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A b s t r a c t 

Feedforward artificial neural networks (FANNs) , which have been successfully 

applied to various image processing tasks, are particularly suitable for image sub-

sampling due to their high processing speed. However, the performance of F A N N s in 

image subsampling, which depends on both the F A N N topology and the F A N N train­

ing algorithm, has not been acceptable so far. High performance image subsampling 

is important in many systems, such as subband decomposition systems, and scalable 

image and video processing systems. 

This thesis addresses the design of F A N N s with application to image subsam­

pling. More specifically, we focus on both the topological design of F A N N s and the 

training algorithm, so that efficient F A N N structures, yielding good performance in 

image subsampling, are obtained. That is, we aim at obtaining compact F A N N s that 

yield good subsampled versions of the original images, such that if reconstructed, 

they are as close as possible to the original images. Moreover, we aim at obtaining 

better performance-speed tradeoffs than those of the traditional lowpass filtering and 

subsampling methods. 

First, we propose a design method for F A N N s , which leads to compact tridi-

agonally symmetrical feedforward neural networks (TS—FANNs) . Next, in order to 
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address the problem of artifacts that generally appear in the reconstructed images 

after FANN-based subsampling, we propose a training method for F A N N s . When 

applied to first-order (FOS) and multi-stage first-order ( M F O S ) image subsampling, 

the F A N N s trained using our method outperform the traditional lowpass filtering 

and subsampling (LPFS) method, without requiring pre- or post-processing stages. 

Motivated by our observation that the computational demands of the M F O S pro­

cess increase approximately linearly with the image size, we then combine the pro­

posed methods and evaluate the performance-complexity tradeoffs of the resulting 

T S - F A N N s in F O S and M F O S . We show that our T S - F A N N s - b a s e d subsampling 

has important advantages over subsampling methods based on fully connected F A N N s 

( F C — F A N N s ) and L P F S , such as significantly reduced computational demands, and 

the same, or better, quality of the resulting images. 

The main contributions of this thesis consist of a method for F A N N design 

with tridiagonal symmetry constraints, a training algorithm for F A N N s applied to 

image subsampling, the design and evaluation of the performance-speed tradeoffs of 

F C — F A N N s in image subsampling, and the design and evaluation of the performance-

speed tradeoffs of T S — F A N N s in image subsampling. The F A N N performance in 

image subsampling is evaluated objectively (using the peak signal-to-noise ratios), 

subjectively (by visual examination of the subsampled and of the reconstructed im­

ages), and in the context of a video coding application. The speed and memory 

demands of the designed F A N N structures are evaluated in terms of the subsampling 

time and the number of F A N N parameters, respectively. 
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Chapter 1 

Introduction 

Effective and efficient processing of large amounts of digital data has become more im­

portant in recent years due to an increasing number of multimedia applications. Par­

allel and distributed processing models, such as the artificial neural network (ANN) 

models, have been proposed in order to address the performance and speed require­

ments of such applications. The initial interest for the ANN models was mainly due 

to the belief that these models can mimic the basic functionalities of the human brain. 

However, the existing artificial neural models are only simplified models of the biolog­

ical neural structures, with functionalities which are still far from those of the human 

cognitive structures [1,2]. Despite these limitations, the ANN models in general, and 

the feedforward artificial neural network (FANN) models in particular, have been 

successfully applied over the last decades to various digital signal processing tasks [3]. 

In particular, FANNs can be applied to image subsampling. 

The importance of image subsampling is manifold. First, it provides efficient 

representation of images, by simple lossy compression [4]. The resulting low resolution 
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images may be processed using less computations and memory, while certain areas 

of interest in the image may be retrieved and processed later at higher resolutions 

[5, 6], [7]-[9]. Second, subband decomposition systems [10]—[12], as well as systems 

that build image pyramids [13]—[15], involve subsampling. The former approach uses 

analysis filter banks to produce the subbands, each of which is further filtered and 

downsampled as many times as desired. The latter builds a representation using a set 

of lower resolution copies of the image, obtained by iterative filtering with a generating 

kernel and decimation [15]. Third, several applications in digital television require 

sampling structure conversions of the video signal [16, 17]. Such sampling conversion 

usually involves upsampling, lowpass filtering and then downsampling of the signal. 

Fourth, scalable image and video processing systems address the various bandwidth 

constraints by providing several spatial and temporal resolutions of the images/video. 

These are obtained by successively downsampling and upsampling the image/video 

and by encoding the resulting pictures. The access to the lower resolution images 

does not require the decoding of the higher resolution images [5, 8, 9, 18]. Finally, 

hierarchical search methods [8], which are particularly popular in motion estimation 

and compensation, involve subsampling of the present video frame and the previous 

(reference) video frame successively in the spatial domain. The search process starts 

with the lowest resolution frame, and the motion vector estimated at such resolution 

level is used as the starting point for motion vector estimation at the next resolution 

level. Clearly, the accuracy of subsampling, in this case, has a strong impact on 

motion vector estimation. 

In most of these image subsampling applications, the subsampled images are 
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obtained by lowpass filtering and downsampling. However, when lowpass filtering is 

being applied to the input image, most of the high frequency information is perma­

nently lost. Moreover, due to most of the existing subsampling methods being based 

on pixel neighborhood operations [19], the images reconstructed using the subsampled 

versions may often contain significant distortion, usually expressed in terms of visible 

blockiness in continuous features of the image [19, 6]. Of course, several good post­

processing techniques for eliminating blocking artifacts have been proposed [20], but 

the associated processing cost is often quite high. Last but not least, the number of 

computations required by the lowpass filtering stage is often too high for applications 

where high processing speed is demanded. 

A solution to simultaneously reduce both information loss and blockiness, and 

increase processing speed, is to apply FANN models to image subsampling. The 

FANNs are especially suitable for image subsampling due to the following reasons: 

(a) they inherently subsample the input images, for given dimensions of the neural 

structure, and (b) they can perform high speed parallel processing. The efficiency and 

performance of FANN models in image subsampling depend on their sizes, connectiv­

ities, and associated training algorithms. The aim of most FANN topological design 

methods is the optimization of the size and connectivity of the neural structure. Many 

FANN design algorithms, that are based on empirical, statistical, growing, pruning 

or hybrid methods, have been developed. The outcome of the growing algorithms 

is generally a large, fully connected and symmetrical structure. The result of the 

pruning algorithms is generally a simple, partially connected, and non-symmetrical 

structure. For efficient processing, partially connected FANNs are desirable. For 
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hardware and software implementations, in applications which are very demanding 

in terms of computations (e.g., high-order subsampling of images having large sizes), 

symmetrical neural structures are especially desired. 

The effectiveness of any FANN structure designed using topological methods 

depends significantly on the selected FANN training algorithm. Several supervised, 

semi-supervised and unsupervised training algorithms have been proposed, each of 

which employs a training data set in order to determine the optimal FANN parame­

ters. Supervised training algorithms also require a set of desired output values, which 

is used as a reference during FANN training. In image processing applications, the 

FANN desired outputs generally consist of the gray-level values corresponding to pix­

els having fixed positions within each of the local processing windows. These pixel 

values and their corresponding positions are usually selected prior to the training 

process. Unfortunately, the pixel gray-level values do not provide any geometrical 

information to the FANN during training. Moreover, the fixed positions of the desired 

output pixel values do not allow the FANN to extract the geometrical information 

during training. Therefore, the image subsampling performance of FANNs trained us­

ing such standard methods has not been acceptable so far, as the images reconstructed 

after FANN subsampling often exhibit blocking and/or ringing artifacts. In order to 

improve the quality of the FANN subsampled and reconstructed images, the local ge­

ometrical information is required during FANN training. For high efficiency, adaptive 

methods which obtain the local geometrical information during FANN training are 

desired. 
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1.1 Thesis objective 

The main objective of this thesis is the design of efficient F A N N s with high image 

subsampling performance. More specifically, our goal is to obtain compact F A N N 

structures that yield a good subsampled version of the original image, such that if 

reconstructed, it is as close as possible to the original. To achieve our objective, we 

focus on the F A N N topological design and the F A N N training algorithm. We apply 

our designed F A N N s to first-order (FOS) and multi-stage first-order (MFOS) image 

subsampling, showing that they achieve better performance-speed tradeoffs than the 

traditional lowpass filtering and subsampling methods. 

In the first part of the thesis, we propose an algorithm for the design of F A N N 

structures with tridiagonal symmetry constraints. The algorithm employs a House­

holder transformation of the F A N N weight matrix. In the second part of the thesis, we 

propose a training algorithm for F A N N s . Our method is based on a pattern matching 

approach to select the F A N N desired output values during the supervised training 

stage. In the third part of the thesis, we combine the proposed methods in order to 

design tridiagonally symmetrical F A N N s (TS—FANNs) which are fast and effective 

when applied to FOS and M F O S . 

The performance of the F A N N s in image subsampling is evaluated objectively, 

subjectively and through a video coding application. Our objective performance 

evaluation of the interpolated images is based on the peak signal-to-noise ratio values. 

Our subjective performance evaluation is based on the visual examination of the 

subsampled images [21] and on the visual examination of the reconstructed (bilinear 

or cubic interpolated) images. We also evaluate the performance of the F A N N s in 
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chrominance subsampling within a video coding application. The efficiency of our 

designed FANNs is evaluated using the subsampling time and the number of FANN 

parameters. 

1.2 Thesis structure 

In Chapter 2, we review the main concepts that will serve as background material 

throughout the thesis. In particular, we discuss the characteristics of the FANNs, 

the most popular design methods for FANN topology, as well as review basic image 

subsampling concepts. Chapter 3 introduces a new algorithm for FANN design with 

tridiagonal symmetry constraints. In the same chapter, we evaluate the performance 

and complexity of this algorithm using one-dimensional signals. In Chapter 4, we 

introduce a new training algorithm for subsampling using FANNs, and we then apply 

our trained FANN structures to FOS. We also evaluate the performance of our trained 

FANNs in chrominance subsampling within a low bit rate video coding system. In 

Chapter 5, we employ our design algorithm in order to reduce the connectivity of the 

FANN structure. We also modify our training algorithm by including an adaptive 

threshold, and we then show that this leads to better image quality when applied 

to MFOS. In the same chapter, we evaluate the performance and complexity of the 

resulting TS—FANNs in MFOS. Finally, in Chapter 6, we highlight the contributions 

of the thesis and suggest future research directions. 
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Chapter 2 

Background 

In this chapter, the fundamental concepts related to feedforward artificial neural net­

works (FANNs), the existing FANN design methods, and the main concepts related 

to image subsampling are reviewed. In Section 2.1, the characteristics of feedforward 

artificial neural networks are presented. In Section 2.2, FANN learning, generaliza­

tion, and optimal selection are addressed. A review of the existing methods for FANN 

design is included in Section 2.3. We discuss image subsampling in Section 2.4. A 

summary of the chapter is included in Section 2.5. 

2.1 Characteristics of Feedforward Artificial 

Neural Network Models 

Due to the various sources of inspiration (biological, physiological, psychological) and 

the independent development of the artificial neural network (ANN) models in vari­

ous research communities, such as neurobiological, mathematical, computer science, 
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etc., a synonymic ANN terminology1 and various ANN definitions exist [1]—[26]. In 

this thesis, we will employ the terms "artificial neural networks" and "neural net­

works", both referring to the artificial neural network models. We will also employ 

the ANN definition proposed in [2]: "Artificial neural models are parallel and dis­

tributed processing structures, consisting of processing elements, interconnected by 

signal channels, known as connections. Each processing element has a single output 

connection. Processing is performed locally by each processing element". 

A feedforward neural network model is defined by the characteristics of the 

processing node, the network topology, the data model, the cost function, and the 

training algorithm. These are discussed next. 

2.1.1 The Processing Node 

A general model of a simple perceptron (processing node) is illustrated in 

Figure 2.1. This model has basic characteristics that are similar to those of the 

biological neuron [27]. More specifically, it models the intensity of the biological 

synapses via the "weight" values and it provides the output signal value y(t) by 

performing an arithmetic operation on the input signals. If this arithmetic operation 

consists of a summation of the input signals, followed by a comparison of the result 

with a selected threshold, then the McCulloch-Pitts model of the simple perceptron, 

which is illustrated in Figure 2.2, is obtained. The notations x = [xi, x2,. • •, XM\ ', 

w = [wi,w2, • • • ,WM\ ', /, and y stand for the input vector, the weight vector, the 

node's activation function and the output signal, respectively. The output value y 
1
For instance, connectionist models, parallel and distributed processing models, neuromorphic 

models, are all equivalent names for artificial neural networks [22]. 
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Figure 2.1: A general model of a simple 
perceptron (processing node). 
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Figure 2.2: The McCulloch-Pit ts simple perceptron. 

of the McCulloch-Pit ts model is given by y = f w;£;J • We note that, if the 

simple perceptron presented above is a component having the position j in a m u l t i -

node structure, then its output value is given by yj = fj (j2iLi 

To summarize, in the McCulloch - Pitts simple perceptron with the position 

j , the weighted sum of the input values is first computed and passed as an argument 

to the activation function fj. Next, the value of the activation function is evaluated. 

The activation function is the Heaviside step function, having a value equal to 1 for 

an argument greater than bj and 0 otherwise, where bj is a threshold [27]. The output 
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value of the McCulloch - Pitts node after the comparison with the threshold has been 

performed is given by yj = fj (Z^o WijXij. 

Other perceptron models can be obtained from the general model illustrated 

in Figure 2.1, simply by choosing various activation functions. This is discussed in 

the next section. We also note that other models of the simple perceptron can be 

obtained by including local feedback in the structure [2, 28]. 

2.1.2 T h e A c t i v a t i o n F u n c t i o n 

As mentioned above, the activation function of the simple McCulloch - Pitts percep­

tron is the step function2. Therefore, the output value of the simple perceptron can 

only be equal to 0/ +1 (for a binary step function) or — 1/ +1 (for a bipolar step func­

tion). Other activation functions have also been proposed. Generally, an activation 

function can be linear or nonlinear, and monotonic or non-monotonic. An activation 

function can have a step, ramp, triangular, trapezoidal, sigmoidal, polynomial shape, 

or a shape of a radial basis function such as Gaussian, Mexican hat, spline, sigma-pi, 

etc. Finally, the output value of an activation function can be continuous or discrete, 

and binary or bipolar or other. Examples of activation functions often employed in 

practical applications are the unipolar and bipolar sigmoidal functions defined by 

f (net) = -.—• , and (2.1) 
J y ' 1 + exp (-5 net) ' v ; 

2
We note that, due to the selection of the step activation function, the McCulloch - Pitts node 

is also known as the "conventional" or "Socratic" nede. As stated in [29], "World is invaded by 

Socratic thinking, which is based on dichotomies and polarities (plus/minus, true/false, all/none)". 
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f(net) = 
1 — exp (—s net) 

or 1 + exp ( — 5 net) ' 

/ (net) = tanh (s net) 
1 — exp (—2 s net) (2.2) 1 + exp (—2 s net) 

where s denotes the slope of the activation function /, and net is the weighted sum 

From the structural point of view, FANN micro-structures, mezo-structures and 

macro-structures can be defined. A micro-structure consists of a simple neural pro­

cessing node. A mezo-structure consists of interconnections of simple nodes accord­

ing to a selected topology. A macro-structure consists of interconnections of mezo-

structures according to a selected topology [31]. The network topology is defined by 

its geometry and interconnection scheme [32]. 

A general classification of ANN mezo-structures is illustrated in Figure 2.3. 

The feedforward neural mezo-structure is illustrated in Figure 2.4, where the nota­

tions x = [xi, x2,. • •, 2TJW] T and y = [yi, y2, • • •, J / J V ] T stand for the input and output 

vectors (respectively), is the weight vector between the input nodes and the output 

node j, Wij is the weight of the connection between the nodes i and j , W is the weight 

matrix having as columns the vectors Wj, and F is a nonlinear function. The output 

value of the neural structure is given by y(k) = F [WT
 x(&)j, where k is the discrete3 

3
We here assume a discrete system. For a continuous system, this relationship becomes y(t) = 

of the input values, given by net = w
T
x = Y^iLo

 w

i
x

i [27, 30]. 

2.1.3 T h e T o p o l o g y 
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Figure 2.3: A classification of ANN mezo-structures. 
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Figure 2.4: Block diagram of a feedforward neural mezo-structure. 
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time index [25]. By adding a feedback connection between the output and the input 

of the mezo-structure illustrated in Figure 2.4, the feedback neural mezo-structure 

is obtained. The characteristics of feedback mezo-structures and related issues are 

discussed in [1, 2, 25]. 

As mentioned earlier, a neural F A N N macro-structure is the interconnection 

of several mezo-structures. The topology of a macro-structure and related issues are 

discussed in [1, 2]. 

2.1.4 T h e D a t a M o d e l a n d t h e C o s t F u n c t i o n 

The data model and the cost function describe the application that is being solved 

using the F A N N model. More specifically, the cost function represents a hypothesis 

on the distribution of the input data. The cost function for F A N N s is usually denoted 

by C(w), and it is defined on the parameter (weight) space. The goal is to determine 

the weight vector w £ 3?n for which C(w) is minimized, that is, 

Minimize the scalar cost function C(w) subject to w 6 3J n , (2.3) 

where the LT-dimensional weight vector may also include other network parameters, 

such as the thresholds bj that have already been mentioned in Section 2.1.1. The cost 

function must satisfy the following theorem [24]: 

Theorem 1 Let V 2 C (w) be a Hessian matrix, nonsingular in w*. If the Jacobian 

matrix V C (w*) = 0 and if the Hessian matrix V 2 C (w*) is symmetrical and positively 

F [WT x(<)]. 
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defined, then C (w*) < G (w) for each w which satisfies the condition 0 < |[w — 

w*|| < e, e > 0. 

2.1.5 T h e T r a i n i n g A l g o r i t h m 

In biological systems, learning is generally defined as a change in behavior [25, 31], In 

artificial systems, learning is generally defined as a set of parameter modifications due 

to an adaptation process [25]. The goal of these changes performed during learning 

is the minimization of a cost function. The result of the learning process is a set of 

parameter values. 

The effectiveness of FANN learning depends on the careful selection of the 

simple processing nodes (discussed earlier) and on the training algorithms. These al­

gorithms usually update the weights locally, at the simple node level, according to a 

training rule. The training rule may be supervised, semi-supervised or unsupervised. 

Supervised training rules, also known as "learning with a teacher", are illustrated in 

Figure 2.5 (a). Supervised training rules employ a training data set {x (£), d (£)}, 

where {x (£)} are the input values, {d (£)} are the corresponding desired output val­

ues, 1 < if < P is the index and P is the number of the training patterns, respectively. 

The aim is to minimize the distance between the actual output values y (<f) and the 

desired output values d(£), using the selected cost criterion [33]. Semi-supervised 

training rules, also known as "learning with a critic", are similar to the supervised 

training, except that the desired output values d (£) are not defined. Instead, the net­

work receives a mark which quantifies how well it has learned the previous training 

patterns [22]. In other words, the learning process in the FANN is reinforced or pe-
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nalized. In Figure 2.5 (6), r denotes the reinforcement/penalty signal. Unsupervised 

training rules, illustrated in Figure 2.5 (c), update the network parameters using only 

the input data. No desired output values are provided in this case. 

ANN y x 

ANN y 
w 

i 

Evaluation d Evaluation 
(cost measure) ,4 r (cost measure) 

(a) (b) 

X ANN > 

w 
ANN 

(c) 

Figure 2.5: (a) Supervised, (b) semi-supervised, and (c) unsupervised learning. 
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2.2 FANN Learning, Generalization, Evaluation 

In this section, we first discuss the FANN learning as an approximation / optimization 

process. Next, we address the FANN generalization ability. Finally, we comment on 

the optimal selection of a FANN structure. We will restrict our discussion to the 

supervised learning in a multilayer perceptron FANN structure that is illustrated in 

Figure 2.6. 

*V 

—•( V A ~^kf ) ^ 

'jff ) • 

—•( 

Input layer Hidden layer Output layer 
(M nodes) (//"nodes) (N nodes) 

Figure 2.6: An M-H-N multilayer perceptron FANN. 

2.2.1 F A N N L e a r n i n g a n d G e n e r a l i z a t i o n 

FANN Learning as an Approximation Process 

Supervised FANN learning of a data set {x (£) , d (£)}, with d(£) = F(x(£)) and 
1 < ( < P, can be viewed as the approximation of the function F (x) by the function 
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F (w; x) implemented by the FANN model. The goal is to determine the set of 

parameters w* that leads to the best approximation F (w*; x) of the function F (x), 

given the input data set. 

