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A STUDY OF ELECTRON BEAMS AND THEIR FORMATION IN 
ELECTROSTATIC ELECTRON GUNS 

ABSTRACT 

A t h e o r e t i c a l study i s made of the formation of 
electron beams i n e l e c t r o s t a t i c fields„ The electron 
motion i s assumed to be normal, congruent and regular, 
so that the equations governing the motion can be set 
up i n terms of the action function. By assuming con­
venient functional forms of the action function, of 
the p o t e n t i a l and of the metrical c o e f f i c i e n t s , some 
new solutions are then found by the method of sepa­
r a t i o n of v a r i a b l e s . These solutions are studied i n 
d e t a i l , and are shown to have some desirable properties. 

In order to employ a given space-charge flow solu­
t i o n i n electron gun design, a method i s developed to 
take into account the d i s t o r t i o n of the f i e l d due to 
the anode aperture. In t h i s method, the gun i s con­
sidered to be made up of two regions, separated outside 
the beam by an a u x i l i a r y anode. The desired space-
charge flow i s assumed to exist i n the cathode region, 
while i n the anode region the e f f e c t of space-charge 
on the e l e c t r o s t a t i c f i e l d i s assumed to be n e g l i g i b l e . 
An estimate i s made of the accuracy of these assumptions. 

The f i e l d s about four i d e a l i z e d anode geometries are 
obtained by using Schwarz-Christoffel transformations, 
and a study i s made of the relevant properties of these 
f i e l d s . One of these f i e l d s , which has been c a l l e d 
the "wrap-around f i e l d " , i s shown to have properties 
that are very desirable for convergent electron guns. 

The above design method i s i l l u s t r a t e d by two exam­
ples; namely, a gun producing a beam that i s i n i t i a l l y 
p a r a l l e l and r e c t i l i n e a r , and a gun producing a beam 
that i s i n i t i a l l y r a d i a l and convergent; the l a t t e r 
incorporates the wrap-around f i e l d i n the anode region. 

Physical considerations involved i n the determination 
of the electrodes to maintain a given beam are b r i e f l y 
discussed, and i t i s shown that the s e n s i t i v i t y of the 
f i e l d conditions at the beam boundary to errors i n the 
f i e l d at other locations decreases at an exponential 



rate with distance. A method i s suggested for 
determining beam-forming electrodes that avoids the 
need for an a u x i l i a r y anode to maintain the beam. 
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ABSTRACT 

A theoretical study i s made of the formation of electron 

beams i n e l e c t r o s t a t i c f i e l d s . The electron motion i s assumed 

to be normal, congruent and regular, so that the equations 

governing the motion can be set up i n terms of the action 

function. By assuming convenient functional forms of the action 

function, of the potential and of the metrical c o e f f i c i e n t s , some 

new solutions are then found by the method of separation of 

variables. These solutions are studied i n d e t a i l , and are shown 

to have some desirable properties. 

In order to employ a given space-charge flow solution i n 

electron gun design^ a method i s developed to take into account 

the d i s t o r t i o n of the f i e l d due to the anode aperture* In this 

method, the gun i s considered to be made up of two regions, 

separated outside the beam by an au x i l i a r y anode. The desired 

space-charge flow i s assumed to exist i n the cathode region, 

while i n the a,node region the effect of space-charge on the 

el e c t r o s t a t i c f i e l d i s assumed to be ne g l i g i b l e . An estimate 

i s made of the accuracy of these assumptions* 

The f i e l d s about four idealized anode geometries are 

obtained by using Schwarz-Christoffel transformations $ and a 

study i s made of the relevant properties of these f i e l d s * One 

of these f i e l d s * which has been called the "wrap-around f i e l d " , 

i s shown to have properties that are very desirable f o r con­

vergent electron guns* 

The above design method i s i l l u s t r a t e d by two examples; 

namely, a gun producing a beam that i s i n i t i a l l y p a r a l l e l and 



r e c t i l i n e a r , and a gun producing a beam that i s i n i t i a l l y r a d i a l 

and convergent; the l a t t e r incorporates the wrap-around f i e l d 

i n the anode region* 

Physical considerations involved i n the determination 

of the electrodes to maintain a given beam are b r i e f l y discussed, 

and i t i s shown that the s e n s i t i v i t y of the f i e l d conditions 

at the beam boundary to errors i n the f i e l d at other locations 

decreases at an exponential rate with distance. A method i s 

suggested for determining beam-forming electrodes that avoids 

the need for an a u x i l i a r y anode to maintain the beam. 



TABLE OF CONTENTS 

Page 

L i s t of I l l u s t r a t i o n s »»».. «»«»««>»•»»•>»><><>•••»» v i i 

L i S t O f Tab le S • ( • » % o a © o » f t o o » * o o o c & » f t f c © o * e o o f t & « * * » ^ 

Acknowledgemen"ts • • » • » • < ) • . « e « e « e « s < > i > e o » « « « a » i > » e 0 » x i 

1 * INTRODUCTION * « « . » e o o e Q O O « * o o o o » a o o o * « e e f t ( > * * » 1 

1 o 1 Introduction « < > » » < > » e * o « » « < > e e < > » o o » * » o » » » » 1 

1:2 Objectives and procedure ....»<><,<>«.<>•»•• 9 

2. ELECTRON PLOW IN ELECTROSTATIC FIELDS 11 

2• 1 Introduction • • o » » « » o o » < o a « » < > > » e o « » e » * » » 11 

2:2 Fundamental Theory »<,.„<><, <,<>».. ...»«»<>••• 12 

2:3 Methods of Solution , < > < > o , > o c e o o o o < > . o o o « > » » 17 

2:4 Solutions i n Cartesian Coordinates by the 
Method of Separation of Variables »•»».. 21 
2:4sl Electron Motion v i t h Negligible 

, Space-Charge Effects »<><>»<>.<>o<><>o. 21 

2:4i2 Electron Motion under Space-Charge 
CondxtXOnS • • • • o » e t > 0 » » * » a & e » o i > Q « » 30 

2:5 Solutions i n Plane Curvilinear Coordinates 
by the Method of Separation of Variables 36 

2:5§1 Action Function of the Form 
" V-̂  ( cj^ ) + ( )" •••••••••••••• 36 

(a) Conditions for separation of 
"V 3/1* 1 ctt> 1 G S 0 0 « 0 « « 0 0 0 0 0 « 6 B C O C > 0 0 » » 36 

(ID ) EX ailip 1 © S fr6 6 o o o » o o 4 > o o i » o o o a o » » * » 39 

2 * 5 3 2 Potential Function of the Form 

(a) Conditions for separation of 
varxQi\)les » o o « o f t t > * » « o » o o o o o » « » » 59 

(t) ) Ex. aitip l e S o o f t » e o o » ( > » o f t o » o » o o o » » f t 61 

2 $ 6 Dxscussion » » « o & o « & o « » o » o o o o o & o o ( > ( t o « o 9 « 68 

XV 



Page 

3. THE ELECTROSTATIC FIELD OF IDEALIZED ANODE 
STRUCTURES » o & 4 t o O * * 6 b o O « © 6 o d 6 t > e o o & 6 o o 6 o & 6 o o © Q » * t 0 f e 71 

3*1 Ill"fcrOCLtlC"biOIl e » » * * « > e » o e o o o » f t o o o e o o o o o 6 o o « * a 71 
3s2 E l e c t r o s t a t i c F i e l d about a Plane with a 

S l i t » 9 e « ' £ ( > * 9 « * t t » f t f r o o o o o 6 D O & o « > & o o o o e b o o o ' » » » o 72 

3:3 Electrostatic. F i e l d about Two Right-Angled 

3s4 E l e c t r o s t a t i c F i e l d about Two Semi-Infinite 

P ar a l l e l PI at eS • tt©ofttt6©oooe.©oo©<>o.»o6oo«0» 82 

3 $ 5 The "Wrap-Around F i e l d " .«....<,.•,•<,.<>«• .<..«. 82 

4. USE OF SPACE-GHARGE-FREE FIELDS IN ELECTRON GUN 

DESIGN » o o < r o « 0 0 » « o o « 0 0 « o o o o o o o o o o o o o o o o o o o o o o » o * » 89 

4 8 1 I lit T o|dUC t iOIl t L t t o o & O b e o o e o o a o & O Q O O O o b o o e o o f r e 89 

4:2 Error Estimate for a Space-Charge-Free F i e l d 

Approximation i n the Anode Region o e o o o * <•<>*• 91 

4:2:1 Flow between Two P a r a l l e l Plates «... 91 

4:2:2 Convergent Flow between Two Con-
,cM3ntric Cylinders . « ..........« 95 

4:3 I n i t i a l l y P a r a l l e l , Rectilinear Flow to an 
Apertured Anode » . . . . o « » - . » . . . » . » o o o o o <> o . » o o • 100 

4:4 I n i t i a l l y Radial, Convergent Flow to an 
Apertured Anode « < , . . « o . o o o . o o o o o o o o 6 ( . ° 6 o a o o i > 109 
4:4:1 Analysis of Anode Fields » . . 0 o o . « > » * » 109 
4:4:2 E l e c t r o s t a t i c F i e l d i n the Anode 

Region Approximated by a Wrap-Around 
FX B 1 d e « « o o « o » » o « o o * o t > < > o o o o e o 6 0 « « Q O ^ » 119 

4 5 5 DiSCUSSion « « e « o « o o e o o o o o o a 4 0 o e o o < > » o « o < > « Q « « * 126. 

5. THE DETERMINATION OF BEAM-FORMING ELECTRODES . 0 0 0 127 

5 si Physical Considerations • » o . « » » » o o o o o * o o » « * i 127 

5*2 Design Procedure o o o o o o o o « o o o o o o » * o o o o « o o o « o 130 

5*3 DiSCUSSXOn « * e Q O O O o o C f O o « « o o o t > o t > o o o c > o c o o o 6 0 b o 136 

6 o CONCIfUS ION a < r « « » o o a » O ; « o o o o o o o o o o o o o o o o D o o e « ) f r 6 & « » 0 138 



Page 

Appendix A ESTIMATE OP SELF-MAGNETIC FORCES AND 
RELATIVISTIC EFFECTS 139 

Appendix B DEMONSTRATION OP THE EXISTENCE OF 
W(q 1,q 2,q 3) = c± WHEN THE CONDITION 

V x i T = O IS SATISFIED 141 

Appendix C NUMERICAL METHOD FOR OBTAINING ELECTRON 
TRAJECTORIES IN ELECTROSTATIC FIELDS .... 142 

Cs l Space-Charge Effects Neglected 142 

C:2 Correction for Space-Charge Forces ......... 150 

Appendix D ANALYSIS OP THE CURVATURE OF AN EQUI-
POTENTIAL 153 

Appendix E ELECTROSTATIC FIELD REQUIRED TO MAINTAIN 
TWO PARALLEL, SPACE-CHARGE-LIMITED STRIP 
BEAMS 157 

Appendix F ON THE STABILITY OF THE PIERCE-CAUCHY 
PROBLEM 160 

References »» 166 

v i 



LIST OF ILLUSTRATIONS 

Figure Page 

2-la Sketch of a trajectory and of the surface 
(J) = 0 when the l a t t e r i s a hyperboloid of 
one sheet* For, this case C,>0, C 9>0, 
c±> < 0 .. . 26 
^o 

2-lb Sketch of a trajectory and of the surface 
Cj> = 0 when the l a t t e r i s a hyperboloid of 
two sheets. For this case C,<0, C 0< 0, 
<£>•< 0 . 27 

o 
2-2a Sketch of electron motion from a right-angled 

cathode 28 

,2-2b Sketch of the electron motion of Figure (2-2a) 
when the sheets are unfolded 29 

2-3 Hyperbolic space-charge flow 34 

2-4 Equipotentials of $ = l n r + ^ s i n ( 2 e) • 4 2 

r 
2-5a Phase plot of the r a d i a l v e l o c i t y component 

of equation (2.68) 45 
2-5b Phase plot of the O-component of v e l o c i t y 

of equation (2.68) 45 
2-6 Logarithmic s p i r a l coordinates: 

u+v 
r = , 9 = v-u 51 

/ T 
2-7 Phase plot of electron motion according to 

equations (2.77) 58 
2-8 Electron motion between two inclined plane 

electrodes. The f i e l d l i n e s , which are arcs 
of c i r c l e s , are shown as dashed lines .... 63 

2- 9 Electron t r a j e c t o r i e s between two equi­
angular s p i r a l electrodes. The f i e l d l i n e s , 
which are equiangular s p i r a l s , are shown as 
dashed lines 65 

3- 1 Mapping the p r o f i l e of an i n f i n i t e plane with 
a s l i t onto the u-axis of the w-plane .... 72 

3-2 E l e c t r o s t a t i c f i e l d about a plane with a 
s l i t 74 

v i i 



Figure Page 

3 - 3 Mapping a degenerate rectangle onto the 
v—p1ane • • . . . . * * . . » . o * » . . . . . . . » » « . . « * . . » 7 5 

3 - 4 E l e c t r o s t a t i c f i e l d about two right-angled 

3r*5 Mapping the p r o f i l e of a plate of thickness 
y^, with a s l i t of half-width x^, onto the 
w—plane *..»« . » * . . « « . . » . » . . « . . « • » . « . * * » * » • » 78 

3 - 6 Plot of equation (3*9 ) . . . . . . . . . . . . . . . . . . . 8 1 

/ 3 - 7 E l e c t r o s t a t i c f i e l d about two semi-infinite 

p a r a l l e l plates . . . . . . . . . f t . . . . . . . . . . . . . . 8 3 

3 - 8 The "wrap—around f i e l d " . . . . . . < , . . . . . . » . . . . 8 6 

3 - 9 Variation of potential along the plane of 
symmetry of four electrode shapes ........ 8 7 

4 - 1 Hypothetical electron gun »»....<,..»»...»• 8 9 
4 - 2 Variation of the potential, e l e c t r i c 

i n tensity* electron v e l o c i t y and space-
charge density versus distance from the 
cathode In a p a r a l l e l plane diode. Also 
shown is. an approximation of the potential 
i n the anode region by Cj)^ = a Y + b »..»»» 93 

4 - 3 Error i n potential e ^ , and i n electron 
v e l o c i t y £j> at the anode of a planar 
diode when the potential i s approximated 
by $ T = a l + b over the in t e r v a l T < Y< 1 . 0 9 4 

h O 
4 - 4 Variation of the charge density i n r e c t i ­

linear, convergent electron motion from a 
c y l i n d r i c a l cathode 9 6 

4—5 Variation of the potential and e l e c t r i c 
i n t e n s i t y versus distance from'the cathode 
i n a concentric—cylinder, convergent-flow 
diode* Also shown i s an approximation of 
the potential i n the anode region by 
^X-̂  — a In R *̂  b . o . » . . « . « « . o . . . . . . . . . . . . * 9 7 

4—6 Error i n potential e ^ , and i n electron 
v e l o c i t y e^j at the anode of the concentrie-
cylinder* convergent-flow diode when the 
potential i s approximated b y = a l n R + b 
over the i n t e r v a l R > R>R , where R = 0 . 2 5 9 9 

o a a 
v i i i 



Figure Page 

4-7 Planar diode with an anode aperture .»..•»• 101 

4-8 Potential v a r i a t i o n along the plane of 
symmetry of an i n i t i a l l y p a r a l l e l , r e c t i — 
1 ine ar flow *»•»»»•<>••»••«<>«»«»»••«•* 106 

4-9a Electron t r a j e c t o r i e s neglecting space-charge 
e£'fects » i » e o t i < > » 0 i f r o e o o » o f r o 6 » e 6 » » o * 6 o o o f t o * » » * 107 

4-9b Electron t r a j e c t o r i e s when space-charge 
forces are taken into account ..»<><>.<,.<>»<.*• 107 

4-10 Cathode region of an i n i t i a l l y r a d i a l , 
Convergent flOW » • e b o e o o o o o o o o o o o o o o o t a o . o e 109 

4-11 Radius of curvature of equipotentials i n 
the f i e l d about two semi-infinite p a r a l l e l 

4-12 Position of the centre curvature of equi­
potentials i n the f i e l d about two semi-
i n f i n i t e p a r a l l e l plates •» 112 

4-13 Radius of curvature of equipotentials i n 
the wrap—around f i e l d ....<, »<> 115 

4-14 Centre of curvature of equipotentials i n the 
wrap—around f i e l d o < , c , o . o s . . » o . . » . o o o . < . < > . . • » 116 

4—15 Variation of the potential gradient along 
equipotentials of the wrap—around f i e l d 118 

4- 16 Potential v a r i a t i o n along the plane of 
symmetry of an i n i t i a l l y r a d i a l , convergent 
electron be am « « e e ^ o » » » » » o * o « » » o « e » a « * » » « » » 124 

5— 1 E l e c t r o l y t i c tank model of an i n i t i a l l y 
p a r a l l e l ^ r e c t i l i n e a r - f l o w electron gun «»» 132 

5-2 I n i t i a l l y r a d i a l j convergent-flow electron 
gun with an a u x i l i a r y anode and a two-
Po"fcentx3.X main anode » » o o o o o « o « o o o « * o « e o « o » X33 

5-3 E l e c t r o l y t i c tank model of an i n i t i a l l y 
r a d i a l j convergent-flow electron gun ••»»•» 135 

C-l Motion of an electron i n a uniform e l e c t r i c 
f i e l d » 4 < r * O f t O f r o » o o e » < » « o f t c o c o o o e c > o » o « e o o o f t » f t X 4 2 

C-2 Electron path i n the j 1 t h in t e r v a l of a non­
uniform f i e l d , showing the effect of a uni­
form-field approximation. The interval size 
i s greatly exaggerated ........••»• 144 

ix 



Figure 

C-3 

C-4 

D-l 

E - l 

F - l 

F-2 

Prediction of " ^ ( j ) i n the i t e r a t i v e 

pro cess » » ' a » » » » » 6 f t o o » * f r f r « b o » e » t > » » o * » o * f t * e » 

Space—charge effects i n the anode region «, 

Centre of curvature of v^ at u^ <,.<>....»» • 
Electrodes and r e s i s t i v e s t r i p to maintain 
two p a r a l l e l s t r i p beams • • • » » o e » » » o » o 6 » * » 

Square lattice (Ar = Az) used for solving 
equat1on (F»3) • . • • • « * « o e » e o » o e f t * o o » o * » « » » 

Ratio of the adjacent central column 
coe f f i c i e n t s a versus distance from the m-̂, n 

Page 

149 

151 

153 

158 

162 

beam boundary 165 

LIST OF TABLES 

Table 

F - l Coefficients of e,, in equation (F»5) •< 

Page 

164 

x 



ACKNOWLEDGEMENTS 

I wish to record my thanks to Dr. G. B. Walker* the 

supervisor of this project*for his encouragement and guidance 

throughout the course of the work. 

I wish also to express my appreciation to Dr» G» G. 

Eng l e f i e l d , Dr. C» R» James, Mrs. W» L. Magar, and Mr* D. R. 

McDiarmid for helpful discussions. 

The encouragement and help of my wife, Miriam* i s value 

greatly. 

Acknowledgement i s grat e f u l l y given to the National 

Research Council for the avwiard of Studentships i n 1961 and '62 

and for a Research Assistantship, made available through the 

National Research Council, Block Grant to the Department of 

E l e c t r i c a l Engineering, U.B.C., during the remainder of this 

project. 

x i 



CHAPTER I - INTRODUCTION 

l 8 l Introduction 

U n t i l the invention of the klystron twenty-five years ago, 

the major devices employing electron beams were cathode-ray tubes 

and electron microscopes. The current requirements of the 

l a t t e r devices are modest, being of the order of a few [ia, to 

several ma. New and d i f f i c u l t electron gun design problems 

were posed by the advent of beam-type microwave tubes, which 

require a high-current-density beam at a comparatively low 

voltage. 

Valuable indicators of electron gun performance are provided 

by the concepts of perveance and area-compression r a t i o . For an 

idealized model of space-charge-limited flow, i n which physical 

considerations such as i n i t i a l thermal v e l o c i t i e s and va r i a t i o n 

of the work function, of the conductivity and of the contact 

potential at the cathode are ignored, the perveance K i s described 

by 

K = ( l . l ) 
V2 

where V i s the potential difference between the cathode and 

anode •— both of which may be of arbitrary shape — and I i s the 

to t a l current « Equation ( l . l ) i s commonly used to specify the 

perveance of an electron gun or of an electron beam, even i n 

cases where th i s r e l a t i o n does not s t r i c t l y apply-. The area-

For a b r i e f informative history of equation ( l . l ) and the term 
"perveance", see reference #1. 



compression r a t i o of an electron beam i s defined as the ratio 

of the cathode area to the ultimate beam cross—sectional area* 

Electron guns that produce beams with an area-compression ratio 

greater than one are called convergent guns. 

Despite the simplicity of equation ( l . l ) . the theoretical 

evaluation of K i s , i n general, very d i f f i c u l t . This can be 

appreciated i f i t i s considered that the e l e c t r o s t a t i c f i e l d i n 

the cathode-anode region i s determined by the space-charge 

d i s t r i b u t i o n i n the beam and by the shape of, and potential 

difference between, the electrodes. The space-charge d i s t r i ­

bution i s , however, dependent on the dynamic properties of the 

electron flow, and these properties are, i n turn* prescribed by 

the e l e c t r o s t a t i c f i e l d . A mutual interdependence, known as the 

self—consistency condition, thus exists between the space—charge 

d i s t r i b u t i o n and the e l e c t r o s t a t i c f i e l d . 

U n t i l 1949, space—charge flow solutions were known for 

r e c t i l i n e a r flow only. In r e c t i l i n e a r flow, the tr a j e c t o r i e s 

coincide with l i n e s of force of the e l e c t r o s t a t i c f i e l d , 

simplifying the problem greatly. There are three kmawn cases 
(2) 

of r e c t i l i n e a r flow; namely, lines of flow (a) p a r a l l e l , 
(3 ) 

(b) radiating normally from (or converging to) an axis , and 

(c) radiating from (or converging to) a p o i n t T h e s e three 

cases correspond to flow between two i n f i n i t e p a r a l l e l plates, 

two concentric cylinders, and two concentric spheres, 

re spectively. 

Within a year after the invention of the klystron, Pierce 

published a method for the design of electron guns that was 

based on the r e c t i l i n e a r space-charge flow solutions. In this 



3 
design method the electron beam i n the cathode-anode region 

of the gun i s taken to be a section of a space-charge—limited 

r e c t i l i n e a r flow* The potential v a r i a t i o n along the lines of 

flow i s therefore known, and i t i s i m p l i c i t l y assumed that ttie 

anode i s perfectly gridded; i . e . , the anode allows the beam to 

pass through i t * but maintains the prescribed p o t e n t i a l . Since 

the flow i s assumed to be: r e c t i l i n e a r , the potential v a r i a t i o n 

perpendicular to the lines of flow must be zero both inside 

the beam and at the beam boundary. The e l e c t r o s t a t i c f i e l d 

outside a r e c t i l i n e a r - f l o w beam must, therefore* be such that 

at the beam boundary (a) the potential v a r i a t i o n i s as prescribed 

by the r e c t i l i n e a r flow, and (b) the normal potential gradient 

i s zero. The electrodes that produce the desired e l e c t r o s t a t i c 

f i e l d are called beam—forming electrodes. 

The general problem of determining the e l e c t r o s t a t i c 

f i e l d outside a curvilinear electron beam on the surface of which 

the potential v a r i a t i o n and the normal derivative of potential 

are prescribed i s termed the Pierce-Cauchy problem. It i s the 

f i r s t known physical problem involving an e l l i p t i c d i f f e r e n t i a l 

equation* Laplace's equation, with Cauchy-type boundary 

conditions on an open boundary. The solution to this problem 

i s unstable i n the sense that an i n f i n i t e s i m a l change i n the 

boundary conditions causes a large change i n potential some 

distance from the beam^^o The physical significance of this 

i n s t a b i l i t y i s that (a) the boundary conditions can be s a t i s f i e d 

within f i n i t e , but a r b i t r a r i l y small, l i m i t s by beam-*forming 

electrodes that are quite d i f f e r e n t i n shape* and (b) the 

electrodes do not need to extend an i n f i n i t e distance away from 



( 7 ) 

the beam, but can be truncated » The Pierce-Cauchy problem can be solved by a n a l y t i c a l , 

numerical, or analogue methods. Analogue methods, such as 

e l e c t r o l y t i c - t a n k models, are often used i n preference to the 

other two methods because, by th e i r use, beam-forming electrodes 

of convenient shapes can generally be determined more easily*; 

In electron guns producing beams with high power densities 

i t often i s not possible to place a g r i d at the anode aperture 

(for thermal Considerations)* . The gr i d at the anode of a Pierce 

gun may be dispensed with, without greatly affecting the beam 

i n the cathode--anode region, i f the width of the beam at the 

anode i s small w*r»t s the cathode-anode distance. The defocusing 

action may then be calculated by means of the wellr-known 
(8 ) 

Davisson—Galbiek equation . It i s assumed i n this calculation 

that the electron t r a j e c t o r i e s remain r e c t i l i n e a r u n t i l they 

reach the anode aperture* The aperture i s represented 1 by a thin 

lens, and at the p r i n c i p a l plane of t h i s lens the tr a j e c t o r i e s 

are assumed to undergo a discontinuous change i n slope* The 

accuracy ©f the Davisspn-Calbick formula can be improved by 
, . , „ (9,10,11) applying a spaee^eharge correction * * '. 

As the perveance i s increased, the f i e l d d i s t o r t i o n due 

to the anode aperture becomes progressively more severe, and the 

thin lens model of the anode aperture rapidly becomes inadequate 
-6 3/2 ( 1 2 ) 

beyond a perveance of about 0 e l x 10 amp/volt 1 „ I n i t i a l l y 

the Pierce theory can be extended by treating the anode as a 

atio] 
(14) 

(13) 
modified thin lens , or by a perturbation analysis of the 
r e c t i l i n e a r space-*charge flow solutions 

Danielson et a l * (15) made a very complete study of the 

divergent effeet of the anode aperture, including the effect of 



thermal v e l o c i t i e s ^ v a l i d for perveances up to 0*7 x 10"°^* They 

determined the f i e l d i n the anode region by two dif f e r e n t methods. 

