is not unique. Usually, the final structure that implements "well enough" the desired

function according to a selected cost criterion, is selected. The elements that are

added in the neural structure during the growing process can be connections, nodes,

or layers. These elements are usually added one by one. The added elements can be

fully or partially interconnected with the existing elements in the neural structure.

26

The growing process is terminated if a selected cost criterion is met. We note here

that, the stop condition for a growing process can be expressed based on the statistical

criteria mentioned earlier. The growing methods for FANN design can be classified,

based on the growing strategy, as illustrated in Table 2.1.

Ad hoc methods are based on the idea that a new hidden node must be added

in the FANN structure when the error stops decreasing for a selected period of time

during the training proces. After a new hidden node is added, the weights are updated

and training is resumed. Input space partitioning methods are based on the idea that

each hidden node performs a partition of the input data space. If a new training

vector, which is presented to the FANN input, is incorrectly classified in one of the

existing partitions, then a new hidden node, representing a new partition, is added;

otherwise, the network structure is not changed. Error correcting methods are based

on the idea that the output error is generally expected to decrease when a new hidden

node is added in the FANN structure. The methods that generate trees build FANN

networks by adding nodes so that the resulting FANN structures are trees (pyramids)

with the network output nodes on top. The methods that build the network starting

from a tree are based on re-ordering the decision trees in multilayer perceptron-like

structures. Finally, modularization methods are based on the idea that, by dividing

a network into several sub-networks, each of which is able to solve a part of a large

application problem, the FANN design by applying growing methods is simplified.

The advantages of the onthogenic growing methods for FANN design are small

sizes of the initial neural structures and good scalability with the size of the dataset.

The main drawbacks of the onthogenic growing methods are (a) performance degra-

27

Table 2.1: Onthogenic growing methods for FANN design. The acronyms N/L and FC/PC denote the element

added in the network (Node/Layer) and the connectivity of the added element (Fully Connected/Partially Con­

nected).

Method Author(s) Ref. Remarks N/L FC/PC

DNC Ash [55] Dynamic Node Creation 1 N FC

Chang [43] 1 N FC

Ad hoc Honavar & Uhr [53] Generation 1 N N/A

Mezard & Nadal [22] Tiling N, L PC

Input space RCE Reffly [55] Restricted Coulomb Energy 1 N FC

partitioning GAL Alpaydin [56] Grow and Learn 1 N PC

OSA Masciolli & Martinelli [57] OilSpot Algorithm N/A FC

CASCOR Fahhnan [30] CaSCade CORrelation 1 L of 1 N FC

Error CL Refenes [43] Constructive Learning 1 N N/A

correcting LPPA Masciolli & Martinelli [57] Linear Programming 1 N N/A

Perceptron Algorithm

GMDH Ivakhnenko [54] Group Method 1 N PC

of Data Handling

Methods that UPSTART Frean [58] Groups of 2 N N/A

generate trees Nahban & Zomaya [55] N, L N/A

Methods that EN Sethi [59] Entropic Networks N/A N/A

start from a tree Brent [60] N/A N/A

Modularization Mirghafori & Morgan [61] N/A N/A

TACOMA Lange & Voigt [62] TAsk Decomposition by 1 L N/A

...

Correlation MeAsures

dation due to the overtraining which may be present when the new hidden nodes

are fully connected with the existing nodes, (6) significant time requirements for the

methods that generate trees and those that build the FANNs starting from a tree,

(c) no theoretical proof of convergence for some of the growing methods, and (d)

sub-optimality. Comparisons of some of the onthogenic growing methods have been

performed by Fiesler [53], and Mascioli, Martinelli, and others [57].

2.3.2 P r u n i n g M e t h o d s

As stated earlier, pruning methods delete connections, nodes, and/or layers from a

FANN, until a cost constraint is violated. The initial structure is usually large enough

to allow learning. The pruned structure is generally a simple, partially connected,

and non-symmetrical neural structure [63]. The goal of FANN pruning methods is

to obtain a neural structure with lower complexity than that of the initial structure,

without significant performance degradation.

Let the FANN be a M-H-N multilayer perceptron. Without loss of generality,

let us assume that N = 1. Moreover, let w = [w\,wr,wn]T be the IT dimensional

parameter vector of the network, where wr is the rth component of the vector and

1 < r < LT. The training set consists of {x(f), d(Q}, where 1 < £ < P. The notations

x, d, £, P denote the input vector, the desired output value, the index of the input

pattern, and the total number of patterns, respectively. Finally, let us assume that

the cost function to be minimized consists of one term, given by (2.5), and that, by

applying a pruning method, a weight wq is deleted, with 1 < q < LT. Then, the

hypotheses wq — 0 and wq ^ 0 must be compared by testing the model {^(q)) with

29

respect to the model (w). The parameter vectors W (g) and w are identical, with

the exception of the weight wq, which is zero in the model (w(?)j and nonzero in the

model (w). Successive deletions of the weights wqi, wq2, etc., are equivalent to testing

the models (w(9l)), (w(?2)), and so on. If the weight wqi = 0, then wq\ = wq2 = 0,

and so on.

Several issues need to be addressed, such as the testing procedure for the

model (w(j)j with respect to the model (w), the optimal sequence of connections

to be deleted 51,52, •••<?£, and the selection of the stop criterion. The testing of the

model (w(gj j with respect to the model (w) is generally performed by selecting a cost

criterion. The value of the cost function must be lower than a threshold in order to

permanently delete a particular connection. The optimal sequence of connections to

be deleted is difficult to select. A solution is the computation of sensitivity parameters

associated to each weight. Next, the connection having the minimum sensitivity is

removed. The pruning process is terminated if a selected stop criterion is met. This

criterion can require, for instance, that the percentage of the deleted connections

be below a threshold. Other stop criteria can be expressed based on the statistical

criteria mentioned earlier.

The previously developed pruning methods for FANN design can be classified

based on the pruning strategy as illustrated in Table 2.2.

Pruning methods that eliminate weights

Brute-force pruning methods, such as that proposed in [64], assign a zero value to one
weight at a time. If the output error increases significantly, then the weight is restored
to the initial value, otherwise it is permanently deleted. Weight clustering methods

30

Table 2.2: Onthogenic pruning methods for FANN design. The acronyms C/N denote
the element pruned by the method (Connection/Node).

Method Author(s) Ref. Remarks C/N

Brute—force Thodberg [64] C

Reed [43] c

Weight LB Krusclike [65] Local bottleneck c
clustering DB Kruschke [66] Distributed bottleneck c

SWS Nowlan & Hinton [43] Soft Weight Sharing c

OBD Denker, LeCun & Solla [67] Optimal Brain Damage c

Sensitivity OCD Cibias, Soulie & Gallinari [68] Optimal Cell Damage c

estimation OBS Hassibi & Stork [69] Optimal Brain Surgeon c
SSM Cottrell & Girard [50] Statistical Stepwise c

Karnin [70] c

Ishikawa [38] c
Hinton [34] c

Krogh & Hertz [22] c
Weigend [34] c

Hansen [71] OBD with Weight Decay c

Regulari­ Hansen & Pedersen [72] OBD with Weight Decay c

zation Chauvin [73] c

based Ji [74] c
Nowlan & Hinton [75] c

MacKay [76] c

CSDF Yasui, Malinowski & [77] Convergence Suppres­ c
Zurada sion and Divergence

Facilitation

Brute—force Siestma & Dow [43] N

Weight Mozer [78] Skeletonization N

clustering CSDF Yasui, Malinowski & [77] Convergence Suppres­ N

Zurada sion and Divergence

Facilitation

Sensitivity Mozer & Smolensky [78] Skeletonization N

estimation Kruschke [66] N

Other Xue & Hu [79] Correlation N

FARM Kung & Hu [80] N

31

are based on the idea that, by grouping the weight vectors which enter the hidden

nodes, the dimension of the space scanned by these vectors is reduced. The weight

clustering (grouping) can be performed by a competition of the hidden nodes, as in

the case of the "local bottleneck" (LB) and "distributed bottleneck" (DB) methods

[65], or by other methods [43]. Sensitivity estimation pruning methods are based on

the idea that the elimination of any weight in a FANN has an impact on the value of

the cost function. In addition to the "sensitivity", various other indices such as the

"saliency", "evidence", and "relevance" have been employed in this class of pruning

methods.

In the Optimal Brain Damage (OBD) algorithm, proposed by Denker, Le Cun,

Solla and others [67], the estimate of the error increase when some of the connections

are deleted is expressed in terms of the saliency of the cost function7. The weights

that have minimum saliency are permanently deleted.

Let the symbols M-H-N denote a FANN with M input, H hidden and N

output nodes. Also, let P be the number of training patterns, x (<f), y (f) , d (<f) and

z (if) be the input, the actual output, the desired output and the hidden layer output

vectors (respectively), for an input pattern f, Wik be the weight connection between

an input node i and a hidden node h, Vhj be the weight connection between a hidden

node h and an output node j. Finally, let's assume that the FANN parameters are

the components of a IL-dimensional vector w = [wi, ..., wr, ..., wn]
T, where II is

the total number of parameters, and that N = 1. When a component of w is deleted,

the value of the cost function C (w) changes by SC (w), which is given by
7
To be consistent with other references, we shall use the shorter expression "the weight saliency".

32

6C(w) = C7(w + Sw) = £ jr- d wr + n E
" dC , 1 " d 2C (2.6) <9u>2 +

<9uv <9u>?
a 2c

dwrdwq + O (||<$w||3) .

Assume that the cost function reaches a local minimum value, i.e., V C = 0. Moreover,

assume that terms of order higher or equal to two in Equation (2.6) are neglected.

Finally, assume that only one weight at a time is deleted, which means that 6wr = 0

for all r, except for the case when r = q. Therefore, the terms V 2C/Vw rViu g outside

the main diagonal may be dropped [67], [71]. With these assumptions and using the

Levenberg-Marquardt approximation for the Hessian matrix, Equation (2.6) becomes

where V is the set of the weights {wq \ q G V} to be deleted. Then, the saliency sq

of wq can be expressed by

8 0 * l ^ d ^ ^ 2 -

Since Swq = —wq for r = q, this equation is equivalent to

The increase in the cost function value may also be expressed as

8C = £ s
(2.7)

1 d 2C

2 dw\ r

33

If the cost function is additive, i.e. C =]Cf=i C (0) a n d if the output value
of the single hidden layered FANN is y (£) = -F (w; x (£)), then the saliency can also
be expressed by

1
s„ = w„ E 52C7(0 (dF(w-M0)

2P ^ d i v i o r dw0

Expressing the FANN input-output mapping by [71]

H i M \

F (w; x (£)) = 53 tanh I 53 wih %i (0 + uo,
h = i \» = o /

the input-hidden and hidden-output saliencies can then be given by

Sh
1 p (M \

= vh7pB Z t a n h 2 Z X i (0 a n d (2'
^ " £ = 1 \t = 0 /

sih = v2

h w2

ih — 53

M

1 - tanh2 5̂ wmh xm (0
m = 1

where (2.

|j = i and 5/j = 5̂ - |j = i. The saliencies are computed as follows:

REPEAT
1. Train the network until the error C < ex, with ex given.
2. Compute the weight saliencies and arrange them in a decreasing

order.
3. Delete the connection with minimum saliency. Go to step 1.

UNTIL
The stop condition is satisfied (e.g., a selected percentage of the

weights has been deleted).

34

The "Optimal Cell Damage" (OCD) method, introduced by Cibias, Soulie,

Gallinari, and others [68], is a variation of the OBD method. However, in the OCD

method, some of the input variables are also deleted. The "Optimal Brain Surgeon"

(OBS) method proposed by Hassibi and Stork [69] employs the entire Hessian matrix

for the estimation of the weight saliencies. Thus, the OBS method is a generalization

of the OBD method. The performance of the OBS method is better than that of

the OBD, however its complexity is also higher. The entire Hessian matrix is also

employed in the "Statistical Stepwise" method proposed by Cottrel, Girard, and

others [50].

Regularization-based pruning methods employ the minimization of a cost func­

tion which contains a penalty term. This term penalizes the neural structures having

high complexity. As stated in Section 2.2.1, weight decay regularization occurs when,

due to the selected penalty term, some of the FANN weight values become zero.

Thus, the corresponding connections are deleted from the neural structure. Various

penalty terms for weight decay regularization-based pruning have been proposed in

[34, 38, 71]. A variation of the OBS method with weight decay has been proposed

by Hansen and Pedersen [72]. Various cost functions for pruning methods, which im­

plicitly perform regularization, have been introduced by works such as [73]-[77]. An

adaptive regularization method for weight pruning has been proposed by [76], that

eliminates the empirical selection of the regularization parameters which is required

in most of the above mentioned methods.

35

Pruning methods that eliminate hidden nodes

"Brute-force" methods for pruning the FANN nodes are based on the evaluation of

redundancy criteria. For instance, if the output of a hidden node is constant for all

of the training patterns, then the node can be deleted. Alternatively, if two hidden

nodes have the same output value with the same sign or with opposite signs for all of

the training patterns, then one of these nodes can be deleted. Siestma and Dow [43]

have employed this idea in their interactive method for pruning of the FANN, which

allows the user to decide by inspection which nodes can be eliminated. Sensitivity

estimation methods generally delete the hidden nodes that do not lead to major

changes in the value of the cost function. Mozer and Smolensky [78] have proposed

a skeletonization method based on the computation of a "relevance" index. The

"relevance" index is computed for each node as the difference between the output

error obtained without the node in the structure, and the output error obtained with

the node in the structure. A low relevance is associated with a low importance of

the node, which can then be deleted. Kruschke [66] has proposed a sensitivity-based

pruning method which uses the competition of the hidden nodes combined with lateral

inhibition. The nodes that are completely inhibited can be deleted from the FANN

structure. Finally, other methods based on the evaluation of the correlation between

the hidden nodes [79], as well as recursive least squares approximation of the best set

of hidden nodes [80], have also been proposed.

The advantages of the pruning methods for FANN design are the small size of
the resulting neural structures, and the good generalization due to the small number
of parameters. Moreover, overtraining is avoided. The main drawbacks of the pruning

36

methods are related to (a) the selection of the initial FANN size, (6) time requirements

due to the FANNs having large sizes during many of the pruning stages, and (c) sub-

optimality. Comparisons of some of the onthogenic methods have been performed by

Fiesler [53]. However, a quantitative comparison is difficult due to their employing

various benchmark data sets.

2.3.3 O n t h o g e n i c H y b r i d M e t h o d s

The hybrid methods for FANN design combine the growing and pruning methods in

order to improve performance. The hybrid methods that have been proposed can be

generally classified into sequential and non-sequential methods. Sequential hybrid

methods consist of a growing stage followed by a pruning stage. In these methods,

the layers are added one by one and the nodes are pruned one by one [55], [81]—[83], or

only the nodes are added/pruned [84, 85]. Non-sequential hybrid methods cannot be

decomposed into distinct growing/pruning stages, although growing/pruning opera­

tions are employed at various design stages. An example is the "Controlled Growth

of CASCOR" method [72], which is a modified version of the basic CASCOR method.

More specifically, a hidden node is first pruned before being added in the structure.

Another solution has been proposed in [36], where the hidden nodes are added during

training if an information theory criterion is met.

The advantage of the onthogenic hybrid methods for FANN design is better

performance than that of the growing and pruning methods. The main drawback of

the onthogenic hybrid methods is their high complexity.

37

2.4 Image Subsampling

Image subsampling is equivalent to intelligently discarding data [19, 5], and it can be

informally defined as the process of representing an input image on a new sampling

grid, with a lower sampling density than the original grid [6, 5]. Subsampling is also

known as downsampling, scaling down, shrinking or decimation, and belongs to the

class of geometric scaling procedures, which also include the reverse operation, i.e.

upsampling or upscaling, achieved either by pixel replication or by interpolation.

Several approaches to subsampling are possible and they differ according to

the subsampling domain, the geometry and the type of the subsampling grid. The

standard references for sampling issues in digital signal processing are [86, 87], but

important details are also included in other publications (e.g., [10, 11]). We shall next

briefly refer to some of them, based on the above classification.

2.4.1 T h e S u b s a m p l i n g D o m a i n

For still images, the subsampling domain is either the spatial or the frequency domain

[8]. In the case of video sequences, spatial (intra-frame), temporal (inter-frame)

[16, 88] or spatio-temporal subsampling [5] is performed. These are discussed next.

Subsampling of 1-D Signals in the Spatial Domain

Let us denote by xc (t) and x [n] a continuous-time signal and a discrete sequence of
samples obtained from the continuous signal by periodic sampling, respectively. In
other words, x[n] = xc(nT), where -oo < n < +co [86]. Let us also denote by
Xc (j 0) the Fourier transform of the original signal xc (t). The Fourier transform of

38

the sampled sequence consists of periodically repeated copies of Xc(jCl), which are

separated by integer multiples of the sampling frequency. If the sampling frequency

£ls is Qs > 2 0,JV, that is, if the sampling frequency is higher than twice the highest

frequency component of the continuous signal, then these replicas of Xc (j Q) do not

overlap. Consequently xc (t) can be recovered from the sampled sequence with an

ideal lowpass filter. If the sampling frequency does not meet the above condition,

the reconstructed signal is distorted due to aliasing. The frequency fi/v is commonly

referred as the Nyquist frequency. The frequency 29,N that must be exceeded by the

sampling frequency is called the Nyquist rate. The above discussion is expressed by

the Nyquist theorem, stated as follows [86]:

Theorem 2 (Nyquist) Let xc (t) be a bandlimited signal with Xc (j O) = 0 for | |

> Q/v- Then, xc(t) is uniquely determined by its samples x[n] = xc(nT), where

n = 0, ±1,±2,..., ifn, = (2TT/T) > 2nN.

Subsampling of 2-D Signals in the Spatial Domain

Let us denote by xc(ti, t2) a continuous-time two-dimensional signal. A discrete

sequence (array) x[n x, n2] of samples from the continuous signal xc(ti, t2) can be

obtained by periodic sampling; that is, x [n i , n2] — xc(n\Ti, n2T2), where —oo <
ni, n2 < +oo and T\, T2 are positive real constants known as the horizontal and

vertical sampling intervals (periods). Let us also denote by Xc (j 0 1 ; j 0 2) the Fourier

transform of the original signal xc(tu t2). The Fourier transform of the sampled

sequence consists of periodically repeated copies of Xc (j O i , j Q,2). If the condition

X c (f i i , f i 2) = 0 for I fii I > J ^2 | > ^ -

J-i i2

39

is satisfied, then the continuous bandlimited signal xc(t\, t2) can be recovered from

its samples x [n-y, n2] - xc (n x Ti, n2 T2) [87]. This is basis of the sampling theorem

in the two-dimensional case.

Although images may be generally modeled as bandlimited signals, image con­

ditioning is usually performed before subsampling in order to meet the above con­

ditions. Image conditioning commonly involves lowpass filtering (LPF), which can

eliminate or minimize the overlapping of spectral components [86]—[89]. Of course,

much of high frequency information would consequently be lost.

Subsampling of 2-D Signals in the Frequency Domain

When the input image/video frames have been transformed, it is often desirable to

perform downsampling in the frequency domain, thus avoiding the inverse transform,

downsampling and forward transform of the images. A simple solution to downsample

in the frequency domain (e.g., DCT domain) is to discard some of the coefficients

of the transformed image. The remaining coefficients are then used to reconstruct

an image having a lower resolution. Although simple, this method leads to severe

artifacts in the reconstructed image. One of the alternatives is to compute new DCT

coefficients for the lower resolution image by using the original DCT coefficients [90].

Subsampling Domains for Video Sequences

Spatial subsampling of video sequences is similar to that of still images. Temporal

subsampling is based on applying a subsampling grid along the temporal dimension

of the three-dimensional video signal. By the separate spatial and temporal subsam­

pling of video, one implicitely assumes that the spatial and temporal components of

40

the video are independent. However, as this is not necessarily true, spatio-temporal

subsampling must be also addressed. It has been shown in [88] that three-dimensional

non-separable sampling leads to better perceptual quality as compared to other meth­

ods. A thorough discussion of spatial, temporal and spatio-temporal subsampling of

video sequences can be found in [16].

