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ABSTRACT

A theoretical study is made of the formation of
electron beams in electrostatic fields. The electron
motion is assumed to be normal, congruent and regular,
so that the equations governing the motion can be set
up in terms of the action function. By assuming con-
venient functional forms of the action function, of
the potential and of the metrical coefficients, some
new solutions are then found by the method of sepa-
ration of variables. These solutions are studied in
detail; and are shown to have some desirable properties,

In order to employ a given space-charge flow solu-
tion in electron gun design, a method is developed to
take into account the distortion of the field due to
the anode aperture. 1In this method, the gun is con~
sidered to be made up of two regions, separated outside
the beam by an auxiliary anode. The desired space-
charge flow is assumed to exist in the cathode region,
while in the anode region the effect of space-charge
on the electrostatic field is assumed to be negligible.
An estimate is made of the accuracy of these assumptions.

The fields about four idealized anode geometries are
obtained by using Schwarz-Christoffel transformations,
and a study is made of the relevant properties of these
fields. One of these fields, which has been called
the "wrap-around field", is shown to have properties
that are very desirable for convergent electron guns.

. The above design method is illustrated by two exam~
ples; namely, a gun producing a beam that is initially
parallel and rectilinear, and a gun producing a beam
that is initially radial and convergent; the latter
incorporates the wrap-around field in the anode region.

Physical considerations involved in the determination
of the electrodes to maintain a given beam are briefly
discussed, and it is shown that the sensitivity of the
field conditions at the beam boundary to errors in the
field at other locations decreases at an exponential



rate with distance. A method is suggested for
determining beam-forming electrodes that avoids the
need for an auxiliary anode to maintain the beam.
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ABSTRACT

A theoretical study is made of the formation of electron
beams in electrostatic fields. The electron motion is assumed
to be normal, congruent and regular, so that the equations
governing the motion can be set up in terms of the action
function., By assuming convenient functional forms of the action
function, of the potential and of the metrical coefficients,vsome
new solutions are then found by the method of separation of
variables. These solutions are studied in detail, and are shown
to have some desirable properties.

In order to employ a given space-charge flow solution in
electron gun design; a method is developed to take into account
the distortion of the fiéld due to the anode apertures 1In this
method, the gun is considered to be made up of two regions,
separated outside the beam by an auiiliary anode. The desired
space—charge flow is assumed to exist in the cathode region,
while in the anode region the effect of space-charge on the
electrostatic field is assumed to be negligible. An estimate
is made of the accuracy of these assumptions.

The fields about four idealized anode geometries are
obtained by using Schwarz-Christoffel transformationsy and a
study is made of the relevant properties of these fieldss One
of these fieldsy which has been called thé "wrap-around field",
is shown to have properties that are very desirable for coﬁ—
vergént electron gunss

The above design method is illustrated by twe exampies;

namely,; a gun producing a beam that is initially parallel and



réétilinear, and a gun producing a beam that is initially radial
and convergent; the latter incorporates the wrap-around field
in the anode regione

Physical considerations involved in the determination
of the electrodés to maintain a given beam are briéfly discussed,
and it is shown that the sensitivity of the field conditions
at the beam boundary to errors in the field at other locations
decreases at an exponential rate with distance. A method is
suggested for determining beam-forming electrodes that avoids

the need for an auxiliary anode to maintain the beam.
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CHAPTER I - INTRODUCTION

1¢1 Introduction

Until the invention of the klystron twenty-five years ago,
the major devices emploYing electron beams were cathode-ray tubes
and electron microscopes. The curfent requirements of the
latter devices are modest, being of the order of a few pa to
several mas New and difficult electron gun design problems
were'posed by the advent of beam-type microwave tubes, which
requife a high-current-density beam at a comparatively low
voltage.

Valuable indicators of electron gun performance are provided
by the concepts of perveance and area-compression ratio. For an
idealized model of space~charge-limited flow, in which physical
considerations such as initial thermal velocities and variation
of the work function, of the conductivity and of the contact
potential at the cathode are ignored; the perveaﬁce K is described
by
(1.1)

=
(
4‘”
rojw

where V is the petential difference between the cathode and
anode — both of which may be of arbitrary shape — and I is the
$otal current Equation (1.1) is commonly used to specify the
perveance of an electron gun or of an electron beam, even in

cases where this relation does not strictly apply. The area-

* ‘.’ - -
For a brief informative history of equation (1.1) and the term
"perveance", see reference #l.



compression ratio of an electron beam is defined as the ratio
of the cathode area to the ultimate beam cross=sectional area,
Electron guns that produce beams with an area~compression ratio
greater than one are called convergent guns.

Despite the simplicity of equation (1.1)y the theoretical
evaluation 'of K is, in general, very difficult. This can be
appreciated if it is considered that the electrostatic field in
the cathode—énode region is determined by the space=charge
distributien in the beam and by the shape of, and potential
difference between, the electrodes. The space—charge distri-
bution isy, hewever, dependent on the dynamic properties of the
electron flow, and these properties are, in turny prescribed by
the electrostatic field. A mutual interdependencey known as the
self-consistency condition, thus exists between the space-charge
distributicn and the electrostatic field.

Until 1949, space-—charge flow solutions were known for
rectilinear flew enly. In rectilinear flow, the trajectories
coincide with lines of force of the electrostatic field,
simplifying the preblem greatly. There are three known cases
of rectilinear flow; namely, lines of flow (a) para,llel(z)y
(b) radiating nermally from (or converging te¢) an axis(B), and
(¢) radiating from (or converging to) a point(4)° These three
cases correspend to flow between two infinite parallel plates,
two concentric cylinders, and two concentric spheresy
respectively. |
Within a year after the invention of the klystron, Pierce(s)

published a methed for the design of electron guns that was

based on the rectilinear space-charge flow solutions. In this



7 design method the electron beam in the cathode—anode region

of the gun is taken to be a section of a space-charge=limited

- rectilinear flews The potential variation along the lines oﬁ
flow is therefore known, and it is implicitly assumed that the
anode is perfectly gridded; ise., the anode allows the beam to
pass through it, but maiﬁtainé the prescribed potential. Sinée
the flow is assumed fo be. rectilinear, the potehtial variation
perpendicular te the lines of flow must be zero both inside

the beam and at the béam boundary. The electrostatic field
outside a rectilinear—flow beam must, thereforey be such that
at the beam boundary (a) the potential variation is as prescribed
by the rectilinear flow, and.(b) the normal potential gradient
is zero., The electrodes that produce the desired electrostétic
field are called beam-=forming electrodes.

The general problem of determining the electrostatic
field outside a curvilinear electron beam on the surface of which
the potential variation and the normal derivative of potential
are prescribed is termed the Pierce—-Cauchy problem. It is the
firs£ known physical problem igvolving'an elliptic differential
equationy; Laplace's equationy ﬁith Cauchy-type bouhdary
conditions on an epen boundary. The solution to this problem
is unstable in the sense that an infinitesimal change in the
boundary conditiens causes a large change in potential some

(6)

distance frem the beam The physical significance of this
instability is that (a) the boundary conditions can be satisfied
within finitey, but arbitrarily small, limits by beam=~forming

electrodes that are quite different in shape; and (b) the

electrodes do not need to extend an infinite distance dway from



(7)

the beam, but can be truncated .

The Pierce=Cauchy probléﬁ can be solved by analytical,
numerical, or analogue methods. Analogue methods; such as
electrolytic-tank models, are often used in preference to the
other two methods becausey; by their use, beam-forming electro%es
of convenient shapes can generally be determined more easily;3

In electron guns producing beams with high power densities
it often is not possible to place a grid at the anode apertufe
(for thermal e¢onsiderations).. The grid at the anode of a Pierce
gun may be dispensed with, without greatly affecting the beam
in the cathode=anede region, if the width of the beam at the
anode is smali WeTste the cathode—anode distances The defocusing
action may then be caléulated by means of the well-known |
Davisson=CGalbick equation(8). It is assumed in this calculaéion
that the electren trajectories remain rectilinear until they
reach the anede aperturé; The aperture is represented by a thin
lens, and at the principal plahe of this lens the trajectories
are.assumed to undergq a discontinuous change in slope. The
accuracy ef the Davisspn-Calbick formula can be improved by
applying a space=gharge correction(9’1o’ll).

As the perveance is increased, the field distertion due
to the anode aperture becomes progressively more severe, and the
thin lens model of the anode aperture rapidly becomes inadequate
43/2 (12)

beyond a perveance of about 0.1 x 10~ amp/vol . Initially

the Pierce theory can be extended by treating the anode as a

(13)

modified thin lens » or by a perturbation analysis of the

(14)

rectilinear space-charge flow solutions

(15)

Danielson et al. made a very complete study of thé

divergent effeet of the anode aperture, including the effect of



5
thermal velocitiesy valid for perveances up to 0,7 x 10“6b They

determined the field in the anode region by twe different methods.
In the first method the principle of superposition is used; the
actual petential distribution is approximated by the sum of
a space—charge~free potential distribution, obtained from the
electrolytie tanky, and the potential distributien as prescribed
by the re¢tilinear-=flow solution. In the second method it is
assumed that the effect of space-charge on the potential distri-
bution can be neglected in the anode region. A third electrode,
of a shape and at a potential as prescribed by the rectilinear-=flow
solutiony is placed between the cathode and the anode in the
electrolytic tanky and the field in the anode region is then
probed. The infermation from either of these methods is then
used to modify the Davisson-Calbick formula. The second method
for obtaining the potential distribution is essentially the same
as one described earlier by Brown and Sﬁsskind(16).

In the extended Pierce theory it is assumed that
conditions in the cathode region are relatively unaffected by the
anode apertures This assumption is generally considered to be
satisfactory up to a perveance of about 1.0 x 10a6¢ For higheré
perveance Pierce guns, the field distortion extends to the cathodey
reducing the off-cathode gradient, and hence the emission, in a
non-uniferm mannerys For these guns the actual perveance is thus
lower than the design value, and the current density is non- |
uniform across the beam, The latter condition is aggravated by
the spherieal aberration of the anode field, | |

Mﬁller(17) found an approximate relation hetween the aétual

value and the design value of the perveance of a conical-flow

Pierce gun from electrolytic-tank studies, Amboss(lg) carried



out a firstaorder‘perturbation analysis for guns of this type,

and obtained expressions for the change ih current density

across the cathode and elsewhere, for the loss in perveance,

and for several other variables. In his analysis he assumed

that the potential distribution in the anode region could be
obtained from the space-charge-free potentials Experimental
measurements on a Pierce gun with a design pérveancé.of 3.25 x
J.O_i6 gave geod agreement with his theory. If a nonaoptimum gun
design is acceptable, a Pierce gun of a desired perveance can

thus be designed by'applying'the  perveance éorréctioh of Mﬁller(l7)
or Amboss(18)y and the gun performance predicfed from Amboss'(ls)
work,.

Mﬁller(17) and Brewer(lz) developed quite similar eléctro—
lytic—~tank methods, by means of which uniformity of cathode
emission and initially rectilinear flow can be partially restored.
In these methods the off-=cathode potential gradient is made more
uniform by reshaping the beam—forming electrode (from the Pierce
shapes) in such a way that the field along the initial part of
the beam edge is weakened. Guns with a perﬁeance of 1458 x 10-'6
and an area-compression ratio up to 30 have been made By Miiller's
method(17)u Brewer(lz) appears to have obtained gun perveances

of 2.2 x 10~

by his method.

To study the electron trajectofies in a prepesed high-
perveance guny use is often made of analogue eqﬁipment such as
an'electrolytic tank, a resistance network, or alrubber memBrane,'
in which space=charge is simulated. An analogue of the gun

structure set up on one of these devices provideé electrostatic

field datay which are used by an analogue orrdigital-bomputer



coupled into the system to solve the electron—dynamical

equations and to trace out the trajectories*. More fecentlyy

numerical methods have been used to obtain, by means of a

digital computery bothbthe electrostatic field data and the

trajectofies; from a mathematical model of an electron gun(zé).
With the aid of the above-mentioned equipmenty the

influence of the shape of the electrodes on the trajectories

of a proposed gun can be investigated empirically prior teo

the construction and testing of one or more gun prototypes.

The testing of the latter is generally carried out in a

demountable vacuum system., The variation of currént density

across the electron beam emerging from a gun prototype may

be studied by intercepting the beam with a fluorescent screen,

or by moving across it an intercepting anode containing a pin-

holes 1In the latter case, if the current collector behind the

pinhole is a split Faraday cage, information about the variation

across the beam of the transverse electron velocities can be

(27)b This information c¢an also be

obtained simultaneously
obtained by repeating the measurement of current density across
the beam at varieus distances from the gun.

| (28)

Mathias and King obtained a gun with a perveance of

2 x 10‘6 from an experimental investigation of gun prototypes

based on a Miiller design(17)o

A knowledge of the variation of
emission across the cathode, and of the aberratien of the anede,
was ingeniously eobtained by leaving various sections of the

cathode uncoated in some of the prototypes; and by neting the

resultant changes in the current densiﬁy patterns of the emerging

T — ' :
A compr?hgssiVe.article discussing these metheds was written by
Siisskind ‘1 in 1956. Papers representative of more recent work
are listed in references (20 - 26),



beams.

(27)'developed an elaborate design method

Frost et al.
that resulted in the successful construction of a gun with a
perveance of 2.2 x 10_6 and a compression ratio of 3004 and also
a gun with perveance 5 x 10_'6 and compression ratio 6. Starting
(17)

with a design based on Miller's or Brewer's(lz) methods, a
gun was then built using the cathode and anode as designed, but
with the beam—forming electrode replaced by about five annular
disc electrodess The potentials of these‘discs were adjusted
experimentally until the desired beam was_obtaineds By the use
of an.electrolytic tank a beam-forming electrode shape was then
obtained which gave approximately the same field cOnditions in
the region of the beam.

In empirical desigﬁ methods, cathode shapes other than
those required by the known space-charge flow solutions can be
used. A very suecessful gun resulting from empirical design is

the Heil gun(29§30).

The cathode of this gun is part of an
ellipseid of rotation. Heil(29) obtained a désign with a
perveance of 4,4 x 10"6 and a compression ratio of 230, while

Reed(BO) built a Heil gun for a 5 mm klystron with a perveance

- (31)

of 3<x 10_‘6 and a compression ratio of 75. Kawamura has
designed high perveance guns withboblateAspheroidal cathodes. The
success of these cathode shapes is due to the fact that they

tend to correct fer the spherical aberration of the anode by
starting the electrons off on trajectories that have a different
centre of curvaturey depending on the starting point. Lucken(jz)

corrected for the spherical aberration by distorting the shape

of a sphericalééap cathode in such a manner that its centre



of rotation lay on a circle.

It is clear thatvthe designing of high perveance electron
guns is still to a large extent a trial and error process. There
have been many significant advances in the analysis of proposed
gun designsy buty when proceeding to improve the design on fﬁe
basis of these analyses, the gun designer still needs to rely on
his intuition to decide how the pr?posed design should be

changed.,

132 Objectives and Procedure

This study of the formation of electron beams in
electrostatic fields has been divided into foﬁr sub;problems; namely,
(1) electron flow in electrostatic fields, (2) space—charge-free
electrostatic fields in idealized anode geometries, (3) design
of electron beams based on (1) and (2), and (4) the Pierce-Cauchy
problems

In Chapter II, the theory of electron flow in electro-
static fields is.derived, and the underlying physical assumptieons
are:discusseds Past methods of solution are noteds New solutions
are‘then found by the method of separation of variables, These
solﬁtions are studied in detail, and are shown to have desirable
characteristicss

To adapt a given space—charge—flow solution for use in
the design of highaperveahce electron guns with anode apertures,

a knowledge of the form of the electrostatic fields of various
apertured anodes is highly desirable. In Chapter III, use is made
of the Schwarz~Christoffel transformation to éompute and plot the

i space-charge-~free fields of three different idealized anode
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geometries, In Chapter IV, the characteristics of these fields
relevant to electron-beam design are analysed. The information
obtained from this analysis is used to design an anode field
with improved characteristics. This design involves a lengthy
Schwarz-Christeffel transformation, so that for the sake of
continuity the mathematical derivation is included in Chapter
III, although its real importance does not become clear until
Chapter IV, In Chapter IV, a new gun design method is also
formulated, showing how known space-charge-flow solutions can be
matched to the above-mentioned space-charge-free fields. The
procedure is illustrated by two examples, and it is shown how
the electron trajectories may be computed in the anode region,
taking space-charge into account,

A further adaptation of the present space—charge-flow
solutions for electron beam applications is necessitated by the
fact that these solutions inﬁolve unbounded flows; i.esy space-charge
occupies the entire space between two equipotential surfaces.
This adaptationy the Pierce—-Cauchy problem, is the subject of
Chapter V. The error growth in potential is evaluatéd for a
cylindrical beams

The results of this investigation are summarized in

Chapter VI,
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CHAPTER II - ELECTRON FLOW IN ELECTROSTATIC FIELDS

2:1 Introduction

In discussing the self-consistent flow of electrons, it
is convenient to disregard the discrete mature of the electron.
Instead, the flow is treated as a continuous compressible fluid.
This approach will be used here to formulate the theory of space-
charge flow in the absence of externally applied magnetic fields,
It will be assumed that the flow is congruent; normaly regular and
laminar. Relativistic effects and the effects of self-magnetic
forces are neglecteds. This places an upper limit of about 20 keV
on the electron energy, as is discussed in Appendix A.

The.term "congruent flow"(39) means that the velocity
is in general a singie—valued function of position, so that only
a single flow line passes through any_point*. The mathematical
signifiéance of congruence is that the flow is differehtiablea

By nermal flow two slightly different concepts are

(33)

implied. Meltzer defined normal flow (as opposed to abnormal
flow) as flow in which the sum of the kinetic and potential energy
is constant for any point in the flow. Meltzer showed that

this requires a unipotential cathode. A necessary and sufficient
condition for +this normal flow is thatﬁ}x@]ﬁﬁ) = 0O« The second
interpretation of normal flow is a geometric ones For normal
congruent flow in this sense to occur, it is necessary énd

sufficient that De/xV = O. When this is the case, then there

~exists a one=parameter family of surfaces W(ql, PY q3) = ci ortho-

¥ ) '
Thi's is called "single streaming" by some workers,
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gonal to the flow lines(34).

The assumption of laminar or irrotational fiow requires
that Ux = 0 throughout the flow. If flow is laminaryg both
normality criteria are therefore satisfied, and the flow originates
from a unipotential cathode. Conversely, if §7x7§ = 0 at the |
cathode, it will be zero throughout the flow. This is true by
Lagranée’s Invariant theorem, which states that (7x7? = constant
throughout a flows

The term "regular flow" is due to Gabor(35)

y and refers
to the assumption that the electrons are emitted from the cathode
with zero velocitya

The theory of space-charge flow can also be derived
under more general conditions. Gabor(35) showed that skew
congruent flow is possible in the presence of an externaliy
appiied magnetic field, provided that at the cathode the magnetic

(36)

fieldﬁhas no normal component. Kirstein derived the theory for

this case; and found some new solutions, which were basically

simple extensions of electrostatic ones.. Pease(37)

extended the
theory to include time—~dependent flow. These more general
formulations are not needed for our purposes, since it is our

ultimate aim to study the applications of the theory to electro-

static electron guns.

2:2 Fundamental Theory

For an electrostatic field Maxwell's equations are

VX —E‘ =0 (2¢1)
v.D = [ (2.2)
and '3 = eﬁ ) (2.3)
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These equations are solved by

E=-9D (2.4)

where @ is the electric potential. Substituting expressions

(243 and 4) into (2.2), Poisson's equation is obtainedy namely

V2D- -ple . (2.5)
The‘current density'E is given by
T =pT - (2.6)
and the time independent form of the continuity equation is
wIi=0 . o (2.7)

By considering the Newton force on each electron, it follows

that
F_ _ng
7% = —NE (2.8)
where 7) = %’, the charge-to-mass ratio of an electron, a positive
quantity.

Equation (2+8) has time as a parameter, and this will
be eliminated next, The complete time differential d/dt applied

to a dynamical variable X is

aX _ = 23X
3 = 00X + T (2.9)

Since the electron motion is taken to be steady-state congruent
flow, X in equation (2.9) can represent the velocity of an

electron, and

and hence

. F oy -
A CAV (T (2.10)
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But

@ = $9GD) - T x @B . (2.11)

From (2.10 and 11) therefore

- Lov?) - v x@xD) .