In the f i r s t method the pr i n c i p l e of superposition i s used; the 

actual potential d i s t r i b u t i o n i s approximated by the sum of 

a space-charge—free potential d i s t r i b u t i o n , obtained from the 

e l e c t r o l y t i c tank, and the potential d i s t r i b u t i o n as prescribed 

by the rectilinear'—flow solution. In the second method i t i s 

assumed that the eff e c t of space-charge on the potential d i s t r i ­

bution can be neglected i n the anode region, A t h i r d electrode, 

of a shape and at a potential as prescribed by the re c t i l i n e a r — f l o w 

solution* i s placed between the cathode and the anode i n the 

e l e c t r o l y t i c tank* and the f i e l d i n the anode region i s then 

probed. The information from either of these methods i s then 

used to modify the Davisson-Calbick formula. The second method 

for obtaining the potential d i s t r i b u t i o n i s e s s e n t i a l l y the same 
(16) 

as one described e a r l i e r by Brown and Siisskind » 

In the extended Pierce theory i t i s assumed that 

conditions i n the cathode region are r e l a t i v e l y unaffected by the 

anode aperture* This assumption i s generally considered to be 
—6 

satisfactory up to a perveance of about 1,0 x 10"" * For higher— 

perveance Pierce guns, the f i e l d d i s t o r t i o n extends to the cathode* 

reducing the off—cathode gradient, and hence the emission, i n a 

non—uniform manner. For these guns the actual perveance i s thus 

lower than the design value, and the current density i s non­

uniform across the beam. The l a t t e r condition i s aggravated by 
the spheriisal aberration of the anode f i e l d , 

(17) 
Muller found an approximate r e l a t i o n between the actual 

value and the design value of the perveance of a conical—flow 
(18) 

Pierce gun from ele c t r o l y t i c - t a n k studies, Ambpss carried 
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out a f i r s t ~ o r d e r perturbation analysis for guns of t h i s type, 
and obtained expressions for the change i n current density 

across the cathode and elsewhere, for the loss i n perveance, 

and for several other variables. In his analysis he assumed 

that the potential d i s t r i b u t i o n i n the anode region could be 

obtained from the space-charge-free potential* Experimental 

measurements on a Pierce gun with a design perveance of 3,25 x 
—6 

10 gave good agreement with his theory. If a non—optimum gun 

design i s acceptable, a Pierce gun of a desired perveance can 
(17) 

thus be designed by applying the perveance correction of M\iller v 1 

(18) (18) or Amboss % and the gun performance predicted from Amboss' 
work, 

(17) (12) Miiller and Brewer developed quite similar electro­

l y t i c — t a n k methods, by means of which uniformity of cathode 

emission and i n i t i a l l y r e c t i l i n e a r flow can be p a r t i a l l y restored. 

In these methods the off-cathode potential gradient i s made more 

uniform by reshaping the beam-forming electrode (from the Pierce 

shapes) i n such a way that the f i e l d along the i n i t i a l part of 

the beam edge i s weakened. Guns with a perveance of 1,58 x 10~ 

and an area-compression ratio up to 30 have been made by Mi i l l e r t s 
(17) (12) method « Brewer appears to have obtained gun perveances 

of 2.2 x 10"16 by his method. 

To study the electron t r a j e c t o r i e s i n a proposed high— 

perveance gunf use i s often made of analogue equipment such as 

an e l e c t r o l y t i c tank, a resistance network, or a rubber membrane, 

i n which space^Charge i s simulated. An analogue of the gun 

structure set up on one of these devices provides e l e c t r o s t a t i c 

f i e l d data^ which are used by an analogue or d i g i t a l computer 



c o u p l e d i n t o the system t o s o l v e the e l e c t r o n — d y n a m i c a l 

e q u a t i o n s and to t r a c e out the t r a j e c t o r i e s • More r e c e n t l y * 

n u m e r i c a l methods have been used t o o b t a i n , by means of a 

d i g i t a l computer* b o t h the e l e c t r o s t a t i c f i e l d d a t a and the 
(26) 

t r a j e c t o r i e s * from a mathematical model of an e l e c t r o n gun v , 

Wi t h the a i d of the above-mentioned equipment*^ the 

i n f l u e n c e of the shape of the e l e c t r o d e s on the t r a j e c t o r i e s 

of a proposed gun can be i n v e s t i g a t e d e m p i r i c a l l y p r i o r t o 

the c o n s t r u c t i o n and t e s t i n g of one or more gun p r o t o t y p e s * 

The t e s t i n g o f the l a t t e r i s g e n e r a l l y c a r r i e d out i n a 

demountable vacuum system. The v a r i a t i o n of c u r r e n t d e n s i t y 

a c r o s s the e l e c t r o n beam emerging from a gun p r o t o t y p e may 

be s t u d i e d by i n t e r c e p t i n g the beam w i t h a f l u o r e s c e n t s c r e e n , 

or by moving a c r o s s i t an i n t e r c e p t i n g anode c o n t a i n i n g a p i n ­

h o l e . I n the l a t t e r c a s e , i f the c u r r e n t c o l l e c t o r b e h i n d the 

p i n h o l e i s a s p l i t Faraday cage, i n f o r m a t i o n about the v a r i a t i o n 

a c r o s s the beam o f the t r a n s v e r s e e l e c t r o n v e l o c i t i e s can be 
(27) 

o b t a i n e d s i m u l t a n e o u s l y * T h i s i n f o r m a t i o n can a l s o be 

o b t a i n e d by r e p e a t i n g the measurement of c u r r e n t d e n s i t y a c r o s s 

the beam a t v a r i o u s d i s t a n c e s from the gun. 
(28) 

M a t h i a s and K i n g o b t a i n e d a gun w i t h a perveance of 
2 x 10 ^ from an e x p e r i m e n t a l i n v e s t i g a t i o n of gun p r o t o t y p e s 

(17) 

based on a M u l l e r d e s i g n v ', A knowledge of the v a r i a t i o n of 

e m i s s i o n a c r o s s the cathode, and of the a b e r r a t i o n of the anode, 

was i n g e n i o u s l y o b t a i n e d by l e a v i n g v a r i o u s s e c t i o n s of the 

cathode uncoated i n some of the p r o t o t y p e s * and by n o t i n g the 

r e s u l t a n t changes i n the c u r r e n t d e n s i t y p a t t e r n s of the emerging 
'— ~ ; ! — : — ~ 

A comprehensive a r t i c l e d i s c u s s i n g these methods was w r i t t e n by 
S i i s s k i n d v 1 ^ ) ±n 1956, Papers r e p r e s e n t a t i v e of more r e c e n t work 
are l i s t e d i n r e f e r e n c e s (20 - 2 6 ) , 



beams• 
(27) 

Frost et a l * developed an elaborate design method 
that resulted i n the successful construction of a gun with a 

g 
perveance of 2*2 x 10 and a compression ratio of 300* and also 

—6 
a gun with perveance 5 x 10~ and compression r a t i o 6* Starting 

(17) (12) with a design based on Miiller's or Brewer's methods, a 

gun was then b u i l t using the cathode and anode as designed, but 

with the beam—forming electrode replaced by about f i v e annular 

disc electrodes* The potentials of these discs were adjusted 

experimentally u n t i l the desired beam was obtained* By the use 

of an e l e c t r o l y t i c tank a beam-forming electrode shape was then 

obtained which gave approximately the same f i e l d conditions i n 

the region of the beam. 

In empirical design methods, cathode shapes other than 

those required by the known space-charge flow solutions can be 

used. A very successful gun resulting from empirical design i s 
(29 30) 

the Heil gun v * « The cathode of this gun i s part of an 
(29) 

e l l i p s o i d of rotation. Heil ' obtained a design with a 
—6 

perveance of 4*4 x 10 and a compression ratio of 230, while 

R e e d ^ ^ b u i l t a Heil gun for a 5 mm klystron with a perveance 

of 3 x 10 ^ and a compression r a t i o of 75* Kawamura^'''^ has 

designed high pervea,nce guns with oblate spheroidal cathodes. The 

success of these cathode shapes i s due to the fact that they 

tend to correct for the spherical aberration of the anode by 

starting the electrons off on tr a j e c t o r i e s that have a different 
(32) 

centre of curvature* depending on the starting point* Lucken 

corrected for the spherical aberration by d i s t o r t i n g the shape 

of a spherical -'cap cathode i n such a manner t h a t i t s centre 
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of rotation lay on a c i r c l e . 

It i s clear that the designing of high perveance electron 

guns i s s t i l l to a large extent a t r i a l and error process. There 

have been many s i g n i f i c a n t advances i n the analysis of proposed 

gun designs* but* when proceeding to improve the design on the 

basis of these analyses, the gun designer s t i l l needs to rel y on 

his i n t u i t i o n to decide how the proposed design should be 

changed, 

lt2 Objectives and Procedure 

This study of the formation of electron beams i n 

el e c t r o s t a t i c f i e l d s has been divided into four sub-problems; namely, 

(l) electron flow i n e l e c t r o s t a t i c f i e l d s , (2) space—charge-free 

e l e c t r o s t a t i c f i e l d s i n idealized anode geometries* (3) design 

of electron beams based on ( l ) and (2), and (4) the Pierce-Cauchy 

problem* 

In Chapter I I , the theory of electron flow i n electro­

s t a t i c f i e l d s i s derived, and the underlying physical assumptions 

are discussed* Past methods of solution are noted* New solutions 

are then found by the method of separation of var i a b l e s . These 

solutions are studied i n d e t a i l , and are shown to have desirable 

ch a r a c t e r i s t i c s * 

To adapt a given space-charge-flow solution for use i n 

the design of high—perveance electron guns with anode apertures, 

a knowledge of the form of the e l e c t r o s t a t i c f i e l d s of various 

apertured anodes i s highly desirable. In Chapter I I I * use i s made 

of the Schwarz-Ghristoffel transformation to compute and plot the 

space-charge—free f i e l d s of three di f f e r e n t idealized anode 
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geometries. In Chapter IV, the characteristics of these f i e l d s 

relevant to electron—beam design are analysed. The information 

obtained from t h i s analysis i s used to design an anode f i e l d 

with improved c h a r a c t e r i s t i c s . This design involves a lengthy 

Schwarz-Christoffel transformation, so that for the sake of 

continuity the mathematical derivation i s included i n Chapter 

II I , although i t s real importance does not become clear u n t i l 

Chapter IV, In Chapter IV, a new gun design method i s also 

formulated, showing how known space-charge-flow solutions can be 

matched to the above—mentioned space-charge-free f i e l d s . The 

procedure i s i l l u s t r a t e d by two examples, and i t i s shown how 

the electron t r a j e c t o r i e s may be computed i n the anode region, 

taking space—charge into account, 

A further adaptation of the present space—charge-flow 

solutions for electron beam applications i s necessitated by the 

fact that these solutions involve unbounded flows; i . e . , space-charge 

occupies the entire space between two equipotential surfaces. 

This adaptation* the Pierce-Cauchy problem, i s the subject of 

Chapter V. The error growth i n potential i s evaluated for a 

c y l i n d r i c a l beam. 

The results of this investigation are summarized i n 

Chapter VI. 



CHAPTER II - ELECTRON FLOW IN ELECTROSTATIC FIELDS 

2:1 Introduction 

In discussing the self-consistent flow of electrons, i t 

is convenient to disregard the discrete nature of the electron. 

Instead, the flow i s treated as a continuous compressible f l u i d . 

This approach w i l l be used here to formulate the theory of space-

charge flow i n the absence of externally applied magnetic f i e l d s . 

It w i l l be assumed that the flow i s congruent, normal, regular and 

laminar, R e l a t i v i s t i c effects and the effects of self—magnetic 

forces are neglected. This places an upper l i m i t of about 20 keV 

on the electron energy, as i s discussed i n Appendix A* 
(39) 

The term "congruent flow" means that the ve l o c i t y 

i s i n general a single-valued function of position, so that only 

a single flow l i n e passes through any point . The mathematical 

significance of congruence i s that the flow i s d i f f e r e n t i a b l e . 
By normal flow two s l i g h t l y d i f f e r e n t concepts are 

(33) 

implied, Meltzer defined normal flow (as opposed to abnormal 

flow) as flow i n which the sum of the kin e t i c and potential energy 

i s constant for any point i n the flow, Meltzer showed that 

this requires a unipotential cathode. A necessary and s u f f i c i e n t 

condition for this normal flow i s that C\7x1?) = 0, The second 

interpretation of normal flow i s a geometric one* For normal 

congruent flow i n this sense to occur, i t i s necessary and 

s u f f i c i e n t that 1T^7xW= 0. When this i s the case* then there 

exists a one—parameter family of surfaces W(q^, Q.3) = CJL ortho-
Thrs i s called "single streaming" by some workers* 



(34) 1 2 

gonal to the flow l i n e s . 

The assumption of laminar or i r r o t a t i o n a l flow requires 

that V x 1 ? = 0 throughout the flow. If flow i s laminar, both 

normality c r i t e r i a are therefore s a t i s f i e d , and the flow originat 

from a unipotential cathode. Conversely, i f S7xT7 = 0 at the 

cathode, i t w i l l be zero throughout the flow. This i s true by 

Lagrange's Invariant theorem, which states that V x T T = constant 

throughout a flow. 
(35) 

The term "regular flow" i s due to Gabor v , and refers 

to the assumption that the electrons are emitted from the cathode 

with zero v e l o c i t y . 

The theory of space-charge flow can also be derived 
(35) 

under more general conditions. Gabor showed that skew 

congruent flow i s possible i n the presence of an externally 

applied magnetic f i e l d , provided that at the cathode the magnetic 
(36) 

f i e l d has no normal component. K i r s t e i n v ' derived the theory f 
this case* and found some new solutions, which were b a s i c a l l y 

(37) 
simple extensions of e l e c t r o s t a t i c ones. Pease ' extended the 

theory to include time—dependent flow. These more general 

formulations are not needed for our purposes, since i t i s our 

ultimate aim to study the applications of the theory to electro­

s t a t i c electron guns. 
2;2 Fundamental Theory 

For an e l e c t r o s t a t i c f i e l d Maxwell's equations are 

\7x E = 0 (2.1) 

V . D = p (2.2) 

and D = eE . (2.3) 
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These equations are solved by 

E = -V<£> (2.4) 

where $ i s the e l e c t r i c p o t e ntial. Substituting expressions 

(2.3 and 4) into (2.2), Poisson's equation i s obtained* namely 

V 2 < £ = -p/z . (2.5) 

The current density J i s given by 

"J = piT (2.6) 

and the time independent form of the continuity equation i s 

V.J = 0 . (2.7) 

By considering the Newton force on each electron, i t follows 

that 

where Tj = , the charge-to-mass ratio of an electron, a positive 

quantity. 

Equation (2.8) has time as a parameter, and this w i l l 

be eliminated next. The complete time d i f f e r e n t i a l d/dt applied 

to a dynamical variable X i s 

| f = (W7)X +|| . (2.9) 

Since the electron motion i s taken to be steady—state congruent 

flow, X i n equation (2.9) can represent the v e l o c i t y of an 

electron, and 

a t ~ u 

and hence 

| f = ( W 7 ) ? r . (2.10) 
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But 

6r.V)ir = jsjfav) - x <®xv) . (2.11) 

From (2.10 and l l ) therefore 

dt ~ 2 

Combining this r e s u l t with (2.4 and 8), 

| ( V U 2 ) - IT x (Vx5) =TjS7<$> 

or 

tf[§ir2 -770]= ^ ( y x ^ ) . ( 2 . i i ) 

If the electrons start with equal energy from a uni-

potential cathode)i then VxlT= 0 and equation (2.12) can be 

integrated to give 

\/V2 -T)<&= a constant (2.13) 

which i s independent of the trajectory chosen. If the electrons 

start from rest at a zero-potential cathode, this constant i s 

zero » 

A step of fundamental importance was taken i n going from 

equation (2.12) to (2.13). Equat ion (2.12) was s t i l l concerned 

with the trajectory traced out by a single electron, whereas 

equation (2.13) applies throughout the flow, because the constant 

of equation (2*13) i s independent of the trajectory chosen,. If 

we do not choose V x l ^ ^ 0, i t i s found that 

\V2 -Tj<&= C , (2.14) 
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where C i s a constant for the motion of the pa r t i c u l a r electron 

considered • This result i s readily obtained by taking the dot 

product of V and equation ( 2 , 8 ) , and substituting (2,4) 

nr* fjf= +r)Gr&)<i> . (2.15) 

In a frame of reference moving with the electron, the potential 

v a r i a t i o n i s found from equation (2»9) to be 

1̂= (TrA7)<£ . (2.16) 

I f , f i n a l l y , equations (2.15 and 16) are combined, and the 

result i s integrated, the r e l a t i o n (2.14) i s obtained for the 

electron considered. 

For the case V x l T — 0 , i t i s possible to express the 

v e l o c i t y as the gradient of a scalar potential function 

or= w ( 2 . 1 7 ) 

where ¥ i s called the action function. It i s apparent that sur­

faces of constant action are orthogonal to the l i n e s of flow. 

The equations to be s a t i s f i e d by the flow are thus 

Poisson's equation i n free space V 2 0 = ~p/e (2.5) 

D e f i n i t i o n of current density J =pV (2,6) 

Continuity equation V.J = 0 (2.7) 

Conservation of energy |"7T2 -7]<3>= 0 (2.13) 

Action function r e l a t i o n IX =^1 . (2*>17) 

These equations w i l l be referred to as the space—charge—flow 

In fact C i s the Hamiltonian, the t o t a l energy of a p a r t i c l e , which 
would be di f f e r e n t for p a r t i c l e s released from rest at di f f e r e n t 
equipotentials. 
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equations. Equations (2.13 and 17) may be combined to give the 

Hamilton-Jacobi equation 

| ( W . V V ) -T)& = 0 . (2.18) 

In beams i n which the space-charge causes a negligible 

perturbation of the e l e c t r o s t a t i c f i e l d , p can be set equal to 

zero. The potential now i s determined only by the boundary 

conditions, and to obtain an electron flow solution i t i s 

necessary to s a t i s f y equations (2.5 and 18) only. 

Yhen p ^ 0, i t i s possible to combine the required 

equations so that an equation i n V or V alone r e s u l t s . From 

(2.5 and 18) 

p = - s Q V 2 |^ VW. V W 

If this i s combined with (2.6, 7 and 17)? then 

V.[(V¥)V 2(7¥.V¥)] =0 . (2.19) 

The space-charge flow must s a t i s f y this fourth-order, third-degree 

equation i n W. Once a solution for W obeying (2.19) has been 

found, the other variables of the flow are also defined and can 

be obtained from the space-charge-flow equations. 

By combining the f i r s t four of the space-charge-flow 

equationsj there results 

V . ^ ^ C z f o i r ) ] = o 

which can be rewritten as 

( V 2 i r 2 ) V . 7 T + v. v ( v 2 v-2) = 0 



or 

V,7T = - \ o ^ ^ ( V 2 ^ 2 ) . (2,20) 

Equation (2«20) can be expressed as 

Vi - i r = -nr* V ( i n v2/w2) . (2.-2.1) 

Since equation (2«17) i s equivalent to the condition V x l T = 0, 
the vector i d e n t i t y 

V x (Vxir) =v(v.ir) -v 2 ;zr 

becomes 

S7{V.V) = S7 21T . (2.22) 

Substitution of (2«2l) into (2.22) gives the desired r e s u l t , 

(2.23) y 2^r= _ y |or. V ( i n y 2 i r 2 ) 

This equation does not apply i n the absence of space—charge« 

To obtain realizable space-charge-limited flows, 

equations (2»19.or 23) must be solved under boundary conditions 

<& = 0* § r ^ = 0, and — - oo (2.24) 
3 n 3 n 2 

at the cathode* where " ̂ — " indicates d i f f e r e n t i a t i o n normal * 9n 

to the cathode surface. 

2s3 Methods of Solution 

The Complexity of equations (2.19 and 23) has so far 
precluded t h e i r being solved d i r e c t l y except for the simplest 

(38 ) 
of cases. For instance, Spangenberg solved equation (2.19) 

for p a r a l l e l r e c t i l i n e a r flow. T r i a l and error approaches are not 
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l i k e l y to produce useful solutions on account of the s e l f -

consistency requirement and the boundary conditions. Thus, i f 

a pa r t i c u l a r form of *Vor ¥ i s assumed, the potential i s 

immediately defined by the equation for conservation of energy 

(2.13). However* the potential has to s a t i s f y Poisson*s 

equation also* and with t r i a l and error procedures i t i s d i f f i c u l t 

to s a t i s f y both requirements at once. 

Realizable space-charge-limited flow solutiahs have 

previously been obtained by using coordinate systems that made 

one of the variables of the flow a function of only one 

coordinate. ¥ a l k e r ^ ^ , M e l t z e r ^ ^ , and R o s e n b l a t t s e t up 

the equations so that the lines of flow lay along one coordinate. 
(39) 

¥alker ' also found solutions for space-charge-limxted flow 

between two i n c l i n e d planes and between two cones with coinciding 

v e r t i c e s . In these l a t t e r solutions the potential i s a function 

of only one Variable* M e l t z e r ^ ^ found a realizable solution 

i n which the l i n e s of flow are concentric c i r c l e s * 

K i r s t e i n ejt al_. assumed an action function 

of the form 
3 

¥ = V i(q.) , 

i = 1 

where the q^ represent curvilinear coordinates. It then became 

possible to use the method of separation of variables to solve 

the space-charge flow equations i n Cartesian^ c y l i n d r i c a l polar, 

spherical polar, and equiangular s p i r a l coordinates* These 

solutions correspond to a x i a l l y symmetric curvilinear flows 

originating from c y l i n d r i c a l and conical cathodes* and also 
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to planar cu r v i l i n e a r flows from an equiangular s p i r a l cathode, 

from two i n c l i n e d planes, and from a c i r c u l a r - s e c t i o n cathode, 

Harker and G o l b u r n ^ ^ devised a stable numerical 

method to obtain flows with axial symmetry; this method i s also 

applicable to planar flows. In this method, an analytic form of 

cathode shape and cathode current density are assumed. This then 

makes i t possible to set up the space-charge-flow equations 

i n hyperbolic formf by making an analytic continuation into the 

complex domain. Since hyperbolic d i f f e r e n t i a l equations are 

mathematically stable when solved by f i n i t e - d i f f e r e n c e methods, 

the space-charge—flow equations can thus be numerically integrated 

away from the cathode i n discrete steps. 

The problem of electron motion i n e l e c t r o s t a t i c f i e l d s 

and with negligible space-charge effects has been studied 

extensively. Goursat^-^ showed that i f the potential <3? has 

the functional form 

3 

<P = S Cp̂ O.U.) (2.25) 

i = 1 

the Hamilton—Jacobi equation i s integrable by separation of 

variables. The termCp 1 1 i s the f i r s t row of a matrix calle d 

a Staeckel matrix. The elements of a Staeckel matrix are 

functions of the coordinates q^ alone. I w a t a ^ ^ , assuming the 

functional form (2.25), found e l e c t r o s t a t i c f i e l d s s a t i s f y i n g the 

Laplace equation for the eleven coordinate systems of Staeckel. 

In this chapter the approach to the problem of 

determining soluti@ns of the space-charge-flow equations i s to 

assume an action function or a potential function that i s the 
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sum of terms. Two cases are considered: 

Case I: Action function assumed to be of the form 

V = V ]_(q 1) + V 2 ( q 2 ) 

and the potential of the form 

f U i * ^ 
A 1 1 ( q 1 ) A ] _ 2 ( q 2 ) + A 2 1 ( q 1 ) A 2 2 ( q 2 ) 

(2.26) 

Case l i s Potential assumed to be of the form 

* = * ! < « . ! > + * 2 ( 4 2 ) 

and the action function of the form »(2,27) 

V = B 1(q 1) B 2(q 2) 

where (q^» q_^) are orthogonal curvilinear coordinates. 

Motion with negligible space-charge effects i s treated 

f i r s t . With W and <£of the form assumed i n either Case I or 

I I c o o r d i n a t e systems are then found for which the Hamilton-Jacobi 

and Laplace equations are separable. The solution of the motion 

i s then extended to the space-charge domain by assuming that one 

term of the action function and the potential function remain as 

determined previously i n the absence of space-charge. When this 

i s possible, the second term of <$> and W i s then determined by 

a complete d i f f e r e n t i a l equation. 

In Section 2:4 the theory i s f i r s t formulated i n 

Cartesian coordinates. In this coordinate system the functional 

forms of W and<$> are assumed to be those of equations (2.26a and 

27a) . 

In Cartesian coordinates, equation (2»26b) reduces to the simpler 
form (2.27a), 
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In Section 2s5 the separability conditions are obtained 

for two-dimensional flow with negligible space-charge effects* 

These conditions are i n terms of assumed functional forms of the 

metrical c o e f f i c i e n t s "h^" of general orthogonal curvilinear 

coordinates. Case I i s treated f i r s t and i s i l l u s t r a t e d by two 

examples, formulations i n logarithmic s p i r a l , and i n polar 

coordinates. It was not found possible to extend these two 

examples to include space-charge effects by the methods mentioned. 

The functional forms of Case II are studied next. Two more 

examples follow* i n which logarithmic s p i r a l , and polar coordinates 

are again used. These l a t t e r solutions are extended to the space-

charge domain. 

Certain of the solutions obtained by the Case I and II 

formulations have been obtained by other investigators by 

independent means, and these w i l l be indicated. 

