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ABSTRACT

This work is a study of the scattering of electroﬁagnetic waves fromv
random media of discrete scatterers. The object is primarily fhe investigation
6f.existing general discrete-scatterer theories and the development of more
accurate qnes,'the technique of Monte Carlo computer simulation being employed
to pro&ide "exact" experimental results for comparison with theoretical data.

- A one-dimensional model of randomly-positioned planar scatterers is
used as a tool in the investigation and as a means of providing insight into
the physical and statistical characteristics of discrete-scatterer media. The
limitations of the one-dimensional forms of Twersky's theories for the coherent
field are illustrated by a presentation of results for a wide range of
scattering parameters, and requirements necessary for the approximate validity
of these theories are given. Accurate series expressions for several average
.field fungtions of interest in the problem of plane-wave scattering from
distributions of uniformly-random planar scatterers are presented and verified
from simulation results. The asymptotic scattering behavior for a low average
density of scatterers is emphasized; a modification to the one-dimensional
form of Twersky's free-space theéry for the coherent transmitted field to give
exact asymptotic behavior is showﬁ to be a considerable improvement for higher
average densities also. The relation of the one-dimensional model theory and
results to more‘complex three~dimensional models is discussed where possible.

Simulation .methods for the generation of a non-uniform distribution
of planar-scatterer configurations wéighted towards ''periodicity'" are presented.
Based on the scattering results obtained, criteria for the assumption of a
uniform distribution are given. The physical conditions necessary for the
approximate validity of the bivariate Gaussian distribution in descfibing the

total field statistics of the one-dimensional model are discussed and

ii



quantitative reéults based on the third and fourth field moments given.

Also presented is a new physical model of a random mediﬁm of discrete
spherical scatterers for use in controlled laboratory experiments at
millimeter-wave frequencies. The main feature of this model is that the
scatterer statistics are directly controlled by an applicatiop of the Monte
Carlo method. The results of an experimental investigation into the

suitability of the model are given.
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1. GENERAL INTRODUCTION

The scattering of electromagnetic waves from random media has in
recent years become the subject of an increasing amount of research in a
variety of disciplines. The subject enters into stch areas of investigaﬁion
as the propagation of radio waves through the atmosphere, radar, radio and
optical astronomy, and studies of the microstructure of gases, liquids, and
solids. The spectral range of interest correspondingly extends from
frequencies below the broadcast bands to those in the X-ray region.

Although the random nature of many media has long been recogpized
and approximate scattering theories applicable to some media have existed for
a number of years, the demands of modern technology have focussed new attention
on the development of more accurate theories. Two general models have been
used to theoretically 'describe a random medium: (a) the perturbed continuum
model, and (b) the discrete scatterer model.l 1In the perturbed continuum model2
the medium is considered to be continuous in character and randomness is
accounted for by a statistical description of its permittivity and permeability.
Fluctuations in these parameters are assumed to occur about mean values which
correspond to the parameters of ah idealized homogeneous medium. Different
forms of this model have been used in the study of ionospheric and tropospheric
scattering of radio waves and in analyzing scintillation of radio and optical

celestial sources.

In the discrete scatterer model a homogeneous medium is assumed to be
embedded with discrete scattering regions of different permittivity and
permeability, with randomness accounted for by a statistical description of
these discrete-scatterer charactéristics. This model has also been used in the
study of radio-wave scattering in the atmosphere where ip applies to various

forms of precipitation and as a first approximation to small-scale



irregularities in the refractive :'Lndex.3 It has also been used as a model of.
the microstructure of gases, liquids, and solids in scattering studies at
optical and X-ray frequencies. The present thesis is restricted to an
investigation of certain fypes of discrete scatterer models.

In general a random medium is dependent on both "spatial" variables
and time. 1In é discrete scatterer model the random medium is represented at
time t by an ensemble of "spatial" configurations {§;,§,,...,5y} of N discrete
scatterers within an otherwise homogeneous medium. The "spatial' variables
§l,§2,...,§N are random, eaéh including the significént properties such as
position, velocity, size, shape, orientation, and permittivity of one particular
scatterer. The ensemble is described by a joint probability density function
p(8;,...,5y;t) which specifies the probability "weight" associated with a

finite range of configurations;'p(§1,...,§N;t)d§1 *++ dsy is the probability

of finding the scatterers at time t in a configuration in the '"volume element"

around é‘l,...,'s'N.Jr This function satisfies

Jr "'J[ p(815--+,8y3t) d§) -+ d5y =1 (1.1)

The usual scattering problem associated with random media of
discrete scatterers may be stated as follows: - An electromagnetic wave ?i(f)ejmt
is incident on each configuration Sys+++,5y of the ensemble and gives rise to
a resultant field F(§1,...,’s'.l\];f,t)e_jwt which is specified at a point T and

time t by

F(S),...,8E,t) = FL(B) + FS(5,,...,5;F,t) (1.2)

TThe common practice of employing a single symbol to represent both a
random variable and the values it assumes is followed throughout the thesis.
Also used is the convention that p may represent any number of probability
density functions, the type being indicated by the random-variable symbols with-
in the parentheses (before the semicolon). :



where Fsejwt is the scattered field. It is desired to determine the statistiecs
of the field F at T and t over the ensemble of scatterer configuratiéns, or
more specifically, the joint probability density function p(X,Y:¥,t) of the
field components X and Y, where F = ]FI =X+ jY or F = xelY, Usually the
scattering process is stationary (see reference 3 for definitions) so thét the
medium is specified by a single probability density function p(s,,...,Sy) and
the field by p(X,Y;T).

Since p(X,Y;r) is a function of various statistical moments of
X and Y over the ensemble of configurations, a subsidiary problem is to

determine these moments. The m-th moment of a field component X is defined

{X™(E, 1)) éf f P(Eyser sBy3t) X™(Sy,...,5y3F,t) d5, -+ diy (1.3)

and is independent of t for a stationary process. Often the scattering process

3 as well as stationary so that estimates of (Xm(f)> can be deter-

is ergodic
mined by lonthime averages of XM, Such conditions occur in practice if the
time constants 6f‘the scatterer motion are much larger thanm the period of the
incident wave (i.e., so that the field is relatively independent of the
scatterer velocities) but much shorter than the time interval of measurement,%>3
In this thesis, emphasis is placed on the investigation of existing
general discrete-scatterer theories for the field moments of interest and the
development of more accurate ones. Such theories are of importance because
they explicitly involve the various physical and statistical parameters of the
scattering medium (e.g., scattering characteristics of the individual
scatterers; parameters of. the distributions of scatterer positions, sizes,
permittivities, and other "spatiél" variables)., Thus, for example, in

scattering studies of the microstructure of matter they provide a framework for

the inversion of field measurements to yield the individual scatterer functions



and distributions of physical interest. Furthermore, when specialized to the.
naturally-occurring scatterer distributions of the atmosphere and the corres-
ponding communication problem, they provide a basis for the appropriate choice
of signal parameters to minimize the effects of the fluctuating medium on
coherent propagation. As already stated, the field moments also enter into
theoretical models for the complete probability density of the field which are
necessary to more completely characterize the scattering procéss. Some
consideration is aiso given in the thesis to this more general proﬂlem area.

As a means of investigating existing generél discrete-scatterer
theories and providing insight into the physical and statistical characteristics
of discrete-scatterer media, much weight is attached in the thesis to fhe use
of a one-dimensional model of randomly-positioned planar scatterers. As a tool
in the investigation, the Monte Carlo method is used extensively for a
computer simulation of scattering from this model.

The theoretical aspects of the scattering problem are considered in
Chapter 2; the two general approaches to the solution of the problem are
" introduced and some existing theories for the field moments and the complete
field distribution are presented. Also in Chapter 2, the theoretical basis for
the consideration of the one-dimensional model is outlined in detail and
several approximate scattering theories developed for this model in the present
work are given.

In Chapter 3 the use of the Monte Carlo simulagion in the study of
random media of discrete scatterers is discussed and procedures fof its
application outlined. Results of a comparative study of theoreticaliand
simulation data for scattering from ensembles of configurations of uniformly-
random planar scatterers are given in Chapter 4. From these results the
approximate theories presented in Chapter 2 are evaluated. "In Chapter 5

simulation methods developed for the investigation of non-uniform distributions



of finite-width planar scatterers are presented and scattering results
based on these methods given.

Discussed in Chapter 6 is a physical model of a random medium of
spherical scatterérs which has been developed in this work for use in con-
trolled laboratory experiments at millimeter-wave frequencies. The Monte
Carlo method is employed in this model to control the position-statistics
of the scatterers. Results of an experimental evaluation of the model are

given.



2. THEORETICAL CONSIDERATIONS

2.1 Introduction

Previous theoretical research in the scattering of waves by random

media may be divided into three general; related problem areas:
(i) The development of theories for certain average field functions of
interest subject to various mathematicél models of the random medium.
(ii) The development of theoretical models for the probability density
function of the field associated with séattering from a given random medium.
(iii) The development of theories for inverting statistical estimates of
average field quantities to determine the physical composition of the random
medium, | “

As stated in Chapter 1, the first two problem areas are considered
in this thesis with most of the emphasis being placed on the first.

Two techniques have been used to obtain explicit expressions for the
average field functions of interest.- Keller6 has called these "homest'" and
"dishonest" methods. In an "honest" method, as applied to random media of
discrete scatterers, an explicit expression for the desired field quantity is
first determined for a fixed configuration of scatterers. This expression is
then directly integrated over the ensemble of configurations using the
definition (1.3). In a "dishonest' method, randomness is utilized before an
~explicit expression for the desired field quantity is obtained. With certain
heuristic approximations being made, the defining equation (1.3) is transformed
into compact integral or differential equations iﬁ the desired average field
function. These simpler equations arelthen solved suﬁject to the boundary
éonditions of the particular problem at hand.

The "dishonest" technique has been the main theoretical approach for

many—scatterér problems in which multiple scattering is considered. It has



advantages over the "honest" techniqﬁe in that it simplifies the problem to be
solved and leads to closed-form expressions for the desired averagé field
functions. TFurthermore, the resplting expreésions are sometimes sufficiently
general to>be applicable to distribﬁtions of one-, two-, or three-dimensional
scatterers. This technique is usually handicapped, however, by the nee&kfér‘
employing unprdven heuristic approximations.

The "honest" technique, because it requires an explicit field
expression for a fixed configuration of scatterers and involves a multiple
infegration of this expression, is mainly limited to problems involving two
or three scatterers or many-scatterer problems in which multiple scattering
has either been completely neglected or only partially included. Its appli-
cation is also limited to a specific scatterer model with the resulting
expressions often being less general than expressions obtained by a ”disﬁonest"
approach and in series form rather than in closed form. For certain scatterér‘
models, however, the "honest' technique yields more accurate (although more
cumbersome) expréssions for the various average field functions of interest
than does the "aishonest” technique. Also, approximations may be made on a
strictly physical basis (usually with respect to the number of multiple-
scattering effects included) for the particular scatterer model being con-
sidered.

As stated in Chapter 1, throughout the thesis most of the emphasis
is placed on the problem of plane-wave scattering from an ensemble of one-
dimensionally random configurations of planar' scatterers. This model is
introduced in section 2.2 and reasons are given for its consideration. For
convenienée, it is frequently called the "one-dimensional model"'.

The basic formalism for scattering from a fixed configuration of
arbitrary scatterers is presented in section 2.3. In section 2.4 are presented

two explicit theories for scattering from a fixed array of planar scatterers,



one of which has been developed in tﬁis work to provide a basis fof approximate
theories for an ensemble of planar-scatterer arrays. Definitions of the
average field functions of interest in scattéring from an arbitrary ensemble

of scatterer configurations are givén in section 2.5. The existing general
discrete-scatterer theories for average field functions which are studiéd in-
detail in this work are also introduced in section 2.5 and a briefvmention of
some of the previous research in this area is made.

Presented in section 2.6 are approximate series expressions developed
in the present work for some of the average field functions of interest in the
problem of scattering from an ensemble of uniformly-random planar—scatteref
cdnfigurations; In section 2.7, asymptotic theories for these average field
functions in the limit as the average density of scatterers goes to zero are
given., Based on the asymptotic form for the coherent transmitted field in the
one-dimensional model, a modification to the one-dimensional form of an
existing general discrete-scatterer theory is proposed.

In secfion 2.8 the more general problem of obtaining a complete
statistical repfesentation for the random field in terms of a joint probability
density function of its components is discussed. Detailed consideration is
given to the one-dimensional model. Géneralization of the theories presented

in the chapter is discussed in section 2.9 and a summary given in section 2.10.

2.2 The One-Dimensional Model

The model considered in most detail in the thesis is that of an
ensemble of configurations of parallel planar scatterers of infinite extent
randomly positioned within a slab region of space according to a specified
probability density function p(z;,...,2y) of the scatterer positions z;,...,zy.
A particular configuration from the ensemble is represented in figure 2.1 with

"ordered-positions" z],...,2zy satisfying 0 < z; < z) < ... <zy <d. Aplane



wave incident from the left is scattered by each configuration causing
resultant reflected and transmitted waves as indicated. Although they are
shown in the diagram as infinitely thin sheets, the one-dimensional scatterers

may represent the centers of homogeneous or inhomogeneous dielectric slabs of

finite thickness.

f | | |
] 1 | 1
1 I | |
L
e ! !
’\'\‘
—— 1 - - - L ) -
Z
- ‘ N e
-~ i i Ran
- ~
| 1 |
| | |
[ | |
' r ot 1
z=0 Zl 22 Z3 ZN z=d

Figure 2.1 The One-Dimensional Model

The main reasons for placing emphasis on this one~dimensional model

are as follows:'

(i) Certain behavior exhibited by the random field associated with
scattering from a one-dimensional random medium of discrete scatterers is also
present in more complex random media of discrete scatterers. Thus, a study of
the simpler model can to a certain.extent contribute to a better understanding
of the overall problem,

(ii) The application of Monte Carlo simulation to the probiem of scatter-
ing from a given ensemble can yield numerical results for the average field
quantities which are exact to within a certain statistical error. These
"exact' results provide a means of evaluating various approximate theories for
the average field quantities. The Monte Carlo technique also allows the

complete statistical distribution of the field (e.g., cumulative distribution)
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to be sampled as well as'the variousvfield moments.,

(iii) Cer;ain approximate theories for average field functions which have
previously been developed using the "dishonest" technique apply generally to
the one-diﬁensionai model and to mofe complex two- and three-dimensional models
of random volume distributions of discrete scatterers. Thus, evaluatién of
these theories for the one-dimensional model serves to partialiy evaluate the
theories in general, since in principle the approximations involved are
independent of any particular model.

(iv) The "honest" technique may be employed for the one-dimensional model
to obtain approximate series expressions for the various average field
functions. The approximations involved are made on a physical basis in that
only lower order multiple-scattering processes are considered. These approxi-
mate theories are in general better than existing theories based on the
"dishonest'" technique and may be used to advantage in improvihg existing
theories.

It shoﬁld be evident that the choice of this particular one-
dimensional modél has been based mainly on theoretical considerations. 'Similar
considerations have governed the choice of different one-dimensional models by
other workers.7 Indeed, many theories developed for models of continuous
random media (i.e., perturbed continuum models) have involved randomness in one-
dimension only.

Explicit numerical results in the thesis are given only for the
special case of normai plane-wave incidence on an ensemble of configurations
of N lossless identical planar scatterers. Little is lost by this special-
ization and it allows different statistical distributions for the scatterer
positions to be studied more conveniently. Methods of extending the theory
and simulation to the more general cases of oblique incidence, lossy

scatterers with random scattering amplitudes, and random N are indicated.
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2.3 Basic Formalism for Scattering.from a Fixed Configuration
of Arbitrary Scatterers

For convenience in this chapter and throughout the thesis a scalar
formalism for the field is used.. This is a common practice, even for some
three-dimensional electromagnétic problems,8 and is completely valid for the
one-dimensional model. The time factor ejwt is also removed from all
equations. |

For a field ¢(F) incident on a configuration of N discrete
scatterers whose positions and scattering characteristics are specified by

§1,...,§N, the total field at a point T outside the scatterers' surfaces is

represented by
U, s e s B E) = 6(F) + UG, ,...,8E) (2.1)

where U is the total scattered field. The rest of the scattering problem is
specified by the conditions at the boundaries of the scatterers, the conditions

at infinity, and the scalar Helmholtz equation
(V2 + k2)y = 0, k = 2mw/X _ (2.2)

Although A is assumed to be the free-space wavelength, it may equally well be
the wavelength of any other medium in which the scatterers are embedded.
The total scattered field may be represented by
' N
U(Sy,...,5pE) = Z Ug(Sys0e0s5yE) (2.3)
s=1

where Ug is the contribution from scatterer s. Several different represent-
ations for Ug and its vector equivalent exist and are useful for three-
dimensional problems.g’10

The many—scatterer problem can also be formulated in terms of
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isolated scatterer functions. The total field is written

ug(E-Fg) 05(5,0.,5y3E;) (2.4)

?CV]Z

V(515 ..,5y:E) = ¢(F) +

where uS(f) is the scattered field due to plane-wave excitation of scatterer s
if it were situated alone at the origin. For a three-dimensional scatterer,

ug is of the form of an outgoing spherical wave

e~ Jkr

Tkr (2.5)

ug () ~ g(£,k)

as r > », The three-dimensional "scattering amplitude" g(£,k) is a function
only of the direction of the incident plane wave and the direction of obser-
vation as represented by the unit vectors k and .

The quantity ¢, is the multiple-scattered "exciting field" for

scatterer s and is represented by

0 (515 0sB3Eg) = 0(F) + ) u (T -Fp) 0.(81,...,53F,) (2.6)

Essentially, equations (2.4) and (2.6) are operational forms written on the
basis of the superposition principlé. Since the response of a single scatterer
to a plane wave is known, the response to the multiple-scattered exciting field
given by (2.6) can in principle be determined by a plane-wave integral
expanéion of og

The compact forms of (2.4) and (2.6) can be iterated in terms of the

isolated scatterer functions u_ and the following expanded form for Y obtained

s

as an infinite series of "orders-of-scattering':

VE .. B BpE) = 0(D) + ). ug(B-F) 0(Fg) + ). 3. u (F-Tg) u (Fg-Fp) ¢(F,)

s s t#s :

+ 5 Y Y (B u (Fg~F,) u (F ) 6(F) + .... (2.7)
s t#s m#t

12
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A similar form can be obtained for the field intensity lez.

+ Because these expansions for ¥ and ]wlz are qﬁite general and indepen-
dent of any particularbscattering model, they have proved useful in theoretical
investigations of the processes of multiple scattering as they effect a

Configuration of scatterers or an ensemble of configurations.11

Because of the
necessity for plane-wave integral expansions of the excitation terms for other
than one-dimensional scatterers, bowever, it is exceedingly difficult for
explicit series solutions to be obtained. Furthermore, for particular
scattering models they are not always quickly convergent nor neceséarily even

convergent. A more quickly convergent infinite series expression for the one-

dimensional model will be given in the following section.

2.4 Explicit Theories for Scattering from a Fixed Array of Planar Scatterers

Consider now the scattering of a normally incident plane wave

i,...,zﬁ as shown

$(z) = e-JkZ from an array of planar scatterers located at z
in figure 2.1. TFor later development of theory for ensembles of arrays it is

assumed that the scatterers are located between the planes z = 0 and z = d as

indicated. The isolated scatterer functions for excitation by ¢(z) are

ug(z-2}) = gyg $(z-2)) (2 > z})

(2.8) -

. , ug(z-28) = g_g ¢'(z-2%) (z < z§)

where ¢'(z) & esz

. The quantities g4 and g_g, termed the forward- and back-
scattering amplitudes, are related to the single scatterer transmission and
reflection coefficients Tg and Rg by Tg = 1 + g4g and Rg = g—g. These
quéntities are used interchangeably throughout the thesis.

Although the theories to follow are valid for configurations of non-

identical scatterers, later numerical results for ensembles of scatterer



configurations are based on configurations.of identical scatterers. Numerical
values for the scattering amplitudes g, = T, - 1 and g_ = R; of these identi-
cal scatterers are taken to be those for actual dielectric slabs of finite
thickness., Explicit expressions-for g4 and g_ are given in Appendix B for a
dielectric slab.