Combining this result>with‘(2.4 and 8),
Lov?) -T x @) =1vd
or

v[%vz -77CI>]= q‘?x((?x‘ﬁ?‘ . | (2,12)

If the electrons start with equal energy from a uni-
potential cathodey then UxT= 0 and equation (2.12) can be

integrated to give

%fz}'z —77Cb= a constant (2,13)

which is independent of the trajectory chosen. If the electrons -
start. from rest at a Zero—potential cathdde, this constant is
Zero. |

A step of fundamental importance was teken in going from
equation (2412) to (2.13). Equation (2.,12) was still concerned
with the trajectory traced out by a single electron, whereas
equation (2413) applies throughout the flow, because the constant
of equation (2413) is independent of the trajectory cheosen, If

we do not cheose (7x%;540, it is found that

%_7}2 ¥77®= c | (2.14)
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where C is a constant for the motion of the particular electron
*
considexed o This result is readily obtained by taking the dot

product of T and equation (2.8), and substituting (2.4)

. g—?é +) ("q?.v)éb . (,2.,15‘{)

In a frame of reference moving with the electroh, the potential

variation is found from equation (2.9) to be

ad =
it = (’U’.V)(b . (2.16)

'If, finally, equations (2.15 and 16) are combined, and the
result is integrated, the relation (2.14) is obtained for the
electron considered.

For the case §7x{;550, it is possible to express the

velocity as the gradient of a scalar potential function
T = 9V (2.17)

where W is called the action function. It is apparent that sur-
faces of constant action are orthogonal to the lines of flow,

The equations to be satisfied by the flow are thus

T

Poisson's equation in free space ‘72<D= -Fyeo _ (2.5)
Definition of current density 3.=f3i; (2.6)
Continuity equation T.J =0 | (2.7) L
Conservation of energy %172 —77d3= 0] (2,13)
Action function relation T =0W o : (2:17)

-

These equations will be referred to as the space—charge—~flow

m .

In fact C is the Hamiltonian, the total energy of a particle, which
would be different for particles released from rest at different
equipotentials,
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equations. Equations (2,13 and 17) may be combined to give the

Hamilton-Jacobi equation

S(ov.ow) -nd=o0 . (2.18)

In beams in which the space-charge causes a negligible
perturbation of the electrostatic field, F)can be set equal to
zero. The potential now is determined only by the boundary
conditions, and to obtain an electron flow solution it is
necessary to satisfy equations (2.5 and 18) only.

When O # 0, it is possible to combine the required
equations so that an equation in W or 7 alone results. From

(2.5 and 18)

p=-e, [%:vao vw] .

If this is combined with (2.6, 7 and 17), then

The space-~charge flow must satisfy this fourth-order, third-degree
equation in W. Once a solution for W obeying (2.19) has been
found, the other variables of the flow are also defined and can
be obtained from the space~charge-flow equationss

By combining the first four of the space-charge-flow
equations; there results

V.[FO@.3)] - o

v

which can be rewritten as

(D2V02)QF + ToT(02%2) = 0
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or
V'o-’l_\?’ = =- —'5—2 ./T);o V(VZ’U'Z) ° (2»20)
\VAR ‘ e

Equation (2¢20) can be expressed as
TV = -V . V(1n V202) (2421)

Since equation (2,17) is equivalent to the condition §7x§?’= 0,
the vector identity

Tx (VxT) =T T) - 2T

becomes

V(vﬁf’) - DT . (2.22)

Substitution of (2421) into (2.22) gives the desired result,
PR S p 2 .2
v /ly: —V[WQV(lnv /l)’ )] 3 (2923)

This equation does noet apply in the absence of space-—charge,
To obtain realizable space—charge-limited flows,

equations (2419 or 23) must be solved under boundary conditions

2
= O, a,néla CI;——»-«-OO (2024)

= 0y 33
¥ 2n ADn

at the cathodey where " %ﬁ " indicates differentiation normal

to the cathode surface.

223 Methods of Solution

The complexity of equations (2.19 and 23) has so far

precluded their being solved directly except for the simplest

(38)

of cases. For instance, Spangenberg solved equation (2,19)

for parallel rectilinear flow. Trial and error approaches are not
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likely to preduce useful solutions on account of the self-

consistency requirement and the boundary conditionss Thus; if

a particular form of Vor W is aséumed, the potential is

immediately defined by the equation fbr conservation of energy

(2.13), Howevery the potenfial hgs to satisfy Poissen's

equation alsoy and with trial and;error procedures it is difficult

to satisfy beth requirements at oﬁce,
RealiZableAspace—charge«limited flow solutiens have

previously been ¢btained by using coordinate systems. that madé

one of the variables of the flow a function of only one

coordinate. Walker(39), Meltzer(40), and Rosenblatt(41)

set up
the equations so that the lines of flow lay along one coordinate.
Walker(39) alse found solutions for space-charge~limited flow
between two inclined planes and between two cones with coinciding
vertices. In these latter solutions the potential is a function
of only one variable, Meltzer(4o) found a realizable solution
in which the lines of flow are concentric circless

(36, 42, 43)

Kirstein et al. assumed an action function

of the form _
3

i=1

where the a4 represent curvilinear coordinates, It then became
possible to use the method of separation of variables te solve
the space—charge flow equations in Cartesian; cylindrical polar,
spherical polar, and equiangular spiral coordinatess These
solutions cerrespond to axially symmetric curvilinear flows

originating from ¢ylindrical and conical cathodéS§ gnd also
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to planar curvilinear flows from an equiangular spiral cathode,

from two inclined planes, and from a circular-section cathode.

Harker and Golburn(44) devised a stable numerical
method to obtain flows with axial symmetry; this method is also
applicable to planar flows. In this method; an analytic form of
cathode shape and cathode current density are assumedé This then
makes it possible to sét up the space-charge-flow equations
in hyperbolic formy by making an analytic continuation into the
complex domains Since hyperbolic differential equations are
mathematically stable when gdived by finite-difference methods,
the space-charge~flow equations can thus be numerically integrated
away from the cathode in discrete stepse.

The problem of electron motion in electrostatic fields
and with negligible space-charge effects has been studied '
extensivelya /Goursat(45) showed that if the potential P h@s
the functionai'fbrm '

3
D ='Zcpll®i(qi) C (2.25)
i=1
the Hamilton-~Jacobi equation is integrable by separation of
variables. The termcpli is the first row of a matrixlkpij“ called
a Staeckel matrix, The elements of a Staeckel matrix are
functions of the coordinates q; alone, Iwata(46)y assuming the
functional form (2;25), found electrostatic fields satisfying the
Laplace equation for the eleven coordinate systems of Staeckel.:
In this chapter the approach to the problem of

determining selutiens of the space-charge-flow equations is to

assume an action function or a potential function that is the
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sum of terms, Two cases are considered:

Case. I: Action func¢tion assumed to be of the form

W=N (ql) + W (q2)
and the potential of the form - (2.26)
_ 1
= 22 (q. v0) I:All(ql)Alz(q2) * A21(ql)A22(q2§l .
ql’q2 ) ) P
Case JI: Potential assumed to be of the form
—_—— . A _
D =D (q)) + Pa,)
and the action function of the form v > (2.27)

V = B, (q;) B,lq,)

_

where (q1’<q2) are orthogonal curvilinear coordinatess

Motion with negligible space—charge effects is treated
first. With W and © of the form assumed in either Case I or
I1, coordinate systems are then found for which the Hamilton-Jacobi
and Laplace equations are separable. The solution of the motion
is then extended to the space- charge domain by assuming that one.
term of the action function and the potential function remain as
determined previeusly in the absence of space-charges When this
is possible, the second term of P and W is then determined by
a complete differential equation.

In Section 2:4 the theory is first formulated in
Cartesian coordinates. In this coordinate system the functional
forms of W.and‘iDare assumed te be those of equations (2.26a and

27a)*

In Cartesian coerdlnates, equation (2.26b) reduces to the simpler
form (2.27a)e
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In Section 235 the separability conditions are obtained
for two-dimensional flow with negligible space-charge effects.
These conditions are in terms of assumed functional forms of the
metrical coefficients "hi" of general orthogonal curvilinear
coordinatess Case I is treated first and is illustrated by two
examples, formulations in logarithmic spiral, and in polar
coordinatess If was not found possible to extend these two
examples to include space-charge effects by the methods mentioned.
The functional forms of Case II are studied next. Two more
examples followy in which 1ogari£hmic spiral, and polar coordinates
are again used. These latter solutions are extended to the space—
charge domaine

Certain of the solutions obtained by the Case I and II
formulations have been obtained by other investigators by

independent meansy and these will be indicated.

284 Solutions in Cartesian Coordinates b? the Methed of Separation

of Variables

23421 Electron Motion with Negligible Space—=Charge Effects

It was shown in Section 222 that in the absence of
space—charge effects, electron motion in electrostatic fields is

described by the Hamilton~Jacobi equation
(w02 - 2nd= o (2.18)
where the potentialcb has to satisfy the Laplace equation
7°d -0 (2.5)

We shall assume a solution of these equations of the functional
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forms
Vo= W (x') + W,(y") + Wy(z") (2.28)
and

D

";I>1(x") + @2(}7') + @3(23) ° (2.29)

With D of the form (2,29), the Laplace equation (2.5)
separates into fhree ordinary differential equationss When these
are solvedgcp is found to be

b =3 [clxaz + 0% - (Cp+ cz)zﬁz} FAx Ayt + Ayt o+ d,

(2-30)

In general, equipotential surfaces are thus hyperboloidss It is
convenient to change the origin of coordinates to the centre of

symmetry of the field. Equation (2,30) then becomes
1 2 2 2
@ =5 [Clx + Czy - (Cl +'C2)z ] + d)o o (2.31)

The Cartesian coordinate system is one of the eleven
coordinate systems of Staeckel, and the separable form of the
potential function @ described by equation (2,31) was noted by
‘Iwata(46)o

The motion of an electron released from rest at an
arbltrdry point (xo, Yor Z ) on the surface @= 0 will next be
obtained. If equations (2,28 and 31) are substltuted into the

Hamilton-Jacobi equation (2.18), we obtain

|\ 2 | 2 | \? |
RS EC RS HC R

+ 277Cp5.: 0 *
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This equation can be separated into the three equations

42 —

aw. (x)

-—(]ix—J _77(@31 + K, + Clxz) =0

| 'dwz(y)_% 2‘,»’1

__&;_J _7‘7(@2 + K2- + C2y;l'f) =0 _ > (2-32)

av,(z)]? |
[_37_:| -»_‘77[@3 - (K + Kz) - (¢, + Cz)zz]-:: 0

3
x
T

where

D -

0

ST [

- and K1 and K2 are separation conétants. Each of the three séparate

equations (2432) constitutes a conservation theorem of the motions

Equations (2,32) can be immediately integrated between
the limits X and xg4 Yo and y, and z, and z respectivelyy where
(xo, Yor zo) is an arbitrary startingipoint on the zero equi-
potential, and (xy yy z) is any point on the trajectory of an
electron released from (Xo, Yo Zé)s Hdwever, as we are
interested in obtaining the trajectories as well as the action
function, iﬁ is more convenient first to eliminate the separation
constants in (2,32), The result will in any case be the same,

It will be recalled that the condition fer Writing the
Hamilton-Jacebi equation (2418) was that §7x5? = Oy and thatv
this condition is realized for a regular beam; that is; when the
electrons are emitted by the cathode at zero veloeitys From
equation (2431) we see that the cathode surface, @ = 0, is

described by
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The condition of zero initial velocity is

dx - dy - dz - *
%o Yo ' %o

¥hen these initial conditions.are applied to (2.32); we obtain

-

2
Cbl + K, + Cyx, =q

, |
D, + K, + C,y “ =0 }.

5 .
@3 - (K1+ K2) - (Cl+ CZ)ZO =0 "J

and when these equations are substituted back into (2.32), there

results
aw. (x)\ 2 A
(F) - met - xh -0
W, ()Y 2 é |
<—ji;‘—> - 'OCZ(Y - Y, ) =0 > (2-34)
A, (2 )\ 2
.(;—%;—;> -'r)(c1 + 02)(zo2 - 2z%) =0

Equations (2.34) describe the action W at an arbitrary point

(x5 ¥y, z) on the trajectory originating from a point (xo, Yoo zo)
on the cathode. The electron velocity is, from equations (2.17

and 34),

/-l—}:: [ivg’)fc]_(xz_.x()z)S? i\/r)cé(YZ_ yOZ)y i\/r)(cl"' Gz)(zoz_ ZZ)] .

(2°35)

The signs of the velocity components depend on the field
constants C1 and CZ’ and on the instantaneous position of the
electron on its trajectory. The trajectory equations can be

obtained directly from equation (2.35):



Y dz
- V(e + 02)(202— 22)
ZO
(2.36)

Equations (2436) have the solutions

X = X cosh ( v7701 t)
y =y, cosh ( \/'q C, t) > (2.37)

z, cos Q/H(Cl+ 02) t)

Z

-

with time t as a parameter. This may be eliminated to give

1
-1 (x \? -1 12| °
Z = Z_ €08 cosh = + | cosh L . (2.38)
0 X0 Yo

The motion is seen to be oscillatory, with an amplitude equal to
the initial cooidinate. A sketch of the cathede surface and a
trajectory for two characteristic cases is shown in
Figures (2-la and b).

The action W along the trajectories described by
equations (2437 or 38) can be obtained directly upon integration
of equations (2.34) between the limits X aﬁd‘Xy Yo and y, and z

0
and z respectively, and taking their sums

WV = %”UCI[% x2 - x02 - xoz cosh’l(ﬁ—ﬂ

(6]
. % ncz[y /y2 _ y02 _ y02 cgshul(%i'

(o]

-f.%"n(cl+ 02) [z\/goz- 22 - zo2 cospl(g—ﬂ .

(o]
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Because of the oscillatory nature of the electron motion,

trajectory cross—over occurs. The function W is therefore
multivalued, It might be supposed that on account of the cross=
over of trajectories it is not possible to construct a one-
parameter family of surfaces of constant action perpendicular to
the flow lines. Thisy however, is pot so; because the electron
motion satisfies the condition U x = O, it is in principle
still possible to construct this orthogonal family of surfaces
(see Appendix ﬁ)¢ Care must be taken, however, to associate the
correct branch of W with the appropriate trajectories (or

sections of trajectories). This point'is illustrated in

)

Surface P =0

S
y

Electron
Trajectory

Figure (2-1la)s Sketch of a trajectory and of the surface® = 0
-when the latter is a hyperboloid of ene sheet.
For this case C;>0, C,>0, CI)0< 0
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Electron Trajectory — Az

Figure (2-1b). Sketch of a trajectory and of the surface P =0
, when the latter is a hyperboloid of two sheets.

For this case C,< 0, C

1 < O’®0-<‘O

2

Figures (2-2a and b) for a two-dimensional case, electron motion
from.a right—angled cathode. This motion fesults for the special
case when the field constantsCI%, and C1 or 02 are set equal to
zero in the solution just obtained. From equations (2.37), the

trajectory equations for this case are

X =X cosh (V7701 t) .
z =z, cos (V??Cl t)
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and. the slope along the trajectories is

az <fg> sin(\/’ncl t )

dx — sinh ( 7701 t )

X
(o]

In Figure (2-2a) are sketched several trajectories

originating from the lower half of the cathode. An envelope
which is tangential to these trajectories prior to their first
downward deflection is also shown. Similar envelopes occur for
the second, third and subsequent reflections, and the second and

. third envelopes are indicated. These envelopes are straight lines,
as may be readily observed from the trajectory equations. It
is further apparent, from symmetry considerations, that
conditions which are a mirror image of those just discussed will
prévail for electron trajectories originating ffom the upper half

of the cathode.

First Envelope ——\\S

—

Second Envelope

" Line of
<<:__Constant Action

N\

Cathode

Figure (2-2a). Sketch of electron motion from a right-angled
cathode '
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/K//————l——Upper Half i
! of Cathode =7

P First Envelope
//
I PR
i P
- R
\ : —F Second Envelope
\ Pred ; ,,,,,
== \ e Third Envelope
-~ e Ny o Qird anve P
:;;;:::::::j ———————————————— Axis of lf7Subsequent
SSCo-==I ——————  —____ -
T~ Tt T T T T _S.YLH_I_HEEI;Y f[ Envelopes
\\\ ————— AT T T T
~. . 00000 TTmeme— Third Envelope
R i >
~o —_—
\\
Second Envelope
N /
| N
| \\
l ~o
~
~ »
L\~_ \\\l/——-Flrst Envelope
' Line of Y
Constant Action RN
Lower Half of ~
Cathode

Figure (2-2b). Sketch of the electron motion of Figure (2-2a)
when the sheets are unfolded

Since the trajectories are tangential to the trajectory
envelopes, action surfaces must be perpendicular to the latter.
A line of constant action is sketched in Figure (2—2a),
illustrating the multivalued nature of W. Althbugh lines of flow
and lines of constant action are orthogonal families of curves,
theylcannot be represented in this example by the level lines of
cohjﬁgaié hérmonic functions(39). The "complex velocity potential"
W(x;?),+ iV (x,z), where W(x,z) is the stream function, is there-
fore not analytic. Nevertheless, the Riemann-surface concept of
generalizing the (x,z) plane 46 a surface 6f more than onévsheet;
so that the multivalued "complex velocity potential" has only one

value corresponding to each pbint on that surface, may profitably
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be used here. This is illustrated in Figure (2=2b). Gonsider

the trajectories that ofiginate from the lower half df the cathode.
The first sheet contains the section of these'trajectaries :
between the cathode and their point of tangency to the first
trajectory envelopey and it also contains the flrst branch of W.
The second sheet contains the section of the trajectories between

- the first and second-pqvelopes and the second branch of W, etc.,
resulting in a surface on which the flow is single-—valued. Tpe
surface similarly obtained for electron motion originating frém

the upper half of the cathode can be conjoined to the first s;r-

face as shown in Figure (2-2b).

234:2 Eleectron Motion under Space-~Charge Conditions

The approach of Sub-section 2:4:l will now be extended
to the space=charge domain. Solutions of the actien function LS

and the potential @ will once again be sought of fhe form

L

D

W (x) + W,o(y) + Wy(2)

_ : (2.40)
Cbl(x) + Ctg(y) + <tg(z> .

It will be assumed that Wl(x) and Wz(y) are unaltered by the

presence of space~charge, so that from equation (2+39)

P . -

Wl(x) = %\(ncl x\[x% - x 2 _ xozcosh-'l ()

X
G ]

-~ [ ‘ 2 -1, ]
Wz(y) = % ?702Fy' y2 - yo2 =Yy COSh (ge) .

=

(2.41)

The charge density'F)is therefore allowed to be only z~dependent,

From equations (2.41) the velocity is

N . dW,(z)

(2.42)
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When this is substituted into the Hamilton-Jacobi equation,

we obtain for the potential
| ' | faW,(z)\2
2 2 2 1 2 2 1 "3
D = 77vw) 1(x-xo)+§c2(y—yo)+2—,( dz~>

(2.43)

which is seen‘to be of the desired form (2.40b). Substituting

this result in turn into the Poisson equation produces

| av, (z)
P = e, V°D= ¢ |C )+ C ¢ 12—7-7(12 < 2 )

Using the above equations for F>and.ﬁ? , the remaining space-charge-

flow equation to be satisfied, the continuity equation, becomes

. | > /dW -
V.(P?) = -s_ov. [C + 02+ é—,r]d: ( : 3:2)> i\/’?’]Gl(xz— xoz) y

av,(z)

which can be rewritten in the form

2 dW() :

3
V,(z dvw, (z
+ g—z (i_%i__)> G+ Cyt %77(1‘1 < 3; )> -0 . (2.44)

For this equation to be an equation in z only, it is necessary

that

X =Yy = O . (2045)

The equation that must be satisfied by W3(z) is therefore, from
(2.44 and 45);
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| 2
4%V, (z) aw. (z)\ [a>¥, (z) |
| W3lz 3 3
mave + () < (A0 | s o
L aA,(2) aw, (2)\ (a%W, (2)) (a7, (2)
+7)(Cy+ Cy) “_dZT‘ * [4< 1z ><dW(z)2 1.0 /
. 3 ‘
a%w, (z) av,(z) : a*w, (2)
+ <—-——'dz'2' > +H —5 > dz4‘ =0 o (2.46)

The dependent variable is missing in (2.46); if we set

v, (z)
- ,U;(z) = dz

the order of (2.46) can be reduced by one, resulting in

fa () VA
M(c,+ €,) + “‘EE‘{) + 7 (2) —_E———_— (/TC, +\/TIC,)

d 2y (z)
+ ’)7(C1 + 02) —_—

av; (2)\ (@2 ()\ @ (2)\’ 2(& V0, (=)
+HA4y (2 ——/ '&2 +<—-§Z— + V7 (z)

For space-=charge flow to be possible according to oeour

(2.47)

assumptionsy equation (2:47) must be satisfieds Let us try a
solution of the qum |

’Uz'(z) = DzIil » . . (2.48)
Then (2.,47) beeomes .
(TCy* NC) (NS, +/MC5) + (Mey +7)C,)mpa""

+ (‘/77_61 +Y7C,)m(2m = 1)p?;2(m-1) D3m(2ﬁ-— 1)(3m - z)zz!_(m;l‘)_: 0

(2.49)
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Equation (2.49) is satisfied under the following conditions:

2 2
m=1, C = %7 » Cy = 7o and D = —(A + B) . (2.50)
The z-component of velocity is therefore, from (2,48 and 50)
y(z) = -(4 +B)z (2.51)

Combining this result with equations (2.42, 45 and 49), the

velocity of the flow is

—

= [:Ax, By, —(A + B)z] .  (2.52)

‘The electrostatic potential of the flow is obtained from equations

(2443, 45, 50 and 51), and is
D = é—n[Azx% B2y2+ (A2+ Bz)zz] e (2.53)

Equipotential surfaces are seen to be concentric ellipseids. The
charge density of the flow is, from Poisson's equation and (2.53),

2¢e ,
= - =2 (a2 4+ B2

P="m

The charge density is thus constant throughout the motion, The

+ AB) . (2.54)

action function W is readily found to be
W= %lexz + By? - (4 + B)zé]

which is harmenics The equations of the trajectories are easily

obtained from equation (2.52)¢

and hence the trajectories are at the intersections of the two

families of surfaces



1

A

X,

yB

1 r

2

-1 — T2 =
A+B

Z

The trajectories lie in the surface of the rectangular hyper-
boloidal family
Xyz = X y 2z, = constant .,
When either A or B is set equal to zero, or B = —A; the motion
becomes planars The equipotential surfaces become concentric

cylinders, and the trajectories become plane rectangular hyper—

bolae. A sketch of this flow is shown in Figure (2-=3),

I. Trajectories

Y Equipotentials

Figure (2=3). Hyperbolic space-charge flow
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The space=charge flow according to equations (2452~54) has

_(33)

also been discovered by Meltzer y by a different method.