2 84 Solutions, i n .Cartesian Coordinates by the Method of Separation  

of Variables 

2s4sl Electron Motion with Negligible Space—Charge Effects 

It was shown i n Section 2s2 that i n the absence of 

space-charge e f f e c t s , electron motion i n e l e c t r o s t a t i c f i e l d s i s 

described by the Ha.mi.lton-Jacobi equation 

( W ) 2 - 2T)&= 0 (2,18) 

where the potential has to s a t i s f y the Laplace equation 

V 2 < £ = 0 . (2.5) 

We s h a l l assume a solution of these equations of the functional 
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and 

¥ = ¥ 1(x') + ¥ 2(y') + ¥ 3(z') 
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(2*28) 

45 =^1U\) + «3 > 2 ( y t ) + Cj>3(^*) , (2.29) 

¥ith <$>of the form (2,29), the Laplace equation (2.5) 

separates into three ordinary d i f f e r e n t i a l equations* ¥hen these 

are solved, i s found to be 

^ + G 2y' 2 - ( C ^ C 2): }2 + d,x' + d 0y* + d^z* + d 4 * 

(2.30) 

In general, equipotential surfaces are thus hyperboloids* It i s 

convenient t© change the o r i g i n of coordinates to the centre of 

symmetry of the f i e l d * Equation (2.30) then becomes 

C l X
2 + C 2 y 2 - (C1 + C 2)z 2^| + CJ)Q . (2*31) 

The Cartesian coordinate system i s one of the eleven 

coordinate systems of Staeckel, and the separable form of the 

potential function described by equation (2.3l) was noted by 

I w a t a ^ ^ . 

The motion of an electron released from rest at an 

arbitrary point ( X q , y Q , Z q ) on the surface <$> = 0 w i l l next be 

obtained. If equations (2.28 and 3l) are substituted into the 

Hamilton-Jaeobi equation (2.18), we obtain 

dx 
d¥ 2(y) N 

T)C2y< 
'd¥ 3(z) 

dz 
+ 77(C 1+C 2)z 

2 ^ ^ o 0 
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This equation can be separated into the three equations 

12 

dx -7} + K 1 + C l X
2 ) = 0 

dV~(y) - , 9 

A - 1 + K 2 + C 2 y 2 0 =0 dy > (2.32) 

d V 3 ( z ) 
- 7 ^ - (K, 

where 

^o 2 

+ K 2 ) - ( C l + C 2)i 

3 

= 0 

i = 1 

and and K 2 are separation constants. Each of the three separate 

equations (2*32) constitutes a conservation theorem of the motion. 

Equations (2.32) can be immediately integrated between 

the l i m i t s X q and x, y Q and y, and Z q and z respectively* where 

( X Q 9 y Q , ZQ) i s an arbitrary starting point on the zero equi-

po t e n t i a l , and (x* y> z) i s any point on the trajectory of an 

electron released from (x , y , z )* However, as we are 
0 0 0 7 

interested i n obtaining the t r a j e c t o r i e s as well as the action 

function, i t i s more convenient f i r s t to eliminate the separation 

constants i n (2»32). The result w i l l i n any case be the same. 

It w i l l be recalled that the condition for writing the 

Hamilton-Jacobi equation (2.18) was that VxQX = Oy and that 

this condition i s r e a l i z e d for a regular beam; that i s . when the 

electrons are emitted by the cathode at zero v e l o c i t y . Prom 

equation (2»3l) we see that the cathode surface, Cj>= 0, i s 

described by 

1 
2 G i x o 2 + V o 2 - <ci + C

2 K : 3> 0 

(2.33) 



The condition of zero i n i t i a l v e l o c i t y i s 
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dV 1(x) d¥ 2(y) dV 3(z) 
dx dz 

x o y 0 

0 

¥hen these i n i t i a l conditions are applied to (2»32), we obtain 

0 <£> + K, + C nx 2 

1 1 1 o 

^2 + K2 + V e " = 0 

% - ( K 1 + K 2) - ( C 1 + C 2 ) z o
2 = 0 , 

and when these equations are substituted back into (2.32), there 
results 

2 'dW^x) 
dx 

f p $ z r ) - ^ c 2 ( y 2 - y o 2 ) = 0 > (2.34) 

^d¥3(zj 
dz + C 2 ) ( z Q

2 - z 2) = 0 

Equations (2.34) describe the action ¥ at an arbitrary point 
(x* y, z) on the trajectory originating from a point ( X q , y Q , Z Q ) 

on the cathode. The electron v e l o c i t y i s , from equations (2.17 

and 34 ) , 

i V V ^ x 2 - x Q
2 ) , ± \ ^ C 2 ( y 2 - y Q

2 ) , +V^((\+ G 2 ) ( z o
2 - z 2) 

(2.35) 

The signs of the v e l o c i t y components depend on the f i e l d 

constants C-̂  and C 2, and on the instantaneous position of the 

electron on i t s trajectory. The trajectory equations can be 

obtained d i r e c t l y from equation (2.35); 
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dx 
~2 27 
x - x Q ) 

dz 

(2.36) 

Equations (2«36) have the solutions 

x = X q cosh ( ]/7) C 1 t) 

y = y Q cosh ( \J7) C 2 t) > (2.37) 

z = Z q cos (^(C 1+ C2)^ t ) 

v i t h time t as a parameter. This may be eliminated to give 
1 

z = z cos o cosh-"'" j * — cosh -1 is-O/J (2.38) 

The motion i s seen to be o s c i l l a t o r y , with an amplitude equal to 

the i n i t i a l coordinate. A sketch of the cathode surface and a 

trajectory for two characteristic cases i s shown i n 

Figures (2-la and b). 

The action ¥ along the tr a j e c t o r i e s described by 

equations (2.37 or 38) can be obtained d i r e c t l y upon integration 

of equations (2.34) between the l i m i t s X q and x* y Q and y, and z ( 

and z respectively, and taking their sums 

2 2 2 ,-1 /x \ x - x - x cosh (—) o o vx / 

o 
+ lv¥^|y\/y 2 - y0

2 - y0
2 c o s h - 1 ^ ) 

• iWci+ c 2 } \z " f T 1 
2 2 r - l / Z A 

z - z cos (•—) 

(2.39) 
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Because of the o s c i l l a t o r y nature of the electron motion, 

trajectory cross—over occurs. The function ¥ i s therefore 

multivalued. It might be supposed that on account of the cross­

over of t r a j e c t o r i e s i t i s not possible to construct a one-

parameter family of surfaces of constant action perpendicular to 

the flow l i n e s . This* however, i s not so5 because the electron 

motion s a t i s f i e s the condition Vx17 = 0, i t i s i n p r i n c i p l e 

s t i l l possible to construct this orthogonal family of surfaces 

(see Appendix B)* Gare must be taken, however, to associate the 

correct branch of ¥ with the appropriate t r a j e c t o r i e s (or 

sections of t r a j e c t o r i e s ) . This point i s i l l u s t r a t e d i n 

Figure (2-la)» Sketch of a trajectory and of the surfaceO = 0 
when the l a t t e r i s a hyperboloid of one sheet. 
For t h i s case C 1>0, G 2>0, <$> < 0 
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Figure (2-lb). Sketch of a trajectory and of the surface<$>= 0 
when the l a t t e r i s a hyperboloid of two sheets. 
For t h i s case C,< 0, C n< 0,<P < 0 1 £ o 

Figures (2-2a and b) for a two-dimensional case, electron motion 

from a right-angled cathode. This motion results for the special 

case when the f i e l d constants <J>o, and or are set equal to 

zero i n the solution just obtained. From equations (2,37), the 

trajectory equations for this case are 

x = X q cosh (\J'J]C1 t) 

z = z Q cos (\/7]Ĉ  t) 
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and the slope along the tr a j e c t o r i e s i s 

dz = (ZJ\ s i n ( y ^ i t ) 
d x VV sinh(^7C^ t ) 

In Figure (2-2a) are sketched several t r a j e c t o r i e s 

originating from the lower half of the cathode. An envelope 

which i s tangential to these t r a j e c t o r i e s prior to th e i r f i r s t 

downward deflection i s also shown. Similar envelopes occur for 

the second, t h i r d and subsequent r e f l e c t i o n s , and the second and 

t h i r d envelopes are indicated. These envelopes are straight l i n e s , 

as may be readily observed from the trajectory equations. It 

i s further apparent, from symmetry considerations, that 

conditions which are a mirror image of those just discussed w i l l 

p revail for electron t r a j e c t o r i e s originating from the upper half 

of the cathode. 

Figure (2-2a). Sketch of electron motion from a right-angled 
cathode 
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F i r s t Envelope 

Second Envelope ^ ^ o e c o n d . an 

Third Envelope 
Axis of W Subsequent 
Q„ryirr,„ + w r r Envelopes gyjnraetry \ * 

c — Third Envelope 

Second Envelope 

F i r s t Envelope 

Jonstant 
jower Half 
Cathode 

Figure (2-2b)» Sketch of the electron motion of Figure (2-2a) 
when the sheets are unfolded 

Since the t r a j e c t o r i e s are tangential to the trajectory 

envelopes, action surfaces must be perpendicular to the l a t t e r . 

A l i n e of constant action i s sketched i n Figure (2-2a) } 

i l l u s t r a t i n g the multivalued nature of ¥. Although l i n e s of flow 

and lines of constant action are orthogonal families of curves, 

they cannot be represented i n this example by the l e v e l l ines of 
(39) 

conjugate harmonic functions v '. The "complex v e l o c i t y p o t e n t i a l " 

W(x,z) + i A l / ( x , z ) , where ^(x,z) i s the stream function, i s there­

fore not analyt i c . Nevertheless, the Riemann-surface concept of 

generalizing the (x,z) plane to a surface of more than one sheet, 

so that the multivalued "complex v e l o c i t y potential" has only one 

value corresponding to each point on that surface, may p r o f i t a b l y 
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be used here. This i s i l l u s t r a t e d i n Figure (2—2b)» Consider 

the t r a j e c t o r i e s that originate from the lower half flf the cathode 

The f i r s t sheet contains the section of these t r a j e c t o r i e s 

between the cathode and their point of tangency to the f i r s t 

trajectory envelope^ and i t also contains the f i r s t branch of ¥. 

The second sheet contains the section of the t r a j e c t o r i e s between 

the f i r s t and seeond /envelopes and the second branch of ¥, etc., 

resulting i n a surface on which the flow i s single—valued. The 

surface s i m i l a r l y obtained for electron motion originating from 

the upper half of the cathode can be conjoined to the f i r s t sur­

face as shown i n Figure (2-2b). 

2:4.2 Electron Motion under Space-Charge Conditions 

The approach of Sub-section 2:4:1 w i l l now be extended 

to the space—charge domain. Solutions of the action function ¥ 

and the potential <£> w i l l once again be sought of the form 

¥ = ¥ x(x) + ¥ 2(y) + ¥ 3(z) 

O = ^ ( x ) + <£>2(y) + 0 3 ( z ) . > (2.40) 

It w i l l be assumed that ¥^(x) and Y 2(y) are unaltered by the 

presence of space—charge, so that from equation (2*39) 

x - x - x cosh (—) o o xx ' o _ 

W 2(y) = ^ J y ^ 2 - y/ - y^cosa-1^) 

> (2.41) 

The charge density p i s therefore allowed to be only z-dependent* 

From equations (2*41) the v e l o c i t y i s 
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When thi s i s substituted into the Hamilton-Jacobi equation, 

we obtain for the potential 

CP = ^ ( V W ) 2 = | c i (x 2- x Q
2) + | c 2 ( y 2 - y Q

2 ) + 

(2.43) 

which i s seen to be of the desired form (2.40b). Substituting 

this r e s u l t i n turn into the Poisson equation produces 

i d2/aw 3(z)\2-
p ° 1 + ° 2 + ̂ 7 d z 2 V d» 

Using the above equations for p and 'W , the remaining space-charge 

flow equation to be s a t i s f i e d , the continuity equation, becomes 

V . ( p ^ ) = -e ox7. „ 

±]/rjC2(y2- y Q
2 ) , 

dW3(z) 
dz X = 0 

which can be rewritten i n the form 
21 

C,+ C„+ 
x d2/dW 3(z) N 

1 2 2 7 ? d z 2 V d z (x - x Q ) 2 
1 + •V 

lW3(z)N 

dz 1 + C 2 2 W l d z , 
S = 0 . (2.44) 

For t h i s equation to be an equation i n z only, i t i s necessary 
that 

x = y = 0 . o J o (2.45) 

The equation that must be s a t i s f i e d by W^(z) i s therefore, from 

(2.44 and 45), 
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T)(C1+ C 2) 4- [ \ I + ' 3 

+ T7(C 1 + C 2) 

dz' 

d 2V 3(z) 

d z 2 

dz dz" 
+ ftp. 

/av3(z)\ /d 2v 3(z)\ /d 3v 3( z )> 

3 2 
^d 2¥ 3(z)\ //d¥ 3(z) N^ /^d 4¥ 3(z)^ 

dz' dz dz 
= 0 . (2*46) 

The dependent variable i s missing i n (2.46); i f we set 
d¥-(z) 

nr ( z) = —2-— 
z dz 

the order of (2.46) can be reduced by one, resulting i n 

7?( C l+ C 2) + 
4 nr(zY 

dz 
4 2 i r (z)N 

dz' 

a. / i r(z) 
+ ^ C l + °2> - d t — 

4i£(z)( 
^ ( z ^ ^ z ^ / d / i r ( z ) \ 3 

dz dz' dz 
4 3 O T ( z ) N 

dz" 
0 . 

(2.47.) 

For space—charge flow to be possible according to our 

assumptions.- equation (2.47) must be s a t i s f i e d . Let us try a 

solution of the form 

1T(z) = Dz m . (2.48) 
z 

Then (2.47) beeomes 

(TjG^ 7]C2)()frjcl +/77<^) + (?7C1 +?7C2)mJ)zm-1 

* ( V ^ + ^ 2 ) m ( 2 m l ) D 2 z 2 ( m " l ) + D3m(2m - l)(3m *. 2 ) z 3 ( m " ; L ) = 0 

(2.49) 
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Equation (2.49) i s s a t i s f i e d under the following conditions! 

2 2 
m = 1-j. Cj ==. , C 2 = Sj- , and D = -(A + B) . (2.50) 

The z-component of v e l o c i t y i s therefore, from (2.48 and 50) 

0X(z) = -(A + B)z . (2.51) 
z 

Combining this r e s u l t with equations (2.42, 45 and 49), the 

ve l o c i t y of the flow i s 
or Ax, By, -(A + B)z (2.52) 

The e l e c t r o s t a t i c potential of the flow i s obtained from equations 

(2,43, 45, 50 and 51), and i s 

A 2x 2+ B 2y 2+ (A 2+ B 2 ) z 2 . (2.53) 

Equipotential surfaces are seen to be concentric e l l i p s o i d s . The 

charge density of the flow i s , from Poisson's equation and (2.53), 

2e 

p = - -j~ (A 2 + B 2 + AB) . (2.54) 

The charge density i s thus constant throughout the motion. The 

action function V i s readily found to be 
* = \ Ax 2 + By 2 - (A + B ) z 2 

which i s harmonic. The equations of the traj e c t o r i e s are easily 

obtained from equation (2.52)t 

t r>x ny 

dy_ 1 
y - (A + B) 

and hence the tr a j e c t o r i e s are at the intersections of the two 

families of surfaces 
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"̂ T~ = K2 
A+B 

The t r a j e c t o r i e s l i e i n the surface of the rectangular hyper-

boloidal family 
xyz x y z = constant o o o 

When either A or B i s set equal to zero, or B = -~A. the motion 

becomes planar* The equipptential surfaces become concentric 

cylinders, and the tr a j e c t o r i e s become plane rectangular hyper­

bolae. A sketch of this flow i s shown i n Figure (2-3). 

Figure (2-3). Hyperbolic space-charge flow 
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The space—charge flow according to equations (2.52^54) has 

(33) 
also been discovered by Meltzer ', by a d i f f e r e n t method. 

Another solution of the d i f f e r e n t i a l equation (2*47) can be 

obtained for the special case = = 0. If equation (2,48) 

again be substituted into (2.47), there results 
m(2m - l)(3m - 2 ) z 3 ( m - l ) = 0, 

which i s s a t i s f i e d for m = 0, l/2 and 2/3. It i s readily v e r i f i e d 

that these three values correspond to p a r a l l e l r e c t i l i n e a r electron 

motion (a) i n the absence of an e l e c t r o s t a t i c f i e l d * (b) with 

negligible space—charge effects from the plane z = 0, and (c) that 

i s space-charge^limited and originates from a cathode at z = 0, 

respectively* a l l known cases. No further solutions of equation 

(2*47) have been obtained. 

The hyperbolic flow solution of equations (2.52—54) brings 

out an important point about the i n i t i a l conditions that are 

required for space—charge-limited flow from a zero^poteniial; 
(36) 

cathode. K i r s t e i n v ' states: 

"If we require that the motion be physically realizable 
under spacer-icharge—limited conditions from a zero-
potential cathode K, then i t i s required that* on K, 

3̂? and i?-^be zero, where n i s the unit vector normal on y 

to K.» 

Prom equation (2.53) we see that for hyperbolic flow the 

conditions mentioned by K i r s t e i n are s a t i s f i e d at the o r i g i n . Yet 

the flow i s not due to a cathode at the o r i g i n . The reason for 

this d i s p a r i t y i s that the charge density p for this solution i s 

constant throughout the motion, whereas for space-charge-limited 

electron flow originating from a zero potential cathode D —v -oo 



3 6 

at the cathode* Prom Poisson's equation the equivalent 

condition for <S> i s 

—~—y--OO at the cathode* 
dn2 

This i n i t i a l condition thus needs to be applied at the cathode 

i n addition to the conditions 

^ an 

In this section electron-flow solutions were found by 

formulating the theory i(h Cartesian coordinates under the 

assumption that ¥ a n d ^ could be represented as the sum of terms, 

each term being a function of only one coordinate. In the next 

section we w i l l adapt this approach to a formulation of the 

theory i n orthogonal curvilinear coordinates, and determine the 

conditions for separation of variables to occur. 

2%5 Solutions i n Plane Curvilinear Coordinates by the Methodof,  

Separation of Variables 

2.5:1 Action Function of the Form "W-^q^ + ¥ 2 ( q 2 ) " 

(a) Conditions for separation of variables 

Let (q-^, q 2) be an orthogonal curvilinear coordinate system 

i n which an i n f i n i t e s i m a l l i n e element "d^L " i s described by 
2 

d l 2 = ^ \ 2 ^ ±
2 » 

1 = 1 

where the h^ are the metrical c o e f f i c i e n t s , defined by 

2 U \2 

1 V 8 q i / ' V 3 c l i/ 
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The gradient of the action function V can then be written as 
2 

VW 

i = 1 
L i h. 3 q . ' 

and the Hamilton-^Jacobi equation i s therefore 

1 / 3¥ 
h. 2 V a ( l i 

i - 1 " 

The Laplace equation becomes 

h l h 2 9<Ii V h i 

3 _ r i ai.N 

9 q 2 l h 2 9 q 0 

Let i t be assumed that W i s of the form 

V = V 1 ( q 1 ) + V 2 ( q 2 ) . 

Equation (2.55) can therefore be rewritten as 

(2.55) 

(2.56) 

(2.26a) 

(2.57) 

Ve must next determine the form of the potential <$> for which 

equations (2*56 and 57) w i l l separate. If we assume that the hu 

are of the functional form 

h A = f ( q l f q 2 ) f i l ( q 1 ) f . 2 ( q 2 ) (2.58) 

then i t i s clear that the left-hand side o# equation (2.57) can be 

separated by multiplying i t by ^ f ( q 1 ? q 2 ) f 1 2 ( q 2 ) f 2 1 ( q 1 ) j 2 . If 

this i s done* there results 

^ f2iS^V d M 2 f 1 2 ( q 2 ) \ 2 / d V 9 f _ 
( d q 2 

) = 2 ^ [ f < * l » * 2 > W * 2 ) f 2 1 ( * l > ] 

(2.59) 
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To complete the separation of the Hamilton-Jacobi equation, i t 

i s required that the right-hand side of equation (2.59) be of the 

form 

g ^ ) + g 2(q 2) = 2 ? 7 ^ ( q 1 , q 2 ) f 1 2 ( q 2 ) f 2 1 ( q 1 ) <P . 

(2.60) 

The potential<$> must s a t i s f y (2.56); l e t the solution be of 

the form 

A n ( q 1 ) A 1 2 ( q 2 ) A 2 1 ( q 1 ) A 2 2 ( q 2 ) 
2 2 * 

f (^r q.2) f (<!!» <12) 

(2.26b) 

From equations (2*26b and 60) the conditions for separating the 

variables such that the l e f t side of equation (2.60) i s s a t i s f i e d 

are therefore 

l l (a) f12

2(<l2) = A 1 2 ( q 2 ) ° r / a n d ( b ) f 2 1 2 ( ^ l ) = 

2t (a) f21

2(ci1) = A ' 2 1 ( q i y o r / a n d (»>) f 1 2 2 ( ^ 2 ) = A 2 2 ( q 2 ) 

(2.61) 

where the f. . and the A. . are as defined by equations (2.58 and 
1» 3 1»1 

26b) respectively. At least one part of each of these two 

conditions must be s a t i s f i e d for the Hamilton-Jacobi equation 

to be separable when W i s of the form (2.26a) and lu of the form 

(2.58). I f , f o r example,the solution of the Laplace equation i n 

a p a r t i c u l a r coordinate system i s of the form of equation (2.26b) 

and s a t i s f i e s conditions l(a) and 2(a)» then the potential i s of 

the form 
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A n ( q i ) 

f 1 2
2 ( q 2 ) f 2 ( g i , d 2) f 2 1

2 ( q i ) f 2 ( q i > : q 2) 

and the Hamilton-nJacobi equation i s reduced to quadratures. 

(b) . Examples 

Example #1t Solution i n Plane Polar Coordinates 

For plane polar coordinates the metrical c o e f f i c i e n t s are 

h l = X> h2 = r • 

Referring to equation (2*58)* i t follows that 

and 
f(r,©) = f n ( r ) = f 1 2(°) = f 2 2 ( 0 ) 

f 2 1 ( r ) = r . 

= 1 

> 

The separability conditions for the Hamilton-Jacobi equation are 

thus seen to be, from equation (2.6l), 

Is (a) A 1 2 ( 0 ) = 1 or/and (b) A - ^ r ) = ^ 
r 

2s (a) A 2 1 ( r ) = ~ or/and (b) A 2 2.(0) = 1 • 

¥ith<$• of the assumed functional form of equation (2.26b) 

the Laplace equation becomes, i n plane polar coordinates, 

A 1 2 ( 0 ) 
dA i ; L(r) d < 5A 1 1(r) 

' +' r ~—' dr dr 
+ A 2 2(G) 

d A 9 1 ( r ) d % (r) 
• + r ^ dr dr' 

, A l l ( r ) d \ 2
( 9 ) , A 2 1 ( r ) * \ 2 ^ Q 

d©' 

¥hen conditions l ( a ) and 2(a) are t r i e d i n this equation*- separation 
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of variables i s achieved, and there results 

3 / f r A n ( r ) d ^ j X r j N 
r I — — + r 1 = a 

and 
dr 

cTA o o(0) 

dr' 

22 
dO 

2 + 4 A 2 2 ( 0 ) = -a . 

(2.62) 

here--"a" i s a constant. i s of the form 

<p = A , , ( r ) + ±^ A „ ( © ) 

The solutions of the separated d i f f e r e n t i a l equations (2*62) are 

1 —2 

A i ; L ( r ) = 4 ar" + b } l n r + ^ 

A--(©) = - T a + b 0 sin (20) + c, cos(2©) , 
"22x"' ~ 4 a r "2 " " ' "2 

where a, b^ and c^ are constants. The potential ^ i s therefore 

($> = c 1+ b 1 l n r + r~ 2|^b 2 sin(20) + c 2 cos(20)j 

(2.63) 

The e l e c t r o s t a t i c f i e l d described by this equation i s due to 

a l i n e charge and a double doublet at the o r i g i n . The orientation 

of the double doublet i s determined by the r e l a t i v e magnitudes of 

b 2 and c 2 ; this i s apparent i f i t i s considered that the l a s t two 

terms of equation (2*63) can be rewritten i n the form 

- 2 , f 2 2 r |/b2 + c 2 cos 2© - tan H — 
VC2> 

The constant c^ i n equation (2.63) allows us to assign a reference 

potential = 0 i n our case) to any equipotential of the f i e l d . 

The electron motion may thus be i n i t i a t e d at any of the equi-

potentials of the f i e l d determined by the values of by* b 2 and c 2 

by suitably adjusting the constant c-̂ . Equation (2*63) was also 
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derived by I w a t a ^ ^ i by the method of G o u r s a t ^ ^ , 

The e l e c t r o s t a t i c f i e l d for the case when 

Cp = l n r + sin(2©) 

i s i l l u s t r a t e d i n Figure (2-4), A saddle point of potential i s 

seen to occur at the points r = y2, 0 = — . The saddle 

point of potential would not have occurred i f the f i e l d had been 

due to either the li n e charge or the double doublet alone. The 

motion of electrons i n this f i e l d has some very interesting 

properties, and these w i l l now be studied. 

If we l e t 

¥ = ¥ r(r) + ¥ Q(0) , 

then the Hamilton—Jacobi equation (2.59) separates into two 

ordinary d i f f e r e n t i a l equations when (2.63) i s substituted? 

dr, 27?r 2(c 1+ b x l n r) = 2 Tj K 

and ^(2.64) 

'd¥, 
9. 

d© - 2Tj b 0 sin(2©) + c 0 cos (20) -277K 

where K i s the separation constant. Each of these two equations 

constitutes a conservation theorem of the motion, and they are i n 

this respect analogous to equations (2.32). 

From equation (2.63) i t i s seen that the coordinates (r Q,© o) 

of an arbitrary point on the zero equipotential are related by 

r o
2 ( e 1 + b 1 l n 1 r ( j ) + (^>2

 s i n ( 2 9
0 ) + C

2 C O S ( 2 © q ) J =0 . 

At (r Q,© o) the v e l o c i t y i s zero; therefore 

aw 
r 

dr 

1 **© 
(r o,© Q) = r d© = 0 
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If these i n i t i a l conditions are substituted into equations (2»64), 

we obtain ~ 

K + r 2(c,+ b-,ln r ) = 0 o 1 1 o 

K - ^>2 sin (2© Q) + c 2 cos (2© Q)^ = 0 . 