2.4.2 T h e S u b s a m p l i n g G r i d

As discussed in Section 2.4.1, downsampling a 1-D sequence by a factor of M in the

spatial domain is accomplished by simply retaining every Mth sample and discarding

the rest of the samples. Downsampling a two-dimensional sequence in the spatial

domain is accomplished by retaining some of the samples in the plane (ni, n 2). The

sampling locations in this plane are organized as a lattice (grid). The downsampling

factor is replaced in the two-dimensional case by a downsampling matrix D, which

is nonsingular and has integer values.

Definition 1 Let d\, d 2 be two linearly independent real vectors in two-dimensional

real Euclidian space $t2. A lattice A in -ft2 is the set of all linear combinations o/di,

d 2 with integer coefficients [91]

A = {Ajdi + A 2d 2, Ai, A2 € Q}

Definition 2 If every point of a lattice A is also a point of a lattice M, then A is a

sublattice of M [91].

Let us now restrict di, d 2 to be integer vectors and let us assume that they are the
columns of a subsampling matrix D. A two-dimensional downsampler retains only

41

samples at points on a sublattice generated by the matrix D, that is, points m of the

form m = D n, or in a matrix form,

^ mi ^

vm 2 ,
D where D =

1 A A ^
"00 "01
dio dn

and n is an arbitrary integer vector. One out of every | det (D) | samples of the

sequence is retained, where det (D) is the determinant of the matrix D [12, 87, 92].

It can be shown that D can always be expressed in a simpler form given by

D =
1 A A ^

"00 "01

x 0 dn

It can be also shown that rectangular sampling corresponds to a diagonal sampling

matrix [12, 87, 91]. Examples of these cases are illustrated in Figure 2.9 (adapted

from [91]). Clearly, the specific geometry of the subsampling sublattice is determined

by the values of the subsampling matrix coefficients.

In addition to its geometry, the subsampling lattice (grid) is defined by its

type. The type of the subsampling grid may be fixed or adaptive. In fixed grid

subsampling, the two-dimensional signal (image) is subdivided into equal regions,

and the same grid is used for each of the regions. Although computationally simple,

this method does not take into account the amount of detail present in certain regions

of the input image, and thus, visible artifacts are usually present. Spatially adaptive

subsampling methods use a dense sampling grid for each active (i.e., high-detail)

region in the image, and one that contains only a few pixels for regions with little

42

i i i i i i i i
1 1 1 1 1 1— H 4-
I I I I I I I I

— - • - 4 — • 1- — • — I — • — 4-
I I I I I I I I
1 1 1 h (- —I— -1 -1-
I I I I I I I I

-••--{-•--*-•- + -+-*•
I I I I I I I I

— i - - i - - t - - r - + - T - r - r
i i i i i l i

- | - * - - r - * - T - * - r
i i i i i i i

- | - - r - T - - r - T - r ~ r n
1
 4

 1
 4

 1
 4

 1
 »

(a) D = '2 0^ 0 2

I I i I I I I i
-4 1 1 1- 1 1— 1 +-

I I I I I I I I
—I 1 1 1 —I- —I— -I -i-

I I I I i I I I
- H - - (- 4 - 4 - 4 - + - t - - + -

I I [I I I I I r - H - • - 4 - • - + - • - • ! -
I '

~i — i —t — r i 1 r
i i I i i i i

_ _ , _ _ , _ 7 _ - r _ T - r - r

i i I i i i i
- n - i - T - T - T - r _ r n

(b) D = '2 0^ 0 4

i i
• —i— i •

i i

I I

1 I

I I

I I

I

I I I I I I
• 4 - 4 - 4 - 4- - 4- - 4-

I I I I I I
• • • - 4 - • - + - O - 4-

I I I I I I
• 4 - » - 4 - » - t - - »

I I I I I I
• 4 + 1-

I I I I I I

I I I i i i
- r - ^ - T - ^ - r - ^

(c) D = 3 0 0 3 (d) D = 2 1 0 1

Figure 2.9: Subsampling lattices, sublattices, and corresponding subsampling

matrices: (a) separable subsampling by 2 in each direction, (b) nonseparable
subsampling by 2 and by 4, respectively, (c) separable subsampling by 3 in each

direction, and (d) quincunx subsampling.

43

detail [5, 4, 14, 89]. Adaptive subsampling methods outperform the fixed grid ones,

but their associated interpolation steps are also significantly more complex [93]—[98].

2.4.3 T h e S u b s a m p l i n g O r d e r

Most existing subsampling methods are based on pixel neighborhood operations [19].

A simple way to downsample a two-dimensional signal (image) is to select one pixel

within a local neighborhood to be representative of its surrounding pixels, as illus­

trated in Figure 2.10 (a). Another way is to compute a statistical measure of the local

intensity values, such as the mean, which will represent in the downsampled image

the entire input block, as illustrated in Figure 2.10 (b). In each of these methods,

first-order subsampling (FOS) or high-order subsampling (HOS) can be performed,

depending on the size of the input and that of the subsampled block.

In first-order subsampling, which is illustrated in Figures 2.11 (a) and (6),

subsampling by 2 in each direction is being performed. A total subsampling rate of

4 : 1 has been obtained in each of the examples illustrated in Figures 2.11 (a) and

(b), although the size of the input and output blocks is different in each case.

In high-order subsampling, which is illustrated in Figures 2.11 (c) and (d),

subsampling by more than 2 in each direction is performed. In both examples, the

subsampling rate is equal to 16 : 1. In the single-stage high-order subsampling

case, which is illustrated in Figure 2.11 (c), the selection of the output pixel value

is difficult. A solution to address this problem is to perform multi-stage first-order

subsampling, which is illustrated in Figure 2.11 (d). In this case, a HOS stage is

being decomposed into a sequence of first-order subsampling stages.

44

x l X2

X3 X4

i = 1,2,3 or 4

(a)

Input pixels

i = 1,2, 3 or 4

(b)

Output pixel

Figure 2.10: A simple example of first-order subsampling, where (a) one pixel
is selected as the representative of all pixels in the input block, and (b) the
output pixel is obtained by applying an arithmetic operation (AO) on the
input pixels.

2.5 Summary

In this chapter, we have briefly reviewed some fundamental concepts that will serve

as background material throughout the thesis. These concepts are related to feedfor­

ward neural networks and image subsampling. We have presented the characteristics

of FANNs, i.e., the processing node, the activation function, the topology, the cost

function and the training algorithm. Next, we have addressed FANN learning as an

approximation/optimization process. We have also summarized the most popular

supervised FANN learning algorithms and the criteria for FANN model evaluation.

A review of the FANN design methods has also been included, focusing on the on-

45

Input pixels Output pixel(s)

(a)

1 I

(b)

(c)

•

(d)

L_

Figure 2.11: (a) First-order subsampling of a 2 X 2 block, (b) first order sub-
sampling of a larger input block, (c) single-stage high-order subsampling, and

(d) multi-stage first-order subsampling. In each case, a rectangular subsam­
pling grid is employed.

46

thogenic (growing, pruning and hybrid) methods.

In the second part of the chapter, we discussed the main concepts related to

image subsampling. More specifically, the subsampling domain, the subsampling grid

and the subsampling order have been addressed. We have illustrated the concept

of 2-D spatial subsampling using various subsampling grids, and we nave presented

solutions for first-order and high-order image subsampling.

47

Chapter 3

Symmetr ica l P r u n i n g for F A N N

Design

In this chapter we address symmetrical pruning for feedforward neural network de­

sign. In Section 3.1, we provide a motivation for introducing tridiagonal symmetry

constraints in the FANN design. In Section 3.2, we propose a tridiagonally symmetri­

cal pruning algorithm. In Section 3.3, we illustrate, via a simulation example, that the

designed FANN structures obtained by applying the proposed algorithm are compact

and tridiagonally symmetrical. In the same section, we also compare the results of

our proposed algorithm with those of the Optimal Brain Damage algorithm, already

presented in Section 2.3.2. A summary of the chapter is included in Section 3.4.

3.1 Motivation

Symmetry can be defined as "the repetition of exactly similar parts facing each other

or a center" [99]. When they are introduced in the FANN design, the symmetry

48

constraints may refer to the data set, to the partial derivative equations in the train­

ing algorithm or to the network topology [100]. Among the few studies on FANN

design with symmetry constraints, we mention Shawe-Taylor's [101] work. He ob­

tained a network with identical weight values for the symmetrical connections and

an output invariant for a set of transforms performed on the input data. Yang, Yin,

Gabbouj, and others [102] studied several ways of introducing symmetry in filter

structures. They required that specific details of the input signal be preserved. The

weights could have had different values, but the corresponding connections had to be

symmetrically positioned in the structure. In this chapter, we address the FANN de­

sign with topological symmetry constraints. More specifically, tridiagonal symmetry

constraints will be placed on the position, not on the weight values, of the weight

connections in the structure.

Tridiagonally symmetrical neural structures are desirable for efficient hard­

ware and software implementations. First, the memory requirements for storing the

FANN weights can be generally reduced for a tridiagonal structure. This is im­

portant in many hardware and software implementations, especially in embedded

applications. For example, for the non-symmetrical FANN illustrated in Figure 3.1

(a), the entire 5 x 4 input-hidden weight matrix (i.e., 20 values) must be stored.

Alternatively, 10 non-zero weight values and their corresponding 10 indices can be

stored. For the tridiagonally symmetrical FANN (TS-FANN) illustrated in Figure

3.1 (6), having the same number of weight connections as the FANN in Figure 3.1

(a), only the 10 non-zero weight values and at most half of the corresponding indices1

1 Further memory savings may be obtained by applying, for example, a generic scanning rule for

the diagonal weight values.

49

must be stored. Second, accessing the weight values in a tridiagonal FANN is more

efficient than in a non-symmetrical FANN. For instance, assume that a simple zig­

zag scanning rule (shown by arrows in Figure 3.1 (&)) is employed in order to read

the weight values. Then, it is sufficient to store the weight values of the tridiago­

nal FANN illustrated in Figure 3.1 (6) as the sequence of numbers corresponding to

[0 u>23 0 0 0 W44 w33 W22 Wu W21 w32 w43 W54} in order to obtain a complete description

of the FANN input-hidden layer connectivity. Last and most important, both the

mapping of a tridiagonal FANN structure onto parallel VLSI or programmable dig­

ital signal processors, and the optimization of the corresponding hardware/software

realizations, are easier as compared to the non-symmetrical case [103]—[106].

If the tridiagonal symmetry constraints are taken into account during training,

the obtained TS—FANN structure may lead to several minima of the cost function,

periodicities or almost flat zones [22]. Multiple minima are due to possible permuta­

tions of the nodes in a layer or to the equivalent structures obtained by changing the

sign of all the weights entering in and exiting from a hidden node [22, 107]. Alterna­

tively, if the tridiagonal symmetry constraints are introduced after training, the above

problems can be avoided. Therefore, we propose that initial training be performed

without any symmetry constraints and be followed by pruning with tridiagonal sym­

metry constraints. Our goals are (a) to reduce the structure until the weight matrix

becomes tridiagonal, (b) to prove that, based on useful approximations, not only

tridiagonally symmetrical pruning is simple and fast, but the final structure is also

compact, and (c) to illustrate the good performance of the algorithm even when the

application problem does not contain obvious symmetries.

50

Figure 3.1: An example of a (a) non-symmetrical, and (6) tridiagonally sym­
metrical FANN. The corresponding input-hidden weight matrix is shown below
each FANN structure. The dotted lines indicate where the weight matrix is
padded with zeros so that it becomes a square matrix. Note that the number
of weights in each case is equal to 10. The arrows illustrate a simple zig­
zag scanning rule that can be employed in order to read the non-zero weight
values.

51

3.2 Proposed Algorithm

W i t h tridiagonal symmetry constraints, the optimization problem (2.3) becomes the

minimization of the neural network size subject to the network being able to learn

the dataset, the connections between the nodes being tridiagonally symmetrical in

the final structure, and the weight values being not necessarily equal. As stated

above, this design problem may be approached by introducing tridiagonal symmetry

constraints in the pruning procedure. The algorithm that we propose in this section

makes use of approximations in order to both satisfy the symmetry constraints and

to reduce the design time. Next, we present the proposed Tridiagonal Optimal Brain

Damage (T O B D) algorithm. This is followed by a discussion on important issues

associated with both the training and testing steps.

3.2.1 T r i d i a g o n a l O p t i m a l B r a i n D a m a g e (T O B D) A l g o r i t h m

In what follows, we briefly define sparse matrices in general and tridiagonal matrices

in particular. A n m X n matrix is sparse if it has a small number r of nonzero

elements, r < mn. In other words, for increasing m and n , r < min(m, n)^1 + c\

0 < c < 1. A sparse matrix M with bandwidth B has elements that are equal to

zero if | i — j | > B, and elements that are equal to Mij otherwise. If all the matrix

elements are zero for i ^ j and 5 = 2, then M is tridiagonal. Any matrix can

be reduced to a tridiagonal form in a finite number of plane rotations, based on the

Givens method, or reflections, based on the Householder method [108].

The m x m matrix M and 9 M S - 1 have the same eigenvalues for any nonsin-

gular matrix Q\ The transform 9 M 3 " 1 is known as a similarity transform. ^ is a

52

reflection if [108]

3(q) = I - 2qq T, with q T q = 1. (3.1)

Moreover, the matrix S(q) is orthogonal, i.e., it preserves the Euclidian norm, and

it is also symmetrical as

(i - 2qq T) (i - 2qq T) = I - 4qq r + 4 q q T q q T = I,

and Q'-1 (q) = ^sT (q) = O'(q), where I is the unitary matrix. We assume now that

the matrix M is the M X H input-hidden weight matrix, denoted by W. Without

loss of generality, we also assume that M > H and that the columns of W are the

weight vectors entering each hidden node (e.g., the first column contains the weight

values from all the input nodes into the first hidden node). Our aim is to find the

transform matrix 9, such that the reflection performed on the matrix W

yields a tridiagonal weight matrix. The matrix W is obtained by padding W with

zeros, until it becomes an M x M square matrix. Its elements are

wih for 1 < i < M, 1 < h < H, and

0 for 1 < i < M, H + 1 < h < M.

First, let us assume that the minimum O B D saliency value corresponds to an

input-hidden weight xbi*h* that is a diagonal element of W, i.e., i* — h*. We also

require that symmetry constraints be satisfied. More specifically, we need to satisfy

the neighboring condition: the minimum saliency connection is deleted (ibi*h* = 0),
but the neighboring connections in the network with the weights u)h*-ith*, wh* + rth*

(neighbors on the same column) and wh*,h*-i, Wh*,h* + i (neighbors on the same line)

53

are preserved, and all the other components of the vector w/j» are deleted. We also

need to satisfy the unitary condition given by q T q = 1. If W is multiplied to the left

by 3(q), one obtains = S(q) W. Then, the column wh. of W, 1 < h* <

M , is independently transformed into the column wj^*' of W(ie^), given by

w^Jl> = (I - 2qq J j wh* = wh* - 2 [q1 wh.) q.

Using the neighboring condition, we require that all the weights in the same column

be preserved, and thus the elements of q = [qx, q2, ... <?M]T become

0 for i — h* - 1 or i — h* + 1, and

2 Em=l 1mWmh*

Wjh* for l < i < h * - l

or i = h* or h* + 1 < i < M.

Together with satisfying the unitary condition, we obtain

q* =

for i = h* - 1 or i — h* + 1, and

(3.2)

Wjh*

m#fc* + l wmh*

for K i < h* - 1 or i = h*

or h* + 1 < i < M.

54

II

w11 w17 w n 0 0 0 0

II

w?, V W 2 3 ^ 0 0 0 0

II
w„ 0 0 0 0

II W41 w 4 ? 0 0 0 0 II
WM W „ 0 0 0 0

II

0 0 0 0

II

0 0 0 0

H = 2

(a)

M-H = 4

w 1 1
w p 0 0 0 0 0 w n w 1 ? 0 0 0 0 0
w ? ? CW23^ 0 0 0 0 w?1 w ? ? 0 0 0 0

w n CW32^ 0 0 0 0 0 0 0 0 0
W41 W 4? 0 0 0 0 w 4 1 w 4 ? 0 0 0 0
W M w s ? 0 0 0 0 0 0 0 0 0 0

W 6 ?
0 0 0 0 0 W 6 1 W 6 7

0 0 0 0 0
0 0 0 0 0 W 7 ?

0 0 0 0 0

(b) (c)

Figure 3.2: A n example of applying the transform on the padded weight matrix
in the T O B D algorithm. We assume that the minimum saliency weight is w33.

(a) is the weight matrix before applying the transform, (b) is the weight matrix
after the multiplication to the left with the transform matrix, and (c) is the
weight matrix after the result of (b) is multiplied to the right by the inverse of
the transform matrix.

55

Similarly, the multiplication of W to the right by 5 (q)T independently transforms

each line of the matrix into a line of W^ight\ A l l the elements in the line h* are

pruned, except the neighbors of Wi*h> on the same line, i.e., Wh*,h*-i, and Wh*,h* +1-

Thus, the transform applies to a neighborhood around the minimum saliency weight.

Let us consider the example illustrated in Figure 3.2. The matrix W has a

size of 7 X 3. Then, the matrix W, which is shown in Figure 3.2 (a), has a size of

7 x 7 . Suppose the selected weight is w33. Then, its circled neighbors belong to the

tridiagonal matrix. After the multiplication to the left by the transform matrix, the

weight matrix shown in Figure 3.2 (6) is obtained. Note that all the connections

in the same column with 1033, with the exception of the neighbors w23 and zo 4 3 , are

deleted. Figure 3.2 (c) illustrates the weight matrix after the result of (6) has been

multiplied to the right by the inverse of the transform matrix. We here note that

the connections in the same line with W33 are eliminated, with the exception of the

neighbor i t> 3 2 .

Now, let's assume that the minimum saliency value is obtained for an input-

hidden weight outside the diagonal of the weight matrix, (i.e., i* 7̂ h*). Then,

the connection is pruned according to the standard O B D algorithm followed by the

deletion of all the weights in that column, except those of the neighbors of the diagonal

element.

Finally, if the minimum O B D saliency value is obtained for a hidden-output

connection and the number of output nodes is JV > 1, the same method as that

described above for the input-hidden weight .matrix is applied. If the number of

output nodes is equal to 1, then both the connection having minimum saliency and

56

its counterpart having a symmetrical position in the network are deleted. More

specifically, if the hidden-output weight vhj, with 1 < h < H and 1 < j < N, has

the minimum saliency, then we prune vhj and vH-h + i,j ii h = [—] and H is even, or

vhj and vH-h,j ii h = [f] and H is odd, or vhj if h = [f] +1 for all H. This step also

preserves the symmetry of the weight matrix. A summary of the T O B D algorithm is

provided in Appendix A.

3.2.2 A l g o r i t h m D i s c u s s i o n

We note that, several weights are deleted at the same time in the proposed T O B D

algorithm. By comparison, only a single weight2 at a time is deleted in the Optimal

Brain Damage algorithm (already described in Section 2.3). The increase in the

cost function 8C is then expressed in the O B D algorithm as the sum of the weight

saliencies given by Equation (2.7). The right term of Equation (2.7) becomes actually

an approximation to the multi-weight saliency in the case of the T O B D algorithm.

Next, the error due to T O B D pruning may be approximated by the sum of the

saliencies corresponding to the deleted weights.

Since the numbering of the hidden nodes in a F A N N is arbitrary, equivalent

F A N N structures are obtained if a permutation of the hidden nodes is performed.

However, the tridiagonal symmetry of the structures resulting from the application

of our algorithm is still preserved. Let us consider a simple example. Assume that,

in the 7-3-1 F A N N structure shown in Figure 3.3 (a) with its corresponding input-

hidden weight matrix, the weight having the minimum saliency is w33. This weight

2
The deleted weight corresponds to the minimum of the cost function

57

w
11 W 1 7 ,

0 0 0 0
w 7 1 W 7 ?