Important issues need to be addressed here, such as the classes of functions that 

can be effectively approximated by F (w; x) and FANN overtraining. The former is 

a representation problem. From this perspective, FANNs are nonlinear models that 

are able to perform "universal approximation", that is, they can approximate any 

continuous input-output relationship. This powerful property, which also motivates 

our selection of FANNs as neural models in this work, is based on Kolmogorov's [34] 

theorem of existence. This theorem states that two hidden layers are sufficient for 

designing a FANN universal approximator. However, the theorem does not provide 

the details that are necessary to build the neural model. 

FANN overtraining is a phenomenon which consists of a decrease of the train­

ing 4 error simultaneously with an increase of the testing error. In other words, the 

FANN approximates well the relationships in the training data set, but generalizes 

poorly when using the testing data set. A small size of the training data set and a 

large number of FANN parameters as compared to the number of training patterns, 

are some of the reasons that can lead to overtraining. Hence, the estimation of the 

testing error during training (so that FANN training is terminated when the value 

of the testing error increases) and the limitation of the number of FANN parameters 

are possible solutions to avoid overtraining. 
4
The training/testing errors are averages of the cost function values computed for all of the 

training/testing patterns, respectively. 
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F A N N Learning as an Optimization Process 

When viewed as an optimization process, the goal of FANN training is to obtain the 

set w* of optimal parameters which solves the minimization problem (2.3) stated in 

Section 2.1.4. The weights w* are determined by searching in the space of all possible 

network configurations. If the cost function C (w) is additive, then the minimization 

problem (2.3) becomes 

P N p 

Minimize the cost function C (w) = ̂  ]P Cj (w; x (£)) = ̂  C (w; x (£)) 
e=i j=i i=\ 

subject tow E 3?n, 

where 1 < £ < P are the FANN training patterns. The cost function C (w) must 

satisfy Theorem 1 in Section 2.1.4. Moreover, the cost function C(w;x) must be 

convex, that is C [(1 - 7) a + 7 b] > (1 - 7) C (a) + 7 C (b), with7 G [0,1] [24]. 

Supervised F A N N Learning Algorithms 

In most algorithms that are used to solve the optimization problem stated above, 

the cost function and its derivatives are evaluated. Next, a minimum of the cost 

function is obtained and the search in the weight space is further refined around 

this minimum. Let us assume that the search for the minimum of the cost function 

C (w) in the parameter space is linear, with [wi, w2, ..., wxi] T the vector of FANN 

parameters, and that it is performed in discrete time. Moreover, let us assume that 

the search starts from the initial point w0 in the direction5 d, and that the search 
5
The notation for the direction must not be confused with that used for the vector of the desired 

output values d in the FANN. 
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follows the straight lines defined at each step k by w^+i = w^-f^fc dk, where w*, w^+1 

and r)k are the weight vectors at the steps k and k + 1, and the learning rate at step 

k, respectively. The search direction dk can be determined by applying deterministic 

(e.g., based on the computation of the first or second order derivatives of the cost 

function) or stochastic methods (e.g., "simulated annealing"). 

First order deterministic methods compute the search direction based on the 

value of the local gradient. Therefore, these methods are also called gradient descent 

or steepest gradient methods. A well-known example is that of the backpropaga-

tion algorithm [1]. Second order deterministic methods compute the search direction 

based on the second order derivatives of the cost function C (w). The conjugate 

gradient method, Newton's method, quasi- and pseudo-Newton methods are exam­

ples of second order derivative based search methods. In particular, all versions of 

Newton's method are based on the idea that the cost function can be approximated 

locally by a quadratic function. Moreover, this quadratic function can be minimized 

exactly. The rule for updating the F A N N parameters in the Newton method is given 

by Wfc + i = wj, — H _ 1 (wjt) J (wjt), where J and H denote the Jacobian and Hessian 

matrices of the cost function, respectively. The rule for updating the F A N N parame­

ters in quasi-Newton methods is given by w^+i = Wk — J^Hj" 1 V C (w;t), where H - 1 

is an approximation 6 of the inverse Hessian matrix H _ 1 (computed recursively) and 

r]k is the learning rate at each step k, given by [24, 35] 

rjk = arg min C (w* - T/H* 1 V C (w*)) • (2.4) 

6
Quasi-Newton methods employ approximations of the inverse Hessian matrices, thus attempting 

to address the problem of high cost of Newton method. More specifically, the Netwon method 

converges theoretically in II 3 steps, with II the number of FANN parameters. At each step k, the 
inverse matrices H of size II x II must be computed [24]. 
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Finally, pseudo-Newton methods are equivalent to applying the Newton rule sepa­

rately, for each weight. In pseudo-Newton methods, the elements outside the main 

diagonal of the Hessian matrix H are ignored. 

F A N N Generalization 

During the testing stage, the FANN generalization ability is evaluated by computing 

the error on the testing data set. Generalization can be defined as "the ability to 

estimate quantitatively the characteristics of a phenomenon that was not met pre­

viously, based on its similarities with other known phenomena" [22, 36, 37]. FANN 

generalization can be improved by avoiding the overtraining process that has been 

described in Section 2.2.1. As stated earlier, one solution is the selection of a small 

number of FANN parameters. Assuming that the FANN's input and output layers 

have fixed sizes, the selection of the number of FANN parameters becomes the se­

lection of the number H of hidden nodes so that overtraining is avoided. This is 

illustrated in Figure 2.7. 

A solution to reduce the number of FANN parameters is regularization, which 

consists of imposing constraints on the input-output function implemented by the 

FANN. Assume, for instance, that the cost function is given by C (w) = \Ctraining (w)+ 

l C c o m p i e x i t y (w), where Ctraining-, Complexity, w, x, A, 7 are the standard error term, 

the regularization term, the FANN parameters, the input vector, and the regulariza­

tion parameters, respectively [26, 34]. If the first component of the cost function is, 

for instance, the L2 norm of the error, and if the numbers of input and output values 

are equal to M > 1 and N-l (respectively), the training error may be computed 

by 
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Figure 2.7: Training error and testing error as functions of the number of 
hidden nodes 

Ctratnmg (w) = i £ [d (0 - y (Of = lJ2[d(0-F (w; x ( 0 ) ] 2 , (2.5) 
Z £=l 1 £=i 

Various forms of the regularization (penalty) term Ccompiexity (w) are discussed in [38]. 

If the penalty term causes some of the FANN weight values to decrease, the FANN 

structure is reduced. This is known as a weight decay regularization [39]. In addition 

to regularization, other solutions for the selection of the number of FANN parameters 

are provided by FANN design methods, which are discussed in Section 2.3. 

Finally, the selection of the number of FANN parameters is directly related to 

the selection of a sufficient number of training patterns. In other words, sufficient 

data must be available in order to impose constraints on the FANN parameters during 

the training stage. The relationship between the number of FANN parameters and 
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the necessary number of training patterns can be determined by assuming, in the 

design methods presented in Section 2.3, that the FANN size is fixed and known. 

2.2.2 C r i t e r i a f o r F A N N M o d e l E v a l u a t i o n . O p t i m a l F A N N s 

Structural FANN design consists of the selection of a particular FANN network and 

the evaluation of the network size. Ideally, the result of the design stage is an optimal 

network. In this section, we first comment on the criteria for FANN model evaluation. 

Next, we discuss the criteria for the evaluation of FANN optimality. Finally, we 

comment on the reasons for reducing the model's complexity. 

Parsimony, data coherence, consistency with a priori knowledge, and dimen­

sionality, which are criteria for general model evaluation [40], can also be applied for 

FANN model evaluation. The "parsimony principle", also known as "Ockham's ra­

zor principle", has been formulated by the medieval philosopher William of Ockham 

(1300-1349), and it states that "there must not exist more entities than necessary". 

This idea expresses a fundamental principle of modern science, which is the necessity 

to simplify the scientific theories. In particular, this idea applies to FANNs as fol­

lows. Given two FANNs and a common training set, the network having the smallest 

number of parameters generalizes better [41]. The data coherence criterion requires 

that the neural model be able to learn the given data set according to a selected 

cost criterion. Consistency with a priori knowledge is required if a priori knowledge 

has been employed in order to build the neural model. The dimensionality criterion 

places an upper bound on the size of the dataset that is necessary to obtain a good 

estimate of the model parameters (weights, thresholds). 
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Figure 2.8: The relationship between learning, generalization and model com-

A FANN model that is designed so that the above mentioned criteria are met 

is, ideally, an optimal FANN structure. The optimality of the obtained FANN can be 

evaluated by using the average generalization error, the size of the neural structure 

(evaluated by the number of connections/nodes), or other criteria. As Figure 2.8 

illustrates, these optimality criteria are not independent [42]. For instance, better 

generalization is clearly obtained when reducing the complexity of the FANN model. 

Additionally, this implies faster testing, and lower implementation costs. 

plexity. 
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2.3 FANN Design Methods 

The optimization of the FANN neural structure for better performance is a funda­

mental design problem [39]. The general design rule (2.3) requires that the size of 

the FANN be minimized subject to the FANN being able to learn the training set. 

Consequently, FANN design is accomplished by specifying the number of hidden lay­

ers, the size (number of nodes) in each layer, and the connectivity of the structure so 

that this requirement is met. 

Based on the representation theorem mentioned in Section 2.2.1, a maximum 

number of two hidden layers is necessary so that the FANN is able to approximate 

any nonlinear input-output function employed in current applications. In practice 

FANNs with more than two hidden layers may be selected, in order to avoid a large 

number of hidden nodes in each of the hidden layers. 

Determining the size of the hidden layer, i.e. number of hidden nodes, is a 

difficult problem. If the number of the hidden nodes is too large, then the FANN 

has too many parameters and generalizes poorly [43]. However, if the number of 

hidden nodes is too small, then the number of weights that can be modified during 

the training stage is not sufficient. Consequently, the FANN model is unable to learn. 

The sizes of the input and output layer can usually be determined quite easily. More 

specifically, the size (i.e., number of nodes) of the FANN input layer is normally set 

to the size of the training patterns. The size of the output layer depends on the 

application problem. For instance, in a classification problem, the size of the output 

layer is equal to the number of classes. Finally, the FANN may be fully connected, if 

each simple node i in layer L is connected with each node in layer L + 1, and partially 

24 



connected otherwise. 

A simple solution for the design problem stated earlier is to train several FANNs 

using the same training set, until the cost criterion is met. Then, the structure having 

the minimum size is selected. Although simple, this method is time consuming. 

Instead, several design methods have been proposed, all of which evaluate the size 

of the hidden layer(s). These methods can be empirical, statistical, or onthogenic. 

Empirical methods generally depend on the application problem [1, 2, 31, 35, 44, 45]. 

Statistical FANN design methods aim at obtaining a tradeoff between the complexity 

and the generalization performance of the FANN model. The model complexity is 

evaluated by the number of independent parameters. The generalization performance 

is generally evaluated by the average generalization error [46, 47]. The statistical 

criteria proposed for FANN selection in [39], [46]-[52] can be expressed by the general 

form C(w) = Chaining(w) +7 C c o m p i e x i t y ( w ) , where C (w), draining, and Ccomplexity are 

the cost terms that denote the overall complexity of the model, the training error, and 

the penalty for the model complexity, respectively. The term CCOmViexity is different 

for various statistical criteria. 

Onthogenic methods are based on modifications of the FANN topology by 

growing, pruning or hybrid methods. The topology can be changed by adding/deleting 

layers, nodes, or connections. When the FANN topology is modified, the size of the 

FANN structure is usually modified as well. Growing methods start from an initial 

small structure and successively add nodes and/or layers, until a desired cost crite­

rion is met. On the other hand, pruning methods delete nodes and/or layers from a 

network with a reasonable size, until the cost constraint is violated. Hybrid methods 
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are based on combinations of the growing and pruning methods, usually improving 

performance. The onthogenic design methods, particularly pruning methods, are 

discussed next. 

2.3.1 G r o w i n g M e t h o d s 

As stated earlier, the growing methods for FANN design are onthogenic methods that 

start from an initial small structure and successively add nodes and/or layers, until a 

desired cost criterion is met. The resulting FANN is generally a large, fully connected 

and symmetrical neural structure. 

FANN growing can be formulated as a search in the functional space. The goal 

of this search is to determine the size of the FANN which is able to approximate the 

desired input-output function based on the training data set. The initial and the final 

FANN structures, the type of elements (connections/nodes/layers) that are added in 

the neural structure, the number of the added elements, the connectivity of the in­

serted elements, and the stop criterion for the searching process in the functional space 

[43, 54] are specific to each growing design method. Many growing methods start from 

an initial structure with no hidden nodes or no direct input-output connections. The 

final structure, which can implement satisfactorily the desired input-output function, 

is not unique. Usually, the final structure that implements "well enough" the desired 

function according to a selected cost criterion, is selected. The elements that are 

added in the neural structure during the growing process can be connections, nodes, 

or layers. These elements are usually added one by one. The added elements can be 

fully or partially interconnected with the existing elements in the neural structure. 
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The growing process is terminated if a selected cost criterion is met. We note here 

that, the stop condition for a growing process can be expressed based on the statistical 

criteria mentioned earlier. The growing methods for FANN design can be classified, 

based on the growing strategy, as illustrated in Table 2.1. 

Ad hoc methods are based on the idea that a new hidden node must be added 

in the FANN structure when the error stops decreasing for a selected period of time 

during the training proces. After a new hidden node is added, the weights are updated 

and training is resumed. Input space partitioning methods are based on the idea that 

each hidden node performs a partition of the input data space. If a new training 

vector, which is presented to the FANN input, is incorrectly classified in one of the 

existing partitions, then a new hidden node, representing a new partition, is added; 

otherwise, the network structure is not changed. Error correcting methods are based 

on the idea that the output error is generally expected to decrease when a new hidden 

node is added in the FANN structure. The methods that generate trees build FANN 

networks by adding nodes so that the resulting FANN structures are trees (pyramids) 

with the network output nodes on top. The methods that build the network starting 

from a tree are based on re-ordering the decision trees in multilayer perceptron-like 

structures. Finally, modularization methods are based on the idea that, by dividing 

a network into several sub-networks, each of which is able to solve a part of a large 

application problem, the FANN design by applying growing methods is simplified. 

The advantages of the onthogenic growing methods for FANN design are small 

sizes of the initial neural structures and good scalability with the size of the dataset. 

The main drawbacks of the onthogenic growing methods are (a) performance degra-
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Table 2.1: Onthogenic growing methods for FANN design. The acronyms N/L and FC/PC denote the element 

added in the network (Node/Layer) and the connectivity of the added element (Fully Connected/Partially Con­

nected). 

Method Author(s) Ref. Remarks N/L FC/PC 

DNC Ash [55] Dynamic Node Creation 1 N FC 

Chang [43] 1 N FC 

Ad hoc Honavar & Uhr [53] Generation 1 N N/A 

Mezard & Nadal [22] Tiling N, L PC 

Input space RCE Reffly [55] Restricted Coulomb Energy 1 N FC 

partitioning GAL Alpaydin [56] Grow and Learn 1 N PC 

OSA Masciolli & Martinelli [57] OilSpot Algorithm N/A FC 

CASCOR Fahhnan [30] CaSCade CORrelation 1 L of 1 N FC 

Error CL Refenes [43] Constructive Learning 1 N N/A 

correcting LPPA Masciolli & Martinelli [57] Linear Programming 1 N N/A 

Perceptron Algorithm 

GMDH Ivakhnenko [54] Group Method 1 N PC 

of Data Handling 

Methods that UPSTART Frean [58] Groups of 2 N N/A 

generate trees Nahban & Zomaya [55] N, L N/A 

Methods that EN Sethi [59] Entropic Networks N/A N/A 

start from a tree Brent [60] N/A N/A 

Modularization Mirghafori & Morgan [61] N/A N/A 

TACOMA Lange & Voigt [62] TAsk Decomposition by 1 L N/A 

... 

Correlation MeAsures 



dation due to the overtraining which may be present when the new hidden nodes 

are fully connected with the existing nodes, (6) significant time requirements for the 

methods that generate trees and those that build the FANNs starting from a tree, 

(c) no theoretical proof of convergence for some of the growing methods, and (d) 

sub-optimality. Comparisons of some of the onthogenic growing methods have been 

performed by Fiesler [53], and Mascioli, Martinelli, and others [57]. 

2.3.2 P r u n i n g M e t h o d s 

As stated earlier, pruning methods delete connections, nodes, and/or layers from a 

FANN, until a cost constraint is violated. The initial structure is usually large enough 

to allow learning. The pruned structure is generally a simple, partially connected, 

and non-symmetrical neural structure [63]. The goal of FANN pruning methods is 

to obtain a neural structure with lower complexity than that of the initial structure, 

without significant performance degradation. 

Let the FANN be a M-H-N multilayer perceptron. Without loss of generality, 

let us assume that N = 1. Moreover, let w = [w\,wr,wn]T be the IT dimensional 

parameter vector of the network, where wr is the rth component of the vector and 

1 < r < LT. The training set consists of {x(f), d(Q}, where 1 < £ < P. The notations 

x, d, £, P denote the input vector, the desired output value, the index of the input 

pattern, and the total number of patterns, respectively. Finally, let us assume that 

the cost function to be minimized consists of one term, given by (2.5), and that, by 

applying a pruning method, a weight wq is deleted, with 1 < q < LT. Then, the 

hypotheses wq — 0 and wq ^ 0 must be compared by testing the model {^(q)) with 
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respect to the model (w). The parameter vectors W ( g ) and w are identical, with 

the exception of the weight wq, which is zero in the model (w(?)j and nonzero in the 

model (w). Successive deletions of the weights wqi, wq2, etc., are equivalent to testing 

the models (w(9l)), (w(?2)), and so on. If the weight wqi = 0, then wq\ = wq2 = 0, 

and so on. 

Several issues need to be addressed, such as the testing procedure for the 

model (w(j)j with respect to the model (w), the optimal sequence of connections 

to be deleted 51,52, •••<?£, and the selection of the stop criterion. The testing of the 

model (w(gj j with respect to the model (w) is generally performed by selecting a cost 

criterion. The value of the cost function must be lower than a threshold in order to 

permanently delete a particular connection. The optimal sequence of connections to 

be deleted is difficult to select. A solution is the computation of sensitivity parameters 

associated to each weight. Next, the connection having the minimum sensitivity is 

removed. The pruning process is terminated if a selected stop criterion is met. This 

criterion can require, for instance, that the percentage of the deleted connections 

be below a threshold. Other stop criteria can be expressed based on the statistical 

criteria mentioned earlier. 

The previously developed pruning methods for FANN design can be classified 

based on the pruning strategy as illustrated in Table 2.2. 

Pruning methods that eliminate weights 

Brute-force pruning methods, such as that proposed in [64], assign a zero value to one 
weight at a time. If the output error increases significantly, then the weight is restored 
to the initial value, otherwise it is permanently deleted. Weight clustering methods 
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Table 2.2: Onthogenic pruning methods for FANN design. The acronyms C/N denote 
the element pruned by the method (Connection/Node). 

Method Author(s) Ref. Remarks C/N 

Brute—force Thodberg [64] C 

Reed [43] c 

Weight LB Krusclike [65] Local bottleneck c 
clustering DB Kruschke [66] Distributed bottleneck c 

SWS Nowlan & Hinton [43] Soft Weight Sharing c 

OBD Denker, LeCun & Solla [67] Optimal Brain Damage c 

Sensitivity OCD Cibias, Soulie & Gallinari [68] Optimal Cell Damage c 

estimation OBS Hassibi & Stork [69] Optimal Brain Surgeon c 
SSM Cottrell & Girard [50] Statistical Stepwise c 

Karnin [70] c 

Ishikawa [38] c 
Hinton [34] c 

Krogh & Hertz [22] c 
Weigend [34] c 

Hansen [71] OBD with Weight Decay c 

Regulari­ Hansen & Pedersen [72] OBD with Weight Decay c 

zation Chauvin [73] c 

based Ji [74] c 
Nowlan & Hinton [75] c 

MacKay [76] c 

CSDF Yasui, Malinowski & [77] Convergence Suppres­ c 
Zurada sion and Divergence 

Facilitation 

Brute—force Siestma & Dow [43] N 

Weight Mozer [78] Skeletonization N 

clustering CSDF Yasui, Malinowski & [77] Convergence Suppres­ N 

Zurada sion and Divergence 

Facilitation 

Sensitivity Mozer & Smolensky [78] Skeletonization N 

estimation Kruschke [66] N 

Other Xue & Hu [79] Correlation N 

FARM Kung & Hu [80] N 
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are based on the idea that, by grouping the weight vectors which enter the hidden 

nodes, the dimension of the space scanned by these vectors is reduced. The weight 

clustering (grouping) can be performed by a competition of the hidden nodes, as in 

the case of the "local bottleneck" (LB) and "distributed bottleneck" (DB) methods 

[65], or by other methods [43]. Sensitivity estimation pruning methods are based on 

the idea that the elimination of any weight in a FANN has an impact on the value of 

the cost function. In addition to the "sensitivity", various other indices such as the 

"saliency", "evidence", and "relevance" have been employed in this class of pruning 

methods. 