In a later development of theory for scattering from an ensemble of
uniformly-random planar scatterers, it is assumed that the scatterers are
infinitely thin but have finite scattering amplitudes. ¥For the present
development, however, the question of finite thickness is immaterial since
gy and g_ are referred to the scatterer's center.

2.4.1 Wave Transmission Matrix Representation

An exact representation for the total field can be obtained using
wave transmission matrices.l? This theory provides the basis for the "exact"

simulation results in the thesis.

Consider the array of planar scatterers shown in figure 2.2,

| | 1 |
I | 1 ]
| |
| |
AV s Vo e o
cy c,
— - - - - - - + -— o
A
.,,,..,| lm
bi bo
! |
{ i | i
| | i [
z=0 z] z, z3 ZN =d

Figure 2.2 Wave Transmission Matrix Representation

The matrix expression relating the complex wave amplitudes c;,b; and c,,b, at

the planes z = 0 and z = d is

14



o o
N ~-2jk(d-zq3)
by TT Ay Ay || O e N b,
s=) ' ’
where
A, AL, N1 0 1 -Rg
= -2jk(zl-z!_.) 2_p2
A.21 A22 s=1 0 e s “s-1 Rs TS—RS
9_

_ |
(for s = 1, Zg_y

scattering regions due to the plane wave incident from the left is

V(z),.eeszyiz) = T(z],.0052y) ¢(2) (z > d)
Y(z]se0eszy32) = 6(2) + R(z{,...,2y) ¢'(2) (z < 0)
where
N
1 A= jk.d CO _
T(zl,...,zN) e — = ]‘[ TS/A11
i bo=0 s=1
and
b A
R(z),...,2) = — -2
€i]b,=0 An

are the overall transmission and reflection coefficients for the array as

referred to the plane z = 0.

2.4.2 Orders-of-Back-Scattering Representation

Another explicit representation for the total field has been

developed in this work. Termed the orders-of-back-scattering (0-B-S)

0). Thus, the total field in the forward- and back-

- 15

2.9)

(2.10)

(2.11)

<2.12)

(2.12)

(2.14)

representation, it is useful as a basis for the development of approximate .

theories for scattering from an ensemble of planar-scatterer configurations.

Consider the scattering diagrams for three scatterers shown in
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figure 2.3. Figﬁre 2.3a shows the two dominant multiple-scattering processes
contributing to the transmitted field. The first process, termed the
zeroth-order-of-back-scattering (Z-0-B-S), involves no reflections, while the
second, termed the second-order-of-back-scattering (S-0-B-S), involves two
reflections. Figure 2.3b shows the two dominant multiple—scattering processes
contributing to the reflected field. These processes, called the
first-order-of-back-scattering (F-0-B-S) and the third-order-of-back-scattering
(T-0-B-8), involve one and three reflections respectively. The symbol +i7 , in
s

the diagrams, represents a transformation of the field along a ray path by Tg

and the symbol 24' » a transformation by Rg.
z .
s

7 —
| (,i) ( A
- 0 T
’ 2 7
N B -
p -
B D 7 -
- - wn 0
1 |
- 7 7
i S
. %5} £~
v - - ~
L —- >
(a) | (b)
' ' ' ' ' '
Z1 22 Z3 Zl 22 23

Figure 2.3 Dominant Multiple-Scattering Processes in 0-B-S Representation

The multiple-scattering procésses shown in figure 2.3 give the first
two terms in an infinite series of orders-of-back-scattering for the trans-
mitted and reflected fields. Induction yields the general term corresponding
to the nth ordef—of—back-scattering. For normal incidence on an array of non-

identical scatterers, the resulting expressions are of the form



.17

| ' -
T(Zl,...’ZN)‘TO+TII+TIV+.... +Tnth+.ooo

(2.155
1 Ty
R(z1""’ZN) = RI + RIII + RV + ... + Rnth + ...

P=1 s=2 t=1 q=0
' (2.16)
r N N Sl—'l N Sn__l—'l Sl"Sz-l
— * o 2
Thth = ﬂ Tp Z Z Z ﬂ TS2+p1
- p=1 $ 8,72 Sz=1 s3=sz+1 sn=1 p1=0

R}

n

S375y~1 [ Sn-175n"1 ]
T2 ceen T2 R R R ++++ R
. n .

sp’ (n even)

and

s-1 N
[ T% ] R e—ZszS’ Tg 2 1, etc.

: N s-1 N s-1 u-t-1 . vt
= 2 2 : -2ik(zl-z}+z')
Ripp = 3. 3. [ T2 ] [ TT T2 } RgR¢R, e s”2t 2y
s=2 t=1 u=t+1 | q=0 r=0
: (2.17)
N S17! N N s;-1 S3~8,"1
= . 2 2
fath Z = Z_: Z + T:[ "5, r[ 5%,
s1—2 82—1 s3—sz+1 $n=%n—-1 1 pl—o p2—0
[Sn—sn—l—l (2! [ ' ')
-2ik(z! -z} +z! —viitz
TT T Rg Ry -++ R s s s
S +p S, S s 2 n
_ n-1 (n+1)/2] 1 %2 3 n
P(n+1) /270



18

These expressions are valid not only for an array of dielectric slgbs
separated by spaces of the embedded medium, but also for a stack of dielectric:
slabs with no spaces bétween their boundaries. Simplification for arrays of
identical scatterers is, of course, straightforward.

The 0-B-S representation of equations (2.15), (2.16), and (2.17)
was obtained by the direct physical approach of successively introducing less
dominant multiple-scattering processes contributing to the total field. It
may also be obtained (but less easily) by regrouping terms of the orders-of-
scattering representation of‘equation (2.7) on the same physical basis. Thus,
the Z-0-B-S contains terms from up to the Nth order-of-scattering, the S$-0-B-S
contains terms from up to the (3N - 2)th order-of-scattering, and the forrth-
order-of-back-scattering (F0-0-B-S) contains terms from up‘to the (5N - 4)th
order-of-scattering, etc. Similarly, terms froﬁ up to the (2N - 1), (4N - 3),
and (6N - 5)th order-of-scattering contribute to the three dominanf 0-B-S for
the reflected field.

Essentially the same physical approach in terms of ray paths was

13 to obtain a general series expression for T based also on the

used by Marcus
reflection and transmission characteristics of the individual "discontinuities"
but containing a different grouping of terms. He considered the combinatorial
aspects of the problem more thoroughly than has been done in the present work,
showing that the series for T éould be reduced to the closed-form expression
resuiting from a matrix approach. In the present work, however, the explicit
ofders—of—back—scattering forms>given for both T and R more readily allow the
necessary multiple-scattering approximations to be made in their application
to an ensemble of scatterer configurations.

From the numerical results of Chapter 4, convergeﬁce of the 0-B-S

series on an average basis appears to be quick for identical planar scatterers

with fairly large back-scattering cross-sections. As shown by Kay and
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Silverman,7 however, thé convergence of the ensemble average of a series
expression for a fixed configuration can be faster because of the effects of
incoherent scattering in the random case.

Both the.wave transmission matrix theory of the previous section and
the 0-B-S representation can be generalized for plane-wave incidence at an
arbitrary angle 0 with the normal by the replagement of Ty and Rg with ;heir
corresponding values for oblique incidence (see Appendix B) and by the

substitution of k cos0® for k.

.2.5 Scattering from an Ensemble of Scatterer Configurations

2.5.1 Average Field Functions of Interest

The field statistics in the problem of scattering from an ensemble
of scatterer configurations are generally related to a normalized field
quantity designated TedT. TFor a random medium having the slab-region geometry

of figure 2.1 (i.e., bounded by the planes z = 0 and z = d), this quantity is

defined
. V(8,5...,8y;T)
Ted® & ! — N (z > 4d)
¢ (¥)
‘ (2.18)
= T(-S-‘l"”’gN)
in the forward-scattering region and
g VBB - 0@ UG5
| 4" (3 G)
(2.19)
= R(gl,..-,gN) (Z < 0)

in the back-scattering region. It is commonly called the total field.
Throughout the thesis it will be clear from the context whether use of the

term, total field, refers to the actual total field ¢ or the normalized total
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- field as defined in équations (2.18) and (2.19).

The total field is customarily separated into two componentsa’5

TejT = Ceja + Iejm » (2.20)

such that

(1ed ™) = ced®, (11 = 0 | (2.21)

The component Ced® is called the "coherent field" and the component Ier, the
"incoherent'" or 'variant field". The total, coherent, and incoherent fields

are divided into their rectangular components as, for example,

‘ TejT = T cost + jT sintT
(2.22)
= Ty + 3Ty
such that
Cx = <Tx>’ Cy = <Ty>
(Ix) =0, (Iy) =0 ' (2.23)
tana = Cy/cx

The interrelation of the functions of (2.20) and (2.23) may be represented on

a phasor diagram as shown in figure 2.4.

I
I
y T \\
Ty .
! C
(Ty? —
i i i .
¢(t), ¢'(¥)
(Ty) T I g
TX

Figure 2.4 Phasor Diagram of the Total Field Resolution



The intensities of the quantities are related by
(12) = c2 +(12) | (2.24)

where <T2> is the "average total intensity', C? the "coherent intensity", and
<Iz> the "average incoherent intensity". The variances and covariance of the

total field components Ty and Ty are given by

GTi = <Ix2> = <Tx2> - sz
OT; = (I,2) = (1y?) - C,? | (2.25)

wor, Op, = (IeIy) = (TxTy) = CyCy

where p is the correlation coefficient between Tx and Ty. ' These second central

moments may also be expressed in terms of the average incoherent intensity <12>

and a complex function definedl"5

252e32s & <Izej2®> = {(TedT - ced®)2)
(2.26)
= <T2ej2T> - CzejZOt
Thus,
(1.%) =.%'<12> + S2 cos 2s
(1,%) = %.<12> - 82 cos 2s | (2.27)
(Ixly) = S% sin 2s
and ,
(2.28)

S2 cos 2s

7 (L) - (1,2

Twersky5 has termed Sel® the "covariant field", S2 the "covariant intensity",

and s the "covariant phase".

21
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Further description of the total field statistics is given by
higher central moments of T, and Ty. In this work the third and fourth central
moments <Ix3>, <Iy3> and <Ix”>, <Iy”> are used as a measure of the extent to

which the joint distribution of T, and T

y corresponds to a bivariate Gaussian

distribution (see section 2.8). Specifically, the "coefficients of skewness"

_ (% (1y*)

= b.. = (2.29)
X » Dy
(1,2)3/2 <Iy2>3/2
and the "coefficients of kurtosis"
I 1t
_ D = Lé’__z - (2.30)

Y_= - s Y
X ;
(L 22 Y (1,2
are obtained.lA' Expressions for all the higher central moments have been

4,5 j(n—2m)Q> [

given by Twersky in terms of complex functions <Ine where m ranges

from 0 to n/2 for the even moments aﬁd to (n-1)/2 for the ode. Twersky[*’5
has also given generalized expressions for the central moments for a change v
in the phase of the reference field [i.e., ¢(Y) and ¢'(¥) in eéuations (2.18)
and (2.19) replaced by ¢(f)ejv and ¢'(f)ejv].

Moments of the amplitude T and phase T of the total field are also of

interest. In this work the average field amplitude <T) and the average phase

(t) are obtained, as are the variances

og2 = (12) - (12

O'rz = <T2.> - <T>2

(2.31)

Twérsky4 has obtained the following expansions of these moments to second-

order terms in the previously defined moments

cee L[ Ly o g S I .
(T)=C + 5 [ 5 (I > $ ;os 2(s a)] + B (2.32)

(1) = a - §;-sin 2(s-a) + .... | (2.33)
C



23

%—<12> + S2 cos 2(s=-a) + .... . (2.34)

012‘= E%-[ Q%E?~ S2 cos 2(s-a) ] + ... ' (2.35)

2.5.2 Some Existing Theories for Average Field Functions

In this section some of the existing contributions to the develop-
ment of approximate theories for average field fucntions are briefly mentioned
and two coherent field theories for which numerical results are given in the
present work are introduced. A more detailed account of previous research is
given in the survey papers'by Burke15 and by Twersky.16

L. Foldy17 appears to have been the first reseafcher to apply a
"full-wave' treatment to the scattering of waves by random distributions of
discrete scatterers. In his 1945 paper, Foldy introduqed the concept of
obtaining averages of field quantities of interest over an ensgmble of
scatterer configurations, establishing the basis for nearly all subsequent
formulations. Through the use of heuristic approximations for the field &g
exciting a scatterer, he obtained infeéral expressions for the coherent field,
the average total intensity, and the average energy flux for scattering from
uniformly-random distributions of .isotropic point scatterers. Foldy's treat-

18,19

ment of the problem was later generalized by M. Lax to include scattering

from distributions of anisotropic point scatterers. Lax introduced further
- heuristic approximations for the exciting field in order to obtain the

necessary integral equations.

More recent theoretical work has been done by Waterman et al.,20’21

h,22 8,11,23-28 ¢ ieral of Twersky's theories are of

Mathur and Ye and Twersky.
particular interest in this thesis because they are sufficiently general to be
applicable to random distributions of one-, two-, or three-dimensional

scatterers. Much of Twersky's work, furthermore, has been initiated as a
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resﬁlt'of experiﬁental research with a physical model of a random medium of
discrete scatterers. This type of research‘is-the subject of Chapter 6.

Considered in some detail in the present work are Twersky's '"free-
space'" and "mixed-space" (or ''two-space') theories for the coherent field.g’24
These theories, which are based on a "dishonest" approach, apply generally to
slab-region volume distributions of identical one~, two—, or three-dimensional
scatterers. The one-dimensional forms of the theories are summarized in
Appendik A and the assumptions and heuristic approximations on which they are
based are outlined.

Twersky's free-space theory is most valid for ensembles of scatterer

configurations which conform closely to a uniform distribution described by
P(Ty,...sEy) = p(x)) p(¥,) «-o- p(Ty = (/MmN (2.36)

where p is the average density of scatterers in one, two, or three dimensions.

A modification to the free-space theory for the coherent transmitted field is

preoposed in section 2.7 based on the exact asymptotic behavior of cel®

as

p > 0. Numerical results for the oné—dimensional form of the theory for the
coherent transmitted and reflected fields and the modification to the theory
for the coherent transmitted field are compared with ”exapt" Monte Carlo
simulation results for a distribution of uniformly-random planar scatterers in
Chapter 4.

As shown by Twersky,24

the miged—space theory can approximately
describe certain dense distributions of finite-size scatterers if the average
density p is correctly interpreted (see Appendix.A). To illustrate the
requirements for the approximate validity of the mixed-space theory with p
interpreted in the correct manner, numerical results for its one-dimensional

form are compared with "exact'" simulation results for a non-uniform distri-

bution of finite-width planar scatterers in Chapter 5. TFor completeness and
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for later comparison with the results of Chapter 5, results for the mixed-
space theory with the actual average density p = N/d are also given.fof
uniformly-distributed planar scatterers in Chapter 4.

Other general discrete-scatterer theories for the average incoherent
intensity and other average field functions have been developed by Twersky but
have not been numerically evaluated for the one-dimensional médel in the
present work. These are briefly discussed in Appeﬁdix A. Theoretical contri-
butions to the study of scattering from non-uniform distributions of
scatterers with correlation between the scatterer positions are discussed in
Chapter 5.

2.6 Series Approximations for Scattering from an Ensemble of Uniformly-Kkandom
Planar-Scatterer Configurations

Considered in this section are certain approximate series expressions
developed in the present work for some of the average field functions of
interest in the problem of scattering from a distribution of uniformly-random
planar scatterers. These series expreésions were obtained by the "honest"
technique of directly integrating approximate representations for the field
functions over the ensemble of scatterer configurations. Although more
cumbersomeé, such series expressions are in general better than closed-form
theories developed by means of 'dishonest'" methods. The primary value of the
present theories, héwever, is considered to be‘theoretical. They provide a
possible means of investigating and eliminating the imperfections of existing
closed-form theories based on heuristié approximations, an approach previously
illustrated by Twersky.ll Also, they lead naturally to the development of
exact asymptotic forms for the average field functions in the limit of p = O
(see section 2.7).

Direct integration over the ensemble of planar-scatterer
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configurations is most easily performed with the use of the joint probability-

density function for the "ordered-positions" zj,...,zy, i.e.,29

P(Zi,---,Zﬁ)———N'( ) (0 szl <2} g... 22f<4d) (2.37)

The N! multiplier iﬁ this function expresses the fact that there are N!
permutations of the statistically independent scatterer positions ;1,;..,zN

in the underlying uniform distribution described by p(z;,...,zy) = (p/N)N

The technique of obtaining approximate series expressions, valid for arbitrary
N, is illustrated first for the coherent reflected and transmitted fields.

2.6.1 The Coherent Fields

In order for an explicit series expression for (y) to be obtained,
the reflected field was approximated by the contribution from the F-0-B-S and
the transmitted field by the contributions from the Z-0-B-S and the S-0-B-S.

Thus, for configurations of identical scatterers,

X .
R(z},...,zp) =R, § 1,2(57D) o=25kzs (2.38)
S:
and

Z-: 2(s-t-1) e—ij(Zé_-Z:';)] (2.39)

n[vjz

T(Zi,o-.’ZI;]) = TlN [l + Rl

The integral representations for the ensemble averages of these approximate
expfessions are then

N'R. N d rzy z; PO - :
(RY=—+ le(s_l)f f f e23k2s gp1 L. dgy (2.40)
d 0o Jo 0

s=1

2 N -1 ‘ d 1 1 . .
(ry- 1 1 SRy e f sz.... fzz o2k (zl-2})
¢ o Jo . o

s=2 t=1

dzy "*° dzﬁ] (2.41)



The procedure used to obtain general series expressions for (R), (T),
and other average field functions, valid for arbitrary N, was to ev;luate the
integrals involved for N = 2, N = 3, N = 4, etc., until by induction the
general forms could be recognized./ Thus, the coherent field expressions

determined are

N
} 2yn-1 [ 2(N-n) _-2jkd
(R) =R, Z (N- n)' de) (1 - 157 [Tl (Nm) gm2ikd 1] : (2.42)

(1 = N{l + 7,2 % TI%'ST (?z’i—d)n (1 - 1,202 [(n_l)le(N-n) ~2jkd
n=1 .
+‘(N—n)T12 - (N—l)]} | (2.43)
Since
(N-I\jr‘l)' (21«1) ( )n (S_x)n (1 - %Hl - I\Zf) (1 - n—;i) (2.44)

it is evident that these expressions are finite power series in the average
density of scatterers per wavelength p, = NA/d. In the limit as py > 0, they
reduce to

NR , |
(R) = —Zk—; [1- 120D e"-Jkd] (2.45)

and

(ry=1," (2.46)

The result of equation (2.46), that the coherent transmitted field in
the limit of Py 0 is composed only of the term dugbto in-phase forward
scattering (i.e., Z—O;B—S), is exact. The higher 0-B-S terms neglected in
equation (2.41) all involve exponentials and consequently when integrated over
the ensemble would give only terms to first and higher order in p,. The

asymptotic expression of (2.46) is discussed further in section 2.7.
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Further examination of the 0-B-S representations for R and T reveals
that the terms of equations (2.42) and (2.43) for first and higher érders of py
are the initial terms of infinite series in powers of R; corresponding to
higher 0-B-S. Thus, the expressions obtained for (R} and (T) can be expected

. This, of course, is

to be good approximations for scatterers with small IR1
also implied by the initial approximations for R and T. Numerical results
given in Chapter 4 confirm this reasoning.

The series expressions of equations (2.42) and (2.43) ana those given
in the following»secpions can be generalized for a wéve obliquely incident at
an arbitrary angle © with the normal to the slab-region boundaries by a
replacement of all occurrences of k with kcos®. The oblique—incidence;expres-
sions for R; and T, are given in Appendix B.

