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ABSTRACT

The static interaction of the réceptor nerves in the lateral
eye of the horsesoe crab, Limulus, is called lateral inhibition.
It is described by the Hartline equations. A éimulator has been
built to study lateral inhibition with a view to applying it in
a pre-processor for a visual pattern recognition system.

The activity in a lateral inhibitory receptor network is
maximal in regions of non-uniform illumination. This enhancement
of intensity contours has been extensively studied for the case of
~black and white patferns. It is shown that the level of activity
near a. black-white boundary provides a measure of its local geometric
properites. However, the level of activity is dependeﬂt on the
boundary orientation. A number of methods.for reducing this orienta-
tion dependence are explored.

The activity in a lateral inhibitory network adjacent to
a boundary can be modelled by an area operator. It is shown that
the value of this operator along an intensity Boundary provides
a description of the boundary that is related to its intrinsic
description.—-cufvature as a fﬁnction of arc length. Since the
operator is maximal on an intensity boundary, this description has
- been called the ridge function for the boundary. |

A ridge function can also be obtained using a lateral
inhibitory network. The properties of this function are discussed.
It is shown how ridge functions might be incorporated into a pattern
recognition algorithm. A novel method for detecting the bilateral

and rotational symmetries in a pattern is described.
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1. ANIMAL AND HUMAN VISUAL SYSTEMS

1.1 Introduction

In this chapter we give a brief review of present knowledge
of the processing properties of animal visual systems. This
review provides some perspective for the remainder of the thesis
in which we deal with detailed studiés of the mathematical model

of the lateral eye of Limulus, the horse-shoe crab.

1.2 The Visual Systems of Various Animals

(1) The Frog
The work of Lettvin, et g;(l’z) has shown that much

processing of visual information takes place before any signals
arrive atAthe brain. They recorded the signals (variable fre-
quency pulse trains) that arose in single nerve fibers of the optic
tract  (the bundle of nerve fibers leading from the retina to
the brain) in response to various stimuli ih the visual field.
They(l) deséribe four main operations on the image in the frog's
eye, each of which is transmitted by a particular group of fibers.

The first group of fibers provide'sustained contrast

detection.. Each fibér is associated with an illuminatidn edge
(or cohtrast) in a particular region of the retina, its receptive

field. The second group of fibers are the net convexity detectors.

They function quite effectively as "bug detectors". They signel

the presence of small dark objects or sharply curving convex corners
in their respective receptive fields. If thé object.is moving the
response is more intense than when it is stationary.. Also, the

greater the curvature the more vigourous is the response.



The last two groups cf fibers encode the occurrence of

change in the visual field. The moving-edge detector responds to.
any distinguishable edge moving through its receptive field. A
fast moving edge causes a more vigourous response than a slow

moving one. The net dimming detectors show a response to a sudden

decrease in illumihation within their rather large receptive fields.
Thus if a large dark object moves into the frog's field of view
and stops, these units signal its position.

The foﬁr groups of fibers described above are intérmixed»
in the optic tract.  When they reach the tectum of the frog |
they separate and terminate in four distinct layers. Each iayer
exhibits a continuous map of the retina in terms of its particular
operation; all four maps are in registration.

(2)

In a later paper Lettvin, et al describe two types of
tectal neurons that receive information from the optic nerve fibers.
One type detects novelty in visuval events, the cther, continuity

in time of interesting objects in the field of vision.

(2) The Cat

A schematic of the cat visual system is shown in Fig. 1.2.1.

An image falling on the retina causes signals to course back through

the optic tract. to‘the optic chiasm. About half the fibers from

one eye cross over and intermix with half the fibers from the other.

The signals proceed to the lateral geniculate bodies where the first

synaptic'junction beyond the retina occurs. From here they continue
on to the visual areas of the cortex. |

Kuffler(B) and Barlow, et gl(4) in their studies of the

responses of cat ganglion cells to small spots of light showed that

the receptive fields of these cells were basically circular. They'
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© Fig. 1.2.1 The Visual System of the Cat

consisted of a ﬁutually antagonistic central disk'and surrounding
annulus. In some célls whenever a small spot of light focussed on
the central disk was turned on, the cell would fire. If the spot
wés then moved to the annulus, the cell fired whenever the spot
was turned off. These cells were said to have ON centefs and OFF
surrounds, and were called ON-OFF cells. An approximately equal
number of OFF—ON cells whose fesponse pattern was the reverse of
the ON-OFF cells were found. (Rodieck(S) has since shown that

these response patterns are mediated by two separate agencies, one -



of which is effective over the whole receptive field, the other
being effective only in the central disk.) In both types of_cells
if two spots of light were used, one on the surround>and one on
the disk, the effects tended to cancel.

Hubel and Wiesel(6) in their studies of cat lateral geni-
culate cells found that their responses were qualitatively
similar to those in the retinal ganglion. However, the periphery
of the receptive field of the geniculate cell had greatly enhanced
capacity to cancel the effects of the center, much greater than
was the case for ganglion cells. Thus, the lateral genicu;ate
cells are even more spécialized than ganglion cells in responding
to spatial differences or discontinuities in retinal illumination.

At the level of the cortex Hubel and Wiesel(7’8’9) found
a radical change in cell response. In the cat there were no cor-

tical cells with cohcentric receptive fields. Three main types
of Qells,>in terms of response patterns, were found. They were
called simple; complex, and hypercomplex.cells.‘

The siwple and 6omplex cells fespond maximally to line
stimuli - such Shapes as slits, dark bars, and edges (straight-
line boundaries between light and dark regions). In both cases
the stimuli must be oriented correctly. The difference between
the two types of cells is in position and movement response. - The
simple cells will respond to line stimuli only in a small area,
whereas complex cells are not so discriminating. In addition,
complex cells respond with sustained firing to moving lines.

In some cases this response is directionally sensitive. Thus, a
complex cell might respond vigéurously to a slow downward movément

of a horizontal bar, but give only a weak response to an upward



movement, and no response to a vertical bar moved horiZontally.
- In discussing the hypercomplex cells Hubel and Wiesel(g)
mention two subgroups. A lower order hypercomplex cell responds
either to a slit, an edge, or a dark bar, but the length of the
stimulus must be limited (ﬁstopped") in one or both directions.
Thus the optimum stimulus in some cases was a 90° corner lying
within the "activating" region of the retina with one edge lying
on the boundary between that.and the "antagonistic" region.
Movement of the stimulus parallel to this boundary would cause
vigourous response in one direction with hone when the movement
was reversed. In another case the best stimulus was a properly
positioned and oriented double 90° corner or "tongue".

A higher order ccmplex cell‘required in general the same
" stimulus shapes as the lower crder cell, but was less specific
as to both orientation and position. Thus, the stimulus could
be oriented in one of two directions 90° apart, and would evoke
a uniformly vigourous response over its entire receptive field.

(3) Other Animals |

The visuval pathways of a humber of other creatures have

been studied by various workers. The work of Hubel and Wiesel

(10) (11)

on the monkey optic nerve , lateral geniculate bedy , and

étriate cortex(l2)

is the most complete. The response properties
of the cells in each case were similar to those of the ca{, eicept
that at each stagevin the visuval system of the monkey there were

a few cells that responded in a specific way to coloured stimuli.

For example, in the striate cortex they found that most of the

cells could be categorized as simpie, complex, or lower order -

hypercomplex, with response properties very similar to those

N



described in the cat. On the average, however, the receptive
fields were smaller and there was a greater sensitivity to
changes in stimulus orientation. A small proportion of the
cells were colour coded.

Barlow, et gi(lB) in their studies of single cell res-
ponses in the retina of the rabbif found that separate classes .
of ganglion cells abstracted the direction and speed of moving
edges, as well as localized dimming and brightening. Maturana

and Frenk(l4)

found cells with similarly selective response in
the retinal gangiion of the pigeon. One class would respond
to an edge in any orientation if it was moving in a particular
direction. Movement in the reverse direction gave no response.
Another class of cell fesponded to vertical movement of horizon-
tal edges.

Other workers have cerried out similar studies on the

visuval systems of the ground squirrel(lSX the goldfish(l6>,

and the octopus(l7).

1.3 The Human Visual System

Practically all concrete knowledge of thé processing
properties of the hﬁman visual system has been obtained by
experimental psychologists. Of necéssity, they deal mainly
with the overall response of this system. Consequently, it is
very difficult to derive from their work any detailed informa-
tion about the function of the various stages in the human visuval
system. InfOrmétion of this nature must be derived by inference
from the work done on animals.

Nevertheless, the work of some of the experimental-

psychologists does  provide clues as to how the human visual system



processes imageé falling on the retina. The work of one psychol-

(18)

ogist in particular, Fred Attneave , had a good deal of
influence on the wocrk described in this thesis. He was able to
show that fbr any given figure the points on its contours having
maximum curvature were theAmost critical from the point of view
of either recognition or representation of the figure. In his

(18), "An experiment relevant to the principle that

own words
information is concentrated at points where a contour changes
direction most rapidly may be summarized briefly. Eighty subjects
were instructed to draw, for each of 16 outline shapes, a pattern
of 10 dots which would resemble the shape as closely as possible,
and then to indicate on the original outline the exact places
which the dcts répresented. A good example of the results is
shown in (Fig. 1.3.1): radial bars indicate the relative fregquency
with which dots were placed 6n each of the segments into which
the contour was divided for scoring purposes. It is cleér that
subjeéts show a great deal of agreement in their abstractioﬁs of
points best répresenting the shape, and most of these points are
taken from regions where the contour is most different from a
straight line. Thié conclusion is verified by detailed compari-
sons of dot frequencies with measured curvatures on both the
figure shown and others.

"Common bbjeots may be represented with great econony,
and fairly striking fidelity, by copying the points at which their
contours change‘direction maximelly, and then connecting these
points appropriately with a straight edge. (Fig. 1.3.2) was drawn
by applying this technique as mechanically as possible, to a

real sleeping cat. The informational content of a drawing like



Fig. 1.3.1 Relative Frequency of Point Placement for
(18))

~ -Preserving Shape (Attneave

this may be considered-to consist of two components: one
‘describing the positions of the points, the other indicating
which points are connected to whiéh others."

The sense of the above paragraph has been stated more
concisely by MacDonald(lg), "The critical features for the
recognition of a shape are the points of maximum contour cur-

vature, their location, and their conuectivity."

1.4 Lateral Inhibition in Limu;us

(1) A Model for the Lateral Eye of Limulus
A1l of the work on visual systems discussed pfeviously
was basically qualitative. In contrast to this, Hartline and

(20,21) have developed a mathematical model to describe

Ratliff
- the steady state interaction between receptors in the lateral eye'
of the horseshoe crab, Limulus. This model is the main basis

for the work described in this thesis.



Fig. 1.%.2 The Points of Maximum Curvature
on a Cat (Attneave(lB))

The lateral eye of Limulus is a cocarsely facetted compound
eye containing approximately 1000  ommatidia, each of which .
appears to function as a single receptor unit excited only by
light entering its own corneal facet. ZEach such receptor unit
when so excited, discharges trains of impulses in one and only
one optic nerve fiber. These receptor units are not independent
in their action: each one may be inhibited by its near neighbors,
and in turn may inhibit them.

Consider a group of n receptors, two of which are shown
in Fig. 1.4.1. If the i'® receptor alone is illuminated with light
of intensity Ii, as shown in Fig. 1.4.1(a), its optic nerve
fiber discharges at some frequency e, which varies in an
approximately linear fashion with log Ii. If a group of receptors
containing the ith one is illuminated with light of intensity Ii,'

as in Fig. 1.4.1(b), the output frequency of the i¥h receptor
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Fig. 1.4.1(a) Receptor Firing at Rate e,
{

I
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%

X'- Xj

Fig. 1.4.1(b) Receptor Activity Reduced to Rate X5

becomes X;, less than i provided the discharge frequencies

of at least some of the other receptors are above.their r;épectiVe
inhibition thresholds. The reduction in firing frequency

of the ith receptor is proportional to the output frequencies of
the inhibiting receptors less the thresholds. It is not propor-

tional to the level of input stimulus. All this is summed up

in the following set of equations:
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X; = €5 - %;g kij max (O,xj—tij) i=1l,...,n 1.4.1

where kij is the coeffioient_of inhibition of the jth receptor
on the ith receptor, and ti. is the corresponding threshold.
Since X5 ej, and tij aré pulse-rates or frequencies, they
cannot take on negative values. In addition, since the inter-
action is strictly inhibitory, the inequality kij)()nmst holad.
Hartline and Ratliff in their studies on Limulus found that the
magnitudes Of’kij and tij are, on the average, dependent on the
distance separating the two receptors: kij decrease; and tij
increases as the separation becomes greater.
The set of equations 1.4.1 provide a mathematical descrip-
tion for fhe-inhibitory interaction between the receptors makiﬂg

up the lateral eye of Limulus. They form a non-linear, algebraic

set and require an iterative method for solution.

(2) The lLateral Inhibition Simulator
(22)
al

In a paper by Béddoes;gi al some feasibility studies
were given for a device that would simulate aireceptor network
whose response was governed by the set of laterél inhibition
equations 1.4.1. It was shown that in order to simulate the acti;
vity of a large number of receptors, it is éufficient to break

the network up into much smailer, overlapping suanetworks. The
set of equations 1.4.1 can then be solved for the X5 value éf

the central receptor in each of these sub-networks. The set

of such values or activities givesja good approximation to the

activity of the overell receptor network.

On the basis of these feasibility studies a 9x9 sub-
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network or array of receptors was chosen as the most reasonable
compromise between computation time and simulation accuracy.
Hence the set of equations used in the'simulator has n = 81 or
less. In addition the set of equations 1.4.1 are rewritten as:

81

Xy = e J}z:l maX(O,kijxj—kijtij) i=1,...,81 1.4.2

The design of the simulator is’dealt with in the M.A.Sc.
thesis(23) of the author. The construction of the simulator was
begun in the summer of 1965, and was completed a year later.
Various problems with the original circuit designs were encountered
and overcome. As the fesearch progressed &additional features
were added to the basic simulator - in some instances to facilitate
the study, and in others to answer questions that arose. These
modifications will be meﬁtioned at the appropriate places in this

thesis.

1.5 A Summary of the Thesis

| The activity in a lateral inhibitory network is greatest
in regions of non-uniform illumination. This suggests the possible
use of lateral inhibition as a pre—processor in a visuval pattern
recognition machine along the lines described by Taylor(24).

The enhancement of intensity contours by lateral inhibition

is extensively studied in the case of black and white patterﬁs.
The receptor activity in a lateral inhibitory network near a
black-white voundary provides a measure of the local geometric
properties of that boundary. Preliminary studies.indicated,

however, that this measure was highly dependent on the relative

orientation of the boundary and the receptor network. Various
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methods for reducing this orientation dependence have been
explored.

The concept of an area operator is introduced. It.
is shown experimentally that the peak activity in a lateral
inhibitory network.can be modelled by the area operator. This
fact leads into a thecretical study of the felationship between
the area operator and the curvature of a boundary. The func-
tion obtained by tracing the areaAoperator along an iﬁtensity
boundary has maxima and minima near the points of maximum
and minimum curvature of the boundary.

An equivalent ridge function can be obtained using
a lateral inhibitory network. The properties of this ridge

function are such that it can be used for pattern recognition.



2. LATERAL INEIBITION

2.1 The Initial Studies of Lateral Inhibition

In studying the set of equations 1.4.2 we are interested
in determining how a pattern of illumination, represented by

the ei(x,y), is transformed under the action of various kij and
kijtij values into a pattern of receptor activity, xi(X,y). In

the studies detalled in this thesis the kij are functions only
of the distance d separating the ith and jth receptors. The
kijtij are assumed equal and are kept constant in any given study

or experiment. This constant mey change from experiment to

experiment.
The first k_j function studied was the same one used in
i
the feasibility studies<22) mentioned above:
(0.3 -0.14 0<d¢3u
kij(d) = , 2.1.1
0] d=0, 4> 3u

The graph of this fanction is given in Fig. 2.1.1. The kijtij_
value was chosen to be Zero. This value minimizes the central
receptor output in the case where all the receptors are equally
illuminated. (Hereafter, this will be referred to as the con-
dition of uniform illumination.)

The first pattern processed was a white square on a black
béckground, shown schematically in Fig. 2.1.2(a). An array of
receptors has been superimposed on the square. In Fig. 2.1.2(b)
and (c) the receptor activity, X5 along the lihes AA' and BB' is
shown. Note the activity peaks that occur near the bcocundary of

the square. The activity in the uniformly illuminated center of

the square is 131 pulses/sec., whereas adjacent to an edge‘it
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Fig. 2.1.1 The kij(d) Function Used in the

Tnitial’ Studies

is 161 p.p.s., and in a corner, 189 p.p.s. This phenomenon
is called differential contour enhancement, or contour enhance-
ment for short. It arises in the following fashion.