In the Optimal Brain Damage (OBD) algorithm, proposed by Denker, Le Cun, 

Solla and others [67], the estimate of the error increase when some of the connections 

are deleted is expressed in terms of the saliency of the cost function7. The weights 

that have minimum saliency are permanently deleted. 

Let the symbols M-H-N denote a FANN with M input, H hidden and N 

output nodes. Also, let P be the number of training patterns, x (<f), y ( f ) , d (<f) and 

z (if) be the input, the actual output, the desired output and the hidden layer output 

vectors (respectively), for an input pattern f, Wik be the weight connection between 

an input node i and a hidden node h, Vhj be the weight connection between a hidden 

node h and an output node j. Finally, let's assume that the FANN parameters are 

the components of a IL-dimensional vector w = [wi, ..., wr, ..., wn]
T, where II is 

the total number of parameters, and that N = 1. When a component of w is deleted, 

the value of the cost function C (w) changes by SC (w), which is given by 
7
To be consistent with other references, we shall use the shorter expression "the weight saliency". 
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6C(w) = C7(w + Sw) = £ jr- d wr + n E 
" dC , 1 " d 2C (2.6) <9u>2 + 

<9uv <9u>? 
a 2c 

dwrdwq + O (||<$w||3) . 

Assume that the cost function reaches a local minimum value, i.e., V C = 0. Moreover, 

assume that terms of order higher or equal to two in Equation (2.6) are neglected. 

Finally, assume that only one weight at a time is deleted, which means that 6wr = 0 

for all r, except for the case when r = q. Therefore, the terms V 2C/Vw rViu g outside 

the main diagonal may be dropped [67], [71]. With these assumptions and using the 

Levenberg-Marquardt approximation for the Hessian matrix, Equation (2.6) becomes 

where V is the set of the weights {wq \ q G V} to be deleted. Then, the saliency sq 

of wq can be expressed by 

8 0 * l ^ d ^ ^ 2 -

Since Swq = —wq for r = q, this equation is equivalent to 

The increase in the cost function value may also be expressed as 

8C = £ s 
(2.7) 

1 d 2C 

2 dw\  r  
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If the cost function is additive, i.e. C = ]Cf=i C (0) a n d if the output value 
of the single hidden layered FANN is y (£) = -F (w; x (£)), then the saliency can also 
be expressed by 

1 
s„ = w„ E 52C7(0 (dF(w-M0) 

2P ^ d i v i o r dw0 

Expressing the FANN input-output mapping by [71] 

H i M \ 

F (w; x (£)) = 53 tanh I 53 wih %i (0 + uo, 
h = i \» = o / 

the input-hidden and hidden-output saliencies can then be given by 

Sh 
1 p ( M \ 

= vh7pB Z t a n h 2 Z X i (0 a n d (2' 
^ " £ = 1 \t = 0 / 

sih = v2

h w2

ih — 53 

M 

1 - tanh2 5̂  wmh xm (0 
m = 1 

where (2. 

|j = i and 5/j = 5̂ - |j = i. The saliencies are computed as follows: 

REPEAT 
1. Train the network until the error C < ex, with ex given. 
2. Compute the weight saliencies and arrange them in a decreasing 

order. 
3. Delete the connection with minimum saliency. Go to step 1. 

UNTIL 
The stop condition is satisfied (e.g., a selected percentage of the 

weights has been deleted). 
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The "Optimal Cell Damage" (OCD) method, introduced by Cibias, Soulie, 

Gallinari, and others [68], is a variation of the OBD method. However, in the OCD 

method, some of the input variables are also deleted. The "Optimal Brain Surgeon" 

(OBS) method proposed by Hassibi and Stork [69] employs the entire Hessian matrix 

for the estimation of the weight saliencies. Thus, the OBS method is a generalization 

of the OBD method. The performance of the OBS method is better than that of 

the OBD, however its complexity is also higher. The entire Hessian matrix is also 

employed in the "Statistical Stepwise" method proposed by Cottrel, Girard, and 

others [50]. 

Regularization-based pruning methods employ the minimization of a cost func­

tion which contains a penalty term. This term penalizes the neural structures having 

high complexity. As stated in Section 2.2.1, weight decay regularization occurs when, 

due to the selected penalty term, some of the FANN weight values become zero. 

Thus, the corresponding connections are deleted from the neural structure. Various 

penalty terms for weight decay regularization-based pruning have been proposed in 

[34, 38, 71]. A variation of the OBS method with weight decay has been proposed 

by Hansen and Pedersen [72]. Various cost functions for pruning methods, which im­

plicitly perform regularization, have been introduced by works such as [73]-[77]. An 

adaptive regularization method for weight pruning has been proposed by [76], that 

eliminates the empirical selection of the regularization parameters which is required 

in most of the above mentioned methods. 
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Pruning methods that eliminate hidden nodes 

"Brute-force" methods for pruning the FANN nodes are based on the evaluation of 

redundancy criteria. For instance, if the output of a hidden node is constant for all 

of the training patterns, then the node can be deleted. Alternatively, if two hidden 

nodes have the same output value with the same sign or with opposite signs for all of 

the training patterns, then one of these nodes can be deleted. Siestma and Dow [43] 

have employed this idea in their interactive method for pruning of the FANN, which 

allows the user to decide by inspection which nodes can be eliminated. Sensitivity 

estimation methods generally delete the hidden nodes that do not lead to major 

changes in the value of the cost function. Mozer and Smolensky [78] have proposed 

a skeletonization method based on the computation of a "relevance" index. The 

"relevance" index is computed for each node as the difference between the output 

error obtained without the node in the structure, and the output error obtained with 

the node in the structure. A low relevance is associated with a low importance of 

the node, which can then be deleted. Kruschke [66] has proposed a sensitivity-based 

pruning method which uses the competition of the hidden nodes combined with lateral 

inhibition. The nodes that are completely inhibited can be deleted from the FANN 

structure. Finally, other methods based on the evaluation of the correlation between 

the hidden nodes [79], as well as recursive least squares approximation of the best set 

of hidden nodes [80], have also been proposed. 

The advantages of the pruning methods for FANN design are the small size of 
the resulting neural structures, and the good generalization due to the small number 
of parameters. Moreover, overtraining is avoided. The main drawbacks of the pruning 
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methods are related to (a) the selection of the initial FANN size, (6) time requirements 

due to the FANNs having large sizes during many of the pruning stages, and (c) sub-

optimality. Comparisons of some of the onthogenic methods have been performed by 

Fiesler [53]. However, a quantitative comparison is difficult due to their employing 

various benchmark data sets. 

2.3.3 O n t h o g e n i c H y b r i d M e t h o d s 

The hybrid methods for FANN design combine the growing and pruning methods in 

order to improve performance. The hybrid methods that have been proposed can be 

generally classified into sequential and non-sequential methods. Sequential hybrid 

methods consist of a growing stage followed by a pruning stage. In these methods, 

the layers are added one by one and the nodes are pruned one by one [55], [81]—[83], or 

only the nodes are added/pruned [84, 85]. Non-sequential hybrid methods cannot be 

decomposed into distinct growing/pruning stages, although growing/pruning opera­

tions are employed at various design stages. An example is the "Controlled Growth 

of CASCOR" method [72], which is a modified version of the basic CASCOR method. 

More specifically, a hidden node is first pruned before being added in the structure. 

Another solution has been proposed in [36], where the hidden nodes are added during 

training if an information theory criterion is met. 

The advantage of the onthogenic hybrid methods for FANN design is better 

performance than that of the growing and pruning methods. The main drawback of 

the onthogenic hybrid methods is their high complexity. 
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2.4 Image Subsampling 

Image subsampling is equivalent to intelligently discarding data [19, 5], and it can be 

informally defined as the process of representing an input image on a new sampling 

grid, with a lower sampling density than the original grid [6, 5]. Subsampling is also 

known as downsampling, scaling down, shrinking or decimation, and belongs to the 

class of geometric scaling procedures, which also include the reverse operation, i.e. 

upsampling or upscaling, achieved either by pixel replication or by interpolation. 

Several approaches to subsampling are possible and they differ according to 

the subsampling domain, the geometry and the type of the subsampling grid. The 

standard references for sampling issues in digital signal processing are [86, 87], but 

important details are also included in other publications (e.g., [10, 11]). We shall next 

briefly refer to some of them, based on the above classification. 

2.4.1 T h e S u b s a m p l i n g D o m a i n 

For still images, the subsampling domain is either the spatial or the frequency domain 

[8]. In the case of video sequences, spatial (intra-frame), temporal (inter-frame) 

[16, 88] or spatio-temporal subsampling [5] is performed. These are discussed next. 

Subsampling of 1-D Signals in the Spatial Domain 

Let us denote by xc (t) and x [n] a continuous-time signal and a discrete sequence of 
samples obtained from the continuous signal by periodic sampling, respectively. In 
other words, x[n] = xc(nT), where -oo < n < +co [86]. Let us also denote by 
Xc (j 0) the Fourier transform of the original signal xc (t). The Fourier transform of 
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the sampled sequence consists of periodically repeated copies of Xc(jCl), which are 

separated by integer multiples of the sampling frequency. If the sampling frequency 

£ls is Qs > 2 0,JV, that is, if the sampling frequency is higher than twice the highest 

frequency component of the continuous signal, then these replicas of Xc (j Q) do not 

overlap. Consequently xc (t) can be recovered from the sampled sequence with an 

ideal lowpass filter. If the sampling frequency does not meet the above condition, 

the reconstructed signal is distorted due to aliasing. The frequency fi/v is commonly 

referred as the Nyquist frequency. The frequency 29,N that must be exceeded by the 

sampling frequency is called the Nyquist rate. The above discussion is expressed by 

the Nyquist theorem, stated as follows [86]: 

Theorem 2 (Nyquist) Let xc (t) be a bandlimited signal with Xc ( j O ) = 0 for | | 

> Q/v- Then, xc(t) is uniquely determined by its samples x[n] = xc(nT), where 

n = 0, ±1,±2,..., ifn, = (2TT/T) > 2nN. 

Subsampling of 2-D Signals in the Spatial Domain 

Let us denote by xc(ti, t2) a continuous-time two-dimensional signal. A discrete 

sequence (array) x[n x, n2] of samples from the continuous signal xc(ti, t2) can be 

obtained by periodic sampling; that is, x [n i , n2] — xc(n\Ti, n2T2), where —oo < 
ni, n2 < +oo and T\, T2 are positive real constants known as the horizontal and 

vertical sampling intervals (periods). Let us also denote by Xc (j 0 1 ; j 0 2) the Fourier 

transform of the original signal xc(tu t2). The Fourier transform of the sampled 

sequence consists of periodically repeated copies of Xc (j O i , j Q,2). If the condition 

X c ( f i i , f i 2 ) = 0 for I fii I > J ^2 | > ^ -

J-i i2 
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is satisfied, then the continuous bandlimited signal xc(t\, t2) can be recovered from 

its samples x [n-y, n2] - xc (n x Ti, n2 T2) [87]. This is basis of the sampling theorem 

in the two-dimensional case. 

Although images may be generally modeled as bandlimited signals, image con­

ditioning is usually performed before subsampling in order to meet the above con­

ditions. Image conditioning commonly involves lowpass filtering (LPF), which can 

eliminate or minimize the overlapping of spectral components [86]—[89]. Of course, 

much of high frequency information would consequently be lost. 

Subsampling of 2-D Signals in the Frequency Domain 

When the input image/video frames have been transformed, it is often desirable to 

perform downsampling in the frequency domain, thus avoiding the inverse transform, 

downsampling and forward transform of the images. A simple solution to downsample 

in the frequency domain (e.g., DCT domain) is to discard some of the coefficients 

of the transformed image. The remaining coefficients are then used to reconstruct 

an image having a lower resolution. Although simple, this method leads to severe 

artifacts in the reconstructed image. One of the alternatives is to compute new DCT 

coefficients for the lower resolution image by using the original DCT coefficients [90]. 

Subsampling Domains for Video Sequences 

Spatial subsampling of video sequences is similar to that of still images. Temporal 

subsampling is based on applying a subsampling grid along the temporal dimension 

of the three-dimensional video signal. By the separate spatial and temporal subsam­

pling of video, one implicitely assumes that the spatial and temporal components of 
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the video are independent. However, as this is not necessarily true, spatio-temporal 

subsampling must be also addressed. It has been shown in [88] that three-dimensional 

non-separable sampling leads to better perceptual quality as compared to other meth­

ods. A thorough discussion of spatial, temporal and spatio-temporal subsampling of 

video sequences can be found in [16]. 

2.4.2 T h e S u b s a m p l i n g G r i d 

As discussed in Section 2.4.1, downsampling a 1-D sequence by a factor of M in the 

spatial domain is accomplished by simply retaining every Mth sample and discarding 

the rest of the samples. Downsampling a two-dimensional sequence in the spatial 

domain is accomplished by retaining some of the samples in the plane (ni, n 2). The 

sampling locations in this plane are organized as a lattice (grid). The downsampling 

factor is replaced in the two-dimensional case by a downsampling matrix D, which 

is nonsingular and has integer values. 

Definition 1 Let d\, d 2 be two linearly independent real vectors in two-dimensional 

real Euclidian space $t2. A lattice A in -ft2 is the set of all linear combinations o/di, 

d 2 with integer coefficients [91] 

A = {Ajdi + A 2d 2, Ai, A2 € Q} 

Definition 2 If every point of a lattice A is also a point of a lattice M, then A is a 

sublattice of M [91]. 

Let us now restrict di, d 2 to be integer vectors and let us assume that they are the 
columns of a subsampling matrix D. A two-dimensional downsampler retains only 
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samples at points on a sublattice generated by the matrix D, that is, points m of the 

form m = D n, or in a matrix form, 

^ mi ^ 

vm 2 , 
D where D = 

1 A A ^ 
"00 "01 
dio dn 

and n is an arbitrary integer vector. One out of every | det (D) | samples of the 

sequence is retained, where det (D) is the determinant of the matrix D [12, 87, 92]. 

It can be shown that D can always be expressed in a simpler form given by 

D = 
1 A A ^ 

"00 "01 

x 0 dn 

It can be also shown that rectangular sampling corresponds to a diagonal sampling 

matrix [12, 87, 91]. Examples of these cases are illustrated in Figure 2.9 (adapted 

from [91]). Clearly, the specific geometry of the subsampling sublattice is determined 

by the values of the subsampling matrix coefficients. 

In addition to its geometry, the subsampling lattice (grid) is defined by its 

type. The type of the subsampling grid may be fixed or adaptive. In fixed grid 

subsampling, the two-dimensional signal (image) is subdivided into equal regions, 

and the same grid is used for each of the regions. Although computationally simple, 

this method does not take into account the amount of detail present in certain regions 

of the input image, and thus, visible artifacts are usually present. Spatially adaptive 

subsampling methods use a dense sampling grid for each active (i.e., high-detail) 

region in the image, and one that contains only a few pixels for regions with little 
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Figure 2.9: Subsampling lattices, sublattices, and corresponding subsampling 

matrices: (a) separable subsampling by 2 in each direction, (b) nonseparable 
subsampling by 2 and by 4, respectively, (c) separable subsampling by 3 in each 

direction, and (d) quincunx subsampling. 
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detail [5, 4, 14, 89]. Adaptive subsampling methods outperform the fixed grid ones, 

but their associated interpolation steps are also significantly more complex [93]—[98]. 

2.4.3 T h e S u b s a m p l i n g O r d e r 

Most existing subsampling methods are based on pixel neighborhood operations [19]. 

A simple way to downsample a two-dimensional signal (image) is to select one pixel 

within a local neighborhood to be representative of its surrounding pixels, as illus­

trated in Figure 2.10 (a). Another way is to compute a statistical measure of the local 

intensity values, such as the mean, which will represent in the downsampled image 

the entire input block, as illustrated in Figure 2.10 (b). In each of these methods, 

first-order subsampling (FOS) or high-order subsampling (HOS) can be performed, 

depending on the size of the input and that of the subsampled block. 

In first-order subsampling, which is illustrated in Figures 2.11 (a) and (6), 

subsampling by 2 in each direction is being performed. A total subsampling rate of 

4 : 1 has been obtained in each of the examples illustrated in Figures 2.11 (a) and 

(b), although the size of the input and output blocks is different in each case. 

In high-order subsampling, which is illustrated in Figures 2.11 (c) and (d), 

subsampling by more than 2 in each direction is performed. In both examples, the 

subsampling rate is equal to 16 : 1. In the single-stage high-order subsampling 

case, which is illustrated in Figure 2.11 (c), the selection of the output pixel value 

is difficult. A solution to address this problem is to perform multi-stage first-order 

subsampling, which is illustrated in Figure 2.11 (d). In this case, a HOS stage is 

being decomposed into a sequence of first-order subsampling stages. 

44 



x l X2 

X3 X4 
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i = 1,2, 3 or 4 

(b) 

Output pixel 

Figure 2.10: A simple example of first-order subsampling, where (a) one pixel 
is selected as the representative of all pixels in the input block, and (b) the 
output pixel is obtained by applying an arithmetic operation (AO) on the 
input pixels. 

2.5 Summary 

In this chapter, we have briefly reviewed some fundamental concepts that will serve 

as background material throughout the thesis. These concepts are related to feedfor­

ward neural networks and image subsampling. We have presented the characteristics 

of FANNs, i.e., the processing node, the activation function, the topology, the cost 

function and the training algorithm. Next, we have addressed FANN learning as an 

approximation/optimization process. We have also summarized the most popular 

supervised FANN learning algorithms and the criteria for FANN model evaluation. 

A review of the FANN design methods has also been included, focusing on the on-
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Figure 2.11: (a) First-order subsampling of a 2 X 2 block, (b) first order sub-
sampling of a larger input block, (c) single-stage high-order subsampling, and 

(d) multi-stage first-order subsampling. In each case, a rectangular subsam­
pling grid is employed. 
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thogenic (growing, pruning and hybrid) methods. 

In the second part of the chapter, we discussed the main concepts related to 

image subsampling. More specifically, the subsampling domain, the subsampling grid 

and the subsampling order have been addressed. We have illustrated the concept 

of 2-D spatial subsampling using various subsampling grids, and we nave presented 

solutions for first-order and high-order image subsampling. 
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Chapter 3 

Symmetr ica l P r u n i n g for F A N N 

Design 

In this chapter we address symmetrical pruning for feedforward neural network de­

sign. In Section 3.1, we provide a motivation for introducing tridiagonal symmetry 

constraints in the FANN design. In Section 3.2, we propose a tridiagonally symmetri­

cal pruning algorithm. In Section 3.3, we illustrate, via a simulation example, that the 

designed FANN structures obtained by applying the proposed algorithm are compact 

and tridiagonally symmetrical. In the same section, we also compare the results of 

our proposed algorithm with those of the Optimal Brain Damage algorithm, already 

presented in Section 2.3.2. A summary of the chapter is included in Section 3.4. 

3.1 Motivation 

Symmetry can be defined as "the repetition of exactly similar parts facing each other 

or a center" [99]. When they are introduced in the FANN design, the symmetry 
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constraints may refer to the data set, to the partial derivative equations in the train­

ing algorithm or to the network topology [100]. Among the few studies on FANN 

design with symmetry constraints, we mention Shawe-Taylor's [101] work. He ob­

tained a network with identical weight values for the symmetrical connections and 

an output invariant for a set of transforms performed on the input data. Yang, Yin, 

Gabbouj, and others [102] studied several ways of introducing symmetry in filter 

structures. They required that specific details of the input signal be preserved. The 

weights could have had different values, but the corresponding connections had to be 

symmetrically positioned in the structure. In this chapter, we address the FANN de­

sign with topological symmetry constraints. More specifically, tridiagonal symmetry 

constraints will be placed on the position, not on the weight values, of the weight 

connections in the structure. 

Tridiagonally symmetrical neural structures are desirable for efficient hard­

ware and software implementations. First, the memory requirements for storing the 

FANN weights can be generally reduced for a tridiagonal structure. This is im­

portant in many hardware and software implementations, especially in embedded 

applications. For example, for the non-symmetrical FANN illustrated in Figure 3.1 

(a), the entire 5 x 4 input-hidden weight matrix (i.e., 20 values) must be stored. 

Alternatively, 10 non-zero weight values and their corresponding 10 indices can be 

stored. For the tridiagonally symmetrical FANN (TS-FANN) illustrated in Figure 

3.1 (6), having the same number of weight connections as the FANN in Figure 3.1 

(a), only the 10 non-zero weight values and at most half of the corresponding indices1 

1 Further memory savings may be obtained by applying, for example, a generic scanning rule for 

the diagonal weight values. 
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must be stored. Second, accessing the weight values in a tridiagonal FANN is more 

efficient than in a non-symmetrical FANN. For instance, assume that a simple zig­

zag scanning rule (shown by arrows in Figure 3.1 (&)) is employed in order to read 

the weight values. Then, it is sufficient to store the weight values of the tridiago­

nal FANN illustrated in Figure 3.1 (6) as the sequence of numbers corresponding to 

[0 u>23 0 0 0 W44 w33 W22 Wu W21 w32 w43 W54} in order to obtain a complete description 

of the FANN input-hidden layer connectivity. Last and most important, both the 

mapping of a tridiagonal FANN structure onto parallel VLSI or programmable dig­

ital signal processors, and the optimization of the corresponding hardware/software 

realizations, are easier as compared to the non-symmetrical case [103]—[106]. 

