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Abstract

The development of an automatic control system
involves a consideration of the problems of the stability and
response of such a system. The purpose of this thesis is to
outline these problems as they appear in the automatic control
of water level in a tidal basin model.

A synopsis of general servomechanism theory is
briefly outlined stressing three points (1) Design the system
so that oscillatory conditions prevail. (2) Design the natural
frequency well above the operating frequency. (3) Where
necessary introduce stabilizing networks.

The results obtained by tests revealed one thing;
the introduction of external circuits had very little effect
on the continuous operation of the tidal model. An examin-
ation of the theoretical analysis of the control system however
brought out three reasons for limiting the value of the con-
stant K4. The constant K4 corresponds to the moment of
inertia of a mechanical system. The constant K, is related
to the parameters of the system, which are the area of the

basin, the length of the weirs, and the pump discharge.
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Introduction

The development of an automatic control system
involves a consideration of the problems of the stability and
response of such a system., Under stability, the systém nust
neither induce nor support any harmonic oscillations. Further,
any oscillations that are induced by putside disturbances must
be attenuated to a negligible value in a very few cycles.

Under response, the system must follow the input signal as
accurately as possible and with a minimum time delay.

The purpose of this thesis is to outline these
problems as they appear in the automatic control of water level
in & tidel basin model. The servo-mechanism itself is not
unlike that used in many other systems but the equations intro-
duced by the hydrauliecs of the system make the problem unique.
One of the factors involved is the non-linearity of the weir
discharge equation. Another is the lag in the water level

response to weir movement caused by the finite velocity of a

wave in water.



General Theory

Control systems may be either of the open cycle or
of the closed cycle types. In an open cycle system the signal
that operates the controller is independent of the output. In
a closed cycle system a percentage of the output is fed back
and compared with the input signal. The difference or error
then operates the controller so as to reduce the error. The
open cycle system is fairly simple and will not be considered
in this thesis.

The closed cycle system can be further subdivided
into automatic control or regulator systems and servomechanisms.
The fundamental difference in the two systems is in their
application, rather than the principles involved. The auto-
matic regulator is designed to maintain the output close to
some fixed input, as for example, in a voltage regulator. The
servomechanism is designed to maintein the output arbitrarily
close to some input. which varies with time, as for example, an
automatic position controller. The input in the latter case

mey be continuous or discontinuous.

Ol'féren'fl‘a’
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Fig. 1 Block Diagram of a Simple Servomechanism



Fig. 1 is a diagram of an elementary closed cyecle
control system. 635 represents the input signal, & the output
and € the difference or error. The differential compares the
input and output signal and injects the difference into the
controller, The controller will amplify the error and will
produce such a change in the output as will tend to reduce the
error.

Consider for example a simple mechanical positioning
system with &; and &, angular positions. The load in this
case will be a moment of inertia "J" and a friction component
"F", Let the torque applied to the load be proportional to .
Then the basic equations will be

S; — S = €&
7 = KE
7= T ‘jyl-‘?; t F §/z€°

moment of inertia of system

5
@
H
[¢]
o
)

viscous friction

|
"

T =« output torque of controller

Combining the three equations

= rd% e
Kez Jo/___%z +F.7Z.z9 'f"Kao

or 90-.- A Sy ID_._._,J__
Jp*+ Fp + K It
This yields a Characteristic linear equation that is

a second order differential equation Jpz-P Fp 4+ K. The three

constants are in general independent and can be individually

adjusted in the design.



There is one basic fault with this simple servo
system. An error must exist before any correction is applied.
This will cause a velocity error in the system, or the error
will be proportional to the rate of change of position. This
velocity error plus the inertias of the system will tend to
cause oscillation. Increasing the friction factor will decrease
the time of oscillation but it will increase the magnitude of
the veloc;ty error.

Where more rigid design requirements have to be met,
stabilizing circuits must be introduced to reduce the magnitude
of the velocity error and reduce the time of oscillation. In
the controller of the elementary system the output is propor-
tional to the error, that is the controller transfer function

equals a constant.
T.F' - K

The stabilizing circuits may be introduced into the
controller so the transfer function may be a differential
equation of the type

T.F. =« A+B+Cp+Dp+ ... p=d

P dt

The c¢ircuits can be adjusted to make any of the
constants of any desired value. The design requirements will
determine the various values.