Consider the three receptors marked ryy To and r3 in
Fig. 2.1.2(a). The receptor ry is surrcunded by active, ill-
uminated receptors all cf which act to reduce its activity.
However, about half of the receptors that are capable of in-
are in darkness and hence inactive. Thus, r |

hibiting T, 5

receives less inhibition and has a greater activity.than r .
Similarly, three quartersAof the receptors that directly
influence ry are in darkness, and consequently ifs activity
is even greater than that of Ts-

An interesting phenomenon occurs in the receptor activity.

function along the diagonal of the square. This function is
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Fig. 2.1.2(a) Receptor Array Superimposed on a Black
and White Square

ACTIVITY (pp, s) o _ ACTIVITY (p.ps)

%—76" \\/ A/,Gwhzas

4

L

{

Al B — B
Fig. 2.1.2(b) Receptor Activity Fig. 2.1.2(c) Receptor Activity
along AA' along BB'

shown in Fig. 2.1.3(a). Note the secondary peak in activify
just adjacent to the wide plateau of uniform'activity. Another -
way of demonstrating this effect is shown in Fig. 2.1.3(b)

where all the receptors having an activity in the range from
1%2 p.p.s. tQ 200 p.p.s. are displayed. Ncte the four groups -
of receptors adjacent to the corners of the square. These

along with the peak and the depression in receptor activity
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Y

Y

Fig. 2.1.3(a) Receptor Activity (b) Receptors with Activity
Along Diagonal of the Square in the Range 132 ¢ x4 200p.p.<

adjacent to the boundary of the square are analogous to the

well-known Mach bands(21’25). Their presence provided a nice

jconfirmation that the simulator was functioning correctly.
The initial peak in activity adjacent to the boundary
has been expléined above. The depression and the secondary
peak have a similar expiahation except that they are higher
order effects caused by an indirect interaction between receptofs.
Consider the situation shcwn in Fig. 2.1.4(a). Assume that
only the kij relating adjacent receptors are non-zero. When
the edge moves as shown, the activity of Ty Xq5 will vary

in the fashion indicated in Fig. 2.1.4(b). As r, is exposed,

its activity, X5 increases by sz,causing a decrease in x, of

1

A -k, ;

12 AX

X = 2

As rs is exposed, its activity increases by AXB,causing a

decrease in x, of

2

AX,. = -K.., AX

2 23 773
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Fig. 2.1.4(a) A Set of Receptors and a White-Black Edge
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Fig. 2.1.4(b) Variation in the Activity of r, as the

Edge Moves Away
which in turn causes a change in xi of

That is, the increase in Xz indirectly causes an increase in
Xy - Thus, the seccndary peak in the activity function shown
in Fig. 2.1.3(b) arises via a second order or indirect inter-
action between receptors.

Iﬁ our feasibility studies for the simulator we found
that contour enhancement always-occurred but that the magnitude
of thé énhancement was dependent on the orientation of the
receptor array with respect to the boundary. This led us to
perform the foilowing experiment with the simulator. We re-

oriented the square as shown in Fig. 2.1.5(a) and recorded the
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~—15x15 ARRAY

Fig. 2.1.5(a) A White Square at 45° to the
Receptor Rows

v

ACTIVITY (pp.s) ACTIVITY (p.p,s)

o r\\-" ‘ /]69‘_//\4_ 194
| \L 131 J/”’_— |

! )

A - A B B
Fig. 2.1.5(b) Receptor Activity Fig. 2.1.5(c) Receptor Activity
along AA' along BB'
receptor activity along the lines AA' and BB'. These results

are shown in Fig. 2.1.5(b) and (c).. Note that the shape of

the activity functioné in this case is the same as in Fig. 2.1.2(b)
and (c). However, the magnitude of the activity has changed.
Along an edge the activity is now 169 p.p.s. whereas before it

was 161 p.p.s.; in a corner the activity is 194 p.p.s. as op-

posed tc 189 p.p.s. previously. The activity under uniform
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\ot\.\ \‘Z\LOF 9x9 ARRAY
\ S BISECTOR

Fig. 2.1.6 A VWedge at an Angle @ with respect
to the Receptor Rows

illumination is of course the sane.

22) it was indicated that the magnitude

In-Beddoes,gﬁ g;(
of the receptor activity might be used for measuring angles to
an accuracy of i200; The problem of the dependenée of the
magnitude of activity on the orientation 6f the array casts some
doubt on this possibility. In order to test it we carried out
the following study. '

Consider a wedge of angle « whose bisector makes an
éngle ¢ with respect to the central row of the 9x9 square
array shown in Fig. 2.1.6. Move the 9x9 afray in small steps
so that the central receptor covers the area near the vertex of
the wedge. Record the pesk receptor activity. Now reorient the
wedge with respect to the - 9x9 array and repeat this process.

(0]

Do this for orientations of ¢ = OO, 150, 307, and 450 for wedges

whose angle a = 10°, 20°,..., 180°.
The results of this study are given in the graphs shown

in Fig. 2.1.7. The variation in peak receptor activity with
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wedge angle « is shown for each orientation. The heavier lines
form the peak activity envelope for this particular kij(d) func-
tion. This envelope consists of two lines, one following the max-
imum péak receptor activity at each value of « for the various

- orientations, and the other following the minimum sctivity.

It is evident from the graph that the peak receptor out-
put for this kij(d) function provides a very poor measure of the
angle‘a. Given a peak receptor output, the uncertainty in the
angle a« to whichit correspondé would be about + 40°. Thus, one
should be able to differentiate a straight edge from a right-
angle, but not much more. V

Thé reason for thié orientation dependence problem is
readily appareht if we examine a particular case. In Fig. 2.1.8(a)
to (d) we have sketéhed a 100° wedge in.four different orientations
with respect to the 5%5 fiéld over which the receptors interact
directly with the central receptor. The wedge has been positioned
so that the central receptor is illuminated but the number of intér—
acting receptors is 2 minimum. This is the position for which the
central receptor will have peak activity. In Fig. 2.1.8(e) we
have-noted beside each receptor in the 5x5 array'thé value of
the kij(d) function.. This value determines the amount of inhibi-
tion exerted by that receptor on the central receptor. Hence, at
;east to a first approximation, the sum of the'kii(d) values of
-the illuminated receptors provides a measure of the tbtal inhibition
exerted on the central receptor. The larger this sum, the lower
the central receptor activity. 1In Table 2.1.1 we give this sum

for the various orientations.
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Fig. 2.1.8(2) to (d) A 100° Wedge in Various Orientations, 0° to 45°
(e) - The kij for the Central Receptor
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Orientation ~ Sum of kij of Illuminated
Angle, ¢ Receptors
0° 0.82
15° 0.72
30° 0.64
45° 0.98

Table 2.1.1 Sum of kij Values at Various Orientations

On the basis of these sums then, we would predict that
for a lOOOuwede the maximum activity occurs at an orientation of

30°

, and the minimum at an orientation of 45°. If we check this
prediction with the results for « ; 100° in the graph giﬁen in

Fig. 2.1.7,we see that sequence of orientations from highest to lowest
activity‘is 300, lSO,FOO, 45°. This is the same as the sequence

of orientations in order of increasing value of the Kij sum.

Why does this ki sum change as we vary the orientation

J
of the array? It is obviously due to the discrete nature of the

array. For this reason, the orientation dependence of the recep-
tor activity can never be tctally eliminated. However, it can be

substantially reduced by a number of techniques which are discussed

in the following section.

2.2 Methods for Reducing Orientatioanependence

The most obvious method for reducing the orientation
dependence of the response is fo increase the number of receptors
that interact difectly with the central receptor. 1In doing this,
however, we reduce the accuracy of our approximation to an actual
lateral inhibitory receptor network. As was shown in the feaéibiiity

study(24% one can approximate the response of this type of network
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by solving the set of equations 1.4.1 for a subfield of a much
larger array. This subfield, however, must be larger than the
direct inhibition field, i.e. the field over which kij(d) is
non-zero. In the case of a 5x5: direct field it was shown that
the response of the central receptor in a uniformly illuminated.
9x9 array was within three percent of the response for a receptor
in a uwniformly illuminated infinite array. Use of a 5x5 array
- with a 5%5 direct field led to a 15% error in the response. In
addition the response is qualitatively altered due to the elimin-
ation of indirect interactions; In Fig. 2.2.1(a) we show the
response function for an edge uSing a 9x9 field with a 5x5
direct field. Note the oscillations in receptof output as we
proceed away from the edge. In Fig; 2.2.1(b) we show the corres-
ponding function using a b5x5 fiéld with a 5x5 direct field.
The oscillétions have disappeared. A similar effect occurs when
we extend the range of non-zero kij(d) to include the whole area
of the 9x9 array. In doing this we thus lose some fidelity in
our éimulation or laterai inhibition. ‘This loss of the higher
order eifects is:acceptable since we are studying the process with
a view to application, rather than élucidation, of the mechanism.
Hence one of the methods that will be used to reduce
the orientation dependernce will be to increase the number of
receptors in the 9x9 array that interaét directly with the
central receptor. In conjunction with this method another approach

involves the use of k. .(d) functions different from that encountered

1]
in Limuwlus. Two types of functions have been studied. In the

first type, the kij(d) function is constant for a certain range of

d, and zero outside that range. In the second type, the kij(d)



Fig. 2.2.1(a) Edge Response for a 9x9 array with a 5x5 Field of
Direct Inhibition

[

Fig. 2.2.1(b) Edge Response for a 5x5 Array with a 5x5 Field of
Direct Inhibition
function is & linearly increasing function of d out to a certain
value of d and zero beyond.
Another obvious method for reducing the orientation

dependence involves rounding off the 9x9 square array as shown

26

in Fig. 2.2.2. By drcpping the receptors from the corners we make

the distribution of receptors sbout the central receptor more
isotropic.
Similarly, modification of the simulator array to give

an hexagonal distribution of receptors about the central receptor
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Fig. 2.2.2 The Rounded 9 x 9 Array

should lead to a reduction in orientation dependence. This is
because the hexagonal array is self-congruent under 60° rotations
as opposed to 90° rotations for the square array.

The final method used to reduce orientation dependence
was suggested by an examination of the anatomy of the lateral eye
of Iimulus. In a compound eye of this sort each receptor has its
own lens. Thus light can enter each receptor“from a large angular
cross-section of the visual field, with adjacent receptors sampling
overlapping afeas of this field. (Reichardt and MacGinitie(26)
have shown that this typé of sampling of the image space does |
not necessarily lead to a loss of information.) In other words
then, the field of view of each receptor is anything but the point
field of view used in the experiments described in section 2.1.

Thése facts led us to modify the simulator so that each
receptor sampled a finite circular area of the visual space. A
number of schemes were tried which involved intensity control of
the CRT in the flying'Spot scanner. In no case were we able to
obtain the eight bit accuracy that we wanted in the intensity

measurement. For this reason we . decided to limit ourselves to a
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CENTRAL
RECEPTOR

Fig; 2.2.% A Rounded 9x9 Array of Receptors with a
Finite Iield of View

study of black and white patterns. In this situation we simply
scan over a small circﬁlar area 1in the‘neighborhood of the receptor
position‘and measure'the white zrea encountered. The radius of
the circular area is variable, and hence we can simulate réceptors
with different siéed fields of view. A rounded 9X§ array Of'
receptors with finite fields of view is shown in Fig. 2.2.3. 1In
this case the diameler, D, of the fields of view is 1.5u, where

u is the minimum inter-receptor distance.
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3. EXPERIMENTAL STUDIES ON LATERAL INHIBITION

3.1 Introduction

In this chapter we present the results (in the form of
a large number of graphs) of studies done on three different types
Aof kij(d) functions. In these studies we vary a number of para-
meters - size cf receptive field of view, threshold level, receptor
arrangement — in order to determine the effect on the receptor out-
put. The test patterns consist of wedges, and circles or‘aros
of ciréles. We are interested in determining which simulator con-
figuration will give the best orientatioﬁ-independent enhancement
of visual contours. For example, we wish to determine which
configuration will enable us to relate pezak receptor activity
to wedge angle with minimum ambiguity.

The experimental procedure starts with the insertion of
a pattern, a wedge for example, into the input section of the
simulator. With an initial orientation of zero degrees between
the array rows and the oisector of the'wedge angle, the receptor
activity at a large number of points in the neighborhood of the
vertex is computed and punched onto paper tape. This process is
repeated for orientations of 150, 300 and 450. The paper tapé is
then processed on a digital computer to determine the peak receptor
activity for each orientation. A typical computer printout is
shown in Fig. 3.1.1. The first number in each group is the pesk
receptor activity for the wedge at the designated orientation.
(The other number pairs are the x and y cocrdinates of the points
at which that activity occurred.) The maximum peak receptor

activity for this wedge has been circled twice and the minimum
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Fig. 3.1.1 A Typical Computer Frintout of Peak
Activities at Various Orientations

once. These two numbers, along with the corresponding pairs for
the other wedges, are plotted, giving the type of graph shown in
Fig. 3.1.2. This graph forms the peak ectivity enveiope for the
set of wedges under the action of the particular simulator configura-
tion. This graph is the envelope shown in Fig. 2.1.7.

It can be used to obtain a measure of the ambiguity that
arises in relating peak activity to wedge angle. The worst case
ambiguity, Ga , can be used as a measure of the orientation de-

max
pendence associated with a particular simulator configuration. In

the case of‘Fig. 3.1.2 the zmbiguity measure would give 6 _ 84°.
max = '
The graphs in the following sections are extended to

include wedge angles greater than 180°. The receptor activity func-

tion for this type of wedge has a saddle point near the wedge
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vertex. The activity at the saddle point is the peak activity

associated with the wedge angle.

3.2 The Limulus kijiﬂ) Function

In chapter 2 some studies were described that used a
kij(d) function that was non—zefo over the 5x5 central portion
of the 9x9 array. The first kij(d) function dealt with in this
chapter has the same form, but has been extended to give non-

Zero kij over the 9x9 array. The function is

0.3-0.05d 0< d < 6u
kij(d) = 3.2.1

0 d=0, d > 6u
and has the form shown in Fig. 3.2.1.
: The threshold or kijtij value used in most of the studies
with this kij(d) function was chosen to give the minimum non-

negative receptor activity level, X for uniform illumination.

For this kij(d) function the requisite kijtij

value gave an activity
level of X, = 27 p.p.s. .
In the first set of experiments the diameter of the
receptive field of view, D, waslvaried from D = 0.0u to D = 2.5u
in steps of 0.5u. The results from this sel of experiments are
" given in Figs. 3.2.2 to %.2.7. The Qa values_in various ranges
of wedge angle are marked on the graphs. These values along with
&) for the six receptive field sizes sre brought together in

mex
Table 3.2.1.
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Fig. 3.2.1 The Limulus kij(d) Function

Recepggge?lgld gamax Qal for 9a2 fq? 933 for 9a4 for
0% a<90° 1 90% a<180° | 180% a270°| 270% a<360°
0.0u 26° 26° 22° 22° 18°
0.5u 53° 1 33° 23° 23° 18°
1.0u 539 53° 20° 22° 12°
1.50 43° 1 43° 15° 17° 13°
2.0u 60°{ 60° 13° 10° 12°
2.5u 60° ] 60° 10° - g° 30°

Table 3.2.1 Limulus ki.(d) Ambiguity Values for Various

J
Receptive Field Sizes

The first point worth noting is the expeéted decrease
in ambiguity between the results shown in Fig. 3.1.2 and those in
Fig. 3.2.2. Expanding the direct inhibition field to include all
the receptors in the rounded 9x9 array should, and does, lead to
a better discrimination of wedge angle as a function of peak recep-

tor activity. In addition, by rounding off the 9x9 array the
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Fig. 3.2.8 Average Peak Activity Spread against D for
Limulus kij(d)
distribution of receptors is made more isotropic. This also reduces
the orientation dependence.

It is evident that the use of a non—zefovreceptive fieldb
of view leads to a general reduction in ambiguify for wedge angles
greater than 90°. TFor angles less than this value the geometrical
interaction between the.circular receptive fields and the wedge causes
a "folding over" of the peak response curves..

The decrease in ambiguity for angles greater than 90O comes
~about as a result of two antagonistic effects. For any given wedge,
increasing the size of the field of view leads to a decrease in the
orientation dependent spread of peak activity. In Fig. 3.2.8 the
average peak activity spread in each of the graphs in Figs. 3;2.2
to 3.2.7 is plotted against the diameter of the receptive field of

view. The decrease in the average spread with increasing D is
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Fig. 3.2.9 Change in Median Peak Activity with Increasing
- D for Various Wedge Angles

dramatic.