If the tridiagonal symmetry constraints are taken into account during training, 

the obtained TS—FANN structure may lead to several minima of the cost function, 

periodicities or almost flat zones [22]. Multiple minima are due to possible permuta­

tions of the nodes in a layer or to the equivalent structures obtained by changing the 

sign of all the weights entering in and exiting from a hidden node [22, 107]. Alterna­

tively, if the tridiagonal symmetry constraints are introduced after training, the above 

problems can be avoided. Therefore, we propose that initial training be performed 

without any symmetry constraints and be followed by pruning with tridiagonal sym­

metry constraints. Our goals are (a) to reduce the structure until the weight matrix 

becomes tridiagonal, (b) to prove that, based on useful approximations, not only 

tridiagonally symmetrical pruning is simple and fast, but the final structure is also 

compact, and (c) to illustrate the good performance of the algorithm even when the 

application problem does not contain obvious symmetries. 
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Figure 3.1: An example of a (a) non-symmetrical, and (6) tridiagonally sym­
metrical FANN. The corresponding input-hidden weight matrix is shown below 
each FANN structure. The dotted lines indicate where the weight matrix is 
padded with zeros so that it becomes a square matrix. Note that the number 
of weights in each case is equal to 10. The arrows illustrate a simple zig­
zag scanning rule that can be employed in order to read the non-zero weight 
values. 
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3.2 Proposed Algorithm 

W i t h tridiagonal symmetry constraints, the optimization problem (2.3) becomes the 

minimization of the neural network size subject to the network being able to learn 

the dataset, the connections between the nodes being tridiagonally symmetrical in 

the final structure, and the weight values being not necessarily equal. As stated 

above, this design problem may be approached by introducing tridiagonal symmetry 

constraints in the pruning procedure. The algorithm that we propose in this section 

makes use of approximations in order to both satisfy the symmetry constraints and 

to reduce the design time. Next, we present the proposed Tridiagonal Optimal Brain 

Damage ( T O B D ) algorithm. This is followed by a discussion on important issues 

associated with both the training and testing steps. 

3.2.1 T r i d i a g o n a l O p t i m a l B r a i n D a m a g e ( T O B D ) A l g o r i t h m 

In what follows, we briefly define sparse matrices in general and tridiagonal matrices 

in particular. A n m X n matrix is sparse if it has a small number r of nonzero 

elements, r < mn. In other words, for increasing m and n , r < min(m, n)^1 + c\ 

0 < c < 1. A sparse matrix M with bandwidth B has elements that are equal to 

zero if | i — j | > B, and elements that are equal to Mij otherwise. If all the matrix 

elements are zero for i ^ j and 5 = 2, then M is tridiagonal. Any matrix can 

be reduced to a tridiagonal form in a finite number of plane rotations, based on the 

Givens method, or reflections, based on the Householder method [108]. 

The m x m matrix M and 9 M S - 1 have the same eigenvalues for any nonsin-

gular matrix Q\ The transform 9 M 3 " 1 is known as a similarity transform. ^ is a 
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reflection if [108] 

3(q) = I - 2qq T, with q T q = 1. (3.1) 

Moreover, the matrix S(q) is orthogonal, i.e., it preserves the Euclidian norm, and 

it is also symmetrical as 

( i - 2qq T) (i - 2qq T) = I - 4qq r + 4 q q T q q T = I, 

and Q'-1 (q) = ^sT (q) = O'(q), where I is the unitary matrix. We assume now that 

the matrix M is the M X H input-hidden weight matrix, denoted by W. Without 

loss of generality, we also assume that M > H and that the columns of W are the 

weight vectors entering each hidden node (e.g., the first column contains the weight 

values from all the input nodes into the first hidden node). Our aim is to find the 

transform matrix 9, such that the reflection performed on the matrix W 

yields a tridiagonal weight matrix. The matrix W is obtained by padding W with 

zeros, until it becomes an M x M square matrix. Its elements are 

wih for 1 < i < M, 1 < h < H, and 

0 for 1 < i < M, H + 1 < h < M. 

First, let us assume that the minimum O B D saliency value corresponds to an 

input-hidden weight xbi*h* that is a diagonal element of W, i.e., i* — h*. We also 

require that symmetry constraints be satisfied. More specifically, we need to satisfy 

the neighboring condition: the minimum saliency connection is deleted (ibi*h* = 0), 
but the neighboring connections in the network with the weights u)h*-ith*, wh* + rth* 

(neighbors on the same column) and wh*,h*-i, Wh*,h* + i (neighbors on the same line) 
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are preserved, and all the other components of the vector w/j» are deleted. We also 

need to satisfy the unitary condition given by q T q = 1. If W is multiplied to the left 

by 3(q), one obtains = S(q) W. Then, the column wh. of W, 1 < h* < 

M , is independently transformed into the column wj^*' of W(ie^), given by 

w^Jl> = (I - 2qq J j wh* = wh* - 2 [q1 wh.) q. 

Using the neighboring condition, we require that all the weights in the same column 

be preserved, and thus the elements of q = [qx, q2, ... <?M]T become 

0 for i — h* - 1 or i — h* + 1, and 

2 Em=l 1mWmh* 

Wjh* for l < i < h * - l 

or i = h* or h* + 1 < i < M. 

Together with satisfying the unitary condition, we obtain 

q* = 

for i = h* - 1 or i — h* + 1, and 

(3.2) 

Wjh* 

m#fc* + l wmh* 

for K i < h* - 1 or i = h* 

or h* + 1 < i < M. 
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Figure 3.2: A n example of applying the transform on the padded weight matrix 
in the T O B D algorithm. We assume that the minimum saliency weight is w33. 

(a) is the weight matrix before applying the transform, (b) is the weight matrix 
after the multiplication to the left with the transform matrix, and (c) is the 
weight matrix after the result of (b) is multiplied to the right by the inverse of 
the transform matrix. 
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Similarly, the multiplication of W to the right by 5 (q)T independently transforms 

each line of the matrix into a line of W^ight\ A l l the elements in the line h* are 

pruned, except the neighbors of Wi*h> on the same line, i.e., Wh*,h*-i, and Wh*,h* +1-

Thus, the transform applies to a neighborhood around the minimum saliency weight. 

Let us consider the example illustrated in Figure 3.2. The matrix W has a 

size of 7 X 3. Then, the matrix W, which is shown in Figure 3.2 (a), has a size of 

7 x 7 . Suppose the selected weight is w33. Then, its circled neighbors belong to the 

tridiagonal matrix. After the multiplication to the left by the transform matrix, the 

weight matrix shown in Figure 3.2 (6) is obtained. Note that all the connections 

in the same column with 1033, with the exception of the neighbors w23 and zo 4 3 , are 

deleted. Figure 3.2 (c) illustrates the weight matrix after the result of (6) has been 

multiplied to the right by the inverse of the transform matrix. We here note that 

the connections in the same line with W33 are eliminated, with the exception of the 

neighbor i t> 3 2 . 

Now, let's assume that the minimum saliency value is obtained for an input-

hidden weight outside the diagonal of the weight matrix, (i.e., i* 7̂  h*). Then, 

the connection is pruned according to the standard O B D algorithm followed by the 

deletion of all the weights in that column, except those of the neighbors of the diagonal 

element. 

Finally, if the minimum O B D saliency value is obtained for a hidden-output 

connection and the number of output nodes is JV > 1, the same method as that 

described above for the input-hidden weight .matrix is applied. If the number of 

output nodes is equal to 1, then both the connection having minimum saliency and 
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its counterpart having a symmetrical position in the network are deleted. More 

specifically, if the hidden-output weight vhj, with 1 < h < H and 1 < j < N, has 

the minimum saliency, then we prune vhj and vH-h + i,j ii h = [—] and H is even, or 

vhj and vH-h,j ii h = [f] and H is odd, or vhj if h = [f ] +1 for all H. This step also 

preserves the symmetry of the weight matrix. A summary of the T O B D algorithm is 

provided in Appendix A. 

3.2.2 A l g o r i t h m D i s c u s s i o n 

We note that, several weights are deleted at the same time in the proposed T O B D 

algorithm. By comparison, only a single weight2 at a time is deleted in the Optimal 

Brain Damage algorithm (already described in Section 2.3). The increase in the 

cost function 8C is then expressed in the O B D algorithm as the sum of the weight 

saliencies given by Equation (2.7). The right term of Equation (2.7) becomes actually 

an approximation to the multi-weight saliency in the case of the T O B D algorithm. 

Next, the error due to T O B D pruning may be approximated by the sum of the 

saliencies corresponding to the deleted weights. 

Since the numbering of the hidden nodes in a F A N N is arbitrary, equivalent 

F A N N structures are obtained if a permutation of the hidden nodes is performed. 

However, the tridiagonal symmetry of the structures resulting from the application 

of our algorithm is still preserved. Let us consider a simple example. Assume that, 

in the 7-3-1 F A N N structure shown in Figure 3.3 (a) with its corresponding input-

hidden weight matrix, the weight having the minimum saliency is w33. This weight 

2
The deleted weight corresponds to the minimum of the cost function 
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Figure 3.3: A simple example that shows (a) the initial FANN structure and its input-
hidden weight matrix below, and (b) the FANN structure after the permutation of the 
hidden nodes, so that node 3 becomes node l', and its input-hidden weight matrix below. 
The shadowed boxes indicate the weight having the minimum saliency. The circled weight 
values indicate the neighbors of the minimum saliency weight. 
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corresponds to the connection indicated with a thick line. Since the weight is placed 

on the main diagonal, that is i* — h*, all the weights in the same line and in the 

same column wil l be deleted, with the exception of the circled neighbors w3i, w23, 

and u>43. Assume that, by performing a simple permutation, the shadowed node 3 

becomes node 1 . The minimum saliency weight does not have a diagonal position 

since i* ^ h*. In this case, according to our proposed algorithm, only the minimum 

saliency weight w33 is deleted. Thus, its neighbors w2v — w23, w32 and w^y — u ; 4 3 are 

still preserved in the structure. Therefore, the tridiagonal symmetry at this stage is 

also preserved. 

3.2.3 C o m p l e x i t y Issues 

The speed of the designed F A N N s depends largely on the number of "multiply and 

add" operations performed in the test phase, which depends in turn on the to­

tal number II of parameters in the neural structure. For a fully connected F A N N 

( F C — F A N N ) , LT is the sum of all weights and biases, and is given by II = (M + 1) H + 

(H + 1) N. For the partially connected designed F A N N , this expression becomes 

n = [{M + 1) H + (H + 1) TV] (1 - e) , where (3.3) 

e is the percentage of pruned connections. More specifically, the number of parameters 

in the partially connected F A N N is obtained by subtracting the number of parame­

ters corresponding to the pruned connections from the number of parameters of the 

F C — F A N N . Although the test time is clearly shorter for F A N N structures with fewer 

parameters, the test time as a stand-alone index is still useful for comparing different 

implementations of F A N N structures that have the same numbers of parameters. The 
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test time can be evaluated based on [109]. More specifically, the necessary time in 

the forward pass of data through the network in the test phase can be expressed as 

tlst = 2 [Mefftt + ( M e / / + HefJ) to] P. (3.4) 

where tt, t0, and P are the time required by a single add or multiply operation, the 

transfer time between two nodes of data represented using h bits, and the number of 

patterns, respectively. If there is at least one hidden node connected to all the inputs, 

then Meff = M. If there is at least one output node connected to all the hidden layer 

outputs, then Hefj = H. Otherwise, the effective values are given by the maximum 

number of connections entering the hidden nodes and the output nodes, respectively, 

where the maximum is evaluated for all the nodes in the subject layer. 

The complexity of the re-training stage may be evaluated similarly, based on 

the observation that re-training requires both a forward and a backward pass through 

the entire dataset. For each of the T O B D and O B D algorithms, re-training requires 

0 (LT3) operations per weight update, where LT is the number of parameters. However, 

the number of parameters during re-training is smaller for the T O B D than the O B D 

case, since several weights are eliminated during each T O B D pruning step. 

3.3 Simulation Example 

In what follows, we illustrate that, even when the application problem does not con­

tain any symmetries, our T O B D algorithm reduces significantly the number of F A N N 

parameters, so that compact, tridiagonally symmetrical structures are obtained with­

out a significant loss in terms of performance. For this purpose, we select the nonlinear 
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regression problem described byd(£) = F (w; x (()) + e (w; £). Without loss of gen­

erality, we assume that the F A N N multilayer perceptron used to solve the problem 

has one output node, i.e., N = 1. The function e (w; £) is the output error when the 

input pattern is £. The training data set is A = {(cc (£) , , 1 < £ < P } . We 

assume a data model described by the additive cost function 

i P i P N , p 

C(w) = - E C(w;fl = ̂ E E C7(w; e i(0) ̂  ~ E -2(w; f) = 
r ( = i

 r i = i i = i r t = i 

= i E £{rf(fl -^[w ; x(0]} 2 =̂  E -y[w;x(0]} 2. (3.5) 

3.3.1 S i m u l a t i o n D e t a i l s 

Before evaluating the results, there are important issues that need to be addressed: 

the data set, the neural structure, the activation function, the training algorithm and 

the performance evaluation criteria. The data set consists of 5760 samples of the 

"chirp" 3 signal and it is divided into two equal subsets, one for training and another 

one for testing. The training and test signals are illustrated in Figure 3.4. Each of the 

subsets is read through a 7-sample window, sliding at each epoch one sample to the 

right. The desired output value is the sample value following the window (e.g., for 

the first window, the desired output value is the eighth sample value). Two 7 x 2880 

input matrices result, as well as a 1 X 2880 vector of desired output values. The neural 

structure is of the type 7 - H - l , where the input and the output layers have the same 

size as the input and the output patterns. Any empirical relationship may be used in 
3
The chirp signal is available as a benchmark data set in Matlab. This signal is obtained by 

recording a real bird chirp, which has similar characteristics to a speech signal. 
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Figure 3.4: Training and test chirp signals. 

order to estimate the initial size H of the hidden layer. W i t h P = 2880, M — 7, and 

N = 1, we have selected H = 3 [34, 43]. The activation function / of each simple 

perceptron in the hidden and output layers was selected to be the sigmoidal tangent 

given by expression (2.2). Backpropagation with momentum [1] was selected as the 

training algorithm for the original fully connected F A N N . The weights are adjusted 

based on the expression w(k + 1) = w{k) + n V C + a [w (k) — w(k — 1)], in 

order to find the optimum weight vector minimizing the cost function in Equation 

(3.5) [22, 1, 24]. The multilayer perceptron was trained for 2000 epochs with the 

learning rate rj = 0.01 and the momentum a — 0.0001. The normalized training 

mean square error given by (3.5) was equal to 0.004456. 

We evaluate the performance of the designed F A N N s using the test mean square 

error normalized by the number of patterns (NMSE) given by (3.5), and the peak 

signal-to-noise ratio (PSNR) in decibels. We also evaluate the complexity of the 
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designed F A N N s using the total number LT of parameters in the final neural structure, 

and the test time. 

3.3.2 S i m u l a t i o n R e s u l t s 

In this section, we report on simulation results obtained using the trained F A N N 

structure (a) without pruning, (b) after pruning using the O B D algorithm, and (c) 

after pruning with the T O B D algorithm, respectively. The evaluated neural structures 

in these cases are (a) fully connected, (6) non-symmetrical partially connected, and 

(e) tridiagonally symmetrical and partially connected, respectively. The N M S E and 

P S N R values are averaged over fifteen independent runs (trials) with identical training 

parameter values. The test N M S E for the fully connected and non-symmetrical 

structure after training was equal to 1.04526. The average number of the F A N N 

parameters was 28 (24 weights and 4 biases). 

We applied the O B D algorithm to the trained F A N N . The test N M S E , the 

P S N R and the number of parameters in the final partially connected and non­

symmetrical structure are given in Table 3.1. The final non-symmetrical structure 

after pruning 6 (5 input-hidden and one hidden-output) weights is presented in Fig­

ure 3.5. 

We applied the T O B D algorithm to the fully connected and trained F A N N . The 

number of parameters has been reduced until the re-training error is approximately 

equal to that obtained for the O B D algorithm. The test N M S E s and the number of 

parameters after applying the T O B D algorithm are included in Tables 3.1 and 3.2. 

Figure 3.6 presents a final partially connected and tridiagonally symmetrical neural 
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structure, where dotted lines indicate the pruned connections / weights. Note that 

in this case, since some of the weight values are the same, only 9 (6 weights and 3 

biases) out of the 15 network parameters must be stored. 

Finally, the experimental and the theoretical test times for the proposed method 

are given in Table 3.2. The evaluation was performed on an I B M - P C 486/66 M H z 

computer. The theoretical test times have been computed using Equation 3.4. The 

symbol t0 denotes a simple add or multiply operation and tt is the transfer time for 

a data represented with b = 16 bits. 

Table 3.1: Training and test normalized mean square errors, and average test P S N R 
values before and after T O B D and O B D . 

Results Before After O B D After T O B D 
pruning (12 steps) (5 steps) 

Training 0.00445 0.00339 0.00308 
error (0.003898-0.005096) (0.00289-0.00390) (0.00251-0.00365) 
Test 1.04526 0.98223 1.07343 
error (1.04379 - 1.04673) (0.94473-1.01973) (1.04443-1.10243) 

Average 
test P S N R [dB] 

67.9976 68.2971 65.7976 

3.3.3 C o m p a r i s o n s 

The aim of the proposed design algorithm is to obtain a good tradeoff between the 

size of the F A N N structure, the generalization performance, and the computational 

efficiency. Introducing constraints in the design process is generally expected to in­

crease the test error. In our simulations, the test error increases by an average of 

0.028 for the neural structure resulting from the application of the T O B D algorithm. 

However, this happens for an almost three-fold reduction in the number of F A N N 

64 



Figure 3.5: A neural structure given Figure 3.6: A neural structure given 
by O B D . Dotted lines indicate deleted by T O B D . Dotted lines indicate the 
connections/nodes. deleted connections/nodes. Connec­

tions with the same weights have been 
drawn with the same lines. 

parameters (weights and biases). We note that the error after more than 10,000 

re-training epochs is still lower than that of the fully connected trained network. On 

the other hand, the test error for the O B D algorithm slightly decreases after pruning, 

which confirms its better generalization ability. However, only a 1.5-fold reduction 

in the number of F A N N parameters has been obtained. 

Finally, with respect to the test time, if the T O B D is selected as the reference, 

then the O B D network and the initial fully connected F A N N require 5760 (2tt + 2t0), 

and 5760 (2tt + 3t0) more time units, respectively, based on the results in Table 3.2. 
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Table 3.2: Number of parameters (weights and biases) and test 
times for neural structures given by T O B D and O B D . The test 
time corresponds to the F A N N s having the average number of pa­
rameters. 

F A N N given by No. of F A N N 
parameters 

Average test t i l 
Theoretical 

l i e [sec] 
Experim. 

T O B D 11 (8 - 15) 5760 (5i t + 7t0) 15 
O B D 22 (20 - 24) 5760 (7tt + 9t0) 25 

Fully connected 28 (28 - 28) 5760 (7tt + 10io) 42 

3.4 Summary 

In this chapter, we have addressed F A N N design with topological symmetry con­

straints. More specifically, we have proposed a tridiagonally symmetrical pruning 

algorithm for feedforward neural network design. Our algorithm is based on a House­

holder transform of the input-hidden weight matrix. We have shown, via a simple 

simulation example, that this results in compact tridiagonal F A N N s , which are suit­

able for efficient hardware and software implementations. Moreover, the number of 

F A N N parameters is reduced substantially without a significant loss in performance. 
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C h a p t e r 4 

A p p l i c a t i o n o f F A N N s t o F i r s t -

O r d e r I m a g e S u b s a m p l i n g ( F O S ) 

In this chapter, we apply feedforward neural networks to first-order image subsam­

pling (FOS). By addressing several problems in the case of FANN-based first-order 

subsampling, the material included in this chapter paves the way to applying our 

designed F A N N models to high-order image subsampling, which is discussed in the 

next chapter. 

In Section 4.1, we first state the main limitations of most image subsampling 

methods, thus providing a motivation for FANN-based image subsampling. Second, 

we state the problems that arise when performing FANN-based image subsampling 

using standard F A N N training algorithms. This motivates our first-order F A N N -

based subsampling (training) algorithm (FABS), which is described in Section 4.2.1. 