Another solutien of the differential equation (2447) can be

obtained for the special case C, = C, = 0. If equation (2,48)

2
again be substituted into (2.47), there results

z3(m-—1) _

m(2m = 1)(3m - 2) Oy

which is satisfied for m = 0, 1/2 and 2/3. It is readily verified
that these three values correspond to parallel rectilinear electron
motion (a) in the absence of an electrostatic fieldy (b) with
negligible space—charge effects from the plane z = Oy and (c) that
is space-=charge=limited and originates from a cathode at z = O,
respectivelyy; all known cases. No further solutions of equation
(2447) have been obtained.

The hyperbolic flow solution of equations (2.52-=54) brings
out an important point about the initial conditions that are
required for spaceachafge—limited flow from a zerowpofenﬁiab

(36)

cathode., Kirstein states:

"If we require that the motion be physically realizable
under space-—charge-limited conditions from a zero-
potential cathode K, then it is required thaty on K,

D and %%?be zero, where T is the unit vector normal

to KQN

From equation (2.53) we see that for hyperbolie flew the
conditions mentioned by Kirstein are satisfied at the eriginy Yet
the flow is net due to a cathodg at the origin. The reason for
this disparity is that the charge density F)for this solution' is
constant throughout the motion, whereas for space-charge-=limited

electron flow originating from a zero potential cathode F)—%-—oo
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at the cathodes From Poisson's equation the equivalent

condition for P is

2
éLéglér—co at the cathode.
On
This initial condition thus needs to be applied. at the cathode

in addition to the conditidns

cp:g%bzo .

In this section electron-flow solutions were found by
formulating the theory ifi Cartesian coordinates under the
assumption that W and @ could be represented as the sum of terms,
each term being a funption of only one coordinate. In the next
section we will adaptzthis approach to a formulation of the
theory in orthogonal curvilinear coordinates; and determine the

conditions for separation of variables to occur.

225 Solutions in Plane Curvilinear Coordinates by the Method .of

Separation of Variables

23531 Action Function of the Form "Wl(ql) + Wz(qz)"

(a) Conditions for separation of variables

Let (ql, q2) be an orthogonal curvilinear coordinate system

in which an infinitesimal line element "al " is described by
,

2 E 2, 2
al? - h,%dq; %

i=1

where the hi are the metrical coefficients, defined by

h.? = 8_:5_2_'_ ay )° .
1 aqi aqi
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The gradient of the action function W can then be written as

i h, 3q,; !
. 1 1

and the Hamilton-=Jacobi equation is therefore

The Laplace equation becomes

. , h _ .
2. 1 13 (223 .3 (f1ad\| _,
v ®_ h1h2 [aql <h1 aql) * anGZ 8(12)] =0 . (2.56)

Let it be assumed that W is of the form

oY)

W= wl(ql) + W2(q2) . (2.26a)

Equation (2.55) can therefore be rewritten as

2 2
- /avw aw
1 1 1 -2
1 (7)) .1 (2) _ o0, (2457)
h12<dql> h,? <dq2> K

We must next determine the form of the potential P for which
equations (2456 and 57) will separate. If we assume that the hi

are of the functional form
hi = f(qli q2)fll(ql)f12(Q2) (2058)

then it is clear that the left-hand side of equation (2,57) can be

separated by multiplying it by (f(q1’ q2)f12(q2)f21(q1)>2. If

this is doney there results

£, (a7 0\ / aw\ 2 e (@ N2 /aw.\2 2
21'4 1\ [ t12'9p 2\ =2m|flay,a,)y,(a,)E,,(q) P
(fll(q1)> <dql> *<f22(q2)> (dq2> N Fla1ap)tp002)05, ql]

(2.59)
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To complete the separation of the Hamilton-Jacobi equation, it

is required that the right-hand side of equation (2.59) be of the

form
: 2
gy(a) + g,(a,) = zn[ﬂql,q2>f12(q2)f~21<q1)] D .
| (2.60) -
The potentiaiﬁb must satisfy (2.56); let the solution be of
the form

CD B All(ql)AIZ(qZ) + A21(ql)A22(QZ)

2 2
f (qlf q2) f (qu qz)
(2.26b)

From equations (2426b and 60) the conditiens for separating the
variables such that the left side of equation (2,60) is satisfied

are therefore
-

1
9) = 4, (qy)

1z (a) f122(q2) = KI;%EET or/and (b) f212(

.

2t (a) £,,°%(qy) = A'Z—-(llq—iy or/and (b) f,,%(q,) = W

e

(2,61)

where the fi-'

*.
26b) respectively. At least one part of each of these two

and the Ai ; are as defined by equations (2.58 and
4

conditions must be satisfied for the Hamilton-Jacobi equation

to be separable when W is of the form (2.26a) and hi of the form
(2.58)« I1f,for example,the solution of the Laplace equation in
a particular coordinate system is of the form of equatien (2.26b)
and satisfies conditions 1(a) and 2(a); then the potential is of

the form
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44 (qy) o Ayla)

P =— 5 2 2 2,
flz'(qz)f (ql’ ‘12) f21 (ql)f (qu q2)

and the Hamilton-Jacobi equation is reduced to quadratures.

(b) . Examples

Example #l1: Selutien in Plane Polar Coordinates

For plane polar coordinates the metrical coefficients are

h =1’- h = T .

and >

f21(r) =T o

The separability conditions for the Hamilton-Jacebi equation are

thus seen to be, from equation (2.61),

1t (a) 4,,(6) =1 or/and (b) 4 ,(x) =L

Tr

12(

25 (a) Ay (r) = i? or/and (b) A,,(6) =1 .

With D of the assumed functional form of equation (2.26Db)
the Laplace equation becomes, in plane polar coordinates,

aA. - (r) a2a. dA- (r) a2, ()
Alz(e)[ é]l? i + T izr):l + A22(9)[—-———§i +r ——dr%}

2 2
A, (r) a% () . Ay (r) a%a,,(0)
2 r 2

=0

r aeo do

When conditions 1(a) and 2(a) are tried in this equation, separation
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of variables is achieved, and there results

2 ] -
3(“11(1’) o d All(r)>
ri\—gy — tr——3 ) =a
] r dr2 :
anq ' ; (2.62)
2
d“A..(0)
—22 + 44,,(0) = -a .
do 1 -

ngrer"a" is a constant, @ is of the form

D=4y, (r) + %«-2- 4,,(8) &

The solutions of the separated differential equations (2.62) are

1 -2 |
All(r) =7gar T +b; Inr + ¢

1

A,,(8) = -7 a+Db,sin (20) + ¢, cos(20) ,

2 2

where a, b. and ¢; are constants. The potential(biis therefore

D = cy+ byln r + r—z[b2 sin(20) + c, cos(ZO{] .

(2.63)

The electrostatic field described by this equation is due +to
a line charge and a double doublet at the origine The orientation
of the double doublet is determined by the relative magnitudes of

b2 and c this is apparent if it is considered that the last two

23

terms of equation (2463) can be rewritten in the form

; b
2 1/b.2 + ¢.? cos|20 - tan"Y{ =2)] .
2 2 02

The constant cq in equation (2.63).allows us to assign a reference
Potential (P = 0 in our case) to any equipotential of the field.
The electron motion may thus be initiated at any of the equi-
potentials of the field determined by the values of by b, and c,

by suitably adjusting the constant Cqe Equation (2463) was also
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derived by Iwata(46), by the method of Goursat(45)m

The electrostatic field for the case when

-~

®d =1n r + &5 sin(20)

2
by

is illustrated in Figure (2-4)., A saddle point of potential is
. i - - L 2T

seen to occur at the points r = VE; e = 2l

point of potential would not have occurred if the field had been

The saddle

due to either the line charge or the double doublet alone., The
motion of electrons in this field has some very interesting
properties, and these will now be studied.

If we let

WV = Wr(r) + WQ(Q) ’

then the Hamilton—~Jacoebi equation (2.59) separates into two

ordinary differential equations when (2.63) is substituted:
2

r2 " 27r2(ci+ blnr) = 2 NE |
ar 7)r cq 1 r) = 77 »
and ) >~(2.64)

2
dv.
<}E%> - 277[b2 sin(20) + ¢, COS(29{] = =2T)K 3

where K is the separation constant. Each of these two equations

constitutes a conservation theorem of the motiony and they are in
this respect analogous to equations (2.32),

From equation (2.63) it is seen that the coordinates (ro,Qo)
of an arbitrary point on the zero equipotential are related by
2

r

o log+ bllntro) +'<P2 sin(ZOo) +c, cos(ZOob =0 .

At (ro,Oo) the velocity is zero; therefore

aw,
dr

av,

-1

= =O »
(rO,OO) r do

(r0990)
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2

Figure (2-4). Equipotentials of P= 1n r + 1 sin (29)
. r



43
If these initial conditions are substituted into equations (2.64),

we obtain , : -
2
K +r (e + blln-ro) =
o
K - 632 sin (290) + ¢, cos (290)> =0 :J

The differential equations (2464) therefore become

av_\ ° |
2 <é;£> - 277[cl(r2 - r02) + bl(rzln r - r021n ro>} =

2 - _
<a_g_g> - 2’)7[‘02(sin (20) - sin (290)> + ¢y (cos (20) - cos (290>=O

-/

. (2.65)

For an electron starting from rest at a point (rO,QO) on the
cathode; the velocity at the point (ry8) on its trajectory is,
from equations (2:17 and 65)¢

{—17 (r - roz) + bl(r-zln r - r021n ro)>} ¥

¥
{;;D]) (51n 26 - sin 26 ) + ¢ (cos 20 -~ cos 20 ):}

[ME

(2.66)

If we let

and / > (2.67)

then equation (2.66) can be rewritten in the form
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A

1
2

. 2 ) 2 2
- R \/477( b + c,°) _ \

P ) 2 . 2 . 2
Vo=l V277b1 ln B =~ —iﬁ InR, + = 2 Vgln ()o-s1n ®1,

(b;>0)" .

To permit the electron motion in four-dimensional phase-
space to be represented in two dimensions independently of the
magnitude of the constants bl’ b2, ¢y and oy it is convenient

to write the velocity components (T;,tﬁ) in the form

~ )
Yy : Ro2

/275, R

> (2.68)

U.r \
9 - =+ Vsin2 @o - sin2@ .
. 1 .

/477 (by" + 0p7) _J

Qquations (2468) are iilustrated in Figures (2-5a and b). It is
seen that an electron released from rest at a point (RO; C%) on thé
cathode oscillates about the line ®= nn as the radial velocity
component increases in magnitude. If the initial radial

coordinate R0:> 0460653, the electron will move away from the
coordinate centre, while for R0 less than this valué the electron

will move towards the centre. This division of the trajectories
*”For‘bl<10 the radial velocity component can be written as

\
D2
_ L Zo_ - ..
'vi-—i\/anl\/Rz InR, - 1o R
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1.5
vy
I ]
1.0}
-1-
0.5t

T 0.6065 +

Figure (2-5a). Phase plot of the radial velocity component of
equation (2.68)

M=
1.0 ‘/;77-“’ ot ¢37)"

Figure (2-5b). Phase plot of the O-component of velocity of
: equation (2.68) '
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is due to the saddle—shaped nature of the electrostatic field.

For the electrostatic field illustrated in Figure (2-4)

the normalized coordinates are

For this case the limiting cathode radius dividing inward and
outward motion is r, = 0.60653, and the electron oscillation
occurs about the line y = x.

When the field is due only to a line charge, so that
b2= c

the trajectories lie along radial lines. For this casey it is

o= O; the equipotentials will be concentric circlesy and

seen from the initial conditions that the constant K = Oy so the

radial velocity is simply

q¥': V277b11n R °

For the special case when the electrostatic field is due
only to a double deublet, so that b1 = 0, the radial velocity

component of the motion is, from (2.66),

2\

r .
Q);:i\/Z’T)Cl(L—r2> Y

(o]

Thus when the field constant cq is greater than or less than zero,

the radial velocity will be outward or inward respectively,
independent of the starting point on the cathode. When ¢y is zero,
however, the radial velocity is zero along the trajectory; an
electron released from rest from ahy point on the zero equi-

potential thus has the remarkable property of travelling along

an arc of a circles From equation (2.63) the zero equipotentials
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of this field can be deduced to be the straight lines

. b
_ilz ' -1 2 .
0 = 2<2 + nn + tan (029 .

Again for this special case the .separation constant K is zero,

and the electron velocity is therefore

T ~

’Ué = + \/277 (b22 + c22)2 ro-—2 cos (2®)

For the general case, the trajectories are described by

2
72; _ _dr Q1(r2’ r02) + bl(r21n r - rozln ro)
o T rde T

b2(sin 20 - sin 290) + cz(cos 29‘— cos 290)

which in integral form is

dr

|-

2
- r[%l(rz—r02)+b1(r21n r—rozln roﬂ
r, A
4]
de

LI

|4

. [bz(sin 20-sin 200)+02(cos 20-cos ZOOﬂ
Yo :

If use is again made of the normalized variables of equations

(2.67), these integrals can be rewritten as

1 ' ' b
°1 eP1 ¢ : 6 - % tan"l(—g)
—— C
b, 2

e 4R L ] . a®
by R\R%In R - R %n R V2(b,%+ c,2) V1 - k%sin®@
c 0 ) 2 2
1 ‘ . b
b 1 -1,°%2
1 8 - = tan" (=)
e T, 2 02
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wpere

1 *

K = ——— b12> o
sin.C%

If Ro = 1y the substitution

where erf (éf) is the well-known error function, defined by

§ 2

-X
e dx .

b2
,f(g)_ﬁ

In the integral in ®, hq 25 l. The physical significance
of the amplitude of k being greater than unity is that it
restricts the metions in the ©-direction to the libratien type
discussed earliery The behaviour of the the O-component of the

electron velocity is quite similar to the well-known motion of a

¥ When b, = O the integral in r, I, integrates directly to give

Ir = ;—l—g— cQs_=l <;9> .
b.= O o] v 1

For b1 < O the substitution R = e r can again be used.
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(47).

simple pendulum, discussed; for example; by Goldstein

Example #2: Solution in Equiangular Spiral Coordinates
The metrical coefficient of an equiangular spiral (or
logarithmic spiral) coordinate system is
blu + b2v
h=h =h,=¢e ' (2.69)

where b1 and b2 are arbitrary constants. If

z =X + iy and w = u + iv ,

then z and w are related by the transformation

e(b1 - 1b2)w

(b

z =

2

T
1 )

+b2

This equation is readily expressed in polar coordinatess

b,u + b.v

1 2

(2.70)

From the polar coordinates the multivalued nature of the (u,v)

coordinate system is readily apparent. Thus the coordinates

u - ——— 2nmw
0 2 2 ;
bl + b2 :

and ~ (2,71)

by
v=v_ + ;—Ez—gri 2nm 3
1 72

where (uo,vo) are any initial coordinates and n is any integer,

o
Il

refer to the same point in space. The range of (uyv) therefore

needs to be restricted so that the mapﬁiﬁg‘of (uyv) in the z-plane
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is single-valued., This will insure that the potential P
expressed in (u,;v) coordinates will be single-valued in space.
In Figure (3—6) is shown a sheet of the equiangular spiral
coordinate system for which b, = b, = 1. |

2
From equations (2.58 and 69) it is found that

ﬂ
f(u,v) =1
blu
and
(+) (v) =2
f v) =1f v) = e o
12 22 »

From equations (2.26b and 61), a possible form of @ therefore is

~2b ¥ -2b,u
D = A-ll(u)e ot Azz(v) . (2.72)

When this functional form of @ is substituted into the Laplace

equation (2.56) 4 there results

_ 2 2,
2 2 -2b,v|{d“A. ; (u) : ~2b,u{d“A,,(v)
22D L, °D _ T2 11t 4b22A11(u) vo 1 22 17
dv

3u2 | 8v2 du2
+ 4b12A22(v):l -0 .

This differential equation is of separable form, and separates into

the'equations
a%a,, (u) ) ~2b.u
-—EEE__ + 4b, All(u) - ae =0

4%4,,(v) ) ~2b,v
———E;E—— + 4b1 A22(V) + ae =0
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where "a" is a constante The solutions of these equations are

—2b1u
All(u) = clsin (2b2u) + d;cos (2b2u) + &£ » 2
4(b1 + bz‘)
—2b2v >>

i ae ,

A22(V) = ¢,sin (2b1V) + dzcos (2blv) - > n .
4(b1 + b, )

i

Substituting these results into equation (2.72), the electrostatic
field is

—2b1u

=-2b,v
D = e 2 [}1sin (2b2u)+dlcos (2b2ui] + e [}Zsin (2b1v)

+ d,cos (2b1vi] ¥

where Cis Coy dl and dz are constants determined by the boundary

conditions, It is convenient to rewrite this equation in the form

q) = c 2 + d

-2b.v ' ¢y
1 20 ¢ 2 Cos <(2b2u) -tan—l(d—1'>

1 1

~2b,u c _
+ (Jc. 2 + d 2 e 17 cos (2b,v) - tan—l(—g) . (2.73)
2 2 1 d2

To understand the physical behaviour of this electrostatic
field, consider first the field Cbl due to the first term of (2.73)
alone,

That is, e 5
c

« —=2b .V 4
D = 2 + d 2 e 2 cos 2b,u = tan_l(—l) .
2 dl‘

The zero equipotentials of Cpi are the logarithmic spirals

1 -1,%1
bZU‘= 5 [% + nm + tan (EIEI ’
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where n is any integer. Thus, in the coordinate system
illustrated in Figure (2~6) for which b, =b, =1, if wve set ¢;= 0,

the zero equipotentials of Cbl are the spirals

For a given vy when

I:Zn'n: + tan~1 (Z—i)} , (2.74)

Y )

b2u =
@1 is a maximum. It can also be observed from equations (2.70)
that when b2v—>--’-c>o-; while u is kept constant, r—> O, If
ve let b2v —> —oo along a u-spiral described by equation (2«74),
‘l:hencbl_> +00 .