However, the larger field of view also causes a decrease
in the ﬁ;dian peazk activity associated with'any given wedge. This
tends to offset the decrease in orientation dependeﬁce caused by
the decrease in peak activity spread. In Fig. 3.2.9 the changé
in median peak activity as a function of receptive field size

© 190°, 280°, and 3%50°. The

is plotted for wedges of 10°, 100
cause of this change is illustrated in Fig. 3.2.10 for the case

of a. 100° wedge. In Fig. 3.2.10(a2) and (b) the illumination pat-

tern for peak activity is shown first for point receptors, D = 0.0u,

then for receptors with a D = 2.5u. (In (b) only the receptive

field of view for the central receptor is shown.) The crosses
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©—-CENTRAL RECEPTOR CENTER

CENTRAL .
RECEPTOR

* RECEPTIVE FIELD

25u

(a) D=0.0u (b) D
Fig. 3.2.10 Position of Peak Activity for Two
Different Values of D '
indicate receptors that receive no illumination in (a) and yet in
‘(b) have one-half or more of their receptive fields illuminated.
Thus as point receptors they do not inhibit the central receptor.
As their'receptive field increases, however, they begin to influence
the'central receptor, reducing its activity. Consequently, the
peak activity for D = 2.5u is much less than for D = 0.0u.
The next seﬁ of experiments using the Limulus kij(d)
- function involved variation of the threshold level. The receptive
field size was set at D = 1.5u and klgtla was increased until the
uniform illumination activity was 50 p.p.s. The experiment de-~
scribed previously was repeéted. The results are given in Fig. 3.2.11.
This procedure was repeated for a litlJ value giving é uniform
illumination activity of 75 p.p.s. These results are given in
Fig. 3.2.12. These graphs should be compared with the graph in
Fig. 3.2.5. Although for a wedge of 350° the difference in the
median peak activity for successive increases in litlJ ié about
25 p.p.s., for a wedge of 10° the difference is only about 8 p.p.s.
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The ambiguity measures from the three graphs are given
in Table 3.2.2. There is a general trend in these results indicating

that an increase in the threshold level causes an increase in

Uniform I11. Qa Qa for Qa for Qa. for Qa for
Activity max 1 ‘ 2 3 4 |
0% «<20° | 90% «<180° | 180% «<270° | 270% a<360°
27 p.p.s. | 43° 473° 15° 17° 13°
50 p.p.s. | 52° 520 12° 18° 18°
75 p.p.s. | 50° 50° 15° 20° 20°

Table 3.2.2 Ambiguity Values for Various Thresholds with
the Limulus'kij(d) Function
ambiguity. This is expected siﬁce the threshold level can be
increased until no interaction takes place. In this case there
would be no graded enhancement of contours. Consequently.there
would be total ambiguity if»one attempted to relate receptor

activity and wedge angle.

3.3 The Uniform_gij(dlfFunctionv

J
receptors in the rounded 9x9 array. The function is

The uniform ki.(d) function is constant over all the

" 0.125 0<d<4.5u

kij(d) = 3.3.1

0 d=0, d »4.5u
and has the form shown in Fig. 3.3.1. In the initial experiments
the threshold level was set to give an activity level of zero
pulses/sec. under uniform illumination conditions.
The first set of experiments invoived the Qedges as
test patterns. " The diameter, D, of the receptive field of view

was varied between successive experiments. The results are given



kU(d)
.
0. 2

0.1+

] |‘ ] 1 | D
! 2 3 4 5u
'~ DISTANCE, d <

Fig. 3.3.1 . The Uniform kij(d) Function

gigz?téve Field Qamax Qal for 9a2 for 9a3 for 9a4 for
10%a 90° | 90% «<180° | 180°% «¢270°% | 270% a¢360°
0.0u 2730 17° 14° 23° 14°
0.5u 20° 13° 16° 20° 14°
; 1.0u 17° 17° 10° 11° 10°
1.5u 11° 11° 8% 9° 10°
2.0u 229 220 7° 9° 11°
2.5u 35° 35° 4° 5° 10°

Table 3.%.1 Ambiguity Values for a Uniform ki
at Various Values of D.

J

(d)

in Figs. 3.3.2 to 3.3.7. The various.@a values are noted on the

figures, and along with ©

max

" are compiled in Table 3.3.1.:

Note the steady decrease between one figure and the next

of the distance separating the two sides of the peak.activity envelope

This is reflected in a steady decrease of the Ga values at least

"up to D = 1.5u. Above this value the "folding over" of the envelope

at small wedge angles causes an increase in the Qa

the peak ambiguity in the 10° to 90° range of wedge angles.

1

value which is
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Fig. 3.3.8 Change in Median Peak Activity with
Increasing D for Various Wedge Angles
As noted in the previous section, two countervailing
influences arc at work in the reduction of ambiguity. Increésing
the size of the field of view.leads in general to a decrease in
median peak activity at any given wedge angle. This reduction in
the dynamic range of ?eak receptor actiﬁity is evident in the graphs
of Fig. 3.3.8. It is more than offset by the decrease in the
spread of peak activity caused by changes in orientation. The
average value of this spread is plotted‘in Fig. 3.3.9 as a func-
tion of D. Notevthat the sharpest decrease in this average occurs
between Dv= 0.0u and D = 1.5u.
The object of the next two experiments was to test the

effect on the activity curves of a variation inthe threshold. 1In
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Fig. 3.3.9 Average Peak Activity Spread against
D for Uniform kij(d) with x = O p.p.s.

the first experiment the kijtij value was set to give a uniform
illumination activity of 25 p.p.s., and the second, an activity
of 50 p.p.s. In both cases D was set at 1.5u. The results are -
'plotted in Figs. 3.3.10 and 3.3.11 and should be compared with the
graph in Fig. %.3.5. By raising the threshold the activity assoc-
iated with a given wedge angle is increased. The increase, howevef,
is greatest for large wedge angles znd decreases monotonically
with decreasing angle.

In Table 3.3.2 the various ambiguity measures are compiled.
There is no evident change in the measured ambiguities within the
range of threshold covered by these expériments.

In section 2.2 it was suggested that another possible

method for reducing ambiguity or orientation dependence would be
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CENTRAL RECEPIOR

Fig. 3.3.12 The Hexagonal Receptor Array

Uniform I11l.1! © e for o for e for o) for
Activity Snax | %1 4o : &3 Ty
0% «90°%! 90% a<180°] 180% a<270°| 270% a¢360°

0 p.p.s. 12°f 11° 8° 9° 10°
25 p.p.s. 10°]  10° 8° 10° 10°
50 p.p.s. 10° 10° ° 10° 10°

Table 3.%.2 Ambiguity Values for Various Thresholds with the
Uniform kij(d) Function

the use of an hexagonal array of receptors. In lineIWith this, the
scanning section of the simulator was modified to give the hexagonal
array shown in Fig. 3.3.12. ©Note that this array contains 61 recep-
tors as opposed to the 69 receptors making up the rounded 9x9
square array. |

Although experiments with the hexdgonal array were carried
out for each of the kij(d) functions, only the results cbtained
with the uniform kij(d) will be presented. The wedge experiments
with D as a parameter were repeated using the hexagonal array.

The threshold was set to give zero activity under uniform illumination.
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The results from these experiments are presented in Fig. 3.3.13
to Fig. 3.%.18. The ambiguity measures are noted on the figures

and are compiled in Table 3.3.3.

Receptor Field | 6 8] for 2 for e for 0 for
Size D @max a1 a5 a3 a4
10° « 90° | 20° « 180° | 180° « 270°| 270° « 350°
0.0u 500 24° 20° 30° 200
0.5 20° 20° 16° 20° 16°
1.0 20° 14° 14° 20° 10°
1.5 28° 28% 10°. 10° 20°
2.0 30° 30° 10° 10°. 10°
2.5 40° 40° g° 10° 10°

.Tablé 3.%.% Ambiguity Values for Various D, Uniform kij(dL and an
Hexagonal Array

In no case is the maximum ambiguity for the hexagonal array
less than the .corresponding value for the square array. It may be
that the activity of an hexagoral array is inherently more oriehtation
dependent. 1In this particular case it is more likely that the
greater ambiguity results from the use of fewer receptors. In any
event, in our particular situation the receptor response associated
with the rounded 9x9 squaré array was slways less orientation

dependent than that associated with the hexagonal array.

3.4 The Tnverse kij(d) Function

The kij(d) function studied is an increasing function of

the distance, d, belween the ith and jth‘receptors. As such, it
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kij(d)
204
15
10 -
.05 -
Y T T T
1 2 3 4 Su

DI/ISTANCE, d

Fig. 3.4.1 The Inverse kij(d) Function
is the opposite or inverse of the Limulus kij(d) function. It
has the form shown in Fig. 3.4.1 and is specified as

kij(,a) . { Z.O4d Z<Od§d4.5u 5.4.1
_ =0, >4.5u

The kijtij value used in the initial experiments gave an activity
levei for uniform illumination of zero pulses per second.

As in the previous sections the first experiments employed
the wedges as test pattérns. Successive experiments differed only
in the size.of the receptive field, D. The resulté from these'
experiments are given in Figs. %.4.2 to %3.4.7. The Qa values
- in the various rénges of wedge anglé are noted on the figures
and compiled in Table 3.4.1.

There is a steady decrease in ambiguity, at least in the
10° to 270° range, out to D=2.0u. At D=2.5u the peak activity
envelope flattens out at the small wedge angles, causing a sharp
increase in ambiguity in the 10° to 90° range. From these results
-the best value for D in terms of minimum ambiguity is D=2.0u.

In Fig. 3.4.8 the change. in the median peak activity at

various wedge angles is plotted as a function of D. There is a
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RECEPTIVE FIELD SIZE, D .
Fig. 3.4.8 Change in Median Peak Activity with
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giggpglve Field Qamax Qal for 9a2 for ‘Qa3 for 9a4 for
10%a<90° | 90°% a£180° | 180°% «5270° | 270% a<360°

0.0u 22° 19° 22° 22° 20°
0.5u 21° 21° 21° 16° 14°
1.0u 17° 8° 18° 16° 17°
1.5u 20° g° 14° 16° 20°
2.0u 17° 10° 10° 10° 17°
2.5u 20° 20° 9° 10° 16°
Table 3.4.1 Ambiguity Values for the Inverse kij(d) at Various

Values of D

marked decrease in the median activity with increasing D for wedge

angles at least up to 190°.

At 280° there is virtually no change,

while at 3500 the activity increases with increasing receptive field
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Fig. 3.4.9 Average Peak Activity Spread against D
for Inverse kij(d) with X, = O p.p.s.
size.
In Fig. 3.4.9 the change in the average value of the
peak activity spread (i.e. the average gap between the curves
in Figs. 3.4.2 to 3.4.7) is plotted with respect to receptive
field size. Thelcurve drops sharply_between D = 0.0uand D = l.Qu
and then flattens out beyond this value. |
In the next two experiments the threshold leﬁel was varied.
The uniform illumination activity levels for the two kijt'j settings
were 25 p.p.s. and 50 p.p.s. The receptive field size was D = 1.5u.
In Table 3.4.2 the ambiguity measures from the graphs in Figs. 3.4.5,
5.4.10 and 3.4.11 are compiled. It is evident that there is no

<

significant change in ambiguity within the experimental range.
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Uniform Il11. [© o for o for Q for- o] for
Tevel max ! a% o a% o a"jo o a40
10% «<90° | 90% a£180° | 180% «<270 270% « <350
0 p.p.s 20° 8° 14° 16° 20°
25 p.p.s. 20° g° 14° - 17° 20°
50 p.p.s. | 19° g° - 15° 15° 19°

Table %.4.2 Ambiguity Values for Various Thresholds with the
Inverse kij(d) Function

'3.5 Peak Receptor Activity and Circular Patterns

In this section we deal with a set of experiments in which
circular figures or disks were used as test patterns. We have
two purposes in mind. TFirst, we wish to obtain some idea of the
orientation dependénce problem as it relates to éircles. Second,
we want to relate the peak activity associated with circles and
wedges{ Each of the different kij(d) functions was used. The
study was, however, limited to those particular simulator configura-
tions that had. given the. minimum ambiguity in relating peak activity
and wedge angle. |

The experiments employed both black on white, and white
on black disks. The experimental technique involved the determina-
tion of the peak receptor activity near the boundary of these
disks fbr various orientations of the rounded 9x9 array.

The first experiment in this set made use of the nggggg
kij(d) function with a receptive field of View of D = 1.5u, and
a_kijtij set to give an activity'of 27 p.p.s. under uniform
illumination. The results are shown graphically in Fig. 3.5.1.

The szbscissa of this graph is the inverse radius, 1/R, or curvature,
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of the disks. Use of the inverse radius allows us to plot the
résults for both black on white and white on black disks as a |
continuous envelope. The figure that separates these two.types
of disks is the circle of infinite radius, the straight edge..

The envelope has é steeper slope for white disks than for
black ones.‘ This indicates that the Limulus Rij(d)‘function gives
a more sensitive response to changes in the curvature of white
disks. The maximum spread in the peak activity (due to orientation
dependence) occurs with the étraight edge. This was also the
case when wedges were used as shown in Fig. 3.2.5. The average
spread in the peak activity.in Fig. 3.5.1 is 3.8 p.p.s. with
a minimum of 1 p.p.s. and a maximum of 8 p.p.é.

The same experiment as above was repeated using the
uniform kij(d) function, with D = 1.5u, and uniform illﬁmination
activity of zerc p.p.s. The results areplotted in Fig. 3.5.2.

As in the previous case the peak activity ié more sensitive to
change in the curvature of fhe white disks than of the black. The
spread in the peak activity is fairly uniform along the curve.

The average spread is 2.7 p.p.s. with a minimum of zero and a
maximﬁm of 4.0 p.p.s.

The experiment was repeated a third time using the inverse
kij(d)>function with-D = 2.0u'and uniform illumination activity of
zero p.p.s. The resulté are plotted in Fig. 3.5.3. Note thaf‘
for white disks with a curvature greater than 0.51;_l the pezak
activity is practically constant, and the peak activity spread
is zero. This phenomenon is explained in section 3.6. The'average
value for the spread is 3.6 p.p.s. with a minimum of zero and a |

maximum of 7.0‘p.p.s.'
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Fig. 3.5.4 Equal Median Peak Activity Curve Relating Disks
and Wedges for the Limulus Configuration
The results given in these three graphs indicate that
the particular.simulator configuration employing the uniform kij(d)
function gives the least orientation dependent measure of the cur-
vature of a disk. This is in agreement wifh the results obtained
in the preceding three sections where this same éonfiguration gave
the minimum ambiguity in associating peak response and wedge angle.
. By combining the results given in this section with the
equivalent results for wedges in the preceding sections one can
obtain an egual activity curve relating wedges and disks. In
Fig. 3.5.4 a curve has been plotted showing this relationship for
the Limulus kij(d)_configuration. This curve indicates, for
example, that a 100° wedge and a white disk with a curvature of
0.5511-l have equal median peak activities. In Fig. 3.5.5 these
two patterns are superimposed in‘scalé with the rounded 9x9 array

of receptors. The patterns are in the position for which the central
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Fig. 3.5.5 Equal Peak Activity Wedge and Disk to Scale
" with 9x9 Array, Limulus Configuration
receptor of the array has peak activity.

In Fig. 3.5.6 the wedge-disk equal activity curve for
the uniform kij(d) configuration is given. In Fig. 3.5.7 the 1G0°
. wedge and the eqguivalent activity whiteldisk are shown relative
to the 9x9 array. In Fig. 3.5.8 and 3.5.9 the equi-activity
curve and the pattern comparison for the inverse kij(d) configura-
tion are given. Note that in this case the peak activity in
response to the white disk occurs when it is concentric with the
central receptor. In the two preceding cases the peak activity
occurred when the edge of the disk was tangent to the edge of the
central receptor receptive field. In all cases, the peak activity_
for the lOOvaedge occurs when both sides of the wedge are tangent
to the receptive field of the central receptof.

Because of the pecularities noted above, a more thorough
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study was made of the overall activity associated with both disks

and wedges. The results of this study are given in the next section.

3.6 Receptor Activity near Disks and Wedges

There is a twofold purpose in this section. First, to
explain some apparent anomalies in the results given in the preceding
section. Second, to attempt to bass on to the reacder socme intuifive
feeling for the Torm of the receptor activity functions near white/
black boundaries. We deal first with“the’receptor activity functions
along the diameters of a set of white disks. We then examine in
detail the receptor activity functions near the vertex Qf a 100°
wedge. The three different simulator configurations dealt with
in the preceding section are used in thesé studies. .

In Fig. 3.6.1 the receptor activity functions along the
diameters of a number of white disks arergiven. These results are
for the Limulus kij(d) configuration. Note that in all cases
the point of peak receptor activity is immediafeiy ad jacent to the
edge of the disk. That thisiis not the case for all simulator
configurations is evident from the}next two figures. In Figs. 3.6.2
and 3.6.3 receptor activity functions along the diameters of the
white disks are shown. They were produced by the uniform kij(d)
and tﬁe inverse kij(d) simulator configurations resﬁectively. The
disk radii are as indicated. Note that in Fig. %.6.2 the receptor
activity function for disks with a radius less than about 3u is
essentiallyAconstant through the disk interior. For disks with

-radii greater than this value the receptor éctivity peaks'at the

boundary of the disk and then decreases toward the center.
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In the case of the-inyerse kij(d) configuration shown
in Fig. 3.6.3, the receptor activity functions heve their maxima
at the disk boundary if the disk radius is greater than 4.0u.
However, for disks with & radius less %han or egual to this value,
the pezk in receptor activity occurs at the center of the disk.

The above results shcw that as long as the disk is larger
then the 9x9 array, the peak in activity occurs near the edge;

A1l of the receptors in Fig. 3.6.4(a) are illuminated and con-
sequently the central receptor activity is low. As the disk

moves some of the receptors enter the black region, causing the
activity of the central receptor to increase. This rise in activity
must continue until the central receptor is just adjacent to the
edge. The magnitude of the activity peak at this point is related
to the radius of the disk.