0 0 0 0
w„ f ^ 0 0 0 0
W 4 1

0 0 0 0
W„ 0 0 0 0

W * 1 W 6 7
0 0 0 0

W 7 1 W 7 7
w?1 0 0 0 0

w
W 1 7

w
l l 0 0 0 0

w?7 0 0 0 0
w33 w„ 0 0 0 0

W 4 1
0 0 0 0

wv, W
51 0 0 0 0

W 6 7 W M
0 0 0 0

w71
W 7 7 , W 7 I

0 0 0 0

(a) (b)

Figure 3.3: A simple example that shows (a) the initial FANN structure and its input-
hidden weight matrix below, and (b) the FANN structure after the permutation of the
hidden nodes, so that node 3 becomes node l', and its input-hidden weight matrix below.
The shadowed boxes indicate the weight having the minimum saliency. The circled weight
values indicate the neighbors of the minimum saliency weight.

58

corresponds to the connection indicated with a thick line. Since the weight is placed

on the main diagonal, that is i* — h*, all the weights in the same line and in the

same column wil l be deleted, with the exception of the circled neighbors w3i, w23,

and u>43. Assume that, by performing a simple permutation, the shadowed node 3

becomes node 1 . The minimum saliency weight does not have a diagonal position

since i* ^ h*. In this case, according to our proposed algorithm, only the minimum

saliency weight w33 is deleted. Thus, its neighbors w2v — w23, w32 and w^y — u ; 4 3 are

still preserved in the structure. Therefore, the tridiagonal symmetry at this stage is

also preserved.

3.2.3 C o m p l e x i t y Issues

The speed of the designed F A N N s depends largely on the number of "multiply and

add" operations performed in the test phase, which depends in turn on the to­

tal number II of parameters in the neural structure. For a fully connected F A N N

(F C — F A N N) , LT is the sum of all weights and biases, and is given by II = (M + 1) H +

(H + 1) N. For the partially connected designed F A N N , this expression becomes

n = [{M + 1) H + (H + 1) TV] (1 - e) , where (3.3)

e is the percentage of pruned connections. More specifically, the number of parameters

in the partially connected F A N N is obtained by subtracting the number of parame­

ters corresponding to the pruned connections from the number of parameters of the

F C — F A N N . Although the test time is clearly shorter for F A N N structures with fewer

parameters, the test time as a stand-alone index is still useful for comparing different

implementations of F A N N structures that have the same numbers of parameters. The

59

test time can be evaluated based on [109]. More specifically, the necessary time in

the forward pass of data through the network in the test phase can be expressed as

tlst = 2 [Mefftt + (M e / / + HefJ) to] P. (3.4)

where tt, t0, and P are the time required by a single add or multiply operation, the

transfer time between two nodes of data represented using h bits, and the number of

patterns, respectively. If there is at least one hidden node connected to all the inputs,

then Meff = M. If there is at least one output node connected to all the hidden layer

outputs, then Hefj = H. Otherwise, the effective values are given by the maximum

number of connections entering the hidden nodes and the output nodes, respectively,

where the maximum is evaluated for all the nodes in the subject layer.

The complexity of the re-training stage may be evaluated similarly, based on

the observation that re-training requires both a forward and a backward pass through

the entire dataset. For each of the T O B D and O B D algorithms, re-training requires

0 (LT3) operations per weight update, where LT is the number of parameters. However,

the number of parameters during re-training is smaller for the T O B D than the O B D

case, since several weights are eliminated during each T O B D pruning step.

3.3 Simulation Example

In what follows, we illustrate that, even when the application problem does not con­

tain any symmetries, our T O B D algorithm reduces significantly the number of F A N N

parameters, so that compact, tridiagonally symmetrical structures are obtained with­

out a significant loss in terms of performance. For this purpose, we select the nonlinear

60

regression problem described byd(£) = F (w; x (()) + e (w; £). Without loss of gen­

erality, we assume that the F A N N multilayer perceptron used to solve the problem

has one output node, i.e., N = 1. The function e (w; £) is the output error when the

input pattern is £. The training data set is A = {(cc (£) , , 1 < £ < P } . We

assume a data model described by the additive cost function

i P i P N , p

C(w) = - E C(w;fl = ̂ E E C7(w; e i(0) ̂ ~ E -2(w; f) =
r (= i

 r i = i i = i r t = i

= i E £{rf(fl -^[w ; x(0]} 2 =̂ E -y[w;x(0]} 2. (3.5)

3.3.1 S i m u l a t i o n D e t a i l s

Before evaluating the results, there are important issues that need to be addressed:

the data set, the neural structure, the activation function, the training algorithm and

the performance evaluation criteria. The data set consists of 5760 samples of the

"chirp" 3 signal and it is divided into two equal subsets, one for training and another

one for testing. The training and test signals are illustrated in Figure 3.4. Each of the

subsets is read through a 7-sample window, sliding at each epoch one sample to the

right. The desired output value is the sample value following the window (e.g., for

the first window, the desired output value is the eighth sample value). Two 7 x 2880

input matrices result, as well as a 1 X 2880 vector of desired output values. The neural

structure is of the type 7 - H - l , where the input and the output layers have the same

size as the input and the output patterns. Any empirical relationship may be used in
3
The chirp signal is available as a benchmark data set in Matlab. This signal is obtained by

recording a real bird chirp, which has similar characteristics to a speech signal.

61

Training signal

0 500 1000 1500 2000 2500 3000

Test signal

1 I M XT' 1 1 1 1

ô^̂B*- Ĥk. « -

0 500 1000 1500 2000 2500 3000

Figure 3.4: Training and test chirp signals.

order to estimate the initial size H of the hidden layer. W i t h P = 2880, M — 7, and

N = 1, we have selected H = 3 [34, 43]. The activation function / of each simple

perceptron in the hidden and output layers was selected to be the sigmoidal tangent

given by expression (2.2). Backpropagation with momentum [1] was selected as the

training algorithm for the original fully connected F A N N . The weights are adjusted

based on the expression w(k + 1) = w{k) + n V C + a [w (k) — w(k — 1)], in

order to find the optimum weight vector minimizing the cost function in Equation

(3.5) [22, 1, 24]. The multilayer perceptron was trained for 2000 epochs with the

learning rate rj = 0.01 and the momentum a — 0.0001. The normalized training

mean square error given by (3.5) was equal to 0.004456.

We evaluate the performance of the designed F A N N s using the test mean square

error normalized by the number of patterns (NMSE) given by (3.5), and the peak

signal-to-noise ratio (PSNR) in decibels. We also evaluate the complexity of the

62

designed F A N N s using the total number LT of parameters in the final neural structure,

and the test time.

3.3.2 S i m u l a t i o n R e s u l t s

In this section, we report on simulation results obtained using the trained F A N N

structure (a) without pruning, (b) after pruning using the O B D algorithm, and (c)

after pruning with the T O B D algorithm, respectively. The evaluated neural structures

in these cases are (a) fully connected, (6) non-symmetrical partially connected, and

(e) tridiagonally symmetrical and partially connected, respectively. The N M S E and

P S N R values are averaged over fifteen independent runs (trials) with identical training

parameter values. The test N M S E for the fully connected and non-symmetrical

structure after training was equal to 1.04526. The average number of the F A N N

parameters was 28 (24 weights and 4 biases).

We applied the O B D algorithm to the trained F A N N . The test N M S E , the

P S N R and the number of parameters in the final partially connected and non­

symmetrical structure are given in Table 3.1. The final non-symmetrical structure

after pruning 6 (5 input-hidden and one hidden-output) weights is presented in Fig­

ure 3.5.

We applied the T O B D algorithm to the fully connected and trained F A N N . The

number of parameters has been reduced until the re-training error is approximately

equal to that obtained for the O B D algorithm. The test N M S E s and the number of

parameters after applying the T O B D algorithm are included in Tables 3.1 and 3.2.

Figure 3.6 presents a final partially connected and tridiagonally symmetrical neural

63

structure, where dotted lines indicate the pruned connections / weights. Note that

in this case, since some of the weight values are the same, only 9 (6 weights and 3

biases) out of the 15 network parameters must be stored.

Finally, the experimental and the theoretical test times for the proposed method

are given in Table 3.2. The evaluation was performed on an I B M - P C 486/66 M H z

computer. The theoretical test times have been computed using Equation 3.4. The

symbol t0 denotes a simple add or multiply operation and tt is the transfer time for

a data represented with b = 16 bits.

Table 3.1: Training and test normalized mean square errors, and average test P S N R
values before and after T O B D and O B D .

Results Before After O B D After T O B D
pruning (12 steps) (5 steps)

Training 0.00445 0.00339 0.00308
error (0.003898-0.005096) (0.00289-0.00390) (0.00251-0.00365)
Test 1.04526 0.98223 1.07343
error (1.04379 - 1.04673) (0.94473-1.01973) (1.04443-1.10243)

Average
test P S N R [dB]

67.9976 68.2971 65.7976

3.3.3 C o m p a r i s o n s

The aim of the proposed design algorithm is to obtain a good tradeoff between the

size of the F A N N structure, the generalization performance, and the computational

efficiency. Introducing constraints in the design process is generally expected to in­

crease the test error. In our simulations, the test error increases by an average of

0.028 for the neural structure resulting from the application of the T O B D algorithm.

However, this happens for an almost three-fold reduction in the number of F A N N

64

Figure 3.5: A neural structure given Figure 3.6: A neural structure given
by O B D . Dotted lines indicate deleted by T O B D . Dotted lines indicate the
connections/nodes. deleted connections/nodes. Connec­

tions with the same weights have been
drawn with the same lines.

parameters (weights and biases). We note that the error after more than 10,000

re-training epochs is still lower than that of the fully connected trained network. On

the other hand, the test error for the O B D algorithm slightly decreases after pruning,

which confirms its better generalization ability. However, only a 1.5-fold reduction

in the number of F A N N parameters has been obtained.

Finally, with respect to the test time, if the T O B D is selected as the reference,

then the O B D network and the initial fully connected F A N N require 5760 (2tt + 2t0),

and 5760 (2tt + 3t0) more time units, respectively, based on the results in Table 3.2.

65

Table 3.2: Number of parameters (weights and biases) and test
times for neural structures given by T O B D and O B D . The test
time corresponds to the F A N N s having the average number of pa­
rameters.

F A N N given by No. of F A N N
parameters

Average test t i l
Theoretical

l i e [sec]
Experim.

T O B D 11 (8 - 15) 5760 (5i t + 7t0) 15
O B D 22 (20 - 24) 5760 (7tt + 9t0) 25

Fully connected 28 (28 - 28) 5760 (7tt + 10io) 42

3.4 Summary

In this chapter, we have addressed F A N N design with topological symmetry con­

straints. More specifically, we have proposed a tridiagonally symmetrical pruning

algorithm for feedforward neural network design. Our algorithm is based on a House­

holder transform of the input-hidden weight matrix. We have shown, via a simple

simulation example, that this results in compact tridiagonal F A N N s , which are suit­

able for efficient hardware and software implementations. Moreover, the number of

F A N N parameters is reduced substantially without a significant loss in performance.

66

C h a p t e r 4

A p p l i c a t i o n o f F A N N s t o F i r s t -

O r d e r I m a g e S u b s a m p l i n g (F O S)

In this chapter, we apply feedforward neural networks to first-order image subsam­

pling (FOS). By addressing several problems in the case of FANN-based first-order

subsampling, the material included in this chapter paves the way to applying our

designed F A N N models to high-order image subsampling, which is discussed in the

next chapter.

In Section 4.1, we first state the main limitations of most image subsampling

methods, thus providing a motivation for FANN-based image subsampling. Second,

we state the problems that arise when performing FANN-based image subsampling

using standard F A N N training algorithms. This motivates our first-order F A N N -

based subsampling (training) algorithm (FABS), which is described in Section 4.2.1.

We next comment on the relationship of the proposed method with other methods,

as well as discuss complexity issues. In Section 4.3, we focus on the application of our

67

algorithm when larger input blocks are employed in the subsampling process. In Sec­

tion 4.4, we present experimental results using still images and video which illustrate

the good performance of F A B S and generalized F A B S algorithms. In Section 4.5, we

present the application of the F A B S algorithm to subsampling of chrominance video

frames and compare the performance of our system with that employing traditional

lowpass filtering and subsampling. In Sections 4.7.1 and 4.7.2, we comment on the

F A N N generalization ability, and speed and memory requirements, respectively. A

summary of the chapter is included in Section 4.8.

4.1 Motivation

Our goal is to obtain a good subsampled version of the original image, such that if

reconstructed, it is as close as possible to the original. To achieve our goal, one can use

standard lowpass filtering followed by (e.g., first-order) subsampling, as illustrated in

Figure 4.1. However, as stated in Section 1, when lowpass filtering is being applied

to the input image, most of the high frequency information is permanently lost.

Moreover, due to most of the existing subsampling methods being based on pixel

neighborhood operations [19], as already stated in Chapter 2, the reduced images may

often contain significant distortion, usually expressed in terms of visible blockiness in

continuous features of the image [19, 6]. We aim at reducing both the information

loss introduced by lowpass filtering, as well as blockiness, without applying post­

processing methods.

A solution to address the above problem is to apply F A N N models to image

subsampling, as illustrated in Figure 4.2. This is mainly motivated by the F A N N ' s

68

Input image Subsampled
image

i 2 12
Lowpass filtering —• —•

Rows Columns

Figure 4.1: Block diagram of a conventional first-order image subsampling system.

Input image Subsampled
image

FANN
4-2-1

2-by-2
block

4-by-l
vector

Figure 4.2: Block diagram of a feedforward neural network-based

first-order image subsampling system.

69

ability to inherently subsample input images for certain sizes of the input, hidden and

output layers. This is also motivated by F A N N ' s ability to perform high speed parallel

processing. Unfortunately, the performance of the F A N N s in image subsampling has

not been acceptable so far, as the reproduced images exhibit blocking and/or ringing

artifacts when the standard F A N N training algorithms are being used. In standard

supervised algorithms that solve the optimization problem (2.3) stated in Chapter

2, the desired output value d(£) is selected, for each (, prior to the training process.

For instance, one can choose it as the pixel value in the center of the input window.

However, this approach does not take into account the local characteristics of the pixel

neighborhood. Thus, the F A N N receives during training only information regarding

the pixel gray values and therefore, cannot learn geometrical structures in the current

input window. The edges and other continuous features in the image, obtained during

the testing step, are therefore significantly affected. In what follows, in order to

improve the quality of the F A N N subsampled and reconstructed image, and mainly

to reduce blockiness, while still maintaining relatively low complexity, we propose

a supervised strategy for solving the training/optimization problem. The proposed

FANN-based subsampling (FABS) algorithm is based on pattern matching and takes

into account the local characteristics of the input window. Thus, the image artifacts

that typically result from image subsampling can be minimized or eliminated.

4.2 FOS Using 2x2 Input Blocks

For simplicity, let us focus on first-order spatial subsampling using a fixed rectangular

subsampling grid. Let the two-dimensional image be stored as a matrix, each matrix

70

element x m | 7 1 representing the gray level of the pixel in row m and column n. Moreover,

let the F A N N model be an M-H-N model with M input, H hidden and N output

nodes, as illustrated in Figure 2.6. During the training step, the F A N N receives input

data through a W X W sliding window, unwraps the resulting matrix as illustrated

in Figure 4.2 to become an M X 1 input vector x with components a;,-. Without loss

of generality, let the size of the sliding window be 2 x 2 and let N be equal to 1 (one

output node). This allows us to address first-order image subsampling as illustrated

in Figure 2.11 (a). The size of the hidden layer may be quickly evaluated, once the

number of patterns and the sizes of the input and output layers are determined.

4.2.1 P r o p o s e d F A N N - B a s e d S u b s a m p l i n g (F A B S) A l g o r i t h m

The proposed FANN-based subsampling (training) algorithm can be divided into six

steps. First, we compute the actual output value y(^) given by

for each input window (pattern) pattern £, where 1 < £ < P and P is the maximum

number of patterns. The notations w-ih and WHJ denote the input-hidden and hidden-

output weights, respectively, and j — 1. The initial weight values are randomly

selected, / is the unipolar sigmoidal activation function given by expression (2.1).

illustrated in Figure 4.3, and compare it to the value of the fourth pixel in the window,

yielding the values,

(4.1)

Second, we compute the median of all possible three-pixel combinations, as

71

Figure 4.3: Shapes taken into account in the pattern-matching algorithm.

<?(1)(0 = i>m,n(0 - med[xm>n-i(t), a: m + 1 > n_i(£), xm+i,„(£)}}
z
 ,

9(2)(<0 = i>m,n-i(f) - med[xmtn(C), x m + i > n _ ! (f) , x m + l i „ (f)] }
2
 , (4.2)

9 (3)(0 = {^m+i,n-i(0 - med[x m, n_i(£), xm,n(^), x m + l j n (f)]}
2
 , and

9 (0 = {̂ m+i,n(0 - mecf [x m i n_i(^), £m,„(£), (0]} > where

me<i stands for the median operator. Third, the minimum q*(£) of the above ? (r)(0's,

1 < r < 4, for the current input window is obtained, i.e.,

?-(0 = imin 4 { 9 « (0 } . (4.3)

Fourth, the desired output value is set to d(£) = x^((), where I* is the value

of / for which the minimum in (4.3) is reached. The function x^ (£) is equal to

xm,n (0 , xm,n-i (0 , Sm+i.n-i {0 or xm+i,n (£) if /* = 1,2,3 or 4, respectively.

Fifth, the global error C (w) at the end of one epoch1
 is computed by adding the

x
An epoch is defined as one pass through the P-dimensional set of training patterns.

72

squared errors e(£) for all the input patterns (unwrapped input windows), that is,

Finally, the weights are adjusted according to a quasi-Newton rule given by,

wfc+i = Wk + Vk dk = wfe - rjk H^1 V C (wfc),

where and vs k + 1 are the weight vectors at epochs k and k + 1 (respectively),

dfc is the search direction of the minimum in the parameter space; HjT1 is the ap­

proximation of the inverse Hessian matrix H _ 1 and H(wjt) = V 2 C (w*,). We have

used the Levenberg-Marquardt approximation of H - 1 and a learning rate rjk given

by expression (2.4) [22, 24].

One can easily notice that the optimization problem (2.3) becomes in our

approach the minimization of

C (w) = \ £ [d(0 - y (i)f subject to (4.4)

q(0 = and w e * 1 1 .

The above algorithm steps are repeated until our goal is reached, i.e. C <

Cdesired or until a predefined number of epochs is exceeded. The network parameters

obtained at the end of the training process are saved and used during the testing

phase. The proposed F A B S algorithm is summarized in Appendix B.

73

4.2.2 Examples

The main idea of the first four steps is that, one pixel in the current neighborhood

(out of four candidates) may become the desired output value, thus being the repre­

sentative of the entire window, if and only if its value is close enough to the median

of the other three pixels. Basically, the three-pixel combinations shown in Figure 4.3

make available information regarding the presence of local edges. Consequently, a

better FANN behavior is expected, realized in terms of fewer blocking artifacts and

a generally better image reproduction quality, as compared to conventional FANN

algorithms.

We note that, since the FANN output is a single pixel value, the actual edge

orientation cannot be preserved. Instead, this edge information is encoded in the

gray level of the FANN desired output selected by our algorithm. The gray level of

the FANN output pixel is perceived as being subjectively close to that of the original

input block when viewed from a distance. Thus, blockiness is masked due to the

integration operation performed by the human eye. We can illustrate this by using

two simple examples. In the first example, we employ 2 x 2 blocks having vertical,

horizontal and diagonal edges, pixel discontinuities, uniform gray levels and corners,

respectively. These blocks are shown in the left column of Figure 4.4. There are

6 two-pixel combinations representing straight lines and diagonal edge structures, 4

one-pixel combinations representing image discontinuities, 4 three-pixel combinations

representing the corners and one four-pixel combination representing a smooth block.

In Figure 4.4, we have shown only 10 out of the total 15 possible combinations. For

each of the blocks shown in the left column, we have represented the mean, the

74

median and the FANN desired output selected by our algorithm by using gray values.

When the figure is viewed from a distance, the original block is perceived as a single

dot. Moreover, the perceived dot is closer to the FANN desired output than to the

mean or the median values of the block, respectively. In most of the cases shown in

Fi gure 4.4, the FANN desired output value is different than the mean and the median

values of the original block. The only exceptions occur when pixel discontinuities are

present (one pixel per block), or when the input block is smooth. In these cases, no

geometric details are present in the input block. Thus, the FANN desired output is

very close to the mean and the median values
2
. Note here that the one-pixel and

two-pixel combinations are subclasses of the three-pixel combinations used in our

algorithm. As the FANN desired output values are perceived similarly, we did not

need to include the two-pixel combinations during the FANN training process. The

one-pixel combinations represent discontinuities and are eliminated by subsampling.