The term A represents the integral factor or reset
component, Increasg in the value of this term decreases the
amplitude of the velocity error. The disadventage of this is

that as the velocity error approaches zero the system approaches



instability. If the velocity error equals zero any induced
‘oscillation will be sustained. If the velocity error becomes -
negative then the oscillations will build up indefinitely.

" The terms involving p,pz, etc. represent the various
powers of the derivative of the error. The primary reason for
introducing these terms is to improve the frequency response.
In most practical‘systems the‘reponse will fall off as the
frequency increases. The derivative factors can be adjusted
to increase the cut off frequency. In most practical appii-
cations the first or second order of derivative is all that
is used. |

Referring to the simple servo system again the

characteristic equation has its roots as

p= -F [ F)2 - K
2d \2d. J

" This will permit three solutions depending on the

magnitude of the parameters,

2 . |
(1) (%5}) > T?L ; overdamped
(2) (Z_Ff)a = —51 critically damped

(3) (%)2 | < —?— under damped

In the first case p is real with two surd roots,
The transient solution of diffe;ential equations of this form
may be expressed in hyperbolic functions with an exponential
decay term. This case is termed as the overdamped case. There

is no tendency for oscillation at all but the time of response



is too . long to be practical. In the second case the equation
has two.identical real roots. This equatidn has a solution of
an éxponentiél decay term multiplying a constant term:plus é
constant tiﬁés timé. This case is referred to as the critically
damped 6§§§. Tﬁg damping factor F, is known as the critical
damping and equals 2/&3: Again there is no tendency for oscill-
ation but the time of response, although shorter than the first
case, is still too long to be practical.

In the third and most important case the equation has
two roots that are complex conjugates. This yields the oscill-
atbry solution, an exponential factor multiplying a sine and
cosine term. This case is called the underdamped case. The
sine and cosine terms will have a frequency referred to as the
natural frequency of the system

2

Fig. 2 is a graph of servomechanism response to a

step function input. The various curves correspond to different
damping ratios "C", The damping ratio "C" is defined as the
ratio of the actual damping to the critical damping of the
system. G4 -is the natural frequency of the system without
damping and @, is the applied frequency. The curves are made
dimensionless to permit comparison of different systems.

If instead of a step function input a sinusoidal
input is applied, the output will also be sinusoidal with
either positive or negative amplification and some time phase
displacemeht. The degree of amplification and phase displace-

ment will depend on the applied frequency. If the applied
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frequency approaches the natural frequency a condition exists
very similar to that encountered in an oscillator tank circuit.
A very small input signal will result in a large output signal,
the only limiting factor is the damping or friction coefficient.
This is very undesirable in most servo systems. Thé ideal
situation exists whén the output equals the input and the phase
displacemeht is a minimum. TFig. 3 is a graph of the response
of a simple servo subject to various frequency inputs.

This review of the servomechanism theory has revealed
three points. (l) Design the system so that oscillatory |
conditions will prevail, that is have it satisfy case III,
the underdamped'case. (2) Design the natural frequency well
above the operating frequency especially if the input should
contain predominant harmonics higher than the fundamental.

(3) Where more rigid design requirements have to be met, intro-
duce networks so as to reduce the velocity error, or to

increase the freguency response.
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Photo #1 West Portion of River Basin

Photo #2 Centre Portion of River Basin
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Photo #3 East Portion of River Basin

Photo #4 Tidal Basin with Recorder in Foreground



Description of the Tidal Control Equipment

The model covers an area of three acres. It
includes the Fraser River from Mission to the mouth, Pitt
River and Pitt Lake, and a portion of the Gulf of Georgia in
the vicinity of the tide flats. The horizontal scele is one
in six hundred, the time and vertical scale is one in seventy,
and the velocity scale‘is one in eight point five. Various
views of the model are illustrated in photographs 1,2,3 and 4.
Photographs 1,2 and 3, are views of the west, centre, and east
portions of the river basin. ©Photograph 4 is a view of the
tidal basin.