The d i f f e r e n t i a l equations (2»64) therefore become 

2 

dr J -*V 
.2 W c x ( r 2 - r Q

2 ) + b 1 ( r 2 l n r - r Q
2 l n r Q ) = 0 

<d¥, 
© 

,d© - 2 rj b 2 ( s i n ( 2 0 ) - sin (2©^)) + c 2 (cos (2©) - cos ( 2 © o ) | 

. (2.65) 

For an electron starting from rest at a point (r Q,© o) on the 

cathode* the v e l o c i t y at the point (r>©) on i t s trajectory i s , 

from equations ( 2 * 1 7 and 65)» 
i 

r 2 - r Q
2 ) + b ^ A n r - r / l n , 

^|/(b 2(sin 2© - s i n 2© Q) + c 2(cos 2© - cos 2© ) o 1 

(2.66) 

If we l e t 

and 

R 

© = © - \ t a n ^ ^ 
2 V2J 

(2.67) 

then equation (2*66) can be rewritten i n the form 
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nx = 

R / T P _o_ i p ^ if4T](b 2 4- c 2 ) 2 , 2 /In R * — * l n R Q . + ^ \/sm ^ - s m ® 
R 

(b 1>0) . 

To permit the electron motion i n four-dimensional phase-

space to be represented i n two dimensions independently of the 

magnitude of the constants b^, b 2 , ci a n < 1 c2» ^ *-s convenient 

to write the v e l o c i t y components (nT i n the form 
r w 

R 

^ r 

= + l/ln R 
R <L o 

/47J ( b 2
2 + c 2

2 ) 2 

= + 1/sin 2 ® - s i n 2 ® 

> (2.68) 

Equations (2*68) are i l l u s t r a t e d i n Figures (2-5a and b). It i s 

seen that an electron released from rest at a point ( R Q t © Q ) on the 

cathode o s c i l l a t e s about the line n% as the r a d i a l v e l o c i t y 

component increases i n magnitude. If the i n i t i a l r a d i a l 

coordinate R Q > 0»60653» the electron w i l l move away from the 

coordinate centre, while for R less than th i s value the electron 
x o 

w i l l move towards the centre. This d i v i s i o n of the tra j e c t o r i e s 
* For b^<0 the r a d i a l v e l o c i t y component can be written as 

nrT = ±f^j\ \/^2 l n R
0 " l n B * 



Figure (2-5a). Phase plot of the r a d i a l v e l o c i t y component of 
equation (2.68) 

' 1 V i i f I 11 i l l 

-1% [ r 1 

i.o L i / 4 7 7 ( b
 2

+ c2 ) 2 . 

-0.5 \ \ 

1 1 1 X / ® ^ 
I I 1 1 1 1 i 1 

T 1 J\ l i r i T I 1 1 ' 

\ v-i-o v y 
-o.5 y / / 

- 1 . 0 

Figure (2-5b). Phase plot of the ©-component of v e l o c i t y of 
equation (2.68) 
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i s due to the saddle-shaped nature of the e l e c t r o s t a t i c f i e l d . 

For the e l e c t r o s t a t i c f i e l d i l l u s t r a t e d i n Figure (2-4) 

the normalized coordinates are 

R = r 

© = 0 - \ , J 
For this case the l i m i t i n g cathode radius dividing inward and 

outward motion i s r = 0.60653. and the electron o s c i l l a t i o n 
o 

occurs about the l i n e y = x» 

When the f i e l d i s due only to a li n e charge, so that 

l>2= c 2= 0, the equipotentials w i l l be concentric c i r c l e s * and 

the t r a j e c t o r i e s l i e along r a d i a l l i n e s . For thi s case* i t i s 

seen from the i n i t i a l conditions that the constant K = 0* so the 

ra d i a l v e l o c i t y i s simply 
1% = y ^ T ^ l n R . 

For the special case when the e l e c t r o s t a t i c f i e l d i s due 

only to a double doublet, so that b^ = 0, the r a d i a l v e l o c i t y 

component of the motion i s , from (2.66), 

Thus when the f i e l d constant c^ i s greater than or less than zer 

the r a d i a l v e l o c i t y w i l l be outward or inward respectively, 

independent of the starting point on the cathode. When c^ i s ze 

however, the r a d i a l v e l o c i t y i s zero along the trajectory; an 

electron released from rest from any point on the zero equi-

potential thus has the remarkable property of t r a v e l l i n g along 

an arc of a c i r c l e * From equation (2.63) the zero equipotential 
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of t h i s f i e l d can be deduced to be the straight lines 

© = + rm + t a n - 1 ^ ) ) 

Again for this special case the separation constant K i s zero, 

and the electron v e l o c i t y i s therefore 

% = ± 1/2 77 ( b 2
2 + c 2

2 ) 2 r o " 2 cos (2©) 

For the general case, the tr a j e c t o r i e s are described by 

dr 
nrg ~ rd© 

c-, (r 2^- r 2) + b, ( r 2 l n r - r 2 l n r ) 

b 2 ( s i n 2© - sin 2© Q) + c 2(cos 2© - cos 2© Q) 

which i n integral form i s 

dr 

c 1 ( r 2 - r o
2 ) + b 1 ( r 2 l n r ^ r Q

2 l n r Q ) 
2 

d© 

£b 2(sin 2©-sin 2© Q)+c 2(cos 2©-cos 2©Q)j 
2 

If use i s again made of the normalized variables of equations 

(2»67), these integrals can be rewritten as 

dR Ik 

R ^ 2 l n R - R Q
2 l n R Q \[2{\>2

2+. c 2 ) 

d © 2 

y r ^ ^ s i n 2 ® 



where 

k = — - — - , b1 > 0 „ * 
sin ® 
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If R = I* the substitution o T 

R = eJ 

changes the integral i n r to: 

V 1 \IS 
ex*\hr + In r L 

where erf (^) i s the well-known error function, defined by 

erf A 2 / -x" 
e dx » 

In the integral i n © , |k| ̂> 1. The physical significance 

of the amplitude of k being greater than unity i s that i t 

r e s t r i c t s the motions i n the ©-direction to the l i b r a t i o n type 

discussed e a r l i e r * The behaviour of the the ©-component of the 

electron v e l o c i t y i s quite similar to the well-known motion of a 

When b^ = 0 the integral i n r, 1^, integrates d i r e c t l y to give 

1 

V 0 c 
o f l 

cos -1 / ro^ 

For b^ •< 0 the substitution R = e r can again be used* 
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simple pendulum, discussed, for example, by Goldstein (47) 

Example #2t Solution i n Equiangular Spiral Coordinates 

The metrical c o e f f i c i e n t of an equiangular s p i r a l (or 

logarithmic s p i r a l ) coordinate system i s 

h = h, 
b^u + b 2v 

(2,69) 

where b^ and b 2 are arbitrary constants. If 

z = x + i y and y = u + iv , 

then z and w are related by the transformation 

(b1 - ib 2)w 

+ b 2 V 
This equation i s rea d i l y expressed i n polar coordinates? 

b^u + b 2v 

2 2 
1 + b2 

, 0 = b^v - b 2u 

(2.70) 

From the polar coordinates the multivalued nature of the (u,v) 

coordinate system i s readily apparent. Thus the coordinates 

and 

V = Vo +1 , 2, , 2 

2nn 

2n% 
b l + b2 

(2.71) 

where (U O,V q) are any i n i t i a l coordinates and n i s any integer, 

refer to the same point i i i space. The range of (u*v) therefore 

needs to be r e s t r i c t e d so that the mapping of (u>v) i n the z-plane 
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i s single-valued. This w i l l insure that the potential 

expressed i n (u,v) coordinates w i l l be single-valued i n space* 

In Figure (2—6) i s shown a sheet of the equiangular s p i r a l 

coordinate system for which b^ = t>2 = 1, 

From equations (2,58 and 69) i t i s found that 

f(u,v) = 1 
b, u 

f u ( u ) = f 2 1 ( u ) = e 

and 

f 1 2 ( v ) = f 2 2 ( v ) = e 
b 2v 

From equations (2.26b and 61), a possible form of therefore i s 

-2b-v -2b,u 
<$> = A i ; L(u)e ^ + e 1 A 2 2 ( v ) . (2.72) 

¥hen t h i s functional form of <$> i s substituted into the Laplace 

equation (2.56), there results 

9 2 < £ 9 2 0 -2b 2v 
• o + — = e 
3 u 2 8v 2 

d A,, (u) 0 

2 + 4 b 2 A l l ( u ) 

du' 
+e 

-2b 1u d % 2 ( v ) 

dv' 

+ 4 b l A 2 2 ( v ) = 0 

This d i f f e r e n t i a l equation i s of separable form, and separates into 

the equations 

d 2A,,(u) . -2b, u 
U

2 + 4b 2
2A i ; L(u) - ae 1 = 0 

du 

a'A22(v) -2b„v 

dv 
2— + 4b-L A 2 2 ( v ) + ae 0 



H r-

Figure (2-6). Logarithmic s p i r a l coordinates: 

u + v 
r = , 9 = v - u 
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where "a" i s a c o n s t a n t * The s o l u t i o n s of these e q u a t i o n s are 

A-^Cu) = c-^sin ( 2 b 2 u ) + d-^cos (2b 2u) + 

A 2 2 ( v ) = c 2 s i n ( 2 b 1 v ) + d 2 c o s ( 2 b 1 v ) -

ae 
- 2 b 1 u 

4 ( b 1
2 + b 2

2 ) 

ae 
- 2 b 2 v 

4 ( b 1
2 + b 2

2 ) 

S u b s t i t u t i n g these r e s u l t s i n t o e q u a t i o n ( 2 . 7 2 ) , the e l e c t r o s t a t i c 

f i e l d i s 

-2b j r 
c-^sin ( 2 b 2 u ) + d 1 c o s (2b 2u) + e 

- 2 b 1 u 
c 2 s i n ( 2 b 1 v ) 

+ d 2 c o s (2b^v) 

where c^, c 2» d^ and d 2 are c o n s t a n t s determined by the boundary 

c o n d i t i o n s . I t i s c o n v e n i e n t to r e w r i t e t h i s e q u a t i o n i n the form 

3> 
o ^ -2b-v / , e,\ 

c, + d, e ^ cos f (2b 2 u ) - t a n " 1 ( ^ ) J '1 "1 

+ , / c 2
2 + d 2

2 e 
\ -2b., u 

1 cos ((2\v) - t a n ~ 1 ( ^ - ) ) . (2.73) 

To u n d e r s t a n d the p h y s i c a l b e h a v i o u r of t h i s e l e c t r o s t a t i c 

f i e l d , c o n s i d e r f i r s t the f i e l d Cj> d. u e to the f i r s t term o f (2.73) 

a l o n e . 

That i s, f 

= \/ C ; L
2 + e 2 2 cos ( 2 b 2 u - tan"'1(̂ A . 

The zero e q u i p o t e n t i a l s of are the l o g a r i t h m i c s p i r a l s 

b 2 U = 2 
-1 C l ^ + nn + t a n (^—) 



where n i s any i n t e g e r * Thus, i n the coordinate system 

i l l u s t r a t e d i n F i g u r e (2—6) f o r which b^ = t>2 = 1? i f ve set c^= 0 

the zero e q u i p o t e n t i a l s of are the s p i r a l s 

For a g i v e n v, when 

(2*74) 

i s a maximum* I t can a l s o be observed from equations (2*70) 

that when b2v—=>-—oo*- while u i s kept constant, r — > • 0* I f 

we l e t b,>v — > - oo along a u - s p i r a l d e s c r i b e d by equation (2*74), 

t h e n * ^ - + oo » 

For a gi v e n v^ when 

i s a minimum, and f u r t h e r when b,,v—>- - oo along a u - s p i r a l 

d e s c r i b e d by t h i s equation, then —oo o The behaviour of 

as b 2 v— > - oo i s seen to be s i m i l a r to the behaviour of the 

p o t e n t i a l i n the v i c i n i t y of a double doublet. We note from 

equations (2»7l)* however* that as b 2 u v a r i e s over an i n t e r v a l 

2n» the coordinates (u*v) e n c i r c l e the z—plane N times, where 

Thus* f o r the coordinate S y s t e m of Fig u r e (2-6)* f o r which 

b, = b0 = 1* the Biemann surface covers two sheets. 
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The e l e c t r o s t a t i c f i e l d described by the second term of 

equation (2,73) i s 

<4>2 = \jc2
2 + d 2

2 e 2 b l U cos ̂ b - j V - t a n _ 1 ( ^ . 

The functional form of i s seen to be the same as that of 

when the variables u and v are interchanged. Thus, analogously to 

zero equipotentials of ^J-l, are the constant v - s p i r a l s 

V = l ( l + ™ + t a n" 1 (a7 }) 

and <$>2—> + 0 0 when b^u —>• - 0 0 along the s p i r a l 

b ^ = \ ̂ 2nn + tan" 1!^ 2-)) i 

while <$>2—> - 0 0 when b^u—>• -00 along the s p i r a l 

1 / -1 c 2 ^ b^v = 2 f ix + 2mx + tan (^~)J » 

As b^v varies over an in t e r v a l 2%, the coordinates (u»v) encircle 

the z—plane M times, where 

2 2 
V + b2 

b l 

Since u and v are orthogonal coordinates, the sp i r a l s of 

constant u and of constant v rotate about the or i g i n of the z—plane 

i n opposite d i r e c t i o n s . The potential ̂  described by equation 

(2,73) i s thus the sum of two potential functions and l$ >
2» 

whose general properties are the same but are oppositely directed, 

A section of the equipotential ($>=() i s shown i n Figure (2-6) for 
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the case i n which the constants of the e l e c t r o s t a t i c f i e l d are 

d-̂  = c 2 = 1 and c^ = d^ = 0 . 

The electron motion i n this e l e c t r o s t a t i c f i e l d w i l l be 

studied next. If an action function of the form 

¥ = ¥ (u) + ¥ (v) 
u v 

i s assumed, the Hamilton—Jacobi equation (2.57) can be written as 

and 

u 
."du" 

~dv 

2b u / \ 
- 27] e ( c i s i n ( 2 b

2
u ) + d^os (2b 2u)J + K = 0 

- 2 
V 

2b 2v 
^ c 2 s i n (2b 1v) + d 2cos (2b 1v)^ - K = 0 

(2.75) 
where K i s the separation constant. 

The coordinates ( U O , V q ) of an arbitrary point on the zero 

equipotential are found from equation (2.73) to be related by 

2b u / \ 2b pv / 
e ° (c 1sin(2b 2u o)-Hi 1cos(2b 2u o)) +e j c 2 s i n ( 2b ]v o )+d 2cos (.21^ 

= Q . 

Since by hypothesis the electron v e l o c i t y i s zero at ( U O » V q ) , we 

have 
• (bju+bgv) d¥ u 

du _ e 
.(b l U+b 2v) d¥̂ . 

( u o ' V o ) 

dv = 0 
(u i.v ) 
v O r

 0 ' 

If these i n i t i a l conditions are substituted into equations (2.75), 

we obtain the following relations for the separation constants 
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2b, u 1 o ̂ ^ s i n (2b 2u Q) + d-ĵ cos (2b 2u o)^ + K = 0 

and 

2 o c 2 s i n (2b - j V o ) + d 2cos ( 2 1 ^ )) - K = G , 

•(2.76) 

The v e l o c i t y of an electron starting from an arbitrary point 

(u ,v ) on the cathode i s x o * o 

or = + yg / ^ s i n (2b2u) + d-^os (2b2u) + Ke J , 

( c 2 s i n (2b 1v) + d 2cos (2b 1v) - Ke 
-2b/ 

1 
2 

If the substitutions 

a = 2b 2u — tan 1 ( ^ ~ ) 

|3 = 2b,v - tan (^) 
1 a2 

are made, the v e l o c i t y equation becomes 

or = 
1/277(0 2 + d , 2 ) * / 

+ - ——r- ( Cos a - e • co-s a 
— b„v \ o 

/27)<. 2
2
 + d 2

2>V V ^ ' 
- — b u [cos p - e 1 cos p\ 

1 
2 

In order to permit the motion i n four-dimensional phase-

space to be represented i n two dimensions for a par t i c u l a r 

coordinate system (i,e», b, and b_ given), i t i s convenient to 



57 
write the v e l o c i t y components (u,v) i n the form 

u 

and 

= + ( cos a -

b l I 

e cos a , 
o/ 

L. (2.77) 

= + (cos (3 -

Because the functional forms of equations (2.77) are i d e n t i c a l , 

only one phase p o r t r a i t i s required. The phase p o r t r a i t of 

equations (2.77) i s shown i n Figure (2-7). 

It i s apparent from the phase p o r t r a i t that the electron 

motion can be either o s c i l l a t o r y or rotational i n either 

coordinate. Also, i f the cathode passes through the points 

(a Q,P o) = (- , 2L) or (̂ y - —) , a d i v i s i o n of t r a j e c t o r i e s 

i s seen to occur; t h i s i s due to a saddle point of po t e n t i a l . 

In Example #1 i t was found that, as special cases of the 

general solution, electron motion along either of the coordinates 

could be obtained. This w i l l now be shown to be true also for 

the present formulation. If the el e c t r o s t a t i c f i e l d i s due only 

to O-ĵ * so that c 2 — cL, = 0, then i t follows from equation (2.76b) 

that K = 0. If an electron i s now released from rest at a 

s u r f a c e = 0, that i s . a s p i r a l 

| + n% + tan 1 ^ p j Uo = W, 

then i t can be seen from equation (2.77) that the v-component of 
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v e l o c i t y remains zero* The trajectory i s therefore a s p i r a l 

v = V q » and the v e l o c i t y along the s p i r a l i s 

u = + e 2 °^ 27] ( c ^ + d ^ ) 2 co! 2b 2u + tan" 1 (-^ 

1 
2 

Conversely* i f the e l e c t r o s t a t i c f i e l d i s due only to <&2§ S G 

that c^= d^= 0, then the u-component of v e l o c i t y of an electron 

released from rest from the cathode w i l l remain zero* The 

cathode surfaces i a -.this case are the s p i r a l s 

' C . 

V o ~ 2b, | + n* + tan" 1 

and the electron t r a j e c t o r i e s are the s p i r a l s u = u , the Velocity 

along these s p i r a l s being 

^b,u 
v = ± e lli° ĵ 2 7?(c 2

2+ d 2
2 ) 2 cos jj^v - tan ^'(^j 

2*5:2 Potential Function of the Form " ^ ( q - ^ +^^2^" 

(a) Conditions for separation of variables 

A d i f f e r e n t class of solutions i s obtained i f i t i s assumed 

that the potential i s the sum of a function of one coordinate alone 

and a function of the second coordinate alone. Let us assume 

that the metrical c o e f f i c i e n t s h^ are of the functional form 

h i - f i l ( * l ) f i 2 ( * 2 > 

and the action function W i s of the form 

(2.78) 

¥ = B 1 ( q 1 ) B 2 ( q 2 ) . (2.79) 
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Ve must next determine under what conditions separation of 

variables of the Laplace and Hamilton-Jacobi equations i s 

possible. To be able to write the potential i n the separated 

form 

'•<* - • * 2 ( q 2 ) 

i t i s necessary that h^ = h 2 within the p o s s i b i l i t y of a scale 

change. Since h^ = h 2 for a l l conformal transformations from 

Cartesian coordinates* i t i s possible to write Cj) i n separated 

form for any member of the class of orthogonal coordinate systems 

obtained by qonformal transform methods 

With h, W and<£ of the above assumed functional forms, 

the Hamilton-Jacobi equation (2.18) becomes 

2 2 
B 2

2 ( q 2 ) A V ^ A B ^ U i ) /&B 2
(*2^ 

f l l 2 ( * l ) f 1 2 2 ^ 2 ) V d < 1 l / f 2 1 2 ( ( l l ) f 2 2 2 ( < l 2 ) \ d*2 

= 277 ^ ( q ^ + C j >
2

( q 2 ) ) • ( 2 * 8 0 ) 

The f i r s t term of this equation i s a function of one variable i f 

dB, (q,) 
l : (a) B 2 ( q 2 ) = C l f 1 2 ( q 2 ) , or (b) = V l l ^ ' 

The condition for the second term i s 

dB (q ) 
21 (a) B x ( q i ) = c 3 f 2 1 ( q 1 ) , or (b) dq 2

 = C4 f22 (^2 ) • 

If conditions l(a) and 2(b) are chosen, the requirement for 

separation of variables i s thus 

d f , 0 ( q 9 ) cA 

IL ° i f f22<*2> * < 2' 8 1 a> 
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If conditions l(b) and 2(a) are chosen, the requirement i s 

1 w3 

where the c^ are arbitrary constants. 

d f 0 , (q, ) c 0 

An action function of the form 

¥ = B l l ( ^ l ) B 1 2 ( < l 2 ) + B 2 1 ( q l ) B 2 2 ( , l 2 ) 

could also have been assumed for this formulation. It i s readily 

shown, however, that when separation of variables i s possible with 

V of this l a t t e r form, the second term becomes redundant, so that 

V reduces to the form of equation (2,79), 

(b) Examples 

Example^ #3; Solution i n Plane Polar Coordinates 

In plane polar coordinates the function f. . o f the 

metrical c o e f f i c i e n t s are, from equation (2.78), 

f n ( r ) = f 1 2 ( 0 ) = f 2 2 ( 0 ) = 1 

and 

f
2 1 < r > 

These functions s a t i s f y equation (2.81b), so i t i s possible to 

separate the Hamilton—Jacobi equation when V i s of the form (from 

condition (2a) and equation (2,79)): 

¥ = rB 2(Q) . (2.82) 

The p o t e n t i a l ^ i s of the assumed form 

<$> = <t>r(r) + %(Q) , 
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which, when substituted into the Laplace equation, results i n 

^ r ( r ) = <£>ro + a l n r + b(ln r ) 2 

and 

%W = * e o * CO - bO 2 

where <t>. <t> a. b, and c are constants, ro' ©o' 7 1 

The Hamilton-Jacobi equation (2.80) becomes under these 

conditions 

2 
B 2 2 ( ° ) +(~"a©~"~) = 2 7 ? ^ o + a 1 x 1 r + b * l n r ^ 2 + c Q - b Q^) • 

The l e f t side of th i s equation i s a function of ©only; the right 

side also must therefore be a function of © only, requiring that 

a = b = 0. The potential i s therefore simply 

••<$= <t>0 + c © (2.83) 

and the equation to be s a t i s f i e d by the motion i s 

9 /dB.(©)\ 2 _ 
B2 ( 0 ) + ( d© J = 2 7 ? ( C ^ o + c 9 ) * ( 2 - 8 4 ) 

By a rotation of coordinates can be eliminated, so that 0 = 0 

at © = 0. Equations (2»83 and 84) describe electron motion between 
two inclined-plane electrodes. This motion has been discovered 

previously by Walker^ 3^» The solution of equation (2»84)» when 

= 0, that was obtained by Walker i s 

oo 
B 2(0) = ^ a n© 

(4n-l) 
2 

where 

n = 1 

2 10 
a l = 3 \/2Vc > a2 = ~ 21 a l » a 3 = 2079 V e t c ' T h e 
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electron motion i s sketched i n Figure (2-8)» 

Valker found that* with V of the functional form of 

equation (2.82), i t i s also possible to take space-charge into 

account* The extended solution he thus obtained, namely 

and 

n = 1 

where ocn and 0 n are constants determined by the space-charge-flow 

equations, represents space-charge-limited flow between two 

inc l i n e d planes* 

Example #4t Solution i n Equiangular Spiral Coordinates 

For equiangular s p i r a l coordinates the functions f. . o f 

the metrical c o e f f i c i e n t s are, from equations (2.69 and 78)» 

c i r c l e s * are shown as dashed l i n e s . 
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b, u 

f x l ( u ) = f 1 2 ( u ) = e 

f 1 2 ( v ) = f 2 2 ( v ) = e 
b 2 v 

Both conditional equations (2.81a and b) are observed to be 

s a t i s f i e d by the t. .d and i t i s thus possible to obtain separatio 
x * J 

of variables vhen ¥ i s either of the two functional forms 
b,u 

¥ = e B 2(v) 

or 
b.v 

¥ = e ' B 1(u) . 

If we choose the f i r s t of these, and assume that the potential 

<3> i s of the form 

4> = O ( u) +<& (v) , 
u V 

the Hamilton-Jacobi equation (2.80) becomes 

-2b 2v 
e 

'dB 0(v)\ 2" 
= 2T)<$> (2.85) 

where 4> i s found from the Laplace equation to be 

<J> = a ( u 2 - v 2 ) + bu + cv + <|> 

and a. b* c. and <J>̂  are constants. The l e f t side of equation 

(2.85) i s a function of V only; the right side must therefore be 

a function of v only, as well. It i s thus necessary that a = b = 

For convenience we w i l l also set Cj>Q = 0, so that the potential 

is 
cv 



and equation (2.85) becomes 
65 

0 0 /dB (v)\ 2b 2v 

These two equations describe electron motion between two equi­

angular s p i r a l electrodes* The Hamilton-Jacobi equation i s solved 

B 2(v) = 
co 

n .= 1 

a v n 

(2n + l ) 
2 

2 / 1 3 2 / 9 2 2\ 
where ^ = J y^Tjc* &2 ~ 5 b 2 a l * a3 = 21 I 4 b2 " b l j a l * 

2 /3 2 1 2\ a^ = ^ ^2\4~ b2 ~~ 3~ b I ) a l * e"kc» ^he electron motion i s sketched 

i n Figure (2-9). 

The v e l o c i t y of the electrons i s 

b,u + b 0v , 1 2 du 
dt ' e 

b l u + b 2 V dv 
dt 

which can be rewritten i n terms of the action function as 

i r = 
-b 0v -b 0v dB 0(v) 

V B
2
( v ) ' 6 -IV-

<3> = 

Figure (2-9). 

Cp= 0 

Electron t r a j e c t o r i e s between two equiangular 
s p i r a l electrodes. The f i e l d l i n e s , which are 
equiangular s p i r a l s , are shown as dashed lines 
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The t r a j e c t o r i e s are therefore described by the d i f f e r e n t i a l 

equation 

du h
 B 2 ( V ) 

dv _ D l /dB 2(v) s 

I dv 
which has the solution 

oo 
^ n + 1 u = u + b, 7 c v o 1 / n 
n = 1 

where ^ = j, c 2 = - ^ b 2 , C3 = ^ b i " 9 b2 J > E T C ' 

It w i l l be recalled that there were two possible functional 

forms for V, and that the f i r s t one was chosen for the present 

solution. To obtain the solution for the second functional 

form, i t i s merely necessary to replace u by v, by b 2 , and 

vice versa, i n the above solution. 