Therefore, they have not been included in the training set as well. Finally, the four-

pixel combination, which represents a smooth block, was also not included in the

training set. The FANN would not benefit by learning a smooth block, as the latter

does not contain specific geometric details.

To further demonstrate the effectiveness of our algorithm, a second example is

provided in Figure 4.5. The original block is a 16 X 16 block whose center coincides

with the geometric center of the 256 X 256 image Lena. The mean and median values
2
In this particular example, the mean and the median values for each block are equal. More

specifically, their values are set to 105 (blocks 1-4 in the left column), 93.75 (block 5), 102.25 (block

6) and 81.25 (blocks 7-10), respectively. Due to the odd size of the original block, the median is

computed as the average of the two central values of the ordered values in the block. Therefore, an

additional lowpass filtering stage is accidentally introduced when computing the median. Thus, the

performance of the median filter is not better than the simple average filter.

75

Original block Mean

I
M e d i a n FANN desired output

Figure 4.4: A simple example using 2 x 2 blocks. The FANN desired
output values have been selected using our algorithm.

76

Original block M e a n Median F A N N desired output

Figure 4.5: A simple example using a 16 x 16 block from the 256 x 256
image L E N A . The FANN desired output has been selected using our

algorithm.

have been computed for each 2 x 2 sub-block. The FANN desired output has been

selected using our algorithm. Again, viewing the figure from a distance, the FANN

desired output is perceived as being subjectively the closest to the original block.

4.2.3 R e l a t i o n s h i p t o O t h e r M e t h o d s

In this section, we outline the relationship between our algorithm and the previously

developed pattern matching, coarse-coding, and halftoning methods, respectively. As

stated earlier, our algorithm uses a pattern matching technique that selects the desired

output values during the supervised training stage. The goal of the pattern matching

methods is to find the best match between a pattern within the input window, and

the existing patterns, via the minimization of a chosen cost function [124]. However,

we are not only interested in finding the best match, but also in learning the output

gray level corresponding to the best match.

In our first-order FANN-based subsampling algorithm, each input window is

represented by a single pixel value in the subsampled image. The idea of processing

77

an input image by using local windows has been addressed by other methods as well,

such as coarse-coding [125]—[127]. By coarse-coding, an input pattern is represented

by several coarser and overlapping grids. Then, high-order neural networks (HONNs)

are used to learn the resulting representation. The shapes used by our subsampling

algorithm can be regarded, in a general sense, as overlapping grids obtained by the

decomposition of the input window. They would resemble a coarse-coding represen­

tation with the same coarseness level as the original image. However, it is not clear

how the coarse-coding method, previously applied to black and white edge images

[125]—[128], could be generalized for gray level images, such as those used in our sub-

sampling experiments in Section 4.4. Note that a given gray level input window can

be decomposed into coarse grids depending not only on the shape of the objects, but

also on the gray levels of the pixels. Moreover, the H O N N models, due to their large

number of connections, require significant time and memory resources, as compared

to the F A N N model employed in our method.

Finally, the idea of representing a local neighborhood in the input image by a

gray-level pixel value, in the final image may resemble, in an abstract sense, work in

the area of halftoning [129, 130]. However, the number of the image gray levels and

the sizes of the images resulted by applying halftoning methods and our subsampling

method, respectively, are different. Moreover, although A N N s have been applied

extensively in image halftoning, generally recurrent models, such as cellular neural

networks (CNNs) [131], Hopfield networks [132, 133] and Q'trons (generalizations of

the Hopfield networks) [134] have been employed. For these models, image halftoning

has been formulated as an optimization problem, and a neuron has been associated

78

with each pixel of the halftoned image [129, 134, 135]. Applying such a method for

image subsampling would be highly impractical when using large images.

4.2.4 I m p l e m e n t a t i o n Issues

Before the FABS algorithm can be implemented, several issues must be addressed.

For example, the type of the input window, the intensities of the input gray levels, the

number of training epochs and the objective/subjective performance measures are all

parameters that have to be evaluated. The input images are read through a W x W

sliding window of size 2x2, moving one pixel to the right. Both non-overlapping

and overlapping square windows have been used during experiments. As the latter

did not significantly improve performance relative to the former, we have decided to

use non-overlapping windows.

The intensities of the input gray levels, in the range [0, 255], are here mapped

by the FANN sigmoidal activation function to the interval (0,1). One can either

scale the sigmoidal function to take values in the range [0...255], or restrict the

desired output values to be less than one by dividing each desired output pixel value

in the original image by 255. We have chosen the latter solution. Moreover, since

the activation function reaches only asymptotically the values 0 and 1 given a finite

input, and since the argument of the sigmoidal function is a finite sum of finite values,

the pixel values at the extremes of the brightness range will never be learned by the

network satisfactorily [13]. This problem will be addressed in more detail in Section

4.4.

79

Another implementation issue is the selection of the number of training epochs.

The number of necessary training epochs to achieve good performance levels on test

images may be estimated. We have set the number of epochs to 1000 based on the

results discussed in [22].

Finally, various objective evaluation criteria may be used to assess the perfor­

mance of the proposed algorithm. Of course, what really matters for the end user

is the subjective quality [123]. Unfortunately, the latter is not always related to

measures such as the popular peak signal-to-noise ratio (PSNR). Therefore, we have

chosen to evaluate the results by: (a) visual examination of the subsampled images

[21], (b) visual examination of the reconstructed (bilinear or cubic interpolated) im­

ages from the subsampled versions, and (c) objective evaluation of the interpolated

images from the subsampled versions.

4.3 FOS Using Larger Input Blocks

4.3.1 G e n e r a l i z e d F A B S A l g o r i t h m : F i x e d T h r e s h o l d

Let us address in what follows first-order image subsampling using larger input blocks,

which is illustrated in Figure 2.11 (6). Without loss of generality, let the size of the

input block be 4 X 4. The FANN output consists of four pixels. As in the case of 2 X 2

blocks, the subsampling rate is 4 : 1. We have divided each 4 x 4 window into four

2 x 2 blocks. For each 2x2 block, we then evaluated the standard deviation. If the

standard deviation is higher than a threshold /?/the presence of an edge is detected in

the input block. Then, the 4-2-1 FANN, trained using our FABS algorithm described

80

earlier, is applied in order to obtain the output pixel value. If the standard deviation

of the block is smaller than the threshold /3, a smooth block is detected. The output

pixel value is then set to the average of the four pixels in the 2x2 block.

The value of the threshold has been set to 43. This selection is based on our

experimental observation that an edge in the 2x2 input block is likely to be perceived

if at least two pixel differences are higher than 75 on a 0-255 scale. For example, for

an input block with the pixel values set to x\ = 75, x2 — 0, x3 = 75, and X4 = 0, the

standard deviation of the vector obtained by unwrapping the input block is equal to

approximately 43. Using this method, we are able to determine whether an edge of

any orientation
3
 is present in the input block.

4.4 Experimental Results: FABS Algorithm

In this section we present the values of the parameters, as well as the training and the

testing sets that have been used in our experiments. The FANN multilayer perceptron

is trained using the quasi-Newton algorithm with the Levenberg-Marquardt approx­

imation [22, 24]. In the FABS algorithm, the neural structure has the structure 4-2-1

(M = 4, H = 2, N = 1). The nodes of the neural structure have sigmoidal activation

functions with slope equal to 0.5. For the still image experiments, the training set

consists of the 256 x 256 image LENA, and the test set includes the 8-bit 256 x 256

image TEETH, 512 X 512 images MANDRILL, BOAT and FIGHTER, and 1200 x 1524

JPEG-2000 test image TOOLS (industrial objects), and a 456 x532 section of the stan-

3
By changing the orientation of the edge, i.e., after the permutation of the pixels inside the input

block, the value of the standard deviation does not change.

81

dard JBIG bi-level test image F08-200 (black capital letters on white background).

For experiments using video frames, the training set consists of the standard QCIF
4

video sequences C L A I R E , G R A N D M A , S A L E S M A N , MlSS A M E R I C A , SUZIE and the

test set includes M O T H E R - A N D - D A U G H T E R , T R E V O R and C A R P H O N E . In both the

still image and video cases, the test set has mostly different characteristics than the

training set, allowing an accurate evaluation of the FANN generalization capabilities.

The test images consist of mainly texture (T E E T H) , sharp edges in all orientations

(BOAT, F I G H T E R, F08-200, and TOOLS) and a busy image (MANDRILL). The video

sequences used for testing have also different characteristics, although they all consist

of head-and-shoulders frames. In the FABS algorithm, each input image or video

frame is read through a 2 X 2 non-overlapping window, sliding over the entire image.

We will compare the experimental results obtained by FANN first-order sub-

sampling with those obtained by lowpass filtering followed by subsampling, using

three different 2-D filters: LPF1, which was designed via frequency sampling, LPF2,

which is a separable finite impulse response (FIR) filter designed using separable 2-D

windows, and LPF3, which is a nonseparable FIR filter designed using 2-D windows.

All of the filters have an order of 11 and a cutoff frequency equal to 0.5 w. The nota­

tions LPF1S, LPF2S and LPF3S will refer to lowpass filtering using the filters LPFl,

LPF2 and LPF3, respectively, followed by subsampling. The notations LPFlS+int.,

LPF2S+int. and LPF3S+int. will refer to lowpass filtering using these filters followed

by subsampling and interpolation. The latter is cubic interpolation, if not specified

otherwise.

4
In the standard QCIF (Quarter Common Intermediate Format) video format, all luminance

frames Y are of size 144 x 176 and all chrominance U and V frames are typically of size 72 x 88.

82

4.4.1 S u b s a m p l i n g o f S t i l l Image s

The FANN was trained using the FABS algorithm and the image LENA. The PSNR

values (Tables 4.1 and 4.2) using all the test images are better, by an average of

1.61 dB, for the FANN subsampled (FANNS) and interpolated (bilinear in Table 4.1,

cubic in Table 4.2) images than for the best LPF subsampled (LPFS) and interpo­

lated images. As expected, cubic interpolation yields better results than those of

bilinear interpolation. The average improvement with respect to LPF1 subsampling

followed by bilinear interpolation (see Table 4.1) is equal to 0.5025 dB. The average

improvement for each image with respect to the three filters is equal to 1.5464 dB.

The average improvement with respect to LPF1 subsampling and cubic interpolation

in Table 4.2 is equal to 0.3527 dB. The average improvement with respect to the

three filters is equal to 1.621 dB. The average improvement with respect to LPF1

subsampling and interpolation for Tables 4.1 and 4.2 is equal to 0.4276 dB. Finally,

the average improvement with respect to the three filters for both Tables 4.1 and 4.2

is equal to 1.5837 dB.

Not only do the objective results show better FANN performance, but also a

good visual quality can be observed, as illustrated in Figure 4.6. To better interpret

the quality of the results, 16 x 16 blocks within the original and interpolated images

LENA and BOAT, and a 512 X 512 block of the image TOOLS have been magnified.

The results are illustrated in Figures 4.7, 4.8, and 4.9, respectively. As expected, all

of the FANNS images have a sharper appearance as compared to the LPFS images.

Assuming that the initial image has an equally distributed histogram, this can be

explained by an increase of the histogram density at the tails and a decrease in the

83

Table 4.1: Test PSNR [dB] using still images, when the FANN was trained to sub-

sample the 256 x 256 image LENA. The acronym int. denotes bilinear interpolation.

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int.

Teeth (256 x 256) 29.148 28.288 25.373 24.196

Mandrill (512 x 512) 22.873 22.547 21.677 21.207

Boat (512 x 512) 23.463 23.069 22.834 22.662

Fighter (512 x 512) 25.793 25.363 24.798 23.260

Table 4.2: Test PSNR [dB] using still images, when the FANN was trained to sub-

sample the 256 X 256 image LENA. The acronym int. denotes cubic interpolation.

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int.

Teeth (256 x 256) 30.570 29.927 26.400 25.043

Mandrill (512 x 512) 23.246 23.003 22.113 21.607

Boat (512 x 512) 24.838 24.462 23.424 23.158

Fighter (512 x 512) 26.279 26.130 25.446 23.733

middle, due to using the sigmoidal activation function. The histograms of the original,

LPFS, FANNS and cubic interpolated images BOAT (see Figure 4.6), are illustrated

in Figure 4.10. The histogram changes are more visible in the rightmost peak and in

the middle of the histogram corresponding to the FANN subsampled and interpolated

image. The histogram of the FANN subsampled image also shows that, due to the

saturation of the sigmoidal function, the FANN does not learn the gray values close

to 0 or 1.

In order to determine whether the sharper appearance is due to the preservation

of edges, we have also computed the histogram of the difference images, between

the original image and the FANN/LPF subsampled and cubic interpolated images,

respectively. These histograms are shown in the rightmost column of Figure 4.10. The

84

LPF1 +sub-sampl.+interp. LPF2+sub-sampl.+interp.

Figure 4.6: Subsampled and cubic interpolated 512 x 512 image BOAT. The FANN was
trained on the 256 x 256 image LENA using a 2 x 2 non-overlapping window.

85

Original block F A N N S + int.

Figure 4.7: Subsampled and cubic interpolated 16 x 16 block from the

256 x 256 image L E N A .

gray levels in the difference images have been shifted back to the [0, 255] range. The

histogram of a perfectly reconstructed image would consist of one impulse located at

zero (or translated, as in our representation). The histogram of the FANN difference

image is clearly the closest to the ideal histogram. Moreover, Fig ure 4.11 illustrates

the histogram modification as a result of FANN subsampling and cubic interpolation,

in a 64 x 64 block in the 512 x 512 BOAT image, confirming that the histogram has

86

Figure 4.8: Subsampled and cubic interpolated 16 x 16 block from the 512 x 512 image

BOAT.

Figure 4.9: Original, subsampled and cubic interpolated 512 x 512 block of the

1200 x 1524 image TOOLS.

88

Original

2 0 0 0 '

0 0.5 1
Subsampled image Subsampled+int. image Difference image

I 500

i i 2 0 0 0

0=

0 0.5 1 ^ 0 0.5 1 0 0.5 '

r j | : y --rj-j
Filtered image

0 0.5 1 0 0.5 1 ^ 0 0.5 1 0 0.5

LL 2000 0- y s-yi i - y \in
0 0.5 1 0 0.5 1 _j 0 0.5 1 . 0 0.5

CO rsnr\r

fj| s-y j - y « - n r j

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 4.10: Histograms of the original, filtered, subsampled and cubic interpolated 512 x 512 image

BOAT. The images used to computed the histograms in the rightmost column have been computed

as the difference between the original image and the subsampled and cubic interpolated images.

Original block Original histogram FANNS + int.

0 0.5 1 0 0.5 1

Figure 4.11: Histograms of the original and FANN subsampled and cubic inter­

polated 16 x 16 block from the 512 x 512 image BOAT.

changed both locally and globally.

Finally, the test results obtained when using the bi-level image F08-200 are il­

lustrated in Figure 4.12. Notice that in the original image, the characters have jagged

edges. These edges are accurately reproduced in the FANN subsampled and inter­

polated image. The same edges are smoothed in the LPFS and interpolated images.

The FANN image has a gray background, due to the FANN's inability to accurately

learn the absolute black and white values, as discussed above. This is illustrated

by the histograms shown in Figure 4.12. The LPF images, however, preserve well

the foreground and the background. It is clear that, when tested using a black and

white character image, the FANN is still able to generalize well. However, in order to

correctly reproduce the background of a black and white image, either a thresholding

stage should accompany the FANNS and interpolation, or the FANN training should

take into account the special characteristics of the bi-level images.

90

Original

WELL, WE
ASKED
FOR IT!

x 10

O 1

FANNS + int.

WELL, WE
ASKED
FOR IT!

x 10

2

1.5

1

0.5

0

LPFIS + int

WELL, WE
ASKED
FOR IT!

x 10

+

CL

-> 0.5

0 0.5 0 0.5 0.5

Figure 4.12: Original, subsampled and cubic interpolated 512 x 512 block of the 1200 x 1524 image

F08 200.

4.4.2 S u b s a m p l i n g o f L u m i n a n c e V i d e o F r a m e s

In this section, we address first-order spatial subsampling of luminance video frames.

The FANN used to subsample the luminance frames is trained on a set consisting of

different Y frames taken from the video sequences CLAIRE (frame 490), GRANDMA

(frame 490), SALESMAN (frame 49), MlSS AMERICA (frame 49) and SUZIE (frame

49). Our FANN yields higher PSNRs relative to the LPF methods. The average

improvement with respect to LPF1 subsampling followed by cubic interpolation in

Table 4.3 is equal to 1.893 dB. The average improvement with respect to the three

filters is equal to 3.3 dB. The highest difference is obtained for frames taken from the

MOTHER-AND-DAUGHTER sequence.

Table 4.3: Test PSNRs [dB] for spatial FANN subsampling of the 144 x 176 video

frames.

Frames FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int.

Mother—and—daughter

275 29.645 26.769 25.125 24.300

276 29.635 26.772 25.131 24.307

491 29.575 26.814 25.124 24.272

875 29.504 26.841 25.136 24.287

876 29.459 26.810 25.121 24.278

Carphone

50 28.327 27.389 25.555 24.668

75 28.766 27.819 25.945 25.038

76 28.738 27.833 25.956 25.046

275 27.488 26.989 25.529 24.802

276 27.412 27.052 25.598 24.872

Trevor

16 27.927 26.481 24.554 23.63C

50 28.703 26.700 24.808 23.903

75 31.785 29.002 27.498 26.770

76 31.933 29.124 27.577 26.832

92

4.4.3 S u b s a m p l i n g o f N o i s y Image s

Real image recording systems are not ideal. Therefore, all image samples are usually

contaminated with noise in various levels, due to sensors (quantum noise) or to circuits

(thermal noise) [4, 16]. The sources of noise are usually modeled by impulsive, salt-

and-pepper or other types of noise, which can be removed by filtering in a pre­

processing stage. The cost, however, is the time delay associated with the additional

filtering step.

In this section, we address FANN subsampling of video frames contaminated

with noise. The FANN structure used here was trained using the FABS algorithm

and the same video frames as before, but corrupted with salt-and-pepper noise with

density of 0.25. Test results using MOTHER-AND-DAUGHTER noisy frames, with

noise density between 0.05 and 0.5, show clearly better FANN PSNRs as compared

to the LPFS ones. This is illustrated in Figure 4.13. Moreover, our FANN achieves

a graceful performance degradation in terms of PSNR values with increasing noise

density. It is clear that the FANN can effectively attenuate the noise present in the

frames, while in the standard approach, lowpass filtering accentuates the salt-and-

pepper noise [136].

Since the FABS algorithm employs median operations, it is not a surprise that

its results when using the frames corrupted by salt-and-pepper noise are far superior

to the lowpass filtering followed by subsampling. Also, it is important to compare

the subsampling techniques using images corrupted by Gaussian-distributed noise.

Results for a test frame from the MOTHER-AND-DAUGHTER sequence, with Gaussian

noise (variance 100), subsampled by the FANN and then cubic interpolated, as well

93

Original Original with s a l t - a n d - p e p p e r noise, dens=0.1

FANNS+int. LPF1S+int.

Figure 4.13: Subsampled and cubic interpolated MOTHER-AND-DAUGHTER with
salt-and-pepper noise.

as subsampled and interpolated following the standard approach, are given in Figure

4.14. As in the case of salt-and-pepper noise, the FANN performance degrades

gracefully as the variance of the Gaussian noise increases, while the LPF results drop

abruptly.

94

FANNS+int . LPF1S+int.

Figure 4.14: Subsampled and cubic interpolated MOTHER—AND—DAUGHTER with

Gaussian noise.