The water level control equipment consists of six
components illustrated in photographs 536,7 and 8.

(1) A photo cell reader that provides a voltage

- proportional to the desired tide level.

(2) a pair of load resistors that acts as the

differential.

(3) An emplifier that coﬁsists of a D.C. electronic

amplifier and a hydraulic amplifier.

(4) The hydraulic jack that raises and lowers the

weirs, |

(5) The set of weirs that control the water level.

(86) The tide float potentiometer that produces a

voltage proportional to the actual tide level.,

There are other pieces of equipment, such as the 20
‘cubice foot per second pump that supplies water to the basin;

- The power supplies for the float potentiometer, the photo cell



to follow page 8
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Photo -#5 Electronic Control Equipment Including
(1) Photo Cell Reader
(2) D.C. Amplifier
(3) Junction box containing power supplies

and differential

Photo #6 Hydraulie Amplifier
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Photo #8 The Set of Weirs



reader, and the D.C. amplifier; and the pump and regulating
system that supplies the pressurized oil for the hydraulic
amplifier, that are not actually part of the closed cycle
control system.

The photo cell reader,:which is encased in a light
tight box, is shown schematically in Fig. 4. The light source
is reflected off the galvanometer mirror through a piece of
transparent paper and a pair of convex lehses onto a photo
multiplier tuEe. The output of the tube is connected in series
with the galvanometer and one of the load resistors in the
differential. The galvanometer will deflect until the light
is interrupted by the tide cycle, which is a black line painted
- on the transparent paper. Time scale extends along the papér
and water level scale across. The tide chart is driven past
the light by synchronous motor. Thus the output voltage of the
photo cell reader is proportional to the desired tide level.

The differential receives the voltage proportional
to the desired tide level from the photo cell reader and that
proportional to actual tide level from the tide float
potentiometer and has an output voltage equal to the difference.
The circuit consists of two load resistors connected in series
with the input ﬁoltages impressed across the resistors in
opposite polarity.

The amplifier system consists of a D.C. electronic
amplifier that actuates a balanced oil valve in the hydraulic
system. The displacement of the balanced o0il valve is pro-
portional to the magnitude and polarity of the error or

difference voltage. The output of the hydraulic amplifier is
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in turn proportional to the displacement of the balanced oil
valve.

The output of the hydraulic amplifier moves the
hydraulic jack which is mechanically connected to the weirs.
The hydraulic Jjack spéed and hence the weir speed is pro-
portional to the hydraulic amplifier output. Water is pumped
continuously at a rate of 20 cubic feet per second from a sump
into the tidal basin. The surplus water is spilled over the
weirs back into the sump. Any variation in weir level will
thus result in a similar variation in the water level.

A voltage proportional to the actual tide level is
obtained by means of the tide float potentiometer. The potent-
-iometer is mechanically connected to a float. The output of
the potentiometer is fed into the other load resistor in the
differential.

»During operation the tide chart, which has the

sequence of tides for an entire year plotted on it, is driven
continuously past the light source. This calls for a continuous
sequence of operations for five days. It is highly desirable

to have the system operate without any bréak and to have the
error in the output less than 5%, préferably less than 3%.

This error only refers to the amplitude, the phase displacement
is relatively unimportant as long as it is not unreasonably

large and remains fairly constant.
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Theoretical Analysis

In designing a servo system more than one approach
can be taken. The input can be assumed to be a series of steps.
This approach imposes verj severe reqﬁirements on the systeﬁ |
and in certain cases may not be justified. Angther approach
can be to assume the input is & sinusoidal fgnction. The
system can then be designed to have the amplification leés
than some predetermined value and the phase displacement at
the operating frequencies less than the allowable value, If
the function is more complex a Fourier analysis of the function
can be made and the highest appreciable harmonic can be made
to comply with the amplitude and phase displacement requirements.