For a given vy when

1 -1.%1
b2u = 5[?: + 2nn + tan (a-;ﬂ v

@

1 is a minimum, and further when b2v——>--.—oo along a us—spiral.v
described by this equation, then -.Cbl—> -0 o The behaviour eof
Cbl as b2v—->— oo is seen to be similar to the behaviour of the
potential in the vieinity of a double doublet. We note from

equations (2.71)¢ however; that as b,u varies over an interval

2
21y the coordinates (uyv) encircle the z-plane N times, where
2 2

+ b,

2 ®
2

b

N =
‘ b

Thusy; for the coordinate system of Figure (2-6); for which

b1 = b2 = 1y the Riemann surface covers two sheets.
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The electrostatic field described by the second term of
equation (2.73) is
D = Jelvale 1 cos 2bv—tan—1(—%) R
2 2 “F1 d2
The functional form of @2 is seen to be the same gs that of Cbl

when the variables u and v are interchanged. Thus, analogously to

@l, zero equipotentials of @2 are the constant v-spirals

c
_1l(z 1,52
blv =3 (; + nn + tan (d29

and @2——-> + 00 when b,u —> —-00 along the spiral

1 | -1,%2
by =35 <2n1r + tan (d—z-)> ’

1

while C_'PZ——‘» - cowhen blu—+ =00 along the spiral

bl'V =

[T Fo

c
<7t + 2nm + tan~ L (a—2)> °
2

As blxi varies over an interval 2m, the coordinates (u,v) encircle
the z-plane M timesy where
b, 2 + b2
M 1 2
b 2 )
1

Since u and v are oerthogonal coordinates, the si)irals of
constant u and of constant v rotate about the origin of the z-plane
in opposite directions, The potential D described by equation
(2.73) is thus the sum of two pstential functions @1 and @2,"
whose general propertiés are the same but a.ré oppositely directed.

A section of the equipotential @D = 0 is shown in Figure (2-6) for
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the case in which the constants of the electrostétic field are

dl = Cy = 1 and c; = d2 =0 .

The electron motion in this electrostatic field will be

studied next. If an action function of the form
W= (u) +V_(v)

is assumed, the Hamilton—Jacobi equation (2.57) can be written as

~
av\? 2b,u |
I/ -~ 27 |e <c1s1n (2b2u) + d,cos (2b2u)> +K | =0]|
and >
dwv 2 ' 2b2V ‘
/) ~ 2M|e c,sin (2b1v) + d,cos (2b1v) -k |=0,
(2.75)
vhere K is the separation constant.
The coordinates (uo,vo) of an arbitrary point on the zero
equipotential are found from equation (2.73) to be related by
2b1uo 2b2vo
e c;sin(2byu )+ cos(2b,u )] +e c2§1n(2b1v0)+dzcos(2blvo>
= O »
Since by hypothesis the electron velocity is zero at (uo,vo), we
have
~(bju+b,v) aw, e—(blu+b2v) aw_
e —_ = —_ =0 .
du dv
(uo’vo) : A (uoi‘vo)

If these initial conditions are substituted into equations (2.75),

we obtpin the following relations for the separation constant:
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2b1u

0
e (clsin (2b2uo) + d;cos (2b2uo)> + K

and | ._ (2.76)

Il
o

2b2v

o - _
e c,sin (2b1vo) + d,cos (2b1vo)> - K

° 3
The velocity of an electron starting from an arbitrary point

(uo,vo) on the cathode is

1
U=t bV ¢ysin (2b2u) + d;cos (2b,u) + Ke ,
e
1
Mgiz —2b2V 2
* blu czsin (2b1v) + d,cos (2b1v) - Ke .

e

If the substitutions

¢ h
-1,71
a = 2b2u - tan (dl)
\.
c
B = 2b,v - tan—l(—g)
1 d2
-
are made, the velocity equation becomes
A b, 1
2 i — -
~ ¢277(012 +4,°) bz(“o @) 2
v o= + ' 5 tos «x - e °© cos « '
— ‘ 2v (o}
e
T b, L
2 —=(8 -
V277(c22 + a,%) B, (B,=B) \2
+ cos B — e cos B .
- b,u : )

1
e

In order to permit the motion in four-dimensional phase~
space to be represented in two dimensions for a particular

coordinate system (i.e.y b, and b, given), it is convenient to
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write the velocity components (i,v) in the form

b 1:
- 7 1o - 5
eb2V 5—;(0(0 a) N 27
u M ' ' s =+ (cos x — e cos .
.2 2,2 '
27 (e, %+ a,“)
| V2T ley+dy ) |
and > (2.77)
B ] bz 1
: =2 - g) 5}
b, u _ | bl,(Bo B 2
v S -=| = + |cos B - e - cos B ) .
2 2?2
27 (c,“+ 4,%)
_\/ Miey+dy7)

s

Because the functional forms of equations-(2.77) are,identical,
only one phase portrait is required. The phase portrait of
equations (2.77) is shown in Figure (2-7).

It is apparent from the phase portrait that the electron
motion can be either oscillatory or rotational in either
coordinate., Alsoy if the cathode passes through the points

(ao’po) = (= %ﬂ " % or (%, - %E), a division of trajectories

is seen to occur; this is due to ' a sadile point of potential.

In Example #1 it was found that, as special cases of the
general solution, electron motion along either of the coordinates
could be obtainede This will now be shown to be true alsorfor
the present formulation, If the electrostatic field is due only

=d

to Cﬁl, so that c, =4d, = Oy then it follows from equation (2476Db)

that K = O, If an electron is now released from rest at a

surfa.cecb1 = 0, that isy a spiral

1 -1 (%
uo = -z—b—é-lj% + nt + tan (EI'):] N

then it can be seen from equation (2.77) that the v—-component of



Figure

Phase plot of electron motion according to

equations (2.77)

86
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velocity remains zeros, The trajectory is therefore a spiral

v = vo} and the velocity along the spiral is

b.v

1 1
= : c 2
u=+e 2°0 277(012 + dlz)z cos {szu + tan-l <Eiﬂ 2

Conversely; if the electrostatic field is 'due only to CDZ’ so
that cq= d1= Oy then the u—=component of velocity of an electron
released from rest from the cathode will remain zero. The

cathode surfaces im-thds case are the $pirals

c
1 |z -1 (2}
v0 = 2b1 [2 + nn + tan (dz)]’

and the electron trajectories are the spirals u = L the velocity

along these spirals being

L 3
Hbluo

2, . 2y? . “Lren " -
vV ==+¢€ 27}(c2 + d2 ) cosé??blv - tan <E;> .

23:5:2 Potential Function of the Form "Cbl(ql) +($§(qz)"

(a) Conditions for separation of variables

A different elass of solutions is obtained if it is assumed
that the potential is the sum of a function of one coordinate alone
and a function of the second coordinate alone, Let us assume
that the metrical coefficients hi are of the functional form

and the action function W is of the form

¥V = Bl(g_l)Bz(qz) . (2679)
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Ve must next determine under what conditions separation of

variables of the Laplace and Hamilton-Jacobi equations is
possible. To be able to write the potentialcp in the separated
form

P D (q) + DP,lay)

it is neceséary that h1 = h2 within the possibility of a scale
change. Since h1 = h2 for all conformal transformations from
Cartesian coordinatesy it is possible to writedbiJlseparated
form for any member of the class of orthogonal coordinate systems
obtained by conformal transform methods(48).

With h, W and @ of the above assumed functional formsy

the Hamilton-Jacobi equation (2.18) becomes

2 2 2 RN
B,%(ay) dBl(q1)> . Bily) aB,(q,)
f112(q1)f122(‘lz) (- 493 f212(q1)f222(q2) da,
='277 (Cbl(ql) + ®2(q2)> . (2.80)

The first term of this equation is a function of one variable if

aB, (q,) h
1'7%1
1: (a) B2(q2) = °1f12(q2)' or (b) ——EE;—— = czfll(ql) °
The condition for the second term is » -
dB,(q,) | -
. _ . 2727 _
23 (a) Bl(q_]_) = 33f21(q1)) or (b) dq2 = c4f22(Q2) .

If conditions 1(a) and 2(b) are chosen, the requirement for

separation of variables is thus

df,,(q,) ¢
121937 ¢4
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If conditions 1(b) and 2(a) are chosen, the requirement is

af, . (q,) ¢
21'91’ ¢

where the c; are arbitrary constants.

An action function of the form
V = Byy(q))By5(qp) + By (9))By5(ay)

could also have been assumed for this formulation. It is readily

shown, however, that when separation of variables is possible wiih
W of this latter formy the second term becomes redundant; so that

W reduces to the form of equation (2.79).

(b) Examples

Examplqﬁ#B; Solutien in Plane Polar Coofdinates

In plane polar coordinates the function fi‘j of the
?

metrical coefficients are; from equation (2.78),

and -

f21(r) =r .

-

These functions satisfy equation (2.81b), so it is possible to
separate the Hamiltoen=~Jacobi eguation when W is of the form (from
condition (2a) and equation (2,79)):
W = rB,(0) . (2482)
The p&tentialCD is of the assumed form

D - D) + Pylo) ,
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wvhich, when substituted into the Laplace equation, results in

CIDr(r.) = @po +alnr + b(ln r)2

‘and

@ 2

CPg(o) %, * ¢0 - bo

i

wher? Cpro’ dDOo’ a, by and ¢ are constants,
The -IiIamilton—Ja.cobi equation (2.80) becomes under these

conditions

2
dB. (6
B22(0) +(——(—§21—é—2-> = 27 CP0+ a lnr+ b(ln r)2 + cO = b02> .

The left side of this equation is a function of © only; the right
side also must therefore be a function of © only, requiring that-

a =b =0, The potentia.lCI) is therefore simply
3¢‘= cbo + ¢cO ) (2083)

and the equation to be satisfiéd by the motion is
2
dB,(8) :
2 2 _ .
B,“(6) 4¢_<——d9 ) = 277(CI>o + cO) . (2.84)

By a rotation of coordinates Cpo can be eliminated, so th_a.t@: 0
at @ = 0, Equations (2.83 and 84) describe electron motion between
two inclined-plane electrodes. This motion has been discovered

(39)

previously by 'Wﬁ.lke’r The solution of equation (2'.84)-, wvhen -

‘CDo = 0, that was obtained by Walker is
. ' 9 (4n-1)
_ 2
Bz(o) = E a @
n=1 _

2 2 _ 10
vhere a; = 3 ‘/27)(: ¥ 8y == 57 8,,85 = 3555 8, etce The
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electrbn motion is sketched in Figure (2-8).

Valker found thaty; with W of the functional form of
equation (2.82), it is also possible to take space-charge into

account., The extended solution he thus obtained, namely

W=r E qng 3 '

n=1

§6n-22
d - Bo
n=1

whereuocn and ﬁn are constants determined by the space-charge-flow

and

equations, represents space—charge-limited flow between two

inclined planes.

Example #4£ Solution in Equiangular Spiral Coordinates

For equiangular spiral coordinates the functions fi,j of
the metrical coefficients are, from eqﬁations (2.69 and 78),

b=

CI):O,’W:O

Figure (2-8)., Electron motion between two inclined plane
electrodess The field lines, which are arcs of
circles, are shown as dashed lines.
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fll(u) = flz.(u) = €

f12(v) = f22(v) =e .

et

Both conditional equations (2.81a and b) are observed to be
satisfied by the fij’ and it is thus possible to obtain separation
)
of variables when W is either of the two functional forms
b,u

1

or

v

b,v
e 2 Bl(U) .

If we bhoose the first of these, and assume that the potential

Cb is of the form

P - D +D(v) ,

the Hamilton-Jacobi equation (2.80) becomes

~2b : aB. (v)\2|
o 2 [blszz(v) + (—i—‘(,—)-> } =2md (2.8?)

Wher.eq> is found from the Laplace equation to be
CD:a,(uz-vz) + bu + ¢cv + Cbo

and a, by ¢, and @o‘a,_re constants. The left side of equation
(2.85) is a function of v only; the right side must therefore be

‘a function of v only,; as well, It is thus necessary that a = b = O,
For convenience we will also set CPO = 0, so that the potential

is

Doy
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and equation (2.85) becomes

2 .
dB,(v) 2b,v
2, 2 C2 2
b, “B, (v) *(T) = (277 cle <
?heéq two equations describe électfpn motion between two equi~

angular spiral electrodes. The Haﬁilton—Jacobi equation is solved

by .
0 (2n + 1)
Bz(V) = E av 2
n =1
_ 2 1/ ‘ _ 3 _2 (924 2 2 ,
where 8 = 3 77c, a, = bzal, aq = 37 <; b2 - b1 > 8y
84 37 2(2 b 2_ %_ 2>a.1! etc. The electron motion is sketched

- in Figure (2-9).

The velocity of the electrons is

jﬁ; _ eblu-+ b2v du eblu + b2v v -
- dt ? at

which can be rewritten in terms of the action function as

. -b.v -b,v dB,(v)
_ 2" oV 4By
Y = [ble .Bz(v), e ——a;——} .

D=0

Figure (2-9). Electron trajectories between two equiangular

spiral electrodes. The field lines, which are
equiangular spirals, are shown as dashed lines
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The trajectories are therefore described by the differential

équation _
dv — 1 <?B21v5>
dv

which has the solution

0o
u=u=+b c. v2 +1
o 1_; n

‘ n =1

2 b2€>, etc,

b -
I+t will be recalled that there were two possible functional

O

where ¢, = L Cp = = 4 b C, = 2_
1~ 3 "2 45 "2 -3 21 1

AN

forms for ¥, and that the first one was chosen for the present
solution. To obtain the solution for the second functionsal
formy, it is merely necessary to replace u by v, b1 by bzy and
vice versay; in the above solution,

It is also possible to exténd these solutions to include
the effects of space—charge, with the same functional forms of
W. Again it is only necessary to show the derivation for one
case, Let W be of the form

. blu .
‘W =e  B(v) . (2.86)

The Hamilton-Jacobi equation is therefore

v

2 2b,v
blsz(v) + <§%ézl> = 277CD e 2, (2487)

The potentialci>is thus a function of v only, and Poisson's

equation can be written as

-2(b,u + b,v) .2
fD = =g §72<D = —g e 1 2 Q-SE .

0 o dv2

(2,88)
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From equations (2417 and 86) the velocity is

—_ | -b -b
Vo= [ble 2" B(v), & 2 %ﬁ] . (2.89)

Equations (2.88 and 89) can be combined with (2.6) to give the

current density

R N =2(byu .-+ b,v) .2 -b.v =b,v
T=pT=-[e,e 1 2 Q—%> bye 2 B(v), e 2 d—ﬁéﬁ .
dv

If this equation be substituted into the continuity equation

(2+7), there results

a2d [, 2 dB(v) . a%B(v) ) (dB(v)><d3.®> ~
2 Pl B(v) + 2b, Sqo—= + 2 uere w3 =9

(2.90)

All the space-charge~flow equations have now been used; and are
involved in equations (2.87 and 90). If equation (2.87) is
differentiated threé times with respect tp v, the second and
third derivatives of<i>may be.substituted into equation (2.90);
An ordinary differentiél equation in B(v) only will then resuit.
.This differential equation is very lengthy, so it will not be

given here; it is solved by
0 (3n + 2)
B(v) = E ayv > .
n =1

If this series is substituted into equation (2.87),; it follows
that the potentia1<I>is of the form
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o0

D(v) = Z c v (3_1-1—;—1) .

n =1

From this series it is seen that the potential and the potential
gradient are zero at v = O. The solution thus describes space-

charge~-limited flow between two equiangular spiral electrodes.

2:6 Discussion

The relectrostatic field of Example #1 has properties which
are very similar to those of the eléctrostatic field of a
convergent electron gun with an anode aperture. This similarity
may be observed by comparing Figures (2-4) and (3-7)« Thus
the line x = y in the first quadrant of Figure (2-4) may be
considered to be the gun axis, while the cathode coincides with
an equipotential such as @ = 1.5. The constants of D can be
adjusted so that the cathode is at zero potential, and so that
initially the potential increases from the cathodeinwards. It
is then seen that, as we proceed inwards from the cathode, the
equipotential curves first flatten and then reverse in curvature,
which is also the case in convergent guns with an anode a,perfure°
Further; by varying the relative magnitudes of the line charge
and the double doublet of equation (2.63), the curvature of
the equipotentials may be varied over a wide ranée;

In view of the above-mentioned similarity, further study
of Example #l is warranted. Of particular interest would be
the extensidn of this éolution to the space-charge domain,
which ma& be possible by a perturbation method.

Since the number of anélytic solutions that are known for
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electron motion in electrostatic fields is still relatively small,
fhere is much scope for further work in this area. Two coordinate
systems thét appear promising in this regard are toroidal and
bispherical coordinates, since they are closely related to the
Staeckel coordinates.

The metrical coefficients hi in the previous section of
this chapter were taken to be of product form, as described by
equations (2.58 and 78). Kirstein(36) showed that the only
planar coordinate systems with the hi of the functional form
(2.78) are logarithmic spiral, Cartesian and polar coordinates,

and also a coordinate system with hi of the form
2 2
alg;” - 2,%)
h, =h, =e 1! 27,
This latter coordinate system did not satisfy the separability
criteria of either Sub-section 2:5:1 or 2, so no solution was
obtained.
The extension of the solutions to three dimensions is in
general very difficult; but can in some cases be accomplished.
Thus, in logarithmic-spiral cylindrical coordinates (Example #2

extended) the h, are

and it is readily shown; that the Hamilton-Jacobi and Laplace

equations are separable when W and P are of the form
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\mk‘ b Lutb v) 1
2 -k, z z ) dz + k
W= 2\/_, b 2, N J( 7)) ( Sk, 2 a,z+a + k,

k1(_)2(b1u-l-b2v) .

D = = : - 3Kz a;z v a,
2 2
4(b1 + b, )
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CHAPTER II1 - THE ELECTROSTATIC FIELD OF IDEALIZED ANODE

STRUCTURES

3:1 Introduction

The electrostatic field diétributions of the presently
known space-—charge-flow solutions are not of the kind that
exist in the vicinity of apertﬁred ahodes.‘ As a resulty these
solutions need to be adapted for usé in electron gun design.

To facilitate this adaptation, it is desirable to know the

form of the electrostatic field about various apertured anode
shapes. For this purposey certainiassuﬁptions must be made
regarding the other gun electrodes, as ﬁell as the space-charge
distribution.

In this chapter the electrostatic field about four
idealized two-dimensional anode geometries will be derived.

It will be assumed that the other electrodes are an infinite
distance away,; and that spa@e—charge effects are negligible,
Under these conditions the electrostatic fields can be obtained
by a Schwarz-Christoffel transformation(49):

' R P, D,

— — — — -

T T b4
z =z_ + A (w - bo) 4.(w - bl) (w = b2) s o o dwe

(3.1)

This transformation maps the upper half of the complex w=plane
- onto the interior of a polygon'in the z-plane. The real axis

v= 0, with points u = bo’ bl’ b2, « » o y transforms into the
boundary of the polygon, havigg exterior angles q%’(4&’(¥éf . . e

at the corresponding vertices. The complex constants Z and A.
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are determined by the origin, scale, and orientation of the
polygon.

| Tﬁe boundaries of the polygoﬁs to be considered are the
frojections of the anode surfaces in the z-plane. The anode
aper?ures are of unit width, and provide the reference dimension
~of distance in this c¢hapter and the next. The potentia1<i>and
flux\y'will be taken to correépond to v and u respectively in
this chapter. By a shift of origiﬁ and é change of scale of
the w=plane, it is a simple matter to adjust the potentlal and

gradlent as needed in Chapter 4.

332 Electrostatic Field abbqt a Plane with a S1it

The first and simplest idealized anode to be considered

w—plane

Figure (3-1). Mapping the profile of. an 1nf1n1te plane with a
| slit onto the u-axis of the w-plane
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is an infinite plane with a slit. The Sthwarz-Christoffel

(49)

transformation for this case is well known , and is

1
z =z + Alw + ‘7) o (3.2) .

The tran%ﬁormation is illustrated ih_Figure (3=1). To evaluate
z, and A,‘let w =+ 1o Then it is seen from Figure (3=1)

that z = + %frespectively, and it follows from equétion (342)
that z, = O and A = = %'b If the.latter values for Z, and A

are substituted into equation (3:2), and this equation is

separated into its real and imaginary parts, there results

(3.3)

The electrostatic field described by equations (3.3) is
illustrated in Figure (3-2). 1In Figure (3-9) is shown the

potential variation along the axis of symmetry of the anode.

323 Electrostatic Field about Two Right—-Angled Plates

The polygons in the z-plane projected by two right-angled
plates, two parallel semi-infinite plates, and the fictitious |
"negative thickness" anode of Section 335, are degenerate
rectangles. A finite embodiment of these rectangles is of the
general form as shown in Figure (3-3).