2.6.2 The Average Total Intensities

The F-0-B-S approximation was also used to obtain a series expression
for the average total intensity of the reflected field. Thus, for config-

urations of identical scatterers,

N N
2 2 2(s-1) .x2(t-1) -2jk(zl-z!)
IR| = |R,| T T% e s™%t
! 2;1 g;; '
(2.47)
L - |, |# N N Y
- |r |2 [ 1 ] + IR IZ p.2(s-1) px2(t-1) -23k(zi-z¢)
. - |'J?1|4 ; sgl t=z1:¢s . .
and
4N 2 1
o _ o 2L I NR TR N oy el [
(IRI%Y = |r,]| e NN R
1 -1, d"  s=1 t=T#s 0 Jo
Z'
f P em2k(zgmED) qpr L.l dgy) (2.48)
0

Evaluation of the integral of (2.48) gives
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n+3
4N N >
: 1 - T ' n _ 2
Cri2y = (a2 [ LD e g 0 2 (g oa ) 2 m
1 - |r,|% &, (¥-n)! \2kd nt2
1 (even n)(~1) 2 Re

n 1-|T |4(N-m) Lo |4(n—m)
_1ymtl 2m 1 2 (Nentm) , e
Y, DT bT - o
e 4 1 -
m=1 . 1 - ITll 1 - ITII
(2.49)
where the B~ are the well-known binomial coefficients defined by
n-1
. (o-D).
B = - » |
o (m—l) (n-m) ! (m-1) (2.50)

n+3 n+2
The factors (-1) ? and (-1) 2 1in equation (2.49) provide the signs for the

terms of the summation and are used alternately for odd n and even n.
Similarly, for odd n the imaginary part of the second summation is taken, and
for even n the real part is taken.

The first term of equation (2.49) gives the approximate form for
(|®|2) and also (12) = (|R|2) - [(R)|? in the limit of Py » 0. The exact
infinite series form for all 0-B-S contributing to the reflected field is given
in section 2.7. Results from the numerical evaluation of equation (2.49) are

"exact" simulation results in Chapter 4.

compared with
The total intensity of the transmitted field for a S-0-B-S approxi-

mation applied to configurations of identical planar scatterers can similarly

be written

7|2 = |7, |2 [1 + 2Re(R,25)) + ay, R, |4 + c2|R1|4] | (2.513
where
N s-~1 N-1 ]
a5 = z: E: |T1|4(S—t—1) = E: (N-i)|T1|4(1'1) (2.52)
s=2 t=1 . =1
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N s-1 )
- _1 — s LI
SN le(s Eo1) m2ik(zgmzg) (2.53)
s=2 t=1
N s-1 N u-1
] [ 2 "t—'l —T— N, t 1 L
g, = 2: z: T, (s ) T3f2(u v-1) o 25k (zg-z{-2z*zy) (2.54)
s=2 t=]1 u=2 v=1

[The primes on the third and fourth summation of (2.54) indicate that u and v
cannot simultaneously equal s and t respectively.] Thus, the average total

intensity can be represented by

( |T|2> = |T’1|2N [1 + 2Re(R12<c1>)_+ alllRli‘* + (g2>|R1|‘*J (2.55)

The summation average (z;) can easily be obtained from the expression for (T),

i.e.,

N .
_ L I o 2yn-2 _ 2(N-n) _-23kd 5 2
(¢ g;% oy (de) (1 -1,%) [(n 1T, e + (N-n)T;% - (N 1)]

. (2.56)
The summation average (cz), represented by
N s-1 N u-l d rzy
N! —t- - N
(£,) =°= % $ ' 52D %2 (u-v-1) j’ /’
47 s=2 t=1 u=2  v=1 : 0 Jo
22 -2jk(zl-zl-z'+2z}) ' '
AR . e S "t TuTtVS dzy crce dzg (2.57)

has not been determined in the present work because of the difficulty invoived
in recognizing the general expression for arbitrary N by the induction
procedure. Instead, results for <|Tl2> have been obtained by an application»
of Monte Carlo simulation to the S-0-B-S approximation for T.

The third term of equafion (2.55) gives the approximate form for

(12) = <|T|2>'— |<T)|2 in the limit of p, > 0. The exac; infinite series
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form for all 0-B-S contributing to the transmitted field is given in section 2.7.
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The first two terms of (2.55) contribute to the coherent intensity only. The-
fourth term contributes both to the coherent and incoherent intensities. With-
out its evaluation, only the zeroth-order p, term in the power series for (12)

[i.e., third term of equation (2.55)] is available,

2.6,3 The Covariant Fields

It is evident from equations (2.27) that an explicit expression for
the complex function 282ejzs = <T2ej2T> - Czejza provides a means of
evaluating the second central moments of the total field. Thus, since approxi-
mate series have already been given for the coherent.fields, only the function
(Tzej2T> remains. In the present work, a series expression has been obtained
for the reflected field function <T2ej2T> = (Rz) based on the F-0-B-S
approximation.

For configurations of identical planar scatterers, the basic

equations are

N , N N ,
RZ - Rl2 E: T14(s—1) e—43kz; + R12 E: E: Tl2(s+t—2) e—ZJk(Zé+Zé)
s=1 s=1 t=1#s
' (2.58)
= r %ty + R %L,
and
<R2> = R12'(C3> + R12<€1+)
y N d razy z, . -
() = N. o 4(s-1) f f f R L R P (2.59)
N 1 1 N
d” s=1 0 Jo 0

'<§q> =

a2

N N d Zy z) |
5y 1,2t f f Nf ? o 23k(2gt2) g Ll gy
0Jo 0 '

The series expression for (C3) can be obtained by inspection of the expression

" determined for (R). Straightforward integration and induction must be used to
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evaluate <Cq> for arbitrary N. Thus,

(g3) = E: zﬁ¥é;T fz%g)n (1 - T14)n—l [T14(N—n) e 4ikd _ 1] (2.60)

1 - 2n-2 '
<Cu> 3 ) ( - 1 ) [TIZ(N-n) o—2ikd _ 1]

-n) ! (de

"
-3
—
N
g
—_
=
2,

n-1
E:l C [TIZ(N—n+m-1) o-23kd _ T12(n—m—l)] (2.61)
= A

The constant coefficients Cnm are defined in terms of the binomial coefficients

B.m DY
Chp = 1 (n=2,...,N)
(2.62)
Cam = Cn(m—l) + Bom (n = 3, N3 m = 2, ,n—-1) :
They may also be generated from the recurrence relations
Chy = 1 (n=2,...,N)
Com = C(n—l)(m—l) + c(n—l)m (n=3...,Nm=2,...,n~2) (2.63)
Cn(n—l) = 2C(n_1)(n_2) + 1 . (n=3,...,N)

Approximate series expressions have not been determined for

' (Tz ej2T> = <T2> in the present work. Instead, results have been obtained for
the second central moments of the transmitted field in the S-0-B-S approxi-
mation by employment of the simulation technique. The future development of
approximate series for both <T2 ejzr} and (Tz), however, would allow both the
approximate evaluation of the second central moments for TX and Ty and also,
from equations (2.32) to (2.35), the approximate evaluation of the first two

moments of the amplitude T and phase 7.
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2.7 Asymptotic Theories for Scattering from Low Average Density
Scatterer Distributions '

A study of scattering from random media of discrete scatterers in
the asymptdtic region of p >0 is iﬁportant for two reasons:
(i) The constituent scatterers are only sparsely distributed for ﬁany
naturally-occurring media of interest.

(ii) The further development of theories for more densely-packed scatferer
distributions would be facilitated through the understanding of the scattering
behavior of such distributions in the region of low p.

In this section, asymptotic theories developed in the present work for the one-
dimensional ensemble of planar-scatterer configurations are given and, based on
these asymptotic theories, modifications to existing theories applicable to
higher density distributions are proposed. Consideration is also given t§
similarities between the asymptotic coherent transmitted field theory for the
one-dimensional distribution and an approximate theory developed by Twersky to
describe certain.distributions of three-dimensional scatterers.

2.7.1 Asymptotic Theory for the Coherent Transmitted Field

As shown in the previous section, for p; = NA/d = 0, the coherent
transmitted field for the one-dimensional ensemble of uniformly-distributed

identical planar scatterers reduces to the simple form

(1Yo = +gpNo=1N0 (2.64)

the contribution to the total field from the Z-0-B-S. The contributions from .
the higher O—B—S are therefore entirely incoherent. This is a physically
reasonable result since the actual phases of the higher order terms vary over
many lengths of the basic phase cycle (0 to 2w), making the equivalent phases
on the basic phase cycle effectively uniformly distributed (see section 2.8).

Twersky11 has obtained a similar result for a uniform slab-region
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distribution of three-dimensional "fdrward—type" scatterers such that the
scattering amplitude is ''tightly peaked" around the forward—scattering
direction. In the integral version of the orders-of-scattering series (2.7)
for the coherent field, he ignored those terms corresponding to a 'back-and-
forth" interaction between pairs of scatterers; equivalently, he retainéd ohly
those successive scattering terms in which all scatterers are différent. Using
the method of stationary phase for performing the integrations in the
coordinates parallel to the slab region, he obtained an explicit series form

for (¢) which reduced to the closed-form expression

~ ~\3AN ~ ayIN
2mpdg(z, 2 )
(T) ¢ = [1 + ——————“psz]z z)] 4 = [1 + ﬂié: z)] ¢ (2.65)

wheré g(2,2) is the forward-scattering amplitude for three-dimensional
scatterers, p = N/V = N/Ad isvthe average volume density, V is the volume of
the finite slab region, and A its area. Twersky also showed this result to be
valid for a spherical source wave ¢. -

Twersky has compared the expression in (2.65) to that obtained: for
planar scatterers whose forward—scatte?ing amplitudes are g8y = 2ng(2,2)/k2A
and whose back-scattering amplitudes are zero. 1In view of the present iesults
fof planar scatterers, the comparispn does not require the restriction to
planar scatterers with zero back-scattering amplitudes in the limit of p = 0.
This would seem to suggest also that the restriction to "forward-type"
‘scatterers in the three-dimensional medium is also unnecessary for p - O.
Indeed, the physical reasoning used to explain equation (2.64) appears to be
equally valid in the three-~dimensional case. The multiple-scattering terms
neglected by Twersky in the derivation of (2.65) are all higher-order extensions
of those included, containing in addition one or more orders of scattering

between one or more pairs of scatterers. For an average path length between
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scatterers of many wavelengths, these.additional terms should be completely
incoherent. |

As shown by Twersky, as N - « the result of (2.65) becomes identical
to the corréspondiﬁg result obtainea by using the "forward-type" scatterer

restriction in the approximate integral equation for (¥), i.e.;
1+ —] »e as N » « (2.66)

where A = 2mpg(2,2)/k?. The form (T) = eAd is a special case of Twersky's free-
space theory equation with either the "forward-type" scatterer resﬁrictionkor
the restriction p = 0. The result of (2.66) therefore illuminates one of the
main limitations of the apprqximate integral equation and the free-space theory
based on it. |

The one-dimensional eqﬁivalent of the form {(T) = eAd is (T) = eNg+,
the asymptptic form for Py > 0 given in equation (A.l4) of Appendix A.
However, for the one-dimensional planar-scatterer distribution, (T) = eNg+
becomes equivalént to the exact result of equation (2.64) only in the trivial
case of (T) >~ 0. Since equation (2.64) is the exact expression for finite N

and py > 0, it seems plausible to modify the general free-space theory equation
(1) = D(1 - @?) e~d(n~D)kd (2.67)

[given also as equation (A.10) in Appendix A; see section A.l for definition -
of symbols] to give the correct result in the limit py ~ O. The modification

required is contained in the equation
(1) = (1 + gV + [p(1 - @) e7I(n~Dkd _ oNgy ] (2.68)

As shown in Chapter 4, this modification for finite N gives numerical results

very close to the actual results (as obtained by Monte Carlo simulation) over
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a wide range of Py- The results, in fact, are better than those obtained from
the S-0-B-S approximation for (T) as given in equation (2.43). _Furéher
theoretical investigation should reveal the‘reason for the impfovement for
high Py as ﬁell asllow Py

Because of the improvement acquired by an asymptotic modificaﬁionAtb
the free-space theory for the one-dimensional medium with finite N; it is
tempting to suggest a similar modification to the free-space theory for a ﬁhree—
dimensional medium based on equation (2.65). However, despite the marked
similarities, the coherent field properties of a three-dimensional medium are
not identical to those of a one-dimensional medium. In the one-dimensional
medium, for example, (T) » 0 as N + «; in the three-dimensional medium (T)
remains finite for N > » with p = N/V constant. In reference 11 Tweréky
indicates that corrections for finite N are of interest but states in'reférence
27 that no practical error results for '"forward-type'" scatterers and low N
in using either equation (2.65) or the free-space theory form eAd. The reason
for this result is readily apparent, since calculations for the "forward-type"
scatterers considered by Twersky give |Ad/N| << 1, Similarly, for planar
scatterers with [g+l << 1, eNgt = (1 + g+)N even for finite N, as is verified
by the numerical results of Chapters 4 and 5. Further investigation is required
for three—diménsional distributions} however, -to determine which practical
combinations of distribution parameters and individual scatterer cross-sections
make finite-N corrections necessaryAand whether the suggested modification to

the free-space theory for such distributions is valid.

2.7.2 Asymptotic Theories for the Average Total Field Intensities

The problem of determining the asymptotic expressions for the
average total intensities (and correspondingly the average incoherent inten-
sities) is a difficult one because an infinite number of multiple-scattering

processes contribute to the incoherent field. Emphasis is therefore again
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placed on the one-dimensional model.
The total intensity of the transmitted field for a fixed array of

planar scatterers can be written
2 _ % % % * % * v
T2 = To(TE + T + THy + o.0) + Ty (T8 + T + TH, + ..0) + ... (2.69)

where the components Ty, Typ, etc., are given in equation (2.16). From the
results of section 2.6 it is evident that the ensemble averages of the terms

in (2.69) are of the infinite series form
. 2
N N
Co + Cl('i(“a‘) + cz('lzc‘l‘) + T (2.70)

where the coefficients Cys Cys C,, etc., are functions of the planar-scatterer
parameters. Only the terms of (2.69) involving no exponentials contribute to
the < coefficients, and thus it is these terms which contribute to the

asymptotic form for <|T|2>. The asymptotic expression may therefore be

represented as
2\ % % % %
(IT12) = 197§ + as[TTh ) + As[2Re(TyyTip) + TyThy]
+ AS[ZRe(TVITfl) + 2Re(TVIT¥V) + TVITSI] + ... (2.71)

where "As'" implies that the asymptotic form of the expression in brackets is
to be taken.
‘For an ensemble of identical scatterers, the explicit form of

equation (2.71) is

(|1]%) = |1,|™N {1 +ag R |+ [a21 Re(R,T%)% |R,|* + 322|R1|8] + }

(2.72)

. @ n
T2 (14 53 agy RO g |én]
n=1 m<=1

where the coefficients a are real functions of T1 and N. The first three

nm
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coefficients are

N s-1 n-1 .
a; = ). 7, |47 2 T ey |1, [4GD N = 2,3,...) (2.73)
s=2 t=1 _ & \
0 . (N = 2) ,
) = N-1 s—-1 N v (2.74)
2 y |7, |4 Cu-t=2) (N = 3,4,...)
s=2 t=1 u=s+l
. N s-1 N u-1 4(s+u-t-v-2)
PR DI DD WD D & 5% R (N =2,3;...) (2.75)
s=2 t=1 u=t+l v=1

As seen from equation (2.72), the asymptotic form cannot be reduced to a sum
of contributions from each 0-B-S; there are also '"cross terms" (i.e., m # n)

contributed by sets of two 0-B-S.
From equations (2.64) and (2.72), the asymptotic expression for the

average incoherent intensity in the S~0-B-S approkimation is
(12) = |7, |™ a) [R, | ‘ (2.76)

As shown‘in Chapter 4, this approximation gives results in close agreement with
"exact" results for a wide range of the parameters |R1| and N.

The infinite-series asymptotic form for the average total intensity
of the reflected field is obtained in a similar manner to thatlfor the trans-
mitted field. The explicit expression for an ensemble of identical planar

scatterers is

[ n i

n=1 m=1

where bnl =0 forn > 2 (i.e., all cross terms between the F-0-B-S and higher

0-B-S are zero) and the other coefficients b are real functions of lTll and N.
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The first two coefficients are

by = 3 Iyl o 1T =, ™ (
= T = — 2.78)
S AT
N s-1 N . '
by, = E: E: z: T, | (stu-t-2) (2.79)
s=2 t=1 u=t+1

Since |(R)l2 > 0 as py > 0, the asymptotic series for (Iz> is also given by
equation (2.77).

As shown in Chapter 4, the F-0-B-S term of (2.77),
(12) = b, |R,|? (2.80)

gives results in close agreement with "exact" results for a wide range of |R1|

and N. Better agreement is obtained with the addition of the T-0-B-S term, i.e.,
(12) = by R ]2 + by, [R, [0 . (2.81)

The F-0~B~S approximation for <|R|2> of equation (2.49) can be improved for
a wide range of P with the use of more accurate asymptotic terms, such és
that of (2.8l). The result of this asymptotic modification to the F-0-B-S
theory is shown in Chapter 4.

/ An examination of equations (2.76) and (2.80) reveals that to first
order, (I2) « |R1|4 = |g_|4 fér the transmitted field and (I?) « |Rl|2 = lg_|2
for the reflected field. This result is in marked contrast to that given by
equations (A.22) and (A.23) of Appendix A for Twersky's approximation based on
the conservation of energy principle. As shown by these equations for the one-
dimensional ensemble, the incoherent power is divided approximately equally
between the transmitted and reflected fields, with (I2) for the transmitted
|2

field also approximately proportional to Ig_ . Since the 0-B-S approximations
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for the average intensities do not satisfy the energy principle, but give very
accurate results as shown in Chapter 4; it is evident that little importance
should be attached to complete adherence to this principle except under
special conaitions; For the "forwafd—type" scatterers considered by Twersky11

this principle must be satisfied for the.accuracy of the theories for |(T)|2

and <|T|2> to be equivalent.

2.8 Theoretical Models for the Probability Density of the Total Field

The statistics of the total field associated with scattering from a
random medium cannot completely be defined until the joint probability dénéity>
function, p(Tx’Ty) or p(T,t), of the field components has been obtained.
Because the problem of completely specifying p(TX,Ty) is a particulariy
difficult one, especially for the one-dimensional model where multiple
scattering is important, more emphasis has been placed in the thesis on the
problem of determining the field moments. A partial investigation has been
carried out for an ensemble of uniformly-random planar scatterers, however, to
determine the e#tent to which T and Ty conform to a bivariate Gaussian -
distribution for certain ranges of parameters; The results are given in
Chapter 4.