We next comment on the relationship of the proposed method with other methods, 

as well as discuss complexity issues. In Section 4.3, we focus on the application of our 
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algorithm when larger input blocks are employed in the subsampling process. In Sec­

tion 4.4, we present experimental results using still images and video which illustrate 

the good performance of F A B S and generalized F A B S algorithms. In Section 4.5, we 

present the application of the F A B S algorithm to subsampling of chrominance video 

frames and compare the performance of our system with that employing traditional 

lowpass filtering and subsampling. In Sections 4.7.1 and 4.7.2, we comment on the 

F A N N generalization ability, and speed and memory requirements, respectively. A 

summary of the chapter is included in Section 4.8. 

4.1 Motivation 

Our goal is to obtain a good subsampled version of the original image, such that if 

reconstructed, it is as close as possible to the original. To achieve our goal, one can use 

standard lowpass filtering followed by (e.g., first-order) subsampling, as illustrated in 

Figure 4.1. However, as stated in Section 1, when lowpass filtering is being applied 

to the input image, most of the high frequency information is permanently lost. 

Moreover, due to most of the existing subsampling methods being based on pixel 

neighborhood operations [19], as already stated in Chapter 2, the reduced images may 

often contain significant distortion, usually expressed in terms of visible blockiness in 

continuous features of the image [19, 6]. We aim at reducing both the information 

loss introduced by lowpass filtering, as well as blockiness, without applying post­

processing methods. 

A solution to address the above problem is to apply F A N N models to image 

subsampling, as illustrated in Figure 4.2. This is mainly motivated by the F A N N ' s 
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Input image Subsampled 
image 

i 2 12 
Lowpass filtering —• —• 

Rows Columns 

Figure 4.1: Block diagram of a conventional first-order image subsampling system. 

Input image Subsampled 
image 

FANN 
4-2-1 

2-by-2 
block 

4-by-l 
vector 

Figure 4.2: Block diagram of a feedforward neural network-based 

first-order image subsampling system. 
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ability to inherently subsample input images for certain sizes of the input, hidden and 

output layers. This is also motivated by F A N N ' s ability to perform high speed parallel 

processing. Unfortunately, the performance of the F A N N s in image subsampling has 

not been acceptable so far, as the reproduced images exhibit blocking and/or ringing 

artifacts when the standard F A N N training algorithms are being used. In standard 

supervised algorithms that solve the optimization problem (2.3) stated in Chapter 

2, the desired output value d(£) is selected, for each (, prior to the training process. 

For instance, one can choose it as the pixel value in the center of the input window. 

However, this approach does not take into account the local characteristics of the pixel 

neighborhood. Thus, the F A N N receives during training only information regarding 

the pixel gray values and therefore, cannot learn geometrical structures in the current 

input window. The edges and other continuous features in the image, obtained during 

the testing step, are therefore significantly affected. In what follows, in order to 

improve the quality of the F A N N subsampled and reconstructed image, and mainly 

to reduce blockiness, while still maintaining relatively low complexity, we propose 

a supervised strategy for solving the training/optimization problem. The proposed 

FANN-based subsampling (FABS) algorithm is based on pattern matching and takes 

into account the local characteristics of the input window. Thus, the image artifacts 

that typically result from image subsampling can be minimized or eliminated. 

4.2 FOS Using 2x2 Input Blocks 

For simplicity, let us focus on first-order spatial subsampling using a fixed rectangular 

subsampling grid. Let the two-dimensional image be stored as a matrix, each matrix 
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element x m | 7 1 representing the gray level of the pixel in row m and column n. Moreover, 

let the F A N N model be an M-H-N model with M input, H hidden and N output 

nodes, as illustrated in Figure 2.6. During the training step, the F A N N receives input 

data through a W X W sliding window, unwraps the resulting matrix as illustrated 

in Figure 4.2 to become an M X 1 input vector x with components a;,-. Without loss 

of generality, let the size of the sliding window be 2 x 2 and let N be equal to 1 (one 

output node). This allows us to address first-order image subsampling as illustrated 

in Figure 2.11 (a). The size of the hidden layer may be quickly evaluated, once the 

number of patterns and the sizes of the input and output layers are determined. 

4.2.1 P r o p o s e d F A N N - B a s e d S u b s a m p l i n g ( F A B S ) A l g o r i t h m 

The proposed FANN-based subsampling (training) algorithm can be divided into six 

steps. First, we compute the actual output value y(^) given by 

for each input window (pattern) pattern £, where 1 < £ < P and P is the maximum 

number of patterns. The notations w-ih and WHJ denote the input-hidden and hidden-

output weights, respectively, and j — 1. The initial weight values are randomly 

selected, / is the unipolar sigmoidal activation function given by expression (2.1). 

illustrated in Figure 4.3, and compare it to the value of the fourth pixel in the window, 

yielding the values, 

(4.1) 

Second, we compute the median of all possible three-pixel combinations, as 
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Figure 4.3: Shapes taken into account in the pattern-matching algorithm. 

<?(1)(0 = i>m,n(0 - med[xm>n-i(t), a: m + 1 > n_i(£), xm+i,„(£)}}
z
 , 

9(2)(<0 = i>m,n-i(f) - med[xmtn(C), x m + i > n _ ! ( f ) , x m + l i „ ( f ) ] }
2
 , (4.2) 

9 ( 3 )(0 = {^m+i,n-i(0 - med[x m, n_i(£), xm,n(^), x m + l j n ( f )]}
2
 , and 

9 (0 = {̂ m+i,n(0 - mecf [x m i n_i(^), £m,„(£), (0]} > where 

me<i stands for the median operator. Third, the minimum q*(£) of the above ? ( r )(0's, 

1 < r < 4, for the current input window is obtained, i.e., 

?-(0 = imin 4 { 9 « ( 0 } . (4.3) 

Fourth, the desired output value is set to d(£) = x^((), where I* is the value 

of / for which the minimum in (4.3) is reached. The function x^ (£) is equal to 

xm,n (0 , xm,n-i (0 , Sm+i.n-i {0 or xm+i,n (£) if /* = 1,2,3 or 4, respectively. 

Fifth, the global error C (w) at the end of one epoch1
 is computed by adding the 

x
An epoch is defined as one pass through the P-dimensional set of training patterns. 
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squared errors e(£) for all the input patterns (unwrapped input windows), that is, 

Finally, the weights are adjusted according to a quasi-Newton rule given by, 

wfc+i = Wk + Vk dk = wfe - rjk H^1 V C (wfc), 

where and vs k + 1 are the weight vectors at epochs k and k + 1 (respectively), 

dfc is the search direction of the minimum in the parameter space; HjT1 is the ap­

proximation of the inverse Hessian matrix H _ 1 and H(wjt) = V 2 C (w*,). We have 

used the Levenberg-Marquardt approximation of H - 1 and a learning rate rjk given 

by expression (2.4) [22, 24]. 

One can easily notice that the optimization problem (2.3) becomes in our 

approach the minimization of 

C (w) = \ £ [d(0 - y (i)f subject to (4.4) 

q(0 = and w e * 1 1 . 

The above algorithm steps are repeated until our goal is reached, i.e. C < 

Cdesired or until a predefined number of epochs is exceeded. The network parameters 

obtained at the end of the training process are saved and used during the testing 

phase. The proposed F A B S algorithm is summarized in Appendix B. 
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4.2.2 Examples 

The main idea of the first four steps is that, one pixel in the current neighborhood 

(out of four candidates) may become the desired output value, thus being the repre­

sentative of the entire window, if and only if its value is close enough to the median 

of the other three pixels. Basically, the three-pixel combinations shown in Figure 4.3 

make available information regarding the presence of local edges. Consequently, a 

better FANN behavior is expected, realized in terms of fewer blocking artifacts and 

a generally better image reproduction quality, as compared to conventional FANN 

algorithms. 

We note that, since the FANN output is a single pixel value, the actual edge 

orientation cannot be preserved. Instead, this edge information is encoded in the 

gray level of the FANN desired output selected by our algorithm. The gray level of 

the FANN output pixel is perceived as being subjectively close to that of the original 

input block when viewed from a distance. Thus, blockiness is masked due to the 

integration operation performed by the human eye. We can illustrate this by using 

two simple examples. In the first example, we employ 2 x 2 blocks having vertical, 

horizontal and diagonal edges, pixel discontinuities, uniform gray levels and corners, 

respectively. These blocks are shown in the left column of Figure 4.4. There are 

6 two-pixel combinations representing straight lines and diagonal edge structures, 4 

one-pixel combinations representing image discontinuities, 4 three-pixel combinations 

representing the corners and one four-pixel combination representing a smooth block. 

In Figure 4.4, we have shown only 10 out of the total 15 possible combinations. For 

each of the blocks shown in the left column, we have represented the mean, the 
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median and the FANN desired output selected by our algorithm by using gray values. 

When the figure is viewed from a distance, the original block is perceived as a single 

dot. Moreover, the perceived dot is closer to the FANN desired output than to the 

mean or the median values of the block, respectively. In most of the cases shown in 

Fi gure 4.4, the FANN desired output value is different than the mean and the median 

values of the original block. The only exceptions occur when pixel discontinuities are 

present (one pixel per block), or when the input block is smooth. In these cases, no 

geometric details are present in the input block. Thus, the FANN desired output is 

very close to the mean and the median values
2
. Note here that the one-pixel and 

two-pixel combinations are subclasses of the three-pixel combinations used in our 

algorithm. As the FANN desired output values are perceived similarly, we did not 

need to include the two-pixel combinations during the FANN training process. The 

one-pixel combinations represent discontinuities and are eliminated by subsampling. 

Therefore, they have not been included in the training set as well. Finally, the four-

pixel combination, which represents a smooth block, was also not included in the 

training set. The FANN would not benefit by learning a smooth block, as the latter 

does not contain specific geometric details. 

To further demonstrate the effectiveness of our algorithm, a second example is 

provided in Figure 4.5. The original block is a 16 X 16 block whose center coincides 

with the geometric center of the 256 X 256 image Lena. The mean and median values 
2
In this particular example, the mean and the median values for each block are equal. More 

specifically, their values are set to 105 (blocks 1-4 in the left column), 93.75 (block 5), 102.25 (block 

6) and 81.25 (blocks 7-10), respectively. Due to the odd size of the original block, the median is 

computed as the average of the two central values of the ordered values in the block. Therefore, an 

additional lowpass filtering stage is accidentally introduced when computing the median. Thus, the 

performance of the median filter is not better than the simple average filter. 
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Original block Mean 

I 
M e d i a n FANN desired output 

Figure 4.4: A simple example using 2 x 2 blocks. The FANN desired 
output values have been selected using our algorithm. 
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Original block M e a n Median F A N N desired output 

Figure 4.5: A simple example using a 16 x 16 block from the 256 x 256 
image L E N A . The FANN desired output has been selected using our 

algorithm. 

have been computed for each 2 x 2 sub-block. The FANN desired output has been 

selected using our algorithm. Again, viewing the figure from a distance, the FANN 

desired output is perceived as being subjectively the closest to the original block. 

4.2.3 R e l a t i o n s h i p t o O t h e r M e t h o d s 

In this section, we outline the relationship between our algorithm and the previously 

developed pattern matching, coarse-coding, and halftoning methods, respectively. As 

stated earlier, our algorithm uses a pattern matching technique that selects the desired 

output values during the supervised training stage. The goal of the pattern matching 

methods is to find the best match between a pattern within the input window, and 

the existing patterns, via the minimization of a chosen cost function [124]. However, 

we are not only interested in finding the best match, but also in learning the output 

gray level corresponding to the best match. 

In our first-order FANN-based subsampling algorithm, each input window is 

represented by a single pixel value in the subsampled image. The idea of processing 
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an input image by using local windows has been addressed by other methods as well, 

such as coarse-coding [125]—[127]. By coarse-coding, an input pattern is represented 

by several coarser and overlapping grids. Then, high-order neural networks (HONNs) 

are used to learn the resulting representation. The shapes used by our subsampling 

algorithm can be regarded, in a general sense, as overlapping grids obtained by the 

decomposition of the input window. They would resemble a coarse-coding represen­

tation with the same coarseness level as the original image. However, it is not clear 

how the coarse-coding method, previously applied to black and white edge images 

[125]—[128], could be generalized for gray level images, such as those used in our sub-

sampling experiments in Section 4.4. Note that a given gray level input window can 

be decomposed into coarse grids depending not only on the shape of the objects, but 

also on the gray levels of the pixels. Moreover, the H O N N models, due to their large 

number of connections, require significant time and memory resources, as compared 

to the F A N N model employed in our method. 

Finally, the idea of representing a local neighborhood in the input image by a 

gray-level pixel value, in the final image may resemble, in an abstract sense, work in 

the area of halftoning [129, 130]. However, the number of the image gray levels and 

the sizes of the images resulted by applying halftoning methods and our subsampling 

method, respectively, are different. Moreover, although A N N s have been applied 

extensively in image halftoning, generally recurrent models, such as cellular neural 

networks (CNNs) [131], Hopfield networks [132, 133] and Q'trons (generalizations of 

the Hopfield networks) [134] have been employed. For these models, image halftoning 

has been formulated as an optimization problem, and a neuron has been associated 
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with each pixel of the halftoned image [129, 134, 135]. Applying such a method for 

image subsampling would be highly impractical when using large images. 

4.2.4 I m p l e m e n t a t i o n Issues 

Before the FABS algorithm can be implemented, several issues must be addressed. 

For example, the type of the input window, the intensities of the input gray levels, the 

number of training epochs and the objective/subjective performance measures are all 

parameters that have to be evaluated. The input images are read through a W x W 

sliding window of size 2x2, moving one pixel to the right. Both non-overlapping 

and overlapping square windows have been used during experiments. As the latter 

did not significantly improve performance relative to the former, we have decided to 

use non-overlapping windows. 

The intensities of the input gray levels, in the range [0, 255], are here mapped 

by the FANN sigmoidal activation function to the interval (0,1). One can either 

scale the sigmoidal function to take values in the range [0...255], or restrict the 

desired output values to be less than one by dividing each desired output pixel value 

in the original image by 255. We have chosen the latter solution. Moreover, since 

the activation function reaches only asymptotically the values 0 and 1 given a finite 

input, and since the argument of the sigmoidal function is a finite sum of finite values, 

the pixel values at the extremes of the brightness range will never be learned by the 

network satisfactorily [13]. This problem will be addressed in more detail in Section 

4.4. 
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Another implementation issue is the selection of the number of training epochs. 

The number of necessary training epochs to achieve good performance levels on test 

images may be estimated. We have set the number of epochs to 1000 based on the 

results discussed in [22]. 

Finally, various objective evaluation criteria may be used to assess the perfor­

mance of the proposed algorithm. Of course, what really matters for the end user 

is the subjective quality [123]. Unfortunately, the latter is not always related to 

measures such as the popular peak signal-to-noise ratio (PSNR). Therefore, we have 

chosen to evaluate the results by: (a) visual examination of the subsampled images 

[21], (b) visual examination of the reconstructed (bilinear or cubic interpolated) im­

ages from the subsampled versions, and (c) objective evaluation of the interpolated 

images from the subsampled versions. 

4.3 FOS Using Larger Input Blocks 

4.3.1 G e n e r a l i z e d F A B S A l g o r i t h m : F i x e d T h r e s h o l d 

Let us address in what follows first-order image subsampling using larger input blocks, 

which is illustrated in Figure 2.11 (6). Without loss of generality, let the size of the 

input block be 4 X 4. The FANN output consists of four pixels. As in the case of 2 X 2 

blocks, the subsampling rate is 4 : 1. We have divided each 4 x 4 window into four 

2 x 2 blocks. For each 2x2 block, we then evaluated the standard deviation. If the 

standard deviation is higher than a threshold /?/the presence of an edge is detected in 

the input block. Then, the 4-2-1 FANN, trained using our FABS algorithm described 
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earlier, is applied in order to obtain the output pixel value. If the standard deviation 

of the block is smaller than the threshold /3, a smooth block is detected. The output 

pixel value is then set to the average of the four pixels in the 2x2 block. 

The value of the threshold has been set to 43. This selection is based on our 

experimental observation that an edge in the 2x2 input block is likely to be perceived 

if at least two pixel differences are higher than 75 on a 0-255 scale. For example, for 

an input block with the pixel values set to x\ = 75, x2 — 0, x3 = 75, and X4 = 0, the 

standard deviation of the vector obtained by unwrapping the input block is equal to 

approximately 43. Using this method, we are able to determine whether an edge of 

any orientation
3
 is present in the input block. 

4.4 Experimental Results: FABS Algorithm 

In this section we present the values of the parameters, as well as the training and the 

testing sets that have been used in our experiments. The FANN multilayer perceptron 

is trained using the quasi-Newton algorithm with the Levenberg-Marquardt approx­

imation [22, 24]. In the FABS algorithm, the neural structure has the structure 4-2-1 

(M = 4, H = 2, N = 1). The nodes of the neural structure have sigmoidal activation 

functions with slope equal to 0.5. For the still image experiments, the training set 

consists of the 256 x 256 image LENA, and the test set includes the 8-bit 256 x 256 

image TEETH, 512 X 512 images MANDRILL, BOAT and FIGHTER, and 1200 x 1524 

JPEG-2000 test image TOOLS (industrial objects), and a 456 x532 section of the stan-

3
By changing the orientation of the edge, i.e., after the permutation of the pixels inside the input 

block, the value of the standard deviation does not change. 
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dard JBIG bi-level test image F08-200 (black capital letters on white background). 

For experiments using video frames, the training set consists of the standard QCIF
4 

video sequences C L A I R E , G R A N D M A , S A L E S M A N , MlSS A M E R I C A , SUZIE and the 

test set includes M O T H E R - A N D - D A U G H T E R , T R E V O R and C A R P H O N E . In both the 

still image and video cases, the test set has mostly different characteristics than the 

training set, allowing an accurate evaluation of the FANN generalization capabilities. 

The test images consist of mainly texture ( T E E T H ) , sharp edges in all orientations 

(BOAT, F I G H T E R, F08-200, and TOOLS) and a busy image (MANDRILL). The video 

sequences used for testing have also different characteristics, although they all consist 

of head-and-shoulders frames. In the FABS algorithm, each input image or video 

frame is read through a 2 X 2 non-overlapping window, sliding over the entire image. 

We will compare the experimental results obtained by FANN first-order sub-

sampling with those obtained by lowpass filtering followed by subsampling, using 

three different 2-D filters: LPF1, which was designed via frequency sampling, LPF2, 

which is a separable finite impulse response (FIR) filter designed using separable 2-D 

windows, and LPF3, which is a nonseparable FIR filter designed using 2-D windows. 

All of the filters have an order of 11 and a cutoff frequency equal to 0.5 w. The nota­

tions LPF1S, LPF2S and LPF3S will refer to lowpass filtering using the filters LPFl, 

LPF2 and LPF3, respectively, followed by subsampling. The notations LPFlS+int., 

LPF2S+int. and LPF3S+int. will refer to lowpass filtering using these filters followed 

by subsampling and interpolation. The latter is cubic interpolation, if not specified 

otherwise. 

4
In the standard QCIF (Quarter Common Intermediate Format) video format, all luminance 

frames Y are of size 144 x 176 and all chrominance U and V frames are typically of size 72 x 88. 
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4.4.1 S u b s a m p l i n g o f S t i l l Image s 

The FANN was trained using the FABS algorithm and the image LENA. The PSNR 

values (Tables 4.1 and 4.2) using all the test images are better, by an average of 

1.61 dB, for the FANN subsampled (FANNS) and interpolated (bilinear in Table 4.1, 

cubic in Table 4.2) images than for the best LPF subsampled (LPFS) and interpo­

lated images. As expected, cubic interpolation yields better results than those of 

bilinear interpolation. The average improvement with respect to LPF1 subsampling 

followed by bilinear interpolation (see Table 4.1) is equal to 0.5025 dB. The average 

improvement for each image with respect to the three filters is equal to 1.5464 dB. 

The average improvement with respect to LPF1 subsampling and cubic interpolation 

in Table 4.2 is equal to 0.3527 dB. The average improvement with respect to the 

three filters is equal to 1.621 dB. The average improvement with respect to LPF1 

subsampling and interpolation for Tables 4.1 and 4.2 is equal to 0.4276 dB. Finally, 

the average improvement with respect to the three filters for both Tables 4.1 and 4.2 

is equal to 1.5837 dB. 

Not only do the objective results show better FANN performance, but also a 

good visual quality can be observed, as illustrated in Figure 4.6. To better interpret 

the quality of the results, 16 x 16 blocks within the original and interpolated images 

LENA and BOAT, and a 512 X 512 block of the image TOOLS have been magnified. 

The results are illustrated in Figures 4.7, 4.8, and 4.9, respectively. As expected, all 

of the FANNS images have a sharper appearance as compared to the LPFS images. 