4.5 Application: Video Coding

In color video coding, it is common to subsample the chrominance frames, while keep­

ing the luminance component at the same resolution level. This is possible due to the

lower sensitivity of the human visual system to color information, as compared to its

sensitivity to the luminance information [19, 8, 123, 137]. The block diagram, illus­

trating the operation of the chrominance subsampling system using FANNs, is shown

95

in Figure 4.15. One FANN has been trained to subsample U frames from the sequences

C L A I R E (frame 490), G R A N D M A (frame490), S A L E S M A N (frame 49), M i s s A M E R I C A

(frame 49) and S U Z I E (frame 49). A second network of the same size has been trained

to subsample the corresponding V frames from the above mentioned sequences. Dur­

ing the testing step, each of the two FANNs is used to subsample chrominance frames

from the sequences M O T H E R - A N D - D A U G H T E R , C A R P H O N E and T R E V O R sequences.

PSNRs for U and V frames, computed with reference to the original ones, have sim­

ilar trends for the LPFSs. However, this observation does not hold in the FANN

case. FANNs tend to generalize such that the PSNR can increase, as in the case of

the T R E V O R sequence, or decrease as in the case of the C A R P H O N E sequence. Gray

level reproduction of the subsampled chrominance frame 75 in the T R E V O R sequence

shows that the FANN processed frames are the closest to the original chrominance

frames, as illustrated in Figure 4.16. In order to allow the interpretation of the pic­

tures, the transformation (frame — min(frame)) / (max(frame) — min(frame)) has

been applied to the frames before displaying, where min(frame) and max(frame)

denote the minimum and the maximum values of the pixels in the original frame,

respectively.

In a low bit rate video coding experiment, we applied the FANN to chrominance

subsampling of U and V frames, previously cubic interpolated
5
. Then, we encoded the

QCIF test sequence M O T H E R - A N D - D A U G H T E R (150 frames) using Telenor's H.263

video coder [138]. Both values of the PSNR, given by

5A11 the available video sequences have the chrominance frames already subsampled and we
need therefore to upsample them before testing our FANN subsampler. We have employed cubic

interpolation in order to upsample the chrominance frames.

96

Chrominance
(U or V) frame

72-by-88

Upsampled
chrominance

(UorV)
frame

Subsampled
chrominance

frame
72-by-88

144_by-176

Rows

u

Columns

A

• Rows

u

Columns

Lowpass
filtering

I 2

Rows

i 2

Columns

t
2

Rows

t
2

Columns

FANN
subsampling Rows

T2

Columns

ompare with the"
U or V frame

Compare
with A

Figure 4.15: Block diagram of the chrominance subsampling system. All the available video sequences have

the chrominance frames already subsampled and we need therefore to upsample them before testing our

FANN subsampler. Upsampling has been performed by cubic interpolation.

Original chrominance (U) frame F A N N S I L P F S I

Original chrominance (V) frame F A N N S I L P F S I

Figure 4.16: Gray level representation of the chrominance frames. In order to allow the inter­

pretation of the pictures, the transform (frame — min(frame)) j (max(frame) — min(frame))

has been applied to the frames before displaying, where min(frame) and max(frame) denote

the minimum and the maximum values of the pixels in the original frame, respectively.

p S N R = 4 PSNR(Y) + PSNR(U) + PSNR(V)

and visual quality of the obtained video sequence have been compared to the original

ones, as well as to those obtained by the LPFS system. Several subjective evaluations

of the video sequence indicate that artifacts were present in the LPFS case, as com­

pared to the generally good quality observed in the FANNS case. Quantitative results

for the MOTHER-AND-DAUGHTER sequence, at the rates of 8 and 24 kbits/sec, are

given in Table 4.4. More results, for rates in the range 4 to 32 kbits/sec (in steps

of 2 kbits/sec) are displayed in Figure 4.17. Clearly, the FANN performance gain is

substantial, especially at low bit rates (e.g., 1.92 dB at 4 kbits/sec).

To evaluate the impact of the upsampling performed prior to the chrominance

subsampling, on our experimental results, we performed the following experiment: we

converted the RGB still images LENA, MANDRILL, PEPPERS, TIFFANY and FIGHTER

to the YUV color space, using the NTSC standard formulae. Each of the images has

the size equal to 512 X 512. We have trained two 4-2-1 FANNS systems to subsample

the U and V pictures, respectively. The training set consisted of a 256 X 256 block in

the LENA image, having the same geometric center as the entire image. Training was

performed for 1000 epochs using our proposed method. Test results after comparing

the subsampled and cubic interpolated chrominance pictures MANDRILL, PEPPERS,

TIFFANY and FIGHTER to the original chrominance pictures are included in Table

4.5. As the results show, the PSNR is higher for the FANNS and cubic interpolated

images as compared to the LPFS and cubic interpolated images. The quality of the

reconstructed images is also subjectively good.

99

Table 4.4: PSNRs [dB] for different coding rates (8 kbits/sec and

24 kbits/sec), when using Telenor's H.263 low bit rate encoder.

Notation Y stands for the luminance frames, U and V stand for the

chrominance frames.

Method 8 kbits/sec 24 kbits/sec

Y U V Y U V

FANNS+int. 30.878 37.214 37.381 34.295 39.768 39.610

LPFlS+int. 30.434 32.838 33.045 33.938 38.031 38.168

38

36
cn

2 ,34
DC
w 32
D_

30

28

>-£> FANN
O-O LPF1

0 10 20 30
Rate [kbits/sec]

40

Figure 4.17: Peak signal-to-noise ratio [dB] with re­

spect to rate in low bit rate experiments using Te­

lenor's H.263 video encoder.

100

Table 4.5: Test PSNR [dB] on chrominance frames, generated by direct

RGB to YUV conversion. Each of the two FANNs was trained to subsam­

ple a 256 X 256 block of the corresponding 512 x 512 LENA chrominance
frame (U or V, respectively).

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int.

Mandrill 31.954 31.408 31.139 30.992

Peppers 35.974 35.743 34.755 34.187

U Tiffany 35.964 34.949 34.255 33.854

Fighter 39.851 39.432 38.856 38.590

Mandrill 32.882 32.501 32.044 31.777

Peppers 36.313 35.603 34.254 33.512

V Tiffany 36.828 36.468 35.943 35.657

Fighter 37.984 37.318 37.003 36.875

4.6 Experimental Results: GFABS Algorithm with

Fixed Threshold

4.6.1 S u b s a m p l i n g o f S t i l l Images

We have applied the extended FABS algorithm with a fixed threshold /?, described

in Section 4.3.1, to 4 x 4 blocks. The FANN output consists of four pixels. As in the

case of 2 x 2 blocks, the subsampling rate is 4 : 1. As expected, our experimental

results indicate that using 4x4 input blocks as compared to using 2x2 input blocks

yields significant performance gains. More specifically, we subsampled 512 x 512 test

images MANDRILL, BOAT and FIGHTER by applying the FANN. The PSNR values

of the subsampled and then cubic interpolated jmages are 23.431, 27.263 and 30.896

dB, respectively. These values are higher than the values included in Table 4.2. The

subjective quality of the images is better as well.

101

4.7 Discussion

4.7.1 F A N N G e n e r a l i z a t i o n

An important issue is the generalization ability of the designed FANN. Both still image

and video subsampling results obtained by applying the basic FABS algorithm favor

clearly the FANN method as compared to the LPF methods. However, the results are

more convincing for the video frames, indicating a better FANN generalization ability

for the latter. The FANN generalization ability depends on the size of the training set

and the number of FANN parameters. The sizes of the training sets used for our still

image and video experiments have been evaluated using the theoretical results in [22].

However, for the experiments using still images, we have employed only the image

LENA, as compared to the video experiments where we have employed several frames

in the FANN training. As expected, by selecting various still images in order to build

the training set, the performance slightly increases. However, due to the reduced

number of parameters in our FANNs, the performance does not increase significantly.

A solution to further improve the performance of the FANN is to increase the size of

the input windows, as shown in Section 4.6.1. The size of the window is obviously an

important tradeoff parameter [15], since small windows make the algorithm sensitive

to high frequency image variations and large windows do not allow the algorithm to

adapt to local characteristics of the image. Moreover, larger windows increase the

subsampling time during the testing stage.

We believe that, in addition to the size of the training set and the size of

the input block, the difference in FANN performance between still image and video

experimental results is also due to the characteristics of the test set and to the range

102

of the pixel values in the input images. Although the video sequences employed

during the testing stage have different characteristics than those employed during the

training stage, they all consist of head-and-shoulders frames. Thus, the FANN can

generalize well. By comparison, the still images included in our test set are diverse.

Moreover, the range of the pixel values in the chrominance frames is rather small,

as compared to that of the still images in the test set. Thus, the FANN inability

to learn correctly the 0 and 1 values does not have any impact in the chrominance

subsampling case, the FANN being able to accurately provide the correct output pixel

values even at the upper and lower bounds of the pixel value range.

4.7.2 S p e e d a n d M e m o r y C o m p a r i s o n s

The speed of our FANN image subsampler depends on the number of required "multi­

ply and add" operations, which is directly related to the number of connections in the

designed structure. A fully connected M-H-N FANN has [{M + 1) H + (H + 1) N]

parameters (13 for our network). Thus, the total number of "multiply and add" op­

erations per input window (i.e., per 2 x 2 = 4 pixels) is exactly

[(M + N) H - (M - N - H + 2)],

or 7 for our FANN. Our experimental results, shown in Table 4.6, confirm that the

FANN requires a significantly lower number of "multiply and add" operations as

compared to the LPFS systems taken into account. The test times on an UltraSparc

2 computer indicate that the FANNS is an average 5.5 times faster than the LPFS

system during the testing stage.

The CPU time required by 1000 training epochs using the 256 x 256 image

103

Table 4.6: CPU times on an UltraSparc 2 computer, number of floating point

operations and memory requirements.

Complexity Image FANNS LPF1S LPF2S LPF3S
indices size

144 x 176 0.08 0.34 2.12 2.56
CPU time [sec] 256 X 256 0.19 1.16 6.99 8.47

512 x 512 0.77 4.81 29.15 35.50
Floating 144 x 176 234,451 6,154,212 37,902,550 46,035,951
point 256 x 256 606,227 15,880,676 97,386,710 118,381,551

operations 512 x 512 2,424,851 63,459,812 388,366,550 472,275,951
Memory [bytes] 512 x 512 1,048,744 1,049,544 1,056,768 1,056,768

LENA is equal to 3.218 hours. However, we note that, for both still images and video,

reducing the testing time is what really matters for the end user. For a large still

image, such as the 1200 X 1524 TOOLS image of the JPEG-2000 test set, the testing

(subsampling) times are equal to 3.65 and 24.73 seconds, when the FANN and LPF1

methods are employed, respectively. Thus, in this case the FANN is 6.77 times faster

than the LPF1. Finally, as Table 4.6 indicates, the required memory for our FANN

method is comparable to that of the LPFS's, which makes our FANN trained with

the FABS algorihtm well-suited for practical applications.

When the generalized FABS algorithm with a fixed threshold is applied, the

subsampling time during the testing stage increases 148.06 times, as compared to the

basic FABS algorithm described in Section 4.2.1. Therefore, methods to reduce the

testing time should be considered. This problem will be addressed in Section 5.4.

104

4.8 Summary

We have applied FANN models to first-order image subsampling by proposing a

new FANN training method which is based on pattern matching. Besides its high

speed and low memory requirements, as compared to traditional LPFS methods, our

method has the advantage of better image reproduction quality. Therefore, it can be

used in a variety of applications, ranging from pyramidal coding [9] to user-defined

decimation steps in various still image and video coding systems. In particular, we

have shown the superior performance of our algorithm in chrominance subsampling

within a low bit rate video coding system. We have also shown that our algorithm

can be easily generalized for various sizes of the input blocks, with good performance

results.

105

C h a p t e r 5

A p p l i c a t i o n o f F A N N s t o

H i g h - O r d e r I m a g e S u b s a m p l i n g

(H O S)
In this chapter, we apply FANNs to high-order image subsampling (HOS). In Section

5.1, we comment on the direct application of our FABS algorithm to HOS. In Section

5.2, we evaluate the performance of our GFABS algorithm. In Section 5.3, we show

that, by selecting an adaptive threshold, the performance of our GFABS algorithm

in HOS is significantly improved. In the same section, we next show that the compu­

tational demands of our GFABS algorithms increase with the size of the input image

and the size of the input window. In order to address this problem, in Section 5.4,

we reduce the connectivity of the trained FANN by using our TOBD algorithm. The

performance and computational demands of the resulting tridiagonally symmetrical

FANNs in HOS are presented and discussed in the same section. A summary of the

chapter is included in Section 5.6.

106

As stated in Chapter 2 and illustrated in Figure 2.11, high-order image sub-

sampling (HOS) can generally be performed as a single-stage or a multi-stage process.

In single-stage HOS using large input blocks, the value of the output pixel is difficult

to select [17]. Moreover, in FANN-based single-stage HOS, training is especially dif­

ficult. Both of the above mentioned problems can be addressed by decomposing the

high-order subsampling process into several first-order subsampling (FOS) stages. In

addition to simplifying the subsampling process, this multi-stage FOS (MFOS) solu­

tion provides several images with lower resolution than that of the original image.

In what follows, our goal is to evaluate the performance and complexity of

FANN-based multi-stage FOS. Without loss of generality, let us consider a 16 : 1

subsampling process. Let us also decompose this process into two 4 : 1 first-order

subsampling stages. In other words, image subsampling by 2 in each direction is

performed during each of the FOS stages.

5.1 FABS Algorithm

We have applied twice the 4-2-1 FANN trained using the FABS algorithm of Chapter

4 to subsample the input images. In each of the FOS stages, subsampling by 2 in

each direction has been performed. The sizes of the original images are equal to

512 X 512. We have obtained downsampled images having the sizes equal to 256 x 256

and 128 X 128, respectively. Then, we upsampled the 128 X 128 images by cubic

interpolation: (a) by 2 in each direction, and (b) by 4 in each direction.

All of the downsampled images have good subjective quality. However, the

upsampled images obtained using the method (b) show some feature distortion. By

107

evaluating the histograms of the upsampled images obtained using both the methods

(a) and (6), we note that the second downsampling stage was applied to images

having already the histogram modified by the FANN. Thus, it is more difficult to

reconstruct the original image after successive FANN downsampling stages. We have

employed histogram equalization after the first FANN downsampling stage, but such

did not improve the results. Therefore, we conclude that, when using multi-stage

downsampling by FANNs, the histogram should be preserved during each stage as

much as possible.

5.2 GFABS Algorithm: Fixed Threshold

The GFABS algorithm with fixed threshold (described in Section 4.3.1) avoids major

histogram changes during each downsampling stage. We have applied it twice to

subsample the images listed in Table 5.1. The size of each of the input windows

is equal to 4 X 4. The sizes of the downsampled images after each of the successive

downsampling stages are, again, 256 X 256 and 128 x 128. The PSNR values that have

been obtained after reconstructing the downsampled images by cubic interpolation

are included in Table 5.1. These values have been compared with those of the LPFS

performed also in two successive stages, followed by cubic interpolation. We note that

the PSNR values obtained using the FANN method are slightly higher for the images

MANDRILL and FIGHTER. The PSNR values obtained when using the LPF method

are higher for the image BOAT. However, the subjective quality of the images obtained

using the FANN method is significantly better than that of the images obtained using

the LPF method.

108

Table 5.1: Test PSNR [dB] for MFOS using still images. The FANN was

trained using the GFABS algorithm with fixed threshold. The training

set consists of the 256 x 256 image LENA.

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int.

Mandrill 20.760 20.656 19.093 18.257
Boat 22.183 22.684 19.339 17.940

Fighter 25.347 24.823 19.864 18.164

5.3 GFABS Algorithm: Adaptive Threshold

The selection of a fixed threshold value in our FABS algorithm has the advantages

of simplicity and generally good performance. Moreover, the algorithm can also be

easily applied to 8 X 8 and 16 X 16 windows, by selecting a different threshold value.

However, the value of the threshold, which changes with the window size, must be a

priori selected. Also, using a global value, (i.e., the same value for the entire image),

the threshold value cannot capture the local characteristics of each of the image

blocks. A solution to address the above problems is to select adaptively a different

threshold value for each image block during the subsampling process.

The GFABS algorithm with adaptive threshold /? is summarized in Appendix

C. The main idea of the algorithm is to use more local information at the image block

level than that already employed in the FABS algorithm in order to select the FANN

desired output value. More specifically, the standard deviation ak of an input image

k is first computed. Next, the image k is divided into 4x4 windows. Each window is

then unwrapped into a 16 X 1 vector (pattern). This vector is presented as input to

the FANN and the output is computed. The FANN desired output is next selected

109

as follows. If the standard deviation of the current block is higher than the standard

deviation of the corresponding input image, then an edge is declared present in the

input block. Consequently, the FANN desired output value is selected according to

the FABS algorithm of Section 4.2.1. Otherwise, the block is declared smooth. The

FANN desired output value in this case is set to the average of the four pixels in the

block. Using the FANN output value and the desired output value already computed,

the value of the error for the current window is obtained. By repeating the above

steps for all windows in the input image and for all input images, the global error

value is obtained. Next, the weights are adjusted using the global error value. The

above steps are repeated until the error value decreases below a selected threshold.

5.3.1 Exper imental results

As already mentioned in Section 4.7.2, the subsampling time increases when using the

GFABS algorithm with fixed threshold. However, we note here that this is mainly due

to the processing stages that are necessary to evaluate the smoothness of each block

and not to the FANN structure. In order to address the problem of the increasing

testing time, we now train the FANN using the GFABS algorithm with an adaptive

threshold. We also select a larger training set, which consists of 256 x 256 regions from

the 512 X 512 images LENA, TARGET, G O L D , WoMANl and MAN. These images

are illustrated in Figure 5.1 (a). The size of each of the images, with the exception of

the image GOLD,- is equal to 512 x 512 pixels. The image G O L D consists of 576 x 720

pixels.

Let the block size be equal to 4 x 4. Also, let the FANN be of the type 16-8-4.

110

(a)

Figure 5.1: (a) Training and (6) test images. The 16-8-4 FANN was trained using 256 X 256 regions of

the images (a). The test images (b) have the same size as the images (a).

We train the FANN for 1000 epochs with the same parameters as those employed in

Section 4.4. The PSNR values for first-order subsampling are included in Table 5.2.

Since only one quarter of each of these images has been employed in FANN training,

the PSNR values in Table 5.2 are, to some extent, test results. For all of these images,

with the exception of the image GOLD, FANNS leads to better results than the LPFS

methods. In the case of the image GOLD, we believe that the slightly lower FANN

performance is due to the different characteristics of the large flat areas in the bottom

half and right side of the image, which have not been included in the training set.

The test PSNR values for various test images, which are illustrated in Figure

5.1 (b), are included in Table 5.3. For all of the images in Table 5.3, the FANN

results are very good. Particularly, the test results for the images MANDRILL, BOAT

and FIGHTER are significantly better than those in Table 4.2, corresponding to the

4-2-1 FANN trained using the FABS algorithm. Moreover, in all cases, the FANN

results outperform the results obtained by applying the LPFS methods. The FANN

results outperform, on average, by 1.758 dB the best LPFS method employed in our

comparisons. The FANN results also outperform, on average, by 0.158 dB those of

subsampling via median filtering (MEDS) method, employed here in order to compare

the FANN performance to that of conventional nonlinear filtering.

For all of the test images, the subjective quality is good as well. The FANN

subsampled 256 X 256 images have a sharper appearance than the LPF1S and than

the median filtered images. The images reconstructed by cubic interpolation after

FANN subsampling have also a better quality than those reconstructed after LPF1S

and than those reconstructed after MEDS, especially in the high detail and in the

112

Table 5.2: Training PSNR [dB] for FOS of still images. The 16-8-4 FANN was

trained using 256 x 256 regions of these images and the GFABS algorithm with

adaptive threshold. The size of each image is equal to 512 x 512 pixels, with the

exception of the image GOLD which has the size equal to 576 X 720 pixels.

Image FANNS+int.

Conventional methods

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int.

Lena 33.118 31.184 27.559 26.066 33.157

Target 15.921 15.656 15.505 15.379 15.889

Gold 31.288 31.504 28.466 27.102 31.106

Woman 1 29.060 28.864 26.168 24.900 29.020

Man 30.255 29.225 26.855 25.723 30.226

Table 5.3: Test PSNR [dB] for FOS using 512 x 512 still images. The 16-8-4 FANN

was trained using 256 X 256 regions of the images shown in Table 5.2 and the GFABS
algorithm with adaptive threshold.