The commonly used approach in the development of theoretical models
for the field statistics has been to investigate the properties of random
phasor sums of the form

N .
TedT = Aoejeo + E: Asejes (2.82)
s=1
on the basis of known statistical properties of the Ag and 65. In this
expression Aoejeo is usually a constant phasor and the phasors Asejef are
random and in general statistically dependent. Many workers have investigated

this problem area, including Beckmann,3’30'32 Bremmer,33 Hoyt,34 Nakagami,35
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1.,36 37

Norton et a and Rice.
The general method used in the solution of the problem has been to

begin with a study of the statistical properties of the components

Ty = T cost = Ay cosf, + ﬁ% Ag cosbg
s=1
(2.83)
N .
Ty = T sint = A, sin8, + 2;1 Ag sinfg

If the terms of the sums in these expressions are statistically independent,
if N is large, and if the total variances of T, and Ty are much larger than the
variances of the individual terms (i.e., the conditions of the Central Limit

Theorem), then TX and T_ are jointly Gaussian with probability density function3

y

1 1 (T4-C,) 2
P(TX,Ty) = exp ¢ - [
2m/(12)(12) (1-12) 2(1-u2) | (12)

+ (2.84)

- 2u (Ty~Cx) (Ty=Cy) (Ty"cy)z]
A(12)(13) (13

For Ty and T conforming to this distribution, a variety of amplitude

y
distributions p(T) and phase distributions p(t) are possible. These are

obtained by transforming to polar coordinates from

P(T,T) = T p(Ty,Ty) , (2.85)

and using the relations

[

27
p(T) [ p(T,1) drt (0 <t<2m
0

(2.86)

p (1) f p(T,1) &7 (0 <T)
0 . :



The most general expression for p(T) under the given conditions has been
obtained by Nakagami.35 Less general relations for specific distrigutions
p(As,es) of the components of the random phasér sum have been obtainéd or
studied by fhe other researchers mehtioned.
. Of specific interest in this work is the distribution
p(T,1) = ?:? e"T%/26°
. _ - (2.87)

.
(12) = (13) = }:1 (AZ) 252, =0
=

(0T, 0<c1 5 2m

which occurs when (a) the constant phasor of equation (2.82) is zero, (b) the

phases es are uniformly distributed over the basic phase cycle, i.e.,

p(8g) = o

7 (0 5 84 < 2m) (2.88)

and (c¢) the Ag and 64 are mutually uncorrelated. Under these conditions the
phase 1 is uniforﬁly distributed over the basic phase cycle and the amplitude

T follows the wéll—known Rayleigh distribution

p(1) = L o-T?/282 (2.89)

m]e
N

Also of interest is the Nakagami-Rice distribution for the

amplitude35’37

2472 ~2
e—(T +AO)/20

p(D) = = 1, (2.90)

TAO)
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where Io is the modified Bessel function of order zero. This distribution

arises when the constant phasor in equation (2.82) is not equal to zero. The

corresponding distribution for the phase ig33

A, cos(1-8,)

/25

21952 2
(1) = é_.e-Ao/20 [1+ /@S (1 + erfe)], =
TT
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(2.91)
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The statistical behavior of the total field for the one-dimensional

model can to a certain extent be predicted by observation of the first and

second 0-B-S approximations for the reflected and transmitted fields.

identical scatterers these are respectively

N
1edT = R, 2: Tl2(s-—l) e—Zszé
s=1

and

N s-1
jt _ o N N, 2 2(s-t-1) _-2ik(zi-z{)
Te T," + T 'R, gg;_g;l T, e s7%t

The resulting amplitude and phase components for the reflected field

corresponding ‘to the Ag and Og of equation (2.82) are therefore

AO =0
A, = |r|]T,[2(s"D) (s = 1,...,N)
6, = ArgR, + 2(s-1) ArgT, - 2kzé (s =1,...,N)

For

(2.92)

(2.93)

(2.94)

The components for the transmitted field can be obtained by rewriting (2.93) as

; N N, 2 NOAED/2 2(qs~1) _-2ikz!

T _ . - - '

Ted? = T1 + T, R, 'El T, 94 e <)KZ]
i=

r t_,! = a=
where z; = z -z, and q; s t.A Thus,

100 - m N
AoeJ o =T .

Ay = |R |2]T, |2 (a3-D) [i=1,...,N(8-1)/2]
0; = 2 ArgR, + [N + 2(q;-1)] ArgT, - 2kz} [i=1,...,80-1)/2]

1

Since the ordered-positions z)

,...,z& in equation (2.92) are

(2.95)

(2.96)
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statistically dependent, the probleonf predicting the statistical behavior
of the reflected field is seen to be a difficult one in general. Fér specific
ensembles of planar scatterers in which the 8 assume values over many lengths
of the basié phase.cycle, however, it is felt that this depéndence can to a
certain exteﬁt be ignored. Under this condition, which occurs fér low éveragé
densities of scatterers (i.e., Py << 1), it is useful to write the>individual

phase distributions over the basic phase cycle in the form3

P(8g) = =+ cg(8) (02 06g 5 2m5 5 = 1,..,M) (2.97)

Since Iesl << 1/27 for py << 1, the equivalent 6, are effectively uniformly
distributed over the basic phase cycle. They should also be less correlated
than the actual 6,. As |T1| >~ 1, Ty and Ty will be uncorrelated and normally
distributed for large N, and 1 will correspondingly be Rayleigh distributed.
As lTll » 0, however, the s = 1 term in (2.92) contributed by the first |
scatterer will predominate over the others, eventually breaking the "&ariance
condition'" of the Central Limit Theorem and making the fesulting reflected
field distribution more complex.

The problem of predicting tﬁe transmitted field distribution is even
more difficult. The terms in equation (2.95) corresponding to q; = l.have
eqﬁal amplitudes A; = [TllNlRllz and will predominate over the other terms for
|T1| ~+ 0. Under this condition it can be expected that the distributions of T,
and Ty will be approximately Gaussign for large N. However, the equivalent
phases ei over the basic phase cycle are highly correlated, irrespective of the
number of cycles over which the actual phases vary, since the 6; for the q4 =1
terms add to give the 6; for the less dominant terms. As |T1| + 1 these other

terms will therefore become more important, making the distribution more

complex.
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2.9 Other Theoretical Considerations

Generalization of the theories presented in this chapter to the cases
of oblique incidenée and lossy scatéerers is straightforward and the changes
have been indicated where applicable. Two other extensions not'yet discussed
involve the cases of random N and random g+s and g_g.

The case of a random number of scatterers N within the incident beam
is an important consideration in such problems as scattering from inhomo-
geneities in the atmosphere and meteor trails. A more immediate example of
this situation is illustréted with the physical model of a random discrete;
scatterer medium discussed in Chapter 6. Here the number of spheres illuminated
by a narrow-beam transmitting antenna varies randomly as the'medium ié
"scanned".

In the development of most approximate theories for the average field
functions based on the "dishonest" apﬁroach, the random-N consideration is not
important. The fixed-N requirement inherent in the definition (1.3) is
bypassed in the £ransformation of the problem to one involving the solution of
integral equations. In the resulting equations, only the average density p
appears explicitly.

In raﬁdom media problems involving a finite number of scatterers,
however, the random-N consideration cannot be_ighored. Furthermore, in theories
based on the "honest" approach, N appears explicitly in the equations; The
extension of the theories developed in the present work for a fixed. number of
planar scatterers (and, indeed, for any distribution of a fixed number of
scatterers) to the case of random N is made possible by the theorem of total
probability.3 For p(zl,...,zN|N) the joint conditional probability density

function of an ensemble of fixed-N configurations [i.e., the function

p(zl,...,zN) previously used in the chapter] and p(zl,...,zN,N) the
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corresponding joint probability density function for the ensemble of random-N
configurations in which the fixed-N ensemble is contained, this theorem gives

the result

o]
plz)s.00s2,N) = E: P(N) p(zl,...,zN|N) (2.98)
N=0
where P(N) is the probability distribution of N. The average of a field

function F over the ensemble of random-N configurations is therefore given by

[s o]

d d . '
P(N) jﬁ vean jf F(Zy5¢0032y) P(Z1500ey2 lN) dz, ++++ dz
g;g 0 o N ! N ! N

(F)

(2.99)

oo

Y. P(N) (F)y
N=0

where (F)N are the averages for fixed N. Thus, the theories for fixed N are
the basis of more general theories for random N, the additional function
necessary being the probability distribution for N.

The distribution function for N of most immediate interest is the

Poisson distribution given by

N
P(N) = 3%%- e=(N) © (2.100)

This distribution, for example, describes the probability of finding a given
number of scatterers N within the scattering volume when those of the entire
medium are uniformly distributed throughout a much larger volume. It is
applicable, therefore, to the physical model discussed in Chapter 6.

The effect of random N on the distribution of the field components .

Ty and T, is also of interest. Beckman_nB’32 has developed a criterion for T,

y

and Ty to be considered normally distributed for random N given that they are
normally distributed for fixed N sufficiently large. This criterion, which can

be expressed as
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NN D L (.10

(N) (N)?
effectively states that the distribution P(N) must assume significant values
only in an interval about (N) small compared to the size of (N). Since
ONZ = (N) for a Poisson distribution, this criterion is satisfied for (ﬁ) >> 1,

Generalization of the one-dimensional model theories for the case of

random individual scatterer amplitudes is difficult and a study of the problem
is beyond the scope of this work. Even in the simplést case of identically
distributed and statistically independent amplitudes, it is evident that R,
and T, in the given equations cannot simply be replaced by (R;) and (T,), etc.
In the F-0-B-S approximation for (R), for example, while R, can be replaced by
(R1>, (le) (not (Tl)z) muét be substituted for le. Generalization of the
S~0-B-S approximation for (T) further involves the individual scatterer
averages <R1T1>’ <T1>’ and (T13). The Z-0-B-S term TlN of this approximation,

however, can be replaced by (TI)N, making ](T1)|2N

the dominant term of the

| coherent intensity. Since the dominant term of <[T!2> would then be <[T1|2>N
(not in general equal.to |<T1>|2N), it is eviaent that the incoherent trans-
mitted field would contain a Z-0-B-$S component. Although the theoretical

complexity makes insight into the problem difficult to attain, "experimental

studies involving Monte Carlo simulation provide an alternative future approach.

2.10 Summary

The new theoretical developments considered in this chapter may be

summarized as follows:

(i) An explicit series representation in orders—of-back-scattering has
been given for the total field in plane-wave scattering from a fixed array of

non-identical planar scatterers.



(ii) Approximate series expressions based on the 0~B-S representation
have been obtained for several average field functions of interest in the
problem of scattering from an ensemble of configurations of uniformly-random
identical planar scatterers. These expressions have been shown to be useful
in predicting the exact or approximate asymptotic behavior of the average
field functions in fhe limit p > 0 and it is believed that they may also prove
useful in further theoretical research directed towards the improvgment of
general discrete-scatterer theories.

(iii) The exact asymptotic forms for p - 0 in the planar-scatterer model
have been obtained for the coherent transmitted field and the average total
and incoherent intensities of both the transmitted and reflected fields. 1In
particular, the exact asymptotic form (1 + g+)N for the coherent transmitted
field has been used to modify the one-dimensional form of Twersky's free-
space theory and the possibility of a similar finite-N correction to the three-
dimensional form of Twersky's theory has been suggested.

(iv) Based on the 0-B-S approximation for the transmitted and reﬁlected
fields and the existing theory of random phasor sums, physical conditions
necessary for the approximate validity of the bivariate Gaussian distribution
in describing the total field statistics of the one-dimensional model have been
discussed. ' Conditions necessary for the occurrence of a Rayleigh—distributed
incoherent field amplitude with uniformly-distributed phase have also been

considered.
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3. APPLICATION OF MONTE CARLO SIMULATION TO THE STUDY

OF SCATTERING FROM RANDOM MEDIA

3.1 Introduction

The method of Monte Carlo simulation is an important tool in the
present investigatién. Although Monte Carlo methods have been used extensively
in the fields of nuclear physics and operations research, they have only been

used sporadically in other fields.38 Hochstim and Marten539’40

have recently
applied a Monte Carlo method to the study of radar écattering from a one-
dimensionally random slab. region with discrete permittivity variations. Their
work has largely been directed, however, towards the investigation of'scatter—
ing theories for continuous random media (i.e., the perturbed»continuum model).
The présent work, while also involving random media with discrete permittivity
variations, is mainly directed towards the investigation of theories based on a
discrete-scatterer formalism.

The Monte Carlo method is essentially an "experiment' with random
numbers. Problems handled by the method are either probabalistic, as in this
thesis, or deterministic in nature.38 For either type of problem the appli-
cation of the method is greatly facilitated by the use of a digital computer
with a means of generating a large quantity of suitably-random numbers.

Two distinct types of Monte Carlo simulation are considered in this
work. For both types of simulation, the rapdom numbers generated represeﬁt the
random positions of discrete scatterers in a discrete-scatterer model. The
difference in the two types of simulation is in the amount of computér involye—
ment. In the first type, as illustrated in Chapters 4 and 5 with the planar-
scatterer model, a computer ié used for all phases of the simulation with an
exact or approximate theory being required for the field in scattering from a

fixed configuration of scatterers. In the second type, as discussed in
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Chapter 6, a computer is used only to generate scatterer configurations from
the desired distribution and to statistically analyze the scattering results;
the total fields due to scattering from the generated configurations are
obtained by experimental measurements on a physical model of the random medium.

Several applications of Monte Carlo simulation to the study of
scattering from random media are illustrated in this thesis. As in the work of
Hochstim and Martens, '"exact'" simulation results for average field functions
(i.e., those based on an exact theory for scattering from a fixed configuration
of scatterers) are used to determine the validity of various approximate
theories for these field functions over a wide range of scattering parameters.
In the present work, however, '"exact" simulation results are also used to
determine the extent to which certain theoretical models for the probability
density function of the field components describe actual behavior. 1In a
further application, "approximate' simulation results based on approximate
theories for scattering from a fixed configuration of scatterers are employed
to validate the corresponding theories for the ensemble.

A possible future application of Monte Carlo simulation lies in its
use to check inversion techniques for determining the physical and statistical
composition of a random medium from sampled estimates of the field moments.

28

Twersky “” has developed techniques based on approximate scattering theory which

require measurement of first and second field moments.

3.2 Technique of Simulation Applied to a Random Medium of Discrete Scatterers

The object in Monte Carlo simulation, as applied to scattering from
a random medium of discrete scatterers, is to approximate the exact integral

expression

(x(¥)) =[ fm P(Sy,..s8y) XK(5),...,5T) d5; -+ diy (3.1)
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Xi(gl’f"’gN;;) (3.2)

™ s

1
(@) =

i=1

where X; are the individual samples of the field function X for n different
scatterer configurations from the ensemble. By the "law of large numbers",3
the approximation (3.2) will converge to the theoretical value represented by
(3.1) in the limit as n =+ », The accuracy of the estimation after a finite
number of samples is discussed in section 3.4. |

Each random sample of a field function reqﬁires the generation of a
sequence of random numbers from the desired statistical distribution
p(§1,...,§N). If, for example, each scatterer is described by an 2—coﬁponent»
random vector §i = (sil’SiZ""’siQ) whose elements are the position coordinates
and other scatterer parameters (e.g., size, permittivity, etc.), a sequence of
N2 random numbers must be generated for the configuration of N scatterers
associated with each field sample. For the one-dimensional and three-
dimensional models of identical scatterers considered in the present work, the

necessary sequences are of length N and 3N respectively, since only position

coordinates are random.

3.3 Random Number Generation

The random numbers used in the Monte Carlo simulation of this work
are not truly random, but "pseudo-random', since they are generated by an arith-
metic method but manage to pass certain statistical tests for randomness. The

generators employed produce uniformly-distributed numbers on the unit interval

41,42

(0, 1), as is most common. Such generators often form the basis for the

generation of numbers from more complex distributions, since it is sometimes

possible by a transformation to derive other distributions from a uniform

42

distribution. For the simulation results of Chapter 4, the uniformly-
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distributed numbers could of course be used directly.
The simulation was performed on an IBM 7044 computer during the
earlier part of the work and on an IBM 360/67 during the later part. The
random number program RAND as supplied for each computer by the University of
British Columbia Computing Centre was used. The generator for the IBM 7044

was of the multiplicative congruential type“’42

with multiplier constant
27 + 1 and additive constant 11118. The algorithm for the IBM 360/67 generator
is given in reference 43.

Various detailed tests have been used in determining the 'randomness"
of sequences generated by a variety of random number generators,“’42
although such tests for‘the sequences themselves do not guarantee that a random
number generator will be suitable for a particular application. Results
obtained during the course of tﬁis work, however, have verified the suitability
of the generators used. Much evidence is provided by the fact that, for a low
average density of scatterers, ''exact" simulation results for several average
field functions agree with the corresponding numerical data for the asymptotic
theories (see Chapter 4). The agreement between "approximate" simulation
results and theoretical results based on the same approximation over a wide
range of scattering parameteré provides further evidence. |

Another method used to cheék the suitability of the generator RAND
for the IBM 7044 computer was to compare the simulation results with results
obtained using a second generator. No deviations larger than the statistical
éccuracy of estimation were noticed between the corresponding results., The
second generator used was a modification of the generator RAND as follows:

The generator RAND was used initially to fill a largé érray (ten times larger
than the length of a sequence of numbers describing a single configuration of

scatterers) with pseudo-random numbers; whenever a number was needed, two more

were generated by RAND, one determining the element of the array to be used and
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.

the other replacing it. This technique has been applied by Gebhardt44 to a

very poor bas;c generator and shown to yield good results. The basis of the
method is that it effectively eliminates any correlation which may exist between
closely adjacent numbers in a sequence by shuffling the sequence. A similar
technique was originally proposed by MacLaren and Marsaglia45 whereby twb sep-

arate generators are used, one for filling the array and the other for specify-

ing the sequence order.

3.4 Accuracy in Monte Carlo Simulation

The accuracy of the estimated mean (X) = ji X;/n can be readily
=1 '

obtained since its sampling distribution is Gaussian for large n with the

standard error 9(x) related to oy by38

(3.3)

ﬁlxq.

XXy~

Thus, for example, at the 95% level of confidence, the error of the Monte Carlo
estimate with respect to the true mean given by equation (3.1) is less than
twice the standard error ZO(X)':

The factor va in the denominator of (3.3) implies that in order to
double the statistical accuraéy of the estimated mean, four times as many
samples must be obtained, etc. Because of the effect of this factor on the
computation time in a complete computer simulation, the number of samples n
must be limited. Most of the simulation results obtained in the present work
were based on 1,000 samples, although some results were based on 4,000 samples
to improve the estimates of certain functions of very small magnitude.

Because of the large number of samples taken, biased estimates of the
second, third, and fourth centrai moments of the field components were used
with only a very small error introduced. Biased estimatgs of the variances, for

example,differ from unbiased estimates by a multiplication factor of (n-1)/n.



Errors due to the use of biased estimate formulas are similarly small for the-
third and fourth central moments and the corresponding coefficients of skewness
. . 46
and kurtosis when n is large.
In the computer simulation with the one-~dimensional model (Chapters 4
and 5), accuracy estimates were obtained for all the first and second field
moments based on twice the estimated standard errors of the means. For esti-
mated field quantities such as C and o whose sampling variances could not be

obtained directly, 'worst-case' accuracy estimates based on approximate

-relations with the directly obtained variances of the basic components were

determined. For example, from a Taylor series expansion to first-order termsla
24 2 2, 2 2
Cy®opg + Gy op, + 2cxcyuoTXJTy [chloTx + |Cyloq ]
o2 = < (3.4)
nc? nc?

and

c.20.2 + C,20,2 + 2C,Couo., G [|c lo.. + |Cylo ]2

y Or x Or xCyHO O y 197 x 197
o] 2 o X Y X y 5 X 4 (3.5)
nC" nC*

with the upper bounds of these expressions giving "worst—case" estimates
(i.e., Cnyu = ICXCYI) of the sampling variances. Because of the large number
of data points obtained in the complete computer simulation (and the inaccuracy
of certain of the "worst-case' estimates), accuracy estimate results are not
given in the thesis. A good indication of the accuracy is given by the
"statistical sScatter" of the data points (resulting from the generation of a
different psuedo-random number sequence for each set of data) on many of the
graphs in Chapters 4 and 5.

In the simulation with the three-dimensional physical model discussed
in Chapter 6, certain of the samﬁling variances for complete sets of data were

estimated from the variances of the means for sections of the data.
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4. THEORETICAL AND SIMULATION RESULTS FOR A UNIFORM PROBABILITY

DENSITY OF PLANAR-SCATTERER CONFIGURATIONS

4.1 Introducdtion

The uniform probability density of scatterer positions has beén the
basis of most approximate scattering theories so far developed, being the
easiest to apply and adequately describing situations where a sparse distri-
bution of finite-size scatterers exists (i.e., where the volume occupied by the
scattering material is much less than the volume of the containing region).
Studies of distributions of uniformly-random scatterers have furthermore
provided a starting point for studies of more complex denser distributions of
scatterers., In this chapter, simulation and approximate theoretical results
are givén for the scattering of a normally incident plane wave from an ensemble
of configurations of uniformly-random identical planar scatterers. The
requirements for the approximate validity of the uniform probability density
for distributions of finite-width planar scatterers are discussed in detail
in Chapter 5.

The scattering parameters for the one-dimensional model introduced
in Chapter 2 are N, d;, g4, aﬁd g_. Since g, and g_ for the infinitely-thin
écatterers'are taken to be those for lossless dielectric slabs of finite thick-

ness, the scattering parameters are equivalently N, d,, w), and € In order

re
for an evaluation of the approximate theories to be most easily made and the
physical behavior of the random medium illustrated, results are giveq for the
variation of one of these parameters at a time.