Since the vertices ay and ay are symmetrically located
about &y in the z-planey; this symmetry must also pertain to

the w—plane for the corresponding points b, and b3 with respect

1
to b2. Thereforey, if the transformed point b0 is placed at
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infinity, and b1 = =1 while b2 = 0, then b3 is at u =1, as

shown in Figure (363)' Under these conditions, equation (3,1)

becomes : , _qi qu ﬁq%

: W T 7
z =1z +4A (w+1)  w (w = 1). Cdw

(3.4)
When the anode consists of two right-angied plates; the

Figure (3-3). Mapping a degenerate rectangle onto the w-plane



: o 76
angles of the rectangle are q% = 27,y qﬁ = (P3 = - %, and ,

P, = Te Equation (3.4) therefore becomes

or ‘ :
2 -1 /1
z =z, + A Vw - 1 = A cos (w) o (3.5)

From Figure (3-3), when w = 14 z = =~ %‘, so from equation (3.5) it
follows that z_ = - % . Similarly, when w = -1, z = = , and
from (3.5) we have A = = L « The transformation is therefore

5 IR cos (1)) -

When this transformation is separated into its real and imaginary

A

N

fl

H
a -
R

partsy there results

1
X = l. IE. o+ R:Z cos (Q) — tan-l —_B__._.
™| 2 2 _ /1 _ B2

-\

~ (3.6)

| ) |
v = - %[Rz svin(-g-‘) ~ 1n <A + .\/ A° 4+ 1>

vhere 1

' 2
R = <?u2 - 1)2 + (2uv)%>
» O:'ba,ni']-‘ ) 21“27
u =v- =1/

1
- 1
A = %(-(1 - a,2~.-b2') + \/(a2 + b2 - 1)2 +4b2>]
] 1
1 2 .2 2 2 5 2\ 2
B=-2-(1—a-.b)+\/(a +b° =-1)° + 4b
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énd

a u_. . b v
== = = =53]
u2 +'V2 u2 + V2

| The electrostatic field described by equations (3.6) and
its defining relations is shown in Figure (3-4). The potential
variation along the axis of symmetry of the right-angled anode is
shown in Figure (3-9).
The anode shapes just discussed, the anode consisting of
two right—angled plates and the anode consisting of a plane with

a slit, répresent two extreme cases of a physically more

important anode geometry, an anode consisting of a plate of thick-

ness y; and having a slit of half-width x, (see Figure (3-5)).

The computation of the electrostatic field about an apertured

7/
055
Av |

0 / '

w—plane

10

Figure (3-5). Mapping the profile of a plate 6f thickness yi;fwith
' - a slit of half=width xl,.onto'the w-plane _
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plate of finite thickness is more involved than is the case when
the plate is of semi-infinite or éf vanishing thickness.
Fortunately, the field in the region of greatest interest, the
region near the anode aperture in the lower—half z-plane, very
rapidly approaches the field in the corresponding region near two
right-angled plates as the anode thickness is increased. There-
forey, the field in the region of interest near an anode of finite
thickness can generally be represented accurately by the field
about an anode of semi-infinite thickness, This will now be
demonstrated,

Consider Figure (3-5)s The exterior angles of the

polygon in the z-—plane are seen to be

Po= =2 P=Po= G=Ps--3

The transforms of the vertices of the polygon to the w-plane,
bi’ are located as shown, the location of b2 and b4 béing as yet
undetermined except for the fact that they are symmetric about
the origin, and lie a distance 0 Sk =1 from it. Under these

conditions equation (3.1) becomes

Z =2z <+ A

1 1
| % = 1)2(? - x%)2
o B
w

~

(50)

This equation has been integrated by Davy sy Who used the

substitution
1

sn( )

thus making k the modulus of the elliptic function used. The

transformation then becomes
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z =2 - Ala(k? - E-E-> ~ bz(w) - cn(s)dn(AL)
© K o . sn (W)

(3.7)

2

where k"2 =1 - k% K and E arey reépeptively, elliptic integrals

of the first and second kind, and Z(AL ) is the Jacobian Zeta-
functione« The constants z, and A can be evaluated by substituting

the coordinates of b1 and b5 into (3.7), giving

==

- (3.8)
1

A= —
Knt2 o 2F

If the coordinates of b, and b, are substituted into (3.7 and 8),

then it is found that

Y1 (K'k'2 - 2K! + 2E')
x] OE - Kk'?

(3.9)

where K' and E' are, respectively; the elliptic integrals of the
first and second kind, in terms of k',

From equation (3.9) it is observed that the distance k of
the points b2 and b4 from the origin depends solely on the ratio
of the height to the half-width of the anode aperture. Equation
(3:9) has been plotted in Figure (3-6)¢ When yl = 0, then k =1,
which represents the case of a plane with a slit., It is seen
from Figure (3-6) that when the thickness yl'is increased, k
initially decreases very rapidly; isee; it rapidly approaches the
case of an anode consisting of two right-angled plates. For

example, when the thickness of the plate is equal to half the
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width of the anode aperture, k has already decreased to about

) ]
(@]
¢

From Gauss' law it is easily deduced that k is the
ratio of the charge on the upper surface a, - a3'(or ag - a4)
to the chargelon the surfaces 8] = a, = ag (or aq = 8y - a5).
The physical significance of the rapid decrease of k when ¥ is
increased is thus fhat the proportion of the lines of fofce
entering the anode aperture that terminate on the upper

surfaces a, = ag and ay = 8, decreases rapidly when the anode

thickness is increased. Consequently, the field in the lower-half

z-plane converges rapidly to that for an anode consisting of two

right-angled plates when the anode thickness ¥ is increased.

150 —+— t ~ — —+ + + —+ + t :
|ie
0091

: . 4 n 3 I I 1 ) b .
L T T v 2

1 L) . Ll L] B A J Y
0 Oul 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1.0 1.1(—%)-

Figure (3=6). Plot of equation (3.9)




334 Electrostatic Field about Two Semi—Infinite Parallel Plates

For an idealized anode consisting of two'sémifinfinite 
‘parallel plates, it is seen from Figure (3-3) that the polygén‘ :
angles are @ =371, P =P; = ~1; and CP2 = mo The trans-

formation is, therefore, from equation (3.4),

W2'— 1\
z =z + A ) dw
or
0

2
Z =7 %+ A <g—-+ 1n w) . (3.10)

By referring to Figure (3-3),; the constants z, and A can be

evaluated as beforey giving

zZ = =

1
o (1'+iE)

A=1

-

SN |

Equation (3.10) then becomes

z = 1 (%E)(ul + im + w2 - 21n W)
or v
. 1\ _ -1/v R
X:(ET-‘)E—R - 2uv + 2tan (E)]
}(3’.11) ’

y =(%_11-:) [—1 - v2 + u2—. 1n (v2+,u2)] .

-

Figure (3=7) shows the electrostatic field describéd by
equations (3.11)y while the potential variation along the axis of

symmetry of the anode is plotted in Figure (3-9).

335 The "Wrap—Around Field"

The properties relevant to electron gun design of the

three electrostatié fields derived above are studied in the next

K PR
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chapter, and it is 1nferred there that the f1e1d characterlstlcs

_improve as the angles q?l and QDB of Figure (3-3) are made 1ncreas1ngly7
"negative. The 11m1t of phys1ca1 reallzablllty of the anode 1s
~attained when CFH =CP3 = =g as then the gnodg ;s of vanlshlng ‘  ,
thickness. Nevertheless, in a Riemann surface the prbjections;"'
8, - &

of as continuing past the respective projedtions a; = 8,1 and

and aq - a'o of the outside anode surfaces can be conceived

8, = ag of the inside anode surfaces if CF& and CP3 are reduced 

beyond —-m. The electrostatic field of the resulting fictitious

negative thickness electrode will be called the "wrap—around fieldﬁ.
The transformation for the case when CFH q)B = = 3

C?é = M, and Cp—~,_n will now be derived. Under these condltions,

equat10n-(3.4) becomes

z =12z + AT (3412)
where
2
2 )
I = v -1 dw
or
1, 2 % 2 211' @—1)2+f(w—1)4
I=§(w-—1)-(w-1)+ ‘ -
4y2 ‘(w2-1)? f(w -1)2«'+1
. D
. 2 )
+ 2tan“1 Jzkﬁ — 1)1 .
1- (w2 = 1)%

Equation (3.12) can be separated into its real and imaginary

components, giving

* =% *hpie T Aol  (3.13)
y =Y, +.AJIR + ARID



where

and

and

where

3 5
1\ 4
= (5)87cos(5u)

I
wn
]

5 1
= ()s*sin(Za) -

where

;.[5;
S2 2

= X

+ iyo

AR + iAo

e

4\/?_

@)

1
(1= 8%
L
1 +8 - 258%o0s (% )

— —

1 1

— a —

7 s*sin (D1 + 52
1

1 + § —-282

o
cos (2)4

©l, ,

- 2 4+ 2cos

1 l(F) + é

1n
\C

1 _hn \/EZ' + F2 + tan“l<
1

85

20

C+LD+1L

2

+(D-1)

S + 282[1 +

cos (%):l -2 J?S

l_- .
2 V2 s%sin'F) (1

N

L
_s2)

L
2

cos (% )(1 + 8°) +1

l\)ll—' :

S + 28

1+

1

1
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Figure (3-8). The "wrap-arouhd field"
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Figure (3-9). Variation of potential along the.pléne-of symmetry
of four electrode shapes
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The consthnts z, and A can be evaluated as before by

setting w = 1 and z = = %, and w = -1 and z = %,_ Equations (3413)

then become

o1 = 1y) .
- > (3414)

25 M‘H

(IR + Io) IS

~

the desired transformations The electrostatlc f1eld in one half
of the first sheet of the Riemann surface is shown in Flgure (3~8)-
The potential variation along the axis of symmetry is plotted in
Figure (3~9)« |

For electron beam design, the region of infefeét of this
electrostatic field lies betﬁeen the flux 1ine$'u =1 and u = =1y
and from about v = 2,75 to v = O. The field invthis region could
be approximated by placing electrode sheéts along several equi-
potentials just outside this regiony and by maintaining these

electrodes at the required potentials.
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CHARTER IV — USE OF SPACE-CHARGE-FREE FIELDS IN ELECTRON GUN

DESIGN

431 Introduction

In this chapter, the electrostatic field in an electron
gun is considered in two parts: the first part is the low-potential
region, in which space=charge effects are appreciable, and the
second i's the high-potential region, in which the effect of space-
charge on the electrostatic field is assumed to be negligible,

Consider the electrode c&nfiguration of Figure (4-1), The
region from the cathode to the auxiliary anode in this figure
represents a strip-beam Pierce gun(s). The upper surface of the
auxiliary anode is shaped to coincide with a suitable equipotential
of the free-space electrostatic field of the main anode (i.e.y an
equipotential of the electrostatic field that would exiét-in an

isolated system consisting of the main anode, held at a potential

Vk, and a charge located an infinite distance away). The el%ctro—

Main Anode

Auxiliary
Anode

-----

©
TETT T

al* s o
. »

Beam~Forming
Electrode

——————
.

re%e
Ve y'e

7
A

Figure (4-1)s Hypothetical:electron'gun
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static.field in the auxiliary-main anode region can thus in principle

be-obtainedlby~é conformal transformation of the space exterior to

the main-anode surface,; such as was carried out in Chapter III,
Assuming that the Pierce—gun section ofvthe electrode

configuration of Figure (4=1) is‘operating, imagine that the.

potential of the main anodey Vk, is adjusted so that the potential

gradients at the upper and lower surfacé of the thin section a=b

of the auxiliary anode are approximately the same. If section

a=b is now removed, the field distribution will therefore be

negligibly affected, provided that the potential-depressing effect

of the space-charge which will now enter the auxiliary-main anode
region can be ignoreds If this proviso applies, the electro-—
static field in the two—anode gun thus is known.

(51)

Van Duzer and Brewer obtained equipotential plots for
a Mller-type gun with a perveance of 2.3 x 10-6 by means of an
electrolytic tank with provisions for space-charge simulation.
Comparison of an equipotential plot taken in the absence of space-—
charge simulation with a plot taken under conditions of space-—
charge simulation shows that the equipotentials in the anode
region of the second plot have been displaced but have changed
little in'shape. For the two-anodé gun discussed above, the

- displacement of the equipotentials in the auxiliary—main anode
region has largely been taken into account by the gradient-
matdﬁng;mocedﬁrenseds Van Duzer and Brewer's experimental data
thus give an indication of the applicability of the assumption
that the electrostatic field in the auxiliary-main anode region

can be approximated by a spacé-charge-free field. This problem

is pursued further in the next section. In Sections 4:3 and 4
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the gradient-matching procedure is applied to the study of two

electron gun configurationss

The auxiliary anode in the hypothetical gun of Figure (4-1)
hasvbeen inserted only as a temporary measure, to aid the analysis
of conditions inside the electron beam, In Chapter 5 it is shown
for the electron guns of Sections 4:3 and 4 how this anode can

be removed.

4382 Error Estimate for a Space-Charge-Free Field Approximation

in the Anode Region

The error involved in approximating the electrostatic
field in the anode region by a space-charge-free field is
readily obtained for two space—-charge-limited flows of interest
in this éhapters flow betweén two parallel plates and flow

between two concentric cylinders.

48231. Flow between Two Parallel Plates

In an ideal planar diode the following relatiomns

hold(z) , 4 M
Potential .- d - ¥
L
Electric Intensity £ = - §Y3
| 2 (441)
Electron Velocity Y = M277 3 :
| -
Charge Density P = _(% Eo> T 3

where

Y = £ - distance from cathode
' . cathode—-anode distance

qb__z_“_potential at v
- Vd'“anode potential
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Equations (4.1) are illustrated in Figure¥(4—2). It is seen that

as Y increases, P decreases monotonically. As a result P becomes
more lineér with increasing Yy tending toward the solution of the
Laplace equation, |

D, =al +b (442)

whqfe a and b are constantss
} Let the potential in the diode be approximated by (442)
over the interval

YO< I< 1

by matching the gradients of O and CPt at Yo, as shown in

Figure (4=2)¢ Thereforey at T, s

and from qquatiop (4.1a) it follows that the constants of

equation (4.2) are

L
3

®

I
Wik

H

o
1l
I
W[
Wi

Y - .
o

—
The maximum error incurred by this approximation depends

on the value of YO. Let the error in potential, e be defined

eq) =.1OO(CE§L> %

and the error in velocityy ey be defined as
: _ Y-Jznd) |
ey = 100 = - L)g
Y

For the example illustrated in Figﬁre (4-2), Yo = 0.75 and thus

as
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Figure (4=2),

L. o ' 0.9842T---—=71
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lfj °
7 D, = 0.68142
4 iR
Oe¢6] _ ;
€ = -1.21140
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2N
" 045t Y T
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0.3t
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042 (19 ———@ Q P I
9 €
C‘»l"
0 - ' ¢ ' — L
0 ‘ 0.25 0+50 - 0,75 1.00
3 ‘ Normalized Distance from Cathode ‘
‘Cathode Anode

Variation of the potential, electric intensity,
electron velocity and space~charge density versus
distance from the cathode in a parallel plane diode.
Also shown is an approximation of the potential in
the anode region bbeL'z aY+b
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equation (4.2) is

‘Fii = 1.2114Y .- 0.2271

while the errors in potential and velocity incurred by this

potential approximation arey at the anode,

o 1457%

GY = 05789% »
The values of eCD and ey at the anode for other values of Yo are

shown in Figure (4-3).
11 /\/ 4 X + 4 + 4 t

107
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% Error at the Anode
N

e
T

o
2
o
[

0.4 0.5 046 0.7 0.8 0,9  1s0

Distance from Cathode at which the
Potential Approximation Commences

Cathode
Anode

Figure (4-3), Error in potential e and in electron velocity ey?
o at the anode of a_planar diode when the potential is
approximated by L = aY + b over the interval

Y0< Y< 1.0
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When the anode has an aperture, the errors incurred by
approximating the field in the anode region are no longer
readily calculable. Howevery if the flow being considered is
initially parallel and rectilinear, which is the case in

Section 4:3, then this analysis is a valuable guide.

. 43232 Convergent quw between Two Concentric Cylinders

In an ideal concentric-cylinder diode the

following relations apply(B)
2 )
Potential D _—_<—B——2
RaBa, 2 dg ]
B° + 28 55
Electric Intensity £ = = 5(—— —
T\B_B, 3
2
< R8
2
R B _
L \Ba 4 > (4.3)
1
, 3
Electron Velocity R = ‘/277 —
Rofa’/ .
Charge Density P= -.(i;- eo) 1 2> 1 i
R B =
' 2\ 3
v R(—LR 2>
N RaBa 4
where
R =i _ = radius
“ r_ = cathode radius

_ _potential at r
~ potential at T the anode

O
I
|

B = Langmuir parameter, a function of R
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The radial dependence of the charge;density P is shown in

Figure (4-4), whhileCI) andg are shown in Figure (4-5) for the
case Ra = 0,25+ Near the cathode, the behaviour of the flow
parameters for this case and for the planar diode case is seen to
be similar. However, as the flow converges, the parameter
behaviour becomes decidedly different. The charge density P

attains a minimum and then increases without limit as R — Q.

2\
3
( 2
- Ra,Ba. P 7 i
&)
9

o \

S \ /
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Figure (4-4), Variation of the charge density in rectilinear,
convergent electron motion from a cylindrical
cathode
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Variation of the potential and electric intensity

versus distance from the cathode in a concentric-

cylindery convergent—-flow diode. Also shown is .an
approximation of the potential in the anode region
by CDL =a IlnR +Db



| | 98
Thus, to accurately approximate the electrostatic field in the

anode region of a cylindrical diode by a space—charge-free field

CPL =a ln R + b, (4449

the anode radiué Ra should preferably not be too small. An anode
radius of Ra = 0.25 was found to be a convenient value.

Let the field be approximated by (4.4 over the range
R, > R >0.25

by matching the gradients of D and Cﬁt_at Ro’ as shown in

Figure (4-5)¢ Thereforey at R =R ,

a P
| ad ¢¥L
CI) = CPL and iR = <R
so from equations (4.3a and b) it follows that the constants of

equation (4,4) are

a = = RJ?-

R=R
(0]

b =Cb’ + Ro(@/

R =R
(o)

R;RO »

For the example illustrated in Figure (4-5), R, = 0.45, so

equation (4.4) is

CIDL = =0479421 1n R - 0.12463 .

Let the error in potential, ed) y and the error in

velocity, ep? be defined as in Sub-section 4:2:1, namely
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For a given Ro’ the maximum errors qccur-at the anode. The

errors at the_anodé for the case Ro = 0,45 are

ecp = 2.36%
en = 1419%

The errors at the anode incurred by initiating the field

approximation at other valués of Ro are shown in Figure (4-6),

The distance coordinate in this graph is normalized weret, the

¢athode-anode distance t6 permit a comparison to be made with the

11

% Error at the Anode
A |

—\

107
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Potential Approximation Commences, 1 - Ry <
‘ 0.75

Figure (4r6); Error in potential e+, and in electron velocity e;
g) Y B?

at

lo
b,
R

the anode of a codcentric—cylinder, convergent
w diode when the potential is approximated by
=a ln R +b over the interval R&> Rz;Ra, where

a = O¢25
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planar diode approximation, Figure (4-3). It is seen that the
errors for the cylindrical diode case are higher, as anticipated
from the behaviouf of P+ For example, the field approximations
over the intervals 0.75<Y<1 and 0.4375> R = 0.25 for the
plandr diode and cylindrical diode respectively, both cover one
quarter of the cathode-~anode distance; and the velocify errors
at the anode are ey = 0+79% and ep = 1.03% respectively.

The space-charge-=free potential that we will match to
an initially radial, convergent flow is one calculated for an
anode with an apertures In the region of the aperture the beam
is defocused.due to the combined action of the anode field and
the space-charge forcess As a result, the charge density will
net follow the theoretical c¢urve of Figure (4-4) beyond the
matching radius Ro’ but will tend to diverge from it omn the low
sidey whieh should improve the accuracy of the space-charge—~free

potential approximation,

4%3 Initially Parallely Rectilinear Flow to an Apertured Anede

The ideas presented in Sections 4:1 and 2 will now be
applied to the study of spa¢e=charge-~limited flow between a
planar cathode and an anode ¢onsisting of two right-angled plates,
as shown in Figure (4=~7)s If the anode aperture is taken to be
of unit width, then the region of particular interest is
|x| = O+5. The problem of providing a bounding electrostatic
field for a beam within this region is taken up in Chapter V.

It will be assumed that the electron motion in thé
cathode region, Y.<V < yo,‘is parallel,and rectilinear, and that

the electrostatic field in the anode region, y=>Yy,» can be
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represented by the fieid derived in Section 333, The accuracy
of these assumptions depends primarily on the ratio: of the
aperture width to the cathode—anode distance becaﬁse, if the
cathode-anode distance is:reduced relative to the aperture width,
the perveance is increased and the perturbation of the field due
to the anode apertﬁre becomes more severe in the cathode region,
The accuracy with which it is desired to satisfy the assumptions
thus determines the values of Yo and Yei Yo must be sufficiently
far from the anode that the equipotential <i% can be considered
to be planar, and Y must be-a sufficient distance beyond Y, S0
that the electrostatic field in the anode region may be approxi-—
mated by a space-charge—-free field. |

| From Figure (3-4) it is seen that the equipotential
surfaces near y = -1 have become almost planar, varying from the
planar by less than .0l or 1% over the distance | x| < 0.5.
Accordingly, Yo will be takeéen to lie near y = -1, aithough its

value will ﬁot be specified at this stage.

b

L
- 0.5

“—Hlo q)

, Cathode
7777777777777 777777777/

Pe

Figure (4-7). Planar diode with an anode aperture
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The fldw in the cathode region will be taken to be the sdmg

as that in the region 0<Y < 0,75 (notation as in Sub<section
41211) of a planaf diodes If the aﬁode of the structure in
Figure (4-7) had no aperture, the maximum error incurred by
approximating the field in the anode region would thus be
eCD = 1.57%.. Furthermorey if in the latter case Yo = -1, it
follows that Yo = -4, so the cathode-anode distance & =4, and y
and Y are related by

y=-4(1-Y) .