Image FANNS+int.

Conventional methods

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int.

Mandrill 23.424 23.003 22.113 21.607 23.338

Boat 26.831 24.462 23.424 23.158 26.2404

Fighter 30.852 26.130 25.446 23.733 30.906

Seismic 37.389 34.105 28.832 27.034 36.535

Bird 36.496 33.601 29.019 27.293 36.424

Truck 32.650 31.335 27.472 27.171 32.618

Couple 28.885 27.947 25.824 24.798 28.952

Crowd 31.166 31.044 28.542 27.417 31.412

113

smooth areas, respectively.

Next, we applied the trained FANN to subsampling of large images in the

JPEG-2000 image set. As Table 5.4 shows, for most of these images, the FANN

PSNR values are slightly higher as compared to those of the LPFS methods. More

specifically, the FANN results outperform, on average, by 0.35 dB those of the best

LPFS method employed in our comparisons. Moreover, the FANN results outperform,

on average, by 0.498 dB those of the MEDS method. Finally, note that the FANN

achieves better performance although the resolution of the JPEG-2000 images is very

different than that of the training images.

We next apply the 16-8-4 FANN trained earlier using the GFABS algorithm

with adaptive threshold to high-order subsampling. In other words, we apply twice

the FANN to the images included in Tables 5.5 and 5.6, respectively. The FANN

performance for the images in Table 5.5 is close to that of the LPF1S. However, FANN

generalizes well, as shown by the results included in Table 5.6. For all the test images,

with the exception of the image B O A T , the test PSNR values for FANN subsampling

are higher than those of the LPF followed by subsampling. The FANN results also

outperform, on average, by 0.7 dB those of the best LPFS method employed in our

comparisons. Finally, the FANN results are slightly higher than those of the MEDS

method.

For all of the FANN subsampled and interpolated images, the subjective quality

is good as well. Let us illustrate this by using the example of the 512 x 512 test image

B I R D , shown in Figure 5.2. The FANN subsampled 128 x 128 image B I R D , which is

illustrated in Figure 5.3 (a), has again a sharper appearance than the LPF1S image

114

Table 5.4: Test PSNR [dB] for FOS using large JPEG-2000 still images. The 16-8-4 FANN was

trained using 256 X 256 regions of the images shown in Table 5.2 and the GFABS algorithm with

adaptive threshold.

Image Image

size FANNS+int.

Conventional methods Image Image

size FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int.

Txturl 1024 x 1024 20.991 20.977 20.355 20.003 20.982

Mat 1146 x 1528 32.664 32.630 28.269 26.623 33.391

Tools 1200 x 1524 22.060 22.075 21.110 20.653 22.402

Water 1999 x 1465 41.024 38.119 30.145 27.986 41.161

Aerial2 2048 x 2048 28.980 29.780 26.315 24.843 29.349

Cafe 2560 x 2048 22.085 22.011 21.240 20.849 22.334

Woman 2560 x 2048 27.637 27.404 25.304 24.293 22.334

Table 5.5: Training PSNR [dB] for MFOS. The 16-8-4 FANN was trained using

256 X 256 regions of these images and the GFABS algorithm with adaptive threshold.
The size of each image is equal to 512 x 512 pixels, with the exception of the image

GOLD, which has the size equal to 576 x 720 pixels.

Image FANNS+int.

Conventional methods

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int.

Lena 27.443 26.648 22.352 20.766 27.490

Target 14.288 14.342 13.918 13.627 14.256

Gold 27.002 27.833 23.704 22.120 27.271

Woman 1 25.548 25.691 21.675 20.123 25.544

Man 25.685 25.331 22.175 20.844 25.683

Table 5.6: Test PSNR [dB] for MFOS. The 16-8-4 FANN was trained using 256 x 256

regions of the images shown in Table 5.5 and the GFABS algorithm with adaptive

threshold.

Image FANNS+int.

Conventional methods

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int.

Mandrill 20.749 20.656 19.093 18.257 20.657

Boat 22.025 22.684 19.339 17.940 22.364

Fighter 25.147 24.823 19.864 18.164 25.051

Seismic 29.602 28.081 23.060 21.347 29.535

Bird 32.604 30.263 23.952 22.061 32.529

Truck 28.570 27.729 23.764 22.240 28.522

Couple 24.555 24.005 21.226 20.005 24.562

Crowd 24.956 24.415 22.970 21.869 24.973

116

Figure 5.2: Original 512 x 512 image B I R D .

Figure 5.3: Subsampled image B I R D by (a) FANNS, (b) LPF1S, and (c) MEDS. The

size of each subsampled image is 128 x 128.

117

(&) |

Figure 5.4: Reconstructed 512 x 512 image B I R D by cubic interpolation after

(a) the 16-8-4 FANN and (6) LPF1S have been applied twice to achieve HOS.

Figure 5.5: Reconstructed 512 x 512 image B I R D by cubic interpola­

tion after the median subsampler has been applied twice to achieve

HOS.

illustrated in Figure 5.3 (b). Moreover, the FANN subsampled image illustrated in

Figure 5.3 (a) has a better quality than the median filtered image illustrated in Figure

5.3 (c), which contains some background artifacts. Figures 5.4 (a) and (b) show that

the image reconstructed by cubic interpolation after FANN subsampling has also a

better quality than that of the image reconstructed after LPF1S. The latter image

is smoother, indicating that some of the details are permanently lost. Moreover, as

Figure 5.4 (a) and Figure 5.5 show, the image reconstructed after FANNS has also

119

a better quality than that of the image reconstructed after MEDS, which contains

significant artifacts in the smooth image regions.

5.3.2 C o m p u t a t i o n a l D e m a n d s

As stated earlier, higher testing times when using the FABS algorithm with

fixed threshold (see Section 4.7.2) are due to the steps required to evaluate the smooth­

ness of each block. To address this problem, in Section 5.3, we trained the 16-8-4

FANN using the GFABS algorithm with adaptive threshold. The training CPU time

for 1000 epochs is equal to 58.263 hours, or 2.4276 days, on an Ultrasparc 2 computer.

The testing CPU times in the case of first-order subsampling of the images listed in

Table 5.4 are illustrated in Figure 5.6. Clearly, the CPU testing time increases ap­

proximately linearly with the image size, for image sizes between 262 kbytes and 6.3

Mbytes. However, the slopes of the LPFS curves have significantly larger values than

those corresponding to the FANNS curves. A detail of Figure 5.6, which illustrated

in Figure 5.7, shows that the FANNS gain with respect to the fastest of the LPFSs

becomes higher as the image size increases. The CPU time required by FANNS is

slightly higher than that required by MEDS, as Figure 5.7 also shows. It is also useful

to evaluate the number of floating point operations (FLOPS) in the testing stage. As

Figure 5.8 illustrates, the number of FLOPS for FANNS, LPF1S and LPF2S, when

testing images having sizes between 262 kbytes and 5.2 Mbytes, increases almost

linearly for FANNS and LPF1S and nonlinearly for the other filters.

The graphical representation of the testing times for high-order subsampling is

illustrated in Figure 5.9. For comparison purposes, the numerical values of the FOS

120

Figure 5.6: Test time [sec] for FOS of large images. The FANN has a size

of 16-8-4.

-f»- FANNS

- -0- LPFIS

-©- MEDS

-f»- FANNS

- -0- LPFIS

-©- MEDS

i i i i

0 1 2 3 4 5 6 7
Image size [bytes] -6.

Figure 5.7: A section of Figure 5.6, illustrating the FANNS, LPFIS and

MEDS test times for large images.

121

CO ft
O a
fe 1.5

O 1

CD 0.5

x 10"
• -* *

I

1
$8 > Ef"n & — - f r f > — — E >

Image s i z e [byte^] 1 (

FANNS
LPF1S
LPF2S

Figure 5.8: Number of floating point operations (FLOPS) for FOS

of large images. The FANN has a size of 16-8-4.

3 4 5
Image size [bytes]

Figure 5.9: Test time [sec] for HOS of large images on an UltraSparc 2

computer. The 16-8-4 FANNS, LPFS and MEDS have been applied twice

to subsample the test images.

122

and HOS testing times are included in Table 5.7. Clearly, our FANNS method out­

performs in all cases the LPFS methods in terms of efficiency. At the same time, our

FANNS method is slightly outperformed by the MEDS method in terms of efficiency.

We also note that the computational demands for the FANN increase significantly

with the image size. Moreover, they also increase with the size of the input window.

5.4 Tridiagonally Symmetrical FANNs and

the GFABS Algorithm

A solution to address the problem of increasing computational demands with the

image size is to reduce the connectivity of our 16-8-4 FANN trained using the GFABS

algorithm with adaptive threshold. We reduce the connectivity of the trained FANN

using our TOBD algorithm described in Chapter 3. After each of the TOBD pruning

stages, the FANN is re-trained for 100 epochs. The number of the re-training epochs

is here selected by imposing the following condition. We require that the total number

of the re-training epochs be approximately equal to the original number of FANN

training epochs. The learning (re-training) curve for our FANN pruned using the

TOBD algorithm is illustrated in Figure 5.10, where the peaks indicate pruning steps.

The subjective quality of the images obtained by applying the FANN using

the TOBD algorithm to first-order image subsampling is good. As Figure 5.11 (a)

illustrates, the subsampled image B I R D has good subjective quality. Howeve;:, a

patterned background is also present. This is "due to the insufficient number of re­

training epochs after each pruning stage. Of course, a solution to eliminate the

123

Table 5.7: CPU test times [sec] for FOS and MFOS on an UltraSparc 2 computer. The 16-8-4 FANN

was trained using 256 X 256 regions of the images shown in Table 5.5 and the GFABS algorithm with

adaptive threshold.

Image size First-order subsampling Multi-stage first-order subsampling Image size
FANNS LPF1S LPF2S LPF3S MEDS FANNS LPF1S LPF2S LPF3S MEDS

512 x 512 2.69 3.71 22.43 27.10 2.16 3.26 7.64 25.78 30.97 2.70
576 X 720 4.22 5.84 35.31 42.93 3.46 5.26 10.25 39.27 46.75 4.78
1024 x 1024 11.10 14.28 86.39 105.24 8.87 13.00 37.82 110.41 129.50 11.25
1146 x 1528 17.58 23.79 144.39 175.48 14.34 22.09 63.93 183.40 214.15 19.16
1200 x 1524 18.51 24.83 151.20 183.42 15.06 23.19 58.81 187.02 217.69 20.79
1999 x 1465 29.23 39.78 241.60 293.80 25.25 36.43 127.29 326.02 379.83 31.52

2347 x 1688 40.46 54.21 326.28 396.89 30.28 50.87 210.01 478.13 548.00 45.77
2048 x 2048 44.59 57.68 349.76 424.94 36.75 53.57 249.71 538.44 610.69 47.11

2560 x 2048 52.45 71.36 433.88 525.30 48.88 66.84 328.76 688.63 783.20 60.63

3072 x 2048 66.27 85.71 517.99 630.45 57.74 81.51 373.09 805.14 915.17 74.02

0.3

0.25h

0.2
n w

CO 0.15h

50 100 150 200 2
Number of epochs

250 300 350

Figure 5.10: Learning curve for a 16-8-4 FANN pruned using the TOBD algorithm.

The peaks indicate the first 5 pruning steps. The FANN has been trained for 100

epochs after each pruning step.

patterned background is to increase the number of the re-training epochs. However,

this is time consuming. Another solution is to apply a post-processing stage after

subsampling. For example, by simply filtering the subsampled image with a median

filter using 2x2 image blocks, the image quality is greatly improved. This is illustrated

in Figure 5.11 (b) which shows that most of the artifacts have been removed. The

512 x 512 image B I R D reconstructed by cubic interpolation using the subsampled and

filtered image in Figure 5.11 (b) is illustrated in Figure 5.12. The reconstructed image

has good subjective quality as well. We note that it is important that filtering be

applied before the interpolation stage. Otherwise, the artifacts are accentuated and

the quality of the reconstructed images is worse, even if a filtering stage is applied

after interpolation.

The test PSNR values obtained by applying the FANN pruned using the TOBD

125

C M

Figure 5.11: (a) Subsampled image B I R D by tridiagonally symmetrical FANN subsampling and (b) sub-
sampled image B I R D by tridiagonally symmetrical FANN subsampling followed by median filtering using

2 x 2 blocks. The size of each subsampled image is 256 x 256.

Figure 5.12: Reconstructed 512 x 512 image B I R D by cubic inter­

polation, using the subsampled image illustrated in Figure 5.11 (b).

algorithm to first-order image subsampling followed by median filtering and then re­

constructing the subsampled images by cubic interpolation are included in the second

column of Table 5.8. As expected, these values are lower (by an average of 1.777 dB)

than those in Table 5.3 corresponding to the fully connected FANN. Note, however,

that the tridiagonally symmetrical FANN has only 33 weights as compared to the

fully connected FANN which has 160 weights.

When applying the tridiagonally symmetrical FANN to MFOS, several solu­

tions to remove the background artifacts introduced by each of the FOS stages can

127

Table 5.8: Test PSNR [dB] for FOS and MFOS using a 16-8-4

tridiagonally symmetrical FANN and 512 x 512 still images. The

FANN was trained using 256 X 256 regions of the images illus­
trated in Figure 5.5 (a) and the GFABS algorithm with adaptive

threshold, and pruned using the TOBD algorithm. For MFOS,

the notations (a)-(cx) refer to the experiments illustrated in Fig­

ure 5.13.

Image First-order Multi-stage first-order

subsampling subsampling

(a) (c) (d)

Mandrill 22.449 20.294 21.045 20.721 21.108

Boats 24.052 20.004 22.574 21.694 22.188

Fighter 30.344 20.443 25.119 23.674 23.876

Seismic 36.219 27.672 28.517 28.473 28.698

Bird 32.702 26.927 32.330 30.178 30.829

Truck 30.606 25.563 27.826 26.860 27.760

Couple 27.411 21.784 24.813 23.693 24.298

Crowd 29.688 21.405 24.596 23.264 24.046

be applied. Similarly to the FOS case, a higher number of re-training epochs after

each pruning step may be selected. However, this is, again, a time consuming so­

lution. Alternatively, a simple post-processing step such as median filtering can be

applied after each of the FOS stages. Finally, the tridiagonally symmetrical FANN

can be combined with a fully connected FANN in order to eliminate the artifacts.

The latter solutions are illustrated in Figure 5.13. In Figure 5.13 (a), two identi­

cal FOS stages using the tridiagonally symmetrical FANN are being employed. As

discussed above, median filtering using 2 x 2 image blocks is performed after .ach

of the first-order subsampling stages. In Figure 5.13 (b) the first of the FOS stages

is being performed using the tridiagonally symmetrical FANN. Then, the patterned

128

background is eliminated by applying median filtering. In the second subsampling

stage, a fully connected FANN is applied. It is possible to reverse the order of these

FOS stages, that is to first apply the FC-FANN, followed by the TS-FANN and

the median filtering stages. This solution is illustrated in Figure 5.13 (c). Another

option is that illustrated in Figure 5.13 (d), where a 16-8-4 TS-FANN and a 4-2-1

FC-FANN are applied to the image. In this case, the second FANN simultaneously

eliminates the patterned background and subsamples the image. We note that no

additional filtering stage is here needed.

The test PSNR values obtained in the experiments illustrated in Figure 5.13

are included in Table 5.8. For all of the test images, the highest PSNR values are

obtained in the experiments illustrated in Figures 5.13 (b) and (d). All of the PSNRs

in these two experiments are higher than those of the best LPFS method in Table 5.6.

However, the results in the experiments (b) and (d) are also lower, by an average of

0.173 dB and 0.675 dB (respectively), than the results obtained using the FC-FANN

(also included in Table 5.6). The results in the experiments (a) and (c) are lower, by

an average of 3.014 dB and 1.206 dB (respectively), than those of the FC-FANN.

This is expected since the number of weights of the TS-FANN is much smaller than

that of the fully connected FANN. In Figures 5.14 and 5.15, which illustrate examples

of subsampled and reconstructed images in the experiment shown in Figure 5.13 (6),

the subjective image quality is clearly good, as well as in Figures 5.16 and 5.17, which

illustrate examples of subsampled and reconstructed images in the experiment shown

in Figure 5.13 (d). In the latter figure, the overall image quality is good, although

some feature distortion is present in smooth areas such as the background.

129

TS-FANN
(16-8-4)

subsampling

TS-FANN
(16-8-4)

subsampling

FC-FANN
(16-8-4)

subsampling

TS-FANN
(16-8-4)

subsampling

Median filtering
(2x2 blocks)

TS-FANN
(16-8-4)

subsampling

Median filtering
(2x2 blocks)

(a)

Median filtering
(2x2 blocks)

FC-FANN
(16-8-4)

subsampling

(b)

TS-FANN
(16-8-4)

subsampling

Median filtering
(2x2 blocks)

(c)

FC-FANN
(4-2-1)

subsampling

(d)

Figure 5.13: Multi-stage FOS options using pruned FANNs. The notations FC -

FANN and TS - FANN stand for fully connected FANN and tridiagonally symmet­

rical FANN, respectively.

130

Figure 5.14: Subsampled image B I R D using (a) a 16-8-4 TS —

FANN and a FC-FANN for each of the FOS stages, respectively.

The image (b) was obtained by inserting a median filtering stage
after the first FOS stage.

Figure 5.15: Reconstructed 512 x 512 image B I R D by cubic inter­
polation using the subsampled image illustrated in Figure 5.14 (6).

131

Figure 5.16: Subsampled image BIRD after (a) the first FOS stage using a 16-8-4

TS - FANN and (b) the second FOS stage using a 4-2-1 FC - FANN. The

sizes of these images are equal to 256 x 256 and 128 X 128, respectively.

The PSNR values obtained via the experiment illustrated in Figure 5.13 (c)

are slightly lower than those in the experiment (6), suggesting that the first of the

FOS stages should be performed using the tridiagonally symmetrical FANN. The

lowest PSNR values are obtained in the experiment illustrated in Figure 5.13 (a).

This is expected, since the artifacts that result after each of the FOS stages have not

been removed. The subsampled images still have good subjective quality (with the

exception of the patterned background), although visible artifacts are present in the

interpolated images.

132

Figure 5.17: Reconstructed 512 x 512 image BIRD by cubic interpola­
tion using the subsampled image illustrated in Figure 5.16 (6).

5.5 Discussion

In this section, we comment on important issues such as the generalization ability

of the tridiagonally symmetrical FANN applied to first-order and high-order image

subsampling and the computational demands in the testing (subsampling) stage.

5.5.1 F A N N G e n e r a l i z a t i o n

Based on the results included in Table 5.8, showing that the PSNR values obtained

in the experiments illustrated in Figure 5.13 are lower than those obtained by using

133

fully connected FANNs, it may seem that the generalization ability of the tridiago­

nally symmetrical FANN decreases after the pruning process. However, we note that

after two TOBD pruning steps and their corresponding re-training stages, the PSNR

values for all of the test images reconstructed after first-order subsampling using the

tridiagonally symmetrical FANN are higher than those in Table 5.3, corresponding

to the fully connected FANN. In other words, the generalization ability of the FANN

actually increases after pruning some of the weights. After three TOBD pruning steps

and their corresponding re-training stages, the PSNR values for all of the test images

reconstructed after FOS slightly decrease as compared to the values obtained after

two pruning steps. The test PSNR values after three pruning stages for all of the

images are still higher than those in Table 5.3 corresponding to the fully connected

FANN. In terms of subjective image quality, there are no perceivable changes in the

reconstructed images.

Similarly, after two TOBD pruning steps and their corresponding re-training

stages, the PSNR values for all of the test images reconstructed after applying the

FANN twice are higher than those in Table 5.6 corresponding to the FC-FANN. After

three TOBD pruning steps and their corresponding re-training stages, the PSNR

values for all of the test images reconstructed after MFOS using the TS-FANNs

slightly decrease as compared to the values obtained after two pruning steps. The

test PSNR values after three pruning stages for all of the images are still higher than

those in Table 5.6 corresponding to the fully connected FANN. In terms of subjective

image quality, there are again no perceivable changes in the reconstructed images.