If the disk, or any other pattern, is smaller than the
9x9 array, the position of the activity peak is dependent on the
form of the kij(d) function. If the small disk in Fig. 3.6.4(b)
moves as shown, the more central receptérs on the left.side are
obscured while the more peripheral receptors on the right side are
illuminated. Since for'the Limulus kij(d) function the more pefi—
- pheral receptors-are'less inhibitory, the peak receptor activity
still occurs at the edge. Conversely, it must occur at the disk
center when,thainverse kij<d) function is employed. It follous
(d) function is relatively

J
constant in the interior of the small disk. Note, however, that

then that- the activity for the uniform ki

in all cases the magnitude of the activity peak is still dependent
on the radius of the disk. |

In parallel with the above studies some work was done
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Fig. 3.6.4(b) A Small White Disk and the. 9x9 Array

on the receptor activity functions for wedge shaped illumination
patterms. A lO_OO wedge was processed using fhetfhfee different
kij(d) simulator configurations. The results were fed into an
IBM 7044 in-order to obtain contour and isometric plots of the
receptor activity functions. The plots for the Limulus kij(d),
the uniform kij(d)’ and the inverse kij(d) are presented in
Figs. 3.6.5 to %.6.7 respectively. |

The receptor activity functions produced by the three

different kij(d) configurations are basically similar. They all
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[-- 15,00
o000

Fig. 3.6.5(a) Contour Plot of the Receptor Activity Function for
a 1000 Wedge, Limulus Configuration

Fig. 3.6.5(b) An Isometric View of the 100° Wedge Receptor
: Activity Function, Limulus Configuration '
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Contour Plot of the Receptor Activity Function

Fig. 3.6.6(a) ,
for a 100° Wedge, Uniform Configuration
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Fig. 3.6.7(a) Contour Plot of the Receptor Activity Function
for a 100° Wedge, Inverse Configuration
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exhibit differential cogtour eﬂhancement, having ridges running
parallel to the sides of the wedge, which tﬁen mount to a peak
at the wedge vertex. The actual shape of the peak is in each
case quite different. It is determined by the form of the kij(d)
function. For the Limulus kij(d)’ the closer one upproaches the
peak, the steeper the slope of the activity function. This reflects
the fact that for a Limulus kij(d) the neargy receptors are the
most inhibitory. Similarly, in Fig. 3.6.6 it is evident that
the slope of the activity function is constant along any given line
in the illuminated region near the peak. This reflects the constant
nature of the uniform kij(d) fu@ction. Fiﬁally, in Fig. 3.6.7
the form of the inverse'kij(d) function is reflected in the shape
of the receptor activity function. The slope of the function
in the illuminated region near the peak increases as one moves
away from the peak. This is because the more distant receptors
have a greater inhibitory effect.

It should be obvious from the zbove discussion of recep-
tor activity functions that one can make qualitatiye predictions
about their shape given the illumination pattern and the kij(d).

function.

3.7 "Feed-Forward" Inhibitory Interaction

In this section an alternative scheme for contour enhance-
ment 1s treated in a preliminary fashion. This method is obtained
by a modification of the Hartline equations (equations 1.4.1) in

the following fashion:

N .
Vi =€ - %;& kij max (0, ej—tij) i= l,...,n.. 3.7.1
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Fig. 3.7.1 "Feed-Back" and "Feed-Forward" Receptor Interaction

The Valué of the receptor stimulus, €5 has been substituted for
the receptor activity Xj’ in the right-hand side c¢f the equations.
The inhibitory interaction giving rise to the new receptor activity,
Vi is elicited by a "feed-forward" mechanism sgs opposed to the
feed—back‘mechanism of the Hartline equations. The difference is
shown schematically in Fig. 3.7.1.  (The set of equations 3.7.1
is‘very gsimilar to a retinal neural network proposed by Fry(27>,

and is a first approximation to the Hartline equations(21).)

Initially, our main interest was to see whether the
orientation dependence of the receptor activity determined by
this set of equations wes markedly different from that determined
by the Eartline equations.

After modification of the simulator sc that the set of
equations 3.7.1 could be solved, the-minimum ambiguity configura-
tion was set up. This wes the uniform kij(d) function with
D = 1.5u and zero activity for uniform illumination. Two orienta-

tion dependence experiments were done, one using the set of wedges,
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the other the set of disks. The results are given in Figs. 3.7.2°
and 3.7;3 respectively. For purposes of comparison the equivalent.
results for the lateral inhibition case {(Hartline equations) are
| plottéd as dotted lines along with the above.

The most striking.feature about these two sets of
results is their similarity. Even the ambiguity measures noted
on Fig. 3.7.2 are within one or two degrees of each other. This
similarity caused us to carry out a more detailed comparison.
between the lateral inhibition eqﬁations and the "feed-forward"
set of equations. The object was to discover the underlying common
mechanism, if any. These investigations are dealt with in the

next chapter.
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4. LATERATL INHIBITION AND THE AREA OPERATOR

4.1  Introduction

In chapter 3 we presented the reéults from a large number
of experiments on a variety of lateral inhibitory networks. The
variables were the form of the kij(d) function, the size of the
receptive field of view, the threshold_level, and the geometric
arrangementvof'the receptors. In addition, the results from_two
experiments with g feed-forward receptor network were preSented.

In this chapter a continuous model for the discrete
"feed-forward" network is developed. The results that would be
obtained in processing the test patterns using this model are
compared with the results obtained using the lateral inhibitory
network and the "feed-forward" network. Some conclusions about

the common mechanism operant in these two networks are given.

4.2 The Disk Area Operator

The model is a-simple weighted area operator, consisting
of a disk of unit radius, and a measurement point at the center
of the disk. The weighting function is a radially dependent func-

tion, k(r), which satisfies the condition

) | |
' 1
[k(r)rdr -1 4.2.1
0 - |
and hence 1 o
. f k(r)da = f f k(r)rdrde = w 4.2.2
| Disk 0 0 S

the area of a unit radius disk.



'The operator processes white and black patterns as
follows. If the center of the disk is in a black area, the
operator has a value of zero. If the center of the disk is in
a white area, the operator has a value of the area of the disk,
n, less the integral of the weighting function over the area
of the disk that is white. ' Let us‘call the value of the operator
Vop’ and the value of the center of the disk VC. Vop has the
limits 051V0p$ r, and VC has the value of zero in a black area,
and one in a white area. Mathematically, the operator has the

form

= VC T - H/’k(r)dA _ 4.2.3

A
W

v
op

where Aw is the area of the disk that is white. It has the same
limits as V__.
op
It is obvious that when the disk is totally within a
white or black area Vop is zero. Only when the disk is inter-
secting a white-black boundary with the center of the disk in
the white area will Vop be non-zero. If the center of the disk is

in the white area, and is immediately adjacent‘to the boundary,

the area of the disk that is white, Aw , 1s a minimum, and hence

m
Vop is a maximum. Under these conditions, equation 4.2.3 becomes
Ooduax =% - J E@an. a2
A
Y

Note that the peak in receptor activity for both a lateral inhibitory
or a "feed-forward" network occurs when the receptor is immediately
‘adjacent to the white-black boundary. Thus the (Vop)maX and the

peak receptor activity conditions are equivalent.
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Fig. 4.3.1 The Operator Disk and a Wedge

4.3 Peak Responses to Wedges

Let us first develop the (Vop)max equation for a wedge

of angle «. We can then compare the (Vop)max versus wedge angle

curve to that obtained using the discrete receptor networks.

In Fig. 4.3.1 the operator disk is.shown in the (V__)

86

op’max

position with respect to a wedge of angle «. We have

1 (x/
/ k(r)dA = / j k(r)rdrdo ;% 4.%.1

A 0 -a/?
wm

and hence for a wedge of angle «

a V .
(Vop)max =T -3 4.3.2

for all k(r) that satisfy equation 4.2.1. Graphically, (Vop)maX
versus wedge angle is as shown in Fig. 4.3%.2.
The variation in peak response for the operator can

now be compared to that of the lateral inhibitory network over the
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Fig. 4.3.2 (Vop)maX as a Function of the Wedge Angle

range of wedge angles., In order to check %hat'the operator is
the continuous analog of the discrete "feed-forward" network the
results of experiments carried out on this type of network will
also be included. For both the lateral inhibitory and the "feed-
forward" cases, the wedges had an orientation of 15° with respect
to the array. This orientation was chosen in order to avoid having
the axis of symmetry of the wedge coincide with one of the axes
of symmetry of the 9x9 array of recéptors.

The first graph is shown in Fig, 4.3.3. These experi-
mental results were obtained using the Limulus kij(d) function
and point receptors. The crosses indicate the experimental points
obtained using the lateral inhibitory network, The points indicate
the results using the "feed-forward" netWofk. The step-like
behaviour of the experimental functions is due to the discrete
nature of the receptor array. _

The solid line is the shifted and scaled (Vop)max line
of Fig. 4.3.2., The shifting is necessary since under uniform
illuminationf receptors with the Limulus kij(d) function have

non-zero activity. DNote that the (Vop)max line is in good agreement
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with the "feed-forward" experimental results.

The dashed curve forms an approximatiocn to the lateral
inhibition experimental points. Note the long linear region in
this respcnse curve stretching from Aw = 0.14w to Aw = 0.8m.

This linearity indicates that within tﬁis region the Ehange in
peak response cf the lateral inhibition network is directly propor-
tional to the change inlwedge angle, and hence to the change in

the area of illumination of the receptive field. The slope

of this linear portion is -61.6 p.p.s./unit area. The slope of

the \Vo )

o) max line is -68.5 p.p.s./unit area.

The seccnd set df experimental results are given in
Fig. 4.3.4. Here the uniform kij(d) function and point receptors

were used. The (V ) line is in good agreement with the
op’max

"feed-forward" experimental results. The lateral inhibition res-
ponse 1s sgain linear between Aw = 0.14w and Aw = 0.80r. The

. m m -
linear portion has a slope of -75.0 p.p.s/unit area, while the

(Vop)max line has a slope of -77.0 p.p.s./unit area.

For the last set of experiments the inverse kij(d) func-
tion with point receptors was used. The graphs are given in

Fig. 4.3.5. As before the solid (Vop)maX line forms & good approxi-

mation to the "feed-forward" experimental poinfs. The dashed

curve 1is linear between Aw = 0.1lmw and AW = 0.86%. The slope is
m m o

-77.0 p.p.s./degree which is the same as that of the (Vop)maX line.

From this set of experiments we can deduce two things.
First, the (Vop)maX operator is indeesd the continuous analog of
the discrete "feed-forward" network. Second, the lateral inhibitory

. network behaves like an area operator under certain conditions.

The conditions are as follows: Let M be the ratio of the weighted
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area of illumination of the 9x9 array to the total weighted arez.

Then for M between the limité 0.14 £ M £0.80,the lateral inbhibitory
network funcfions in the same way as the area opérator. That is,
the peak response is a linear function of the weighted area of
illumination»of the receptive field. This.second deduction is
tentative since it is based onlj on a study of the peak response

to wedges; In order to test it further some additional experiments

are carried out using disks as test patterns.

4.4 Pezk Respcnses to Digks

In dealing wiﬁh the wedges 1%t wés found that an analytic

expression could be obtained giving (Vop)max as a function of the

angle «. This expression was independent of k(r), the radial
weighting function. For disks the equivalent expression would

give (Vop)maXAaS a function of the radius of the disk. Howeyer,

only if_k(r) is a constant can one find such an expression.
If k(r) is a‘constant, in Qrdef to satisfy equation
4.2.1 one must have
k(r) = 1. . 4.4.1

Hence, equation 4.2.4 can be rewritten as

In order to obtain (Vop)max as a furction of the disk radius, we
require an expression for AW
m
In Fig. 4.4.1 a white disk of radius r on a black back-

ground is shown along with the operator disk in the (Vop)max

position. The white area, Aw , of the cperator disk is given
m
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PATTERN DISK

OPERATOR DISK

Fig. 4.4.1 Pattern Disk with the Operator Disk

in the (V_) Position
op’max

by L
2

2 ) 4.4.1

A = ¢ + 6r° - (r2 -
Y

N

where (b » © and r are as indicated in Fig. 4.4.1. It is evidert

that
O =x - 2¢ 4.4.2
and by the law of cosines
o L
cos @ = 5 4.4.3
and hence
-1, _L T _ oin (L
¢ = cos (2r) =3 sin (2r 4.4.4

Thus, by substitution of equations 4.4.2 and 4.4.4 into equation

4.4;1 we obtain 1
T 2 o -1,1 2 2
Awm =5+ (2r©-1) sin (Zr) - (r° - =) 4.4.5

I
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for all r =2 %

In the case where r«(%, it can be easily shown that

A = mrl. 4.4.6

In addition, for a black disk on a white background it can be

shown that for th%,
1
2 _ 12 4.4.7

AL =T (2r2—l) sin %;) + (r° -

W 2
m

N

._l(

and for_I'<%

Aw - T - nrz. 4.4.8
m

We can now write the expressions for obtaining (Vop)maX

for both white on black and black on white disks of any radius.

For white on bléck disks,

' L
n 2 -1l 2 1,2 . 1
(Vop)maX ={ 3 - {(Zr -1) sin (Zr) (r —4) } if ry3
. 4"4‘-9
n(l—rz) if r(%—.
For black on white disks,
L
T (022 4y -l 1 2 1,2{ . 1
(Vop)maX =17 + l(2r 1) sin (2r - (r 4) } if ry3
4-4-10
atr2 . : if r(-l—

2
The values obtained from these theoretical expressions

can now be compared with some experimentai restlts obtained using
the uniform kij(d) function and point receptors. The test patterns
were black on white disks, white on black disks, and a straight
edge. In Fig. 4.4.2 the peak responses to these patterns sare

given as é function of the area_of interééotion, Aw , between the

m :
white ©part of the pattern end the operator disk. The experimental
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results using the "feed-forward" network are plotted as points;
the results using the lateral inhibitory network, as crosses.

The (V__)

op’ max curve, which for uniform weighting is linear with

respect té Aw , 1is the solid line. It forms a good appfoximation

to the "feed—?orward" experimental results. The dashed curve
approximetes the experimental results obtained from the lateral
inhibitory network. It has a long linear region stretching from

Aw = 0.14w to A = 0.8w. The slope of this portion is - 77.8 p.p.s./

m m
unit area, whereas the slope of the (V__) line is -77.0 p.p.s./

op’max

unit area. In other words, between the limits O.14-$WI$OQ8O the
lateral inhibitory network behaves in the same way as the operator.
Namely, the variation in the peak response is directly proportional
to the.change in the weighted area of intersection.

In order to demonstrate that this‘holds true for non-
uniform weighting functions some further experiments with the
disks were carried out. In Fig. 4.4.3 the response curvés for the

Limulus kij(d) function are given. Note thal these results are

plotted against the area of intersection, not the weighted srea
of intersection. For this reason the curves approximating the
experimental results are'non—linéar. The dashed straight line

is the (Vop) line fhat_would be obtained if the area weighting

max
function were constant. It serves as a reference -for the "feed-
forward" response curve, shown as a solid line. Since the Limulus
kij(d) function weights the center of the receptive field more
heavily than the periphery, the portion of the "feed-forward"
curve corresponding to the white disks (0O sAw'< 0.5n) lies

m
below this reference line. . The curve crosses the line at the
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straight edge response point and then lies above it for the '
black disk response points (0.5w < A< w). This is as expected.

m
Note that the lateral inhibition response curve (the singly dashed

curve) has the. same form as the "feed-forward" curve.

In Fig. 4.4.4 these results are replotted as a function

of the weighted area of intersection, WA . The solid line indicates
_ m
the (V_ ) response function. The "feed-forward" experimental

op’max _
points are in reasonable agreement with this line. The dashed
curve, on the other hand, provideé a good approximation to the
lateral inhibition points. As in the case of the ﬁedges, shown
in Fig. 4.3.3%, this respoﬁse curve has a long linear portion between
0.14m < WA £ 0.8x. The slope of this portion is -65.8 p.p.s./ unit
area. Th?s compares with a slope of -61.6 p.p:s./unit area for
the linear portion of the wedge response curve. The slope of
the (Vop)maX line is -68.5 p.p.é.

The third set of experiments with the disk patterns was
done with an inverse kij(d) function and point receptors. The
results are plotted in Fig. 4.4.5 as a function of the area of
intersection. Note that the excufsions of the "feed-forward"
response curve (solid line) with respect to the reference line
(dashed straight line) are the opposite of those in Fig. 4.4.3.
This is because the inverse kij(d) function weights the periphery
of the receptive field more neavily than the center. Note also
that the lateral inhibition response curve {(dashed curve) has
basically the seme form as the "feed-forward" curve.

Ih Fig. 4.4.6 the experimental results are replotted

as a function of the weighted aréa of intersection. The(V_ )
: op’max

98
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and the lateral inhibition response functions sre as indicated.

The "feed-forward" experimental points are in good agreeument with

the (V__) __ line. DNote that the lateral inhibition response
op’max :

curve has the usual linear region between O.ln:EWA-é 0.9x. The
slope of this portion is -76.7 p.p.s./unit area wh?ch compares
with avslope of -77.0 p.p.s./unit area for the wedge response
curve shown in Fig. 4.3%.5. Th¢ slope of the (Vop)maX line is
-77.0 p.p.s./unit area.

The experimental results for non-uniform weighting
functions are in agreement with those obtained using a uniform
weighting function. That is, for both disks and wedges. the
lateral inhibitory network behaves in the same way as the area
operator provided the weighted area ratio, M, is between the limits
0.14<M<0.8. In other words, in this range the variation in the
peak response from a lateral inhibitory network is directly pro-
portional to the change in the weighted area of illumination of
the receptive field, the weighting being determined by the kij(d)

function.
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5. THE AREA OPERATOR AND CURVATURE

5.1 Introduction

In view of the conclusion that the lateral inhibitory
network functions as an area operator, we propose to examine
gsuch operators in more detail. First, we develop a more general
formulation for area operators than that given in section 4.2.
We give a short section on the theory of curves in a plane, and
then go on to develop sqme‘of.the theory associated with a particu-
lar operator. 1In this develOpmént we try to show the relationship
between the area operator reSponée and the curvature ofiiliumina—

tion boundaries. Examples of the use of the eight theorems developed

are given in section 7.2.