In analyzing the tidal control system it is obvious
that requiring a good step function response.is imposing
conditions that are more severe than necessary. The non
repetetive nature of the tide cycle does not permit the usual
Fourier analysis of the cycle. Harmonic analyses of tide
cycles have been made to facilitate tide prediction. This
analysis relates the various components of the tide cycle to
the behaviour of different celestial bodies. Some 170
components exist in a detailed analysis but the four major
components are the pull of the moon, the pull of the sun, and
two components due to moons declination. Table #1 gives the
relative magnitude and period of the various components. The
magnitude of the moons component is taken as unity.

These four major components are near or less than

the fundamental frequency, which is taken as the frequency
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Component ‘ Relative Amplitude _Period
Moons pull_ - 1.0 12.4 hrs.
Suns pull 0.280 12,0 hrs.
Moons declination #1 0.415 24  hrs.
Moons declination #2 ~ 0.258 » 25.9 hrs.
Taﬁle #1

Table of periods and relative amplitudes of major components

of the harmonic constituents of the tidalacycle

of the moons attractive component. There are components éf
higher frequency, in shallow water tides periods may be as

low éé three hours, but the relative magnitudes of these
compoenents are less than 0.0l. With these factors in mind

the design frequency was taken to be the frequency of the moons
attractive component.

The step function response although of secondary
importance can not be completely ignored. A reasonable
response to a step function is desirable for two reasons.
One;iwhen~starting the éystem it is desirable to have the
water level settle to the starting tide level in a reasonable
length of time. Two, if in the middle of the run the water
level is either intentionally or accidentally shifted off the
curve it will be desirable to have it return as quickly as
possible and with the minimum amount of oscillation.

After considering these properties of the tidél
cycle, it was decided to analyze'the system using a design
frequency eqﬁal to the frequency of the moons attractive com-

ponent. The step function analysis will be used as a check.
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Fig. 5 Block Diagram of Tidal Control System
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Fig. 6 Schematic Diagram of Tidal Basin

Definitions

y = input signal

output signal

error between &, and Ko dy
dat

=7
6,
€, = error between 6, and 6,
€,
K1

= amplifier constant

U

weir level

afea-of tidal basin = 12,000 sq. ft.



A block diagram of the system as it

14

H = head over weir

Ko = feed back constant

Q =pump discharge =20 c.f.s.
b =weir length = 40 ft.

originally existed

is illustrated in_Fig. 5 and a diagram of the tidal basin at the

weirs is shown in Fig. 6.

these diagrams

The basic relationships taken off

are
&; — 6, =& (1)
g; - Kz;—',/f =&, (2)
30/7? =K &, (3)
e, = H+y (4)

The water flowing into the basin minus the water

flowing out ovér the weirs will equal the change in volumne.

The water

discharge

expressed

flowing over the weir can be calculated by the weir

formula.

Weir discharge = 3.3 3 bH% = KJ /..]3/z

with KJ = 3.33b

OI'KJH;Z/:_Q_

Equation five is a non-linear equation but it can be

(5)

by a MacLaurens Series. Therefore by power expansion

1~ (8- 243
R :
(2J11-32 % a2 (52 )
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If .gé% is small, all but the first two terms may be

neglected. Here the maximum value is of the order of 0.5 so it

reduces the validity of the approximation but the third term is

less than one tenth of the second term. so

(i id A T

From equations 3,4 and 6

s = 6/6% ' %%
/(’&J‘f+}<’%? (7)

.2 __A
Ke = % (3.36)% Q°

also from equations 2 and 3

Ei: g.t ' (8)

where

from equations 1,7 and 8

K o = do 25 (9)
]+K_;K2 €'z dt Kﬁ‘ dtl |
A ¢ + d& /% _ de /% (10)
+ det + K, 1 =25 +Hhy 2 »
T+ 1K L gt T JfR dE | dt?