It i s also possible to extend these solutions to include 

the effects of space-charge, with the same functional forms of 

W» Again i t i s only necessary to show the derivation for one 

case. Let ¥ be of the form 

b, u 
V = e 1 B(v) . (2.86) 

The Hamilton-Jacobi equation i s therefore 
2 

b l 2 B 2 ( v ) + =2TjcPe 
2b.2v 

* (2.87) 

The potential <3> i s thus a function of v only, and Poisson'i 

equation can be written as 

0 -2(b u + b v) , 2 ^ 
r o o , 2 

dv 
(2,88) 
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From equations (2»17 and 86) the v e l o c i t y i s 

i r = K * b 2 V TX( \ ~°2V dB(v) -b^v 
(2.89) 

Equations (2.88 and 89) can be combined with (2.6) to give the 

current density 

J = = p - i r = - c o 

r-2(b1u + b 2v) d 2 c j 5
N 

dv' 

-b^v b„v 

If t h i s equation be substituted into the continuity equation 

(2*7), there results 

dv' 
= 0 

(2.90) 

A l l the space—charge—flow equations have now been used* and are 

involved i n equations (2.87 and 90). If equation (2»87) i s 

di f f e r e n t i a t e d three times with respect tp v, the second and 

t h i r d derivatives of may be substituted into equation (2.90). 

An ordinary d i f f e r e n t i a l equation i n B(v) only w i l l then r e s u l t . 

This d i f f e r e n t i a l equation i s very lengthy, so i t w i l l not be 

given here; i t i s solved by 

B(v) = 
oo 

n = 1 

a v n 

(3n + 2) 
3 

If this series i s substituted into equation (2.87), i t follows 

that the p o t e n t i a l & i s of the form 
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<S>(v) = 
n = 1 

Prom th i s series i t i s seen that the potential and the potential 

gradient are zero at v = 0. The solution thus describes space-

charge-limited flow between two equiangular s p i r a l electrodes. 

2i6 Discussion 

The e l e c t r o s t a t i c f i e l d of Example #1 has properties which 

are very similar to those of the e l e c t r o s t a t i c f i e l d of a 

convergent electron gun with an anode aperture. This s i m i l a r i t y 

may be observed by comparing Figures (2-4) and (3—7)* Thus 

the l i n e x = y i n the f i r s t quadrant of Figure (2-4) may be 

considered to be the gun axis, while the cathode coincides with 

an equipotential such as <$>= 1.5. The constants of can be 

adjusted so that the cathode i s at zero potential, and so that 

i n i t i a l l y the potential increases from the cathode inwards* It 

i s then seen that, as we proceed inwards from the cathode, the 

equipotential curves f i r s t f l a t t e n and then reverse i n curvature, 

which i s also the case i n convergent guns with an anode aperture. 

Further, by varying the re l a t i v e magnitudes of the l i n e charge 

and the double doublet of equation (2.63), the curvature of 

the equipotentials may be varied over a wide range* 

In view of the above-mentioned s i m i l a r i t y , further study 

of Example #1 i s warranted. Of p a r t i c u l a r interest would be 

the extension of t h i s solution to the space-charge domain, 

which may be possible by a perturbation method. 

Since the number of analytic solutions that are known for 
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electron motion i n e l e c t r o s t a t i c f i e l d s i s s t i l l r e l a t i v e l y small, 

there i s much scope for further work i n this area. Two coordinate 

systems that appear promising i n this regard are toroidal and 

bispherical coordinates, since they are closely related to the 

Staeckel coordinates. 

The metrical c o e f f i c i e n t s h^ i n the previous section of 

this chapter were taken to be of product form, as described by 

equations (2,58 and 78), K i r s t e i n ^ 3 ^ showed tliat the only 

planar coordinate systems with the bu of the functional form 

(2,78) are logarithmic s p i r a l , Cartesian and polar coordinates, 

and also a coordinate system with h^ of the form 
I 2 2x a(g 1 - g 2 ) 

h x = h 2 = e 

This lat t e r coordinate system did not s a t i s f y the separability 

c r i t e r i a of either Sub—section 2:5:1 or 2, so no solution was 

obtained. 

The extension of the solutions to three dimensions i s i n 

general very d i f f i c u l t , but can i n some cases be accomplished. 

Thus, i n logarithmic-spiral c y l i n d r i c a l coordinates (Example #2 

extended) the h. are l 

b l u + b 2 V  

h l = h2 = 6 , h^ = 1 

and i t i s readily shown,,: that the Hamilton-Jacobi and Laplace 

equations are separable when V and <$> are of the form 
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2 ^ V h 2 * t 2
2 ) 

(277)(-|k l Z
2+ a 1z+a 2) dz + k 2 

k 1 e 2 ( b l u ^ b 2 v : 

4 ( b l
2 , b 2

2 ) 
1, 2̂  
2T1 Z a l z 2 * 
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CHAPTER III - THE ELECTROSTATIC PIELD OF IDEALIZED ANODE 

STRUCTURES 

3il Introduction 

The e l e c t r o s t a t i c f i e l d d istributions of the presently 

known space—charge—flow solutions are not of the kind that 

exist i n the v i c i n i t y of apertured anodes. As a res u l t * these 

solutions need to be adapted for use i n electron gun design. 

To f a c i l i t a t e t h i s adaptation, i t i s desirable to know the 

form of the e l e c t r o s t a t i c f i e l d about various apertured anode 

shapes. For this purpose, certain assumptions must be made 

regarding the other gun electrodes, as well as the space—charge 

d i s t r i b u t i o n . 

In this chapter the el e c t r o s t a t i c f i e l d about four 

idealized two-dimensional anode geometries w i l l be derived. 

It w i l l be assumed that the other electrodes are an i n f i n i t e 

distance away* and that spa;ee-charge effects are ne g l i g i b l e . 

Under these conditions the el e c t r o s t a t i c f i e l d s can be obtained 
(49) 

by a Schwarz-Christoffel transformation 'i 

r ' % t ^ 
z = z Q + A / (w - b Q) (w - b.̂ ) (w - b,,) . , . dw, 

(3.1) 

This transformation maps the upper half of the complex w—plane 

onto the i n t e r i o r of a polygon i n the z-plane. The real axis 

v= 0, with points u = b Q, b^, b 2, . . . , transforms into the 

boundary of the polygon* having exterior angles ̂ »̂ |\**~P2* • • , 
at the corresponding v e r t i c e s . The complex constants Z q and A 
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are determined by the o r i g i n , scale, and orientation of the 
polygon. 

The boundaries of the polygons to be considered are the 

projections of the anode surfaces i n the zr-plane. The anode 

apertures are of unit width, and provide the reference dimension 

of distance i n th i s chapter and the next. The potential and 

flux w i l l be taken to correspond to v and u respectively i n 

this chapter. By a s h i f t of o r i g i n and a change of scale of 

the w-plane, i t i s a simple matter to adjust the potential and 

gradient as needed i n Chapter 4. 

3s2 E l e c t r o s t a t i c F i e l d about a Plane with a S l i t 

The f i r s t and simplest idealized anode to be considered 

w-plane 
Figure ( 3 - l ) . Mapping the p r o f i l e of,an i n f i n i t e plane with a 

s l i t onto the u-axis of the w-plane 



i s an i n f i n i t e plane with a s l i t . The Sphwarz-Christoffel 
(49) 

transformation for this case i s well knownv y, and i s 

z = z + A(w + -) . (3.2) 
0 w 

The transformation i s i l l u s t r a t e d in.Figure ( 3 - l ) . To evaluate 

Z q and A, l e t w = + 1« Then i t i s seen from Figure (3—l) 

that z = 4- -j^ respectively, and i t follows from equation (3.2) 

that z =0 and A = - T . If the l a t t e r values for z and A o 4 o 
are substituted into equation (3.2), and this equation i s 

separated into i t s rea l and imaginary parts, there results 

1 [ A
 u 

X = - T U + 4" \ 2 ^ 2 u + v 

y = - 4 v - ~~T~ 2 L 

u 4- v 

> (3.3) 

The e l e c t r o s t a t i c f i e l d described by equations (3.3) i s 

i l l u s t r a t e d i n Figure (3-2). In Figure (3-9) i s shown the 

potential v a r i a t i o n along the axis of symmetry of the anode. 

383 E l e c t r o s t a t i c F i e l d about Two Right-Angled Plates 

The polygons i n the z-plane projected by two right-angled 

plates, two p a r a l l e l semi—infinite plates, and the f i c t i t i o u s 

"negative thickness" anode of Section 3s5, are degenerate 

rectangles. A f i n i t e embodiment of these rectangles i s of the 

general form as shown i n Figure (3-3)» 

Since the vertices a^ and a^ are symmetrically located 

about &2 i u the z—plane, this symmetry must also pertain to 

the w—plane for the corresponding points b-̂  and b^ with respect 

to b_. Therefore, i f the transformed point b i s placed at 2 * o * 
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Figure (3-2). E l e c t r o s t a t i c f i e l d about a plane with a s l i t 



as i n f i n i t y , and b 1 = -1 while b 2 = 0, then b ? i s at u = 1* 

shown i n Figure (3.3). Under these conditions, equation (3.1) 

becomes n 
_ -3. 

TC 71 TC 
z = z Q + A / (w + 1) w (w - l ) dw o 

(3. 
When the anode consists of two right-angled plates* the 

w-plane 
Figure (3-3). Mapping a degenerate rectangle onto the w-plane 
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angles of the rectangle are CpQ = 2%f cp^ = Qp^ 

= T i • Equation (3.4) therefore becomes 

IT - and 

or 

+ A 
o 

V^2 - 1 - A cos 1 {^j . (3.5) 

Prom Figure (3-3), when w = 1* z = - ^ , so from equation (3.5) i t 

follows that z = - i - . Similarly* when w = -1, z = ~k? , and 

from (3»5) we have A = - — . The transformation i s therefore 

z = 71 2 + \A2 - 1 % - c o s" 1(w 

When thi s transformation i s separated into i t s real and imaginary 

parts* there results 

! + B. 2 cos (̂ ) — tan-"*" B 
B' 

1 
71 R2 sin(|) - l n A 2 + 1 

> (3.6) 

where 

= ( ( u 2 - v 2 H l ) 2 + (2uv) 2 

1 
2 

0 = tan ->1 2uv 
2 2 , u - v - 1, 

A = 

B 

k " ( I - a 2 ~ b' ') + ^ ( a 2 + b 2 - l ) 2 + 4b2|] 

|^(1 _ a 2 - b 2) + ^ ( a 2 + b 2 - l ) 2 + 4b: 

1 
2 

1 
2 
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and 

The e l e c t r o s t a t i c f i e l d described by equations (3.6) and 

i t s defining relations i s shown i n Figure (3-4). The potential 

v a r i a t i o n along the axis of symmetry of the right-angled anode i s 

shown i n Figure (3-9)* 

The anode shapes just discussed, the anode consisting of 

two right-angled plates and the anode consisting of a plane with 

a s l i t , represent two extreme cases of a physically more 

important anode geometry, an anode consisting of a plate of thick­

ness y^ and having a s l i t Of half-width x 1 (see Figure (3-5))» 

The computation of the e l e c t r o s t a t i c f i e l d about an apertured 



plate of f i n i t e thickness i s more involved than i s the case when 

the plate i s of semi-infinite or of vanishing thickness. 

Fortunately, the f i e l d i n the region of greatest int e r e s t , the 

region near the anode aperture i n the lower-half z-plane, very 

rapidly approaches the f i e l d i n the corresponding region near two 

right-angled plates as the anode thickness i s increased. There­

fore, the f i e l d i n the region of interest near an anode of f i n i t e 

thickness can generally be represented accurately by the f i e l d 

about an anode of semi-infinite thickness. This w i l l now be 

demonstrated. 

Consider Figure (3-5), The exterior angles of the 

polygon i n the z—plane are seen to be 

% = % = 2". 9l = ?2 - <fc = % ~ " I • 

The transforms of the vertices of the polygon to the w-plane, 

b^, are located as shown, the location of b 2 and b^ being as yet 

undetermined except for the fact that they are symmetric about 

the o r i g i n , and l i e a distance 0 ^ k 1 from i t . Under these 

conditions equation (3.1) becomes 

This equation has been integrated by D a v y ^ ^ f who used the 

substitution 
1 w = 

sn (-u,) 

thus making k the modulus of the e l l i p t i c function used. The 

transformation then becomes 
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z = z - A o 

(3*7) 
2 2 

where k* = 1 - k , K and E are* respectively, e l l i p t i c integrals 

of the f i r s t and second kind, and Z(M, ) i s the Jacobian Zeta-

function. The constants z and A can be evaluated by substituting 
o 

the coordinates of b^ and b,. into (3,7), giving 
z = 0 o 

A = 
Kk5*2 - 2E 

(3.8) 

If the coordinates of b^ and b^ are substituted into (3.7 and 8), 

then i t i s found that 

_ (K'k* 2 ~2K* + 2E 1) 
2E - Kk ,2 

(3.9) 

where K 1 and E* are, respectively* the e l l i p t i c integrals of the 

f i r s t and second kind, i n terms of k f» 

From equation (3.9) i t i s observed that the distance k of 

the points b^ and from the o r i g i n depends solely on the ratio 

of the height to the half-width of the anode aperture. Equation 

(3.9) has been plotted i n Figure (3—6). When y^ = 0, then k = 1, 

which represents the case of a plane with a s l i t . It i s seen 

from Figure (3-6) that when the thickness y^ i s increased, k 

i n i t i a l l y decreases very rapidly; i . e . * i t rapidly approaches the 

case of an anode consisting of two right-angled plates. For 

example, when the thickness of the plate i s equal to half the 
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width of the anode aperture, k has already decreased to about JTJ • 

From Gauss T law i t i s ea s i l y deduced that k i s the 

ra t i o of the charge on the upper surface a 2 - a^ (or a^ - a^) 

to the charge on the surfaces a^ — a 2 — (or a^ - a^ - a^)» 

The physical significance of the rapid decrease of k when y^ i s 

increased i s thus that the proportion of the lines of force 

entering the anode aperture that terminate on the upper 

surfaces a 2 - a-j and a^ - a^ decreases rapidly when the anode 

thickness i s increased. Consequently, the f i e l d i n the lower-half 

z—plane converges rapidly to that for an anode consisting of two 

right—angled plates when the anode thickness y^ i s increased, 

1,0.1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 1— 
0 0,1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

Figure (3-^6). Plot of equation (3.9) 
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3 ;.4 E l e c t r o s t a t i c F i e l d about Two Semi-Infinite P a r a l l e l Plates 

For an idealized anode consisting of two semi-infinite 

p a r a l l e l plates, i t i s seen from Figure (3-3) that the polygon 

angles are 0pQ = 3TC* (p^ =^3 = i -7tr ahd. (f^ = T C . The trans­

formation i s , therefore, from equation (3.4), 

or 
Z q + A I 4- l n w (3.10) 

By r e f e r r i n g to Figure (3-3), the constants Z q and A can be 

evaluated as before* giving 

o 

A . 1 
1 — 

TC 

Equation (3.10) then becomes 

1 + i n 4- w - 21n w) 

or 

x 2uv + 2 tan' 

v 2 4- u 2 - In (v 2 4- u 2)J 
- (3.11) 

Figure (3^7) shows the e l e c t r o s t a t i c f i e l d described by 

equations (3.11)* while the potential v a r i a t i o n along the axis of 

symmetry of the anode i s plotted i n Figure (3-9). 

3 85 The "Wrap-Around F i e l d " 

The properties relevant to electron gun design of the 

three e l e c t r o s t a t i c f i e l d s derived above are studied i n the next 



Figure (3-7). E l e c t r o s t a t i c f i e l d about two semi-infinite 
p a r a l l e l plates 
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chapter, and i t i s inferred there that the f i e l d characteristics 

improve as the angles Cp^ and Cp^ of Figure (3-3) are made increasingly 

negative. The l i m i t of physical r e a l i z a b i l i t y of the anode i s 

attained when = cp^ = -.-JI, as then the anode i s of vanishing 

thickness. Nevertheless, i n a Riemann surface the projections 

a - a, and a 0 - a* of the outside anode surfaces can be conceived o 1 3 o 
of as continuing past the respective projections and 

&2 — &3 °f "the inside anode surfaces i f C{)̂  and Cj^ are reduced 

beyond The e l e c t r o s t a t i c f i e l d of the resulting f i c t i t i o u s 

negative thickness electrode w i l l be called the "wrap-around f i e l d " . 

The transformation for the case when Cp^ ..= Cp-j = - ^ 

= 7t» a n < i QP0
=2^i; w i l l n o w he derived. Under these conditions, 

equation (3,4) becomes 

z = z + AI o (3.12) 

where 

I = 

or 

dw 

I =4 1/ 2 5<v - ir - - 1 ) 
(w2 - l ) 2 + /T(w2 ~ l ) 4 + 1 + — — In 

+ S t a n " / ^ ~ 

- 1)4".'+ ly 

.1- (v' 

Equation (3,12) can be separated into i t s real and imaginary 

components, giving 

x = Xo + AR XR 
y = y o + A J Z R + AR*D i (3.13) 
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where 

z = x + i v o o J o 

A = AJJ + iA«) 

I = I R + i l 0 

and where 

1 1 
•1^4__,5. N «T_._/ax . 1 

B ( i ) S 4 c o s ( J a ) - S 4cos(£) +• 
4 | F l n i/E*' + F + t a n " 2G 

1 _ C 2 - D 2 j 

I 3 = (^)S 4sin(|a) - S 4sin(|) + -± 
4 / T 

t a n - H f ) + ^ l n f C I + ( D 

\CT+ (D - l ) ' 

and where 

S = ( u^ _ ^ _ ^ + ( 2uv)' 

. - l / 2uv 

n 2 

a = t a n 
,u 2 - v 2 - lj 

C = /2Vcos - S 2) 

D = 

E = [g 2 - 2 + 

i . r i 
,2 (-) 

2 c o s v 2 1 
+ 1 

S + 2 S 2 [ l + cos (§)] - 2 ^ T S 4C09(|)(1 + S 2) + 1 

F = / ? S 4 s i n f f i ( l - S 2) 

S + 2 S 2 [ l + cos (§)] - 2 / 2 " s 4 c o s ( | ) ( l + S 2) + 1 
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Figure (3-9). Variation of potential along the plane of symmetry 
of four electrode shapes 
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The constants z and A can be evaluated as before by o J 

setting v = 1 and z = - >̂ and w = -1 and z = .ijj-. Equations (3.13) 

then become 

y = - # ( l R + I ^ * 

(3.14) 

the desired transformation* The e l e c t r o s t a t i c f i e l d i n one half 

of the f i r s t sheet of the Riemann surface i s shown i n Figure (3^8) 

The potential v a r i a t i o n along the axis of symmetry i s plotted i n 

Figure (3-9). 

For electron beam design, the region of interest of t h i s 

e l e c t r o s t a t i c f i e l d l i e s between the flux l i n e s u = 1 and u = -1» 

and from about v = 2.75 to V == 0, The f i e l d i n this region could 

be approximated by placing electrode sheets along several equi­

potentials just outside t h i s region, and by maintaining these 

electrodes at the required potentials. 
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CHAPTER IV - USE OF SPACE-CHARGE-FREE FIELDS IN ELECTRON GUN 

DESIGN 

4sl Introduction 

In t h i s chapter, the e l e c t r o s t a t i c f i e l d i n an electron 

gun is considered i n two partsJ the f i r s t part i s the low—potential 

region, i n which space—charge effects are appreciable, and the 

second i s the high-potential region, i n which the effect of space-

charge on the e l e c t r o s t a t i c f i e l d i s assumed to be n e g l i g i b l e , 

Consider the electrode configuration of Figure (4-1), The 

region from the cathode to the a u x i l i a r y anode i n this figure 

represents a strip-beam Pierce g u n ^ \ The upper surface of the 

aux i l i a r y anode i s shaped to coincide with a suitable equipotential 

of the free-space e l e c t r o s t a t i c f i e l d of the main anode ( i . e , , an 

equipotential of the e l e c t r o s t a t i c f i e l d that would exist i n an 

isolated system consisting of the main anode, held at a potential 

V^, and a charge located an i n f i n i t e distance away). The e l e c t r o -

Main Anode 

r - • • ; a i. 
i.. ••• : • • • i 
• • . •. •. *. 

Beam-Forming 
Electrode 

Figure (4-1), Hypothetical electron gun 
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s t a t i c f i e l d i n the auxiliary—main anode region can thus i n principle 

be obtained by a conformal transformation of the' space exterior to 

the main-anode surface* such as was carried out i n Chapter III* 

Assuming that the Pierce-gun section of the electrode 

configuration of Figure (4—l) i s operating, imagine that the 

potential of the main anode* V̂ ., i s adjusted so that the potential 

gradients at the upper and lower surface of the thin section a—b 

of the a u x i l i a r y anode are approximately the same. If section 

a—b i s now removed^ the f i e l d d i s t r i b u t i o n w i l l therefore be 

n e g l i g i b l y affected, provided that the potential-depressing effect 

of the space-charge which w i l l now enter the auxiliary-main anode 

region can be ignored* If t h i s proviso applies, the e l e c t r o ­

s t a t i c f i e l d i n the two—anode gun thus i s known. 
(51) 

Van Duzer and Brewer\ y obtained equipotential plots for 
—6 

a Milller-type gun with a perveance of 2.3 x 10 by means of an 

e l e c t r o l y t i c tank with provisions for space-charge simulation. 

Comparison of an equipotential plot taken i n the absence of space-

charge simulation with a plot taken under conditions of space-

charge simulation shows that the equipotentials i n the anode 

region of the second plot have been displaced but have changed 

l i t t l e i n shape. For the two—anode gun discussed above, the 

displacement of the equipotentials i n the auxiliary-main anode 

region has l a r g e l y been taken into account by the gradient-

matching procedure used. Van Duzer and Brewer's experimental data 

thus give an indication of the a p p l i c a b i l i t y of the assumption 

that the e l e c t r o s t a t i c f i e l d i n the auxiliary-main anode region 

can be approximated by a space—charge—free f i e l d . This problem 

i s pursued further i n the next section. In Sections 4:3 and 4 
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the gradient-matching procedure i s applied to the study of two 

electron gun configurations. 

The a u x i l i a r y anode i n the hypothetical gun of Figure (4-1) 

has been inserted only as a temporary measure, to aid the analysis 

of conditions inside the electron beam. In Chapter 5 i t i s shown 

for the electron guns of Sections 4s3 and 4 how t h i s anode can 

be removed, 

4s2 Error Estimate for a Space-Charge-Free F i e l d Approximation  

i n the Anode Region 

The error involved i n approximating the e l e c t r o s t a t i c 

f i e l d i n the anode region by a space-charge-free f i e l d i s 

readily obtained for two space—charge-limited flows of interest 

i n this chapters flow between two p a r a l l e l plates and flow 

between two concentric cylinders, 

48231 Flow between Two P a r a l l e l Plates 

In an ideal planar diode the following relations 

h o l d ^ 
Potential 

E l e c t r i c Intensity 

Electron V e l o c i t y 

Charge Density 

where 
Y _ y. j_ distance from cathode 

d cathode-anode distance 

_ V potential at y 
V, ""anode potential * 

I 3 

1 
t = - i l 3 

• 
T = 

P = 

2 
r3 > 

2 
"3-

(4.1) 



Equations (4.l) are i l l u s t r a t e d i n Figure (4-2). It i s seen that 

as T increases, P decreases monotonically. As a result<I>becomes 

more li n e a r with increasing X, tending toward the solution of the 

Laplace equation, 

<£>L = a l + b (4.2) 

where a and b are constants. 

/ Let the potential i n the diode be approximated by (4.2) 

over the i n t e r v a l 

I < I <, 1 
o 

by matching the gradients of and at I j as shown i n 
Li O 

Figure (4-2). Therefore* at T , 

<J> = O t and ^ 3 
IJ dY dY 

and from equation (4.1a) i t follows that the constants of 
equation (4,2) are 

a - ± Y 3  
a ~ 3 o 

b = - \ J 3 3 o 

The maximum error incurred by this approximation depends 

on the value of Y q . Let the error i n po t e n t i a l , e ^ , be defined 

as 

1* 

and the error i n v e l o c i t y * ê -* be defined as 

I - 1/27/ 
ej = 100 

For the example i l l u s t r a t e d i n Figure (4-2), Y Q = 0.75 and thus 
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Figure (4—2)» Variation of the potential, e l e c t r i c i ntensity, 
electron v e l o c i t y and space—charge density versus 
distance from the cathode i n a p a r a l l e l plane diode. 
Also shown i s an approximation of the potential i n 
the anode region by<$ = a Y + b 
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equation (4.2) i s 

3> = 1.21141.- 0.2271 
Li 

while the errors i n potential and v e l o c i t y incurred by this 

potential approximation^ are, at the anode, 

e ^ = 1.57$ 

e y = 0*789$ » 

The values of e ^ and e^ at the anode for other values of Y q are 

shown i n Figure (4-3). 
-% 1-\ ' 1 ' 1 1  

11 

10 

9 

8 

7 
0 

O 6 
< 

5 
-p 
-p 
a 4 
u 
o 
u 3 

2 

1 

0 A T 

• 2 ̂  
-P\ 

0.4 

Distance from Cathode at which the 
Potential Approximation Commences 

\ O 

Figure (4-3). Error i n potential e ^ , and i n electron v e l o c i t y e^, 

L 
at the anode of a planar diode when the potential i s 
approximated by CPT = aY + b over the interval 
I < I < 1*0 
o 



When the anode has an aperture, the errors incurred by 

approximating the f i e l d i n the anode region are no longer 

readily calculable. However, i f the flow being considered i s 

i n i t i a l l y p a r a l l e l and r e c t i l i n e a r , which i s the case i n 

Section 4 s 3 , then this analysis i s a valuable guide. 