5.2 General Form for the Area Operator

In developing the following formulation for the area
operétor we were gulided by two objectives. First, we wished to
obtain a formulation that would cover non-circular operators having
non-point centers. Second, and more difficult to achieve, we
vanted an operator that would be indépendent of the intensity of
illumination, and yet be capable of handling grey levels. These
objectives are rooted in the body of material presented in chapter 1,
For example, the work of Hubel aﬁd_Wiesel on the visual areas
of the cat striate cortex demonstrated that the circular recepfive
fields (central disk and annular surround) of fhe ganglion and
lateral geniculate had given way to more complex, linearly configured
receptive fields. The area operator formulation should pefmit this

type of geometry. In addition, since the neurophysioiogical data
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Fig. 5.2.1 General Geomelry of the Area Operator

indicates that the response of neurons to illumination patterns
is dependent on local differences rather than absolute intensities,
the area operator should have the same property.

In Fig. 5.2.1 a general representation of an area operator
is given consisting of a central region, AC, and a surrounding area,
A_. Associated with this area operator is a coordinate system

s
(x',y') and a weighting function k(x',y') such that

')( k(x',y')dA = w. 5.2.1
ASkJ AC
(The weighting function is made to operate over both As and AC
in line with the findings of Rodieck(7).)
Assume that there is some illumination function,l(x,y),
which is to be processed by the area operator. Let the origin
in the x'y' reference frame be at.(xb,yo) in the xy frame. Then

the value of the area operator at (xo,yo) is defined to be

Vi(xo,yo) =T - J/F k(x',y") Rl(x,y) dA 5.2.2
ASl-JAc
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where ' Rl(x,y) = max(O, I(x,v) - I(x,v), 5.2.3%
» I(Xsy) - ——(;(—;;7
Tx,y) = 3 vjﬁ I(x,y)ah 5.2.4
‘ c Ac .
(x'y') = (x=xg, ¥-¥4), | 5.2.5

under the assuvmption that

lim Rl(x,y)-: 1. , 5.2.6
TI—1I ’

If the point (Xo,yo) ranges over all (x,y), one obtains the
function Vl(x,y). |

Noté.that the ratio Rl(x,y) can only take on the values
zero or one., This means that Vl(x,y) is independent of the
absolute magnitude of I(x,y), and depends only on the relati&e
magnitudes of I(x,y) and I(x,y). |

In order to demonstrate the properties of the afea
operator assume that it has the disk geometry uéed in the ares
operator of chapter 4. That is, Ac is a point at the center
of a unit radius disk, the remainder of the disk being As' Also,
assume that k(x',y') is dependent only on the distance from Ac.
It is easily shown that in this case Vl(X,y) reéponds to black-
white patterns in the same way as the operator, Vop’ defined in
section 4.2. |

If A  is in a black region at the point (xl,yl), then

I(xl,yl)_: 0, and hence I(Xl’yl).: 0. All the points within A



106

must have intensities that are greater than or ecual to I.EET_§17.
But because of equation 5.2.6 this meéns that Rl(x,y) must equal
one throughout A . Hence by equation 5.2.1, Vl(xl, yl) = 0.
Similarly, if Ac is at (X2, y2) and the disk is totally within
a white area, Vl(x2, y2) = 0. The yélue of VOp at (Xl, yl) and
(x2, y2) is also zero. |
Only if the point AC is in a white region while part of
AS is in a black region, will Vl(X,y) be non-zero. Under these

conditions we can consider As to be composed of two regions, a
~

white region,A_ , and a black region, A Within A_ , Rl(x,y) =1,
b W

(x,y) = 0. Hence

W
whereas within Asb, Rl

v (x,5) = ® - / k(x',y') R (x,y) dA
ASU AC

J/’ K(x',y') dA - '/( K(x',y') - 0 dA

ASU'AC AS
A b

I
a
|

ST (ny) = w - )/' k(x',y') dA | 5.2.7

AU A
W

But equation 5.2.7 and equation 4.2.3% are identical in this situation.
Hence Vl(x,y) processes black-white patterns in exactly the same

way as V__.

op

However, Vl(x,y) is a2 much more general operator than Vop
in that it can be used to process non-binary I(x,y) functions.  To
illustrate this assume that Vi(x,y) has the disk geometry and that
k(x',y') = 1. Let I(x,y) consist of three regions, M,, M, and MB’
as shown in Fig. 5.2.2. The intensity levels in these fegions are

related as O ¢ il< j2< 13 respectively, with the higher intensity
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/
/A
|

M2

Fig. 5.2.2 A Three-Level I(x,y) Function

level applying at any point of contact between regions.

If this I(x,y) function is processed by the area operator,
then Vl(x,y) will be idéntically zero-within Ml' It will be'pon—
zero within M2 pfovided the distance from the center of the opera-
tor to the line separating M, and M

1 2

be non-zero in M3 within unit distance of either of the lines

is less than one. It will

separating M, from the other regions. V,(x,y) will be equal to

3 i
x/2 along any of the three dividing lines provided the distance
to the junction of the three lines is greater than one.

Along the three loci marked AA', Vl(X,y) has the form
shown in Fig. 5.2.3%(a). Along the loci marked BB', CC' and DD’
it will have the form shown in Figs. 5.2.3(b), (c) and (4) res-

pectively. Note that in all cases Vl(x,y) is a maximum at the

boundaries between regions. The value of this maximum is dependent
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on the local properties of the boundary.

In the case of continuous, ncen-uniform I(x,y) functions
the value of Vl(x,y) is dependent on the local préperties'cf the
I(x,y) contours. For example, if the I(x,y) contours are straight
lines in the xy-plane, Vl(X,y) will equal =/2. If the I(x,y)
function is cone-shaped with the open end down, Vl(x,y) will
be greater than n/2 everywhere on the cone,'and will havé the
value w at the tip of the céne. In fact, Vl(x,y) has the value
n at any local I(x,y) maximumn. Converselj, it is zero at any local
minimum of I(x,y).

Intuitively, there is one disturbing feature about the
general Vl(x,y)_operator. It will not detect an illumination
boundary that cuts AS unless‘Ac happens to lie at least partially
within the region of higher intensity. If one goes back to the

work of Hubel and Wiesel(6’7)

, 1t is seen that biologically this .
prbblem is solved by having a dual system of processors. They

found that in the retinal gaﬁglion and lateral geniculate of the
cat, neurons had one of two types of receptive field. There were
neurons with an "ON" center, "OFF" Surround receptive field,
analogous to our Vl(x,y) operator. But there were also neurons withv

an "OFF" center, "ON" surround receptive field. These are analogous

to. the following orerator:

Vz(x,y) = - J/— k(x',y") Ré(x,y) dA  5.2.8
A UvA :
‘ s ¢
where . RZ(X,Y) = max (0, T(x.v) - I(x,y)) 5.2.9

T(x,y) - I(x,y)
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and where k(x',y"), I(x,y), I(x,y), A, and A eare the same as
for Vi(x,y). ‘

V,(x,y) suffers from a fault similar to that described

o
‘above for Vl(x,y). Namely, Ve(x,y) will not detect the présence
of a boundary between regions of different intensity unless AC
happens to lie at least partially within the region of ;gﬂgg
intensity. However, if we define the.combined operator, V(x,y),

to be

Vix,y) = maX(Vl(x,y), VZ(X,y)), 5.2.10

then V(x,y) will be non-zero whenever AS is cut by an illumination

boundary.

5.3 Cﬁrves in a Plane

In this section we digress from our discussion of aresa
operators in order to present some aspects of the theory of curves

, A
\27’28). This material will be useful in the next section

in a plane

where we develop some of the theory associated with area operators.
Let C be a smooth arc of a curve along which a certain

direction has been chosen as the positive direction. Such a

curve in a plane is defined by saying it is an ordered configuration

of points‘(x,y) given by two continuvous functions of a parameter:

X = X(t)‘, yvz y(t). ' 5.3.1
Given any such parametric representation for C one can always
obtain a representation in terms of the arc length, s, along C,

x = x(s8), vy = y(s) 5.%.2
given thet s as a function of t, s(t), is known.

At any point of C define the tangent vector. This is a
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vector of unit length along the tangent line in the‘positive
direction as shown in Fig. 5.3.1. It is denoted by T, If
the angles which T makes with the positive coordinate axes are

«x, B, one can write

T = cosai + cosfj 5.%.3
If s is the arc length measured wlong C in the positive direction,
then

T_ta_1'+.@lj,_ 5.3.4

=i
o,
3
i
O

T E= 5.3.5

which means that dT/ds is either the zero vector or is perpendicular
to T. A unit vector in the directionof dT/ds is called the prin-

cipal normal to C at the point in question. The principal normal

is denoted by N and the length of dT/ds is denoted by K. Therefore

== - K N. : 5.%.6

The scalar K is called the curvature of C; it is given by

K 2{(3—}}2 . (%)2} . 5.5.7

In the preceding discussion the curve C was always rep-
resented in the form, X(t), y(t), where the arbitrary allowable
parameter t was sometimes specified by the arc length s of C.
Cleafly, the analytic form of such a representation depends on
the choice of thé coordinate system in the plane. Therefore, the
question arises whether there is a possibility of characterizing
a curve in a manner independent of coordinates, exéept for the

position of the curve in the plane, that is, to within direct
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congruent transformations.

When trying to find such a representation we have td look
for quantities which are independent of the choice of ccordinates
and parameter, but depend only on the nature 6f the curve, that
is, on its geometric shape. The arc length s, and the curvature
K are quantities of this kind, and as such are called the intrinsic

coordinates of curves in a plane. The functional relation:

K = K(s) 5.3.14

is called the natural or intrinsic equation of the corresﬁonding
curve. |

It can be shown that if K(s) is continuous in an interval,
it determines an afc of a curve uniquely, except for its position
and orientation in the plane. As a consequence of this,vany invar-
iant with respect to direct congruent transformations which can be
assoclated with a curve is completely determined where the corQ
responding K(s) function is given.

Note that in specifying a curve by giving its intrinsic
equation, the curvature, K = K(s), can take cn both positive and
negative values. If the counter-clockwise direction is the direction
of positive change of tangent, then for travel is the positive
direction along a curve, curvature to the left is positive, and

curvature to the right is negative.

5.4 Shape Description Using Aresa Operators

In section 5.2 it was pointed out that an area operator
responds to the local properties,i.e. the geometric shape; of the
I(x,y) contours. In the last section we sasw that in order to

specify a curve in a plane, curvature as a function of arc length is-



Fig. 5.4.1 A Mesa Intensity Function, I(x,y)

sufficient. A contour on an I(x,y) function is a planar curve.
Clearly, the dependence of the area operator response on the local
geometric shape of the contour must be related in some way to the
local curvature of that contour.

In this section we study this relationship in a preliminary
fashion. We demonstrate that the area operator can be used to
detect points of maximum curvature on a contour. In other words, we
demonstrate that the area operator is capable of the same type of

(18) found in human beings. (See

discrimination that Attneave
section 1.3.)

The I(x,y) functions dealt with in this section will be
two-valued functions of the type shown in Fig. 5.4.1. 1In the region
M, and along the closed curve C, I(x,y) = i,; in the region M,,
I(x,y) = 12, where il> i2. This type of[function will be referred
to as a mesa function.

The curve C has the parametric representation, x(s), y(s),
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Fig. 5.4.2 The Relation between N and Np at Two Points

on a Curve

from which one can obtain its intrinsic equation, K(s).
Definition 5.4.1
1) If one is facing along the positive direction for

C, M, will lie to the left.

1
2) The_positiﬁe normal to C, ﬁp, extends from C
into M..
In Fig. 5.4.2 we show the relation between the positive
normal, ﬁp, and the principal normal, N, for the cases where C
is curving awey from M,, and towards Ml' In fhe first case K(s)
is negative, and in the second, positive.
On the basis of Definition 5.4.1 we can prove the following
general-theorem about area operators.
Theorem 5.4.1

The value of an area operator at any point on a mesa

function is dependent only on the geometric relationship of the
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operator and the curve C.
Proof
The value of 1(x,y) in equation 5.2.4 must lie in the
range iy > I(x,y) >i,. The left-hend equality holds only if A_
is totally within Ml; the right—hand-equality, if AC is totally

2
Clearly, the value of I §T§7 in equation 5.2.4 is deperdent on

within M,., If the curve C intersects A ; then il> TT§T§7:>12.
c

the geometric relationship of C and AC, and on the magnitude of
i, and i,. But the value of Rl(x,y) in eguation 5.2.3 or RZ(X,y)
in equation 5.2.9 is dependent only on the relative magnitude of
I(x,y) andATT§T§7 and hence is independent of the actual values
of il and i2. However, since it is dependent on the relative
magnitude of I XT?j,’it rust be dependent on the geomefric relation-
ship between A end C,and the point (x,y) and C. Since Rl(x,y)‘
and R2(X,y) are the variable parts in fhe integrals of equations
5.2.2 and 5,2.8, it follows that Vl(x,y), Vz(x,y) and consequently
V(x,y) are dependent only.on the geometric relationship between |
C and the area operator. Q.E.D.

We now restrict our attention to a particular ares
operator. It is the Vl(x,y) operator defined in equations 5.2.2
to 5.2.6. The geometry of the operator is a unit radius disk
where AC is the center of the disk and AS is the‘remainder. The
k(x',y') weighting function is constant and equals one. We Will
demonstrate fhat this operator can be used fo detect points on
thé,curve C at which the absolute value of the K(s) function is
a local maximum, That is, given an-I(x,y) mesa function this ares

operator can detect points of maximum local curvature (positive

or negative) on the curve C,
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Definition 5.4.2
The distance belween two points, Pi and’Pj, in the
xy-plane is denoted by D(Pi,Pj)'where
| 1
D(Pi’Pj) = {(Xi—Xj)2 + (yi—yj)z} 2 5.4.1
The two following lemmas formalize éome of the discussion
in section 5.2. They are true for any area operator poSsessing
the point center, disk surround geometry, independent of the
weighting function.
Lemma 5.4.1
If the point (x,y) is anywhere ithg,_
‘Vl(X,y) E'O.
Lemmz 5.4.2 |
If the point Po is in Ml and the point Pc is on C,‘then
Vl(x,y) = 0 at P  if and only if for all P_,
D(P,P.)> 1
Definition 5.4.3
Let us associate with any point (x(s), y(s)) on C the
first point (Xm,ym) along the positive normal to C at which Vl(x,y)
is a maximum. Let us denote the curve defined by the set of such
points as Cm and let it have the parametric representation Xy = Xm(s),
Vg = y(s). Then Vl(x,y) along C_ is given by‘Vl(Xm(s), ym(s)) |
which we will denote by V?(s), and which we shall call the operator
ridge function, or the ridge function‘for short.
Lemma 5.4.3%

For aﬁy point (x(s), y(s)) on C there exists a point

(Xm(s), ym(s)) on C
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Fig. 5.4.% An I(x,y) Mesa Function with a

Convex M, Region

2

This lemma is true by virtue of the fact that Vl(x,y)

is bounded, 0¢ V. (x,y) ¢ wn, and by Lemmas 5.4.1 and 5.4.2.

1
Definition 5.4.4
A region is said to be convex if given any two points
in the region, all pcints on the straight line connecting the
two points also lie in the region.
Consider the case where I(x,y) is a mesa function in
which M2 is a convexbregion as shown in Fig. 5.4.3.
Theorem 5.4.2
If M, is convex then Vl(x,y)s /2 for all x and y.

Proof
The point penter, disk surround of the Vl(x,y) operator
is a convex region. The intersection of convex regions is a con-

vex region. Hence if the operator disk intersects M the inter-

2)
section must be a convex region. If the center of the disk is
in M

5 Vl(x,y) = 0 by Lemma 5.4.1. If the center of the disk is

on C, then the area of intersection between the disk and M2 must
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be less than or equal to wn/2. If the center of the disk is in

M the area of intersection‘of the disk and M must be less than

i 2

/2. But Vl(x,y) is equal to this area of intersection. Hence,

Vl(x,y)S‘m/Z. Q.E.D.
Theorem 5.4.73%
If M2 is convex, C and Cm are coincident.
Proof
There are two possible cases. In the first case
shown in Fig. 5.4.4(a) the center of the operator disk is on

C at a point (Xo,yo) and M, is completely contained by the disk.
),

If (xn,yn) is any point on the positive normal to C at (Xo,yo

then along Np’ Vl(xn’yn) = Vl(Xo,yo) , as long as M2 remains

completely cortained by the disk. As soon as a point on ﬁp is

" reached at which some part of M2 is not contained in the disk
(dashed circle in Fig. 5.4.4(a)), the area of intersection
between M2 and the disk will have decreased. Hence,

Vl(xd,yo):>Vl(X ). Sigce Vl(xo,yo):le(xn,yn), C and C

n’yn

are coincident in this case.
In the second and more usual case shown in Fig. 5.4.4(b),

the operator is at some point (Xo,y ) on C, and M2 is not totally

O

-contained within the operator disk. By Theorem 5.4.2 the area

of intersection of M, and the operator disk is less than or

2
'equal to m/2. This implies that when the center of the disk

is on C at (Xo,yo), the area of intersection must lie in one of
the half-disks formed by the tangent diameter at (Xo;yo). (See

Fig. 5.4.4(b).) Tet us call it the M, half-disk, and the other

2

-the Ml half-disk. Obviously, as the'operator moves away from

(xo,yo) along the positive normal, the area of intersection between
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M2 and the M2 half-disk must decrease. The only way it could

increase is if a part of M, moved across the tangernt diameter

2
into the M2 half-disk. But this would contradict the half-disk
definition. Hence, if (Xn,yn) is any point on the positive
normal to C at (Xo,yo), Vl(xo,yo);‘vl(xn, yn).

is

Thus, in both .cases C and Cm are coincident if M2

convex.  Q.E.D.