If this equation is substituted into equations (4.la and b) and

evaluated for y = Yo = -1, there result

&

o = 0+681420
d@ _ (405)
e, =- 3y |="0-302853 .
yO

In the actual diode under study an aperture is present,
It is mathematically convenient to treat this case by moving the
entire cathode region slightly closer to the anodé; i.é,, the
distanqe between the @athodé, y = ¥,» and the equipoteﬁtial Ci%
at y = Yo remains »
-y =3 (446)
and conditions (4.5) must be satisfied at Yy =Yy If in
‘addition we specify that the anode potential Cbk = 1, then the
value of Yor and the spéce—charge—free field in the anode regiony
can be calculated from equations (3.6); this will now be done.

The mapping |

‘ v=0(n-7,) (447)

where
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WwW=u+1lyvyw
] =Va4+idD
'Ok = V¥, +‘i‘CPk

rescales w by a factor Q‘l,. and shifts the origin of the w-plane
a distance T)k. In the z-plane, v = O coincides with the anode
surface, Since the anode potential is to be unity, we thus must

set Cbk = 1. Further,; let \Ifk» = 0., Equation (4.7) then becomes

u = Q¥

(4+8)
v=0(P-1) .

When equations (4+.8) are substituted into equations (3.6)

and the defining relations following the latter, we obtain

B L : 7 ]
x=—;lt-' %-&Rz'c;os(%) - tan~ ( > |
[:1 >~  (4.9)
y = = %‘ R2s1n - ln(L +‘/A + >
where ' ‘ =
R = g2 [\Ifzu-(q>—1)2—<—é-§j +[2\If(<1>-1ﬂ2
2V (D = 1) : 2 2 (1
6 = Arctan - ‘ if - -1 -(={=>0
IV (@ o 1)2 —<1—2> [yt .(92)1
Q
— 1 + Arctan|—2X(P = 1) if |\2- (CD~1)2—'1—><0
PN @ - 2 - <212—2-> M 5
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- 1
| = . 3
A4z __(1~a2«-b2)+\/(a2+b2-1)2+4b2:‘

1
— - "-2-
B =f% a N \/(a2 +12 - 1)% 4 4b2_l

and

_ Vo - -(cb-l), .
W2+ (-1 " v+ (@-17

Along the plane of symmetry of the anode region'q/= 0, so it
follows from equation (4.,9p) and the defining relations that

the potential variation along the plane of symmetry is

: 1 : :
2 ‘
1 2 _ 2 Lo =1 .
y 0:—5[(9(@-*1) +1> —~ sinh (M]'
X =
(4410)
The derivative of y _w.r,tyCD is
x =40
1
- 2
QL __-l— ,2+_—————1 - ’ s
adl “[Q (Cb-l)z]

The potential gradient along the plane of symmetry in the anode

region is therefore

x =0 ‘[9‘2 * @e 1)2}
1
2

Q0 = - T 2 1. v (4411)
g ) (@-v?
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Equation (4.11) relates the scaling factor Q to the potential and

gradient at an arbitrary point on the y-axis. We wish to find the
scaling factor when conditions (4.5) are satisfied at Yoo If
¢onditions (4,5) are substituted into equation (4.11), the secaling
factor is

Q = -9.88700 . (4.12)

The value of y can now be computed by substituting (4.5a and 12)
into (4.10):

Y, = =0.952495 . (4413)

The potential in the anode region is described by equations
(449) and their defining relations, with Q as given by (4.12)s
The flow parameteré in the cathode region éan be obtained from
equations (4:1) sincey from equations (4.6 and 13), y and Y are
related by

y = =4(1 - Y) + 0.047505 . (4.14)

The potential variation along the plane of symmetry is shown in
Figure (4.8).
If space-charge forces are neglected, electron trajectories
i? the anode region can be obtained by a numerical method
developed in Appendix €, Section 1. Using this method,
trajectories were computed in the region of the anode aperturey
|14 << 0.5y resulting in the trajectory shapes shown in Figure (4-=9a).
For the case when an electron beam enters the aﬁode region

%
over the interval ,x|<( O45 only , the electron trajectories in

*

This can be accomplished by; for example, inserting in the
structure of Figure (4~7) an intercepting anode which coincides with
the equipotential(Iz over the interval |x| > 0.5
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the anode region will be the same as those shown in.Figure (4-9a),
if space—charge forces atre neglected. Since the transverse
electron velocity of the beam is much less than the axial
velocityy a first—order correction can be made for the transverse
space—=charge forces. This correction is made in Appendix Cy
Section 2, and space—charge~corrected electfon trajectories
obtained by this methed are shown in Figure (4~9b). The
~difference between the trajectory shapes of Figures (4-9a and b)
is seen to be slight, |

The perveance of.the beam in the region lx] < 0,5 is
approximately equal to the perveance of an equivalent planar diode
with cathode—anode distance d = 4,'because the cathode was moved
closer to the anode to maintain the perveance in the region
|x|<< O.5 when an aperture was cut in the anode. From
(2)

equation (ls¢1) and the Langmuir-Child law it is readily found

that the perveance per unit distance perpendicular to the x=y

plane is
2k, x
d E
wvhere
4 ~mn .
kl = 6’ 80 277 o

Referring to Figure (4=9b), it is observed that a trajectory with
coordinate x = 0,4641 in the initially parallel part of the beam
hgs diverged to x = 044752 at the plane y = O, An electron beam
with an initial halfwwidth of 0.4641 would therefore be suitable
for this anode apertures Setting x = 0.4641 and d = 4 in
equation (4.15), the perveance of the resultant beam is thus

3

6 amp/volt2 meter.

| %-_—- 0.14 x 10~



109
484 Initially Radialy Gonvergent Flow to an Apertured Ancde

As a second illustration of the usefulness of the "two-
region concept" for eléétron gun studies, a case of great practical
interest is considered next: convergent flow from a cathode that
is a section of a c¢cylinder. It will be assumed that the flcw in
the cathode region is radial and space-charge limited; and that
the field in the gnode region can be approximated by 'a space~
charge-=free fields To¢ this end a study will first be made of
pertinent characteristies of the anode fields derived in the third

chapter to determine their suitability for this electren motion,

43431 Analysis of Anode Fields

Consider Figure (4-10): For electron motion in the
cathode region, rTZTZT s to be rectilinear and convergent teoward
a common axis (xcyyﬁ)g it is clear that the equipotentials in the

cafh@de region must be eylindrical sections with a.common centre of

Cathode

Figure (4-10). Cathode region of an initially radial y convergent
. i flow . ' .
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curvature (xc, yc). The basic conditions that must thus be met by

thg equipotential CI% at r = r are that over the width of the
be%m (a) Cig be a section of a cylinder and gb) the gradient at
<1>6 be independent of s In addition, it is:‘;.desirable that Q.
be close to the anode aperture and that Cbb ﬁave a short radius
of curvature, because this improves the beam perveancews

It is clear from Figures (3-2 and 4) that an anode
consisting of a plate with a slit, or consisting of two right-
angled plates,is not suitable for an initially radialy convergent
flowy because no equipotential in front of their anode apertures
satisfies the bésié requirements for CPO, Howevef, the field
surrounding an anode consisting of two semi-infinite parallel
planes, which is illustrated in Figure (3-7), is seen to exhibit
the required behavioury The variation of the radius of curvature
and of the centre of ¢urvature along the equipotentials of this
field were obtained by a method presented in Appendix D, and are
shown in Figures (4-11 and 12). For example, the radius of
cprvature of the equipotential v = 2.50 in Figure (3=7) at
u-= 1.0 is, from Figure (4=11), r = 3;164, and the angle between
the radius of curvature and the plane of symmetry is @ = 164 85°
the centre of curvature of the above equipotential at u = 140 is,

from Figure (4_12), (x, et Yo ) = (-7.496 x 0~

s 1o718). Alsa shown
in Figure (4- 11) is a curye that is indicative of the maximum
half«angle 0 that can be occupled by the electron beame¢ This
curve, which will be called the "maximum line", was obtained by
determining, for each of several equipotentials, the point on

the equipotential frem which an electron, travelling along the

radius of curvature and centinuing in a straight line; will graze
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the moufh of the anode. For example,; the maximum half-angle
de%erminé& by the maximum line e¢riterion for the equipotential
¥ = 2450 is 6 = 16,25°,

From Figures (4-11 and 12) it is seen that the equipotential
v = 2,75 in Figure (3-7) has a radius of curvatﬁre and a centre
of curvature that are almost constant over the interval |u| = 0464
This equipoetential crosses the y—axis at y = -1.6848 and the half-
angle at |u| = 046 is 8 = 11,6%°. Therefore, although the shape
of;this equipotential makes it ideal for use as the matching
equipotentialCIzy the relatively large distance of this equi-
potential from the anode aperture and the relatively small half-
«angle would result in a flew that would have neither a high
pefveance nor a high convergences,

The equipotentials v < 2475 have radii of curvature that
first decrease and then increase again with increasing |u|; the
centres of curvature simultaneeusly move towards the equipotentials
when the radii of curvature decrease, and move away from them
again when the‘radii of curvature increase. When these variations
in the curvature are hot excessive, the equipotentials can be
approximated accurately over the region of interest by secbﬁvns of
a cylinder. For example, a sectieﬁ of a cylinder with centre of
curvature at

(xcy yc) = (04 1451714)

and having a radius of curvature r = 2.5343, coincides with the
equipotential v = 2,00 at lul = 10 and deviates from this equi-
potential by less than 0.0008; or 0,032% of the radius. Since
this equipotential crosses the y—axis at y = =1,0164, and since

the maximum half-angle determined by the maximum line criterion for



114
this equipotential is O = 18;905 this equipotential is obviously

much more desirable for use as the matching equipotential_cbol
than the equipotential v = 24754

For equipotentials v < 2 the variation in curvdture and of
the gradient along the equipotentials increase rapidly for
'decreaging v, whi¢h makes them unsatisfactory for use as q%ﬁ

The question that arises next is if the outside surfaces
of a semi-infinite parallel--plane anode can be changed in 'shape in
such a way that the.desired field characteristics are improveds
isesy the equipoténtial that is suitable for use as the matching
equipotential Q% occurs closer to the anode aperture and has a
shorter radius of curvatures It is apparent from Figure (3-7) that
to effect this improvement it is necessary to make the lines of
force that issue from the aperture (the curves u ::(mnst@nt,'
where ]u|<:l) spread out méere rapidly. Now the semi-infinite
parailel—plane anode is a special case of the anode geometry of
Figure (3-3), with @, = Py = ~ne Furthermore, the lines of force
u ; + 1 that leave the anode at the intersection of the inside and
outside surfaces bisect the exterior angles between these surfaces._
The magnitude of the angle that the flux lines u = + 1 make

q + T
initially with both surfaces is thus~L£ﬂ—§—— . Clearly, the way

to increase this angle, and hence the spreading of the flux linesy
is by making CPl and CFB more negative, However, the case of an
anode consisting of two semi~infinite parallel planes is already
the limiting case of physical realizability and any attempt to.make
the angles CFH and (F% more negative would require the butside.
surfaces to pass throughbthe ingside surfaces, creating electrodes

of "négative thickness", a physical impossibility. Mathematically
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this is still possible; and has been discussed inISection 3¢5
for the cése CPl = CFB = = %ﬂ « Since the fegion of interest
invthis "wrap—around field" is the anode-aperture region, in
which the potential is sipgle valued, the field in this region
can be realized by providing the required potent£a1 distribution
at%its boundary.

The variation of the radius of curvature and of the centre
of curvature along the equipotentials of this wrap-around field

were obtained by the method of Appendix D, and are shown in

.Ay

4+

et ' —0 ' : + + > x
'—Obs -‘004 ""0'3 -’002 _O.].O Ool O§2 003 064005

Figure (4-14). Centre of curvature of equipotentials in the
e ‘ wrap—around field
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Figures (4-13 and 14). The variation of the potential gradient

;long the equipotentials ié shown in Figure (4—15). For equi-
potentialé far from the anode, the magnitude of the potential
gradient is seen to decrease with increaéing distance from the
axis of symmetry., For equipotentials closer to the anode; the
anode aperture causes an‘initial drop in the potential gradient
near the axis of symmetrys As a result, the potential gradient:
atuthe surface v = 1,60 is almost constant to Iul = 0.9, varying o
by less than %% from the average gradient over this interval.
Comparison of the characteristics of the wrap—around field
with those of the semi-—infinite parallel-plane field reveals that
the radii of curvature of the equipotentials of the wrap«<around
field are shorter and more constants For example, the equi-
potentials v = 1,75 in the wrap-around field and v = 2,00 in the
parallel-plane field, which are approximately the Samé.distance from
théir'respective anode apertureSy* have radii of curvature that

compare as follows:

Wrap—Around Field Semi-Infinite Parallel
- . Plane Field
v = 1.75 v = 2,00
Thax = 2¢074 Trax = 2.651
Toin = 10816 Trin = 2.298
Ar = 00258 AI‘ v= 09353

The above change in radius for the wrap-around field occurs over
a half-angle of 8 = 29.50§ whereas the larger change of radius
for the parallel plane field occurs over a half-angle of only

6 = 1849°, Clearly, the desired characteristics of the wrap-around

. L B _ »
‘Both equipotentials pass through the points (x,y) = (+ 0.860, -04866)
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field are superior to those of the field about two semi-infinite

parallel planess

4:4:2 Electrostatic Field in the Anode Region Approximated

by a Wrap-Around Field

A study will now be made of the initially radialy
convergent flow of figure (4-10) for the case when the field in
the beam part of the anode region can be represented by the wrap=-
around field shown in Figuré (3-8)¢ The procedure to be used
parallels that of Section (423),

The initial task in this study is to determine in the
wrap=around field an equipotential surface that is suitable for
use as the matching equipotential surface at potential Ciz, The
equipotential v = 1460 is seen to be suitable for this purpose,
because the potential gradient along the equipotential is almost
constant and because the equipotential surface can be approxi-
mated accurately over the region of interest by a section df a

cylinder with centre of curvature at

(xc,yc) = (O, 0.900000)

and with radius r, = 1.806283+ This cylindrical section coincides
with the equipotential v = 1460 at |u| = 0.9, and deviates from
this equipotential by less than 040032, or about %% of the
ra&ius. The cylindrical section thus crosses the plane of
bsymmetry x =0 at'ib =Y, = Ty} i‘e°’.§B = =-0,906283, The equi=
potential v = 1.60 crosses the plane of symmetry at yé = =0,903119.
The flow in the cathode region will be taken to be the same
as that in the region 1>R> 0445 of a concentric cylinder diode

with B, = 0.25 (notation as in Sub=section 4:2:2); ise., R, = 04454
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From the definition of R it follows that the cathode radius r,
éan now be evaluated:
" r

ro= =2 — 4,013962
0

o

and hence the anode radius T, of the equivalent concentric

cylinder diode is

r, = R-arc = 14003491 .

Using these values of T, and,rc; the parameters of the electron

motion in the cathode region; equations (4.3), become

-
2
Potential D = 0,30015o(r@2)3
/ _ , ag
Electric Intensity & = -.200100 | -+ 28.d¥
(rp?)’
>~ (4416)
1
Electron Velocity ¥ = 3.2494 x 10°(r p2)3
Charge Density P = «1,18115 x 10'11 __h_ld_f_
r(r 8%)°

where 4.013962> r > 1,806283,

When equations (4.,16a and b) are evaluated at r =r_, there

result

il

D = 0.509549

and | ) _ ?‘ (4.17)

_ @0 = 0.439692 .
(¢} : ; A _J
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Equatidns (3.13), describing the potential in the anode

region, must next be rescaled s0 that they attain the potential

Ctb and gradient ‘gﬁ'at r=r.. For this purpose the mapping

w

o(7n - N | (4.7)

is agaih requireds Let \Pk = C as béfore;'equation (4.7) then
-becoﬁes ' | . : ” » |
u = oV :

v=uPdP-DH .

' (4.18)
When equations (4.18) are substituted into equations (3,.,11) and
the defining relations of the latter, it is seen that only the

.pargmeters S and « are affected: :
' /)

, . 1
2 2 2
s =9° [\1’2— (®~¢k)2—<é§} + l:z\If(CD-qu):l
-
« = tan~t » Z\IA(CP_CDI{) .
2__ (@_@ )2_ l_ -
Y < (Qg | )
(4.19)

Along the plane of symmetry of the anode region = 0, so it
follows from equations (3.13b and 4.19) that the potential

variation along the plane of symmetry is

— ‘ N\
1 : 11 1 ;‘\
= 7] 2 | T, 2
_2)in_ g%E 1li,,-1 28 (1-87) -1{ 287 (1+58°)
y = ﬁ-tz S (5 +1) + 7 tan T 1 ‘+tanh T 1 <
*=0 s2(s% - 2)41 52(g2+2)+1)

(4.20)

R

—-—
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where § = Q2(‘CID - CIDk)‘2 + 1.
W.r-.-t.q) is
x =0

The derivative of y

| 2
) [92(_CI> = @)%+ 1]4

n(@"’ Cpk)

The potential gradient along the plane of symmetry in the anode

region is therefore

TE((ID - CIDk)

—

g - 3
o I:Qz(cb - Cbkv)z + 1]4.

Cilg

which becomes, when seolved explicitly for Q,

5
Q = - ——TL—._ . 1 z _ 3} 1 . (4021)

= 2
£ (D- D) (P-D)

[T [ o

X = 0
At this point the procedure used to obtain the fotential
in the anode‘region of the flow differs from that used in
Section 433, 15 Section 423, the anode potential was set equal
to unity by letting CP% = 1 in equation (4.11); the analogous
equation in the;prééent problem is equation (4.21). Upon
substitution of 56 and CDO into equation (4.11), the scaling
constant Q, and subsequently y, were obtained. In the present
case we cannot follow this procedure, because it was necessary
to specify_ro, and hence Yo in order to determine flo from the
cylindrical-diode equation (4.3b). Therefore, it is not

permissible to specify qu in equation (4.21), otherwise too many
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constraints are placed on the anode field. The two quantities
to be solved for in the present case are thus @ and Cbkf If
conditions (4.17) are substituted into équation—(4.21), there
results
) L
: 5 -3 2
Q0 = -[4.821709(0.509549'-Cik)' - (0.509549 - Ci&) ] .
(4.22)

Further, if the values of y_ and CI% are substituted for y and

D respectively in equation (4.20), we obtain

1 1. ‘ 1 1
2 % s 1, -1 2szg1:s§) 1] 25t (1482
0 = 1,4031189 + .2 9=8"(5+1)+ 7| tan Y +tanh A ST e
52(52-2)+1 $2(5%+2)+1
(4.23)

where 8§ = Q2(O.509549 —Cpk)z + 1.

The solution of simultaneous equations (4.22 and 23) is

Q

CI&

il

-=2.337807
(4.24)

1.193951 .

The potential in the anode region of the eleotron beam is
described by equations (3.13) and their defining reiations (4.19),
with Q and D, as given by (4.24). The potential variation
along the plaﬁe of symmetry of the gun has been calculated by
using equation (441l6a) for the cathode region and using (4¢20 and
24) for the aﬁode region; this potential variation is shown in
Figure (4-16).

The maximum value of the wedge half-angle 6 of the beam

in the cathode region is limited by considerations of beam
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interqeption by the anodes .If the trajectories near the beam
"boundary continued onﬁard in a straight line from the equipotential
CPO, the angle at which electrons would graze the mouth ef the
anode would be 29,05°, In an actual electron gun, the beam
béundary will be indistinct due to initial thermal velocities
of the electrons. The beam boundary ih the anoderegion is also
broadened by the beam space—charge. The maximum value that can
be used for the half-angle © of the cathode is thus a few degrees
less than 29°; the actual vaiue of 6 is probably best found by
experimentation, although valuable guidance in this regard can
be obtained from a preliminary study of the trajectories by
analogue orvby nﬁmeriCal methods.