The complexity of the physical behavior of the medium is largely
“dependent on the average nﬁmber'of scatterers per wavelength Py = N/dA, and

increases as oy increases. The effect of Py variation over a wide range of

values on the various first and second field moments of interest is best
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illustrated by the vériation of dA rather than N, since effects resulting from
N variation overshadow those resulting from dA variation; The effe;ts of
variation of the parameters N; g+; and g_ on the physical behavior of the
medium_and on the accuracy of the approximate theories is adequately displayed
by results for a few éf the average field functions in the limit of Py 0.

The fixed.parameters for the dA—variable results have the values
N =10, g, = 2.0, and w = 0.1/V2 (or wyr = 0.1, where X' is the wavelength
in the dielectric material of the equivalent slab scatterers). The resulting
values for the scattering amplitudes, g, = 0.2107 /—i01.70 and g_ = 0.2035
/-102.29, indicate that the individual scatterers considered are almost one-
dimensional monopoles. In fact, the "thin-slab'" approximation for the
scattering amplitudes gives g, = g_ = 0.2276 /-102.5° (see Appendix B). These
values have been chosen because the effects of highef orders of multiple
scattering are sufficiently large to display fine differences in the various
simulation and theoretical results. Tﬁey are used also for the N-variable
results. For the g,,g_ -variable results given, N = 10.

The simulation results for dA variation are based on 4,000 sample
configurations and those for variation of the other parameters on 1,000 samples.
The execution time on the IBM‘360/67 computer for generation and statistical
analysis of 1,000 sample configurations is about 0.24 minutes. Throughout the
chapter, simulation results for the various 0-B-S approximations considered in
Chapter 2 are given where necessary to validate the theories based on the éame
approximations.

Results for the yarious average transmitted field funétions of inter-
est are given in section 4.2 and results for the reflected field functions in
section 4.3. Emphasis is placed.on the complete statistical distribution of

total field in section 4.4 and quantitative results based on the third and

fourth field moments are presented. A general discussion and summary of the
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results is given in section 4.5.

4.2 Transmitted Field Moments

4.2.1 The Coherent Field — Ced®

Results for the phase and intensity of the coherent transmitted field
‘are given in figureé 4.la and 4.1b for a variation of dy. From the "exact"
simulation results, Ced® 5 (1 + g+)N for oy > 0 (or dy > «) as was shown
analytically in Chapter 2. In the other limit of Py > (or dy 6), Ced®
tends asymptotically to the value of the transmitted field for a periodic array
of scatterers. The behavior of the transmitted field for a periodic array is
both oscillatory and periodic in d,, with a resonance condition occurting when
the spacing between the scatterers is approximately a multiple of A/2 (see
Chapter 5). As seen from figures 4.la and 4.1b, approximately the same
oscillatory behavior remains in ced® for high py although because of incoherent
scattering it becomes increasingly damped out as Py 1increases.

As discussed in Chapter 2, the asymptotic limit of ced?® as [
for Twersky's free-space and mixed-space theories is eNg+. For the preéent
fixed parameters, this form gives a result apﬁreciably different from the exact
result of (1 + g+)N, particularly in the coherent intensity C2. Because of
this discrepancy in tﬁe asymptotic limit; the free-space theory does not
accurately describe the actual results for high oy either. On the other hand,
the modified free-space theory presented in section 2.7.1, containing thev
correct asymptotic limit, shows very good agreement with exact results over
the entire range ofAdA. |

As seen from figures 4.la and 4.1b, Twersky's mixed-space theory does
- not accurately describe the actual characteristics of Cel® for uniformly-random
planar scatterers. The limiting behavior of €2 > 1 as p + «», however, is in

approximate agreement with the physical behavior of certain dense distributions
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of finite-size scatterers. The application of the mixed-space theory to such,
distributions is considered in Chapter 5.

The S-0-B-S approximation for cel® developed in the present work is
also shown in figures 4.la and 4.lb. The portion of the theory curves for
small dA could not be computed because the higher-order terms of the series
expression obtained "blow up", resulting in insufficient accuracy of comput-
ation. The approximate simulation results, thever, give the remaining portion
of the curves and verify the correctness of the approximate theory. As seen
from the curves, the S$-0-B-S theory gives good agreehent with exact reéults for
a wide range of dy. Over most of the range of d), the agreement is approxi-
mately the same as that for the modified free-space theory. For very iarge )
however, the S-0-B-S theqry gives results which differ markedly from the exact
results for C2. 1In fact, the trend of behavior in C? as p) > ® is similar to
that for the mixed-space theory. It is interesting that the free-space and
modified free-space theories give reasonably good agreement with exact results
for py » = while the S-0-B-S theory does not. The reason for this is not
immediately apparent and further theoretical investigation of these theories is
thus required.

Figure 4.2 shows the effect on ced® of a variation in N and illus-
trates the effect of this parameter on the accuracy of the asymptotic form
eN8+. The loss of coherent transmitted fieldlenergy for increasing N
corresponds to an increase in the energy of the incoherent transmitted and
reflected fields, as is illustrated by results of following sections. As
discussed in Chapter 2, eNey » (1 + g+)N as N + «», For the one—dimeﬁsional
model, howevgr, this is an unsatisfactory result, making necessary the
correction for finite N contained in the modified free-space theory.

The effect of a variation of the total scattering cross-section

o= -2 Reg, on the accuracy of the form eN8+ is shown in figure 4.3. The

60



800°

%
e
. 7
600° i
7
. e
-l - //
//
400°
200°
0° .
0 10 20 30 . 40 50 60
(a) -a versus N
1.0

\
~N \
~

0 [* o — — ]

(e e e a—

—

0 10 20 30 N 40 50 60

Yb) c? versus N

Figure 4.2 Coherent Transmitted Field as a Function of N (Asymptotic Results)
wyr = 0.1, € = 2.0; —— Ced® = (1 + gV, ———cel® = e+



1.0

: N
N\
\
\
: \
300°, ' 0.8 \\
\
\\
. 4
- \
200°] : L7 0.6 \ \
' /” ' \
= ) \
o #7 c A\
\
100° e 0.4 LS N
/ : : 1\ \
. ' ' \
o° _ ' 0.2 AN
0 0.05 0.10 0.15 0.20 0.25 ‘\\\
: wa' ' ~
~\-~~
(a) -a versus wy: ‘~-.___1
O .
0 0.05 0.10 0.15 0.20 0.25
. WA'
(c) Periodic Behavior of C? in Wyt (b) €2 versus Wyt
1.0
\
c? \ \
l |
\ \
0.5 ¢
N I VIV I VIV IVI\U}KIW
\ I\
\\ // \ :
0 T P \\;
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
W)‘v .
Figure 4.3 Coherent Transmitted Field as a Function of wy: (Asymptotic Results). N
ced® = (1 + g+)N, ——— Ced® = Nest

= 10, e, = 2.0;

9



63
cross—-section isAchanged by variation of wj:, rather than €., which is fixed
at a value of 2.0. The aim is only to determine the effect of incréased o and
this can be done by either a variation of e, or wy:. The curves of figures 4.3a
and 4.3b are shown only up to Wyt = 0;25, or a half period in Il + g+|. Figure
4.3c gives results for C2 up to Wyt = 4,

Curves for the rectangular components of g, in the range wyr = 0 to 0.5
are given in Appendix B. Results for higher wy: with e, = 2.0 show that ¢ (and
|g+|) varies periodically in w approximately every 3.4X', reaching its first
maximum at about wyr = 1.7. The free-space theory form e2NRegy oy ¢2 corres-
pondingly has the same periodic behavior as seen from figure 4.3c, but with its
maxima occurring at the minima of o. It is thus required that o be small in
order that eNg+ = (1 + g+)N for finite N. For dielectric slab scatterers this
occurs for very thin slabs (i.e., Wyt << 0.25) énd at periodic values in w for
thick slabs (e.g., w = 3.4, 6.8)", .... for ¢, = 2.0). This result is
discussed further in Chapter 5. |

4.2.2 The Average Incoherent Intensity - <12>

Simulation results for <12> as a function of dA are given in figure
4.4, The approximate results from the S-0-B-S are in good agreement with the
exact results although the oscillatory effects for high p) are not contained
in the approximate results. Maximum <12> occurs for Py 0 since only the
Z-0-B-S component |1 + g+lZNis contributing to the coherent field, all‘higher
0-B-S contributions being diverted to the incoherent field.

Figure 4.5 shows the effect of N variation and wy: variation on <12>
in the limit of oy - 0 and displays the accuracy of the asymptotic S-0-B-S
theory presented in section 2.7.2. The simulation results were obtained for
dy = 105, As seen by these curves, the level of <12> is quite.small, being

appfoximately proportional to |g_|”. ,
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4.2.3 The Variances and Covariance - (Ix?), (Iyz), (Iny)

- Simulation results for the rectangular components ((Ixz) ; (Iyz))/Z
and (IXIy) of the complex function 252¢328 defined in section 2.5.1 are shown
in figure 4.6. 1In agreement with the elementary theory of that section,
(Ixz) = <Iy2) when |<Iny>| is maximum and the difference between (IXZ) and
<Iy2> is greatest wﬁen (IXIy) = 0. The exact results and those for the S-0-B-§
approximation differ most for high pj; although both show that <Ix2> -> <Iy2)
and <Iny> > 0 as py > 0.

These functions are important because they-give the parameters of a
bivariate Gaussian distribution for the total field components T, and Ty (see
section 2.8) when the scattering behavior of the medium is such that tﬁis
distribution is valid. The asymptotic behavior for Py 0 as shown in
figure 4.6 is particularly important because, under the condition of jointly
Gaussian T, and Ty’ the total field amplitude is described by the well-known
Nakagami-Rice distribution (or equivalently the incoherent field amplitude is
Rayleigh distributed). The applicability of these distributions to the
scattering behavior of the one~dimensional model is discussed in section 4.4.

4.2.4 Moments of the Amplitude and Phase - (T), op, (t), O

Simulation results were also obtained for the first and second
moments of the transmitted field amplitude and phase for a variation of d,.
These results showed the amplitude and phase moments to also be oscillatory in
behavior for high Py with O and o reaching their maximum values as Y 4 0.
The agreement between the ''exact" simulation results and those based on the
S-0-B-S approximation was comparable with that already shown for theAfirst and
second moments of T, and Ty.

The accuracy of the apbroximate relations for (T), (1), OTZ, and OTZ

based on equations (2.32) to (2.35) to second-order terms was also investigated

by a comparison of the direct simulation results for these functions with those
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indirectly obtained from the values of the first and second moments of Tx and»'I‘y
using these relations. fhe accuracy of the relations for (T) and (1) was good
over the entire range of p,, statistically significant, but negligible
differences occurring only for high p, where the covariant intensity s2 is
greatest., Differences between the difectly and indirectly obtained results for
O0p and o were larger but still quite small. Since differences were greatest
for py + 0, the accuracy of ﬁhe approximate relations for Op and o, is best
indicated by the asymptotic results for a variation of N and wyr. Shown in
figure 4.7 are the results for a variation of N, the.indirect results based
on the approximate relations labelled as the ''second moment approximation'.
Shown also are the asymptotic theory curves based on both the S—O—B—S approxi-
mation and the second moment approximation. As seen from figure 4.7b, these
two approximations partially cancel one another for Cop- Results for a variation

of Wy were similar, the greatest deviation between the direct and indirect

results occurring for the largest values of ]g_|.

4.3 Reflected Field Moments

4,3.1 The Coherent Field - cedo

Results for the phaée and intensity of the coherent reflected field
are given in figure 4.8 for the first three wavelengths in d. The coherent
intensity is plotted in decibels below the level of the incident field
intensity. As seen from figure 4.8, cel® is a damped oscillatory function, its
amplitude decreasing to zero for p, = 0 as predicted by theory (simulation
results consequently become increasingly inaccurate as p) decreases). Minima
in C? occur when the phase cancellation of the multiple-scattering contributions
from the individual scatterers ié greatest; maxima occur when it is least. The
rapidly decreasing amplitude as p, 0 (i.e., C « 1/d) is due to the fact that,

as the phases of the multiple-scattering contributions from the individual



0.25 - 250
o
/ A
0.20 A e 200 o
" .
4 o
°
794 o
o A
o
A
0.15 o 15° — A
T o,
0.10 : / 10° ¢
..0.05 / ' 50
0 OO
0 5 10 15 20 25 0 5 10 15 20 25
N ' N
(a) Op versus.N : . (b) 0, versus N

Figure 4.7 Standard Deviations of the Transmitted Field Amplitude and Phase as Functions of N
‘ (Asymptotic Results). Wy = 0.1, e, = 2.0; o Exact Simulation with d, = 10°,
A Exact Simulation (dk = 10°) with Second Moment Approximation,
S$-0-B-S Theory with Second Moment Approximation

69



250°

200°
1500
100°
(a) -o versus dy
OO
wi?
‘\\’
-10 ‘fo/,?“
ARSI
= v N 497N
S o[l \f\ / X> / 4R\ / ’gi =X 5
g0 v e TTWP/IN 77
S ’ O‘I / \\. / /
I | | / !
! ‘\,’ H— P
R / \
“ o
| .
=405 0.5 1.0 1.5 2.0 2.5 3.0

(b) 10 log c2 versus_dx

Figure 4.8 Coherent Reflected Field as a Function of dA' N = 10, Wiy = 0.1,

€. = 2.0; 0 Exact Simulation, &——A F-0-B-S Simulation and Theory,

———Twersky's Free-Space Theory,——Twersky's Mixed-Space Theory



71

scatterers become more uniformly distributed, coherent energy is diverted to
the incoherent field (see section 2.8), Although not shown in figufe 4.8, the
behavior of Cel® tends to that of the reflected field for a periodic array of
scatterers as p > .

It is evident from figure 4.8 that Twersky's free-space theory gives .
very good agreement with 'exact'" results in the location of the maxima and
minima of C2 and a; Like the theory for the coherent transmitted field, it
also accurately describes the behaﬁior for py » ». The F-0-B-S théory (note
agreement between F-0-B-S theory and simulation resﬁlts) gives better agree-
ment in the magnitudes of the maxima and minima but less accurately describes
their locations for high py- The mixed-space theory for the coherent‘reflected
field, as for the coherent transmitted field, does not describe the physical
behavior of the uniformly~random ensemble of configurations as p, > ®. Its
significance is that it can approximately describe the behavior of certain
distributions of finite-size scatterers if the average density p is correctly
interpreted. This is shown in Chapter 5, section 5.4.:

4.3.2 The Average Incoherent Intensity - (I2)

Results for <Iz> as a function of dy are given in figure 4.9. The
F-0-B-S theory gives relatively good agreement with exact results over a wide
range of ey although for large p, it does not describe the oscillatory behavior
evident in the exact results. (The theory curve is shown to a point where the
computational accuracy breaks down.) The modified F;O—B—S theory based on
including the effect of the T-0-B-S in the asymptotic term of the F-0-B-S
series gives better agreement with exact results except for p, » = (ﬁot shown) .
This again illustrates the effect that an "asymptotic correction" can have on
the accuracy of certain theories applicable to low and mid~range values of Pye

Figure 4.10 gives results for N variation and w,: variation in the

limit of Py 0, displaying the relative accuracies of the asymptotic F-0-B-S
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and T-0-B-S theories. Maximum deviation between approximate theoretical and
"exact'" simulation results occurs for the largest N and largest |g_l

(i.e., largest wku) employed. As is evident by a comparison of these results
with those of figure 4.5 on page 65, the average incoherent intensity of the
reflected field is much greater than that of the transmitted field, being
approximately proportional to !g_,z rather than to Ig_lq. For the dk_
variation parameters in the limit of p, - 0, the "signal-to-noise ratio"
C2/(12) of the transmitted field is approximately 17.9 whereas for'the entire
medium (i.e., (I?) for both transmitted and reflected fields included as noise)
it is approximately 1.92.

4.3.3 The Variances and Covariance — (Iy2), (Iy2), (IxIy)

Results for the complex function 232e328 of the variances and
covariance of T, and Ty are shown in figure 4.11. The behavior of the
rectangular components of this function for.varying dy is seen to be similar
to that for the corresponding transmitted field functions. The asymptotic
behaQior as dA »+ o ig not reached as quickly, however, and the period of
oscillation is smaller.

The computational accuracy of the F-0-B-S theory curves based on
equations (2.59) to (2.61) for <T2ej2T> = (R2) and the already validated
equation (2.42) for Ceja = (R) appears to break down in the vicinity of
dy = 0.75. The poorer computational accuracy for lower values of dy occurs for
the.<R2) equations because of the larger denominator constants in the terms of
the series. However, even for d, > 0.75, the theory curves appear to deviate
significantly from the F-0-B-S simulation results, although they corfectly
describe the oscillatory behavior. Thus, although the series expression for

(R2) has been carefully checked, its validity has not yet been established.
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4.4 Distribution of the Total Field

The object of this section is to determine the extent to which the
trénsmitted and reflected field components TX and Ty deviate.from Gaussian
behavior in the region of low Py for a range of the parameters wy: and N.
Quantitative results are given by means of the coefficients of skewness (bx’ by)
and kurtosis (YX, yy), obtained from the third and fourth field moments
respectively (see section 2.5.1). All results are based on 1,000 field samples.

Typical plots of by and y, for a variation‘of fhe phase reference v
are given in figures 4.12a and 4.12b for the transmitted field. The plot for

b, is identical to that for b, but displaced by 90°., Similarly the plot for

y
Yy is displaced 90° from that for y,. Shown on the same graph as by in figure
4.12a is the in-phase component C_ of the coherent field. A comparison of this
curve with that for b, shows that the distribution of Ty is symmetrical for

Cy ® 0 and most highly skewed for maximum C,. The shortest tail of the

X
distribution is that closest to the physical tfuncation limits of +1 or -1
for Tyo Plots of the equivalent quantities for the reflected field are given
in figures 4.12c¢ and 4.12d. The periodic behaQior of the third and fourth
field moments with v as shown by these curves has been theoretically predicted
by Twersky4 and similarly checked by means of experiments on a physical model
of a distribution of spherical scatterers.>

Plots of the maximum valué of Ibl reached over a full period of
v variation as a function of Wyt are given in figure 4.13a for the transmitted
field. The scattering parameters are N = 10, e, = 2,0, and d, = 100; The
limit within which 95% of the sampled values of b, and by would be expected to
be found for Gaussian behavior of the field components is shown on this

graph.14 Plots of the maximum and minimum values of y obtained with the

corresponding 95% limits for Gaussian behavior are given in figure 4.13b.
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As seen by these figures and as discussed in section 2.8, the distribution
of the field components is more nearly Gaussian for large values of‘[g_l. The
results show, however, that the distribution of the actual field is less highly
skewed and less sharply peaked than that of the field as approximated by the
S-0-B-S. |

The correéponding results for the reflected field are given in
figures 4.13c and 4.13d. As seen by these results and as discussed in section

2.8, the distributions of Ty and T, are more nearly Gaussian for low values of

y

. The distributions of the actual field components, however, are somewhat

g
flatter than those of the approximate field components for the F-0-B-S, as
shown by the plots for y. Furthermore, deviation of the actual field from
Gaussian behavior occurs more quickly for an increase of Ig_l than does that of
the approximate field. Froa the statistical scatter of the data points in
figure 4.13, it appears that the variances of the b and Y statistics are
greater for the approximate field than for thé actual field,

Curves are not given for the effect of N variation on the skewness
and kurtosis coefficients. As expected, the results obtained showed a trans-—
mitted field approaching Gaussian behavior for large N. The rate of approach,
»however, was quite slow. With scattering parameters of wy+ = 0.06, e, = 2.0,

and dy = 100, maxima in the |b|maX

and YpoysYpin Plots occurred at approxi-
mately N = 12. For these same parameters, however, f%e distributions of the
reflected field components appeared to change little beyond about N = 6, béing
somewhat flatter than Gaussian for lower N. This result is of course
physically reasonable since contributions to the reflected field froﬁ scatterers
further removed from the origin become increasingly smaller.