Assuming that the initial image has an equally distributed histogram, this can be 

explained by an increase of the histogram density at the tails and a decrease in the 
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Table 4.1: Test PSNR [dB] using still images, when the FANN was trained to sub-

sample the 256 x 256 image LENA. The acronym int. denotes bilinear interpolation. 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. 

Teeth (256 x 256) 29.148 28.288 25.373 24.196 

Mandrill (512 x 512) 22.873 22.547 21.677 21.207 

Boat (512 x 512) 23.463 23.069 22.834 22.662 

Fighter (512 x 512) 25.793 25.363 24.798 23.260 

Table 4.2: Test PSNR [dB] using still images, when the FANN was trained to sub-

sample the 256 X 256 image LENA. The acronym int. denotes cubic interpolation. 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. 

Teeth (256 x 256) 30.570 29.927 26.400 25.043 

Mandrill (512 x 512) 23.246 23.003 22.113 21.607 

Boat (512 x 512) 24.838 24.462 23.424 23.158 

Fighter (512 x 512) 26.279 26.130 25.446 23.733 

middle, due to using the sigmoidal activation function. The histograms of the original, 

LPFS, FANNS and cubic interpolated images BOAT (see Figure 4.6), are illustrated 

in Figure 4.10. The histogram changes are more visible in the rightmost peak and in 

the middle of the histogram corresponding to the FANN subsampled and interpolated 

image. The histogram of the FANN subsampled image also shows that, due to the 

saturation of the sigmoidal function, the FANN does not learn the gray values close 

to 0 or 1. 

In order to determine whether the sharper appearance is due to the preservation 

of edges, we have also computed the histogram of the difference images, between 

the original image and the FANN/LPF subsampled and cubic interpolated images, 

respectively. These histograms are shown in the rightmost column of Figure 4.10. The 
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LPF1 +sub-sampl.+interp. LPF2+sub-sampl.+interp. 

Figure 4.6: Subsampled and cubic interpolated 512 x 512 image BOAT. The FANN was 
trained on the 256 x 256 image LENA using a 2 x 2 non-overlapping window. 
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Original block F A N N S + int. 

Figure 4.7: Subsampled and cubic interpolated 16 x 16 block from the 

256 x 256 image L E N A . 

gray levels in the difference images have been shifted back to the [0, 255] range. The 

histogram of a perfectly reconstructed image would consist of one impulse located at 

zero (or translated, as in our representation). The histogram of the FANN difference 

image is clearly the closest to the ideal histogram. Moreover, Fig ure 4.11 illustrates 

the histogram modification as a result of FANN subsampling and cubic interpolation, 

in a 64 x 64 block in the 512 x 512 BOAT image, confirming that the histogram has 
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Figure 4.8: Subsampled and cubic interpolated 16 x 16 block from the 512 x 512 image 

BOAT. 



Figure 4.9: Original, subsampled and cubic interpolated 512 x 512 block of the 

1200 x 1524 image TOOLS. 
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Figure 4.10: Histograms of the original, filtered, subsampled and cubic interpolated 512 x 512 image 

BOAT. The images used to computed the histograms in the rightmost column have been computed 

as the difference between the original image and the subsampled and cubic interpolated images. 



Original block Original histogram FANNS + int. 

0 0.5 1 0 0.5 1 

Figure 4.11: Histograms of the original and FANN subsampled and cubic inter­

polated 16 x 16 block from the 512 x 512 image BOAT. 

changed both locally and globally. 

Finally, the test results obtained when using the bi-level image F08-200 are il­

lustrated in Figure 4.12. Notice that in the original image, the characters have jagged 

edges. These edges are accurately reproduced in the FANN subsampled and inter­

polated image. The same edges are smoothed in the LPFS and interpolated images. 

The FANN image has a gray background, due to the FANN's inability to accurately 

learn the absolute black and white values, as discussed above. This is illustrated 

by the histograms shown in Figure 4.12. The LPF images, however, preserve well 

the foreground and the background. It is clear that, when tested using a black and 

white character image, the FANN is still able to generalize well. However, in order to 

correctly reproduce the background of a black and white image, either a thresholding 

stage should accompany the FANNS and interpolation, or the FANN training should 

take into account the special characteristics of the bi-level images. 
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Figure 4.12: Original, subsampled and cubic interpolated 512 x 512 block of the 1200 x 1524 image 

F08 200. 



4.4.2 S u b s a m p l i n g o f L u m i n a n c e V i d e o F r a m e s 

In this section, we address first-order spatial subsampling of luminance video frames. 

The FANN used to subsample the luminance frames is trained on a set consisting of 

different Y frames taken from the video sequences CLAIRE (frame 490), GRANDMA 

(frame 490), SALESMAN (frame 49), MlSS AMERICA (frame 49) and SUZIE (frame 

49). Our FANN yields higher PSNRs relative to the LPF methods. The average 

improvement with respect to LPF1 subsampling followed by cubic interpolation in 

Table 4.3 is equal to 1.893 dB. The average improvement with respect to the three 

filters is equal to 3.3 dB. The highest difference is obtained for frames taken from the 

MOTHER-AND-DAUGHTER sequence. 

Table 4.3: Test PSNRs [dB] for spatial FANN subsampling of the 144 x 176 video 

frames. 

Frames FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. 

Mother—and—daughter 

275 29.645 26.769 25.125 24.300 

276 29.635 26.772 25.131 24.307 

491 29.575 26.814 25.124 24.272 

875 29.504 26.841 25.136 24.287 

876 29.459 26.810 25.121 24.278 

Carphone 

50 28.327 27.389 25.555 24.668 

75 28.766 27.819 25.945 25.038 

76 28.738 27.833 25.956 25.046 

275 27.488 26.989 25.529 24.802 

276 27.412 27.052 25.598 24.872 

Trevor 

16 27.927 26.481 24.554 23.63C 

50 28.703 26.700 24.808 23.903 

75 31.785 29.002 27.498 26.770 

76 31.933 29.124 27.577 26.832 
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4.4.3 S u b s a m p l i n g o f N o i s y Image s 

Real image recording systems are not ideal. Therefore, all image samples are usually 

contaminated with noise in various levels, due to sensors (quantum noise) or to circuits 

(thermal noise) [4, 16]. The sources of noise are usually modeled by impulsive, salt-

and-pepper or other types of noise, which can be removed by filtering in a pre­

processing stage. The cost, however, is the time delay associated with the additional 

filtering step. 

In this section, we address FANN subsampling of video frames contaminated 

with noise. The FANN structure used here was trained using the FABS algorithm 

and the same video frames as before, but corrupted with salt-and-pepper noise with 

density of 0.25. Test results using MOTHER-AND-DAUGHTER noisy frames, with 

noise density between 0.05 and 0.5, show clearly better FANN PSNRs as compared 

to the LPFS ones. This is illustrated in Figure 4.13. Moreover, our FANN achieves 

a graceful performance degradation in terms of PSNR values with increasing noise 

density. It is clear that the FANN can effectively attenuate the noise present in the 

frames, while in the standard approach, lowpass filtering accentuates the salt-and-

pepper noise [136]. 

Since the FABS algorithm employs median operations, it is not a surprise that 

its results when using the frames corrupted by salt-and-pepper noise are far superior 

to the lowpass filtering followed by subsampling. Also, it is important to compare 

the subsampling techniques using images corrupted by Gaussian-distributed noise. 

Results for a test frame from the MOTHER-AND-DAUGHTER sequence, with Gaussian 

noise (variance 100), subsampled by the FANN and then cubic interpolated, as well 
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Original Original with s a l t - a n d - p e p p e r noise, dens=0.1 

FANNS+int. LPF1S+int. 

Figure 4.13: Subsampled and cubic interpolated MOTHER-AND-DAUGHTER with 
salt-and-pepper noise. 

as subsampled and interpolated following the standard approach, are given in Figure 

4.14. As in the case of salt-and-pepper noise, the FANN performance degrades 

gracefully as the variance of the Gaussian noise increases, while the LPF results drop 

abruptly. 
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FANNS+int . LPF1S+int. 

Figure 4.14: Subsampled and cubic interpolated MOTHER—AND—DAUGHTER with 

Gaussian noise. 

4.5 Application: Video Coding 

In color video coding, it is common to subsample the chrominance frames, while keep­

ing the luminance component at the same resolution level. This is possible due to the 

lower sensitivity of the human visual system to color information, as compared to its 

sensitivity to the luminance information [19, 8, 123, 137]. The block diagram, illus­

trating the operation of the chrominance subsampling system using FANNs, is shown 
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in Figure 4.15. One FANN has been trained to subsample U frames from the sequences 

C L A I R E (frame 490), G R A N D M A (frame490), S A L E S M A N (frame 49), M i s s A M E R I C A 

(frame 49) and S U Z I E (frame 49). A second network of the same size has been trained 

to subsample the corresponding V frames from the above mentioned sequences. Dur­

ing the testing step, each of the two FANNs is used to subsample chrominance frames 

from the sequences M O T H E R - A N D - D A U G H T E R , C A R P H O N E and T R E V O R sequences. 

PSNRs for U and V frames, computed with reference to the original ones, have sim­

ilar trends for the LPFSs. However, this observation does not hold in the FANN 

case. FANNs tend to generalize such that the PSNR can increase, as in the case of 

the T R E V O R sequence, or decrease as in the case of the C A R P H O N E sequence. Gray 

level reproduction of the subsampled chrominance frame 75 in the T R E V O R sequence 

shows that the FANN processed frames are the closest to the original chrominance 

frames, as illustrated in Figure 4.16. In order to allow the interpretation of the pic­

tures, the transformation (frame — min(frame)) / (max(frame) — min(frame)) has 

been applied to the frames before displaying, where min(frame) and max(frame) 

denote the minimum and the maximum values of the pixels in the original frame, 

respectively. 

In a low bit rate video coding experiment, we applied the FANN to chrominance 

subsampling of U and V frames, previously cubic interpolated
5
. Then, we encoded the 

QCIF test sequence M O T H E R - A N D - D A U G H T E R (150 frames) using Telenor's H.263 

video coder [138]. Both values of the PSNR, given by 

5A11 the available video sequences have the chrominance frames already subsampled and we 
need therefore to upsample them before testing our FANN subsampler. We have employed cubic 

interpolation in order to upsample the chrominance frames. 
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Figure 4.15: Block diagram of the chrominance subsampling system. All the available video sequences have 

the chrominance frames already subsampled and we need therefore to upsample them before testing our 

FANN subsampler. Upsampling has been performed by cubic interpolation. 



Original chrominance (U) frame F A N N S I L P F S I 

Original chrominance (V) frame F A N N S I L P F S I 

Figure 4.16: Gray level representation of the chrominance frames. In order to allow the inter­

pretation of the pictures, the transform (frame — min(frame)) j (max(frame) — min(frame)) 

has been applied to the frames before displaying, where min(frame) and max(frame) denote 

the minimum and the maximum values of the pixels in the original frame, respectively. 



p S N R = 4 PSNR(Y) + PSNR(U) + PSNR(V) 

and visual quality of the obtained video sequence have been compared to the original 

ones, as well as to those obtained by the LPFS system. Several subjective evaluations 

of the video sequence indicate that artifacts were present in the LPFS case, as com­

pared to the generally good quality observed in the FANNS case. Quantitative results 

for the MOTHER-AND-DAUGHTER sequence, at the rates of 8 and 24 kbits/sec, are 

given in Table 4.4. More results, for rates in the range 4 to 32 kbits/sec (in steps 

of 2 kbits/sec) are displayed in Figure 4.17. Clearly, the FANN performance gain is 

substantial, especially at low bit rates (e.g., 1.92 dB at 4 kbits/sec). 

To evaluate the impact of the upsampling performed prior to the chrominance 

subsampling, on our experimental results, we performed the following experiment: we 

converted the RGB still images LENA, MANDRILL, PEPPERS, TIFFANY and FIGHTER 

to the YUV color space, using the NTSC standard formulae. Each of the images has 

the size equal to 512 X 512. We have trained two 4-2-1 FANNS systems to subsample 

the U and V pictures, respectively. The training set consisted of a 256 X 256 block in 

the LENA image, having the same geometric center as the entire image. Training was 

performed for 1000 epochs using our proposed method. Test results after comparing 

the subsampled and cubic interpolated chrominance pictures MANDRILL, PEPPERS, 

TIFFANY and FIGHTER to the original chrominance pictures are included in Table 

4.5. As the results show, the PSNR is higher for the FANNS and cubic interpolated 

images as compared to the LPFS and cubic interpolated images. The quality of the 

reconstructed images is also subjectively good. 
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Table 4.4: PSNRs [dB] for different coding rates (8 kbits/sec and 

24 kbits/sec), when using Telenor's H.263 low bit rate encoder. 

Notation Y stands for the luminance frames, U and V stand for the 

chrominance frames. 

Method 8 kbits/sec 24 kbits/sec 

Y U V Y U V 

FANNS+int. 30.878 37.214 37.381 34.295 39.768 39.610 

LPFlS+int. 30.434 32.838 33.045 33.938 38.031 38.168 
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Figure 4.17: Peak signal-to-noise ratio [dB] with re­

spect to rate in low bit rate experiments using Te­

lenor's H.263 video encoder. 
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Table 4.5: Test PSNR [dB] on chrominance frames, generated by direct 

RGB to YUV conversion. Each of the two FANNs was trained to subsam­

ple a 256 X 256 block of the corresponding 512 x 512 LENA chrominance 
frame (U or V, respectively). 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. 

Mandrill 31.954 31.408 31.139 30.992 

Peppers 35.974 35.743 34.755 34.187 

U Tiffany 35.964 34.949 34.255 33.854 

Fighter 39.851 39.432 38.856 38.590 

Mandrill 32.882 32.501 32.044 31.777 

Peppers 36.313 35.603 34.254 33.512 

V Tiffany 36.828 36.468 35.943 35.657 

Fighter 37.984 37.318 37.003 36.875 

4.6 Experimental Results: GFABS Algorithm with 

Fixed Threshold 

4.6.1 S u b s a m p l i n g o f S t i l l Images 

We have applied the extended FABS algorithm with a fixed threshold /?, described 

in Section 4.3.1, to 4 x 4 blocks. The FANN output consists of four pixels. As in the 

case of 2 x 2 blocks, the subsampling rate is 4 : 1. As expected, our experimental 

results indicate that using 4x4 input blocks as compared to using 2x2 input blocks 

yields significant performance gains. More specifically, we subsampled 512 x 512 test 

images MANDRILL, BOAT and FIGHTER by applying the FANN. The PSNR values 

of the subsampled and then cubic interpolated jmages are 23.431, 27.263 and 30.896 

dB, respectively. These values are higher than the values included in Table 4.2. The 

subjective quality of the images is better as well. 
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4.7 Discussion 

4.7.1 F A N N G e n e r a l i z a t i o n 

An important issue is the generalization ability of the designed FANN. Both still image 

and video subsampling results obtained by applying the basic FABS algorithm favor 

clearly the FANN method as compared to the LPF methods. However, the results are 

more convincing for the video frames, indicating a better FANN generalization ability 

for the latter. The FANN generalization ability depends on the size of the training set 

and the number of FANN parameters. The sizes of the training sets used for our still 

image and video experiments have been evaluated using the theoretical results in [22]. 

However, for the experiments using still images, we have employed only the image 

LENA, as compared to the video experiments where we have employed several frames 

in the FANN training. As expected, by selecting various still images in order to build 

the training set, the performance slightly increases. However, due to the reduced 

number of parameters in our FANNs, the performance does not increase significantly. 

A solution to further improve the performance of the FANN is to increase the size of 

the input windows, as shown in Section 4.6.1. The size of the window is obviously an 

important tradeoff parameter [15], since small windows make the algorithm sensitive 

to high frequency image variations and large windows do not allow the algorithm to 

adapt to local characteristics of the image. Moreover, larger windows increase the 

subsampling time during the testing stage. 

We believe that, in addition to the size of the training set and the size of 

the input block, the difference in FANN performance between still image and video 

experimental results is also due to the characteristics of the test set and to the range 
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of the pixel values in the input images. Although the video sequences employed 

during the testing stage have different characteristics than those employed during the 

training stage, they all consist of head-and-shoulders frames. Thus, the FANN can 

generalize well. By comparison, the still images included in our test set are diverse. 

Moreover, the range of the pixel values in the chrominance frames is rather small, 

as compared to that of the still images in the test set. Thus, the FANN inability 

to learn correctly the 0 and 1 values does not have any impact in the chrominance 

subsampling case, the FANN being able to accurately provide the correct output pixel 

values even at the upper and lower bounds of the pixel value range. 

4.7.2 S p e e d a n d M e m o r y C o m p a r i s o n s 

The speed of our FANN image subsampler depends on the number of required "multi­

ply and add" operations, which is directly related to the number of connections in the 

designed structure. A fully connected M-H-N FANN has [{M + 1) H + (H + 1) N] 

parameters (13 for our network). Thus, the total number of "multiply and add" op­

erations per input window (i.e., per 2 x 2 = 4 pixels) is exactly 

[(M + N) H - (M - N - H + 2)], 

or 7 for our FANN. Our experimental results, shown in Table 4.6, confirm that the 

FANN requires a significantly lower number of "multiply and add" operations as 

compared to the LPFS systems taken into account. The test times on an UltraSparc 

2 computer indicate that the FANNS is an average 5.5 times faster than the LPFS 

system during the testing stage. 

The CPU time required by 1000 training epochs using the 256 x 256 image 
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Table 4.6: CPU times on an UltraSparc 2 computer, number of floating point 

operations and memory requirements. 

Complexity Image FANNS LPF1S LPF2S LPF3S 
indices size 

144 x 176 0.08 0.34 2.12 2.56 
CPU time [sec] 256 X 256 0.19 1.16 6.99 8.47 

512 x 512 0.77 4.81 29.15 35.50 
Floating 144 x 176 234,451 6,154,212 37,902,550 46,035,951 
point 256 x 256 606,227 15,880,676 97,386,710 118,381,551 

operations 512 x 512 2,424,851 63,459,812 388,366,550 472,275,951 
Memory [bytes] 512 x 512 1,048,744 1,049,544 1,056,768 1,056,768 

LENA is equal to 3.218 hours. However, we note that, for both still images and video, 

reducing the testing time is what really matters for the end user. For a large still 

image, such as the 1200 X 1524 TOOLS image of the JPEG-2000 test set, the testing 

(subsampling) times are equal to 3.65 and 24.73 seconds, when the FANN and LPF1 

methods are employed, respectively. Thus, in this case the FANN is 6.77 times faster 

than the LPF1. Finally, as Table 4.6 indicates, the required memory for our FANN 

method is comparable to that of the LPFS's, which makes our FANN trained with 

the FABS algorihtm well-suited for practical applications. 

When the generalized FABS algorithm with a fixed threshold is applied, the 

subsampling time during the testing stage increases 148.06 times, as compared to the 

basic FABS algorithm described in Section 4.2.1. Therefore, methods to reduce the 

testing time should be considered. This problem will be addressed in Section 5.4. 
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4.8 Summary 

We have applied FANN models to first-order image subsampling by proposing a 

new FANN training method which is based on pattern matching. Besides its high 

speed and low memory requirements, as compared to traditional LPFS methods, our 

method has the advantage of better image reproduction quality. Therefore, it can be 

used in a variety of applications, ranging from pyramidal coding [9] to user-defined 

decimation steps in various still image and video coding systems. In particular, we 

have shown the superior performance of our algorithm in chrominance subsampling 

within a low bit rate video coding system. We have also shown that our algorithm 

can be easily generalized for various sizes of the input blocks, with good performance 

results. 
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C h a p t e r 5 

A p p l i c a t i o n o f F A N N s t o 

H i g h - O r d e r I m a g e S u b s a m p l i n g 

( H O S ) 
In this chapter, we apply FANNs to high-order image subsampling (HOS). In Section 

5.1, we comment on the direct application of our FABS algorithm to HOS. In Section 

5.2, we evaluate the performance of our GFABS algorithm. In Section 5.3, we show 

that, by selecting an adaptive threshold, the performance of our GFABS algorithm 

in HOS is significantly improved. In the same section, we next show that the compu­

tational demands of our GFABS algorithms increase with the size of the input image 

and the size of the input window. In order to address this problem, in Section 5.4, 

we reduce the connectivity of the trained FANN by using our TOBD algorithm. The 

performance and computational demands of the resulting tridiagonally symmetrical 

FANNs in HOS are presented and discussed in the same section. A summary of the 

chapter is included in Section 5.6. 
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As stated in Chapter 2 and illustrated in Figure 2.11, high-order image sub-

sampling (HOS) can generally be performed as a single-stage or a multi-stage process. 

In single-stage HOS using large input blocks, the value of the output pixel is difficult 

to select [17]. Moreover, in FANN-based single-stage HOS, training is especially dif­

ficult. Both of the above mentioned problems can be addressed by decomposing the 

high-order subsampling process into several first-order subsampling (FOS) stages. In 

addition to simplifying the subsampling process, this multi-stage FOS (MFOS) solu­

tion provides several images with lower resolution than that of the original image. 