Let © arbitrarily be taken at 25°, so that an estimate of
the gun perveance ¢an be made. Since the flow in the cathode
region of the gun isy by hypothesis, the same as that occurring
in the corresponding region of an equivalent concentrice—e¢ylinder
diode with r, = 4.,01396 and r, = 1.00349, the beam current per

unit length is(3)

W

k.V
ZL= 2 a2
r Ba

a

(50 | (4425)

where
81
k2 =|:——9 €, \/27]]

and where Va is the anode potential of the equivalent diodes
To maintain the original conditions in the cathode region when
a wrap=around field was used in the anode region, a normalized
anode potential g;éater than unity was found to be requireds

D =1.19395 = 7= . On combining this with equations (1.1 and
a
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4,25), the perveance per unit length is

or

W

‘%:= 0426 x 10—6 amp/volt® meter.

455 Discussion

The method employed in this chapter to adapt space~charge
free anode fields and space-charge-limited flow solutions teo
electron gun design can be used for other anode fields and flow
solutions. For exampley theesoiution for space—charge=limited

(36)

flow from a cathode consisting of two inclined plates could
be used; this solution has properties that make it desirable
for use in electron gun design. With_appropriate mﬁdifications;
the method of this chapter could also be used for the design

of axially-symmetric gunss
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CHAPTER V — THE DETERMINATION OF BEAM-FORMING ELECTRODES

Little has been said so far about the electrodes required
to produce the desired field conditions at beam boundariess In.
particular, it is desired to determine beam-forming electrodes
for the two examples in the previous chapter. To this end, a
brief account will first be given of the physical considerations

which apply to this problem.

5:1 Physical Considerations

The "engineering problem" of determining the shape of
electrodes that will produce prescribed field conditions at the
boundary of an electron beam is not a problem that arises in a -
natural or a direct way; rather; it is an inverse problem,
Implicit in this problem are the assumptions that (a) such
physically realizable electrode shapes exist, and (b) the
electron beam is in a stable configuration. Neither assumption
is necessarily warranteds For example, it has been shown(52’53)
that a hollow beam confined by an axial magnetic field is in an
unstable configurations An example of a case where the
prescribed boundary conditions cannot be meﬁ by beam—forming
electrodes is the case of two parallel, space-charge~limited
strip beams (see Appendix E).

If analogue equipment; such as én electrolytic tanky is
used to obtain the shape of the beam—forming electrodes, then
the procedure involved is generally one of trial and errory with

some guidance from theory; i.es, the electrode shapes of the

analogue model are adjusted until the boundary conditions are
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satisfied to a suffieient accuracy.

If analytic methods or if numerical methédstare émpl@yed
to obtain the shape of the beam-forming ele§£?édes; then the
procedure generally followed ist (a) Lapl&dé’s équaﬁion is
solved exterior te the beam surface — an open boundary-a-subaect
to Cauchy-type boundary conditions, and (b) beam—formﬁng |
electrodes are arranged along equipotential surfaces exterior
to the beam; generally and preferably only along the equiw
potentials at cathode and at anode potential. Succeés in part
(b) of the procedure is ¢ontingent upon the solution being wellw
behaved in the vicinity of the beam. The remainder of this
section will be devoted to part (a) of the procedure; the nature -
of the solution.

A boundary-value problem is properly set "if and only if
its solution existsy is unique and depends continuously on the

(54,

data assigned" A Cauchy problem for Laplace‘s equation

on an open boundary is an improperly set problem, because the

solution does not depend continuously on the boundary cenditi@ns(ss).

That this is so can be readlly demonstrated w1th an example

contrived by Hadamard(54). Consider the Laplace equation in

two dimensions,
22d | 82<b
Ox? 8y

which is to be solved subject to the Cauchyvcdn&itiéns 

el

D (0,y) = 0p 92 B P

x =0
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where n is a large numberes Equations (5.1 and 2) are solved by

Cb(x,y)'ﬁ l?’sin(ny)sinh(nx) . (5#3)
n . : |

It is seen that by increasing the value of n, the Cauchy
conditions (5;2) ¢an be made as'close to zero as desireds The
solution of (5+1) when the Cauchy éqnditions are identiecally
zero is P = 0, Howevery the solution (5.3) is by no means
identically zero; for large x, sinh(nx) grows as enx9 so that f
(5.3) oscillates with an amflitude that increases indefinitelys.
Any attempt to approximste zero Cauchy conditions more claosely
by increasing the value of n will increase the amplitude of the
oscillationﬁv

The solutieon exhibits the same discontinuous &ependence
on the boundary cenditiens when; instead of the Cauchy

conditions (5.2) c¢hosen by Hadamardy the Cauchy conditions

sin(ny) %—}%—b r%O " (5»4),‘

x =0

D (0,y) =

B

are specified., Im this c¢ase (5.1 and 4) are solved by

D (x3y) = % sin(ny)cosh(nx) (565)

whichy for large x4 again grows as e™*.

‘The above examples illustrate that if the potentiai or the
gradient or both are not’prescribed exactly (i.e., are preséribed
by analytic functisns) on the boundary surface, then the errer
in the datay no matter hew small it may be, can cause an error
in the field which increases expohentially with distance frem

the beundary. The rate of error growth is discussed in mere
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detail in Appendix Fgq ‘

Convefselyt the sensitivity of the field conditiens at.
the beam boundary to errors in the field conditions elsewhere
decreases at an exponential rate with increasing distance from
the beam boundarys The cenverse result has two most impertant
consequences already mentioned; namely, that the electrodes ¢an
be tfqﬁcated at a reasonable distance from the beam¥*y; and that

some degree of variation is possible in the electrode shapese.

5382 Design Procedure

An electrolytic—tank procedure for obtaining beam-=forming
electrodes for the initially radial, convergent flow of Section
434 and for the initially parallel, rectilinear flow of
Section 433 will now be considered. The latter case will be
taken first.

It will be recalled that the electron motion in the
cathode region was assumed to be the same as that occurring in
a strip-beam Pierce guﬁ@ The shapes of the beam-forming elec¢trode
at cathode potential and ef the equipbtential surface Ctb_aré
thus prescribed (the outward analytic continuation of
equations (E.2 and 3))s

In Chapter 44 the potential and the potential gradient of
the fields in the cathode and in the anode region were matched
inside the beam at the equipotential <j%; The field cenditions
outside the beam were assumed to be satisfied by the use of an

auxiliary anodey as shown in Figure (4-1). It is now desired

® ‘ — ’ ~
In some exceptiomnal casesyg the beam-forming electrodes may

completely enclose the space exterior to thg beam, making
truncation of the elee¢trodes unnecessary(56 o _
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to eliminate the need for this auxiliary anode by altering the

main anode surface in such a way that the potenfial and the
potential gradient are sufficiently well-matched along the equi-
potential surface ébo so that the field in the beam region is
negligibly affected by the removal of the auxiliary ancdes
From the earlier treatment of the field at the anode it can

be shown thét an adjustment of the angle A alone, keeping the anode
faces planey could not be expected to providé the desired result.
A more promising,approaéh would be to keep the angle A fixed at % y
| whereby it is alréady known that a good match occurs in the beam
region at the surface <i%. By curving the anode away from the
cathode it should be poséible to improve the match at points on

Q% further/femovéd from the beam without seriously affecting
conditions at the beam., It isa difficult probleﬁ to determine the
required anode shape analytically, but an analogue method,
utilizing an electrolytic tank or a resistor network coﬁld,be useds
An electrolytic tank model of thé electron gun is shown in FigureE
4%5—1). An.electrode which coincides with the equipotential CQ)
has been inserted. The required anode shape is obtained by
adjusting the contour of the electrode representing the anode until
the potential gradient on either ,,,,, side of Cig, méasured by probing
points as indicatedy becomes approximately equal, and the potential
gradient inside the beam boundary at CFB remains appreximately
constant.

The determination of beam-forming electrodes feor the radially

convergent flow is more difficult analytically, since electrode
shapes must first be found which will realize the wrap-around field

inside the beamy The main problem to be solved in this regard
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involves the terminatioﬁ of the field before it becomes multi--
valued.

The determination of the beam-forming electrodes can be
carried out in two steps; namely, (a) by designing a gun with
a two-~potential main anode and an auxiliary anode, and (v) Qy
subsequent alﬁeratibn of the shape of the main anode to -
eliminate the auxiliary anode.

(a) Since the electron motion in the cathode région is
";by hypothesis the same as the convergent electron motion in a
concentric—-cylinder diode, the shape of the beam~forming

electrode at cathode potential and that of the lower surface of

Electrode Shape
Being Adjusted

Probing Points

o o
. o
-
° 2 . N ®
> . -
° . ° ° ° b
.
o
°

=
. — - ' "—Electrode
coinciding withCi%

Dielectric

Block———\

Beam-=Forming
Electrode

Figﬁre (5~1). Electrolytic tank model of an initially parallel,
_ rectilinear-flow electron gun
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_ *
the auxiliary anode are thus prescribed . The shape of the

upper surface of the auxiliary anode is also known, since by

hypothesis it coincides with the equipotentiai v = 1.60 of the

wrap—-around field. The determination of the shape of the main

anode is more difficult, involving some approximations.

Yy - '
I Centre of Curvature

1\
11y ]

1o ' . \
! \ / Main Anodes

~~
-
- -

Beam Boundary in /

Cathode Region /
\, \
\

\ Beam Forming

\ Electrode

Cathode

Initially radial, convergent—flbw electron gun with

Figure (5-2).
an auxiliary anode and a two-potential main anode

(%3en found by the use of an
4

" v
The field outside a wedge beam has
‘and by the use of an

electrolytic tank analogu? ?y Pierce
analytic method by Radley!7),



134
It can be seéen by referring to Figure (3=8) that the

field at the mouth of the anode aperture is very intenses To
reduce the danger of arcing to other electrodes, and to aid
the physical realization of the wrap-around field in the beam
regiony it is desirable to choose for the anode surfacey in the
region of the mouth of the aperture; an equipotential other than
v = O.A The equipotential surface v to be chosen for this purpose
is a compromise because; although equipotentials with a larger
value of v have more rounded corners at the mouth of the anode
aperture, these equipotentials are also more prone to interceft;
the electron beam¢ The equipotential v = 0.05 appears to be a:
suitable compromises By referring to Figure (3-8) it is observed
that nine-tenths of the lines of force that enter the anode
aperture intersect the équipotential v = 0.05 in the interval
between the mouth of the anode aperture and y = 0.5+ For values
of y greater than 0«53 the field is thus very weaky and the field
will be relatively unaffected if the anode wall deviates from
this equipotential as shown in Figure (5-2), so that electronfbeaﬁ
interception is avoided. |

It remains to satisfy the field conditions on the outside
of the main anode, This can be accomplished to a good approxi-
mation by inserting a second anode along an equipotential of the
wrap—around field that lies close to the mouth of the main anode,
yet is far enough away that at the upper end this equipotential
does not cross over into the multivalued region until it is well
away from the mouth of the main anode. From Figure (3-8) it is
seen that the eguipotential v = 0.75 is weil suited for this

purpose. The complete electrode configuration is shewn in
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Figure (5-2).

(b) To pérmit the auxiliar& anode to be removed, it.would
be necessary to reshape the. contour of the main énode. An
electrolytic tank procedure similar to that described for the
parallel beam case could be used for this purpose. Such a model

is shown in Figure (5-3).

[

: : Main Anodes

Electrode Shape
Being Adjusted

Probing Points \

Electrode Coinciding
with ﬁo

Beam Forming
Electrode

Dielectric Block

Cathode

Figure (5-3). Electrolytic tank model of an initially radial,
B convergent—-flow electron gun
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583 Discussion

There is scopé for further work on this appro%ch to gun
design. The consideration of‘axially symmetric gunsj particularly
convergent ones in which the field in the anode region is similar
to thelwrap—around field, is very desirable. To optimize the
electrode shapesy an experimental investigation of prototypes of .
these gun strﬁctures is essential; in thig way alsoy guns ﬁith
higher perveances than the theoretical figures obtained above
can no doubt be attained.

In the initially radial, convergent flow‘gun described
above, the use of the wrapéaround field in the anode region has
the effect of reducing the field distortion, due to the anode
aperture; in the cathode region. This effect has been obtained
by the use of an intensifying elecﬁrode by Mﬁller(l7) and

Brewer(lz)

sy and by alteringsthe shape of the cathode by other
investigators. Other means that could be employed to reduce

or compensate for the field distortion in the cathode region ares
(a) dielectrics between the beam—forming electrodes, and (b) non-
unipotential cathodes.

A dielectric block of suitable shape and dielectfib
constanty placed near the beam-forming electrode at cathoae
potentialy could be used to alter the shape of the equipotentials
in the cathode region in such a way as to neutralize the field
distortion due to the anode aperture. A more exotic but
impractical example is the problem of bounding the field in a

strip beam by dielectric material placed outside the beams.

Since the potential along the trajectories of this beam varies
4 '

as y3 and since the normal gradient along them is zeroy the
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dielectric material Wauld need to have an anisotropic dielectric

constant varying aSy'3 in the y-direction, and remaining constant
T at €o in the x~direction. For current-type analogues of elecﬁro—
static fields the resiétivity at a particular location in the
model is proportional td the dielectric constant of the actual
medium in which the fiéld is being studied. An analogue study
of the effect of the shape and dielectric constant of‘a dieleqtric
block between the beam—forming electrodes on the field in a
proposed gun structure is thus quite feasible. If a network
analogue 1is used; the dielectric block cqﬁ be represented by
suitably changing the values of the résiétors; if Teledelfos
paper is usedy the resistivity can be adjusted by using several
layers of papers

By the use of a non-unipotential cathode, the off-cathode
gradient can be made more uniform, thﬁs improving the uniformity
of emission when the field distortion due to the anode aperture
is severe. Although a laminated cathode with insulated laminae
could be used for this purpose, a more practical embodiment
would probably be a cathode made of a resistive material. By
appropriately adjusting the thickness of the cathode, the desired
potential variation along the cathéde surface could then be

attained.
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CHAPTER. VI -~ CONCLUSION

By choosing certain coﬁvenient functional forms of the
action functiong potential and metrical coefficientsy some new
solutions have been obtained for electron motion in.electrost@tic
fieldsy by the methed of separation of variables., A study of
the fields and of the electron trajectories of these solutions
has revealed some interesting properties.

The electrostatic field ﬁbout three-idealized two-
dimensional anode geometries h;s been derived. These geometries
aret (a) a plane withﬂa slit, (b) +two rightéangled plates,
and (c¢) +two semi-~infinite parallel plates. The wrap=-around
field, an anode field with improved characteristicsy has’
resulted from a study of fhe characteristics of the above three
fields.

It has been shown how use may be made of the above space-
charge-~free anode fields in the design of electron gunss An
estimate has been made of the error introduced by approximating
the field in the anode region by a space-charge—free field. An-
initially parallely rectilinear flow gun and an,initi;lly radial,
convergent flow gun have been designed as examples.,

The instability of the Pierce-Cauchy problem has been
discussed; and an estimate has been made of the rate at which
errors in the Gauchy data are bropagated when the beam
boundaries are axially symmetric.

An electrolytic tank method has been suggested for the
determination of beam—forming‘electrodes for the two above guns

that obviates the need for an auxiliary anode.



139
APPENDIX A - ESTIMATE OF SELE MAGNETIC FORCES AND RELATIVISTIC

' EFFECTS |

Both self-magnetic forces énd,relafivistic'effeets depend
on the electron velocity. The thgqu of Chapter II assumes that
the electron mass is constant; however, according to relativity

theory it is given by

]__X_

¢
where m is the rest mass of the electron, and c is the velocity
of light. An electron that, starting from rest, has been
accelerated through 20 kV will have a velocity of 0.28¢. From
the above equationy the increase in electron mass is thus 3.93%,
which generally can be ignofed.

To study the validity of the neglect of selfémagpetic
forcesy consider the case of a parallel cylindrical electron
beam of radius Ry constant charge density'F),;and travelling at
constant velocity Qg, The electric intensity Er due to the space
charge of the beam is directed radially inward and at a radius
r<R it is |

E -BL

r 2¢
- Yo

The electrostatic force Fre experienced by an electron at radius

r <R is thus
. Y g -
Fre = —¢Ep - <2£0> pxr

and is directed radially outward. The magnetic induction Bg due

to the beam current isy at a radius r < R,
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The magnetic force Frm experienced by an electron at radius

r < R is thus

rm z O Z

- i 2
F = +e B =+—2—'U/Pr,

and is directed radially inward. The ratio of the magnitudes of

the two forces is

o 2
‘
rm | _ 7T2 _ L‘z
F_ |~ Wb % = 2 *
Te c

At 20 kV the ratio of the forces is 0.078. It is apparent that
for electron energies greater than 20 keV the self-magnetic
forces generally need to be taken into account. At 10 kV tpe
ratio of the forces is %3 .

In evaluating the self-magnetic forceﬁ in electron béams
of actual electron guns, other considerations are involved

besgides the one obtained for the above idealized beam model.

Some of these considerations are discussed in reference (57).
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APPENDIX B - DEMONSTRATION OF THE EXISTENCE OF W(ql, Aoy q3) = ¢

WHEN THE CONDITION V xAF = O IS SATISFIED

For electron motion occurring in an electrostatic field
and starting from rest at a zero-potential cathodey the condition
(35,39)

VxW = 0 is satisfied, by Lagrange's invariant theorem

Therefore we may write

v = VUV
or

dw = ;l?odg -

It is seen that W is constant when ds is normal to V' o Let us

call this normal differential vector a;. We then have

dw = 0

for

—

/1.? an = O °

But the Pfaffian differential equation Ar.dn = O is integrable
beécause by hypothésis‘f;satisfies the condition Y7xi? = Oy and
therefore it follows that there exists between the space=

coordinates 479 Ao and 45 @ one-parameter family of surfaces
Vg ra3) = ¢

(34)

normal to the trajectories .
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- APPENDIX C - NUMERICAL METHOD FOR OBTAINING ELECTRON TRAJECTORIES
IN ELECTROSTATIC FIELDS -

Cs:l Space—Charge,Effects Neglected

Consider the motion of an electron entering a uniform
electric field E at (x,9¥,) with initial velocity (%,37,)s as
illustrated in Figure (C-1). From equation (2.8) the equations

of motion are
X = - ME,

y=-Mk -

Integration of these equations w.r.t. time results in

> (Cu1)

—

X = - 77Ekt + )'co
. , - (c.2)
y = —.77Eyt + ¥, -
and , _
X = - 77E5-t2 + X t + x
- 2 0 o ( )
E‘ ?‘ C'o3
- 2
y=—'f)§1t *I by,

Figure (C=1). Motion of an electron in a uniform electric field
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The parameter t in equations (€+3) can be eliminated by the use
of equafions (Ce2); taking the sum of the squares of the latter,
we obtain

V2 = MPEPE - 2T (Bex, +EF )+ vE L (Cad)

It will be assumed that the total electron energy is zero;

therefore, from (2.13),

Upon substitution of equation (C.5) into (C.4) and solving the

latter for t, there results

1 . . 2 . .« £ 2 ‘
t = -7-}? [(EXXO + Eyyo) + \[277@]3 - (Exyo - nyo) 8

(C.6)

Equations (Ce3 and 6) describe the parabolic trajectory in a
uniform field in terms of the parameter‘i’, of the elebtric\
intensity components, and of the initial velocity components and
position coordinates. |

In electrostatic fields that are not uniform but that are
slowly varying in spacegy electron trajectories can be obtained
By considering the electrostatic field to be uniform o?er short
intervals, and applying equations (C.2, 3 and 6) to plét the
trajectory in each intervale The size of interval to bé used in
a particular region of a field dependé on the desired acéuracy
of the trajectories, on the degree of non-uniformity of the
field, and on the round-eff errors in the computations.

Lef j be an index ienoting.the interval number along an

electfoq trajectory, ThuS’(x(j), y(j)) are the coordinates bf
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the j'th point on this trajectory. The equipotential passing

through the j'th point is P (j). If the electrostatic field
over the j'th interval of the trajectory is approximated by a
uniform field, conditions will be as illustrated in Figure (C=2).
In particular, it is seen that the equipotentials qD(j—l)

and P(j) are distorted to the parallel straight lines Cb(j—l)u
and Qb(j)u respectivelyy, so that the trajectory obtained by
using the uniform-field assumption crosses the line Q>(j)u at
(j)u° A first-order corrgction will be made by extrapolating

the trajectory to the point where it intersects the eduipotential
P (j); this point will be taken to be the j'th point on the |

trajectory.