Equation (9) and (10) relate the error, input, and

output of a servo system. The equations could be solved for
any given input conditions. Initially the investigation will

be carried out without the internal feedback loop, see Fig. 7.
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Fig. 7 Block Diagram of Modified Tidal Control System

The basic equations now are

62' —. eo =81 | . (1)

dt
6. = H+y o)

H

2 dt

Combining these equations give

48, d%,
As& = 7t + Kg -

¢ dt 2
Compafing equations (9) and (12) one can see that the
two equations are identical if Ky = X1 . In other words
1 K3K»

_Q);/(j _,;Agléo) | (6)

16

the only effect of this internal feedback loop is the reduction

of the apparent amplification of the amplifier. This effect

can be more simply accomplished by the use of an amplifier of
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lower gain. Since it is desirable to have the system work as
| accurately as possible and yet be as simple and trouble free, so
the first modification suggested is removal of the internal
feedback loop.

| The solution of equations (12) and (13) will now be
‘considered'for a frequency input and for a step input. TFirst
a transfer function analysis of equation (12) will be considered.

If the error is applied arbitrarily as a cosine function
of time of constant amplitude, say unity, and varying frequency
then the output will also be a cosine function of time of the
same frequency displaced by some phase angle of a different
amplitude. The input and output can then be represented by
jr
& =€

' J'(cut +2)
6 =Ce¢e

Then equation (12) bec?mes )
NCZ 2 S(wT+A

C’Z’u’*c/@tﬁ!)

C'ej;{. =_ Ks
"'CU”/\/4 -}—J'w

(14)

which may be represented as a vector of magnitude

K

C = 5'1 . (15)
/(wz/‘/f) + <«

and of phase displacement

(\ = /80°+ arc Tan-—!——- _ (16)

Cc)/qu
The locus or Nyquist plot of these. vectors for existing

conditions is shown in graph #1. All the necessary information
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for a frequency study is contained in this graph. A vector from
the origin to the curve is the output of the system, a vector
from the origin to (-1,0) is the error, and from (-1,0) to the
curve is the input signal. The angle between the inbut and
output vectors is the phase displacement.

As has already been mentioned the aim is to have the
input and output vecﬁors of equal magnitude. This could be
accomplished if the locus could be swung counter-clockwise until
the point on the locus correspoﬁding to the operating frequency
igs on the line, reals equal minus one half. To accompliéh this
by adjusting Ks would not be practical. Adjustment of Kg will
only change the length of the output vector for a given error
vector, it will not affect the phase angle. Refer't05graph #1.
If the vector (0;4&)) were reduced to the point where it inter-
sects the line reals equél minus one half, then it would be
shorter than the errof vector and the angle between (0;¢%) and
(-1,o;a5) would be greater than 90 degreeé.

Consider now equation (14)? if the j term had a
multiplying.constant greater than unity, the curve would be
moved closer to the negative real axis. This J term originates
from the first derivative of the output. Here it can be seen
how desirable it is to have a flexible constant mﬁltiplying this
term, | _

Now a step function analysis of equation (13) will be

carried out. The conditions will be

93‘=O <0
8r =6 | =0
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Pe, =p% =o z>o
Equgtion (13) becomes
(/‘rf prep +H:)E = (kep?+p)es =o
: - )w

(,o +/a+/|’5-
€=@e"‘"f Cos ——-" )Z (17)

Equation (17) is an expression for the error of the
servo system subject to a step inpu;. This is a transient term
that approaches zero as time becomes large. It is desirable to
keep this term small and have it approach zero as soon as
possible. This may be accomplished by making K4 small or Kg
large. Making K, small Will cause the exponenﬁial term to die
away faster and in the range of values considered tend to
increase the value of the radical. Unfortunately K4 is for all
practical purposes fixed, it represents the configuration of
the model already constructed. This leaves Kg which is the
amplifier gain. Any‘manipulation of this quantity does not
reduce the time of die away.

Since the time scale is 1:70, the period of the compon-
ent of the moon is 10.63 minutes. This component then has an

angular velocity;

@, = AT 2 27 - to¥ x Jo 2rads /sec
i 7 600

The natural period of the system;

o . 2 -2
Cog = 7?’:_‘ —Kz;—?f-) = 296 x /0 roJ:/se’c

@
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'f(f :=b /széjabl‘ C?qns7;n7

0.1 of a Jgof'/scc /foof of error

.;fﬁ%{ﬁé :5? ‘ ", = /.2

ajé =, = —A:f -‘-2-98,(/0-2;'40/:/5&’:
He

c, =/3-5’G Q¥ 4% Ao (18)
A A

Equation (18) indicates the relationship between the

parameters and the natural frequencyvof the system.