4?2s2 Convergent Flow between Two Concentric Cylinders 

In an ideal concentric-cylinder diode the 
(3) following relations apply 

Potential 

2 
2 \ 3 

\R p \ a ra 

E l e c t r i c Intensity £^ = — ^(—— 2 i 
,R p 
v a a 

P^ + 2p 
dB_ 
d* 

1 
,3 

RP' 

^ 6,ra 

tron V e l o c i t y R = J^Tjf R ^ J 
\ B a B a / 

Elec 

Charge Density P • " I «. R p ' 
* a a R R3 

1 
2 \ 3 

iR P v a r a 
where 

g r _ radius  
— r . ~~ cathode radius c 

(4.3) 

potential at r 0 = 5 - = — 
V potential at r , the anode a r a' 

P — Langmuir parameter, a function of R 

r 
R = S a r c 



The r a d i a l dependence of the charge-density P i s shown i n 

Figure (4-4), while <$> and £ are shown i n Figure (4-5) for the 

case R = 0,25. Near the cathode, the behaviour of the flow 

parameters for this case and for the planar diode case i s seen 

be s i m i l a r . However, as the flow converges, the parameter 

behaviour becomes decidedly d i f f e r e n t . The charge density P 

attains a minimum and then increases without l i m i t as R —*-0, 

1.0 0.9 0.8 0,7 0.6 0.5 0.4 0.3 0.2 0.1 
* 3 
° / 

O 
Normalized Radius 

u 
-p 
a 

Figure Variation of the charge density 
convergent electron motion from 
cathode 

i n r e c t i l i n e a r , 
a c y l i n d r i c a l 



Figure (4-5)» Var i a t i o n of the potential and e l e c t r i c intensity 
versus distance from the cathode i n a concentric-
cylinder, convergent-flow diode. Also shown i s an 
approximation of the potential i n the anode region 
by Cj> = a l n R + b 
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Thus, to accurately approximate the e l e c t r o s t a t i c f i e l d i n the 

anode region of a c y l i n d r i c a l diode by a space-charge-free f i e l d 

<£ L = a l n R + b, (4.4«> 

the anode radius R should preferably not be too small. An anode 
a 

radius of R = 0.25 was found to be a convenient value, a 
Let the f i e l d be approximated by (4.4 over the range 

R > R > 0.25 o 

by matching the gradients of •$> and <$> at R , as shown i n 
Li O 

Figure (4-5)* Therefore* at R = R Q , 

^ = a n d ~dR = I S -

so from equations (4.3a and b) i t follows that the constants of 

equation (4.4) are 

a 
R = R 

b =Cj> + R t 
R = R 

l n R 
o R =F R 

For the example i l l u s t r a t e d i n Figure (4-5), R = 0.45, so 

equation (4.4) i s 

<&L = -0,79421 l n R - 0.12463 

Let the error i u p o t e n t i a l , e ^ , and the error i n 

v e l o c i t y , e^, be defined as i n Sub-section 4s2:l, namely 

/4> -<3>r\ 
e ^ = 1001 

e^ = 1001 
R 
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For a given B , the maximum errors occur at the anode. & o 7 The 

errors at the anode for the case B 0.45 are 

= 2.36$ 
e^ = 1*19$ 

The errors at the anode incurred by i n i t i a t i n g the f i e l d 

approximation at other values of B q are shown i n Figure (4-6)* 

The distance coordinate i n thi s graph i s normalized w.r.t* the 

eathode-anode distance to permit a comparison to be made with the 

O N 

Distance from Cathode (Normalized) at which 
1 — R 

Potential Approximation Commences, o 
0.75 

S 0) 

^ 3 
K 

Figure (4-6). Error i n potential e,^, and i n electron v e l o c i t y e„, 
at the anode of a concentric-cylinder, convergent 
flow diode when the potential i s approximated by 
CP. = a l n B + b over the interval B > B> B * where 1» o fc a* 
B = 0.25 
a 
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planar diode approximation, Figure (4-3). It i s seen that the 

errors for the c y l i n d r i c a l diode case are higher, as anticipated 

from the behaviour of P • For example, the f i e l d approximations 

over the intervals 0.75 <Y< 1 and 0.4375 > R>0.25 for the 

plana'r diode and c y l i n d r i c a l diode respectively, both cover one 

quarter of the cathode—anode distance, and the ve l o c i t y errors 

at the anode are e. = 0.79$ and e^ = 1.03$ respectively. 

The space-charge-free potential that we w i l l match to 

an i n i t i a l l y r a d i a l , convergent flow i s one calculated for an 

anode with an aperture. In the region of the aperture the beam 

i s def ocused,, due to the combined action of the anode f i e l d and 

the space-charge forces. As a r e s u l t , the charge density w i l l 

not follow the theoretical curve of Figure (4-4) beyond the 

matching radius R q , but w i l l tend to diverge from i t on the low 

side, which should improve the accuracy of the space-charge—free 

potential approximation. 

483 I n i t i a l l y P a r a l l e l * Rectilinear Flow to an Apertured Anode 

The ideas presented i n Sections 4sl and 2 w i l l now be 

applied to the study of spaee^charge-limited flow between a 

planar cathode and an anode consisting of two right—angled plates, 

as shown i n Figure (4~7)» I f "the anode aperture i s taken to be 

of unit width, then the region of pa r t i c u l a r interest i s 

|x| < 0»5» The problem of providing a bounding e l e c t r o s t a t i c 

f i e l d for a beam within t h i s region i s taken up i n Chapter V* 

It w i l l be assumed that the electron motion i n the 

cathode region, y c < y < y Q » ' i s p a r a l l e l and r e c t i l i n e a r , and that 

the e l e c t r o s t a t i c f i e l d i n the anode region, y > y , can be 
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represented by the f i e l d derived i n Section 3g3. The accuracy 

aperture width to the cathode-anode distance because, i f the 

cathode-anode distance i s reduced rela t i v e to the aperture width 

the perveance i s increased and the perturbation of the f i e l d due 

to the anode aperture becomes more severe i n the cathode region. 

The accuracy with which i t i s desired to s a t i s f y the assumptions 

thus determines the values of y Q and y c; y Q must be s u f f i c i e n t l y 

far from the anode that the equipotential Cj>Q can be considered 

to be planar, and y must be a s u f f i c i e n t distance beyond y so 
c o 

that the e l e c t r o s t a t i c f i e l d i n the anode region may be approxi­

mated by a space-charge-free f i e l d . 

From Figure (3-4) i t i s seen that the equipotential 

surfaces near y = -1 have become almost planar, varying from the 

planar by less than .01 or 1$ over the distance |x|<C0.5. 

Accordingly, y Q w i l l be taken to l i e near y = -1, although i t s 

value w i l l not be specified at this stage. 

of these assumptions depends primarily on the ratio; of the 

/////////// y / / / / / / , 
"Cathode 
T7TT 

Figure (4-7). Planar diode with an anode aperture 
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The flow i n the cathode region w i l l be taken to be the same 

as that i n the region 0 < Y < ^ 0 « 7 5 (notation as i n Sub-section 

4:2*1) of a planar diode. If the anode of the structure i n 

Figure (4-7) had no aperture, the maximum error incurred by-

approximating the f i e l d i n the anode region would thus be 

e ^ = 1,57$. Furthermore, i f i n the l a t t e r case y Q = -1, i t 

follows that y c = -4, so the cathode-anode distance d = 4, and y 

and Y are related by 

y = -4(1 - Y) 

If this equation i s substituted into equations (4.1a and b) and 

evaluated for y = y Q = —1, there result 

<3> = 0.681420 o 

° o - " dy =-0.302853 
(4.5) 

In the actual diode under study an aperture i s present. 

It i s mathematically convenient to treat this case by moving the 

entire cathode region s l i g h t l y closer to the anode; i . e . , the 

distance between the cathode, y = y , and the equipotential O 
c o at y = y Q remains 

y G - y c = 3 (4.6) 

and conditions (4,5) must be s a t i s f i e d at y = y . If i n 

addition we specify that the anode potential ^ = 1, then the 

value of y , and the space-charge-free f i e l d i n the anode region, 

can be calculated from equations (3.6); this w i l l now be done. 

The mapping 

v = 2(T? - 7 ? k
) (4.7) 

where 
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w = u 4- i v 

rescales w by a factor J}*"1* and s h i f t s the o r i g i n of the w-plane 

a distance T^* ^ n the z-plane, v = 0 coincides with the anode 

surface. Since the anode potential i s to be unity, we thus must 

set = 1, Further, l e t = 0. Equation (4.7) then becomes 

v = Q(c£ - l ) 
(4*8) 

When equations (4*8) are substituted into equations (3,6) 

and the defining relations following the l a t t e r , we obtain 

TC 

TC 

TC , D2 /0\ . -1 f B > 2 4- B cos^) - tan f - j — . 

R 2sin^|j - ln^A 4- ̂ A 2 4- 1 
/ 

y (4*9) 

where 

R = Q2A •^2 M < cj> _ 1}2 _ ^ l j [ 2 * * " ( ^ - i f 

0 = Arctan 2^((p * 1) , 

- (<£ - l ) 2 
i f 

= TC 4* Arctan 

Q 71 

2^(<£ - 1) 

-vjr2 - ( q p - D 2 > o 

¥ - (<£ - i ) ' 
,0/ 

i f Y - (o - 1 ) 2 - y <0 
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A =• 

B =X 

(1 - a 2 - b 2) + »/ ( a 2 + b 2 - l ) 2 + 4b 2 

i [ -

l 
2 

b 2) + J ( a 2 + b 2 - l ) 2 + 4b 2 

and 

a = 
Q [ V 2 + l ) 2 ] ' " p j V 2 + (3> - l ) 2 ] # 

- ( ^ - 1) 

Along the plane of symmetry of the anode region N =̂ 0, so i t 

follows from equation (4,9b) and the defining relations that 

the potential v a r i a t i o n along the plane of symmetry i s 

1 
.71 

x = 0 

1 
2 

Q 2(<£ - l ) 2 + l j " - s i n h - 1 ( Q f c ^ t T T T 

(4*10) 

The derivative of y w , r . t . O i is 
x = 0 

1 
.71 

x = 0 
Q<2 + 1 

(3> - i ) 2 

The potential gradient along the plane of symmetry i n the anode 
region i s therefore 

t 
x = 0 

dy_ 
dc£ 

x = 0 ft2"* 1 

(<3>- i ) 2 

which can be solved for Qs 

Q = -

1 
-I 2 

.71 w (4,11) 

x = 0' 
«J> - i ) : 
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Equation (4.11) relates the scaling factor Q to the potential and 

gradient at an arbitrary point pn the y-axis. Ve wish to f i n d the 

scaling factor when conditions (4,5) are s a t i s f i e d at y Q» If 

conditions (4,5) are substituted into equation (4»ll), the scaling 

factor i s 

Q = -9.88700 . (4.12) 

The value of y Q can now be computed by substituting (4,5a and 12) 

into (4,10)» 

y Q = -0.952495 . (4.13) 

The potential i n the anode region i s described by equations 

(4.9) and t h e i r defining r e l a t i o n s , with Q as given by (4*12). 

The flow parameters i n the cathode region can be obtained from 

equations (4.l) since* from equations (4.6 and 13), y and T are 

related by 

y = -4(1 - T) + 0.047505 . (4,14) 

The potential variation, along the plane of symmetry i s shown i n 

Figure (4.8). 

If space—charge forces are neglected, electron t r a j e c t o r i e s 

the anode region can be obtained by a numerical method 

developed i n Appendix G* Section 1. Using t h i s method, 

traj e c t o r i e s were computed i n the region of the anode aperture*/ 

|xj <C0.5» resulting i n the trajectory shapes shown i n Figure (4r-9a). 

For the case when an electron beam enters the anode region 

over the i n t e r v a l x < 0.5 only , the electron t r a j e c t o r i e s i n 

This can be accomplished by* for example, inserting i n the 
structure of Figure (4—7) an intercepting anode which coincides with 
the equipotential <$> over the interval |x| > 0.5. 



Cathode 

Figure (4-8), Potential variat ion along the plane of symmetry of an i n i t i a l l y p a r a l l e l j-
r e c t i l i n e a r flow 



Figure (4-9a)» Electron trajectories 
neglecting space-charge 
effects 
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the anode region w i l l be the same as those shown i n Figure ,(4-9a), 

i f space-charge forces are neglected. Since the transverse 

electron v e l o c i t y of the beam i s much less than the axial 

v e l o c i t y , a f i r s t - o r d e r correction can be made for the transverse 

space-charge forces. This correction i s mad.e i n Appendix C* 

Section 2t and space—charge—corrected electron t r a j e c t o r i e s 

obtained by this method are shown i n Figure (4-9b). The 

difference between the trajectory shapes of Figures (4-9a and b) 

i s seen to be s l i g h t . 

The perveance of the beam i n the region |xj < 0,5 i s 

approximately equal to the perveance of an equivalent planar diode 

with cathode—anode distance d = 4, because the cathode was moved 

closer to the anode to maintain the perveance i n the region 

|xj <C 0.5 when an aperture was cut i n the anode. From 

equation ( l , l ) and the Langmuir-Child law v ' i t i s readily found 

that the perveance per unit distance perpendicular to the x-y 

plane i s 
v 2k.. x 
I ~ r <4-15> 

where 

k l = I eo {*V 

Referring to Figure (4~9b)» i t i s observed that a trajectory with 

coordinate x = 0.4641 i n the i n i t i a l l y p a r a l l e l part of the beam 

has diverged to x = 0,4752 at the plane y = 0, An electron beam 

with an i n i t i a l half'-width, of 0,4641 would therefore be suitable 

for this anode aperture* Setting x = 0,4641 and d = 4 i n 

equation (4«15)» the perveance of the resultant beam i s thus 

3 
K 6 2 

= 0,14 x 10" amp/volt meter. 
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4g4 I n i t i a l l y Radial,, .Convergent Flow to an Apertured Anode, 

As a second i l l u s t r a t i o n of the usefulness of the "two-

region concept" for electron gun studies, a case of great p r a c t i c a l 

interest i s considered nexts convergent flow from a cathode that 

i s a section of a cylinder. It w i l l be assumed that the flow i n 

the f i e l d i n the anode region can be approximated by a space— 

charge-free f i e l d , To thi s end a study w i l l f i r s t be made of 

pertinent characteristics of the anode f i e l d s derived i n the t h i r d 

chapter to determine t h e i r s u i t a b i l i t y for this electron motion, 

4s4 8 l Analysis of Anode Fields 

Consider Figure (4=10)•»• For electron motion i n the 

cathode region, r "> r ^ r *.• to be r e c t i l i n e a r and convergent toward 

a common axis (x ,y„)» i t i s clear that the equipotentials i n the 

cathode region must be e y l i n d r i c a l sections with a common eentre of 

the cathode region i s r a d i a l and space-charge limi t e d , and that 

Cathode 

Figure (4.-10). Cathode region of an i n i t i a l l y radial*, convergent 
flow 
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curvature (x , y )• The basic conditions that must thus be met by c c 
the equipotential Q> at r = r Q are that over the width of the 

beam (a) ^ be a section of a cylinder and (b) ihe gradient at 

^ be independent of 0* In addition, i t i s desirable that Ĵ) o r 1 o 
be close to the anode aperture and that Cj> have a short radius 

o 
of curvature, because th i s improves the beam perveance* 

It i s clear from Figures (3-2 and 4.) that an anode 

consisting of a plate with a s l i t , or consisting of two r i g h t -

angled p l a t e s , i s not suitable for an i n i t i a l l y r a d i a l * convergent 

flow, because no equipotential i n front of t h e i r anode apertures 

s a t i s f i e s the basic requirements for ^PQ» However, the f i e l d 

surrounding an anode consisting of two semi-infinite p a r a l l e l 

planes, which i s i l l u s t r a t e d i n Figure (3—7), i s seen to exhibit 

the required behaviour* The v a r i a t i o n of the radius of curvature 

and of the centre of curvature along the equipotentials of this 

f i e l d were obtained by a method presented i n Appendix D, and are 

shown i n Figures (4-11 and 12). For example, the radius of 

curvature of the equipotential v = 2.50 i n Figure (3-7) at 

u = 1.0 i s , from Figure ( 4 — l l ) , r = 3.!164, and the angle between 

the radius of curvature and the plane of symmetry i s 9 = 16*85°; 

the centre of curvature of the above equipotential at u 1*0 i s , 

from Figure (4-12), (x&i y ) = (-7.496 x 10~ 4, 1.718). Also shown 

i n Figure (4-rll) i s a curye that i s indicative of the maximum 

half—angle 0 that can be occupied by the electron beam* This 

curve, which w i l l be c a l l e d the "maximum l i n e " , was obtained by 

determiningj for each of several equipotentials, the point on 

the equipotential from which an electron, t r a v e l l i n g along the 

radius of curvature and continuing i n a straight l i n e * w i l l graze 
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Figure (4-12)^ Position of the centre of curvature of equi­
potentials i n the f i e l d about two semi-infinite 
p a r a l l e l plates 
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the mouth of the anode. For example* the maximum half-angle 

determined by the maximum li n e c r i t e r i o n for the equipotential 

v .« 2*50 i s © = 16.25°. 

From Figures (4-11 and 12) i t i s seen that the equipotentia 

v = 2«T5 i n Figure (3-7) has a radius of curvature and a centre 

of curvature that are almost constant over the interval |u| = 0*6* 

This equipotential crosses the y—axis at y = -1.6848 and the h a l f -

angle at u = 0*6 i s © = 11*6 * Therefore, although the shape 

of t h i s equipotential makes i t ideal for use as the matching 

equipotential (pQ f the r e l a t i v e l y large distance of t h i s equi­

potential from the anode aperture and the r e l a t i v e l y small h a l f -

angle would result i n a flow that would have neither a high 

perveance nor a high convergence* 

The equipotentials v < 2*75 have r a d i i of curvature that 

f i r s t decrease and then increase again with increasing |u|; the 

centres of curvature simultaneously move towards the equipotential 

when the r a d i i of curvature decrease, and move away from them 

again when the r a d i i of curvature increase. When these variations 

i n the curvature are not excessive, the equipotentials can be 

approximated accurately over the region of interest by sections of 

a cylinder. For example, a section of a cylinder with centre of 

curvature at 

( x c , y c ) = (0* 1*51714) 

and having a radius of curvature r = 2.5343, coincides with the 

equipotential v = 2.00 at |uj - 1*0 and deviates from this equi­

potential by less than 0*0008* or 0*032$ of the radius. Since 

th i s equipotential crosses the y—axis at y = -1.0164, and since 

the maximum half-angle determined by the maximum li n e c r i t e r i o n fo 
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this equipotential i s 0 = l8»9°* this equipotential i s obviously 

much more desirable for use as the matching equipotential ^ 

than the equipotential v = 2*75* 

For equipotentials v < 2 the va r i a t i o n i n curvature and of 

the gradient along the equipotentials increase rapidly for 

decreasing v, which makes them unsatisfactory for use as 

The question that arises next i s i f the outside surfaces 

of a semi-infinite parallel^plane anode can be changed i n shape i n 

such a way that the desired f i e l d characteristics are improved^ 

i*e*» the equipotential that i s suitable for use as the matching 

equipotential occurs closer to the anode aperture and has a 

shorter radius of curvature* It i s apparent from Figure (3-7) that 

to e f f e c t this improvement i t i s necessary to make the lines of 

force that issue from the aperture (the curves u —constant* 

where |u|<l) spread out more rapidly. Now the semi-infinite 

parallel-plane anode i s a special case of the anode geometry of 

Figure (3-3), with Cp̂  = Cp^ == -̂ .* Furthermore, the li n e s of force 

u = + 1 that leave the anode at the intersection of the inside and 

outside surfaces bisect the exterior angles between these surfaces. 

The magnitude of the angle that the flux lines u = + 1 make 
| c p | + n 

i n i t i a l l y with both surfaces i s thus 1 — ^ . Clearly, the way 
to increase this angle, and hence the spreading of the flux l i n e s , 

i s by making Cp^ and CJD̂  more negative. However, the case of an 

anode consisting of two semi-infinite p a r a l l e l planes i s already 

the l i m i t i n g ease of physical r e a l i z a b i l i t y and any attempt to.make 

the angles and Cp^ more negative would require the outside 

surfaces to pass through the inside surfaces, creating electrodes 

of "negative thickness", a physical i m p o s s i b i l i t y . Mathematically 





this i s s t i l l possible, and has been discussed i n Section 3 s 5 

for the case Cp^ = (p-j = - ^ * Since the region of interest 

i n t h i s "wrap-around f i e l d " i s the anode-aperture region, i n 

which the potential i s single valued, the f i e l d i n th i s region 

can be re a l i z e d by providing the required potential d i s t r i b u t i o n 

at i t s boundary* 

The v a r i a t i o n of the radius of curvature and of the centre 

of curvature along the equipotentials of this wrap-around f i e l d 

were obtained by the method of Appendix D, and are sl^own i n 

2.00 

V = 1.75 

v = 

v = 1.2 

0.4 

0.2--

0 
-0.5 r-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0*4 0*5 

Figure (4-14). Centre of curvature of equipotentials i n the 
5 " wrap—around f i e l d 
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Figures (4-13 and 14). The v a r i a t i o n of the potential gradient 

along the equipotentials i s shown i n Figure (4-15)• For equi­

potentials far from the anode, the magnitude of the potential 

gradient i s seen to decrease with increasing distance from the 

axis of symmetry. For equipotentials closer to the anode, the 

anode aperture causes an i n i t i a l drop i n the potential gradient 

near the axis of symmetry. As a r e s u l t , the potential gradient 4 

at the surface v = 1,60 i s almost constant, to |u| = 0.9, varying 

by less than ^ from the average gradient over this i n t e r v a l . 

Comparison of the characteristics of the wrap-around f i e l d 

with those of the semi-infinite parallel-plane f i e l d reveals that 

the r a d i i of curvature of the equipotentials of the wraparound 

f i e l d are shorter and more constant. For example, the equi­

potentials v = 1,75 i n the wrap-around f i e l d and v = 2.,00 i n the 

parallel-plane f i e l d , which are approximately the same distance from 

the i r respective anode apertures, have r a d i i of curvature that 

compare as followss 

Wrap-Around F i e l d Semi-Infinite P a r a l l e l 
Plane F i e l d 

v = 1,75 

r q y = 2.074 max 
r . = 1.816 mm 

Ar = 0.258 

v = 2.00 

r = 2.651 max 
r . = 2.298 
min 
Ar = 0.353 

The above change i n radius for the wrap-around f i e l d occurs over 

a half—angle of © = 29.5% whereas the larger change of radius 

for the p a r a l l e l plane f i e l d occurs over a half-angle of only 

© .= 18.9°. Clearly, the desired characteristics of the wrap-around 

Both equipotentials pass through the points (x,y) = ( + 0.860, -0.866), 
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Figure (4-151. Variation of the potential gradient along equi­

potentials of the wrap-around f i e l d 
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f i e l d are superior to those of the f i e l d about two semi—infinite 

p a r a l l e l planes. 

4?4:2 E l e c t r o s t a t i c F i e l d i n the Anode. Region Approximated  

by a Wrap-Around F i e l d 

A study w i l l now be made of the i n i t i a l l y r a d i a l j 

convergent flow of Figure (4*-10) f o r the case when the f i e l d i n 

the beam part of the anode region can be represented by the wrap­

around f i e l d shown i n Figure (3-8), The procedure to be used 

p a r a l l e l s that of Section (4s3)« 

The i n i t i a l task i n th i s study i s to determine i n the 

wrap-around f i e l d an equipotential surface that i s suitable for 

use as the matching equipotential surface at potential The 

equipotential v = 1,60 i s seen to be suitable for this purpose, 

because the potential gradient along the equipotential i s almost 

constant and because the equipotential surface can be approxi­

mated accurately over the region of interest by a section of a 

cylinder with centre of curvature at 

(x c,y c) = (0* 0.900000) 

and with radius r - 1.806283* This c y l i n d r i c a l section coincides 
o ^ 

with the equipotential v = 1*60 at |u| = 0.9, and deviates from 

thi s equipotential by less than 0*0032, or about ^ of the 

radius* The c y l i n d r i c a l section thus crosses the plane of 

symmetry x = 0 at ~f0 = Yc ^ *"-0? i*e», "yo = -0.906283. The equi­

potential v = 1*60 crosses the plane of symmetry at y Q = -0,903119* 

The flow i n the cathode region w i l l be taken to be the same 

as that i n the region 1^ R> 0.45 of a concentric cylinder diode 

with R = 0.25 (notation as i n Sub-section 4s2:2); i . e . , R = 0*45* 
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From the d e f i n i t i o n of B i t f o l l o w s that the cathode rad i u s r 

can now be evaluated? 

r c = = 4.013962 
o 

and hence the anode r a d i u s r of the e q u i v a l e n t c o n c e n t r i c 

c y l i n d e r diode i s 

r = B r = 1.003491 a a c 

Using these values of r and r , the parameters of the e l e c t r o n 

motion i n t h e cathode r e g i o n * equations ( 4 . 3 ) 7 become 

P o t e n t i a l <$> = 0.300150(rp 2) 3 

E l e c t r i c I n t e n s i t y ctl - -.200100 
2 M 

P^ + 23 dY 

<r3 2) 3 

r (4.16) 

E l e c t r o n V e l o c i t y r = 3.2494 x 1 0 5 ( r p 2 ) 3 

Charge D e n s i t y P = -L.18115 x 10 1 1 

r ( r p 2 ) 3 

where 4.013962> r > 1.806283. 

When equations (4.16a and b) are evaluated at r 

r e s u l t 

r . there o * 

r = r 
= 0.509549 

o 

and (4.17) 

t = = 0. 439692 , 
r = r o 
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Equations (3.13), describing the potential i n the anode 

region, must next be rescaled so that they att a i n the potential 

<$> and gradient 1 at r = r . For this purpose the mapping 

* = Q( T) - ??k) (4.7) 

i s again required. Let = 0 as before; equation (4.7) then 

becomes 

u = 

v = Q ( ^ - O k ) 
(4.18) 

¥hen equations (4.18) are substituted into equations (3.11) and 

the defining relations of the l a t t e r , i t i s seen that only the 

.parameters S and a are affected: 

Q2^ ^ 2 _ (<J>_ C|>k)2 2m - o>k) 

a = tan -1 
2 W(<p _Cj>k) 

•V2 - ( < £ - CJX) 2 - ( ^ 
.Q. 