As seen from the resulfs of sections 4.2.3 and 4.3.3, Ty and Ty

become uncorrelated for low Py Thus, it can be assumed that as the distri-

butions of TX and Ty approach the Gaussian distribution, the distributions
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of the incoherent transmitted and reflected field amplitudes will approach a
Rayleigh distribution. Likewise, the distribution of the total transmitted
field amplitude will approach the Nakagami-Rice distribution. Further investi-
gation is required, however, to determine the extent to which deviations of
Tx and Ty from Gaussian behavior cause a similar deviation of the incohefent
field amplitude I from Rayleigh behavior.

Plots of the cumulative distributions of T, and Ty in standard normal

deviates14

were also obtained as an additional check for deviation from
Gaussian behavior. Such plots, however, are less seﬁsitive.to deviations than
are the b and y coefficients. Straight-line plots for the exact reflected
field cumulative distribution were obtained up to wyr = 0.08, for example; the

values for vy of figure 4.13d indicate a somewhat flattened distribution at

this point.

4.5 Summary and General Discussion of Results

The main developments of this chapter may be summarized as follows:
(i) Results have been given demonstrating the accuracy of the wvarious
0-B-S theories developed in the present work. This opens the way for future
theoretical work directed towérd a comparison of these theories with the one-
dimensional forms of more general discrete-scatterer theories.

(ii) The importance of the low average density asymptotic behavior of the
medium on the evaluation and improvement of existing theories applicable t§
more dense scatterer distributions has been quantitatively illustrated.

(iii) Results have been given for the one-dimensional forms of Twersky's
theories for the coherent field for a wide variation of parameters, showing the
limitations of these theories in.a manner not as easily allowed by experiments
on physical models of discrete—scatteref distributions. Since the uniform-

randomness of the scatterers has not been an approximation as it must be for
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physical distributions of finite-size scatterers, the effect of the heuristic.
approximations contained in these theories has been separated from ghe effect
of a uniform-distribution approximation. Results have also been given which
demonstrate the improvement contained in the modified freé—space theory for the
coherent transmitted field presented in Chapter 2.

(iv) A quantitative analysis of the total field distribution based on the
third and fourth field moments has been made and some effects of multiple
scattering on this distribution illustrated. Physical conditions necessary.for
the approximate validity of the bivariate Gaussian distribution as discussed in
Chapter 2 have been verified.

(v) Monte Carlo simulation has been demonstrated to be a useful fool in
the study of randqm media of discrete scatterers and éssociated scattering
theory.

Thé "exact" simulation results presented in this chapter provide a
basis for future eyaluation of the one-dimensional forms of other general
theories developed by means of the ''dishonest" technique discussed in
Chapter 2. Further results for oblique angles of incidence, lossy scatterers,
and Poisson—distribpted random N would complement those already obtained;

The exponential distribution for the spaces Ei between the scatterer centers,

p(E;) = pePBi, p =(N)/d (i=1,2,...,N+ 1) N C

required to give Poisson-distributed N is easily generated from*7

1
g = —~5 loge(zi) : (4.2)

where the z; are uniformly-random numbers from the unit interval.
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5. SIMULATION OF A NON-UNIFORM PROBABILITY DENSITY OF PLANAR-

SCATTERER CONFIGURATIONS WEIGHTED TOWARDS PERIODICITY

5.1 Introduction

The uniform probability density function and scattering theorybbased
on it are most valid for "gas-like" scatterer distributions of low average
density. For distributions of higher average densities the uniform probability
density function is inappropriate and more accurate functions must be con-
sidered. Ideally, a probability density function ié required which is
applicable over the entire‘range of scatterer concentrations from a ''rare gas',
through a "liquid'", to the other limit of a "crystal-like solid". |

One theoretical approach to the problem has been to limit consid-

eration to the two-scatterer probability density function26

p(Fg,T) = p(Fy) p(F.|T,) (5.1)

Specifically, a two-scatterer conditional probability density function of the

form

p(T, %) = h(|Tg - T, ]) | (5.2)

(i.e., a function of the .separation of two scatterers) has been pursued such

"crystal' in the appropriate

that h reduces to the case of a "rare gas'" and a
limits. This approach is suited to the usual scattering theories based on a

"dishonest'" method in which only a two-scatterer probability density function
is required. For the case of a '"one-dimensional liquid", a suitable h exists
and has been applied to scattering by one-dimensionally random distributions

of cylinders.48 This function, however, seems limited to the case of an

infinite number of scatterers in the development of approximate scattering

theory. For three~dimensional scatterer distributions, there exist no explicit
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forms of h that cover the full range from ''rare gas" to any one of the
appropriate "crystals'.

| Another theoretical approach to the problem has been to consider a
"two-phase' system whose population of scatterers is divided between a ''gas-
like" phase and a "crystal-like" phase.25 The scatterers in both phases
contribute to the cdherent field, but only those in the gas phase contribute
to the incoherent field. A third more heuristic approach has been to assume
uniform-randomness for more dense scatterer distributions and use an average
density p based on the volume available to the scattérers (i.e., volume of the
containing region less the volume occupied by the finite—siée scatterers).
This approach, discussed in Appendix A (section A.2), has been used bvawersky24
for his mixed-space theory for the coherent field.

In -the present work, the theoretical problem requiring a suitable
probability density function for more dense scatterer distributions has been
bypassed. 1In order that the scattering characteristics of dense distributions
of finite-size planar scatterers might be investigated, a computer simulation
technique has been used to generate an appropriate one-dimensional distribution
ranging between the limits of uniform-randomness and "periodicity" (i.e.,
periodically-positioned scatterers). Such an approach is not limited to the
one—-dimensional model; similar techniques could be used in Monte Carlo
simulation studies with more complex mathematical models or with physical
models of the type discussed in Chapter 6.

Two similar methods have been developed in this work for generating
a suitable one-dimensional distribution of scatterers ranging betweeﬁ the
limits of uniform-randomness and periodicity. These methods are essentially
"rejection" techniques;47 however, random numbers are generated to conform
to a physical requirement rather than a theoretical distribution. The

requirement is that no scatterers be allowed to approach one another more
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closely than a distance e between their centers. This parameter may be the
physical width of the scatterer or some hypothetical "distance of ciosest
approach',

The ﬁethods of generating the distribution are discussed in section
5.2 and results giveh which illustrate the type of distribution generated. In
section 5.3 results are given for a vari;tion of the distribution parameter e
between the limits of uniform-randomness and periodicity with the scattering
parameters remaining fixed. Criteria for the validity of assuming.the planar
scatterers to be uniformly distributed are presented; based on the average

density per wavelength p, and the fractional "volume" B = Ne/(d + e) occupied.

o
In section 5.4 a comparison is made between numerical results obtained from
Twersky's mixed-space theory and simulation results for distributions of

finite-width planar scatterers. A general discussion and summary of results

is given in section 5.5.

5.2 Methods of Generating the Distribution

The uniform random number generator provided the basis for the two
methods used to generate a non-uniform distribution with the desired limits of
uniform-randomness and periodicity. The initial steps of the procedure were:

(i) N uniformly-random numbers were generated on the unit interval
corresponding to the normalized positions of the scatterers (i.e., zl/d,
zz/d,...,zN/d). These numbers were placed'in an "array'" of computer memory in
the sequence of generation; i.e,, for an array A(I) with I = 1,2,...,N, the
first number occupied position 1, the second, position 2, etc.

(ii) The N random numbers were then sorted within memory so that they
occupied the array A(I) in order of size; i.e., in the sequence of the ordered-
positions zi,zé;...,z&.

Once these initial steps had been completed the physical requirement that no
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adjacent pair of numbers be closer than e/d, the normalized distance of
closest approach, was applied. The two methods developed differ in/the manner
in which numbers which did not satisfy this requirement were rejected and new
ones generated.
5.2,1 Method A

In this method a new random number was generated after each rejection.
The steps of the procedure were as follows:

(i) The array A(I) was scanned beginning at position 1 untilvan adjacent
pair of numbers were found to be cioser than e/d. Depending on the value of
the previous random number_generated, either the lgrger or the smaller of the.
pair was rejected. If the previous number generated was less than 0.5: the
smaller number of the pair was rejected; if it was 0.5 or greater, then the
larger was rejected. Thus, both numbers were rejected with equal probability.

(ii) For each random number rejected a new one was generated to take its
place in the array. This new number was then merged with the remaining N - 1
by an interchange procedure to place it in the correct order of size.

(iii) Steps (i) and (ii) were then repeated with a change in the scanning
direction of step (i), scanning beginning at element N of the array rather
than at element 1. This process of rejecting and generating one number at a
time, with -scanning of the array beginning alternately with elements 1 and N,
was repeated until a suitable configuration of N numbers was obtained, with no
adjacent pair closer than e/d.

5.2.2 'Method B

In this method the entire array was scanned with one of eaéh pair of
numbers breaking the required condition being simultaneocusly rejected and
replaced by é new one. The stebs of this second procedure were as follows:

(i) The array A(I) was scanned beginning with element 1 and allbpairs of

numbers not satisfying the distance-of-closest-approach criterion were recorded.
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(ii) New random numbers were generated corresponding to the number of
unacceptable pairs. These were stored in another array B(J), with j =1,...,L
(L being the number of unacceptable pairs).

(iii) Depending upon the value of the new random number in the storage
location J of B(J), either the smaller or the larger of the J-th pair of
unacceptable numbers in A(I) was rejected. The equal-probability rejection
rule of method A was again used. In the event that two unacceptable number-
pairs were adjacent to one another (i.e., a sequence of.three numbers) and the
one rejected from each pair was common (i.e., the ceﬁter number of the
sequence), one less number from the array B(J) was required.

(iv) The required numbers from the array B(J) were then sorted in order
of size and merged with those not rejected from A(I).

(v) The preceding steps were repeated until a suitable configuration of

N numbers was obtained. |
5.2.3 Results

The one-scatterer normalized probability density function
p(zs/d) = p(zs/d)d/N was determined for both methods A and B for several values
of N and distances of closest approach e/d. Plots of this function for three
values of e/d are given in figures 5.1 and 5.2 for N = 4 and N = 5 respectively.
The periodic position of each scatterer and the '"excluded region' surrounding
it are shown at the top of each graph for comparison with the probability
density curves determined. The graphs were obtained by drawing smooth curves
through the experimental points resulting from 20,000 sample configurations and
fifty histogram intervals. |

As seen from figures 5.1 and 5.2, as e/d is incréésed the probability
density curves become more highiy peaked. For N = 5 the peaks of the curves
for both methods correspond closely to the periodic positions, but for N = 4,

only for method B. For N = 4 and low values of e/d the curves for method A
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contain an extra peak at the center of the distribution. This center peak,
however, gradually disappears as e/d is increased, leaving the remaining peaks
to correspond closely to the periodic positions. Both methods give a distri-
bution symmetrical about the center of the slab region containing the
scatterers. This was achieved in method A by.the procedure of alternatély
scanning the array in opposite directions to detect unsatisfactory pairs of
numbers. (Ah initial test of the method with scanning in only one direction
showed the distribution to become increasingly non-symmetric for increasing
e/d.) Similar results were obtained for higher values of N.

Other differences in the one-scatterer probability density curves
for the two methods are apparent. The peaks corresponding to the outermost
scatterers are higher for method B than method A, and the heights of the peaks
for method B gradually diminish towards the center of the distribution. Such
differences are to be expected, however, because of the different manner in
which the distributions are generated. 1In method A the random number rejection
process proceeds gradually from the outer ends of the érray towards the center,
whereas in method B it is applied "uniformly" over the entire array.

Although some differences in the one-scatterer probability densities
generated by the two methods ére evident for mid-range values of e, these
differences of course disappear for e » 0 and in principle must disappear for
e >d/(N - 1). Towards the periodic limit, the peaks of the one-scatterer
distributions generated by both methods must separate entirely for d — Ne < 0
or equivalently B = Ne/(d + e) > N/(N + 1), providing certain regions in which
no scatterer can be located. In the periodic limit, the one-scatterer

probability density functions must be of the form

N i-1
p(z) == 3 8z - d (s = 1,.e0s) ‘ (5.3)

1
N =) N -1

89
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where § is the Dirac delta function.

Although both methods can in principle generate a distribution
approaching the periodic limit, in practice they are suitable only if the
fractional "volume' B, is below a certain value. TFor N = 10, the computer
time involved increased sh;rply for BO > 0.65 because of the great numbef of
rejections required. There appeared, furthermore, to be a limit beyond which
no suitable configuration could be obtained with the available generator. This
is considered possible because the generator has a finite population of
numbers.41:42 For N = 10 fhis limit appeared to be ébout By = 0.8 for the
IBM 7044 computer generator RAND. The limit appeared furthermore to decrease
with increasing N. Method A usually required the rejection of more random
numbers than method B before a suitable configuration could be obtained,
although method A, being a somewhat simpler procedure, was always faster. Such
differences,.however, were not large and in the factors discussed in this
section the two methods are considered to be approximately equivalent.

Test runs of the two methods for the type of results of the following
sections furthermore showed them to differ very little for the average field
functions investigated. Tﬁe results given are therefore based on method A.

The disadvantage that explicif results cannot be obtained for 0.8 < Bo < 1.0

is not serious because the behavior in this interval can be inferred from the
results for mid—range values of B, and the result for the periodic limit itself
(i.e., B, = 1). Methods of eliminating this disadvantage and generating a

(o]

suitable distribution on a more theoretical basis are discussed in section 5.5.

5.3 Variation of the Distribution Between the Limits of Uniform-Randomness
and Periodicity for Fixed Scattering Parameters

In this section "exact" simulation results are given which show the

effect of a variation of the distribution between the limits of uniform-



randomness and periodicity on the coherent field and average incoherent
intensity. Based on these results, criteria are developed for the éssumption
of uniformly-distributed "finite-width" planar scatterers (i.e., e # 0) to be
valid. For convenient comparison with the results of Chapter 4, the fixed
scattering parameters N = 10, ¢, = 2.0, and wAi = 0.1 are again used. All
simulation results are for 1,000 sample configurationé.

Shown in figure 5.3 are the phase and intemsity d)-variation curves
of the transmitted field for a periodic array of the scatterers. These curves
are of importance in .the following discussion of results for the "periodicity-

weighted'" random distribution whose scattering behavior becomes '"periodic"

91

as e » d/(N - 1) or equivalently By = Ne/(d + e) » 1. The well-known resonance

behavior which occurs at periodic intervals in dy is specified on the x-axis
of the graphs by the index np which takes the values ng = 0,1,2,.... For the
present parameters the resonance interval in dy is 4.5. This gives a
separation'between scatterers at resonance of approximately an/Z, a slight
deviation from this‘value occurring because of the different wavelength A' in
the scatterer material.

The first set of results illustrate the effect of e variation on the
average fieid functions for a number of widely-spaced slab-region widths d,.
Curves for the coherent phase and intensity of the transmitted field are given
in figures 5.4a and 5.4b; curves for the average incoherent intensity of the
reflected field are given in figure 5.4c. The five values of d, chosen to
display the results are all approximately mid-way between adjacent resonance
values and give identical periodic limits for Cel®, Smooth curves have been
drawn through éll "experimental" points except those for dy = 97 where the
actual curves are too oscillator& inbnature to display accurately from the
present results. The points are included for d) = 2.5 and dy = 7. Curves for

(12> of the transmitted field are not shown because they are similar in form
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to those for the reflected field. The section of each curve for Bo 1 has
been interpolated from the available results, the beginning of the éection
being indicated by a "dotted" break in the curve. The asymptotic behavior of
the interpolated sections in the periodic limit has been assumed on the basis
of the occurrence of the same behavior for dA -+ 0.

As seen from figure 5.4, the given curves are very oscillatory in
character. The number of primary oscillations over the interval 0 < B, s 1
increases for increasing d, (or decreasing pA) but the oscillations decrease in
magnitude for incfeasing dy. For the periodic spacing between scatterers in

the interval

& -

EB . dA ng + 1 (5.4)
2 N -1 2

the number of apparent relative maxima or minima in the curves (not including
the periodic value) is given by the 'resonance index" np. The results for
dy = 2.5 indicate the possible pfesence of secondary oscillations in the
curves, although more accurate results are necessary for this to be established.
Such behavior in the periodicity-weighted distribution would seem possible
because of the secondary oscillations in the curves of figure 5.3 for a
periodic array.

The results of figure 5.4 show that as np increases the distribution
does not begin to exhibit "periodic'" behavior until increasingly higher values

of B For dx < (N - 1)/2 the curves proceed directly to the periodic limits

o
as B, increases; for d, >> N -1)/2 (e.g., dy = 97) the distribution behaves
as though the scatterers were uniformly distributed up to a very high value

of Boe
The reasons for the observed behavior can be explained in terms of

the theory of random phasor sums discussed in section 2.8. It is useful to

write the transmitted field as
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TelT = AOeJeo + E: ASeJes = AOeJeo + T'elT ’ (5.5)
s=1 :
where the constant phasor Aoejeo = (14-g+)N is the Z-0-B-~S contribution to
TedT and the random phasor AsejeS is the multiple-scattering contribution from
scatterer s composed of all other even 0-B-S. (The values of eo and Ag for the

present parameters and that for (12> as py > 0 are shown on the scales of the

graphs in figure 5.4.) Then,

cedo = (TejT> = Aoejeo + ctedo’ (5.6)
where
TS | » 1] N 'e
C’eJa = <T|eJT > = z <ASeJ S> . (5.7)
s=1

Thus, maxima in the curves for €2 occur when C'eja' is in phase with Aoejeo
(i.e., a =a' = 60); minima occur when C'eja' is 180° out of phase (i.e.,
a=a -7= 60). The energy lost from the coherent transmitted field when
C2 is minimum reappears in the incoherent fields.
The theory of section 2.8 showed that the random components of theveS

represent approximately double the ''electrical lengths'" between adjacent

scatterers. Physical reasoning then requires that for e = 0,
ot = og = dndy/(N - 1) (5.8)

Similarly, for e # 0,

dy
N - 1

dy
N - 1

o1 = 4 ( - ey ) = 4 (l - 80) (5.9)
Thus, for a periodic spacing between scatterers in the interval given by (5.4),

ZﬂnR(l - BO) < Ot < 2ﬂ(nR+-1)(l - Bo) (5.10)

If OT|.>> 27, the basic phase cycle equivalent of t' is effectively uniformly

95
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distributed, the random component T'ejT' of the total field then completely
incoherent (i.e., C'eja' = 0),-and therefore Ced® = (1 + g+)N. The‘fact that
this situation occurs for large nR(l - B,) agrees with the results of figure 5.4.
The oscillatory behavior of the curves develops because, as B, varies between
zero and one, the weighting of the equivalent distribution of T' towards
different sections of the basic phase cycle varies in a periodic manner causing

PR |
the phasor C'elJ® to periodically rotate. For larger ng, O;

1 varies over a
larger number of basic pHase cycles as B, varies between zero énd one and the
curves therefore contain more oscillations as shown. Furthermore, as
ng(l - B,) is decreased (either by a decrease in np or an increase in By)» the
deviation of t' from a uniform distribution on the basic phase cycle must
increase, causing the magnitude of the oscillations to become larger. This is
also apparent from the curves of figure 5.4,

Similar reasoning can be used to explain an oscillatory behavior in
the coherent reflected field for a variation of Bo in the interval 0 < Bo < 1.
Curves are not given because of the inaccuracy of simulation results for the
small magnitudes involved and because the equivalent behavior for a variation
of dy was illustrated in Chapter 4,

For periodic spacing of the scatterers in the neighbourhood of a
resonance condition, the scattering behavior of the distribution for Bo 1
is highly variable for slight changes in d,. Figure 5.5 illustrates the effect
in a series of curves for C? of the transmitted field and (I2) of the refiected
field in the neighbourhood of the second resonance (i.e., np = 1). Actual
resonance occurs at about d, = 4.2. These curves also illustrate the beginning
of the large-amplitude oscillatory behavior after the second resonance.
The observed diversion of a largé fraction of energy to the incoherent

reflected field just above resonance (e.g., at dk = 4.6) is of interest

although a reason for this behavior is not immediately evident. A similar
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effect occurs for the incoherent transmitted field.
The results of this section clearly indicate when it is valid to
assume that a distribution of planar scatterers of finite width is uniform.
For high P the average spacing between the scatterers must be much greater
than the minimum spacing. Since the average spacing is approximately eqﬁal to

the spacing dk/(N - 1) at periodicity, this condition can be written

d d 1
A At
N_1>N -p}\ >> ey (5.11)
or . . .
B, << 1 7 (5.12)

Typically, as iﬁdicated by the results of figure 5.4, for 0.4 < Py < 4,

it is required that B, 2 0.1 for the assumption of uniform-randomness to be
reasonably valid for the given scatterers. For p, > 100, as seen by the
results of Chapter 4, it makes little difference whether the scatterer
positions are uniformly-random or periodic and thus the value of B, is not
important.