The next point of iﬁterest on these equations is the
coefficient of thé first derivative of the output. This coeffic-
ient of the first derivative is the friction or damping coefficient.
If it were zero any induced oscillation would be sustained until
some external force appeared to alter it., The system operation
may be improved by increasing this factor but this is impossible
because of hydraulic relationships. One alternative is to re-
duce the magnitude of X, and Ks. Although K5 is flexible any
ad justment of K4 would involve‘extensive modifications of the
system, Another alternative would be to look for some stabil-
izing circuit that would improve the operation.

From the consideration of equations (14),(15),(16) and
(17) it has been seen how desirable it is to have something else
to increase the flexibility of the system and improve the |

response, To this end a consideration of derivative control
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will be studied. The only difference in the equations of the
system will be in the transfer function of the amplifier. It

will now be

b+

The basic equations now become

e, -6, =& ' (1)

dy _ [k -

2 = (4 +K6dt)g  (19)

é% = H 4-)/ (4)
;s -24A 9@«») (6)

J Q Jt
Comblnlng these equations
\K,E'-%»/(ég,/g» =2/_@> +-/\;§;.92o ~ (20)

o6+ o gy o

A study of this system with a sinusoidal input will

now be carried out. ZEquation (20) becomes

Yo T +2 ewl+ A
K. e -r/wKaCJWt we® +3.sz4;¢/( Y

CeJ'1 - M + e He
| —1ZJZ/€? 4Hf12)

which again may be represented as a vector of

(22)

magnitude

2 242
C = /\} T+ w /(6 (-23)
(Caz 7)2 + wz
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and of phase displacement

A = /80 +Ar~cf0 -+ Arc Ton @ He (24)
&, As

The extra term arctan %%? results in an increase in

the angle A. Curve (2) in graph #1 is a plot of this result.

Increasing Kg improves the amplification ratio.

Now consider a step function analysis of equation (21)

e £ '
~(Kevtrmrrmp) Lo (25

which has as a solution
- A§-+/ :
& e "“"‘C/—”—” sV #
é; = : - Cos H; ;2/(4 (26)

Equation (26) is the solution of the equation to a

step function input. Here the advantage of the introduction of
the Kg factor is revealed. It increases the attenuation con-
stant of the circuit. The introduction of this factor is quite
practical and does not involve any extensive modificatioﬁ of
‘the equipment.

However the introduction of the Kg factof reduces the
natural frequency of the system. Xither this condition must be
accepted or one of the other parameters must be adjusted to
offset the change. A probable adjustment would be to increase
Ks.

The possibility of introducing an integral component
was considered and discarded. Integral control reduces the
velocity error but does not improve the amplification ratio.

Summarizing the theory there are two things to be done.
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One, obtain the best results by manipulation of Kj; and Ké and
then do the same by manipulation of Ky and show experimentally
that the response of the latter will equal or better the former.
Two, determine the value of Ké that will improve the response

.without causing Qverdamping.



24

Tests and Results

To impose the most severe conditions possible a curve

was plotted that included the highest water on reéord, the
lowest water on record, aﬁd the greatest rate of change of
water level. This was actually more severe than any recorded
tide because the periods of highest and_lowest waters 4o not
occur on the same day. The early tests were run using this
hypothetical curve as a standard for comparing the response to
the various servomechanism conditions. Later tests were run
using the record of January 4 to 12 1947 which is the week of
most severe conditions.

Graph #2 is a graph of one of the better curves
obtained with the internal feedback circuit. Graph #3 is a
plot of one of the curves obtained without the circuit. The -
curves are compéred‘with the input signal. Although graph #3
- has better amplitude characteristics than graph #2, an oscill-
ation has appeared at the low tide.