Clearly, the generalization ability of the FANN increases as a result of tridi-

134

agonally symmetrical pruning using our TOBD algorithm. However, note that the

final, pruned FANN has only 33 weights, as compared to the fully connected FANN

which has 160 weights. This motivates the loss in the PSNR values if many weights

are deleted. In order to continuously increase the PSNR values, a higher number of

FANN re-training epochs after each of the pruning steps would be required. This

is not an efficient solution. Instead, we have shown that, by re-training the FANN

for a small number of epochs after each of the pruning steps, good image quality is

obtained when applying the solutions illustrated in Figure 5.13. The experimental

results included in Section 5.4 suggest that the best solutions in terms of subjective

image quality and PSNR values have been obtained using the systems illustrated in

Figures 5.13 (6) and (d).

The generalization ability of the FANNs applied to image subsampling depends

on the resolution of the training images. When the test images have resolutions equal

or close to those of the training images (as in the case of most of our experiments),

the FANN generalizes well. When the test images have resolutions which are very

different from those of the training images, as shown in Table 5.4, good results have

been obtained although the FANN generalization ability decreases. A solution to

address this problem is to introduce some type of scale/resolution invariance in the

subsampling process. This invariance can be introduced via the training set or via

the training/subsampling algorithm. In the former case, different training sets for

each of the FANNs employed in the FOS stages must be used. Each of these training

sets consists of images having a resolution which is lower than that of the images

in the training set employed for the preceding FANN. In the latter case, additional

135

processing stages must be employed in the training algorithm.

Finally, we note that we have evaluated both the subsampled and reconstructed

images. As stated earlier, cubic interpolation (which is commonly used in many

applications) has been employed in order to reconstruct the images. Of course, other

types of interpolation may also be selected. Moreover, the interpolation process can

be optimized using information about the subsampling algorithm. However, this has

not been the focus of our work.

5.5.2 C o m p u t a t i o n a l D e m a n d s

As illustrated in Section 5.3.2, the fully connected FANN subsampling method is much

faster than the LPFS methods and almost as fast as the MEDS method. Our goal

was to further increase the speed of FANN subsampling by pruning the FANN with

tridiagonally symmetry constraints. In order to asses the efficiency of the resulting

TS—FANN with respect to that of the FC—FANN, we now evaluate the computational

demands of the former when applied to FOS and MFOS.

The number of weights in the fully connected 16-8-4 FANN is equal to 160.

The number of weights in the tridiagonally symmetrical 16-8-4 FANN is equal to

33. Therefore, the number of parameters that need to be saved decreases 4.85 times

for the TS—FANN. Moreover, the subsampling time when using the 16-8-4 tridiag­

onally symmetrical FANN applied to first-order image subsampling is one fifth of

that required by the 16-8-4 FC-FANN. Clearly, there is a substantial gain in terms

of speed as compared to the fully connected FANN, which is especially desired for

images having large sizes.

136

The number of weights that need to be saved in the MFOS experiments illus­

trated in Figures 5.13 (a), (b), (c) and (ci) is equal to 33, 160, 160 and 43, respectively.

Clearly, the number of weights in each of the cases (b) and (c) is equal to that of the

fully connected FANN, since both the tridiagonally symmetrical FANN and the fully

connected FANN are employed in different subsampling stages. I n Figure 5.13 (ci),

only the parameters of the TS-FANN and those of the 4-2-1 FC-FANN must be

saved. The CPU times required by the MFOS experiments (shown in Figure 5.13)

are illustrated in Figure 5.18. The test images are, again, those listed in Table 5.4.

Note that the lines corresponding to the fully connected FANN and to the median

subsampler, which are the same as those having the smallest slopes in Figure 5.6,

are the reference with respect to which the solutions (a)-(ci) obviously provide higher

subsampling speeds.

On average, the MFOS solutions illustrated in Figures 5.13 (a), (6), (c) and

(ci) are 2.48, 1.84, 1.11 and 3.30 times faster, respectively, than the MFOS using

FC—FANNs (see Table 5.7). We note that, although the same number of weights is

being used in the experiments (b) and (c), which is equal to that of a fully connected

FANN, their subsampling speeds are different. First, the subsampling process in each

of these cases is clearly faster than that employing two FC-FANNs. This is due to

employing a tridiagonally symmetrical FANN in one of the FOS stages. Which of

the FOS stages employs such an FANN has an impact on the subsampling speed.

For instance, the subsampling process is faster in the experiment (6) than that in

(c), since the tridiagonally symmetrical FANN is applied in the first FOS stage to the

original (larger) image. The fastest solutions are provided by the solutions (ci) and (a).

137

2 4
Image s i z e [b y t e s] x 10

Figure 5.18: CPU times [sec] for MFOS on an UltraSparc 2 computer using
a 16-8-4 TS-FANN. For HOS the notations (a)-(d) refer to the experiments

illustrated in Figure 5.13. The acronyms FC and MEDS denote the 16-8-4

fully-connected FANN and the median subsampler, respectively.

138

The best tradeoff is provided by the solution (d), which requires a small number of

weights to be stored and which provides the highest speed and a consistently quality

of the obtained images. Solution (6) also yields a good tradeoff, more specifically,

a doubling of the subsampling speed and the best quality of the obtained images.

Solution (a) leads to faster multi-stage subsampling schemes, but it also requires

longer re-training stages in order to achieve good image quality.

5.6 Summary

In this chapter, we have applied FANNs to high-order image subsampling, more

specifically, to multi-stage first-order image subsampling. We have generalized our

previously introduced FABS algorithm. Then, we have evaluated its performance

when fixed and adaptive thresholds are selected. We have also shown that, although

our FANNs trained using the GFABS algorithm yield good performance and higher

speed than that of the LPFS method, their computational demands increase with

the image size and the size of the input windows. In order to address this problem,

we next pruned the fully connected FANNs using our TOBD algorithm proposed in

Chapter 3. The performance and computational demands of the resulting tridiago­

nally symmetrical structures have been evaluated. We have shown that, depending

on the application requirements, different MFOS solutions can be employed, lead­

ing to a good subjective quality of the images. Moreover, the resulting systems are

approximately 2 to 3.3 times faster than the systems employing the fully connected

FANN.

139

C h a p t e r 6

Conclus ions and F u t u r e W o r k

6.1 Thesis Contributions

This thesis has addressed feedforward neural network design with application to image

subsampling. Our particular focus has been on both the topological design of FANN

structures and the FANN training algorithm, such that fast and compact FANNs,

with good subjective and objective performance in first-order and high-order image

subsampling are obtained. The main contributions of the thesis are: (1) an algorithm

with tridiagonal symmetry constraints for FANN design, (2) a training algorithm

for FANNs that leads to good performance in image subsampling, (3) the design,

thorough performance and complexity evaluation of fully connected FANNs in FOS

and MFOS, and (4) the design, thorough performance and complexity evaluation of

tridiagonally symmetrical FANNs in FOS and MFOS.

We proposed the tridiagonally symmetrical Optimal Brain Damage (TOBD)

algorithm, first introduced in [110, 112], to design TS-FANN structures. We have

140

illustrated, via a simulation example, that the number of the FANN parameters is

reduced substantially by applying our algorithm, without a significant loss in perfor­

mance. Moreover, the resulting TS-FANNs are fast, compact, and easy to implement.

Next, we proposed a new training algorithm for FANN structures when applied

to image subsampling [111, 113, 114]. This second phase of our research was motivated

by an important observation, that is the presence of blocking artifacts in the repro­

duced images when FANN-based image subsampling is generally performed. We have

shown that, our proposed training algorithm addresses this problem by employing a

pattern-matching method to extract, during FANN training, geometrical informa­

tion from each processing window. Results for still images and video sequences were

presented, showing the superior performance of the fully connected FANNs trained

using our proposed algorithm in image subsampling. We have evaluated the results

objectively, subjectively and in the context of a video coding application.

An important result which motivated the third stage of our research is that,

despite the fully connected FANN structures being much more efficient than the low-

pass filtering and subsampling methods, the testing (subsampling) time in high-order

(particularly multi-stage first-order) image subsampling increases linearly with the

image size. We therefore reduced the connectivities of our trained FANN structures

applied to image subsampling using our FANN design algorithm [112]. We showed

that the application of the resulting fast and compact FS—FANNs to FOS and MFOS

yields very good tradeoffs in terms of performance and complexity. More specifically,

the speed of our FANN-based subsampler increases 2 to 3.3 times while preserving a

good quality of the resulting images. Thus, the TS—FANNs are more efficient than

141

both FC-FANNs and conventional subsampling methods, yielding the same or even

better image quality. In all of our experiments, we evaluated image quality by using

objective criteria such as the PSNR, and by subjective assessment of the reconstructed

images.

6.2 Future Research Directions

The theoretical and practical advantages of our designed FANN structures suggest

that further investigation and experimentation are worth pursuing. This dissertation

is only a preliminary exploration of what these neural structures can offer. Among

the possible research topics to extend and improve the work included in this thesis

are:

1. Develop an extension of our design algorithm with tridiagonal symmetry con­

straints that takes into account a priori information about symmetries in the

application problem. This can lead to application-optimized TS—FANNs.

2. Apply TS—FANNs to temporal and spatio-temporal subsampling of video se­

quences.

3. Address the problem of scale/resolution-dependence in FANN generalization

abilities by including invariance to scale/resolution in the training algorithm.

4. Optimize the subjective/objective quality of the reconstructed images by de­

signing an interpolation method that takes into account the particularities of

the subsampling process.

142

A p p e n d i x A

T h e T O B D Algorithm

143

1. Train the network, until the error C < e6, with e6 given. Save the input-hidden

and the hidden-output weight matrices, that is,

W = {wih, 1 < i < M, 1 < h < H} and V = {vhj, l<h<H,l<j<N}.

2. Compute the OBD saliencies,

3. IF the minimum saliency weight belongs to an input-hidden connection with

weight wi*h., THEN

3.1 IF i* ^ h*, THEN
Prune u w * {wi*h* = 0). Assign m* = min(i*, h*).

ELSE (i* = h*), assign m* = i*.
END.

For the diagonal element with index m*, continue with Steps 3.2—3.6

3.2 Build the M x M square matrix W by padding W with zeros.

3.3 Build the vector q = [qi, q2, ... , qm}T with <?; given by (3.2).

3.4 Build the matrix & using (3.1). Perform the transform

and normalize the elements of the resulting matrix.

3.5 Re-train the network until the error is lower than e7.

3.6 IF the weight matrix is not tridiagonal, GO TO Step 2; ELSE END.

END.

4. IF the minimum saliency weight belongs to a hidden-output connection Vh*j*,

with 1 < h* < H and 1 < j* < N,

IF TV > 1, THEN

GO TO Step 3.1 and apply the subsequent steps for the element Vh*j*.

ELSE (N = 1)

IF h* =

IF h* =

IF h* =

and H is even, THEN Prune Vh*j* and Uff-/ l* + i, i 7 ' * -

and H is odd, THEN Prune Vh*j* and VH-h*,j*-

+ 1 and VH, THEN Prune v^..

IF The weight matrix is not tridiagonal, GO TO Step 2; ELSE END.

END.

END.

144

A p p e n d i x B

The FABS Algorithm

145

REPEAT

1. FOR each input window (pattern) c f , where 1 < cf < P and P is the maximum

number of patterns,

(a) Compute the actual FANN output value y (c f) given by expression (4.1).

(b) Compute the median of all possible three-pixel combinations, as illus­

trated in Figure 4.3 and compare it to the value of the fourth pixel in the

window, yielding the values given by the expressions (4.2).

(c) Compute the minimum <?*(£) of the error values given by the expressions

(4.2) for the current input window.

(d) Set the desired output value to i i (c f) = x^ (c f) , where /* is the value

of / for which the minimum in (4.3) is reached. The function (c f) is
equal to x m > n (c f) , x m, n-i (c f) , i r o + i , » - i (c f) or xm+hn (c f) if /* = 1, 2, 3 or

4, respectively.

END.

2. Compute the global error C (w) at the end of one epoch by adding the squared

errors e (c f) for all the input patterns.

3. Modify the weights according to a quasi-Newton rule.

UNTIL the stop condition is met.

146

A p p e n d i x C

The GFABS Algorithm with Adaptive Threshold

147

REPEAT

1. FOR each input image k

(a) Compute the standard deviation c?k of the image.

(b) Divide the image into 4 x 4 windows.

(c) FOR each window (unwrapped into a 16x1 pattern) tpk, where 1 < ipk < Pk
and Pk is the number of patterns for the image k,

(cl) Compute the actual FANN output value y (tpk) given by expression (4.1).

(c2) Divide the window into 2x2 blocks.

(c3) FOR each block <f of size 2x2 with 1 < <f < 4,

— Compute the standard deviation f3k (< f) of the block c f .
— IF f3k (c f) > ak THEN an edge is present and

• Compute the median of all possible three-pixel combinations, as

illustrated in Figure 4.3. Compare it to the value of the fourth

pixel in the window, yielding the values given by the expressions

(4.2).

• Compute the minimum <?*(£) of the error values given by the ex­

pressions (4.2) for the current input window.

• Set the desired output value to ti(£) — (c f) , where /* is the
value of / for which the minimum in (4.3) is reached. The function

x^ (c f) is equal to x m < n (c f) , x m , n _ i (< f) , x m + i ^ x (c f) or x m + l i U (< f)

if /* = 1, 2, 3 or 4, respectively.

ELSE the block is smooth. Set the desired output value d (cf) to the
average of the four pixels in the block.

END.

END.

(c4) Compute the FANN output error e (ipk)-

END.

END.

2. Compute the global error C (w) at the end of one epoch by adding the squared
errors for all the input patterns in all images.

3. Modify the weights according to a quasi-Newton rule.

UNTIL the stop condition is met.

148

B i b l i o g r a p h y

[1] D. E. Rumelhart, J. L. McCLelland, and the PDP Research Group, Parallel

Distributed Processing. Explorations in the Micro structure of Cognition, vol. 1

and 2. USA: The MIT Press, 1987.

[2] R. Hecht-Nielsen, Neurocomputing. USA: Addison-Wesley Publ. Co., 1991.

[3] R. Eberhart and R. Dobbins, Neural Network PC Tools. A Practical Guide.

USA: Academic Press, Inc., 1990.

[4] C.-H. Lee, "Image surface approximation with irregular samples," IEEE Trans,

on Pattern Analysis and Machine Intelligence, vol. 11, no. 2, pp. 206-212, 1989.

[5] R. A. Belfor, M. P. Hesp, R. L. Lagendijk, and J. Biemond, "Spatially adaptive

subsampling of image sequences," IEEE Trans, on Image Processing, vol. 3,

pp. 492-500, Sept. 1994.

[6] C. A. Burton, L. Johnston, and E. Sonenberg, "An empirical investigation of

thumbnail image recognition." Preprint, 1995.

[7] G. J. Grevera and J. K. Udupa, "Shape-based interpolation of nD grey scenes."

Preprint, 1997.

149

[8] K. Rao and J. Hwang, Techniques and Standards for Image, Video and Audio

Coding. USA: Prentice-Hall Inc., 1996.

[9] R. J. Clarke, Digital Compression of Still Images and Video. USA: Academic

Press Ltd., 1995.

[10] P. Vaidyanathan, Multirate Systems and Filter Banks. USA: Prentice-Hall,

1993.

[11] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing. USA:

Prentice-Hall, 1983.

[12] E. Eviscito and J. P. Allebach, "The analysis and design of multidimensional

FIR perfect reconstruction filter banks for arbitrary sampling lattices," IEEE

Trans, on Circuits and Systems, vol. 38, pp. 29-41, Jan. 1991.

[13] H. Bischof, Pyramidal Neural Networks. USA: Lawrence Erlbaum Associates,

Publ, 1995.

[14] N. Peterfreund and Y. Y. Zeevi, "Nonuniform image representation in area-of-

interest systems," IEEE Trans, on Signal Processing, vol. 4, no. 9, pp. 1202-

1212, 1995.

[15] S. Ranganath, "Image filtering using multiresolution representations," IEEE

Trans, on Pattern Analysis and Machine Intelligence, vol. 13, no. 5, pp. 426-

438, 1991.

[16] A. M. Tekalp, Digital Video Processing. USA: Prentice-Hall Inc., 1995.

150

[17] R. Manduchi, G. Cortelazzo, and G. Mian, "Multistage sampling structure

conversion of video signals," IEEE Trans, on Circuits and Systems for Video

Technology, vol. 3, pp. 325-340, Oct. 1990.

[18] R. Mohan, J. R. Smith, and C.-S. Li, "Adapting multimedia internet content

for universal access," IEEE Transactions on Multimedia, vol. 1, pp. 104-114,

Mar. 1999.

[19] C. Manning, "Introduction to digital video coding and block matching algo­

rithms." Preprint, 1995.

[20] J. Hu, N. Sinaceur, et al., "Removal of blocking and ringing artifacts in trans­

form coded images," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Pro­

cessing, vol. 4, (Munich, Germany), pp. 2565-2568, 1997.

[21] R. Gonzalez and P. Wintz, Digital Image Processing. Menlo Park, CA: Addison-

Wesley Publishing Company, 1987.

[22] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural

Computation. USA: Addison-Wesley Publ. Co., 1991.

[23] M. S. B. Soucek, Neural and Massively Parallel Computers. The Sixth Genera­

tion. USA: John Wiley and Sons, 1988.

[24] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal

Processing. USA: John Wiley and Sons, 1993.

[25] J. Zurada, Introduction to Artificial Neural Systems. USA: West Publishing

Company, 1992.

151

[26] T. Poggio and F. Girosi, "Networks for approximation and learning," in Pro­

ceedings of the IEEE, vol. 79, IEEE, 1990.

[27] R. Beale and T. Jackson, Neural Computing: An Introduction. UK: Adam

Hilger, 1991.

[28] A. Tsoi and A. Back, "Locally recurrent globally feedforward networks: A crit­

ical review of architectures," IEEE Trans, on Neural Networks, vol. 5, pp. 229-

239, Mar. 1994.

[29] B. Dahanayake and R. Upton, "Learning with ease: Smart neural networks,"

Proceedings of the International Conference on Neural Networks, Nov. 1995.

[30] S. Fahlman and C. Lebiere, "The cascade-correlation learning architecture."

Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mel­

lon University, Pittsburgh, US, 1991.

[31] C. H. A. Maren and R. Pap, Handbook of Neural Computing Applications. USA:

Academic Press, Harcourt Brace Jovanovich Publ., 1990.

[32] E. Fiesler, "Neural network classification and formalization," Computer Stan­

dards and Interfaces, vol. 16, 1994.

[33] S. Becker, An Information-Theoretic Unsupervised Algorithm for Neural Net­

works. PhD thesis, Graduate Dept. of Computer Science, Univ. of Toronto,

Canada, 1992.

[34] S. Haykin, Neural Networks. A Comprehensive Foundation. USA: MacMillan

College Publ. Co., 1994.

152

[35] Y. H. Hu, "Special topics in applications of neural networks to signal process­

ing." Lecture notes, Dept. of Electrical and Computer Engineering, University

of Wisconsin-Madison, 1994.

[36] E. Bartlett, "Dynamic node architecture learning: An information theoretic

approach," Neural Networks, vol. 7, no. 1, pp. 129-140, 1994.

[37] E. Levin, N. Tishby, and S. A. Solla, "A statistical approach to learning and

generalization in layered neural networks," Proceedings of the IEEE, vol. 78,

pp. 1568-1573, Oct. 1990.

[38] P. Williams, "Bayesian regularization and pruning using a Laplace prior," Neu­

ral Computation, vol. 7, pp. 117-143, 1995.

[39] J. Larsen and L. Hansen, "Generalization performance of regularized neural

network models," in Proceedings of the International Conference on Artificial

Neural Networks (J. Vlontzos, J.N.Hwang, and E. Wilson, eds.), 1994.

[40] P. A. Jokinen, "A nonlinear network model for continous learning," Neurocom-

puting, vol. 3, pp. 157-176, Nov. 1991.

[41] B. Amirikian and H. Nishimura, "What size network is good for generalization

of a specific task of interest," Neural Networks, vol. 7, no. 2, pp. 321-329, 1994.