(4.19) 

Along the plane of symmetry of the anode region 'ty = 0, so i t 

follows from equations (3.13b and 4.19) that the potential 

Variation along the plane of symmetry i s 

TC 

x=0 
|- S 4 ( f + 1) + J tan -1. 

/ i i \ 
2 S 4 ( r - s 2 ) 

/ 
i I 

\ s 2 ( s 2 - 2) +iy 

+tanh -1 2S 4(l+S 2) 

,2/„2 +2)+l)i 

(4.20) 



where S = Q2(<£> - C$> ) 2 + l . 

The derivative of y w.r*t, cJ 5 it 

x = 0 

d v 
d<£ 

[ Q 2 ( Q - <4\)2 + 1 

x = 0 
T t ( <3> - Cj?, ) 
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The potential gradient along the plane of symmetry i n the anode 

region i s therefore 

x = 0 

1 
d£_ 
dcj> 

x = 0 
[ Q 2 ( ^ - c £ k ) 2

 + i ] 4 

which becomes, when solved e x p l i c i t l y for Q, 

Q = - TC 

4 
5 

1 
2 

(4*21) 

At t h i s point the procedure used to obtain the potential 

i n the anode region of the flow d i f f e r s from that used i n 

Section 4s3. In Section 4s3, the anode potential was set equal 

to unity by l e t t i n g Cf^ = 1 i n equation (4.1l); the analogous 

equation i n the present problem i s equation (4.2l). Upon 

substitution of £^ and into equation (4.1l), the scaling 

constant Q, and subsequently y Q were obtained. In the present 

case we cannot follow t h i s procedure, because i t was necessary 

to specify r Q , and hence y Q» i n order to determine from the 

cylindrical-diode equation (4.3b). Therefore, i t i s not 

permissible to specify i n equation (4.21), otherwise too many 
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constraints are placed on the anode f i e l d . The two quantities 

to be solved for i n the present case are thus Q and ^ J ^ * If 

conditions (4.17) are substituted into equation-(4.21) r there 

results 
6 
'5 

1 
2 

Q = -^4.821709(0.509549 -4^) - (0.509549 - ^ J " 2 ] 

(4.22) 

Further* i f the values of y and Cj) are substituted for y and 
o o 17 

<$> respectively i n equation (4.20), we obtain 

0 = 1.4031189 +,JJ-S 4 ( f+ l )+ \ 
TC 

tan -1 
/ 1 1 . 1 1 1 1 \ 
2S 4(1-S 2) +tanh~"'' 2S

4(l+S 2) 
1 1 +tanh~"'' 1 1 

\S 2(S 2-2)+lj lS 2(S 2+2)+l/ 

(4.23) 

where S = Q2(0.509549 -Q^)2 + 1. 

The solution of simultaneous equations (4.22 and 23) i s 

Q = -2.337807 
^ k = 1.193951 

(4*24) 

The potential i n the anode region of the electron beam i s 

described by equations (3.13) and their defining relations (4.19), 

with Q and <$>k as given by (4.24). The potential v a r i a t i o n 

along the plane of symmetry of the gun has been calculated by 

using equation (4*16a) for the cathode region and using (4*20 and 

24) for the anode region; t h i s potential v a r i a t i o n i s shown i n 

Figure (4-16). 

The maximum Value of the wedge half-angle 0 of the beam 

i n the cathode region i s lim i t e d by considerations of beam 
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interception by the anode* If the t r a j e c t o r i e s near the beam 

boundary continued onward i n a straight l i n e from the equipotential 

^ 0 t the angle at which electrons would graze the mouth of the 

anode would be 29*05°, In an actual electron gun, the beam 

boundary w i l l be i n d i s t i n c t due to i n i t i a l thermal v e l o c i t i e s 

of the electrons* The beam boundary i n the anode region i s also 

broadened by the beam space-charge. The maximum value that can 

be used for the half—angle © of the cathode i s thus a few degrees 

less than 29°; the actual value of © i s probably best found by 

experimentation, although valuable guidance i n this regard can 

be obtained from a preliminary study of the t r a j e c t o r i e s by 

analogue or by numerical methods. 

Let © a r b i t r a r i l y be taken at 25°, so that an estimate of 

the gun perveance Can be made. Since the flow i n the cathode 

region of the gun i s , by hypothesis, the same as that occurring 

i n the corresponding region of an equivalent concentric-~eylinder 
diode with r = 4*01396 and r = 1,00349, the beam current per c a * 

(3) 
unit length i s v 

I k
2 V 

r 3 ' (l.8o) (4.25) 

where 

k 2 -

and where V i s the anode potential of the equivalent diode* 
El 

To maintain the o r i g i n a l conditions i n the cathode region when 

a wrap—around f i e l d was used i n the anode region* a normalized 

anode potential greater than unity was found to be required* 

= 1.19395 = — . On combining this with equations ( l . l and 



4,25), the perveance per unit length i s 
126 

K _ k 2 ° 

L ~ 2 
180 r 3 2 Q 2 

a a k a 

or 
3 

K —6 2 
= 0*26 x 10 amp/volt meter. 

4s5 Discussion 

The method employed i n thi s chapter to adapt spaee**charge 

free anode f i e l d s aud space—charge—limited flow solutions to 

electron gun design can be used for other anode f i e l d s and flow 

solutions. For example* the solution for space—charge—limited 
(36) 

flow from a cathode consisting of two in c l i n e d plates ' could 

be used; th i s solution has properties that make i t desirable 

for use i n electron gun design. With appropriate modifications* 

the method of thi s chapter could also be used for the design 

of axially-symmetrie guns* 
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CHAPTER V - THE DETERMINATION OF BEAM-FORMING ELECTRODES 

L i t t l e has been said so far about the electrodes required 

to produce the desired f i e l d conditions at beam boundaries. In 

pa r t i c u l a r , i t i s desired to determine beam-forming electrodes 

for the two examples i n the previous chapter. To this end, a 

b r i e f account w i l l f i r s t be given of the physical considerations 

which apply to this problem. 

5:1 Physical Considerations 

The "engineering problem" of determining the shape of 

electrodes that w i l l produce prescribed f i e l d conditions at the 

boundary of an electron beam i s not a problem that arises i n a 

natural or a direc t way? rather* i t i s an inverse problem. 

Implicit i n thi s problem are the assumptions that (a) such 

physically realizable electrode shapes exist, and (b) the 

electron beam i s i n a stable configuration. Neither assumption 
( 5 2 53} 

i s necessarily warranted* For example, i t has been shownv *J~'> 

that a hollow beam confined by an axial magnetic f i e l d i s i n an 

unstable configuration. An example of a case where the 

prescribed boundary conditions cannot be met by beam—forming 

electrodes i s the case of two p a r a l l e l , space—charge—limited 

s t r i p beams (see Appendix E ) . 

If analogue equipment, such as an e l e c t r o l y t i c tank, i s 

used to obtain the shape of the beam-forming electrodes, then 

the procedure involved i s generally one of t r i a l and error, with 

some guidance from theory? i»e., the electrode shapes of the 

analogue model are adjusted u n t i l the boundary conditions are 
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s a t i s f i e d to a s u f f i c i e n t accuracy. 

If analytic methods or i f numerical methods are employed 

to obtain the shape of the beam-forming electrodes* then the 

procedure generally followed i s : (a) Laplace's equation i s 

solved exterior to the beam surf ace ~ an open boundary — subject 

to Cauchy-type boundary conditions, and (b) beam-f ormisng 

electrodes are arranged along equipotential surfaces exterior 

to the beam* generally and preferably only along the equi­

potentials at cathode and at anode potential* Suecess i n part 

(b) of the procedure i s contingent upon the solution being w e l l -

behaved i n the v i c i n i t y of the beam. The remainder of t h i s 

section w i l l be devoted to part (a) of the procedure* the nature 

of the solution. 

A boundary—value problem i s properly set " i f and only i f 

i t s solution exists* i s unique and depends continuously on the 

data assigned"^ 4^» A Gauchy problem for Laplace's equation 

on an open boundary i s an improperly set problem, because the 

solution does not depend continuously on the boundary conditions^ 

That this i s so can be readi l y demonstrated with an example 

contrived by Hadamard^ 4^* Consider the Laplace equation i n 

two dimensions, 

o x d y 

which i s to be solved subject to the Cauchy conditions 

O (0,y) = 0* S £ ^ sin(ny) (5*2) 

0 
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where n i s a large number* Equations (5*1 and 2) are solved by 

<J>(x,y) - ~£ sin(ny)sinh(nx) * (5.3) 
n 

It i s seen that by increasing the value of n, the Cauchy 

conditions (5*2) can be made as close to zero as desired* The 

solution of (5*1) when the Cauchy conditions are i d e n t i c a l l y 

zero i s <$> = 0* However, the solution (5*3) i s by no means 

i d e n t i c a l l y zero; for large x, sinh(nx) grows as e n x * so that 

(5*3) o s c i l l a t e s with an amplitude that increases i n d e f i n i t e l y * 

Any attempt to approximate zero Cauchy conditions more closely 

by increasing the value of n w i l l increase the amplitude ®f the 

o s c i l l a t i o n * 

The solution exhibits the same discontinuous dependence 

on the boundary conditions when, instead of the Cauchy 

conditions (5.2) eh®sen by Hadamard, the Cauchy conditions 

0>(0ry) - i sin(ny) , 
n o x 

= 0 (5.4) 
x = 0 

are s p e c i f i e d . In this ease (5.1 and 4) are solved by 

^ (x,y) = i - sin(ny)cosh(nx) (5*5) 

which* for large x-j again grows as e » 

The above examples i l l u s t r a t e that i f the potential or the 

gradient or both are not prescribed exactly ( i . e . , are prescribed 

by analytic functions) on the boundary surface, then the e r r t r 

i n the data* no matter htw small i t may be, can cause an error 

i n the f i e l d which increases exponentially with distance fr®m 

the boundary. The rate of error growth i s discussed i n mitre 
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d e t a i l i n Appendix F« 

Conversely* the s e n s i t i v i t y of the f i e l d conditions at 

the beam boundary to errors i n the f i e l d conditions elsewhere 

decreases at an exponential rate with increasing distance from 

the beam boundary* The converse result has two most important 

consequences already mentioned; namely, that the electrodes can 

be truncated at a reasonable distance from the beam** and that 

some degree of v a r i a t i o n i s possible i n the electrode shapes* 

5 82 Design Procedure 

An e l e c t r o l y t i c — t a n k procedure for obtaining beam—forming 

electrodes for the i n i t i a l l y r a d i a l , convergent flow of Section 

4 § 4 and for the i n i t i a l l y p a r a l l e l , r e c t i l i n e a r flow of 

Section 483 w i l l now be e©nsidered» The l a t t e r case w i l l be 

taken f i r s t o 

It w i l l be Recalled that the electron motion i n the 

cathode region was assumed, to be the same as that occurring i n 

a strip-beam Pierce gun* The shapes of the beam-forming electrode 

at cathode potential and of the equipotential surface O 0 are 

thus prescribed (the outward analytic continuation of 

equations (E.2 and 3))* 

In Chapter 4* the potential and the potential gradient of 

the f i e l d s i n the cathode and i n the anode region were matched 

inside the beam at the equipotential Cj> Q* The f i e l d conditions 

outside the beam were assumed to be s a t i s f i e d by the use of an 

auxi l i a r y anode* as shown i n Figure ( 4 — 1 . ) * It i s now desired 

In some exceptional cases* the beam-forming electrodes may 
completely enclose the space exterior to the beam, making 
truncation of the electrodes unnecessary(56) e 
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to eliminate the need for this a u x i l i a r y anode by a l t e r i n g the 

main anode surface i n such a way that the potential and the 

potential gradient are s u f f i c i e n t l y well-matched along the equi­

potential surface so that the f i e l d i n the beam region i s 

neg l i g i b l y affected by the removal of the aux i l i a r y anode. 

Prom the e a r l i e r treatment of the f i e l d at the anode i t can 

be shown that an adjustment of the angle X alone,.keeping the anode 

faces plane, could not be expected to provide the desired r e s u l t . 

A more promising approach would be to keep the angle X fixed at ̂  > 

whereby i t i s already known that a good match occurs i n the beam 

region at the surface By curving the anode away from the 

cathode i t should, be possible to improve the match at points on 

further^removed from the beam without seriously affecting 

conditions at the beam. It is a d i f f i c u l t problem to determine the 

required anode shape a n a l y t i c a l l y , but an analogue method* 

u t i l i z i n g an e l e c t r o l y t i c tank or a r e s i s t o r network could be used. 

An e l e c t r o l y t i c tank model of the electron gun i s shown i n Figure 

(5—1). An electrode which coincides with the equipotential O Q 

has been inserted. The required anode shape i s obtained by 

adjusting the contour of the electrode representing the anode u n t i l 

the potential gradient on either., side of ? measured by probing 

points as indicated, becomes approximately equal, and the potential 

gradient inside the beam boundary at ($> remains approximately 
o 

constant. 

The determination of beam-forming electrodes f o r the r a d i a l l y 

convergent flow i s more d i f f i c u l t a n a l y t i c a l l y , since electrode 

shapes must f i r s t be found which w i l l r e a l i z e the wrap—around f i e l d 

inside the beam* The main problem to be solved i n thi s regard' 



involves the termination of the f i e l d before i t becomes multi­

valued. 

The determination of the beam-forming electrodes can be 

carried out i n two steps; namely, (a) by designing a gun with 

a two—potential main anode and an a u x i l i a r y anode, and (b) by 

subsequent a l t e r a t i o n of the shape of the main anode to 

eliminate the a u x i l i a r y anode. 

(a) Since the electron motion i n the cathode region i s 

by hypothesis the same as the convergent electron motion i n a 

concentric—cylinder diode, the shape of the beam-forming 

electrode at cathode potential and that of the lower surface of 

Electrode 

Figure (5-1). E l e c t r o l y t i c tank model of an i n i t i a l l y p a r a l l e l , 
r e c t i l i n e a r - f l o w electron gun 
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the a u x i l i a r y anode are thus prescribed . The shape of the 

upper surface of the au x i l i a r y anode i s also known, since by 

hypothesis i t coincides with the equipotential v = 1,60 of the 

wrap-around f i e l d . The determination of the shape of the main 

anode i s more d i f f i c u l t , involving some approximations. 

Figure (5-2). I n i t i a l l y r a d i a l , convergent-flow electron gun with 
an a u x i l i a r y anode and a two-potential main anode 

7V 

The f i e l d outside a wedge beam has.been found by the use of an 
e l e c t r o l y t i c tank analogue by P i e r c e a n d by the use of an 
analytic method by Radley(7). 
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It can be seen by refe r r i n g to Figure (3-8) that the 

f i e l d at the mouth of the anode aperture i s very intense. To 

reduce the danger of arcing to other electrodes, and to aid 

the physical r e a l i z a t i o n of the wrap-around f i e l d i n the beam 

region, i t i s desirable to choose for the anode surface* i n the 

region of the mouth of the aperture, an equipotential other than 

v = 0. The equipotential surface v to be chosen for t h i s purpose 

i s a compromise because, although equipotentials with a larger 

value of v have more rounded corners at the mouth of the anode 

aperture, these equipotentials are also more prone to intercept 

the electron beam. The equipotential v = 0.05 appears to be a . 

suitable compromise* By refe r r i n g to Figure (3-8) i t i s observed 

that nine—tenths of the lines of force that enter the anode 

aperture intersect the equipotential v = 0.05 i n the i n t e r v a l 

between the mouth of the anode aperture and y = 0.5* For values 

of y greater than 0*5* the f i e l d i s thus very weak* and the f i e l d 

w i l l be r e l a t i v e l y unaffected i f the anode wall deviates from 

this equipotential as shown i n Figure (5-2), so that electron-beam 

interception i s avoided. 

It remains to s a t i s f y the f i e l d conditions on the outside 

of the main anode* This can be accomplished to a good approxi­

mation by inserting a second anode along an equipotential of the 

wrap—around f i e l d that l i e s close to the mouth of the main anode, 

yet i s far enough away that at the upper end this equipotential 

does not cross oVer into the multivalued region u n t i l i t i s well 

away from the mouth of the main anode. From Figure (3-?8) i t i s 

seen that the equipotential v = 0.75 i s well suited for this 

purpose. The complete electrode configuration i s shown i n 
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Figure (5-2). 

(b) To permit the a u x i l i a r y anode to be removed, i t would 

be necessary to reshape the contour of the main anode. An 

e l e c t r o l y t i c tank procedure similar to that described for the 

p a r a l l e l beam case could be used for this purpose. Such a model 

i s shown i n Figure (5-3). 

Figure (5-3) E l e c t r o l y t i c tank model of an i n i t i a l l y r a d i a l , 
convergent-flow electron gun 
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58 3 Discussion 

There i s scope for further work on this approach to gun 

design. The consideration of a x i a l l y symmetric guns* p a r t i c u l a r l y 

convergent ones i n which the f i e l d i n the anode region i s similar 

to the wrap-around f i e l d , i s very desirable. To optimize the 

electrode shapes* an experimental investigation of prototypes of 

these gun structures i s essential; i n thi s way also, guns with 

higher perveances than the theoretical figures obtained above 

can no doubt be attained. 

In the i n i t i a l l y i r a d i a l , convergent flow gun described 

above, the use of the wrap-around f i e l d i n the anode region has 

the effect of reducing the f i e l d d i s t o r t i o n , due to the anode 

aperture, i n the cathode region. This effect has been obtained 
(17) 

by the use of an intensifying electrode by Muller and 
(12) 

Brewer , and by al t e r i n g the shape of the cathode by other 

investigators. Other means that could be employed to reduce 

or compensate for the f i e l d d i s t o r t i o n i n the cathode region ares 

(a) d i e l e c t r i c s between the beam-forming electrodes, and (b) non-

unipotential cathodes. 

A d i e l e c t r i c block of suitable shape and d i e l e c t r i c 

constant, placed near the beam-forming electrode at cathode 

po t e n t i a l , could be used to a l t e r the shape of the equipotentials 

i n the cathode region i n such a way as to neutralize the f i e l d 

d i s t o r t i o n due to the anode aperture. A more exotic but 

impractical example i s the problem of bounding the f i e l d i n a 

s t r i p beam by d i e l e c t r i c material placed outside the beam. 
Since the potential along the tr a j e c t o r i e s of this beam varies 

4 
3 

as y and since the normal gradient along them i s zero* the 
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d i e l e c t r i c material would need to have an anisotropic d i e l e c t r i c 

constant varying as y i n the y-di r e c t i o n , and remaining constant 

at e i n the x-direction. For current-type analogues of electro­

s t a t i c f i e l d s the r e s i s t i v i t y at a pa r t i c u l a r location i n the 

model i s proportional to the d i e l e c t r i c constant of the actual 

medium i n which the. f i e l d i s being studied. An analogue study 

of the effect of the shape and d i e l e c t r i c constant of a d i e l e c t r i c 

block between the beam-forming electrodes on the f i e l d i n a 

proposed gun structure i s thus quite f e a s i b l e . If a network 

analogue i s used* the d i e l e c t r i c block can be represented by 

suitably changing the values of the r e s i s t o r s ; i f Teledeltos 

paper i s usedf the r e s i s t i v i t y can be adjusted by using several 

layers of paper. 

By the use of a non-unipotential cathode, the off—cathode 

gradient can be made more uniform, thus improving the uniformity 

of emission when the f i e l d d i s t o r t i o n due to the anode aperture 

i s severe. Although a laminated cathode with insulated laminae 

could be used f o r t h i s purpose, a more p r a c t i c a l embodiment 

would probably be a cathode made of a r e s i s t i v e material. By 

appropriately adjusting the thickness of the cathode, the desired 

potential v a r i a t i o n along the cathode surface could then be 

attained. 
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By choosing certain convenient functional forms O f the 

action function* potential and metrical c o e f f i c i e n t s * some new 

solutions have been obtained for electron motion i n el e c t r o s t a t i c 

f i e l d s * by the method of separation of variables. A study of 

the f i e l d s and of the electron t r a j e c t o r i e s of these solutions 

has revealed some interesting properties. 

The e l e c t r o s t a t i c f i e l d about three idealized two-

dimensional anode geometries has been derived. These geometries 

ares (a) a plane with a s l i t , (b) two right-angled plates, 

and (c) two semi^-inf i n i t e p a r a l l e l plates. The wrap-around 

f i e l d , an anode f i e l d with improved charac t e r i s t i c s * has 

resulted from a study of the characteristics of the above three 

f i e l d s . 

I t has been shown how use may be made of the above space-

charge-free anode f i e l d s i n the design of electron guns* An 

estimate has been made of the error introduced by approximating 

the f i e l d i n the anode region by a space-charge—free f i e l d . An 

i n i t i a l l y p a r a l l e l * r e c t i l i n e a r flow gun and an i n i t i a l l y r a d i a l , 

convergent flow gun have been designed as examples. 

The i n s t a b i l i t y of the Pierce-Cauchy problem has been 

discussed, and an estimate has been made of the rate at which 

errors i n the Cauchy data are propagated when the beam 

boundaries are a x i a l l y symmetric. 

An e l e c t r o l y t i c tank method has been suggested for the 

determination of beam—forming electrodes for the two above guns 

that obviates the need for an au x i l i a r y anode. 
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APPENDIX A - ESTIMATE QF SELF MAGNETIC FORCES AND BELATIVISTIC 

EFFECTS 

Both self-magnetic forces and r e l a t i v i s t i c effects depencl 

on the electron v e l o c i t y . The theory of Chapter II assumes that 

the electron mass i s constant; however, according to r e l a t i v i t y 

theory i t i s given by 

9 

where mQ i s the rest mass of the electron, and c i s the v e l o c i t y 

of l i g h t . An electron that, starting from r e s t , has been 

accelerated through 20 kV w i l l have a v e l o c i t y of 0*28cV From 

the above equation* the increase i n electron mass i s thus 3.93$, 

which generally can be ignored. 

To study the v a l i d i t y of the neglect of self—magnetic 

forces* consider the case of a p a r a l l e l c y l i n d r i c a l electron 

beam of radius R, constant charge density p , and t r a v e l l i n g at 

constant v e l o c i t y The e l e c t r i c i ntensity E r due to the space 

charge of the beam i s directed r a d i a l l y inward and at a radius 

r<R i t i s "' 

0 

The e l e c t r o s t a t i c force F experienced by an electron at radius 
re J 

r i s thus 

» « - - « r — ( 2 ^ P r • 

and i s directed r a d i a l l y outward. The magnetic induction BQ due 

to the beam current i s , at a radius r R, 
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The magnetic force F r m experienced by an electron at radius 

r < R i s thus 

and i s directed r a d i a l l y inward. The ratio of the magnitudes of 

the two forces i s 

2 
2 % 

= ^o £o "*£ = — T • c 

At 20 kV the r a t i o of the forces i s 0.078. It i s apparent that 

for electron energies greater than 20 keV the self—magnetic 

forces generally need to be taken into account. At 10 kV tb.e 

ratio of the forces i s TTF » 
25 

In evaluating the self-magnetic force^ i n electron beams 

of actual electron guns, other considerations are involved 

besides the one obtained for the above idealized beam model. 

Some of these considerations are discussed i n reference (57). 

F rm 
re 
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APPENDIX B - DEMONSTRATION OF THE EXISTENCE OF V(q l f. q 2 , q_3) = c 1 

¥HEN THE CONDITION V x f = 0 IS SATISFIED 

For electron motion occurring i n an e l e c t r o s t a t i c f i e l d 

and starting from rest at a zero-potential cathode* the condition 
( 3 5 3 9 ) 

V x V = 0 i s s a t i s f i e d , by Lagrange's invariant theorem * /, 

Therefore we may write 

or 

dW = ^.ds 

It i s seen that ¥ i s constant when ds i s normal to I T » Let us 

c a l l t h i s normal d i f f e r e n t i a l vector dn. ¥e then have 

d¥ = 0 

for 
ar.dn = 0 

But the P f a f f i a n d i f f e r e n t i a l equation 'TXdn = 0 i s integrable 

because by hypothesis "XT s a t i s f i e s the condition v̂7x V" = 0* and 

therefore i t follows that there exists between the space-

coordinates q^* q 2 j and q^ a one-parameter family of surfaces 

q 2 » q 3) = c]_ 

(34) 
normal to the t r a j e c t o r i e s 
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APPENDIX C - NUMERICAL METHOD FOR OBTAINING ELECTRON TRAJECTORIES 

IN ELECTROSTATIC FIELDS 

C t l Space-Charge. Effects Neglected 

Consider the motion of an electron entering a uniform 

e l e c t r i c f i e l d E at (x Q>y o) with i n i t i a l v e l o c i t y (* o,y Q), as 

i l l u s t r a t e d i n Figure ( C - l ) . From equation (2.8) the equations 

of motion are 

* = - V E x 

'--Vfy 

Integration of these equations w.r.t. time results i n 
J 

and 

x = - 71E t + x / x o 

y = - T? E y t + y o 

E 
= - 7 7 t 2 + x t + x 

1 2 o o E 
+ y. 

( c i ) 

(C.2) 

(C.3) 

Figure ( C - l ) . Motion of an electron i n a uniform e l e c t r i c f i e l d 



143 
The parameter t i n equations (G.3) can be eliminated by the use 

of equations (C.2); taking the sum of the squares of the l a t t e r , 

we obtain 

' U 2 = 7 ? 2 E 2 t 2 - 2 7 7(E x* o + E y y Q ) t + O T 2 . (C.4) 

I t w i l l be assumed that the t o t a l electron energy i s zero; 

therefore, from (2.13), 

n r 2 = 2T)<& . (C*5) 
Upon substitution of equation (C»5) into (C.4) and solving the 

l a t t e r for t, there results 

t = - ± 
7]E2 

( E x + E y ) + i f 2 7 ) C £ E 2 - (E y - E x ) 2  
v x o yJ o' u / N x J o y o' 

(C.6) 

Equations (G.3 and 6) describe the parabolic trajectory i n a 

uniform f i e l d i n terms of the parameter . of the e l e c t r i c 

i n t e n s i t y components, and of the i n i t i a l v e l o c i t y components and 

position coordinates. 