In the case where Ml is the convex region two theorems
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can be proven that are the equivalents of Theorems'5.4.2 and 5.4.3.

Theorem 5.4.4
If Ml is a convex region, C and Cm afe coincident
and Cm is continuous everywhere excert at most at one point.
Proof
Agsume that the center of the disk operator is on C and
that the region Ml contained by C is convex, In order to prove
this theorem it is sufficient to show that as the disk center
moves infinitesimally away from C zlong the positiVe normal,
the area of intersection between Mi ana the disk stays constant
or increases except in one very special situation.

If the disk center is at some point on C, and the region Ml
and the curve C are completely contained by the disk, it is
obvious that the area of intersection will not change as the disk
center moﬁes an infinitesimal distance along the positive normal,

The other possible situation is illustrated in Fig. 5.4

The center of the disk is on C at the point (Xo,yo). The curve

C intersects the edge of the disk at a number of places, forming

D

the arcs Ll’ L2,etc. which lie completely within Ml’ The projec-

‘tions of these arcs on the tangent to C at (xo,yo) are denoted
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Fig. 5.4.5 The Operator Disk on C with & Convex
Ml Region '

by Ll’ Lg, etc.
If the center of the disk moves an infinitesimal
distance On along ﬁp, the change in the area of intersection

between the disk and Ml is given by
A m .
AL = Z LT An,

jo

If the arc Lj lies in the positive ﬁp direction with respect

to thé tangent line, the quantity Lg An must be positive., Since
Mi is convex, all the L? must lie in the positive ﬁp direction,
Hence the quantity AA must be positive,

‘ In computing AA, second order effects due to changes
in the I% can legitimately be ignored provided at least one of
the Lg is non-zero, For a very special class of figures it is
possible to have a situation in which there are-no Lj arcs wher;t
the disk center is on C, and yet such an arc is formed in moving

an infinitesimal distance An along Np' The situation is illustrated



122

OPERATOR DISK

TANGENT LINE — =3\

Fig. 5.4.6(a) The Operator Disk (b) The DlSk Moved a Dlstance'
at‘(xo,yo) - An along Np

in Fig. 5.4.6, In Fig, 5.4.6(5) the center éf the disk is at
(Xo,yo) on C, The tangenf to C at this point is coincident
with C out to the edge of the disk. The edge of the disk is
then coincident with C for a short distance, the»remainder of

C lying within the disk. Since the curve C is not part of the
Ml region, there are no Lj arcs., Consequently, the formula for
AA becomes

LA =

N~

m
j{j AL An.
=1

But it is evident in Fig. 5.4. 6(b) that the AL, segment lies
in the negative Np direction with respect to the tangent line,
Consequently, AA is negative.

This situation occurs only at one point on C, Move-~
ment on C in either direction away from (Xo,yo) either causes
the formation of an Lj arc or causes Ml and C to be completély

contained within the disk.



The area of intersection between the disk and Ml
at (xo,yo) is a maximum. It decreases steadily as the disk
moves in the positive ﬁp direction away from (Xo,yo).

It was pointed out in the proof of Theorem 5.4.2
that Vl(x,y) is equal to the area of intersection between the

disk and the region M, provided the disk center is on C or in

2
Mi. From the above discussion, the area of intersection between
the éonvex Ml region and the disk stays constant or increases,
except ét most at one point, as the disk center moves away from
C along ﬁp. Consequently, Vl(x,y) decreases or stays constant.

From Lemma 5.4;1, Vl(x,y) =0 in M Clearly at any

2°
point on C,’Vl(x,y) along ﬁp_is a local maximum on C, except
at most at one point. By definition 5.4.3, Cm is the sequenée

of such local maxima. Hence, C and Cm are coincident.

‘At the singular point for the special class of figures,

Vl(x,y) along ﬁp is a maximum at the intersection of ﬁpAand the
opposite side of C. Thus, C and Cm are still coincident, but
C, is discontinuous at the singular point. Q.E.D.
The second theorem for a convex Ml region is easier
to prove.
ATheorem 5.4.5
If M, is convex, V?(s)?lm/2.

Proof

123

By definition 5.4.3%, VT(S) is the value of the operator

along Cm’ By theorem 5.4.4, it is the wvalue along C. If the
center of the operator disk is on C, the area of intersection
of the disk and the convex region, Ml’ must be less than or equal

to x/2. Hence, VT(S) >w/2, Q.E.D.
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As mentioned earlier, we want to show the relafion—
ship between the value of the Vl(x,y) operator and the curvature
function, K(s), of the curve C. Up to this point we have
demonstrated that if either Ml or M,

2
the normal to C has a local maximum at C. Thus, there is a

is convex, Vl(x,y) along

ridge in the Vl(x,y) function along the curve C., This ridge
function has been designated the VT(s) function. If VT(S)é n/2

for all s, we know the region M, is convex. Consequently,

2
K(s) cannot take on positive values. Similarly, if V?(s)?zx/Z
for all s, M1 is the convex region and K(s) is a non-negative
function. iIf V?(so) = n/2, the arc of the curve C within the
operator disk centered at S, must be a straight line and
consequently K(so) = 0,

Wevcan now demonstrate that there is a one-to-one
correlation between the local maxima and minima of the K(s)
function for a curve C, and those of the reéulting VT(S) func-
tion, provided these features are "widely" spaced on C, Before
doing this, we requiré some definitions.

Definition 5.4.5

1) A feature on the curve C is any point on C at
which its curvature function K(s) has a local maximum or minimum
that is non-zero.

2) A feature at a point P, on C is separable (by'the
operator) if:

(a) +the distance between Pi and any other feature,
or point at which K(s) changes sign, is greater than the diameter

of the operator disk, i.e. greater than two;



(b) when the center of the operator disk is on

- C at Pk’

intersected by the disk.

such that D(Pi,Pk) £1, there is only one arc of C

Theorem 5.4.6
If a feature at Pi on C is seperable then C and C
are coincident at all points P on C such that D(Pi,P ) <1,
Proof
Draw a circle of radius l+e, € >0, centered on Pk
in such a fashion that only a single arc of C is intersected.
One:of the two regions formed by the arc of C cutting this disk,
must be convex., If it is a convex Ml fegion, apply Theqrem 5.4.4
to complete the proof of this theorem., If it is a convex M2
region, apply Therocem 5.4.3. Q.E.D.
Definition 5.4.6
An indicator is any point on the VT(S) function at
which it has a local maximum or minimum that is not equal to
w/2. |
Using the above definitions we can state the following
theorem: |
Theorem 5.4.7
| For every separable feature on C there is a corres-
ponding indicator on VT(S).
In order to prove‘the above theorem, another theorem
in plane geometry is required.
Theorem 5.4.8
Assume that the absolute value of the curvature
function for a curvé G is monotonically decreasing. A convex
‘region is defined if a disk of approrriate size is centered

at some point on G. If the center of the disk moves along G in
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(+) i+)

Fig, 5.4.7(a2) A Disk at Two Positions (b) The Disks Superimposed
. on a Curve with Decreasing

Curvature

the direction of decreasing absolute value of curvature, the
area of this convex region increases,
Proof
The situation postulated in the statement of the
theorem is depicted in Fig, 5.4.7(a). A geometric proof for
the theorem is indicated in Fig. 5.4.7(b). The disk and
intersected arc of G at position #1 in Fig. 5.4.7(a) are rigidly
translated to position #2 so that the tangent vectors Tl and TZ
are coincident. Since the absolute value of the curvature
decreases between positions #1 and #2, it is evident that A, must
contained by A2. Q.E.D. |
Proof. of Theorem 5.4.7
The point Po in Fig. 5.4.8 1s a separable feature. Thus,

5

the absolute value of the curvature function in the ranges Po fo P2 and

4
radius one centered at Pl' If the center of the disk is moved

Po to P, is monotonically decreasing. Consider the disk of



Fig. 5.4.8 The Disk Operator in the Neighborhood

of a Separable Feature

along C toward P the convex area Al increases by Theorem 5.4.8.

29
Similarly as the center of the disk at P3 moves toward P4, the
convex aresa A2 increases. Clearly, the convex area must be a
minimum at some point on C between Pl and P3. It follows
then that V?(s) has either a local maximum or minimum in the same
region,

If Mi and Mj are Ml and M2 regions respectively;
the positive direction along C is from P4 to P3’ and the point
Po is a local curvature maximum, It follows that V?(s) ZW/Q

between P3 and Pl and has a local maximum in this range. Conversely
if Mi and Mj are M2 and Ml’ regions respectively, the point Po
is a local curvature minimum, and V?(s)fzn/2 and has a local

minimum in the range P, to.PB. Q.E.D.
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In the proof of Theorem 5.4.7 it is seen that a
separable local maximum or minimum of the curvature fﬁnction
gives rise to a cofresponding local maximum or minimum of the
V?(s) function. In addition, if the separable feature is at
a point Py on C, the indicator on V?(s) must occur at a point
P, on C such that D(PO,Pi)s 1.
This completes our developemeht of the theory associated
with the Vi(x,y) operator and I(x,y) mesa functions. A similar
set of theorems could be developed for the V2(X,y) operator.
The theory-for the operator V{(x,y) = maX(Vl, V2) would consist
of some combination of the thecry for Vl(x,y) and V2(x,y).
Let us consider for a moment the case where I(k,y)
is a continuous function. Assume an area operator is tracked
along some contour of a continuous I(x,y) function, say I(x,y) = L
The resulting response function is identiéal with that obtained

along the curve C of the mesa function I'(X;y), where

1 if I(x,y)>»1I
I'(X,y) = ¢

0 if I(x,y)21I,.
This follows from the definition of Rl(x,y) in equation 5.2.3,
and the fact that the contour line I(x,y) = T_ and the curve C
for I'(x,y) are identical. Thus, the theorems givenvabove
relating features on C to the V?(s) function can be applied to
the contour lines on a continuous I(x,y) function. In particular
the Vl(x,y) function along an intensity contour line can detect
points of local maximum curvatufe. It also reflects the local

concavity or convexity of the region enclosed by the contour line.
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6. SECONDARY PROCESSING OF RECEPTOR ACTIVITY FUNCTIONS

6.1 Introduction

In fhe previous chapters we have seen that the receptor
activity in a lateral inhibitory network provides a gréded erhance-
ment of illumination discontinuities. If\has beeﬁ showh_that
over a certain range of operation this gréded enhancement pro-
perty can be modelled by a weighted area operator. -In a
theoretical study of area operators it was shown that a function,
V?(s), could be derived which provided =a descripﬁion of an
illumination boundary. This description is related to the curvature
function of the boundary. As such, for a given operator, it is |
an intrinsic description dependent only on the shape of the
boundary;

In this chapter we discussvtwo studies involving the
processing of receptor activity functions elicifed by vafious
patterns of illumination. Two examples of such activity.functions
are given in Fig. 6.1.1(a) and (b). The illumination pattern
in Fig. 6.1.1(a) was a white, five-sided polygon on a black
background. Note the peaks in receptor activity near the corners;
the lower activity along the edges; and the complete lack of activity
in the center of the polygon.‘ The illumination pattern in
Fig. 6.1.1(b) was a white disk on a black background. In this
case the receptor activity is a maximum around the periphery
“of the whole figufe, decreasing uniformly to zero in the center.

The first study aealt with in this chapter demonstrates
that is 1s posgible to predict = path around the boundary of =z
polygonai pattern on the basis of thé information contained in

the receptor activity function. The second study deals with an
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algorithm that has been developed for obtaining the receptor -
activity equivalent of the V?(s) description of a boundary.

In both of the following studies, the receptor activity
functions were obtained using the minimum ambiguity simulatof'con—'
figuration determined inAchapter 3, This is'the upiform kij(d)
configuration in which the receptor field of view is 1.5u, ahd
the uniform illumination'activity for 5 rounded 9x9 arréj is-
zero pulses/sec.

The receptor.activity functions for the various
illumination patterns were puﬁched onto'paper tépe. This_tape
served as fhe input ﬁo a PDP-9 computer which was programmed in
assembler language to carry out the subsequent processing_éf the

functions.

6.2 Boundary Prediction Using Peak Receptor Activity

In Fig. 6.2.1(a) the e; = ei(x,y) function for a white

polygon on a black background is shown. This function serves
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Fig. 6.2.1(a) The Polygonal ei(x,y) (b) The Contoured xi(x,y)
Function Function

......

......

Fig. 6.2.1(c) The Local Maxima of (d) The Expanded Local Maxima

the xi(x,y) Function

as the input to the simulator which computes the receptor response
function x; = Xi(x,y) at integer values of x and-y. Fig., 6.1.1(a)
and Fig. 6.2,1(b) show isometric and contour plots of the xi(x,y)
function for the thte polygon, This function is read into a
PDP-9 digital computer for further processing.

In this section -a method is described which uses the
local maxima of Xi(x,y) functions to trace the boundary of polygons.
The first stage involves the detection of theée local maxima.

This is accomplished by comparing the activity, X5 of each receptor

“with that of neighboring receptors, In Fig, 6,2.1(c) the local
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maxima Tor the Xi(x,y) function of Fig. 6.2.1(5)'are shown.
Only these local méxima are retained.

In the next stage of the process, use is made of a pgigii
information that relates peak receptor activity and wedge angle
. (This information was obtained through the experiments
described in chapter 3.) Hence, a wedge angle,ai(x,y),can be
associated with each of the local maxima of the Xi(x,y) furction.

| In thévéomputer the appropriate oy value is inéerted
into each of the non-zero x, locations. The address of each ay
vélue is then;épread through a small block of memory surrounding
' that address. This compensates for the uncertainty that arises
in asscciating peak reoéptor activity and: wedge angle. This
uncertainty is caused by the orientation dependence problem
dealt with in chapters 2 and %, and by the discrete nature of the
Xi(x,y) function,

The process of predicting the path of the polygon
boundary can now begin. The pdint associated with the absolute
maximum of the Xi(x,y) function is arbitrarily chdsgn as the
starting point. Call it the first peak point, PPl’ and let the

ay value associated with it be denoted by « In the neighborhood

1
of PPl the polygon boundary consists of two straight edges which
form a wedge of angle oy The oriertation of_this wedge in the
xy-plane is unknown, | |

| In order to obtain the orientation of one side of the
wedge, a spiralvsearch through the data block'in,memory is carried
out until a non-zero location is encountered. This operation

is illustrated in Fig. 6.2.2(a). The second side of the wedge,

al,can have one of two brientations, 2al degrees apart, with
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respect to the first gside. Lines are extended from PPl in bdth
directions through the data block until a non-zero location is
encountered. This operation is illustfated in Fig, 6.2.2(b).1
It establishes the relative orientation of the twovsides of the
wedge. |

The wedge angle and orientation are now known; Con-
sequently, the ciockwise direction around the boundary can be
determined. A line is drawn in the clockwise direction from PPl
to the first local maximum, Typically, it will be a saddle point
(denote it by SPl) of the Xi(x,y) function caused by a lbng straight
portion of the boundary. If so, it will have an ay of 180°.
The line joining PPl to SPl is extended until another local
maximum_is encouvntered. Assume 1t also has an oy of 1800, and
hence denote it by SPZ' The boundary line is redrawn to connect
PPy ‘to.SP2 and is again extended. Assume that this time a local
maximum is encountered having an'ai £ 180°. Let it be o, and
denote the point by PPZ’ The boundary line is redrawn to connect
PPl to PP2. This determines the first portion of the polygon
boundary as illustrated in Fig. 6.2.2(c).

At this point the following information is available.
The angle o, assdciated with PPZ; the orientation of one side of
the PP2 wedge; and the direction of progression around the |
boundary. Hence, the orientation of the second side of the wedge
ban be predicted. If it is cdnsidered as a directed line starting

at PP, it must make an angle of (x—a2) with the directed line

2’
PP1~+PP2. A line is extended in this new direction until 1t
encountefs either a saddle point or a peak point. This is

illustrated in Fig. 6.2.2(d). In this fashion the polygon boundary



is traced. The completed trace is shown in Fig. 6.2.2(e).

In the above routine, a priori information permits
the association.of'the local maxima of the receptor activity
function with wedge angles. Once this association is made,
each local maximum provides a description of the nearby boundary.
Consequently, the sequence of such local maxima along the boundary,
and the distance between them, provide a good description for the

boundary.

6.% Concave-Convex Figures

In the routine described in the preceding section, the
initial operation after obtaining the Xi(X;y) function was to
detect the local maxima of the function. However, the peak
response associéted with a wedge angle greater than 180° is not
a local maximum, because the wedge 1s the intersection
of two straight edges, aﬁd the straight edge response is greater
than the response associated with such a wedge. |

In Fig. 6.3.1{(b) the x, (x,y) function for the black
polygon sketched in Fig, 6.3.1(a) is shown., The responses assoc-
iated with the four corners of the polygon that are concave with.
respect to the white region are saddle points on the xi(x,y[‘
funétion. They are not local maxima. 'Thus, the procedure
described in section 6.2 could not be used to trace the boundary
of a concave-convex figure.