In what follows, our goal is to evaluate the performance and complexity of 

FANN-based multi-stage FOS. Without loss of generality, let us consider a 16 : 1 

subsampling process. Let us also decompose this process into two 4 : 1 first-order 

subsampling stages. In other words, image subsampling by 2 in each direction is 

performed during each of the FOS stages. 

5.1 FABS Algorithm 

We have applied twice the 4-2-1 FANN trained using the FABS algorithm of Chapter 

4 to subsample the input images. In each of the FOS stages, subsampling by 2 in 

each direction has been performed. The sizes of the original images are equal to 

512 X 512. We have obtained downsampled images having the sizes equal to 256 x 256 

and 128 X 128, respectively. Then, we upsampled the 128 X 128 images by cubic 

interpolation: (a) by 2 in each direction, and (b) by 4 in each direction. 

All of the downsampled images have good subjective quality. However, the 

upsampled images obtained using the method (b) show some feature distortion. By 
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evaluating the histograms of the upsampled images obtained using both the methods 

(a) and (6), we note that the second downsampling stage was applied to images 

having already the histogram modified by the FANN. Thus, it is more difficult to 

reconstruct the original image after successive FANN downsampling stages. We have 

employed histogram equalization after the first FANN downsampling stage, but such 

did not improve the results. Therefore, we conclude that, when using multi-stage 

downsampling by FANNs, the histogram should be preserved during each stage as 

much as possible. 

5.2 GFABS Algorithm: Fixed Threshold 

The GFABS algorithm with fixed threshold (described in Section 4.3.1) avoids major 

histogram changes during each downsampling stage. We have applied it twice to 

subsample the images listed in Table 5.1. The size of each of the input windows 

is equal to 4 X 4. The sizes of the downsampled images after each of the successive 

downsampling stages are, again, 256 X 256 and 128 x 128. The PSNR values that have 

been obtained after reconstructing the downsampled images by cubic interpolation 

are included in Table 5.1. These values have been compared with those of the LPFS 

performed also in two successive stages, followed by cubic interpolation. We note that 

the PSNR values obtained using the FANN method are slightly higher for the images 

MANDRILL and FIGHTER. The PSNR values obtained when using the LPF method 

are higher for the image BOAT. However, the subjective quality of the images obtained 

using the FANN method is significantly better than that of the images obtained using 

the LPF method. 
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Table 5.1: Test PSNR [dB] for MFOS using still images. The FANN was 

trained using the GFABS algorithm with fixed threshold. The training 

set consists of the 256 x 256 image LENA. 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. 

Mandrill 20.760 20.656 19.093 18.257 
Boat 22.183 22.684 19.339 17.940 

Fighter 25.347 24.823 19.864 18.164 

5.3 GFABS Algorithm: Adaptive Threshold 

The selection of a fixed threshold value in our FABS algorithm has the advantages 

of simplicity and generally good performance. Moreover, the algorithm can also be 

easily applied to 8 X 8 and 16 X 16 windows, by selecting a different threshold value. 

However, the value of the threshold, which changes with the window size, must be a 

priori selected. Also, using a global value, (i.e., the same value for the entire image), 

the threshold value cannot capture the local characteristics of each of the image 

blocks. A solution to address the above problems is to select adaptively a different 

threshold value for each image block during the subsampling process. 

The GFABS algorithm with adaptive threshold /? is summarized in Appendix 

C. The main idea of the algorithm is to use more local information at the image block 

level than that already employed in the FABS algorithm in order to select the FANN 

desired output value. More specifically, the standard deviation ak of an input image 

k is first computed. Next, the image k is divided into 4x4 windows. Each window is 

then unwrapped into a 16 X 1 vector (pattern). This vector is presented as input to 

the FANN and the output is computed. The FANN desired output is next selected 
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as follows. If the standard deviation of the current block is higher than the standard 

deviation of the corresponding input image, then an edge is declared present in the 

input block. Consequently, the FANN desired output value is selected according to 

the FABS algorithm of Section 4.2.1. Otherwise, the block is declared smooth. The 

FANN desired output value in this case is set to the average of the four pixels in the 

block. Using the FANN output value and the desired output value already computed, 

the value of the error for the current window is obtained. By repeating the above 

steps for all windows in the input image and for all input images, the global error 

value is obtained. Next, the weights are adjusted using the global error value. The 

above steps are repeated until the error value decreases below a selected threshold. 

5.3.1 Exper imental results 

As already mentioned in Section 4.7.2, the subsampling time increases when using the 

GFABS algorithm with fixed threshold. However, we note here that this is mainly due 

to the processing stages that are necessary to evaluate the smoothness of each block 

and not to the FANN structure. In order to address the problem of the increasing 

testing time, we now train the FANN using the GFABS algorithm with an adaptive 

threshold. We also select a larger training set, which consists of 256 x 256 regions from 

the 512 X 512 images LENA, TARGET, G O L D , WoMANl and MAN. These images 

are illustrated in Figure 5.1 (a). The size of each of the images, with the exception of 

the image GOLD,- is equal to 512 x 512 pixels. The image G O L D consists of 576 x 720 

pixels. 

Let the block size be equal to 4 x 4. Also, let the FANN be of the type 16-8-4. 
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(a) 

Figure 5.1: (a) Training and (6) test images. The 16-8-4 FANN was trained using 256 X 256 regions of 

the images (a). The test images (b) have the same size as the images (a). 



We train the FANN for 1000 epochs with the same parameters as those employed in 

Section 4.4. The PSNR values for first-order subsampling are included in Table 5.2. 

Since only one quarter of each of these images has been employed in FANN training, 

the PSNR values in Table 5.2 are, to some extent, test results. For all of these images, 

with the exception of the image GOLD, FANNS leads to better results than the LPFS 

methods. In the case of the image GOLD, we believe that the slightly lower FANN 

performance is due to the different characteristics of the large flat areas in the bottom 

half and right side of the image, which have not been included in the training set. 

The test PSNR values for various test images, which are illustrated in Figure 

5.1 (b), are included in Table 5.3. For all of the images in Table 5.3, the FANN 

results are very good. Particularly, the test results for the images MANDRILL, BOAT 

and FIGHTER are significantly better than those in Table 4.2, corresponding to the 

4-2-1 FANN trained using the FABS algorithm. Moreover, in all cases, the FANN 

results outperform the results obtained by applying the LPFS methods. The FANN 

results outperform, on average, by 1.758 dB the best LPFS method employed in our 

comparisons. The FANN results also outperform, on average, by 0.158 dB those of 

subsampling via median filtering (MEDS) method, employed here in order to compare 

the FANN performance to that of conventional nonlinear filtering. 

For all of the test images, the subjective quality is good as well. The FANN 

subsampled 256 X 256 images have a sharper appearance than the LPF1S and than 

the median filtered images. The images reconstructed by cubic interpolation after 

FANN subsampling have also a better quality than those reconstructed after LPF1S 

and than those reconstructed after MEDS, especially in the high detail and in the 
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Table 5.2: Training PSNR [dB] for FOS of still images. The 16-8-4 FANN was 

trained using 256 x 256 regions of these images and the GFABS algorithm with 

adaptive threshold. The size of each image is equal to 512 x 512 pixels, with the 

exception of the image GOLD which has the size equal to 576 X 720 pixels. 

Image FANNS+int. 

Conventional methods 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int. 

Lena 33.118 31.184 27.559 26.066 33.157 

Target 15.921 15.656 15.505 15.379 15.889 

Gold 31.288 31.504 28.466 27.102 31.106 

Woman 1 29.060 28.864 26.168 24.900 29.020 

Man 30.255 29.225 26.855 25.723 30.226 

Table 5.3: Test PSNR [dB] for FOS using 512 x 512 still images. The 16-8-4 FANN 

was trained using 256 X 256 regions of the images shown in Table 5.2 and the GFABS 
algorithm with adaptive threshold. 

Image FANNS+int. 

Conventional methods 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int. 

Mandrill 23.424 23.003 22.113 21.607 23.338 

Boat 26.831 24.462 23.424 23.158 26.2404 

Fighter 30.852 26.130 25.446 23.733 30.906 

Seismic 37.389 34.105 28.832 27.034 36.535 

Bird 36.496 33.601 29.019 27.293 36.424 

Truck 32.650 31.335 27.472 27.171 32.618 

Couple 28.885 27.947 25.824 24.798 28.952 

Crowd 31.166 31.044 28.542 27.417 31.412 
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smooth areas, respectively. 

Next, we applied the trained FANN to subsampling of large images in the 

JPEG-2000 image set. As Table 5.4 shows, for most of these images, the FANN 

PSNR values are slightly higher as compared to those of the LPFS methods. More 

specifically, the FANN results outperform, on average, by 0.35 dB those of the best 

LPFS method employed in our comparisons. Moreover, the FANN results outperform, 

on average, by 0.498 dB those of the MEDS method. Finally, note that the FANN 

achieves better performance although the resolution of the JPEG-2000 images is very 

different than that of the training images. 

We next apply the 16-8-4 FANN trained earlier using the GFABS algorithm 

with adaptive threshold to high-order subsampling. In other words, we apply twice 

the FANN to the images included in Tables 5.5 and 5.6, respectively. The FANN 

performance for the images in Table 5.5 is close to that of the LPF1S. However, FANN 

generalizes well, as shown by the results included in Table 5.6. For all the test images, 

with the exception of the image B O A T , the test PSNR values for FANN subsampling 

are higher than those of the LPF followed by subsampling. The FANN results also 

outperform, on average, by 0.7 dB those of the best LPFS method employed in our 

comparisons. Finally, the FANN results are slightly higher than those of the MEDS 

method. 

For all of the FANN subsampled and interpolated images, the subjective quality 

is good as well. Let us illustrate this by using the example of the 512 x 512 test image 

B I R D , shown in Figure 5.2. The FANN subsampled 128 x 128 image B I R D , which is 

illustrated in Figure 5.3 (a), has again a sharper appearance than the LPF1S image 
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Table 5.4: Test PSNR [dB] for FOS using large JPEG-2000 still images. The 16-8-4 FANN was 

trained using 256 X 256 regions of the images shown in Table 5.2 and the GFABS algorithm with 

adaptive threshold. 

Image Image 

size FANNS+int. 

Conventional methods Image Image 

size FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int. 

Txturl 1024 x 1024 20.991 20.977 20.355 20.003 20.982 

Mat 1146 x 1528 32.664 32.630 28.269 26.623 33.391 

Tools 1200 x 1524 22.060 22.075 21.110 20.653 22.402 

Water 1999 x 1465 41.024 38.119 30.145 27.986 41.161 

Aerial2 2048 x 2048 28.980 29.780 26.315 24.843 29.349 

Cafe 2560 x 2048 22.085 22.011 21.240 20.849 22.334 

Woman 2560 x 2048 27.637 27.404 25.304 24.293 22.334 



Table 5.5: Training PSNR [dB] for MFOS. The 16-8-4 FANN was trained using 

256 X 256 regions of these images and the GFABS algorithm with adaptive threshold. 
The size of each image is equal to 512 x 512 pixels, with the exception of the image 

GOLD, which has the size equal to 576 x 720 pixels. 

Image FANNS+int. 

Conventional methods 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int. 

Lena 27.443 26.648 22.352 20.766 27.490 

Target 14.288 14.342 13.918 13.627 14.256 

Gold 27.002 27.833 23.704 22.120 27.271 

Woman 1 25.548 25.691 21.675 20.123 25.544 

Man 25.685 25.331 22.175 20.844 25.683 

Table 5.6: Test PSNR [dB] for MFOS. The 16-8-4 FANN was trained using 256 x 256 

regions of the images shown in Table 5.5 and the GFABS algorithm with adaptive 

threshold. 

Image FANNS+int. 

Conventional methods 

Image FANNS+int. LPFlS+int. LPF2S+int. LPF3S+int. MEDS+int. 

Mandrill 20.749 20.656 19.093 18.257 20.657 

Boat 22.025 22.684 19.339 17.940 22.364 

Fighter 25.147 24.823 19.864 18.164 25.051 

Seismic 29.602 28.081 23.060 21.347 29.535 

Bird 32.604 30.263 23.952 22.061 32.529 

Truck 28.570 27.729 23.764 22.240 28.522 

Couple 24.555 24.005 21.226 20.005 24.562 

Crowd 24.956 24.415 22.970 21.869 24.973 
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Figure 5.2: Original 512 x 512 image B I R D . 

Figure 5.3: Subsampled image B I R D by (a) FANNS, (b) LPF1S, and (c) MEDS. The 

size of each subsampled image is 128 x 128. 
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Figure 5.4: Reconstructed 512 x 512 image B I R D by cubic interpolation after 

(a) the 16-8-4 FANN and (6) LPF1S have been applied twice to achieve HOS. 



Figure 5.5: Reconstructed 512 x 512 image B I R D by cubic interpola­

tion after the median subsampler has been applied twice to achieve 

HOS. 

illustrated in Figure 5.3 (b). Moreover, the FANN subsampled image illustrated in 

Figure 5.3 (a) has a better quality than the median filtered image illustrated in Figure 

5.3 (c), which contains some background artifacts. Figures 5.4 (a) and (b) show that 

the image reconstructed by cubic interpolation after FANN subsampling has also a 

better quality than that of the image reconstructed after LPF1S. The latter image 

is smoother, indicating that some of the details are permanently lost. Moreover, as 

Figure 5.4 (a) and Figure 5.5 show, the image reconstructed after FANNS has also 
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a better quality than that of the image reconstructed after MEDS, which contains 

significant artifacts in the smooth image regions. 

5.3.2 C o m p u t a t i o n a l D e m a n d s 

As stated earlier, higher testing times when using the FABS algorithm with 

fixed threshold (see Section 4.7.2) are due to the steps required to evaluate the smooth­

ness of each block. To address this problem, in Section 5.3, we trained the 16-8-4 

FANN using the GFABS algorithm with adaptive threshold. The training CPU time 

for 1000 epochs is equal to 58.263 hours, or 2.4276 days, on an Ultrasparc 2 computer. 

The testing CPU times in the case of first-order subsampling of the images listed in 

Table 5.4 are illustrated in Figure 5.6. Clearly, the CPU testing time increases ap­

proximately linearly with the image size, for image sizes between 262 kbytes and 6.3 

Mbytes. However, the slopes of the LPFS curves have significantly larger values than 

those corresponding to the FANNS curves. A detail of Figure 5.6, which illustrated 

in Figure 5.7, shows that the FANNS gain with respect to the fastest of the LPFSs 

becomes higher as the image size increases. The CPU time required by FANNS is 

slightly higher than that required by MEDS, as Figure 5.7 also shows. It is also useful 

to evaluate the number of floating point operations (FLOPS) in the testing stage. As 

Figure 5.8 illustrates, the number of FLOPS for FANNS, LPF1S and LPF2S, when 

testing images having sizes between 262 kbytes and 5.2 Mbytes, increases almost 

linearly for FANNS and LPF1S and nonlinearly for the other filters. 

The graphical representation of the testing times for high-order subsampling is 

illustrated in Figure 5.9. For comparison purposes, the numerical values of the FOS 
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Figure 5.6: Test time [sec] for FOS of large images. The FANN has a size 

of 16-8-4. 
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Figure 5.7: A section of Figure 5.6, illustrating the FANNS, LPFIS and 

MEDS test times for large images. 
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Figure 5.8: Number of floating point operations (FLOPS) for FOS 

of large images. The FANN has a size of 16-8-4. 
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Figure 5.9: Test time [sec] for HOS of large images on an UltraSparc 2 

computer. The 16-8-4 FANNS, LPFS and MEDS have been applied twice 

to subsample the test images. 
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and HOS testing times are included in Table 5.7. Clearly, our FANNS method out­

performs in all cases the LPFS methods in terms of efficiency. At the same time, our 

FANNS method is slightly outperformed by the MEDS method in terms of efficiency. 

We also note that the computational demands for the FANN increase significantly 

with the image size. Moreover, they also increase with the size of the input window. 

5.4 Tridiagonally Symmetrical FANNs and 

the GFABS Algorithm 

A solution to address the problem of increasing computational demands with the 

image size is to reduce the connectivity of our 16-8-4 FANN trained using the GFABS 

algorithm with adaptive threshold. We reduce the connectivity of the trained FANN 

using our TOBD algorithm described in Chapter 3. After each of the TOBD pruning 

stages, the FANN is re-trained for 100 epochs. The number of the re-training epochs 

is here selected by imposing the following condition. We require that the total number 

of the re-training epochs be approximately equal to the original number of FANN 

training epochs. The learning (re-training) curve for our FANN pruned using the 

TOBD algorithm is illustrated in Figure 5.10, where the peaks indicate pruning steps. 

The subjective quality of the images obtained by applying the FANN using 

the TOBD algorithm to first-order image subsampling is good. As Figure 5.11 (a) 

illustrates, the subsampled image B I R D has good subjective quality. Howeve;:, a 

patterned background is also present. This is "due to the insufficient number of re­

training epochs after each pruning stage. Of course, a solution to eliminate the 
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Table 5.7: CPU test times [sec] for FOS and MFOS on an UltraSparc 2 computer. The 16-8-4 FANN 

was trained using 256 X 256 regions of the images shown in Table 5.5 and the GFABS algorithm with 

adaptive threshold. 

Image size First-order subsampling Multi-stage first-order subsampling Image size 
FANNS LPF1S LPF2S LPF3S MEDS FANNS LPF1S LPF2S LPF3S MEDS 

512 x 512 2.69 3.71 22.43 27.10 2.16 3.26 7.64 25.78 30.97 2.70 
576 X 720 4.22 5.84 35.31 42.93 3.46 5.26 10.25 39.27 46.75 4.78 
1024 x 1024 11.10 14.28 86.39 105.24 8.87 13.00 37.82 110.41 129.50 11.25 
1146 x 1528 17.58 23.79 144.39 175.48 14.34 22.09 63.93 183.40 214.15 19.16 
1200 x 1524 18.51 24.83 151.20 183.42 15.06 23.19 58.81 187.02 217.69 20.79 
1999 x 1465 29.23 39.78 241.60 293.80 25.25 36.43 127.29 326.02 379.83 31.52 

2347 x 1688 40.46 54.21 326.28 396.89 30.28 50.87 210.01 478.13 548.00 45.77 
2048 x 2048 44.59 57.68 349.76 424.94 36.75 53.57 249.71 538.44 610.69 47.11 

2560 x 2048 52.45 71.36 433.88 525.30 48.88 66.84 328.76 688.63 783.20 60.63 

3072 x 2048 66.27 85.71 517.99 630.45 57.74 81.51 373.09 805.14 915.17 74.02 
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Figure 5.10: Learning curve for a 16-8-4 FANN pruned using the TOBD algorithm. 

The peaks indicate the first 5 pruning steps. The FANN has been trained for 100 

epochs after each pruning step. 

patterned background is to increase the number of the re-training epochs. However, 

this is time consuming. Another solution is to apply a post-processing stage after 

subsampling. For example, by simply filtering the subsampled image with a median 

filter using 2x2 image blocks, the image quality is greatly improved. This is illustrated 

in Figure 5.11 (b) which shows that most of the artifacts have been removed. The 

512 x 512 image B I R D reconstructed by cubic interpolation using the subsampled and 

filtered image in Figure 5.11 (b) is illustrated in Figure 5.12. The reconstructed image 

has good subjective quality as well. We note that it is important that filtering be 

applied before the interpolation stage. Otherwise, the artifacts are accentuated and 

the quality of the reconstructed images is worse, even if a filtering stage is applied 

after interpolation. 

The test PSNR values obtained by applying the FANN pruned using the TOBD 
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Figure 5.11: (a) Subsampled image B I R D by tridiagonally symmetrical FANN subsampling and (b) sub-
sampled image B I R D by tridiagonally symmetrical FANN subsampling followed by median filtering using 

2 x 2 blocks. The size of each subsampled image is 256 x 256. 



Figure 5.12: Reconstructed 512 x 512 image B I R D by cubic inter­

polation, using the subsampled image illustrated in Figure 5.11 (b). 

algorithm to first-order image subsampling followed by median filtering and then re­

constructing the subsampled images by cubic interpolation are included in the second 

column of Table 5.8. As expected, these values are lower (by an average of 1.777 dB) 

than those in Table 5.3 corresponding to the fully connected FANN. Note, however, 

that the tridiagonally symmetrical FANN has only 33 weights as compared to the 

fully connected FANN which has 160 weights. 

When applying the tridiagonally symmetrical FANN to MFOS, several solu­

tions to remove the background artifacts introduced by each of the FOS stages can 
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Table 5.8: Test PSNR [dB] for FOS and MFOS using a 16-8-4 

tridiagonally symmetrical FANN and 512 x 512 still images. The 

FANN was trained using 256 X 256 regions of the images illus­
trated in Figure 5.5 (a) and the GFABS algorithm with adaptive 

threshold, and pruned using the TOBD algorithm. For MFOS, 

the notations (a)-(cx) refer to the experiments illustrated in Fig­

ure 5.13. 