For distributions of low Y the requirement of (5.12) for uniform-
randomness is too stringent, as is indicated by the results of figure 5.4 for
dy = 97. A less stringent condition is that the standard phase deviation o r
of tﬁe random component of the transmitted field be much greater than 2w

radians, or equivalently from equation (5.9),
(1 - Bg)/oy >> 1 _ (5.13)

Thus, for even a large fraction of the contaiﬁing slab region filled by the
excluded regions of the scatterers, uniform-randomness may be assumed as long
as 0, is small.

For distributions of three-dimensional scatterers a criterion similar

to that of (5.12) has often been used (i.e., B_ << B,» where B is the maximum

0
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Bo physically achievable). 1In view of the validity of the less stringent
criterion (5.13) for low~pA distributions of planar scatterers, the question
of the possible validity of a similar criterion for distributions of three-
dimensional scatterers arises (i.e., where p) 1s the average density per cubic
wavelength). The validity of such a criterion would seem possible for the
multiple—scatteringvcontributions to the random component of the field in a
three-dimensional distribution since even for lafge B, a low average density
of scatterers per cubic wavelength would give a large Tgg for each contribution
and a resulting uniform distribution for the equivalent 6g on the basic phése
cycle. As shown in Appendix C, however, the Ogg for the dominant single—
scattering contributions to the forward-scattered field in a three-dimensional
distribution can be quite small, even for a low p per cubic wavelength. Thus,
the more stringent criterion appears to be necessary.

5.4 Comparison of Simulation and Mixed-Space Theory Results for Planar
Scatterers of Finite Thickness

In this section a comparison is made between numerical results for
the coherent field obtained from Twersky's mixed—space theory and "exact"
resuits'based on the simulation of a non-uniform distribution of planar
scatterers of finite width. For the simulation, the width e of the scatterer
excluded region is sef equal to the physical width w of the dielectric slab
scatterers employed. As discussed in Appendix A (sgction A.2), the modified
form p = N/(d + w - Nw) of the average density is used in the mixed-space
theory and the slab-region width d containing the scatterer centefs is replaced
by d + w, that contéining the scatterer boundaries. Results are also given

for the mixed-space coherent reflected field theory with only the modified p.

5.4.1 The Coherent Transmitted Field

Results for the coherent transmitted field are based on a 'compression
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process" similar to that used for a physical-model distribution of a slab
region of spherical scatterers.?9 The width of the planar scatterers and the
width of the slab region containing them are fixed so that as an increasing
number are placed within the region the distribution is gradually compressed,
the scatterers eventually filling the region. The parameters have been chosen
so that the slab region is filled for N = 25.

The first set of curves of figure 5.6 éive results for a high pj
occurring in the limit of B, = Nw/(d + w) » 1. The single scatterer parameters
for these curves are .again e, = 2.0 and Wyt = 0.1. fhe Wy value and the N = 25
limit for 80 = 1 were chosen to give the limiting result c? =1 (i.e.,‘since
dxﬁ+ Wyt = 2.5), although this was not necessary for the mixed-space fheory‘to
give exact results in the B, = 1 limit. Shown also for comparison in figure 5.6
are simulation results for uniformly-distributed infinitely-thin scatterers
having the same scattering amplitudes. Both sets of simulation results are
based on 1,000 samples.

As seen from figure 5.6, the general trend of the coherent field
behavior for increasing N is approximately predicted by the mixed-space theory.
The coherent intensity at first decreases (as for a uniform distribution),
reaches a minimum, and then increases as the distribution becomes more
"ordered" and energy is diverted from the incoherent fields. Approximately
the same behavior has been measured on the model distribution of spherical
scatterers, although the experimental results obtained agree more closely with
the mixed-space theory results for mid-range values of 60.49 The discrepancy
in the present results for the one-dimensional model is due to the fact that.
the total scattering cross-section ¢ = -2 Reg, is sufficiently large that the
asymptotic forﬁ (T) = eNgy for tﬁe mixed-space theory is not accurate. This
was shown in figure 4,3 on page 62. As pointed out in Chapter 4, only certain

parameters give sufficiently small ¢ that adequate agreement in the asymptotic
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forms can be obtainéd for finite N (e.g., for wyr << 0.25 or at periodic values
in wy for thick slabs). The situation may not be as critical for three-
dimensional scatterers.,

In figure 5.6 the apparently correct liﬁiting behavior predicted by
the mixed-space theory for Bo + 1 is achieved because the scatterers coﬁpletely
fill the containing region and are sufficiently "thin" that gl/gL > 1 and
n > n' (see Appendix A, section A.2, and Appendix B, section B.2). If the
exclﬁded—region width e is chosen to be larger than w (i.e., spaces existing
between the scatterer boundaries for BO = 1), the mixed-space theory does ﬁot
give exact results in the "periodic'" limit. This situation is somewhat
equivalent to that occurring for distributions of spheres discussed by Beard

et al.,49 where the slab region cannot be completely filled with scattering

material.

' limit are also not achieved if the

Exact results in the '"periodic'
limits g!/gy > 1 and n > n' for B, > 1 do not hold. This is illustrated by the
results of figure 5.7 for low p)- For these results the scatterer width of
| Wyt = 6.9 has been chosen to give sufficiently small ¢ that N8t = (1 + g+)N,
as shown in figure 5.7. The resulting scattering amplitudes are now
g, = 0.1044 /-104.5° and g_ = 0.2035 /84.07°, but the value of |1 + g,|2N
remains the same as that for wy» = 0.1. Again the "periodic”llimit for c2
is unity for the chosen parameters.

The simulation results of figure 5.7 follow closely the asymptotic
curves as obtained from (1 + g+)N, even for relatively high values of B,+ This,
of course, is in agreement with fhe results of section 5.3. Because the present
methods of generating the distribution do not allow higher values of Bo to be
reached, the exact point at whicﬁ the distribution begins to exhibit marked

"periodic" behavior is not known, although it is estimated to be in the

neighbourhood of N = 23, As seen from figure 5.7, the mixed-space theory does
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not give the correct "periodic" limit although it gives good agreement with
simulation results for most of the range of B,+ Several other sets‘of numeri-
cal results obtained for the mixed-space theory appear to indicate that
approximately the correct limiting behavior occurs only for "thin" slabs.

In summary, it has been shown that the requirement for the "one-
dimensional" mixed-space theory to give adequate agreement with typical
simulation results for finite N and loﬁ or mid-range values of BO is that
|g+| << 1 (or o << 1 for the scatterers used). For exact results in the limit
of "periodicity', the scattering material must completely fill the slab region
available and the requirements gl/gi + 1 and n > n' as B, > 1 must be fulfilled.
If these "periodicity" conditions are not satisfied, however, the mixed-space
theory can still adequately describe the distribution behavior for low and
mid-range values of B, if the forward amplitude condition is satisfied.

The required conditions for the approximate validity of the mixed-
space theory for finite-N distributions of three-dimensional scatterers are
believed to be identical to those given for distributions of one-dimensional
scatterers, except that the forward amplitude condition must be replaced by
|2npdg(2,2)/k2Nl << 1 (see section 2.7.1). This forward amplitude condition

27 and Beard et al.49 have shown that

has previously been implied by Twersky,
the "periodicity" conditions need not be satisfied for the theory to be

approximately valid for low and mid-range values of B,.

5.4.2 The Coherent Reflected Field

Results for the coherent reflected field can best be shown by a
"compression process' in which the width of the slab region containiag a fixed
number of planar scatterers is gradually decreased. Curves are given in
figure 5.8 for variablé dy with écattering parameters N = 10, ¢, = 2.0, and
wyr1 = 0.1. TFor these parameters, "periodicity" occurs when dyr +wyr =1

or, to four figures of accuracy, dy = 0.6364. The simulation results are
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based on 4,000 sample configurations.

Curves are given for Twersky's mixed-space theory with and without d
being replaced by d + w. Since a replacement of d with d + w in the mixed-
space equation for (R) (termed "modified d" in figure 5.8) changes the phase
reference with respect to that used for the simulation, aﬁ additional
multiplier e~ Jkw haé been inserted in the equation to allow comparison of
results for the coherent phase a.

As seen by a comparison of results for the modified-d form of the
mixed-space theory with results for the theory for a.periodic array, the mixed-
space theory appears to have the correct limiting behavior as 8, > 1
(i.e., dy, » 0.6364). (Results for the mixed-space theory were obtained down
to dy = 0.644, beyond which the iteration method employed to solvg the mixed-
space theory equations did not converge.) The mixed-space theory with
unmodified d does not, of course, have the correct limiting behavior for
B, » 1 but reduces to the form displayed in Chapter 4 (figure 4.8, page 70)
for B, >~ 0 since p = N/(d + w - Nw) » N/d as dy » «. Although both forms of
thé theory displayed in figure 5.8 give ced® > 0 as dA -+ «, a displacement in
the curves for both o and C2 must remain even for large d,.

As expected, the simulation results given in figure 5.8 for the
periodicity-weighted distribution differ increasingly from those for the
uniform distribution for decreasing d,, approaching the results for a periodic
array as B, > 1. Each form of the mixed-space theory gives results approaéhing
the simulation results in one of the two limits. It is interesting that the
form of the theory with 6nly modified p gives almost exact agreement with the
simulation results. for the uniform distribution; a reason for this is not
immediately evident.

The present work is believed to be the first cqmparisoﬁ of Twersky's

mixed-space theory for {(R) with "experimental" results. Further experimental
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and theoretical research with this theory and that for the coherent trans-
mitted field applied to other scatterer distributions (particularly three-

dimensional distributions) is required.

5.5 Summary and General Discussion of Results

5.5.1 Summary

The main contributions of this chapter may be summarized as follows:
(i) Two simulation methods of generating non-uniform one-dimensional
scatterer distributions weighted towards periodicity have been developed.

(ii) A study has been made of the variation of a planar scatterer
distribution between the limits of uniform-randomness and periodicity.
Criteria based on the average density of scatterers per wavelength and the
fractional "volume" occupied have been given for the validity of assuming
planar scatterers of finite width to be uniformly-random. |

(iii) The one-dimensional form of Twersky's mixed-space theory for the
coherent field has been investigated and the requirements for its approximate
validity clearly outlined. The reqﬁirements necessary for the validity of the
three~dimensional form of the theory have been considered.

5.5.2 General Discussion

The rejection methods deveioped for generating a suitable non-uniform
distribution of N random variables suffer the same practical disadvantage of
most rejection methods for single random variables in that they are wasteful of
comﬁutétion time. In addition, they do not generate the scatterer position
variables from known theoretical distributions and cannot give results for a
fractional "volume'" approaching unity. These last two disadvantages (at least)
could be overcome by allowing é random number of scatterers N within the
containing slab region and generating the spaces between their boundaries

rather than their positions. A suitable probability density function for the
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spaces £, between the scatterer boundaries is the exponential function

) = -p&. - <N) .
p(&;) PeTPRL 0 = e (i =1,2,...,N+ 1) (5.14)

where p is essentially the modified average density used in this chapter for

fixed N, e is the minimum spacing between scatterers, and d is the width of

the slab region containing the boundaries of the random number of scatterers

(i.é., d is equivalent to the d + e used in this chapter). The exponential

function (5.14) is the '"adjacent-scatterer' form of the more general two-

scatterer condipional probability density function uéed by Twersky.48 For

e > 0 it reduces to the form of equation (4.1) for infinitely-thin scatterers

and N becomes Poisson distribute@. For e » d/(N), the scatterers becoﬁe

periodically positioned and N is no longer random. The spaces &; between the

scatterer boundaries can be generated using the transformation of equation (4.2).
The generation of a random-N distribution in this manner should give

results differing little from those presented in this chapter. The theoretical

problem of determining a suitable two-scatterer probability density function

of fixed-N scatterer configurations for the basis of an approximate scattering

theory, however, still remains. Theoretical work directed to obtaining such

a function and applying it to the O-B-S approximations for the field developed

in the present work would be of interest.
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6. EXPERIMENTAL INVESTIGATION

6.1 Introduction

In this chapter é physical model of a random medium of discrete
scatterers for possible use in detailed scattering studies is proposed and the
results of initial experiments to determine the suitability of this model are
given. The model consists of three-dimensional scatterers randomly positioned
within a slab region according to statistics generated by computer from a
desired distribution. A narrow microwave beam scans this slab region and the
resulting fluctuating field is measured at a point outside the region and
statistically analyzed. Initial measuremen:s of the forward-scattered field
from a "uniformly-random' configuration of one-half inch diameter polyethylene
spheres have been made at 0.86 centimeter wavelength.

A series of experiments on a similar physical model have previously
been carried out by»a group of researchers at Sylvania Electronic Defence.
Laboratories.?:49-54 Ag illustrated by the Sylvania grbup, experiments on a
controlled-distribution model, &nlike experiments on uncontrolled naturally-
occurring scatterer distributions, provide the physical and statistical
characteristics of the distribﬁtion in addition to the scattering data of
interest. These known physical and statistical characteristics can be used in
various approximate scattering theories and the theoretical predictions
compared with scattering measurements on the same distribution to determine
their validity. Thus, the advantages of experiments on a physical model con-
structed and controlled to conform to a mathematical médel are similar to
those gained by Monte Carlo computer simulation with a mathematical model.
Such experiments have the additional advantages, however, that more complex
‘models can be studied, real-life antenna beams used, and new measurement

techniques investigated.
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The main feature of the physical model presented in this chapter is
that the statistics of the scatterer positions are directly controlled as in a
complete Monte Carlo computer simulation. Thus, the scatterer statistics are
known from the beginning, unlike those of the Sylvania model where they afe

controlled indirectly by a physical process+

and monitored by means of movie
films or a method requiring initial knowledge of the scattering medium.3,%49,50
The pfimary advantage of such direct control, however, is that it presents the
possibility of experimental studies on other than "uniform'" distributions.

The construction details of the present physical model are outlined
in section 6.2 and a more thorough analysis.of its advantages and disadvantages
is given. The scattering range, antenna characferistics, and scanning device
are described in section 6.3. The experimental apparatus, measurement
techniques, and data processing methods are discussed in section 6.4. The

results of the initial experiments to investigate certain aspects of the model

suitability are presented and discussed in section 6.5,

6.2 The Physical Model

The present physical model consists of spherical scatterers
(e.g., polyethylene balls) poéitioned at "uniformly-random" discrete locétions
within a slab region of a relatively transparent support-medium constructed of
layers of polystyrene foam. A narrow millimeter-wave beam illuminates a small

volume region of the fixed configuration of scatterers and the resultant

TThe Sylvania model consists of a slab-region Styrofoam container
whose bottom and top are grids which allow for the passage of turbulent air
streams. Tor low average densities of light-weight scatterers (usually
Styrofoam spheres), a relatively uniform distribution is developed by a system
of blowers, turbulence-creating wedges, and collision processes. The
ergodicity of the process allows a direct comparison between the time averages
of field quantities measured and approximate theoretical estimates of the
corresponding ensemble averages.
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scattering process produces a random.field in the space both inside and out-
side the slab region containing the scatterers. A procedure of moving the slab
region in front of a transmitting antenna in a direction perpendicular to that
of the inciaent beém therefore causés a random fluctuating field at the
location of a receiving antenna. The desired components of the random fieid.
produced by this "scanning' process are measured and sampled at discrete
distance intervals. A proceséing of these sampled signals by standard digital
averaging methods results in estimates of the ensemble averages of the desired
field quantities.

A simplified diagram of the scattering geometry used for the
experiments described in this chapter is given in figure 6.1 (see section 6.3

for distances of antennas from the scattering region). Although measurements

56"
///’—scanning directions
<} - - - R -——g—T>

receiving transmitting
antenna 30" antenna

slab region occupied

10 5”> by spheres
5 —

Figure 6.1 Simplified Diagram of Scattering Geometry

were made of the forward-diffracted field on the axis of the transmitting
antenna, similar measurements may be cbtained for the forward field in various
directions off the axis and for the back-scattered field. The transverse
dimensions of the distribution (56" x 30") were decided on the basis of the

width of the anechoic chamber available and on the vertical movement of the
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device for scanning the region (see section‘6.3). The 10.5 inch dimension
parallel to the beam axis is approximately the same as that of the Sylvania
‘model. T

In order.for the sphéres to be placed in position within the slab
region, the support-medium was divided into twenty-one vertical layers of one-
half-inch width. This therefore made necessary a discrete distribution in at
least the direction parallel to that of the incident beam, each layer con-
taining a plane of randomly-positioned spheres. The layer width was chosen as
a matter of convenience for the initial experiments described in section 6.5
and to maximize the number of layers possible for the sphere diameter of one-
half inch. Ase a further convenience in placing the spheres in position, the‘
transverse coordinates of each layer were also truncated atvone—half inch
intervals. The validity of such a "discrete position approximation' is
discussed in Appendix C with results from similar approximations applied to the
one-dimensional model of planar scatterers being used to provide insight dinto
the problem.

6.2.1 Generation of Uniform Distribution

A "uniformly-random' array of discrete sphere positions throughout
the slab region was generated as follows: Each layer of the support-medium was
divided into six equal-area sections of 28" x 10", making a total of 126 sections
in all. A sequence of uniformly-random numbers from the unit interval, equal
in number to the desired number of spheres within the slab region, was
generated. Each number was then multiplied by 126 and truncated to designate

one of the sections for a sphere to be placed.

tThe aim in the original Sylvania experiments was that measurements be
comparable with the plane-wave theory existing at the time.50 One requirement
was that the inverse distance variation of the illuminating field be small over
the depth of the distribution for a given distance from the transmitting
antenna to the distribution center.
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Correspénding to the'numbef of spheres to be.placed in each section,
pairs of discrete uniformly~random "x and y" coordinates were generated.
Because of the physical requirement that no more fhan one sphere occupy any one
position, éach sucéessive position Qas chosen uniformly from those remaining.
Thus, the overall distribution was not truly uniform, although it was effeét;

ively uniform for a low average number of available locations occupied.*

Immediately after the sphere coordinates were generated for each‘
section, they were obtained in a pictorial form as shown in figure 6.2 for two
of the sections (”étars" correspond to sphere positions). This picture of
sphere positions for each section, and a rectangular metal grid with holes at
one-half inch intervals placed over the desired section of one of the support-
medium layers, provided a means of quickly marking the posifions.

The uniformly-random numbers were obtained by means of the modified
generator discussed in section 3.3, the basic generator RAND being used to
generate a different initial arraylof 1,000 numbers for each section and then
to randomly choose the desired number of coordinates from these. The
generator'was designed so that it could be "initialized" by one number and so
that the initial array of random numbers for each section would be the same
regardless of the number of coordinates required. Thus, if a set of
exﬁeriments were being carried out in which the number of spheres within the
slab region progressively increased, each new experiment would only require that

additional spheres be added to those for the previous experiment. A second

tThe size of the equal-area sections is arbitrary and was chosen to
keep the amount of computer memory required by the program within a reasonable
limit, since this is approximately proportional to the number of discrete
positions in a single section. In this method of generation the section

designation is essentially the '"z" coordinate; for sections equal in area to

the support-medium layers it would correspond to the "z' coordinate in the

distribution.
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Figure 6.2 Typical Computer Output for Sphere Coordinates
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easily in place with a minimum compression'qf the surrounding material.