This problem can be averted by setting up a second
receptor network which responds according to the set of equations

n
r t | 3
x] = el gg% kijmax (O,Xj tij)’ i=l,...n 6.3.1
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A

Fig. 6.3.1(a) A Black Polygon with (b) Receptor Activity Function

a Convex Vertex for the Black Polygon
. . _ i
wherg el =ele;) . - e;. (In the case of the simulator
(e.) = 242 p.p.s.) Note that even with black and white patterns,

1"max

ey and hence ei, can have any value in the range Osfei$ 242’p.p.sf
due to the finite size of the receptor field of view. | |
The xi gset of equations are the equivaieht of fhei
Vz(x,y) operator described in chapter 5. They are also analogous
to the inhibitory-center, excitatory-surround neurons found
in the retinal ganglion and lateral geniculate of the cat and
monkey(6’ll).
| vIn practice it was a simple matter to modify the
simulator so that both the Xi(x,y) and the Xi(x,y) activity func-
fions were obtained in the course of a single scan over a pattern.
If the central receptor of the rounded 9x9 array of'receptors
was in an illuminated area,‘the'xi equations were used. _If it was
in a dark area, the Xi equations were used, and a marker: was ppt.
put on the punched'paper=tapénoutput.
The Xi(x,y)”functibn for the black polygon of Fig. 6.%.1(a)

is shown in Fig. 6.3.2(a). At each point where the Xi(x,y)
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Fig. 6;3.2(a)_Isometric of the’xi(x,y) (b) Isometric View of the
Function for the Black: Polygon  Combined Activity Function

function (Fig. 6.3.1(b)) haé a saddle péint, the Xi(x,y) function
has a local maXimum. The reverse is true és well, The combined
activity function, Xi(x,y),'is shown in Fig. 6.3.2(b). This
function is equivalent to the V(X,y) operator in section 5.2.

It is the combination of the Xi(x,y) and Xi(x,y).function81
Consequently, there is a loczl actiﬁity maximum at all fivé
cofners of the polygon. Hence, the algorithm of section 6.2

would trace the boundary of this concave-convex polygon.

6.4 Ridge Point Operators

At the end of sectibﬁ‘6.2'it was pdinted out fhat
" the sequence.of local maxima of the receptor activity function
along the boundary of a pattern provides a good description of
that boundary. There is another way of describing a patterht
boundary in terms of receptor activity which is more detailed,
and which cbntains the local maxima description.

An isometric of the receptor activity function for.a

polygon is shown in Fig. 6.4.1. A line has been sketched on this

figure which follows the ridge in the receptor acitiviy function
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Fig. 6. 4 1 Isometric of an Act1v1ty Function
with Superlmposed Rldge TLine.

adjaéent to the boundary. The sequence of points making up
this ridge is called the receptor activity ridge function, or
the ridge function for short. This ridge function is the ‘recep-
tor act1v1ty equlvalent of the V (s) function for a boundary
dealt with in section 5.4. The sequence of local maxlma described
earlier in this chapter is the sequence of turning points of
the ridge function. |

In order to study the properties of the ridge function,
and to see 1f it provides a useful starting point for a pqttern
recognition scheme, an algorithm for extracting it was developed.
The first stage of the algorithm detects any ridge points in the
receptor activity function. The second stage then operates on
the set of ridge points to perform the extraction.

Three basically similar operators are used for the
extraction of ridge poinfs. They all rely on the examihation-

of an odd number of collinear points fo determine whether the

central point of the line is a maximum. They differ in the number
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Fig, 6,4.2(a) The Horizontal Ridge (b) The Diagonal Ridge
Point Operator Point Operator

(¢) The Combined Ridge
Point Operator

of lines examined and/or the orientation of the lines with respect
to the receptor grid. |

The horizontal, diagonal and combined operators
are shown schematically in Figs, 6.4.2(a), (b) and (c) res-
Vpectively. In.the case of the horizontal and diagonal operators
the central‘boint is designated to be é ridge .point if its activity
exceeds a preset threshold and is a maximum on at least one
of the two lines, For the combinéd operator the central point
activity must exceed the threshold and be a maximum on at least
two of the four lines. (A threshold is included ih the operator
so that uniformly illuminated areas do notvgive rise to spurious
ridge points.)

A contoured display of the polygon activity function
is shown in Fig. 6.4.3(a). The set of ridge points detected on
this function by the horizontal, diagonal, and combined operators

is shown in Fig, 6.4.3(b), (c), and (d) respectively. For the
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Fig. 6.4.3(a) Contoured Activity (b) Ridge Points Detected
Function for Polygon by Horizontal Operator

Fig. 6.4.%(c) Ridge Points Detected (@) Ridge Poirts Detectel by
by Diagonal Operator T Combined-Operator"

horizontal and diagonal operators whenever one cf the operator
lines is pérallel to a portion of the boundary one gets a number
of spurious ridge points. For exampie, in the case of the
horizontal operator there are clusters of ridge points along

the horizontal and vertical sides of the polygon. Similarly,
the diagonal operator gives clusters of spurious points along
the diagonal sides of the polygon. This clustering of ridge
points occurs because,by.definition,the‘activity of the cenfral
point of an operator line must be greater than or ggggl to the

activity of any of the remaining points. If an operator line is
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Fig. 6.4.4(c) Ridge Points Detected (d) Ridge Points Detected

by Diagonal Operator by Combined Operator
parallei to an activity contour, the condition»of equality is
frequently met by.points lying off the actual ridge line of the
activity function. Such'points are designated to be ridge pointé
by the horizontal or diagonal operators. However; the combined
voperator requires that the centrdl point be a maximum along‘at least
two of therperator lines. Hence, it does not designate such points.
to be ridge points. This is evident in 6.4.%(b).

A contoured display of the receptor activity function in re-

sponse 10 & black "S" is shown in Fig. 6.4.4(a). In Figs. 6.4.4(Db)
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and (c) the clusters of spurious ridge points detected by the
horizontal and diagonal operators are again present. In Fig. 6.4.4(a)
the combined operator»has given a much cleaner set of ridge points,
Note the gap indicated by the arrov. Although this gap also
‘occurs in Fig. 6.4;4(0), it does illustrate a fault of the
combined operator. Since the pattern is a black "S", the recep-
tor activity function at the point indicated has a saddle point
of the type mentioned in section 6.3. The combined operator does
not designate such points to be ridge points since they are
normally a maximum along only one of the operator lines, in this
case the vertical line. Hence, in choosing a ridge»point
operator, there is an unavoidable trade-off between spurious
r idge points and the detection of saddle points. |

The ridge point operators caﬁ also be used on the
combined receptor activity function discussed in section 6.3.
This type of‘function for a letter "E" is shown in contour in
Fig. 6.4.5(a). As one would expect, there are a great number of
spurious ridge points detected by the horizontal operatof,
Fig. 6.4.5(b). The points detected by the diagonal and the com-
bined operators are shown in Figs. 6.4.5(c) and (d) respectively.
As usual, the combined operator givés the cleanest set of ridge
points; There are, howevér, gaps at two corners on the letter.

In the next section, an algofithm is described which
operates on a given éet of ridge points to extract the ridge

function.
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Fig. 6.4.5(a) Combined Receptor Activity (b) Ridge Points Detected
Function for an "E" in Contour by Horizontal Operator
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Fig. 6.4.5(c) Ridge Points Detected (d) Ridge Points Detected by

by Diagonal Operator Combined Operator

6.5 The "Ridge-Runner! Algorithm

The "ridge—runner”-algorithm.deSCribed in this section
traces around a pattern boundary by following the line of maximum
activity through a set of ridge pointé. The activity at each
point on this line is noted, and the resulting activity sequence
forms the ridge function for the particular pattern. The tracing
algorithm operates on a "search and destfoy” principle.

Assume that the trace is partially complete, having

arrived at the jth point, Pj, on the ridge line. All the points



in a square of side n, n odd, centered on Pj’ arevexamined. A
list is made of the locations of all the ridge points encountered.
The Pj list is cohpared with the list compiled for the previous
point, Pj—i’ to see if it contains any_points not in the Pj~l
list. If it does, the pdint in this sublist having the greatest
activity is chosen, and it becomes Pj+l’ If not, the point in
the complete Pj list having the greatest activity is chosen

and becomes Pj+l’ In both éasesvthe lpcation and activity of
Pj+1 is noted in the ridge function table and then a zero is
inserted in:the Pj+l location. The pcint Pj+l is dealt with in

the same manner as PjQ

Setting the activity of ridge-line points to zero
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after they have been detected prevents the algorithm from doubling

back along the ridge-line. A zero is also inserted into all
locations in the Pj_l list. This tends to wipe out spurious
ridge points which can cause problems if a gap in the ridge-line
is encountered.

Given the above basic procedure, the "ridge-runner"
algorithm starts at the point of maximum activity on the set of
ridge points. It proceeds along the ridge—line'fof a preset
number of paints, It then inserts the appropriate activity values
back into the locations of the first few points on the ridge-
line, It goes back to the point where it stopped and proceeds
as described above except that it now checks each new point on
the ridgéQIine to see if it is the starting point. If it is,
the algorithm is finished and the ridge function for the pattern

boundary should be contained in the ridge function table.



The above paragraphs provide a description of the
basic operating principles of the "ridge-runner" algorithm., In
implementing this algorithm on thé computer we found that séme
special routines had to'be included. One of these enables the
algorithm to get into and out of very sharp corners in a pattern
boundéry, e.g. the internal angles of a "W". It also permits
it to get back on the ridge-line if it has strayed. Another
routine allows the algorithm to spen gaps in the ridge-line.
Still a third is used if the ?attern has more than one boundary,
e.g. the block letters "O" and "B".

The algorithm has been tested on the ridge point sets
of numerous patterns. It works equally well on sets obtained
from the combiﬂed activity function or the individual functions.
It works best when the number of spurious ridge points is kept
to a minimum, but wili work even in such extreme cases as that
of Fig. 6.4.5(b). The path traced by the algorithm through
this set of ridge points is shown in Fig. 6.5.1(a). Note the
line running off from the bottom bar on the "E"; The algorithm
strayed from the ridge-line here, and then returned. The points
picked up along this spurious line would not be included in the
ridge function.

The path traced through the set of ridge points in
Fig. 6.4.5(d) is shown in Fig. 6.5.1(b). Note that this path
. is basically.similar to that of Fig. 6.5.1(a). Two more examples
of paths traced by the algorithm are given in Figs. 6.5.1(c)
and (d).

In this and the preceeding section we have demonstrated

an algorithm for obtaining the ridge function of a receptor activity
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Fig. 6.5.1(a) Ridge-Line Traced Through (b) Ridge-Iine Traced through
Ridge Points of Fig. 6.4.5(b) Ridge Points of Fig.6.4.5(a

Fig. 6.5.1(c) Ridge-Line for Points (4) Ridge-Line for Points
in Fig. 6.4.3(d) in Fig. 6.4.4(c)

function. In the next chapter we discuss the properties of‘this
ridge function and suggest some possible methods for using it

in a pattern recognition schemne.
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7. THE RIDGE FUNCTION AND APPLICATIONS

7.1 Introduction

In this chapter we present a number of examples
of ridge functions obtained as a result of the processing
described-in the last chapter. We point out how various features
of these ridge functions relate to features on the patterns
from which they were obtained. In particular we show how the
ridge function relates to the curvature of the apttern. This
gives us a practical demonstration of some of the theorems
in chapter 5. Finally, we discuss some of the implications

these ridge functions may have in the field of pattern recogaition.

7.2 The Receptor Activity Ridge Function

In chapter 5 some of the theory associated with area
operators was developed. It was shown that near points on the
boundary at which the curvature function had a non-zero local
maximum or minimum, the'VT(s) function also had a local maximum
or minimum,

In chapter 4 we saw that ‘the receptor activity in a

lateral inhibitory network can be modelled to a first approximation

by an area operator. Thus, some of the theory of area operators

m
1

have a receptor activity equivalent. As indicated in chapter 6,

should be applicable. In particular, the V;(s) function should
the receptor activity ridge functicn is this equivalent.

In order to demonsirate that the theory for the V?(s)
function can be applied to the ridge function, consider an example.

The ridge line path for a letter "G" traced by the algorithm of
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Fig. 7.2.1 The Ridge-Line Path and Ridge Function for a Black "G"

section 6,5, and the resulting ridge function, are given in
Fig, 7.2.1. (The small circle indicaces the start and finish of
the clockwise tracé. The numbers indicate equiﬁalent points on
the path and function.) The letter was black on a white back-
ground. Hence the region within the path is an M2 region; out-
side is an Ml region, The small tabs at the beginning and end
of the ridge function indicate the nominal straight edge value,
/2.

The ridge line path begins at a local maximum of
curvature. By Theorem 5.4.5 the ridge function is greater than
ﬂ/2;'by Theorem 5.4.7 it has a local maximum. As the path proceeds

in a clockwise direction away from the starting point, the boundary

i

i
i

[ )
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becomes loéally concave, By Theorem 5.4.2 the ridge function
should, and does, deqréase until it is less than n/2. (The"
"noisiness" of the function is caused by the discrete nature of
the receptor érray.) It remains below n/2 all the way around

the concave exterior of the letter. At the end of this exterior
portion of the "G", at (3) , the boundary has two consecutive
local minima of curvature. The ridge function by Theorem 5.4.7
should have two local minima. It does. (Note that the magnitudes
of these minima reflect the magnitude of the change in the tangent
to the boundary at these two points. See below.) The path along
the boundarybbecomes locally convex. The value of the ridge func-
tion increases until it is, on the average, greater than =n/2
(Theorem 5.4.5). The path proceeds around the inside of the "G
until another local maximum of curvature is.encountered at (5).
The ridge function has-a local maximum at (5) (Theorem 5.4.7).
(Note the difference in magnitude between this local maximum and
the dne at the beginhing of the function.) In a similar fashion
the features on the remainder of the boundary of the "G" ére
mirrored by the corresponding indicators (local maximé and minima)
on the ridge function.

4. As noted above in parentheses, the ridge function, and
indeed thé’V?(s) function contains more information about an
illumination boundary than is indicated by the theory in chapter 5.
The expériments in chapter 3 demonstrated that the peak receptor
activity near a wedge vertex gave a reasonably accurate measure
of the angle, Thus the magnitudes of the indicators on the ridge
function should vary depending on the wedge angle with which

they are associated. Consider the letter M and its ridge function
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Fig. 7.2.2 The Ridge-Line and Ridge Function
for an "M"

showﬁ in Fig. 7.2.2. (The small circle on the boundary again
indicates the beginning of the clockwise trace.) The wedges
marked (1) and (3) have equal angles that are less than the
angle of the wedge at (2). Similarly, the local maxima of the
ridge function at (1) and (3) are greater than that at (2).
Theorem 5.,4.1 is a theérem for area operators that is
made tangible by an examination of ridge functions. Pararhrased,
the théorem states that the receptor activity function associated
with a black-white pattern is determined by the geometrical shape
of the curve separating the black and white regions.4,The theorem
has a number of implications about the properties of ridge. func-
tions. | }
First, the ridge function of a pattern.must be independent
of the pattern orientation} In Fig. 7.2.3(a) the ridge liﬁes
and ridge functions for a black "N" and "Z" are shown. It is
evident that the ridge functions are identical in the type and
sequence of local maxima and minima. But the letters are.alsd

identical, one being rotated 900 with respect to the other.
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Similarly, in Fig. 7.2.3(b) the ridge functions‘for "M" and "W"
have an identical sequence of major‘featﬁres;

A second and more interesting implication of Theoreﬁ
5.4.1 is that if a pattern has an axis of symmetry, the'ridge
function must have two points about which it is symmetric. (In
mathematical terminoloéy the function is said to be even with
respect to these two points.) Two examples of symmetric patterns
and their ridge functions are given in Fig. 7.2.4. The starting
point; (1), for the ridge function of the letter "C" in Fig, T7.2.4(a)
is on the axis of symmetry indicated by the line. The ridge

function is symmetric about the beginning, and the middle. The
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Fig. 7.2.4(a) The Ridge Function for - (b) The Ridge Function for a
a Letter with One Axis of Letter with Two Axes of
Symmetry © Symmetry

letter "X" in Fig, 7.2;4(b) has two axes of symmetry as indicated.
The ridge function consequently has four points of symmetry,
namely the four large local maxima., It is evident that the
ridge funct%on indicaetes both the presence and the number of
axes of symmetry in a pattern.