Electron:
Trajectory J

:>}:
y(j—l)I-____-__
y/
f<—I—AX(J—)*=I \\f"d)(j—l)u .
x(G-1) x(3) «(¥G-1),DG)

Figure (C-2). Electron path in the j'th interval of a non-
. uniform field, showing the effect of a uniform—
field approximation. The interval size is greatly
exaggerated. '
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The velocity components and the coordinates of the electron

at the point (j)u are, from equations (C.2, 3 and 6)

£(1), = =~ NE(Dt({) + x(j-1)

(C.7)
5y = - MEGHG) +3(-1)
- | ]
x(3), =+ [ - Do (e + 2G-)] + x(5-2)
y(@), = 4@ | - Pr,()eG) + 5G] + (-1)

(€C.8)

where

£(1) - 1 B ()g(im E ()9 (3o ]
(3) -;555?53 [jx(J) (3j-1) + y(J)ng‘l) +
1

2
[27]43(:1)1-32(‘3) - (Ex(j)ir(j-l) - Ey(:i)fc(j-l)ﬂ (€.9)

and where the electric intensity components are as described
below in equations (C.11 and 14).
The electrostatic fields in which it is desired to obtain

"electron trajectories are described by equations of the form
x = x(V,D)

(c.10)
y = y(\V, D) :

where the curves V= constant are lines of force. The magnitude
of the electric intensity in the j'th interval can therefore

conveniently be taken as

E(j) = [2) 5(§§(j‘1)l | (Cs11)

where D(j) is the distance along the secant line joining the
point (j-1) and the point marking the intersection of W(j-1)

and \V(j), as shown in Figure (€-2)., It follows that
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D) = ax®(5) + ay3 () (€.12)
where
8x(3) = x(W(i-1), D)) - x(V(5-1)y, P(5~1))
by (i) = y(¥(i-1), P(3)) - x(¥(-1), D (5-1)) .
+(C.13)
Prom equations (€.11=13) it is readily seen that
() = - ELijes |
- (c.14)
. E(j)A
Ey(.]) = = D J

for CD(J)Z @(j—l)o

To extrapolate the trajectory from the point (j)u to its
intersection with the equipotential P(j) we shall approximafe
the trajectory between these two points by a straight line whose
slope is the same as the slope of the trajectory at (j)u. The

straight-line trajectory is thus

y =ax + b (C.15)
where
AN 45PN
a:;.{—(—;].—): an :yJu—JT('JT)-I-;X,]u °

The remaining problem is to determine the coordinates of
the intersection of equation (C.15) with the equipotential Cb(j);
the latter is seen from equations (C.10) to be described Ey
equations of the form
X(EPLCD(j)
yCV,CD(j» .

]
it

(c.16)

<«
I
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The following iterative procedure can be used to determine- the
coordinates of the intersection:
(1) Solve equations (C.16) with a suitable initial ‘guess for
\y(j). For the first interval in a trajectory a suitable value
for V(j) is generally the value of “V(j-1) (i.e., when j =1,
use the value of YV(0) as an initial gueés for W(1)). Tor
subsequent intervals, better initial guesses of W(j) can be
made by noting'howfqzvaries along the trajectory from interval
to interval., If the initial guess is denoted by w@i(j),

equations (C.16) become

ll

x, (33 = x(¥(3), PG

. (C.17)
vy () = y(¥ G, PG

where“(x ¢3), yl(j)Q are-the correspondimg. initial-~guesses of
- theé: des1red coordinates~{x(j) Y(J))

-(2) - Substitute (C,17a) into (C:il5) to” determlne the value of

the-initial estimate of ‘the y—coordlnatey_yl(g);aon the stralght“fﬂjw”

line - trajectory; i.e.,

yl j) = -ax; (3j) + b .

(3) Define an error function €. a8

e, =7, 03) -y .

(4)  1Ir 161\<:l50+y.where~eo»is~a.predetermined error bound; then
(Xi(j)’ yl(j))“arewtakemftUWbe&the«coordinates'of“the j'th
point on the trajectory, :and. the computations for:the j'th

interval are completed.

(5) 1If 'e , subtract an increment & from ’@ﬁ(j),
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obtaining

V,(3) = ¥ (j) - V¥

and repeat steps (1) - (4) above:

(a) x,(3) = x( ¥ (5), PG
y,(1) = y( (3, PG |
(b) 7,(3) = ax,(3) + b

(e) &, =v,(i) - y,(3)
) .
(@) |eg<|eq) .

(6) 1If |€2I>,|84 y the iteration musf be repeated. %ince
from the first two iterations two values on the curve éf £ vé.xy(j)
,a,re‘known., the third value of \y(j) to be used for the iteration
can be predicted from a straightiline approximation (see
Figure (C-3))s Thus

V(5 - 2% 6) - e 6

(e, = &)

(7) In generaly after n iterations, the curve V(i) = £(e) can

be approximated by a (n-1)'th degree polynomials

V(i) = a, +ae + a282 + a3e3 e ta g el .

The coefficients a; can be determined from the set of equationss
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-Desired Point

/s _
/ .
/ Predicted Point
yaan | '

ANE
//<€2’3\(I%zj>

Figure (C-3). Prediction of \YB(J) in the iterative process

™V (j)

eja) + 812a2 + 5138’3 S eln-lan_l +a = ‘qfl(j) |
€,a; + 822a2 + 82333 o 0 s + szn—lan_l +a, = \VZ(J)
€48 + 8328,2 + 533a3 + o0 0 + e3n—1an_l +a = \'IS(J)
eqa; + en2a2 + en2a3 e e o F enn_lan_l +a = \Kl(j)
_gnd thus
€4 s12 . .. eln—l \I’i(j)
€, 82‘2 .« . ezn_l \Ifz(j)
\Pn+1(j) = £(e) - a, ___% €4 832 . e 83ndl \1/3(:])
e =0 . . o .
€n E:n2 enn-’1 \I,;l(‘j) *

where A is the determinant of the coefficients a.

The trajectories shown in Figure (4-9a) were obtained by
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the above method. It was found that in most cases only four

. . . -6
iterations were required for an error bound of'eJ =10 .

C:2 Correction for Space-Charge Forces

Some useful approximations can be made for the beam
discussed in Section 4:3 to take into account spreading of the
beam due to space-charge forces. This beam and the electro-
static field are symmetric about the plane x = O, the transverse
velocity of the beam is small compared to its axial velocity
(¥ <<y) and, in the cathode region, conditions in the beam are
assumed to be independent of the transverse directions If image
charge effects due to the electrodes are ignored, it is there-
fore not unreasonable to assume that in the anode.region the
flux due to the beam itself is transversely directed, whence

by Gauss' law

E - A (C.18)

where Es = electric intensity due to the electrons only, at a
point (x,y) in the beam
A = charge/unit length/unit depth éentained by an
incremental beam section of width 2x at (x35)e

It follows from the definition of A, and equation (246) that

}\ = ’ d.x » (Colg)
-X
In the beam under study in Section 4:3, we shall not be

far wrong if it is assumed that the electron velocity is constant

across the beam becausey, by the time the field becomes markedly



_ 151
non-uniform, the electrons are all travelling near terminal

velocity. Rewriting equation (C.19) and combining it with (C.18)

results in
x I (y,)

e [T D (x.y)

E_(x,y) = (Q-2Q)

where (see Figure (C=4))
Es(x,y) = electric intensity due to the electrons only, at
a point (x,y) on the trajectory that had coordinates

(xo,yo) when it passed through Cbo

J(yo) = current density of the beam at the equipotential

D

0
D (x,y) = %[CD(O,y) + @(x,y):] ; an approximate average of the
potential across a beam cross-section of width 2x

at (XQY) .

AY

j'th Interval

E
s

|
]
I
1
!
|
|
|
|
I
|
i
1
|

p//———-Beam Boundary
|

Figure (C-4). Space-charge effects in, the anode region
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The contribution of space-charge to the electrostatic
field in the anode region can be incorporated into the trajectory
calculationAprocedure of Section C:l by evaluating equation
(0820) at each trajectory interval and adding it to Ex(j) in
equations (C.7=9). The trajectories shown in Figure (4=9b)

were obtained by this modified method.
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"APPENDIX D - ANALYSIS OF THE CURVATURE OF AN EQUIPOTENTIAL

Consider a continuous curve v which is described in terms

of the éarameter u by the equations

X

x(u)

| (D.1)
y(u) .

Il

y

We wish to determine the radius 6f curvature and the centre of
curvature of Vi at u.y as shown in Figure (D-1). For this

purpose, consider in addition two nearby points sy and Ui on

Ve The centre of curvature of Vi at u; is then obtained by the

following procedure:

(1) Join the points U 1 and U, and ui~and u.

P4l on v

1 by two

secant lines,
(2) Bisect the secant lines and érect lines perpendicular to

them passing through the bisect . points.

%4

Figure (D-1). Centre of curvature of vy at u,
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(3) . The intersection of the two perpendiculars is then, in the

limit as us 4 and u, , ,—> U,y at the centre of curvature of v

i+l 1

at the point u. .
‘Algebraically this is accomplished as follows:

The élopé of the secant line passing through LYY and u, is

Yi = ¥
o= e (p.2)
i i-1

while the slope of the line passing through u and LERY is
Y - Y.
141 1
m. - LT 1 ) (D.3)
i+l Xi — %

Thus the slopes of the lines perpendicular to these are

X. = X.
$; == %1_> = ‘<l—:—1—_'l]> (D.4)
i yi yi— .

and ,
:1 X. - X.
i i+l Yitl T Y4 |
respectively.
The bisecting point on the line u o= ouy has coordinates
X. = X, B
1 i-1
*pi T Xial +< 2 >
D.6
L= Y - (D.6)
. = V. + | — °
Ybi T Yi-1 2
The bisecting point on the line o= Uy has coordinates
b(i+1) T~ Ti T 2
(Db7)

| Yiel = ¥4 g
Yb(ivl) = Vi *< 2 .
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@hus the equation of the perpendicular bigector of ugo— oy is

and the equation of the perpendicular bisector of u;o-oug oy is
(y - yb(i+l> = Si+1 <X - xb(i'i'l) . | ; (D09)

Substituting equations (D4 and 6) into (D.8), and (D.5 and 7)

into (D.9), we obtain

y + Aix = Bi (D.lo)
énd
y + A 4% =B, (D.11)
respectively, where
U Sl £
oY T i
and
2 2
1 [ <xi —'Xi—l_z
B, = 5 i(y, +y, ) + .
i 2 Vi i-1 (yi - yi—l)
[
Equations (D.10 and 11) intersect at
) ~ | _
x . = Bivn — B
N S
’ i (D.12)
Bidivg ~ Bin4y
Yei =L Aia TN
-
and in tpe limit, as u; , and u; —>u., (xci’yci) is the

centre of curvature of the curve V1 at (xi,yi); For computational

purposes, we need to retain the small increments us

. and
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ui?— LI the size of thé increments depending on the behaviour

of v,, and the accuracy to which (xci’yci) is desired.

From Figure (D-1) the radius of curvature is readily seen to be

ry = ¢(xi - xc%)z

while the angle with which T, intersects the y-axis (the slope

* (y; - v.)° (De13)

of‘v1 at ul) is

-1! *i 7 *ei
0; = tan™t| A—<i| | (D.14)

Yei — Y4

Equations (D.12, 13 and 14) were used to compute the centre

of cufvature (x yci); the radius of curvature Ty and the‘angle

ci?
Qi for a series of points u; on equipotentials in the field about
two semi-infinite parallel planes and in the Wfap—around field

(see Figures (4-11 to 15)).
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APPENDIX E - ELECTROSTATIC FIELD REQUIRED TO MAINTAIN TWO

PARALLEL, SPACE-CHARGE-LIMITED STRIP BEAMS

For simplicity the strip béams will be assumed to be of
vanishing thickness; no generalify is lost by this assumption,
since the field required outside two beams of finite thickneés
is the same as that required for the case to be discussed.

In Figure (E=1) are shown two strip beams, which are a
distance 2h apartse The potential variation along these beaqs

(2)

isy from the Langmuir-Child law

B

V(h9y) = Aly

WIENEERW

(E.1)
V(—h,y): A2y 1 ,

where %

and J1 and J2 are the current densities in the right and in the
left beam, respectively.

If the Laplace equation is solved subject to '(Esl) by
(5)

analytic continuation, in the manner of Pierce y it is found

that the electrostatic field required to maintain the right beam

is 2
. 3
Vix,y) = Al[kx - h)2 + y%] cos[% tan~1 <5f§—$ﬂ (E.2)
while the field required to maintain the left beam is
2
3
Vix,y) = o, (x + h)2 + y2 cos| % tan! E—i;#> .
2 3 y
(E.3)

If J; = J,, then the fields described by (E.2) and (E.3)
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are observed to be fhe same and to be spatially displaced from
each other a distance 2h; further, the potential variatipﬁ
along the y-axis described by (E.2) and (E.3) is then thévsqme.

Since the fields described by equations (E+2) and (E.3)
overlap, they cannot simultaneously be rgalized physically,
as this would requirq multivalued potentials in the oVerlapping
regions., Howevery; by suitably terminéting the fields in»tﬁe |
region between the two beams, this overlapping of the fieldsl
can be avoideds. The fields can be terminated by variéﬁs means.
For example, for the case when J1 = J2, a fesistive strip of
thickness 2s could be inserted. midway between the two beams,
as shown in Figure (E~1). If the resistivity of this strip

varies as 2
3

R o [:(s - h)2 + yz] cos %‘l:t,a,n-l S—'S:—b')]

Beam-Forming Electrodes

y lectron Beams

esistive Strip

Y
b

Figure (E-1). Electrodes and resistive strip to maintain. two
parallel strip-beams
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and the énds of the strip are electrically connected to the beam-.
forming electrodes, the desired field conditions are attained,
because the resistive strip divides the region between thé'
beam-forming electrodes — which theoretically shduld exteﬁd

to infinity — into two closed regions (the potentia1 in a

closed region is specified uniquely once the potential -is known

on the boundary).
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APPENDIX F -~ ON THE STABILITY OF THE PIERCE-CAUCHY PROBLEM

If the beam boundary as well as the Cauchy boundary

conditions are prescribed by analytic functions, thenjy by the
(58)

Cauchy-Kowalewski theorem s & unique solution of the electro-

static field existsy at least in the neighbourhood of the beam
surface, Several exact, stable methods, based on solving the

Laplace equation by analytic continuation, have been developed

(5)

in thé past. Pierce used analytic continuation to determine

the plane electrostatic field required outside & strip beam with

(56) (59)

a rectilinearvbOundarys Lomax and Kirstein used this

process for plane fields outside planar flows with curvilinear

(60)

boundaries, and Harker applied it to the axially symmetric
case for beams with curvilinear boundaries.

When "marching-=type" numerical procédures afe used to
solve the Laplace equation outside the beaﬁ boundarys errors are
inevitably introduced by the finite-difference approximation
of the Laplace equation and by the limited precision of the
numerical computations. It has already been shown in Section 531

(61)

that these errors can grow at an exponential rate. Sugai

(62)

and Meltzer found an upper limit of 5.828 for the growth

of the error per step when the five-point star formula

D =4¢k,n"¢

k+l,n (F'l)

- -P
k-1,n kon+l k,n~-1
is used to solve (5.1), the Laplace equation for plane electro-
static fieldss

For axially symmetric fields, the Laplace equation to be

solved is
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5 _
%;f? + o CE =0 (E.z)

so the five-point star formula is

m+l n @m = > @ - (m I-T: - CP‘—l,n - ®m,n+l - CIDm,n—-l
(F.3) .
where the notation is as illustrated in»Eigure (F-1). The upber
1imit of the growth rate of the error per step for equation (F.3)i
is the same as that for (F.l); this is clear if it is considered
that when "m" is large in equation (F.3), the latter approaches
the functional‘form of (Fel)s For finité "m", however,‘the maximum
- growth rate of the error of (F.3) is always somewhat smaller than
that of the error of (F¢2)y as will be demonstrated.
yet em,n be the error invthe value'offthe potentialCD at
(ryz) = (mAr nAz). Since equation (F.3) is linear, it can be
used to describe the propagation of initial errors in pétential,

as well as to compute the potential itself. Therefore,

, 4m - 1 -
S'm+1,n = ( m > < > m_]_ n - m l'l-l-]. - Smfn_l e(Fu4)

For simplicity, let it be assumed that the beam boundary coincides
with fhe'line m=m , SO that the Cauchy conditions specify the
- values of poteptial at mesh points of the lines m = m and m = my
(see Figure (F—1 )). It will further be convenient to define a
new index "k", which is zero at the beam boundary, so that

k=m-m .
o



As an example, the case m

10 will be taken.
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Using

equation (F.4), errors in potential at the mesh points of the

lines m = 10 and m = 11 are found to propagate as follows:
_ |- 10 - 43 -
€12,n = [; 1 elO,n] + [ ®11,n-1 ¥ 11 ®11,n Ell,n+l]
T 10 _ 4 31 10
€13,n < [} T 10,n-1 ~ > %6 €10,n T 11 e1o,n+1:| +
10 13 _ 109
Ell,n-z = 7132 ®11,0-1 * 10 33 11,0 = 7 132 ©11,n41 511,n+é}
etc.
In general,
p = n+(m-12) q = n+(m-11)
€m,n~ % a € + a £
10,p 10,p : 11,9 "11,q.
P = n=(m=12) g = n=-(m=11) (F
fe |
m .+ 1 e
mpb—r 1 A —— - Kk
m - 1 :
| ! | | | I t i | ! H
A R
IR 1 | ! | : ) i ! i
N S S SR SR S N B
m=nmn ¢ @ ¢ @ ¢ ¢ -—--—--————- k =
m =— mO‘ ———————————— k =
[}
o R
| t | | i ‘ ! , i
5 | | b : I |
Ar
23 ' 725 " AN S S R ———
L I SV R SN SEN SO S
Az
Axis of 1 L1 1 ____1 i Z
Symmetryo 1 2 3 4 n-1 n n+l
Figure (F-1). Square lattice (Ar = Az) used for solving equation

(F.3)
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where a and a are coefficients., Since the potentials

10,p 11lyq
at the mesh points of the line my = 11 depend both en the

: prescription of the potential at mesh points of m = 10 and on
a finite-difference approximation of the normal gradienty the
errors on the line my = 11 will in general be greater than the
errors on the line m o= 10. The seécond summation of equation‘
(Fv5) is thus the deminant part of €n,n® Values of the
coefficients a11§q are shown in Table (Fél) for values of m ﬁp
to 17; this table illustrates the rapid rate of growth eof the:

initial errors. The worst case occurs when the potentials at

each mesh point on the two starting lines m and my have the

maximum allowed initial error, and this error alternates in sign

for consecutive mesh points. The rate of growth of ¢ will

1149
then be the sum of the magnitudes of the coefficients; it is
seen from Table (F=1) that upon reaching a mesh on the line

k = 7 the initial errors 8119q
37,700 times their eriginal value.

already will have grown to

Since the dominant coefficient is a y its rate of

1l1,n
growth has been taken to give a more valid indicatien of the
rate of growth of the initial errors to be expected in the
general case, This prooedure was also followed by Sugai(6l)s

In Figure (F=2) have been piotted the ratios of adjacent central
column coefficgients of am19 for the cases when m = 10 and
when m = O. The curve obtained by Sugai for plane electro-
static fieldsy when equation (F.l) applies, is also shown

As m, is increasedy the grdwth of the initial error per steg

is seen to approach the curve for the plane cases
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m | 11 12 13 14 15 16 17
allyq ﬁ

a'11,n_t;6 %
811,045 -1 ~23,548
11 ,ned 1 19.611 | 232441
allgniS -1 -15.677 | =155.13 =14254,0
éllyniZ 1 11.749 | 93.399 | 638,24 4,055.3
811 ,n+1 -1 ~T48257(=-47,172 —266.15‘ -1,475:2 ~8y148;i
211 ,n 1 3.90 16639 | 76.358 | 378.89 1,95144| 104279
Ratio of ..

adjacent 3.90 4,194 4.658 4,962 5.150 5.267

central—=column
coefficients

Table (F-=1). Coefficients of €

in equation (F.5)

In view of the high instability of these marching-type

methodsy, the best procedure to follow is, in generaly to start

with a fine lattice between m_ and my (to keep the initial

errorslow), but to enlarge the lattice as rapidly as possible

when working away from the beam boundary.

plane fieldsy to obtain the value of <p14'n’ the equation
K -] )

D

144

n = 4 CID12,,n

- P

12,n-=2

would be preferable to the -equation

D

144n

=4 CI313,,1'1 - P

133n-1

- P

-d

1240+2

13,n+1x~

D

e

For exampley for

104n

124n ¢
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\
_—
/é———:——-"r’ \ Réctangul
5 = =] — Coordinates(6l)
pie
/ \—mc: 0
4=
¥~—m = 10
3 i \ | 1 | | 1 ! !
f ! : E i i ! | ! | : } | 1
>
1 2 3 4 5 6 7 8 9 10 11 12

Figure (F~2). Ratio of the adjacent central—column coefficients

a, ., versus distance from the beam boundary
1° '
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