In e l e c t r o s t a t i c f i e l d s that are not uniform but that are 

slowly varying i n spacer electron t r a j e c t o r i e s can be obtained 

by considering the e l e c t r o s t a t i c f i e l d to be uniform over short 

i n t e r v a l s , and applying equations (C.2, 3 and 6) to plot the 

trajectory i n each i n t e r v a l * The size of i n t e r v a l to be used i n 

a p a r t i c u l a r region of a f i e l d depends on the desired accuracy 

of the t r a j e c t o r i e s , on the degree of non-uniformity of the 

f i e l d , and on the round—off errors i n the computations. 

Let j be an index denoting the interval number along an 

electron trajectory. Thus ( x ( j ) , y ( j ) ) are the coordinates of 
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the j ' t h point on this trajectory. The equipotential passing 

through the j ' t h point i s OCj). If the e l e c t r o s t a t i c f i e l d 

over the j ' t h i n t e r v a l of the trajectory i s approximated by a 

uniform f i e l d , conditions w i l l be as i l l u s t r a t e d i n Figure (G~2)» 

In p a r t i c u l a r , i t i s seen that .the equipotentials ^ ( j - l ) 

and O(j) are distorted to the p a r a l l e l straight lines O(j-l) 

and respectively* so that the trajectory obtained by 

using the uniform-field assumption crosses the li n e ^ ( j ) u at 

(j)u» A f i r s t - o r d e r correction w i l l be made by extrapolating 

the trajectory to the point where i t intersects the equipotential 

3>(j); this point w i l l be taken to be the j ' t h point on the 

trajectory. 

3) 
¥ ( 3 - 1 ) 

y ( j - i 

x ( j - l ) x(j) x(¥(j-i),<£(jj) 

Figure (C-2). Electron path i n the j ' t h i n t e r v a l of a non­
uniform f i e l d , showing the effect of a uniform-
f i e l d approximation. The i n t e r v a l size i s greatly 
exaggerated,. 
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The v e l o c i t y components and the coordinates of the electron 

at the point (j) are, from equations (C.2, 3 and 6) 

* ( j ) u = - 7 / B x ( j ) t ( j ) + x ( j - l ) 

y ( j ) u = 7 7 E y ( j ) t ( j ) 4- y ( j - l ) 
(G.7) 

x ( j ) u = t($j) [- ^ E x ( j ) t ( j ) + x ( j - l ) ] 4- x ( 3 - D 

y ( j ) u = t ( j ) [- ^ E y ( j ) t ( j ) + y ( j - l ) ] + y ( ^ . l ) 

(G,8) 

where 

t ( j ) = 
7?E 2(j) 

J E x ( j ) x ( j - l ) 4- E y ( j ) y ( j - l ) 

[2770(j)E 2(j) - ( E x ( j ) y ( j ~ l ) - E y ( j ) x ( j ~ l ) ) 2 ( C 9 ) 

and where the e l e c t r i c intensity components are as described 

below i n equations ( C . l l and 14). 

The e l e c t r o s t a t i c f i e l d s i n which i t i s desired to obtain 

electron t r a j e c t o r i e s are described by equations of the form 

x = xOJ>-,4>) 

y = y(^,Cf>) 

where the curves constant are lines of force. The magnitude 

of the e l e c t r i c intensity i n the j'th int e r v a l can therefore 

conveniently be taken as 

(G.10) 

E(j) = ^ ( . i ) - 3>(,i-i)l ( c .n) 

where D(j) i s the distance along the secant lin e joining the 

point ( j - l ) and the point marking the intersection of " ^ ( j - l ) 

and " ^ ( j ) , as shown i n Figure (G-2), It follows that 
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D( j) = \ / A X 2 ( J ) + Ay 2 ( j ) (C.12) 

where 

Ax( j) = x ( ^ ( j - l ) , < £ ( j ) ) - x ( ¥ ( j-l)» <2>(.j-l)) 

Ay( j) = y ( T ( j - l ) , <3>(j)) - x ( ¥ ( j - l ) , 4>( j-l)) 

From equations (G»ll—13) i t i s readily seen that 

(C13) 

(C14) 

for <$>U)> ^ ( j - 1 ) . 
To extrapolate the trajectory from the point ( j ) u to i t s 

intersection with the equipotential ^ ( j ) ve shall approximate 

the trajectory between these two points by a straight l i n e whose 

slope i s the same as the slope of the trajectory at (j)u» The 

str a i g h t - l i n e trajectory i s thus 

ax + b (C.15) 
where 

y ( j ) 
a u and b 

u 

y( j ) 
y ( j ) „ - jTjy- X U ) u u u 

The remaining problem i s to determine the coordinates of 

the intersection of equation (C.15) with the equipotential (̂j); 

the l a t t e r i s seen from equations (C.10) to be described by 

equations of the form 

x = x(^,0(j) 
y=y(V,3>(jj) (C.16) 
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The f o l l o w i n g i t e r a t i v e procedure can be used t o determine the 

c o o r d i n a t e s of the i n t e r s e c t i o n : 

( l ) Solve e q u a t i o n s (C.16) w i t h a s u i t a b l e i n i t i a l guess f o r 

^ P ( j ) . For the f i r s t i n t e r v a l i n a t r a j e c t o r y a s u i t a b l e v a l u e 

f o r ^ ( j ) i s g e n e r a l l y the v a l u e of x - i / ( j - l ) ( i . e . , when j = l , 

use the v a l u e of ^/"(O) as an i n i t i a l guess f o r vK(l))« For 

subsequent i n t e r v a l s , b e t t e r i n i t i a l guesses of ^ ( j ) can be 

made by n o t i n g how ^ v a r i e s a l o n g the t r a j e c t o r y from i n t e r v a l 

to i n t e r v a l , I f the i n i t i a l guess i s denoted by 4 ^ ( j ) , 

e q u a t i o n s (C.16) become 

x T ( j ) = x ( ^ ( j ) , r P ( j ) ) 

yj(3-) = y ( r ( j ) ) 
(C.17) 

where- ( x ^ ( j ) , y - ^ ( j ) ) are the corresponditngi i n i t i a l 'guesses of 

the ' ; d e ^ s i r e d i : c o o r d i n a t e s — ( x ( j )y y( j ))\, 

(2) • S u b s t i t u t e (C.17a) i n t o (\Ga 5 ) : t o : dete rmi-ne:. the-value, of 

•the - i n i t i a l e s t i m a t e of -'the y - c o o r d i n a t e , '.y^Cj:")',.''-o'nv^the-^str.aight' 

l i n e t r a j e c t o r y ; i . e . , 

y"~ ( j ) = ,ax-L (j ) + b 

(3) D e f i n e an e r r o r f u n c t i o n as 

e i = ^ i ^ ^ ~ y 2 (J ) 

(4) I f e .< e whe re e i s a p r e d e t e r m i n e d e r r o r bounds then 

( x2 (3 ) > y^ (3 ) ) are • •tafcem-'tw"be* the •• c o o r d i n a t e s of the j 1 t h 

p o i n t on the; t r a j e c t o r y , and the computations f o r ; the' j ' t h 

i n t e r v a l are completed. 

(5) I f e-, >̂ e Q , s u b t r a c t an i n c r e m e n t a l / from ^ ( j ) » 
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obtaining 

and repeat steps (l) - (4) above; 

(a) x 2 ( j ) = x( <J>(j)) 

y 2 ( j ) = y( %(j)f <J>(j)) 

(b) T2^) = a x 2 ^ + b 

(e) s 0 =y" 2(j) - y 2 ( j ) 
? 

2 1 ^ 

' 2 ~ J2 

(<*) e J ^ e 

(6) If e 2 >|e Q > the i t e r a t i o n must be repeated. Since 

from the f i r s t two it e r a t i o n s two values on the curve of e vs. "^"(j) 

are known, the t h i r d value of "^(j) to be used for the i t e r a t i o n 

can be predicted from a straight l i n e approximation (see 

Figure (C-3))* Thus 

e 2 ^ ( d ) - e i ¥ 2 ( j ) 

( e 2 - e 
l) 

(7) In general* after n i t e r a t i o n s , the curve ^ ( j ) = f(e) can 

be approximated by a (n- l ) ' t h degree polynomials 

¥(3) 2 3 
0 1 2 3 n-l 

n-1 

The co e f f i c i e n t s a. can be determined from the set of equations: 
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-p a •H O 
P4 

CD 

Predicted Point 

( £2 'V 2 (d) 
Figure (C-3). Prediction of Nfc(j) i n the i t e r a t i v e process 

2 3 e^a^ + e-̂  a 2 + e-̂  a^ + . . 

e 2 a l + e 2 2 a 2 + e 2 3 a 3 + 

2 3 
e 3 a l * e3 a2 + e3 a3 + * * 

+ e i n " l a n - l + ao = \ M 

+ e 2 n " l a n - l + ao = % M 

+ E 3
n - 1 a n _ 1 + a Q = ¥ 3 ( 3 ) 

E n a l + e n 2 a 2 + £ n 2 a 3 + * * + e n _ 1 a , + a = ¥ (j) n n-1 o n d ' 

and thus 

0 

n n 

n-1 

n-1 

n-1 

n-1 
n 

where A i s the determinant of the coef f i c i e n t s a 
The t r a j e c t o r i e s shown i n Figure (4-9a) were obtained by 
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the above method* It vas found that i n most cases only four 

—6 ite r a t i o n s were required for an error bound of e = 10~ . . ': o 

C:2 Correction for Space-Charge Forces 

Some useful approximations can be made for the beam 

discussed i n Section 4:3 to take into account spreading of the 

beam due to space-charge forces. This beam and the electro­

s t a t i c f i e l d are symmetric about the plane x = 0, the transverse 

v e l o c i t y of the beam i s small compared to i t s a x i a l v e l o c i t y 

( x<<y) and, i n the cathode region, conditions i n the beam are 

assumed to be independent of the transverse direction* If image 

charge effects due to the electrodes are ignored, i t i s there­

fore not unreasonable to assume that i n the anode.region the 

flux due to the beam i t s e l f i s transversely directed, whence 

by Gauss' law 

o 

where E = e l e c t r i c i n t e n s i t y due to the electrons only, at a 
s 

point (x,y) i n the beam 

X = charge/unit length/unit depth contained by an 

incremental beam section of width 2x at (x,y)» 

It follows from the d e f i n i t i o n of X, and equation (2*6) that 

In the beam under study i n Section 4:3, we shall not be 

far wrong i f i t i s assumed that the electron v e l o c i t y i s constant 

across the beam because, by the time the f i e l d becomes markedly 
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non-uniform, the electrons are a l l t r a v e l l i n g near terminal 

v e l o c i t y . Rewriting equation (C.19) and combining i t with (C»18) 

results i n 
x J(y ) n / \ o w o ' 

l 
— 2 

(C20) 

where (see Figure (C-^4)) 

E (x,y) = e l e c t r i c intensity due to the electrons only, at 
s 

a point (x,y) on the trajectory that had coordinates 

(x Q,y o) when i t passed through Cj)^ 
J(y ) = current density of the beam at the equipotential, 

^ ( x j y ) = ^"{^(Ojy) + 0(x,y)J , an approximate average of the 

potential across a beam cross-section of width 2x 

at (x,y). 

x 

Beam Boundary 

Figure (C-4)» Space-charge effects in,the anode region 
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The contribution of space-charge to the e l e c t r o s t a t i c 

f i e l d i n the anode region can be incorporated into the trajectory-

c a l c u l a t i o n procedure of Section Csl by evaluating equation 

(C*20) at each trajectory interval and adding i t to E (j) i n 

equations (C.7-^9)» The tr a j e c t o r i e s shown i n Figure (4-9b) 

were obtained by th i s modified method. 
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APPENDIX D - ANALYSIS OF THE CURVATURE OF AN EQUIPOTENTIAL 

Consider a continuous curve v^ which i s described i n terms 

of the parameter u by the equations 

x = x(u) 

y = y(u) 
(D.l) 

We wish to determine the radius of curvature and the centre of 

curvature of v^ at u^, as shown i n Figure (D-l). For this 

purpose, consider i n addition two nearby points u^_^ a n < i u±+± o n 

v^» The centre of curvature of v^ at u i i s then obtained by the 

following procedure! 

(l.) Join the points u^ ^ and u^, and u^ and u^ +^ on v^ by two 

secant l i n e s , 

(2) Bisect the secant lines and erect lines perpendicular to 

them passing through the bis ect ;. points. 

(x .,y •) v c i ' J c i 

Secant Lines 

•9*- x 

Figure (D-l). Centre of curvature of v, at u. 
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(3) The intersection of the two perpendiculars i s then, i n the 

l i m i t as u. , and u. ,,-l - l l+l 
at the point u^. 

u^, at the centre of curvature of v^ 

Algebraically this i s accomplished as follows: 

The slope of the secant l i n e passing through u^_^ and u^ i s 

y± - y i _ i m. = l x, — x. (D.2) 
i-1 

while the slope of the l i n e passing through u^ and u^ +^ i s 

m _ y i + l y i 
i +1 ~ x. ,, - x. 

l+l l 
(D.3) 

Thus the slopes of the li n e s perpendicular to these are 

and 

"i+1 
' x i + l x .> l 
i+1 - y< 

(D.4) 

(D*-5.) 

respectively. 

The bisecting point on the l i n e u^ ^ - u^ has coordinates 

x, . = x. ^ + b i l — l 

y ^ i y i - l \ 
b i i-1 

(D.6) 

The bisecting point on the l i n e u^ - u ^ + 1 has coordinates 

x. + 
i 

X b(i+1) 

y b ( i + D = y± + 

l+l i> 

y i + l ~ y i 
(D*7) 
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Thus the equation of the perpendicular bisector of - u^ i s 

(y - y b i ) = s,(x - x w, ) bi' (D.8) 

and the equation of the perpendicular bisector of u^ - u ^ + ^ i s 

( y - y b ( i + i ) = s i + i ( s i + i l x - x b ( i + i (D.9) 

Substituting equations (D.4 and 6) into (D.8), and (D.5 and 7) 

into (D.9). we obtain 

y + A ix = B̂  (D.10) 

and 

y • A 1 + 1 X = B 1 + 1 (D.ll) 

respectively, where 

x. r* x. , . _ l i - i 
1 " y± - y i - i 

and 

B i = 2 
(x 2 - x. 2 

Equations (D.10 and 11) intersect at 

x . = c i 

c i 

Bi+1 - B i  
A i + 1 " A i 

B i A i + l " B i + l A i 
A i + 1 " A i 

J 

(D.12) 

and i n the l i m i t , as u. , and u. , >u., (x . ,y .) i s the 
1*"*J. 1T1 1 C l cx 

centre of curvature of the curve v^ at (x^,y^). For computational 

purposes, we need to ret a i n the small increments u^ - u^ and 
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- the size of the increments depending on the behaviour 

of v,, and the accuracy to which (x . ,y .) i s desired. 

Prom Figure (D-l) the radius of curvature i s readily seen to be 

r i = " x c i ) 2 + ^1 - y c i ) 2 (D.13) 

while the angle with which r^ intersects the y-axis (the slope 

of v^ at u^) i s 

= tan' 

Equations (D.12, 13 and 14) were used to compute the centre 

of curvature (x .,y . ) * the radius of curvature r., and the angle 
C1 C1 X 

0- for a series of points u^ on equipotentials i n the f i e l d about 

two semi-infinite p a r a l l e l planes and i n the wrap-around f i e l d 

(see Figures (4-11 to 15)). 

(D.14) 
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APPENDIX E - ELECTROSTATIC FIELD REQUIRED TO MAINTAIN T¥Q 

PARALLEL, SPACE-CHARGE-LIMITED STRIP BEAMS 

For simplicity the s t r i p beams w i l l be assumed to be of 

vanishing thickness; no generality i s l o s t by this assumption, 

since the f i e l d required outside two beams of f i n i t e thickness 

i s the same as that required for the case to be discussed. 

In Figure (E-l) are shown two s t r i p beams, which are a 

distance 2h apart. The potential v a r i a t i o n along these beams 
(2) 

i s , from the Langmuir—Child law , 

V(h,y) = A xy 

V(-h,y)= k0y 

where 

A i - \jq 

(E.l) 

and and ̂  are the current densities i n the right and i n the 

l e f t beam, respectively. 

If the Laplace equation i s solved subject to '(E.l) by 

analytic continuation, i n the manner of Pierce i t i s found 

that the e l e c t r o s t a t i c f i e l d required to maintain the right beam 

i s 
V(x,y) = A x (x - h ) 2 + y 2 

n 3 
cos 4 . -1 /x -

•Tr tan 
3 \ y (E.2) 

while the f i e l d required to maintain the l e f t beam i s 
2 

,2 . 2 n 3 

V(x,y) = A2[^(x + h)* + y' cos 4 + -lfx + h 
3 a n \~T 

(E.3) 

If J 1 = J 2 , then the f i e l d s described by (E.2) and (E.3) 
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are observed to be the same and to be sp a t i a l l y displaced from 

each other a distance 2h; further, the potential v a r i a t i o n 

along the y-axis described by (E.2) and (E.3) i s then the same. 

Since the f i e l d s described by equations (E.2) and (E.3) 

overlap, they cannot simultaneously be realized p h y s i c a l l y , 

as t h i s would require multivalued potentials i n the overlapping 

regions. However, by suitably terminating the f i e l d s i n the 

region between the two beams, this overlapping of the f i e l d s 

can be avoided. The f i e l d s can be terminated by various means. 

For example, for the case when = , a r e s i s t i v e s t r i p of 

thickness 2s could be inserted, midway between the two beams, 

as shown i n Figure ( E - l ) . If the r e s i s t i v i t y of this s t r i p 

varies as 2 

Figure ( E - l ) . Electrodes and r e s i s t i v e s t r i p to maintain two 
p a r a l l e l strip-beams 



159 
and the ends of the s t r i p are e l e c t r i c a l l y connected to the beam-

forming electrodes, the desired f i e l d conditions are attained, 

because the r e s i s t i v e s t r i p divides the region between the 

beam-forming electrodes — which t h e o r e t i c a l l y shduld extend 

to i n f i n i t y — i n t o two closed regions (the potential i n a 

closed region i s specified uniquely once the potential i s known 

on the boundary)* 
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APPENDIX F - ON THE STABILITY OP THE PIERCE-CAUCHY PROBLEM; 

If the beam boundary as v e i l as the Cauchy boundary 

conditions are prescribed by analytic functions, then* by the 
(58) 

Cauchy-Kowalewski theorem v , a unique solution of the electro­

s t a t i c f i e l d exists* at least i n the neighbourhood of the beam 

surface. Several exact, stable methods, based on solving the 

Laplace equation by analytic continuation, have been developed 
(5) 

i n the past. Pierce used analytic continuation to determine 

the plane e l e c t r o s t a t i c f i e l d required outside a s t r i p beam with 

a r e c t i l i n e a r boundary* Lomax^^^ and K i r s t e i n ^ ^ used this 

process for plane f i e l d s outside planar flows with curvilinear 

boundaries, and H a r k e r ^ ^ applied i t to the a x i a l l y symmetric 

case for beams with curvilinear boundaries. 

When "marching-i.type" numerical procedures are used to 

solve the Laplace equation outside the beam boundary* errors are 

inevitably introduced by the f i n i t e - d i f f e r e n c e approximation 

of the Laplace equation and by the limited precision of the 

numerical computations. It has already been shown i n Section 5sl 
(61) 

that these errors can grow at an exponential rate. Sugai 
(62) 

and Meltzer found an upper l i m i t of 5.828 for the growth 

of the error per step when the five-point star formula 
= 4 3> - 3> 1 - ^ -<2>, , (p.i) 

k+l,n k*n k-l,n k,n+l k,n-l- ' 
i s used to solve (5»l), the Laplace equation for plane electro­

s t a t i c f i e l d s . 

For a x i a l l y symmetric f i e l d s , the Laplace equation to be 

solved i s 
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so the five-point star formula i s 

Cp = fa - ̂  Cp - fm ~ A Cp _ Cp - Cp 

m+l,n \ m / m * n \ m / m _ l ? n m,n+l m,n—1 

(F.3) 

where the notation i s as i l l u s t r a t e d i n Figure ( F - l ) . The upper 

l i m i t of the growth rate of the error per step for equation (F«3) 

i s the same as that for ( F , l ) j this i s clear i f i t i s considered 

that when "m" i s large i n equation (F.3), the l a t t e r approaches 

the functional form of (F»l)* For f i n i t e "m", however, the maximum 

growth rate of the error of (F»3) i s always somewhat smaller than 

that of the error of (F«2)* as w i l l be demonstrated. 
Let e be the error i n the value of the potential Cp a t m,n * 

(r,z) = (mArj nAz). Since equation (F.3) i s l i n e a r , i t can be 

used to describe the propagation of i n i t i a l errors i n potential, 

as well as to compute the potential i t s e l f . Therefore, 

em+l ,n y m J m,n \ m J m-l,n m,n+l em,n-l 

For s i m p l i c i t y , l e t i t be assumed that the beam boundary coincides 

with the li n e m = mQ, so that the Cauchy conditions specify the 

values of potential at mesh points of the lines m = mQ and m = m̂  

(see Figure (F—1 ) ) . It w i l l further be convenient to define a 

new index "k", which i s zero at the beam boundary, so that 

k = m - m 
o 
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As an example, the case mQ = 10 w i l l be taken* Using 

equation (F.4). errors i n potential at the mesh points of the 

lines mQ = 10 and m̂  = 11 are found to propagate as follows: 

12 

13 

,n [" 

,n - [" 

10 
11 e10,n fcll,n-l. 11 e l l , n Ell,n+1 

+ 10 r T 37 ,10 
11 e10,n-l " J 66 e10,n + 11 e10,n+l 

_ 7 109 l f i 13 - 109 
_H»n-2 ~ ' 132 e l l j n - l + i b 33 £ l l , n ~ 1 132 ell,.n+l + ell,n+2 
etc. 
In general, 

p = n+(m-12) 

e 

q = n+(m-ll) 

m,n a10,p e10,p + a l l , q E l l , q 
p = n->(m—l2) q = n-(m-ll) 

m:, .+• 1 

m 
m - 1 

3 

2 
1 

Axis of 

< ¥ 

i 

P——% 

i 

! 

kr 
+ 

Az -«—* 

k 

k = 1 

k = 0 

Symmetry o 1 2 3 4 n-1 n n+1 
Figure ( F - l ) . Square l a t t i c e (Ar = Az) used for solving equation 

(P.3) 
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where a n ̂  and a,, are c o e f f i c i e n t s . Since the potentials 10, p 1.1 *q 
at the mesh points of the line m̂  = 1.1 depend both on the 

prescription of the potential at mesh points of mQ = 10 and on 

a f i n i t e - d i f f e r e n c e approximation of the normal gradient* the 

errors on the l i n e m̂  = l l w i l l i n general be greater than the 

errors on the l i n e m = 10, The second summation of equation 
o ^ 

(F»5) i s thus the dominant part of e . Values of the 
* m,n 

coe f f i c i e n t s a ^ ^ ^ a r e shown i n Table (F-l) for values of m up 

to 17j t h i s table i l l u s t r a t e s the rapid rate of growth ©f the 

i n i t i a l errors. The worst case occurs when the potentials at 
each mesh point on the two starting lines m and m, have the r o 1 
maximum allowed i n i t i a l error, and this error alternates i n sign 

for consecutive mesh points. The rate of growth of e, n w i l l 
& l l * q 

then be the sum of the magnitudes of the co e f f i c i e n t s ; i t i s 

seen from Table (F—l) that upon reaching a mesh on the line 

k = 7 the i n i t i a l errors E ^ J already w i l l have grown to 

37,700 times t h e i r o r i g i n a l value. 

Since the dominant c o e f f i c i e n t i s a,, » i t s rate of 
11, n y 

growth has been taken to give a more v a l i d indication of the 
rate of growth of the i n i t i a l errors to be expected i n the 

(6l) 
general case. This procedure was also followed by Sugai . 

In Figure (F-2) have been plotted the ratios of adjacent central 

column co e f f i c i e n t s of e for the cases when m = 10 and 
m̂  , q o 

when mQ = 0, The curve obtained by Sugai for plane electro­

s t a t i c f i e l d s * when equation (F,l) applies, i s also shown* 

As mQ i s increased* the growth of the i n i t i a l error per step 

i s seen to approach the curve for the plane case* 
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m 11 12 13 14 15 16 17 

all,n+6 1 

all,n+5 -1 -23.548 

all,n+4 1 19.611 232.41 

all,n+3 -1 -15.677 -155.13 -1,254.0 

all-*~n+2 1 11 .749 9 3 . 3 9 9 638.24 4,055,8 

a l l , n + l -1 -7.8257 -47.172 -266.15 -1,47.5.2 -8,148.1 

a l l , n 1 3.90 16 .39 76.358 378.89 1,951.4 10.-27.9 

Ratio of 
adj acent 
central—co 
eoefficien 

3.< 
luran 
Lts 

30 4.1 94 4 .658 4. 962 5. 150 5 ,267 

Table ( F - l ) . Coefficients of e,-, i n equation (F.5) 
i i ,q 

In view of the high i n s t a b i l i t y of these marching-type 

methods* the best procedure to follow i s , i n general* to start 

with a fine l a t t i c e between mQ and m̂  (to keep the i n i t i a l 

errors low), but to enlarge the l a t t i c e as rapidly as possible 

when working away from the beam boundary. For example* for 

plane f i e l d s * to obtain the value of n? the equation 

14*n ^12,n 12,n-2 12*n+2 10,n 

would be preferable to the equation 

<£> = 4 <J> _ d b _ cb ^ db 
14 *n 13,n 13,n-l 13,n+l 12,n * 
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rH 
+ 
s s 

a 
rH rH 
S S 
a 

5.828 

Rectangular/,-, \ 
Coordinates 

Figure (F-2). 

k = m - m 
o 

Ratio of the adjacent central-column coefficients 
a m n versus distance from the beam boundary 
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