Another consequence of Theorem 5.4.1 is that if two
or more patterns have a common subsequence of boundary features,
they must have a certain section of their ridge funétions in common.
The ridge line paths and ridge functions for the letters "E".
and "F'" are given in Fig. 7.2.5. If one proéeeds from (1) in
a clockwise direction along the boundary to (6), the same sequence
of boundary features is encountered in both éases. Similarly,
the ridge funétions for the -two letters have a common sequence
of indicators between (1) and (6). |

There are one or two other points about ridge functions
that should be self-evident. First, the ridge function for a
closed contour is periodic. Seéond, since a closed figure may

have more than one closed contour, more than one ridge function


http://Sim.ila.rly

153

O~ €
@-u@
é

T w‘wvﬁ ?”z?“ m*
LI

Fig, 7.2.5 Two Letters with a Common Sequernice of Features

may be necessary to describe a figure adequétely. In Fig. 7.2.6
the ridge functions for the outside and inside contours of the
letter "O" are shown. The two functions are separated by a'short
line indicating the nomihal straight edge value, n/2. Note that
the‘average value of the function for the outside, concave

contour is less than n/2, whereas for the inside, convex contour

it is greater than =/2.

ettt M
O 00~ ©

Fig. 7.2.6 The Two Ridge Functions for an "O"
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7.% Three Types of Ridge Functions

In section 5.2 three different generalized area cperators
were proposed. Two of these, Vl(x,y) and”VZ(x,y),had direct
neurophysiological counterpsrts. The third, V(x,y), was simply

a combination of the first two such that

V(x,y) = max((Vl(X,y), V2(x,y)); 7.3.1
If one considers only black and white patterns, . the Vl(x,y) operator
is a model for a Hartline lateral inhibitory receptor network
with activity, X:, defined by the sét of equations 1.4,1.
Similarly, the VZ(X,y) operater is a model for the lateral inhibitory
receptor network described in seétion 6.3, the activity; xi,
being defined by the set of equations 6.3.1. Finally, the Vix,y)
operator serves as a model for the combination of the above two

lateral inhibitbry receptor networks. The activity, Xi’ of this

combined network is specified by

-Xi(X,y) = max(xi(x,y>, Xi(X,y)). 7:3.2

Thus, for any given black and white pattern it is
possible to‘obtain three receptor activity functions., A white
"H" on a white background gives rise to the three activity
functions shown in isometric view in Figs. 7.3.1 (a), (b) and (c).
~If any of these functions are operated on by the algorithms
described in sections 6.4 and 6.5, a ridge function is obtained.
The ridge functions obtained from the activity functions in
Fig. 7.3.1(a), (b) and (c¢) are shown in Figs. 7.3.2(a), (b) and
(¢) respectively. If the function in Fig. 7.3%.2(a) is reflected

through a line at the straight edge value, one obtains a function

similar to that of Fig. 7.3.2(b). In a sense, they are mirror
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Fig. 7.3.1(c) Isometric of Xi(x,y) for a
Whi-te "H”

images. The ridge function in Fig., 7.3.2(c) is a combination

of the local maxima spikes of the other two functions.

This last fact indicates a loss of information in that

a local maximum on the Xi(x,y) ridge function can correspond’to a

1l ocal minimum of curvature of the boundary. However, assume that

in addition to tabulating the magnitude of the points making up the

ridge function, the "ridge-runner" algorithm also records whether they

ccme from the x, or Xi activity functions. With this extra bit

of information it is possible to make the X, (x,y) ridge -

function in Fig. 7.3.2(c) +take on the form of either of
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Function ' -~ Ridge Function

the other two. For examplé if each of the X5 points is subtracted
from twice the nominal edge value, one obtains the function
shown in Fig. 7.%.2(d). This function is practically identical
with the one shown in Fig. 7.3.2(b).

The only advantage in working with the Xi(x,y) ridge
function is that the ridge-runner algorithm can be made more

efficient.
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7.4 The Ridge Function and Pattern Recognition

In the previous sections it has been shown that there
is a one-to-one correlation between the major features on a
pattern and the major features, or indicators, on its ridge
function. It is possible then that the ridge function description
of patterns might form a basis for a Vefy gereral pattern recog-
nition algorithm. In this section four different methods for
ncorporating ridge functions into such an algorithm are discussed.
Although the pattern samples dealt with are block capital letters,
character recognition is not the goal. The methods discussed
are in no way explicitly designed for this pattern set. They
can be applied in general to any pattern that will give rise
to a ridge function or functions.

Before dealing with the four methods a few samples of
ridge functions ffdm similar patterns are presented. The patterns
were white alphabetic characters on a black background. They
were chosen from a variety of Lettraset alphabets. In Figs. 7.4.1
Yo 7.4.3 five samples each of the letters "K", "X", and "H" afe
given along with the corresponding ridge functions. In Figs. 7.4.4
to 7.4.6 five samples of the letters "C", "U", and "J" are pre-
sented. In all the figures the start and end of the ridge function
have a small tab indicating the nominal straight edge value. The
beginning of the clockwisé path around the pattérns 1s indicated
by a (1).

One possible method for incorporating ridge functions
into a pattern recognition algorithm arises from their periodic
nature. If the ridge function is denoted by R(s) with period

TR, it can be expanded in a Fourier series
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- Fig. 7.4.3 The Ridge-Lines and Ridge Functions for Five
Samples of the Letter "H", White on Black



161

@

b .
\ .
| f\mww;* M/\é\m% M& o wm@«wﬂmwﬂ A«ﬂ,l A TV l

wd

(a) Lettraset Alphabet #109 (b) Lettraset Alphabet #756

@
) ,ﬁ A " o ) mﬁ'
Y e .l A\y{vﬁ;ﬁﬂM’ﬁz‘{J\q«’ g il
O— @ O O— @ 0,
(c) Lettraset Alphabet #171 (@) Lettraset Alphabet #587

'U\#Wﬁ“ﬁ?ﬂ'ﬁf T ‘&‘N EM\\) @
(e) Lettraset Alphabet #183

Fig. 7.4;4 The Ridge-Lines and Ridge TFunctions for Five -
Samples of the Letter "C", White on Black



0o | oo

_Pf‘buﬂ&q\vwmwdm_/,\w' WJJ’]__ JMW%"‘;\;}#’@‘\_L/A'A\—NT? “‘&(—-\\.—-,’L
O @ @ - O @ @)
(a) Lettraset Alphabet #109 (b) Lettraset Alphabet #756

2 AR

JﬁwwﬁﬁW”Rw%ﬁquMﬂww/L R Aﬂw&m?wﬁﬁ\prwmhngmﬁ
o~ o "o o—-" ™G
(c) Lettraset Alphabet #171 (d) Lettraset Alphabet #537
@

—Mmi‘«‘ﬂ*“"’“““-‘ﬁf‘vﬁsj\&.a*ff’\ 'u'fffrran-
O— @ ’J @

(e) Lettraset Alphabet #1873

Fig. 7.4.5 The Ridge-Lines and Ridge Functions for Five Samples of
the Letter "U", White on Black



| ke, f T
—ﬁAMWAfV . | | 4 niﬁV\ﬁ |
Py - B '\ﬂ,;\jv‘)w‘{fl“"(‘\‘ . !J'\—;J‘L
O— vﬁvggk/ﬂﬂnzgr . D— ()y*rf @
(a) Lettraset Alphabet #109 (b) Lettraset Alphabet #756
- ,i

().
—N\/VWW‘-N ;"Wﬂﬂl— : N\/"“—/ IW%WW»HL .
O— @ @ O— @Y O

(c) Lettraset Alphabet #171 (d) Lettraset Alphabet #587

| A fi I
BLTARE T VLY \{k‘“’W}"V‘L- |
O @y @

(e) Lettraset Alphabet #183%

Fig. 7.4.6 The Ridge—Lines and Ridge Functions for Five Samples of
the Letter "J", White on Black



164

R(s) = gig (an cCosnwgps + bn sinn@Rs) T.4.1
where 15./2 - Tp/2
a, = %E “/// R(s)ds y 8, = %E ~// R(s)cosnuhs ds
~Tp/2 ~Tp/2 T4
) Tg/2 o
b, = T§ _ﬁsz R(s) sinnwps ds
| =Tgp/2
S _ 2
and : Wp = 1.4.%

Equation 7.4.1 can be rewritten as

R(s) = ) cosl(mugs - ¢ ) T.4.4
. _ 2,.2y1/2
where c, = (ag+b) T4.5
and tang = Eg ' 7.4.6
o - a,
(51,32) have suggested that a vector

Various people
space representation for patterns provides a convenient mathemétical
framework for recognitién algorithms. The Fourier series repre-
sentation for R(s) ties in very neatly in thet the éomponents of
the series form an orthogonal set of Easis vectors. The set of
coefficients {cng for a function R(s) define a pdint in this
vector space. This point corresponds to the paftern from which
the R(s) ridge function was obtained. Hopefully, similar pztterns,
e.g. the five different versions of the letter "K" in Fig. 7.4.1,
occupy neighboring points in this vector space. If so, this
"cluster" should be separable from the "cluster" corresponding
to an "X", or an "H", etc. |

The Fourier series expansion allows one to determine a
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great deal about the symmetry of the pattern from which the R(s)

function was obtained. In section 7.2 it was pointed out that

given a pattern with m axes of symmetry, the corresponding ridge
function would have 2m points about Which it is an even function.
If such a function is expanded in a Fourier series, the component

phase shifts are related as

| 5 g, - i Qﬁj\ = hw , h=0,1,2,.... T.4.7

where @i, Qj > {¢ n%. Thus, the presence of an axis of symmetry
in a pattern can be detected by examining the phase shifts of
the components in the Fourier series expénsion of its ridge func-
tion, |

Rotational symmetry in a pattern can be detected by .
an examination of the set of coeffiéients {Cn§ in. the Fourier
expansion of its ridge function. The crder, k, of rotational
symmetry in a pattern is defined to be

2T
k = 5= B 7.4.8

where « is the minimum angle of rotation necessary for self-congruence.
Thus, all patterns have at least first order rotational symmetry.

A pattern with m axes of symmetry has mth order_rotational symmetry.
For example, the "X" in Fig. 7.4.7(a) is self-congruent if rofated
through an angle w. It thus has second order rétational symmetry.

It also has two axes of symmetry. However, a figure may have

no axes of symmetry and yet have higher order rotational symmetry.
Thev"N" and the swastika in Figs. 7.4.7(b) and (c) have no axes

of symmetry, but have second and fourth order rotational symmetry,
reépectively.

Consider for a moment the "X" and the "N" in Fig. 7.4.7.
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Fig, T7.4.7(a) The Letter "X" has (b) The Letter "N" has

Second Order Rotational Second Order Rotational
Symmetry and Two Axes of Symmetry
Symmetry

Fig. 7.4.7(c) The Swastiks has
Fourth Order Rotational Symmetry

Assume one starts at the point (1) on each of the figures and
proceeds in a clock—wisé fashion along the boundary to the point
(2). The sequeﬁce of features encountered is, in both cases,
exactly the same as if one had started at (2) and proceeded clock-
wise to (1). Indeed, if the length of the boundary is normalized
to 2w units, the same situvation holds for any two points a distance
n units apart along the boundary. This implies that the ridge
function, which is always periodic with period TR, must for these
figures have a more fundamental period Tf. Both figures have

second order rotational symmetry, consequently, TR/Tf'= 2.

In general if a figure has kth order rotational symmetry,

; |
1. - TR 7.4.9
oK%
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The Fourier series expansion for its ridge function in terms
of TR is given in Equations 7.4.1 to 7.4.3. However, thé
ridge function can also be expanded in a Fourier series using
the fundamental period, Tf

o0
R(s) = dp COSPW

é + e_sinpuw.,.s 7.4.10
=0 f p T
- 2%
where We = T.4.11
f
and 1 Tf/2
d = = R(S) ds
o] T,
T
=1./2
Tf/2
= &~ R(s) cospu.s ds 7.4.12
dp = T J/r- s) cospugs ds A,
—Tf/Z
Tf/2'
_ 2. . R(s) si ds
ep._ Tf u//f s) sinpu.s ds
u—Tf/Z

Upon substitution of Equation 7.4.9 into 7.4.11 we find,

which can in turn be substituted into Equation 7.4.10. If the

result is equated to Equation 7.4.1, one obtains,
o0 . _ o

g_o a, COSnWps + sinans = %_O dpcoskprs + epsinkprs 7.4.14

If we equate the coefficients of equivalent sine and cosine terms,
we find that the a, and bn vanish for all n that are not integral

multiples of k.
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Hence, if the ridge function for a figure with kth

order rotational symmetry is given by,

R(s) = %;6 cy cos(ans - Qn) 7.4.15
then
¢, = 0 if %#i,i:l,z,... 7.4.16

Conversely, given the set of Fourier coefficients {Cn} specifying
a ridge'function, one can détermine the order of rotational symmetry
of the corresponding'pattern. The order is the greatest common
divisor for the n at which the Ch do not vaniéh.

| If this corndition on the {cn} is taken in conjunction
with the cordition on the {¢n} in_Equationv7.4.7, one cén deter—~
mine the number of axes of symmetry of a figure. If the {cn}
for the ridge function of a pattern satisfy Equation 7.4.16,
the pattern has order k rotational symmetry. If the {Qn} satisfy
Equation 3.4.7; the pattern also has at least one axils of symmetfy.
But if a pattern has order k rotational symmetry, and at least
one axis of symmetry, it must have k azes of symmetry. If the
{ﬁﬂi do not satisfy Equation 7.4.7, thé pattern still has order
k rotational symmetry, but has no axes of symmetry.

For example, the {cn} for both the "X" and the "N"
in Fig. 7.4.7 should satisfy Equation 7.4.16 with k = 2, indicating
that they both have second order rotational symmefry. However,
only the {¢nX for the letter "X" will satisfy Equation 7.4.7, since
only it has at least one axis of symmetry. Since both conditions
are met by the "X, it must, and does, have two axes of symmetry.
Note that the above discussion on symmetry can also be

applied to the Fourier series expansion of the curvature function
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K(s) suggested by Masnikosa(Bl).

There are a number of other bossible methods besides
the Fourier series for implementing ridge fﬁnctions into a pattern
recognition algorithm. These include the use of correlation |
techniqﬁes, the development of a code word description of the
functions, énd the use of moments on a two-dimensional representa-
tion for the ridge function.

The use of correlation techniques would involve the
storage of a "template" ridge function for each of the expected
pattern classegs. After suitable normalization, the ridge function
from a pattern would be cross-~correlated with each of the "templateg".
The Pnknown rattern could then be assigned to the class with which
its ridge function had the greatest, weighted cross-correlation
coefficient.

A code word descriplion of the functions could Be
developed along the lines propcsed by Clemens(BZ), and Masnikosa(Bl).
The simplest example of such a description is one that fecords
the sequence of local maxima and minima of the function. If a
one indicates a local maximum and a zero a local minimum, the
code word for the letters "K" in Fig. 7.4.1(a), (c), (d) and (e)
would be 111011C1101l. The code word for the "K" in (b) would
be 111011011001, The codé word for the letters "X" in Fig. 7.4.2
would be 101101101101; ahd for thevletters~"H" in Fig. 7.4.3,
111001111001, Thus, given a set of code words for the various
patterns, recognition of an unknown pattern would involve a
simple comparison of code words.

The use of moméntsvis another well-known pattern-

classification technique. If the ridge function is left as a
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function of two variables, R(x,y), it could be treated as a iine
mass of varying density. It would be possible to obtain a set of
normalized moments for this line mass. This set could be treated
as a vector — recognition of a particular pattern being dependent
on the "clustering" of points in the moment vector space.

A1l of the above methods for implementing ridge'functions
into a pattern recognition algorithm are being iﬁ%estigated by

(33)

L. Brown They by no means exhaust the possibilities. Indeed,
the ridge function itself is but one of a number of possible
boundary descriptions that can be obtained from the receptor

activity function.
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8. CONCLUSIONS

The activity in a lateral inhibitory network is greatest
where there is a spatial change in the illumination impinging on
its receptors. This enhancement of illumination boundaries
has been extensively studied in the case of black and white
patterns., Initial studies indicated that the magnitude of the
enhancement near a wedge vertex gave a poor meésure of the wedge
angle, dﬁe to the orientation dependence problem. This problem.
is greatly alleviated by employing a:larger direct inhibition
field; by allowing a receptor to have a finite sized field of
view; and by correct choice of the receptor interaction coefficients.
The peak receptor activity for a rounded 9x9 array of receptors
having a field of view of D = 1.5u, and a uniform kij(d) function,
could be used to measure a wedge angle to within iBO.

It was shown experimentélly that under certain conditions
the peak receptor activity near a black-white boundary can be |
modelled by a weighted area operator. A general formulation foi
weighted area operators has been presented. The formulation is
such that the response of the operator is independent of the
absolute intensity or change in intensity of illumination.
Theoretical studies demonstrated that for two contiguous regions
of different intensity, the peak operator respcnse occurred in
general along the boundary. This peak response can be used to
detect concavity or convexity of the boundary, and points at which
its curvature function has non-zero iocal maxima and minima.

Since the area orerator was developed as a model for

the lateral inhibitory network, the same properties should,
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and do, hold for it., In particular, the peak receptor activity
along a black-white boundary (the ridge function) can be used

as a description of the local shape of the boundary. Various
methods for using this property of ridge functions in & pattern
recognition algorithm have been proposed., The method involving

a Fourier series expansion of the ridge function permits the
detection of both bilateral and rotational symmetry in the original
prattern.

There are a number of pcssible extensions of the work
described in this thesis: |

1. A determination of the utility of the ridge function
'~ or some other derivative of the receptor activity/area operator
function in visual pattern recognition;

2. A study of non-isotropic weighting functions for
both the area operator and the Hartlihe equations;

3. An investigation of‘the relationship, if any, between
the area operator response and the activity in a lateral inhibi—
tory network for patterns With grey levels.

In this thesis we have shown that the activity in a
lateral inhibitory network near a white-black boundary is determined
by the local shape of that boﬁndary. This has led us to suggest,
and demonstfate, that the‘receptor activity function.along such

a boundary provides a good description of its tétal shape.
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