The curve drawn up frém most severe conditions is made
up of two major comﬁonents. Ohe is at the fundamental frequency
and the other is at the second harmonic frequency. The oscill-
ation appearing at the low tide is caused by the presence of
the second harmonic. The frequency of the second harmoﬁic is
close to the natural‘frequency of the system. The second har-
monic is not as predominant in the tide cycle of the-most
severe recorded week nor was it considered in the theoretical

analysis.
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Graphs #4 and #5 compare the fesults of tests with
and without the differentiating circuit. The week of January
4 to 12 was used for these tests with the day of January 5 used
here for comparison. Some tendency for oscillation is still
apparent but not nearly as severe as for fhe hypothetical curve.
In compéring the response with and withouﬁ'the differentiating
circuit very liﬁtle improvement is obtained by the addition.

Graphs #6 and #7 show the response of the system to a
one and one half inch step function with and without the differ-
entiating circuit, Here, as in the analyéis”éf the system, the
advantage of the differentiating circuit is brought out. Both
the amplitude of the oversh&ot and the time for the oscillations
to die away are reduced considerably. It is on the streggth of
this latter result that the differentiating circuit is suggested

as a modification to the control system.

T
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Discussion and Conclusions

The results obtained by tests have revealed one thing;
the introduction of external circuits has very little effect on
the continuous operation of the tidal model. Tests were carried
out on several stabilizjng circuits that have noﬁ been mentioned
in this thesis, but in all cases the results were poorer than
any obtained by methods discussed herein. Some improvement
in the step function response'could be obtained in some cases
but the best overall results were obtained using the differ-
entiéting circuit that has already been discussed.

Repeating equation (12) the transfer function of the
system is '

S _  Ks

Plrzpt1)

K5 is theoretically arbitrary but practically it is

(12)

limited to one tenth of a foot per second per foot of error. If
Ks is larger than 0.1 the weirs would rise faster than the pump
can bring up the water level which means the weirs will break
through the water surface and the water level will no longer
follow the weilr movement. ‘

The constant Ky is representative of the time'constant
of the system. The smaller this time constant is the better

will be the response of the system. Repeating equation (17)
-L
2 K /)2
E=06e¢e Ky Cos [/ = - “") t’ (17)
% 2%

T = 2K4 » 224 seconds

{



27

This équatiqn reveals_the/importance of the time con-
stant. Any reduction in Ky will reduce the time for the expon-

ential term to approach zero. 1If the coefficient of the first
derivative had a constant greater than unity it also would de-

crease the time constant of the sYstem.

Refer now to Fig. (S)Vin the general theory. This
figure is a graph of input, output amplification to relative
frequency. It is highly desirable to have the amplification
ratio equal to unity. The general shape of the curve is ‘depend-

ent on the damping ratio "C". 1In this case the critical damping

be =2k te =6.7 EY

c - = 0.149

1
6.7

The resonénce curve when C - 0.149 rfées very sharply
as the applied frequency .approaches the natural frequency. The
actual value of "F" is fixed at unity, therefore "C¥ can only
be increased by reducing F, which agaiﬁ calls for a reduction
in K4. A good value for "C" Would be 0.6.

To keep away from the resonant point the natural
frequency should be well above the applied frequency. Sinée
'the applied frequency is fixed by désign requirements the
natural freguency should then be made as large as possible.

o, = s (18)

Hq |
Here again the constant K4 should be made as small as

possible. This investigation has brought out three reasons why
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the constant K should be kept as low as possible.

}( = 2 éi,_,
T 7 F (FIzHE QF

Equation (28) shows the relationship between K4 and

(28)

the components of the tidal basin. "A"™ is the area of the besin

which is approximately 12,700 sguare feet, b is the length of
the weirs which is 40 feet, and § is the punp discharge which
is 20 cubic feet per second.

In this particular problem an increase in b and Q is
practical. In fact facilities are available to double both
components, Ky will then be halved. This modification will
increase the natural frequency from 2.96 x 10-2 radians per
second to 4.2 x 10-2 radians per second, it will increase "C"
from 0.149 to 0.21 and it will reduce the time constant from
224 seconds to 112 seconds.

In the desiegn of any future model basins of this type
formula (28) may well be used as a guide. The area should be
made as small as possible and the weir lenéth and pump discharge

should be as larese as possible. When "C" is 0.3 or less, then

@, shtould be at least five times €,
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