[42] A. Doering, "Private Communication." Vancouver, Canada, 1995.

[43] Y. H. Hu, "Configuration of feedforward multilayer perceptron neural net­

works." Preprint, University of Wisconsin-Madison, Dept. of Electrical and

Computer Engineering, 1993.

[44] E. Baum and D. Haussler, "What size net gives valid generalization ?," in

Advances in Neural Information Processing Systems (D. Touretzky, ed.), vol. 1,

San Mateo, US: Morgan Kaufmann, 1989.

[45] R. Lippmann, "An introduction to computing with neural nets," IEEE Maga­

zine on Acoustics, Signal and Speech Processing, vol. 7, pp. 4-22, Apr. 1987.

[46] M. Lehtokangas, J. Saarinen, and P. Huuhta, "Neural network modeling and

prediction of multivariate time series using predictive MDL principle," in Pro­

ceedings of the International Conference on Artificial Neural Networks, (Ams­

terdam, The Netherlands), 1993.

[47] M. Lehtokangas, J. Saarinen, and P. Huuhta, "Neural network prediction of

nonlinear time series using predictive MDL principle," in Proceedings of the

IEEE Workshop on Nonlinear Digital Signal Processing, (Tampere, Finland),

pp. 7.2.2.1-7.2.2.6, 1993.

[48] H. Akaike, "Fitting autoregressive models for prediction," Annals of the Insti­

tute of Statistical Mathematics, vol. 21, pp. 243-247, 1989.

[49] B. Jansen, "Time series analysis by means of linear modelling," in Digital

Biosignal Processing (R. Weitkunat, ed.), pp. 157-179, Elsevier Science Publ.,

1991.

[50] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, and C. Muller, "SSM: A statisti­

cal stepwise method for weight elimination," in Proceedings of the International

Conference on Artificial Neural Networks, pp. 601-604, 1994.

154

[51] Y. Liu, "Unbiased estimate of generalization error and model selection in neural

networks," Neural Networks, vol. 8, no. 2, pp. 215-219, 1995.

[52] N. Murata, S. Yoshizawa, and S. ichi Amari, "Network information criterion-

determining the number of hidden units for an artificial network model."

Preprint, Department of Mathematical Engineering and Information Physics,

Faculty of Engineering, University of Tokyo, 1992.

[53] E. Fiesler, "Comparative bibliography of ontogenic neural networks," in Pro­

ceedings of the International Conference on Artificial Neural Networks, pp. 793—

796, 1994.

[54] T.-Y. Kwok and D.-Y. Yeung, "Constructive feedforward neural networks for

regression problems: A survey." Technical Report HKUST-CS95-43, 1995.

[55] T. Nahban and A. Zomaya, "Toward generating neural network structures for

function approximation," Neural Networks, vol. 7, no. 1, pp. 89-99, 1994.

[56] E. Alpaydin, "Grow and learn: An incremental method for category learning,"

in Proceedings of the Intl. Neural Network Conference, 1990.

[57] F. F. Mascioli, G. Martinelli, and G. Lazzaro, "Comparison of constructive

algorithms for neural networks," in Proceedings of the International Conference

on Artificial Neural Networks, pp. 731-734, 1994.

[58] M. Frean, "The Upstart algorithm: A method for constructing and training

feedforward neural networks," Neural Computation, vol. 2, pp. 198-209, 1990.

155

[59] I. Sethi, "Entropy nets: From decision trees to neural networks," in Proceedings

of the IEEE, vol. 78, pp. 1605-1613, 1990.

[60] R. Brent, "Fast training algorithms for multilayer neural nets," IEEE Trans,

on Neural Networks, vol. 2, pp. 346-353, May 1991.

[61] N. Mirghafori, N . Morgan, and H. Bourlard, "Parallel training of multilayer

perceptron estimators for speech recognition: A gender-based approach," Pro­

ceedings of the 1994 IEEE Workshop on Neural Networks for Signal Processing,

pp. 289-298, 1994.

[62] J. Lange, H.-M. Voigt, and D. Wolf, "Task decomposition and correlations in

growing artificial neural networks," in Proceedings of the International Confer­

ence on Artificial Neural Networks, pp. 735-738, 1994.

[63] M. Hintz-Madsen, L. K. Hansen, J. Larsen, et al, "Design and evaluation of

neural classifiers. Application to skin lesion classification," in Proceedings of the

IEEE Workshop on Neural Networks for Signal Processing, pp. 484-493, 1995.

[64] J. Gorodkin, L. Hansen, A. Krogh, C. Svarer, and 0. Winther, "A quantitative

study of pruning by Optimal Brain Damage." Preprint, Electronics Institute,

Technical University of Denmark, 1993.

[65] R. Reed, "Pruning algorithms-A survey," IEEE Trans, on Neural Networks,

vol. 4, pp. 740-747, Sept. 1996.

156

[66] J. M. J.K. Kruschke, "Benefits of the gain: Speeded learning and minimal

hidden layers in back propagation networks," IEEE Trans, on Systems, Man

and Cybernetics, vol. 21, pp. 273-280, Jan. 1991.

[67] J. Denker, Y. L. Cun, and S. Solla, "Optimal brain damage," in Advances in

Neural Information Processing Systems (D. Touretzky, ed.), vol. 2, San Mateo,

USA: Morgan Kaufmann, 1990.

[68] T. Cibias, F. Soulie, P. Gallinari, and S. Raudys, "Variable selection with opti­

mal cell damage," in Proceedings of the International Conference on Artificial

Neural Networks, pp. 327-330, 1994.

[69] B. Hassibi and D. Stork, "Second order derivatives for network pruning: Opti­

mal Brain Surgeon," in Proc. of NIPS'93 (S. Hanson et al., eds.), San Mateo,

CA, US: Morgan Kaufmann Publ. Co., 1993.

[70] E. Karnin, "A simple procedure for pruning back-propagation trained neural

networks," IEEE Trans, on Neural Networks, vol. 1, no. 2, pp. 239-242, 1990.

[71] L. Hansen, C. Rasmussen, C. Svarer, and J. Larsen, "Adaptive regularization,"

in Proc. of the IEEE Workshop on Neural Networks for Signal Processing,

(Ermioni, Greece), 1994.

[72] M. P. L.K. Hansen, "Controlled growth of cascade correlation nets," in Proceed­

ings of the International Conference on Artificial Neural Networks, pp. 797-780,

1994.

157

[73] Y. Chauvin, "A back—propagation algorithm with optimal use of hidden units,"

in Advances in Neural Information Processing Systems (D. Touretzky, ed.),

vol. 1, San Mateo, CA, US: Morgan Kaufmann, 1989.

[74] D. P. C. Ji, R.R. Snapp, "Generalizing smoothness constraints from discrete

samples," Neural Computation, vol. 2, no. 2, pp. 188-197, 1990.

[75] K. Hagiwara and S. Usui, "Numerical experiments on the information criteria

for layered feedforward neural nets," in Proceedings of the International Con­

ference on Artificial Neural Networks, vol. 1, pp. 493-496, 1994.

[76] L. Hansen and C. Rasmussen, "Pruning from adaptive regularization." Preprint,

Electronics Institute, Technical University of Denmark, 1993.

[77] S. Yasui, A. Malinowski, and J. Zurada, "Convergence suppression and diver­

gence facilitation: New approach to prune hidden layer and weights of feed­

forward neural networks," in IEEE International Symposium on Circuits and

Systems, (Seattle, WA, US), pp. 121-124, 1995.

[78] M. Mozer and P. Smolensky, "Skeletonization: A technique for trimming the fat

from a network via relevance assessment," in Advances in Neural Information

Processing Systems (D. Touretzky, ed.), vol. 1, San Mateo, CA, US: Morgan

Kaufmann, 1989.

[79] Q. Xue, Y. Hu, and W. Tompkins, "Structural simplification of a feedfor­

ward, multilayer perceptron artificial neural network," in Proc. IEEE Int. Conf.

Acoust., Speech, and Signal Processing, 1991.

158

[80] S. Kung and Y. Hu, "A Frobenius approximation reduction method (FARM)

for determining optimal number of hidden units," in Proceedings of the IEEE

Conference on Neural Networks, vol. 2, (Seattle, WA, US), pp. 163-168, 1991.

[81] K. Y. Y. Hirose and S. Hijiya, "Backpropagation algorithm which varies the

number of hidden units," Neural Networks, no. 4, pp. 61-66, 1991.

[82] A. Ivanhnenko, "The group method of data handling-A rival of stochastic ap­

proximation," Soviet Automatic Control, vol. 1, pp. 43-55, 1968.

[83] R. Barron, "Learning networks improve computer-aided prediction and con­

trol," Computer Design, vol. 1, pp. 65-70, Aug. 1975.

[84] B. Fritzke, "Growing cell structures, a self-organizing network for unsupervised

and supervised learning," Neural Networks, vol. 7, pp. 1441-1460, Aug. 1994.

[85] D. T. Y.Q. Chen and M. Nixon, "Generating-shrinking algorithm for learning

arbitrary classification," Neural Networks, vol. 7, pp. 1477-1489, Aug. 1994.

[86] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Engle­

wood Cliffs, NJ: Prentice Hall, 1989.

[87] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Process­

ing. USA: Prentice-Hall Inc., 1984.

[88] J. Kovacevic and M. Vetterli, "FCO sampling of digital video using rerfect

reconstruction filter banks," IEEE Trans, on Image Processing, vol. 2, pp. 118-

122, Jan. 1993.

159

[89] Y. Y. Zeevi and E. Shlomot, "Nonuniform sampling and antialiasing in image

representation," IEEE Trans, on Signal Processing, vol. 41, pp. 1223-1236, Mar.

1994.

[90] A. Skodras and C. Christopoulos, "Downsampling of compressed images in the

DCT domain," in Proceedings of the European Signal Processing Conference

(EUSIPCO), (Rhodos, Greece), pp. 1713-1716, 1998.

[91] J. Kovacevic and M. Vetterli, "The commutativity of up/downsampling in two

dimensions," IEEE Trans, on Information Theory, vol. 37, pp. 695-698, May

1991.

[92] G. Karlsson and M. Vetterli, "Theory of two-dimensional multirate filter

banks," IEEE Trans, on Acoustics, Speech, and Signal Processing, vol. 38,

pp. 925-937, June 1990.

[93] R. Manduchi, "Iterative inter-lattice interpolation," Electronics Letters, vol. 32,

pp. 533-534, Mar. 1996.

[94] P. Delogne, L. Cuvelier, B. Maison, et al, "Improved interpolation, motion

estimation and compensation for interlaced pictures," IEEE Trans, on Signal

Processing, vol. 3, no. 5, pp. 482-491, 1994.

[95] H. L. Floch and C. Labit, "A scattered data interpolation algorithm for still

image subsampling and for motion field representations used to video coding," in

SPIE Proc. Visual Communications and Image Processing, vol. 3024, pp. 635-

645, 1997.

160

[96] P. Sathyanarayana, P. Reddy, and M. Swamy, "Interpolation of 2-D signals,"

IEEE Trans, on Circuits and Systems, vol. 37, pp. 623-625, May 1990.

[97] H.-M. Adorf, "Interpolation of irregularly sampled data series-A survey," in

Proc. of the Astronomical Data Analysis Software and Systems IV, ASP Con­

ference Series, vol. 77, 1995.

[98] M.-C. Hong, M. G. Kang, and A. K. Katsaggelos, "A regularized multichannel

restoration approach for globally optimal high resolution video sequence," in

SPIE Proc. Visual Communications and Image Processing, vol. 3024, pp. 1306—

1316, 1997.

[99] J. Hawkins and R. Allen, The Oxford Encyclopedic English Dictionary. USA:

Clarendon Press, Oxford, 1994.

[100] N. S. Cardell, W. H. Joerding, and Y. Li, "Symmetry constraints for feedforward

network models of gradient systems," IEEE Trans, on Neural Networks, vol. 6,

pp. 1249-1254, Sept. 1995.

[101] J. Shawe-Taylor, "Symmetries and discriminability in feedforward neural net­

works," IEEE Trans, on Neural Networks, vol. 4, pp. 816-826, Sept. 1993.

[102] R. Yang, L. Yin, M. Gabbouj, J. Astola, and Y. Neuvo, "Optimal weighted me­

dian filtering under symmetry constraints," IEEE Trans, on Signal Processing,

vol. 43, pp. 591-603, Mar. 1995.

[103] V. K. Madisetti, VLSI Digital Signal Processors. An Introduction to Rapid Pro­

totyping and Design Synthesis. US: IEEE Press, 1995.

161

[104] R. J. Higgins, Digital Signal Processing in VLSI. NJ, US: Prentice Hall, 1990.

[105] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals.

US: IEEE Press, 1997.

[106] K. Par hi, VLSI Digital Signal Processing Systems: Design and Implementation.

US: John Wiley and Sons, 1998.

[107] H. H. Thodberg, "A review of Bayesian neural networks with an application

to infrared spectroscopy," IEEE Trans, on Neural Networks, vol. 7, pp. 56-72,

Jan.1996.

[108] K. Diamantaras and S.-Y. Kung, "Multilayer neural networks for reduced-rank

approximation," IEEE Trans, on Neural Networks, vol. 5, pp. 684-697, Sept.

1994.

[109] A. Ghorbani and V. Bhavsar, "Incremental communication for multilayer neural

networks," IEEE Trans, on Neural Networks, vol. 6, no. 6, pp. 1375-1385, Nov.

1995.

[110] A. Dumitra§ and F. Kossentini, "Feedforward neural network design with tridi­

agonal symmetry constraints." Accepted for publication in IEEE Trans, on

Signal Processing, 1999.

[Ill] A. Dumitras, and F. Kossentini, "Fast and high performance image subsampling

using feedforward neural networks." Accepted for publication in IEEE Trans,

on Image Processing, 1999.

162

[112] A. Dumitra§ and F. Kossentini, "Tridiagonally symmetrical pruning for the

design of feedforward neural networks with application to high-order image

subsampling." Submitted to IEEE Trans, on Image Processing., August, 1999.

[113] A. Dumitra§ and F. Kossentini, "Efficient FANN - based subsampling of im­

ages," (Hammamet, Tunisia), April 1 - 4, 1998. Proceedings of the IEEE 2nd

IMACS Multiconference: Computational Engineering in Systems Applications

(CESA'98), Vol. 4, pp. 649-653.

[114] A. Dumitra§ and F. Kossentini, "FANN - based video chrominance subsam­

pling," (Seattle, US), May 12 - 15, 1998. Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP'98), Vol. 2, pp.

1077 - 1080.

[115] A. Dumitra§, D. Liew, A. Jerbi, and F. Kossentini, "A Z - shaped nonlinear

transform for image segmentation and classification in intelligent debris anal­

ysis," vol. 3, (Chicago, US), pp. 313-317, October 4 - 7, 1998. Proceedings of

the IEEE International Conference on Image Processing (ICIP'98).

[116] B. Erol, A. Dumitra§, and F. Kossentini, Emerging MPEG standards: MPEG-4

and MPEG-7. US: Academic Press, in Handbook of Image and Video Process­

ing, to appear in 1999.

[117] A. Dumitra§, A. Murgan, and V. Lazarescu, "A quantitative study of evoked

potential estimation using a feedforward neural network," in Proc. of the 1994

IEEE Workshop on Neural Networks for Signal Processing, (Ermioni, Greece),

pp. 606-615, 1994.

[118] A. Dumitra§, A. Murgan, and V. Lazarescu, "A growing - decreasing method

for designing neural filters," in Proc. of the 1994 IEEE Workshop on Nonlinear

Signal and Image Processing, vol. 2, (Neos Marmaras, Greece), pp. 579-582,

1995.

[119] A. Dumitra§, V. Lazarescu, and A. Murgan, "On designing a neural filter with

adaptive slope of the node's activation function," in Proceedings of the European

Conference on Circuit Theory and Design, vol. 1, (Istanbul, Turkey), pp. 192—

198, 1995.

[120] A. Dumitras, and V. Lazarescu, "The influence of the MLP's output dimension

on its performance in image restoration," in IEEE International Symposium on

Circuits and Systems, vol. 1, (Atlanta, USA), pp. 329-332, 1996.

[121] A. Dumitras,, V. Lazarescu, and M. Negoi^a, "Learning as multi-objective op­

timization in feedforward neural networks," in Proc. of the First International

Conference on Knowledge-Based Intelligent Electronic Systems (KES'97),

vol. 1, (Adelaide, Australia), pp. 588-593, 1997.

[122] A. Dumitra§, C. Munteanu, and V. Lazarescu, "Novel cost functions for neural

classifiers," in Proceedings of the 5th European Congress on Intelligent Tech­

niques and Soft Computing (EUFIT'97), (Aachen, Germany), 1997.

[123] N. Memon, "An interband coding extension of the new lossless JPEG standard,"

in SPIE Proc. Visual Communications and Image Processing, vol. 3024, pp. 47-

58, 1997.

164

[124] S. Mori, C. Y. Suen, and K. Yamamoto, "Historical review of OCR research

and development," Proceedings of IEEE, vol. 80, no. 7, pp. 1029-1058, 1992.

[125] L. Spirkovska and M. B. Reid, "Connectivity strategies for higher-order nerual

networks applied to pattern recognition," in Proceedings of the International

Joint Conference on Neural Networks, vol. 1, (San Diego, CA, US), pp. 21-26,

1990.

[126] L. Spirkovska and M. B. Reid, "Coarse-coded higher-order neural networks

for PSRI object recognition," IEEE Trans, on Neural Networks, vol. 4, no. 2,

pp. 276-283, 1993.

[127] L. Spirkovksa and M. B. Reid, "Method and system for pattern analysis using a

coarse-coded neural network." US Patent 5333210, Serial number 908141, 1994.

[128] M. B. Reid, L. Spirkovska, and E. Ochoa, "Rapid training of higher-order neural

networks for invariant pattern recognition," in Proceedings of the International

Joint Conference on Neural Networks, vol. 1, (Washington, DC, US), pp. 689-

692, 1989.

[129] S. Kollias and D. Anastassiou, "A unified neural network approach to digital

image halftoning," IEEE Trans, on Signal Processing, vol. 39, no. 4, pp. 980-

984, 1991.

[130] C. B. Atkins, J. P. Allebach, and C. A. Bouman, "Halftone postprocessing for

improved highlight rendition," in Proceedings of the International Conference

on Image Processing, (Santa Barbara, CA), pp. 791-794, 1997.

165

[131] P. R. Bakic, N. S. Vujovic, D. P. Brzakovic, P. D. Kostic, and B. D. Reljin,

"CNN paradigm based multilevel halftoning of digital images," IEEE Trans,

on Circuits and Systems - II: Analog and Digital Signal Processing, vol. 4, no.

1, pp. 50-53, 1997.

[132] K. R. Crounse, T. Roska, and L. 0. Chua, "Image halftoning with cellular neural

network," IEEE Trans, on Circuits and Systems - II: Analog and Digital Signal

Processing, vol. 40, no. 4, pp. 267-283, 1993.

[133] B. L. Shoop and E. K. Ressler, "An error diffusion neural network for digital

image halftoning," in Proceedings of the IEEE Workshop on Neural Networks

for Signal Processing, (Cambridge, MA, US), pp. 427-436, 1995.

[134] T.-W. Yue and G.-T. Chen, "An auto-invertible neural network for image

halftoning and restoration," in Proceedings of the International Conference on

Neural Networks, vol. 3, (Perth, Australia), pp. 1450-1455, 1995.

[135] Y. Chigusa and K. Suzuki, "An image reconstruction system by neural network

with median filter," in IEEE International Symposium on Circuits and Systems,

vol. 3, (Chicago, US), pp. 2446-2449, 1993.

[136] I. Pitas and A. Venetsanopoulos, Nonlinear Digital Filters. USA: Kluwer Aca­

demic Publ., 1991.

[137] B. Schmitz and R. Stevenson, "Enhancement of subsampled chrominance im­

age data," in Proceedings of the World Congress on Neural Networks, vol. 2,

pp. 550-554, 1995.

166

[138] Telenor Research, "TMN (H.263) encoder/decoder, version 2.0," TMN (H.263)

codec, June 1996.

167