Image First-order Multi-stage first-order 

subsampling subsampling 

(a) (c) (d) 

Mandrill 22.449 20.294 21.045 20.721 21.108 

Boats 24.052 20.004 22.574 21.694 22.188 

Fighter 30.344 20.443 25.119 23.674 23.876 

Seismic 36.219 27.672 28.517 28.473 28.698 

Bird 32.702 26.927 32.330 30.178 30.829 

Truck 30.606 25.563 27.826 26.860 27.760 

Couple 27.411 21.784 24.813 23.693 24.298 

Crowd 29.688 21.405 24.596 23.264 24.046 

be applied. Similarly to the FOS case, a higher number of re-training epochs after 

each pruning step may be selected. However, this is, again, a time consuming so­

lution. Alternatively, a simple post-processing step such as median filtering can be 

applied after each of the FOS stages. Finally, the tridiagonally symmetrical FANN 

can be combined with a fully connected FANN in order to eliminate the artifacts. 

The latter solutions are illustrated in Figure 5.13. In Figure 5.13 (a), two identi­

cal FOS stages using the tridiagonally symmetrical FANN are being employed. As 

discussed above, median filtering using 2 x 2 image blocks is performed after .ach 

of the first-order subsampling stages. In Figure 5.13 (b) the first of the FOS stages 

is being performed using the tridiagonally symmetrical FANN. Then, the patterned 
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background is eliminated by applying median filtering. In the second subsampling 

stage, a fully connected FANN is applied. It is possible to reverse the order of these 

FOS stages, that is to first apply the FC-FANN, followed by the TS-FANN and 

the median filtering stages. This solution is illustrated in Figure 5.13 (c). Another 

option is that illustrated in Figure 5.13 (d), where a 16-8-4 TS-FANN and a 4-2-1 

FC-FANN are applied to the image. In this case, the second FANN simultaneously 

eliminates the patterned background and subsamples the image. We note that no 

additional filtering stage is here needed. 

The test PSNR values obtained in the experiments illustrated in Figure 5.13 

are included in Table 5.8. For all of the test images, the highest PSNR values are 

obtained in the experiments illustrated in Figures 5.13 (b) and (d). All of the PSNRs 

in these two experiments are higher than those of the best LPFS method in Table 5.6. 

However, the results in the experiments (b) and (d) are also lower, by an average of 

0.173 dB and 0.675 dB (respectively), than the results obtained using the FC-FANN 

(also included in Table 5.6). The results in the experiments (a) and (c) are lower, by 

an average of 3.014 dB and 1.206 dB (respectively), than those of the FC-FANN. 

This is expected since the number of weights of the TS-FANN is much smaller than 

that of the fully connected FANN. In Figures 5.14 and 5.15, which illustrate examples 

of subsampled and reconstructed images in the experiment shown in Figure 5.13 (6), 

the subjective image quality is clearly good, as well as in Figures 5.16 and 5.17, which 

illustrate examples of subsampled and reconstructed images in the experiment shown 

in Figure 5.13 (d). In the latter figure, the overall image quality is good, although 

some feature distortion is present in smooth areas such as the background. 
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Figure 5.13: Multi-stage FOS options using pruned FANNs. The notations FC -

FANN and TS - FANN stand for fully connected FANN and tridiagonally symmet­

rical FANN, respectively. 
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Figure 5.14: Subsampled image B I R D using (a) a 16-8-4 TS — 

FANN and a FC-FANN for each of the FOS stages, respectively. 

The image (b) was obtained by inserting a median filtering stage 
after the first FOS stage. 

Figure 5.15: Reconstructed 512 x 512 image B I R D by cubic inter­
polation using the subsampled image illustrated in Figure 5.14 (6). 
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Figure 5.16: Subsampled image BIRD after (a) the first FOS stage using a 16-8-4 

TS - FANN and (b) the second FOS stage using a 4-2-1 FC - FANN. The 

sizes of these images are equal to 256 x 256 and 128 X 128, respectively. 

The PSNR values obtained via the experiment illustrated in Figure 5.13 (c) 

are slightly lower than those in the experiment (6), suggesting that the first of the 

FOS stages should be performed using the tridiagonally symmetrical FANN. The 

lowest PSNR values are obtained in the experiment illustrated in Figure 5.13 (a). 

This is expected, since the artifacts that result after each of the FOS stages have not 

been removed. The subsampled images still have good subjective quality (with the 

exception of the patterned background), although visible artifacts are present in the 

interpolated images. 
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Figure 5.17: Reconstructed 512 x 512 image BIRD by cubic interpola­
tion using the subsampled image illustrated in Figure 5.16 (6). 

5.5 Discussion 

In this section, we comment on important issues such as the generalization ability 

of the tridiagonally symmetrical FANN applied to first-order and high-order image 

subsampling and the computational demands in the testing (subsampling) stage. 

5.5.1 F A N N G e n e r a l i z a t i o n 

Based on the results included in Table 5.8, showing that the PSNR values obtained 

in the experiments illustrated in Figure 5.13 are lower than those obtained by using 
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fully connected FANNs, it may seem that the generalization ability of the tridiago­

nally symmetrical FANN decreases after the pruning process. However, we note that 

after two TOBD pruning steps and their corresponding re-training stages, the PSNR 

values for all of the test images reconstructed after first-order subsampling using the 

tridiagonally symmetrical FANN are higher than those in Table 5.3, corresponding 

to the fully connected FANN. In other words, the generalization ability of the FANN 

actually increases after pruning some of the weights. After three TOBD pruning steps 

and their corresponding re-training stages, the PSNR values for all of the test images 

reconstructed after FOS slightly decrease as compared to the values obtained after 

two pruning steps. The test PSNR values after three pruning stages for all of the 

images are still higher than those in Table 5.3 corresponding to the fully connected 

FANN. In terms of subjective image quality, there are no perceivable changes in the 

reconstructed images. 

Similarly, after two TOBD pruning steps and their corresponding re-training 

stages, the PSNR values for all of the test images reconstructed after applying the 

FANN twice are higher than those in Table 5.6 corresponding to the FC-FANN. After 

three TOBD pruning steps and their corresponding re-training stages, the PSNR 

values for all of the test images reconstructed after MFOS using the TS-FANNs 

slightly decrease as compared to the values obtained after two pruning steps. The 

test PSNR values after three pruning stages for all of the images are still higher than 

those in Table 5.6 corresponding to the fully connected FANN. In terms of subjective 

image quality, there are again no perceivable changes in the reconstructed images. 

Clearly, the generalization ability of the FANN increases as a result of tridi-
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agonally symmetrical pruning using our TOBD algorithm. However, note that the 

final, pruned FANN has only 33 weights, as compared to the fully connected FANN 

which has 160 weights. This motivates the loss in the PSNR values if many weights 

are deleted. In order to continuously increase the PSNR values, a higher number of 

FANN re-training epochs after each of the pruning steps would be required. This 

is not an efficient solution. Instead, we have shown that, by re-training the FANN 

for a small number of epochs after each of the pruning steps, good image quality is 

obtained when applying the solutions illustrated in Figure 5.13. The experimental 

results included in Section 5.4 suggest that the best solutions in terms of subjective 

image quality and PSNR values have been obtained using the systems illustrated in 

Figures 5.13 (6) and (d). 

The generalization ability of the FANNs applied to image subsampling depends 

on the resolution of the training images. When the test images have resolutions equal 

or close to those of the training images (as in the case of most of our experiments), 

the FANN generalizes well. When the test images have resolutions which are very 

different from those of the training images, as shown in Table 5.4, good results have 

been obtained although the FANN generalization ability decreases. A solution to 

address this problem is to introduce some type of scale/resolution invariance in the 

subsampling process. This invariance can be introduced via the training set or via 

the training/subsampling algorithm. In the former case, different training sets for 

each of the FANNs employed in the FOS stages must be used. Each of these training 

sets consists of images having a resolution which is lower than that of the images 

in the training set employed for the preceding FANN. In the latter case, additional 
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processing stages must be employed in the training algorithm. 

Finally, we note that we have evaluated both the subsampled and reconstructed 

images. As stated earlier, cubic interpolation (which is commonly used in many 

applications) has been employed in order to reconstruct the images. Of course, other 

types of interpolation may also be selected. Moreover, the interpolation process can 

be optimized using information about the subsampling algorithm. However, this has 

not been the focus of our work. 

5.5.2 C o m p u t a t i o n a l D e m a n d s 

As illustrated in Section 5.3.2, the fully connected FANN subsampling method is much 

faster than the LPFS methods and almost as fast as the MEDS method. Our goal 

was to further increase the speed of FANN subsampling by pruning the FANN with 

tridiagonally symmetry constraints. In order to asses the efficiency of the resulting 

TS—FANN with respect to that of the FC—FANN, we now evaluate the computational 

demands of the former when applied to FOS and MFOS. 

The number of weights in the fully connected 16-8-4 FANN is equal to 160. 

The number of weights in the tridiagonally symmetrical 16-8-4 FANN is equal to 

33. Therefore, the number of parameters that need to be saved decreases 4.85 times 

for the TS—FANN. Moreover, the subsampling time when using the 16-8-4 tridiag­

onally symmetrical FANN applied to first-order image subsampling is one fifth of 

that required by the 16-8-4 FC-FANN. Clearly, there is a substantial gain in terms 

of speed as compared to the fully connected FANN, which is especially desired for 

images having large sizes. 
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The number of weights that need to be saved in the MFOS experiments illus­

trated in Figures 5.13 (a), (b), (c) and (ci) is equal to 33, 160, 160 and 43, respectively. 

Clearly, the number of weights in each of the cases (b) and (c) is equal to that of the 

fully connected FANN, since both the tridiagonally symmetrical FANN and the fully 

connected FANN are employed in different subsampling stages. I n Figure 5.13 (ci), 

only the parameters of the TS-FANN and those of the 4-2-1 FC-FANN must be 

saved. The CPU times required by the MFOS experiments (shown in Figure 5.13) 

are illustrated in Figure 5.18. The test images are, again, those listed in Table 5.4. 

Note that the lines corresponding to the fully connected FANN and to the median 

subsampler, which are the same as those having the smallest slopes in Figure 5.6, 

are the reference with respect to which the solutions (a)-(ci) obviously provide higher 

subsampling speeds. 

On average, the MFOS solutions illustrated in Figures 5.13 (a), (6), (c) and 

(ci) are 2.48, 1.84, 1.11 and 3.30 times faster, respectively, than the MFOS using 

FC—FANNs (see Table 5.7). We note that, although the same number of weights is 

being used in the experiments (b) and (c), which is equal to that of a fully connected 

FANN, their subsampling speeds are different. First, the subsampling process in each 

of these cases is clearly faster than that employing two FC-FANNs. This is due to 

employing a tridiagonally symmetrical FANN in one of the FOS stages. Which of 

the FOS stages employs such an FANN has an impact on the subsampling speed. 

For instance, the subsampling process is faster in the experiment (6) than that in 

(c), since the tridiagonally symmetrical FANN is applied in the first FOS stage to the 

original (larger) image. The fastest solutions are provided by the solutions (ci) and (a). 
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2 4 
Image s i z e [ b y t e s ] x 10 

Figure 5.18: CPU times [sec] for MFOS on an UltraSparc 2 computer using 
a 16-8-4 TS-FANN. For HOS the notations (a)-(d) refer to the experiments 

illustrated in Figure 5.13. The acronyms FC and MEDS denote the 16-8-4 

fully-connected FANN and the median subsampler, respectively. 
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The best tradeoff is provided by the solution (d), which requires a small number of 

weights to be stored and which provides the highest speed and a consistently quality 

of the obtained images. Solution (6) also yields a good tradeoff, more specifically, 

a doubling of the subsampling speed and the best quality of the obtained images. 

Solution (a) leads to faster multi-stage subsampling schemes, but it also requires 

longer re-training stages in order to achieve good image quality. 

5.6 Summary 

In this chapter, we have applied FANNs to high-order image subsampling, more 

specifically, to multi-stage first-order image subsampling. We have generalized our 

previously introduced FABS algorithm. Then, we have evaluated its performance 

when fixed and adaptive thresholds are selected. We have also shown that, although 

our FANNs trained using the GFABS algorithm yield good performance and higher 

speed than that of the LPFS method, their computational demands increase with 

the image size and the size of the input windows. In order to address this problem, 

we next pruned the fully connected FANNs using our TOBD algorithm proposed in 

Chapter 3. The performance and computational demands of the resulting tridiago­

nally symmetrical structures have been evaluated. We have shown that, depending 

on the application requirements, different MFOS solutions can be employed, lead­

ing to a good subjective quality of the images. Moreover, the resulting systems are 

approximately 2 to 3.3 times faster than the systems employing the fully connected 

FANN. 
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C h a p t e r 6 

Conclus ions and F u t u r e W o r k 

6.1 Thesis Contributions 

This thesis has addressed feedforward neural network design with application to image 

subsampling. Our particular focus has been on both the topological design of FANN 

structures and the FANN training algorithm, such that fast and compact FANNs, 

with good subjective and objective performance in first-order and high-order image 

subsampling are obtained. The main contributions of the thesis are: (1) an algorithm 

with tridiagonal symmetry constraints for FANN design, (2) a training algorithm 

for FANNs that leads to good performance in image subsampling, (3) the design, 

thorough performance and complexity evaluation of fully connected FANNs in FOS 

and MFOS, and (4) the design, thorough performance and complexity evaluation of 

tridiagonally symmetrical FANNs in FOS and MFOS. 

We proposed the tridiagonally symmetrical Optimal Brain Damage (TOBD) 

algorithm, first introduced in [110, 112], to design TS-FANN structures. We have 
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illustrated, via a simulation example, that the number of the FANN parameters is 

reduced substantially by applying our algorithm, without a significant loss in perfor­

mance. Moreover, the resulting TS-FANNs are fast, compact, and easy to implement. 

Next, we proposed a new training algorithm for FANN structures when applied 

to image subsampling [111, 113, 114]. This second phase of our research was motivated 

by an important observation, that is the presence of blocking artifacts in the repro­

duced images when FANN-based image subsampling is generally performed. We have 

shown that, our proposed training algorithm addresses this problem by employing a 

pattern-matching method to extract, during FANN training, geometrical informa­

tion from each processing window. Results for still images and video sequences were 

presented, showing the superior performance of the fully connected FANNs trained 

using our proposed algorithm in image subsampling. We have evaluated the results 

objectively, subjectively and in the context of a video coding application. 

An important result which motivated the third stage of our research is that, 

despite the fully connected FANN structures being much more efficient than the low-

pass filtering and subsampling methods, the testing (subsampling) time in high-order 

(particularly multi-stage first-order) image subsampling increases linearly with the 

image size. We therefore reduced the connectivities of our trained FANN structures 

applied to image subsampling using our FANN design algorithm [112]. We showed 

that the application of the resulting fast and compact FS—FANNs to FOS and MFOS 

yields very good tradeoffs in terms of performance and complexity. More specifically, 

the speed of our FANN-based subsampler increases 2 to 3.3 times while preserving a 

good quality of the resulting images. Thus, the TS—FANNs are more efficient than 
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both FC-FANNs and conventional subsampling methods, yielding the same or even 

better image quality. In all of our experiments, we evaluated image quality by using 

objective criteria such as the PSNR, and by subjective assessment of the reconstructed 

images. 

6.2 Future Research Directions 

The theoretical and practical advantages of our designed FANN structures suggest 

that further investigation and experimentation are worth pursuing. This dissertation 

is only a preliminary exploration of what these neural structures can offer. Among 

the possible research topics to extend and improve the work included in this thesis 

are: 

1. Develop an extension of our design algorithm with tridiagonal symmetry con­

straints that takes into account a priori information about symmetries in the 

application problem. This can lead to application-optimized TS—FANNs. 

2. Apply TS—FANNs to temporal and spatio-temporal subsampling of video se­

quences. 

3. Address the problem of scale/resolution-dependence in FANN generalization 

abilities by including invariance to scale/resolution in the training algorithm. 

4. Optimize the subjective/objective quality of the reconstructed images by de­

signing an interpolation method that takes into account the particularities of 

the subsampling process. 
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A p p e n d i x A 

T h e T O B D Algorithm 
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1. Train the network, until the error C < e6, with e6 given. Save the input-hidden 

and the hidden-output weight matrices, that is, 

W = {wih, 1 < i < M, 1 < h < H} and V = {vhj, l<h<H,l<j<N}. 

2. Compute the OBD saliencies, 

3. IF the minimum saliency weight belongs to an input-hidden connection with 

weight wi*h., THEN 

3.1 IF i* ^ h*, THEN 
Prune u w * {wi*h* = 0). Assign m* = min(i*, h*). 

ELSE (i* = h*), assign m* = i*. 
END. 

For the diagonal element with index m*, continue with Steps 3.2—3.6 

3.2 Build the M x M square matrix W by padding W with zeros. 

3.3 Build the vector q = [qi, q2, ... , qm}T with <?; given by (3.2). 

3.4 Build the matrix & using (3.1). Perform the transform 

and normalize the elements of the resulting matrix. 

3.5 Re-train the network until the error is lower than e7. 

3.6 IF the weight matrix is not tridiagonal, GO TO Step 2; ELSE END. 

END. 

4. IF the minimum saliency weight belongs to a hidden-output connection Vh*j*, 

with 1 < h* < H and 1 < j* < N, 

IF TV > 1, THEN 

GO TO Step 3.1 and apply the subsequent steps for the element Vh*j*. 

ELSE (N = 1) 

IF h* = 

IF h* = 

IF h* = 

and H is even, THEN Prune Vh*j* and Uff-/ l* + i, i 7 ' * -

and H is odd, THEN Prune Vh*j* and VH-h*,j*-

+ 1 and VH, THEN Prune v^.. 

IF The weight matrix is not tridiagonal, GO TO Step 2; ELSE END. 

END. 

END. 
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A p p e n d i x B 

The FABS Algorithm 

145 



REPEAT 

1. FOR each input window (pattern) c f , where 1 < cf < P and P is the maximum 

number of patterns, 

(a) Compute the actual FANN output value y ( c f ) given by expression (4.1). 

(b) Compute the median of all possible three-pixel combinations, as illus­

trated in Figure 4.3 and compare it to the value of the fourth pixel in the 

window, yielding the values given by the expressions (4.2). 

(c) Compute the minimum <?*(£) of the error values given by the expressions 

(4.2) for the current input window. 

(d) Set the desired output value to i i ( c f ) = x^ ( c f ) , where /* is the value 

of / for which the minimum in (4.3) is reached. The function ( c f ) is 
equal to x m > n ( c f ) , x m, n-i ( c f ) , i r o + i , » - i ( c f ) or xm+hn ( c f ) if /* = 1, 2, 3 or 

4, respectively. 

END. 

2. Compute the global error C (w) at the end of one epoch by adding the squared 

errors e (c f ) for all the input patterns. 

3. Modify the weights according to a quasi-Newton rule. 

UNTIL the stop condition is met. 
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A p p e n d i x C 

The GFABS Algorithm with Adaptive Threshold 
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REPEAT 

1. FOR each input image k 

(a) Compute the standard deviation c?k of the image. 

(b) Divide the image into 4 x 4 windows. 

(c) FOR each window (unwrapped into a 16x1 pattern) tpk, where 1 < ipk < Pk 
and Pk is the number of patterns for the image k, 

(cl) Compute the actual FANN output value y (tpk) given by expression (4.1). 

(c2) Divide the window into 2x2 blocks. 

(c3) FOR each block <f of size 2x2 with 1 < <f < 4, 

— Compute the standard deviation f3k ( < f ) of the block c f . 
— IF f3k ( c f ) > ak THEN an edge is present and 

• Compute the median of all possible three-pixel combinations, as 

illustrated in Figure 4.3. Compare it to the value of the fourth 

pixel in the window, yielding the values given by the expressions 

(4.2). 

• Compute the minimum <?*(£) of the error values given by the ex­

pressions (4.2) for the current input window. 

• Set the desired output value to ti(£) — ( c f ) , where /* is the 
value of / for which the minimum in (4.3) is reached. The function 

x^ ( c f ) is equal to x m < n ( c f ) , x m , n _ i ( < f ) , x m + i ^ x ( c f ) or x m + l i U ( < f ) 

if /* = 1, 2, 3 or 4, respectively. 

ELSE the block is smooth. Set the desired output value d (cf) to the 
average of the four pixels in the block. 

END. 

END. 

(c4) Compute the FANN output error e (ipk)-

END. 

END. 

2. Compute the global error C (w) at the end of one epoch by adding the squared 
errors for all the input patterns in all images. 

3. Modify the weights according to a quasi-Newton rule. 

UNTIL the stop condition is met. 
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