A box of the same material with two-inch thick sides was used to
hold the sphere-loaded layers in.place. One of the wide faces was left
unfastened-so that.the layers could-be easily inserted or removed. It was
fastened into place with small spikes inserted from the sides of the bo%. The
sides of the box were glued togethér at only a few locations to minimize
unwanted diffraction. Figure 6.3 shows the medium in place with the side
removed and one of the layers with spheres inserted open to view.

6.2.3 Comparison with the Sylvania Model

THe main advantages of the present model over the Sylvania model
are the following:

(i) Unlike the Sylvania model, the present model 1endé itself fairly well
to the experimental study of other compiex, but still theoretically predictable,
sca£terer distributions besides the uniform distribution. Generalization of
the technique used for generating a uniform distribution to one which would
allow the average.density of scatterers to vary non-uniformly in the direction
parallel to that of the incident beam, according to either a mathematically or
empirically specified probability density, is straightforward. The including
of scatterer size, shape, orientation, and dielectric properties as random
variables in the distribution function is also possible, although it would
increase the labour involved in placing the scatterers in position. A more
difficult type of distribution for possible investigation is one in which the
scatterer positions are correlated in some manner (e.g., a distribution in
which the scatterer positions are weighted towards certain ''periodic positions"
of higher probability as in the one-dimensional distribution investigated in
Chapter 5). The type of correlation which could be used, however, and the
manner in which the desired distribution could be generated are problems which

would require much future research.
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Figure 6.3 View of the Physical Model

(ii) Heavier scatterers, usually having higher permittivity, may be used
in the present model since they are embedded in a rigid supporting material and
need not satisfy a "buoyancy" requirement as in the Sylvania model.

(

ii) Because the statistical distribution of the scatterers in the present

[

model is directly controlled by a known pseudo-random process, it need not be
monitored as in the Sylvania model.

(iv) An experiment on the present model can be repeated using the same
scatterer configurations (as in a complete Monte Carlo simulation), making it
relatively easy to determine measurement errors introduced by equipment alone.

The main drawbacks of the present model in comparison with the
Sylvania model, with possible methods of minimizing them, are as follows:

(i) The accuracy of the estimated ensemble averages obtainable with the
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present model is governed largely by its transverse dimensions since this
determines the number of uncorrelated samples. In the Sylvania model, only
the unimportant time factor governs the accuracy. Because of practical con-
siderationé such aé the size of rooﬁ and scanning device available, the size
and ease of handling of the plastic foam sheets available, and the laboﬁr
involved in setting up the medium, the transverse dimensions of the model must
be limited. One of the main objects of the experiments described in éectibn
6.5.2 was to determine, for typical scatterer distributions, the statistical
accuracy obtainable from a model of a given size. .

Without completely changing the sphere positions, it is possible to
improve the accuracy of the results for a uniform distribution. The method
proposed involves randomly shuffling, sliding, or changing the orientation (all
four edges reversed) of the sphere~loaded layers with respect to one another to
obtain new configurations, or a combination of these operations. With the
exception of the sliding, which would require a larger container, this method
was used to improve the accuracy of the results in section 6.5.2.

(ii) The necessity for a discrete position approximation appears to limit
the present model to relatively low average density distributions of scatterers.
The details of this disadvantage are discussed in Appendix C.

A(iii) ‘The necessity for a support-medium places heavy importance on the
"uniformity-of-propagation' characteristics of the material used. The results
and recommendations from an experimental investigation of this problem are
given in section 6.5.1. This support-medium factor also means that scatterers
having a low relative dielectric constant cannot be used with the same
guarantee of accuracy as in the Sylvania model.

(iv) The long term stability of the signal source during experiments on

the present model is a more important factor than for the Sylvania model, since

the time required to record the data is much longer. Tortunately, this
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problem can be minimized with existing equiﬁment. The effects of pﬁase
instability are quantitatively analyzed in section 6.5.2.

(v) The time and labour involved in setting up the distribution in the
present model is much greater than in the Sylvania model, because of the
»necessity of physically positioning each scatterer to a matﬁematically
specified position. It is felt, however, that this is a minor disadvantage
as the time involved is still only a fraction of that required to analyze the

experimental results.

6.3 The Scattering Range, Antenna Characteristics, and Scanning Device

A general purpose microwave anechoic chamber was designed and
constructed for the experiments, for preliminary antenna pattern measureménté,
and for future scattering and propagation studies. Details of the design and
testing of this chamber are given in Appendix D.

The millimeter-wave region of the spectrum was considered the most
suitable for experiments with the present model. This spectral region
provides a fairly large range of spheré—diameter—to—wavelength ratios (for
easily handled spheres from one-eighth inch to one-half inch in diameter) and
allows narrow beams to be easily acquired for maintaining the transverse
dimensions of the model within reasénable limits. Becausé of available equip-
ment considerations, the band 26.5-40.0 GHz was chosen as being most suitable.
for the initial experiments. The results of section 6.5 were obtained at a
frequency of approximately 35 GHz.

The geometry of antennas and medium is given in figure 6.4. 1In
figure 6.3 on.page 116, which shows the scattering medium at one side of its
horizontal travel, the transmitting antenna protruding from the front wall

~of the chamber is hidden behind the right hand edge of the medium. Shown in
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Figure 6.4 Plan View of the Geometry of Antennas and Medium

figure 6.5 is a view.of the receiving antenna and mixer mouﬁted on a ﬁedestal
in front of the back wall. -

Available horn-lens combinations designed for 35 GHz were considered
to have suitably narrow beamwidths for use as both transmitting and receiving
antennas in the initial experiments. The measured antenna parameters at this

frequency were

aperture dimensions: 2.97" x 2,38"
half-power beamwidth: H-plane - 7.4°, E-plane - 7.3°
beamwidth to first null: H-plane - 18.30, E-plane - 16.0°

level of first side-lobe: H-plane - 22db down, E-plane - 16db down

The diameter of the approximately circular area of the medium center illumin-
ated by the half-power beam of the transmitting antenna is 3.6 inches. The
fact that the diameter Dp = 2 /XEE = 6.1 inches of the first Fresnel zone of
the franémitter on the medium center is greater .than the diameter of the

"3db circle" previously assumed to be the necessary limit for the approximate

validity of plane-wave theory50 is unimportant for the experimental



Figure 6.5 View of the Receiving Antenna and Mixer

investigation described in section 6.5.2. The consideration of a spherical

k5’27 would also seem to eliminate

incident. wave in more recent theoretical wor
the necessity of satisfying any plane-wave requirement in possible future
studies with the preseﬁt model.

The distance of dy = 27.5 inches from the transmitting antenna to the
center of the medium was set on the basis of the commonly-used far-field criter-
ion d¢ 2 DZ/)\,55 where D is the largest dimension of the horn aperture. The
receiving antenna distance of d, = 110 inches corresponds to that obtained by
satisfying the far-field criterion d, 2 DFZ/A = 4d¢, with the first Fresnel
zone regarded as a radiating aperture. Originally this criterion was considered

to be necessarily satisfied for the observation of the far-field form of the

average incoherent intensity;50 more recent measurements, however, have shown
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<12> to be relatively constant for é wide yariation in dp and dr.51 Approxi-
mate theory accounting for finite d; and d, now allows the variation of these
parameters in studies comﬁaring theoretical and experimental results.”»27

A generai purpose positioﬁing device was designed énd constructed to
serve as a scanning platform for the model and as an antenna positioner for
tests on the anechoic chamber and for pattern measurements. Design details for-
this device, which can be remotely controlled from outéide the anechoic chémber,
are given in Appendix D.

The dimensiéns of the area of the slab region scanned were
40.8" x 12.0". The 40.8 inch dimension was set by the width of the anechoic
chamber and tbe extra width of the siab region considered necessary to minimize
diffraction at the edges. The twelve inch dimension was seﬁ by the vertical
movement of the scapning device. The transverse dimensions of the slab region
(56" x 30") were designed so that the width of the edges not illuminated by
the first Fresnel zone at the limits of the scanning area were approximately
equal to the diameter of this zone. The intensity of illumination at the

edges is below -20db, minimizing edge diffraction (see section 6.5.1).

6.4 Experimental Apparatus, Measurement and Data Processing Methods

6.4.1 Experimental Apparatus and Procedures

All the signal generation and measurement apparatus is located out-
side the anechoic chamber as shown in figure 6.6. A block diagram of the
millimeter-wave equipment with superheterodyne receiver is given in figure 6.7a
and a block diagram of the signal processing and recording equipment in
_figure 6.7b.

The equipment and measurement techniques are similar to those used
already by the Sylvania group.5,49’51,53 The main change is the introduction

of commercial receiving and signal processing equipment, including the
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Figure 6.6 View of the Experimental Apparatus

Scientific-Atlanta wide-range phase/amplitude receiver (model 1751) and the
two PAR lock-in amplifiers (model 120). The receiver is a two-channel device
containing two intermediate-frequency (IF) stages and employing automatic phase
control circuits. For operation in the millimeter-wave spectral region,
external harmonic mixers are used to derive the first IF of 45 MHz. The phase
and amplitude measurements are both made at 1 KHz, the second IF in the double-
conversion chain. Recorder outputs are provided for both the amplitude
channels (1 KHz) and the phase channel (0 to -3.6 vdc for ranges +180°, #45°,
or +18°),

As shown in figure 6.7a, the RF signal from the klystron is split
into two main paths, one path (direct path) passing through the scattering

medium and the other (reference path) passing through a variable attenuator
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and phase-shifter. The reference path,provides a phase reference signal for
use in meésuring the phase shift f of the wave passing through the ;catterer
distribution and for deriving the phase qﬁadrature components Ty, = T costT and
Ty =T sinfv(see section 2.5.1). |

The phase of the reference channel is adjusted as follows: Fér é
wave passing through free space only, the variable phase-shifter in the
reference path and a 0.1%-increment digital control on the receiver are set so
that the phase-shift indicated on the receiver phase-meter is zero. At the
same time the phase controls on the lock-in amplifiers are adjusted so that the
level from the in-phase detector is maximum and that from the in—quadraturé
detector is zero. A positive phase-shift is then introduced in the reference
péih to offset that introduced from the unloaded support—medium by readjusting
the variable phase-shifter to the desired value (see section 6.5.2) using.the
receiver phase indicators. Thus, when the medium loaded with spheres is‘-
introduced, the changes in the field components Ty, T;, T, and t are due to the
spheres alone.

As shown in figure 6.7b, the signals representing the four field
components were recorded on an FM tape recorder. The machine used fbr the
present experiments was a seven channel Ampex SP-300. The amplitude and phase
were also recorded on chart paper for an instantaneous visual check of the
results during the experiments and for later comparison with the signals
recorded on magnetic tape.

The phase-lock feedback loop containing the klystron synchronizer
shown in figure 6.7a was intended to be used for stabilizing the output
frequency of the klystron and hence the phase variation between the signals in
the reference and direct paths. The synchronizer, ah FEL model 136-AK, proved

however to be unsatisfactory for a number of klystrons at different frequencies.

It was only capable of providing a short-term phase-lock (approximately five
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minutes), not long enough for the desired measurements.

Although it is felt that a suitaBle synchronizer should be used for
future more-precise measurements; the frequency stability obtainable without
the synchrénizer wés considered sufficient for the initial experiments. The
problem was minimized through the use of a water cooling*syspem, consisting of
a coil of copper tubing immersed in a jacket of the low melting point metal
Cerrobend (Wood's metal) surrounding the klystron. Initial stability |
measurements showed a maximum amplitude vafiation of 2% and a maximum phase
variation of less than 3° over an hour period with the EMI R9521 klystron. At
the time of the experiments described in sectionv6.5.2, however, a phase sfab—
ility of only 6° over a one-half hour period could be achieved. The
quantitative effect on the results is estimated in that section.

6.4.2 Data Processing Methods

The recorded four-channel analog data was sampled and processed on a
DEC PDP~-9 computer having a remote interface which contains multiplexing and
analog/digital (A/D) conversion equipment.

During an experiment, a twoflevel control voltdge was recorded on a
fifth channel (see figure 6.7, page 123) to desigﬂate those sections of the
four analog signals (corresponding to scanning of the medium) to be sampled.
The "sampling level' was switched on and off with the power to the horizontal
drive motor in the scanning device. The sampling program was designed so that
sampling of the four signal channels and the control channel would be a con-
tinuous process once begun, with the presence of the sampling level on the
control channel specifying which signal samples to be retained. The multi-
plexer in the interface provided very quick switching between channels so that
effectively all five channels were sampled instantaneously by the A/D converter.
The desired time interval between each set of samples was specified in the

sampling program. Samples were initially stored in memory during the sampling



126

process and then copied on to magnetic tape (DEC tape) after each block of
analog data had been sampled. The digital data corresponding to each scan of
the medium was contained in separate files on DEC tape. In the present
procedure fhe sampiing process stopé after each block of data has been
obtained and the operator must restart the process for the next block of data
and sbecify the desired file.

Once the digital data had been obtained on DEC tape it was normalized
according to predetermined reference levels and processed by means of other
computer programs to determine the means, variances, autocorrelation functions,
and other average field functions of the field components recorded. The
reference levels corresponded to the values of the field components obtained
with only the unloaded support-medium in place. These levels were recorded on
the FM recorder before the beginning of a set of data scans and were sampled
in the same manner as the actual daté to determine suitable values for use in
scaling (see section 6.5.2).

The available A/D converter has a twelve-bit resolution capability
(4096 levels of quantization) and, with accuracy of only one bit less, is
suitable for sampling the data obtained from the present type of experiment.
Quantization noise was less than that generated by the FM tape recorder, as
observed by a comparison of sampled values with the corresponding analog
records reproduced on chart paper from the tape recorder. The amount of noise
generated by the tape recorder was not considered sufficiently high to require
the use of low-pass filtering before the interface.

Because of the capability of sampling all four signal channels
simultaneously, two of these channels were redundant. Thus, a comparison of
the diréctly sampled data against the corresponding computed data for both sets
of channels provided one method of checking for measurement or data processing

errors (see section 6.5.2).
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6.5 Experimental Results

6.5.1 Experiments on the Support-Medium

The main‘problem associatéd with the support-medium was to obtain a
suitable ﬁaterial and a suitable orientation of the constituent layers to
present a minimum of discontinuity to the millimeter-wave beam as it paésed
through. Initial measurements of the transmitted wave amplitude and phase>f0r
horizontally-stacked layers of Dow Styrofoam FR (1.9 1b/ft3) showed wide
variations of these quantities in the écanning direction perpendicular to the
layers. Further measurements on blocks of the same material having a single
joint parallel to the direction of propagation showed a marked diffraction
pattern as the beam crossed the joint for both parallel and‘perpendicﬁlar
polarization. This effect, apparently caused by a large reflection at thé
joint due to almost grazing incidence, precludes the use of.any joints parallel
to the beam except close to the edges of the medium where the beam intensity
is low.

The best arrangement of the.support-medium layers was therefore found
to be a stacked array perpendicular to the direction of the incident beam.
Vertical layers of Styrofoam resulted in very uniform transmission character-
istics, although the necessity for joints parallel to the beam in the narrow
widths of board obtainable (twenty-four inches maximum) made this material
unsuitable.

The ‘"beaded'" variety of polystyrene foam (}.0 1b/ft3) supplied a
reasonably satisfactory solution to the problem. Sheets of this materiai can
be obtained in a variety of lengths, widths, and thicknesses suitable to the
requirements. Because of the bead-bead interfaées in this material, however,
it is not as uniform in transmission properties as Styrofoam. A set of seven

horizontal scans (separated by two inches) of the unloaded support-medium,
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consisting of the two inch thick sides of the container and the twenty-one
one-half inch thick layers, showed a maximum variation in the reference level
amplitude of 4% and in the phase of 5°. This variation was considered to be
low enough for the experiments descfibéd in the next section where the sphere
distributions presented a fairly .large scattering cross-section to the Eeam.

Experiments were also performed to measure the dielectric constant
of the "beaded" polystyrene foam and to determine how close the transmittiﬁg
antenna could approach the edge of the support-medium before the onset of a
noticeable diffraction pattern. A dielectric constant of 1.018 at 35.1 GHz
was obtained by measuring the phase shift of the transmitted wave through é
two—inch thick slab of the material. In the other experiment, a noticeable
diffraction pattern was obtained with the beam center less than about nine
inches from the edge of the medium, consistent with the initial design of‘the _
model,

For future more precise experiments, the use of a support;medium
material having smaller and more well-packed beads than the present material
(average bead diameter in the one—eighth to three-sixteenth inch range) should
result in more uniform transmission characteristics. The problem might also
be alleviated somewhat with the sanding of the material surfaces (surfaces
produced by a hot-wire cutter are not as smoqth) to allow the layers to be
pressed more firmly together. The use of a non-beaded material such as

polyeurethane foam or poly-vinyl-chloride (PVC) foam could also provide a more

satisfactory solution. Both these materials, and particularly PVC foam, are
considerably more expensive than polystyrene foam, however, and the dielectric
properties at millimeter-~wavelengths do not appear to be tabulated.

6.5.2 Experiments on Typical Scatterer Distributions

Experiments were performed on two different average density

distributions of one-half inch diameter polyethylene spheres at a frequency of



129
35.1 GHz. These two average densities of 183 and 366 spheres per cubic foot
(scf) are typical values from a range of distribution densities whieh could be
studied in a more detailed experiment such ae one carried out by the Sylvania
group.49 They corfespond to totalslof 2,000 and 4,000 spheres in a slab region
four inches longer than that used, the two-inch edge being replaced byithe.
sides of the foam container. The one-half inch sphere diameter giﬁes a typical
ka-factor (4.66 at 35.1 GHz) from a range of values of interest and is cone
venient for use in the present model.

As indicated in section 6.2.3, data was obtained for more than one
configuration of spheres to increase the statistical accuracy of the average
field functions estimated in the experiment. This was done by a combination
of shuffling the support-medium layers according to a random computer-

generated permutation56

and at the same time randomly adjusting the orieﬁtation
of the layers to give an equal probability for two possibievorientations: |
right side up or all four edges reversed. Horizontal scans of 40.8 inch length
were taken at two-inch vertical intervals with vertical E-field polarization
on both sides of three different layer-configurations, giving a total of forty-
two scans (seven scans per medium side) in all. The analog signal recordings
of the four field components of interest were sampled at the rate of 304
samples per scan (sampling interval of 0.134 inch) to produce accuracy close
to that obtainable from an analog averaging method.

The phase of the reference path signal was shifted 147° with respect
to the direct-path signal through free space to offset that introduced by
the unloaded support-medium. Because this value was obtained by visually
averaging the phase shift of the transmitted wave through the unloaded support-
medium, it cannot be considered to provide an accurate absolute reference with

respect to this medium. Such a reference, however, was not considered

necessary for the present experiments.



130

Results for estimated average field functions. The average field
functions estimated in the experiment are given in Table 6.1, Section (a)
of this table lists those functions least susceptible to phase-drift errors
(due to fréquency drift of klystronj and errors in the phase reference setting
between the two sets of channels; section (b) lists the functions most
suscéptible to these errors. In processing mode 1, the components Ty and Ty
were computed from the sampled values of T and 1, while in mode 2, T and 1
were computed from T, and Ty.

As seen from Table 6.la, a greater deviation between the mode 1 and
mode 2 results occurs for the 183 scf density (maximum of 7.7% for C2/<12>)
than for the 366 sc¢f density (maximum of 1.5% for C2). The improved agreement
between the corresponding results for the 366 scf density resulted from a more
careful scaling procedure (i.e., the first set of scale factors were obtained
by sampling each of two sets of reference levels 500 times to éverage out the
effects of tape recorder noise; the second set were obtained by sampling each
of three sets of‘reference levels - recorded after every 14 scans =~ 1,500 times).
The discrepancy between the mode 1 and mode 2 results in Table 6.1b is due

mainly to an initial error in phase setting between the 1 channel and the

T

X Ty channels (except for o; where the small disgrepancy is due to the

inaccuracy in scaling). The functions (1,2), (Iyz), (Ixly), and nare affected
by this discrepancy because of their periodic behavior with the variation of
the phase reference.5’51 A thorough calibration of the lock-in amplifiers
with the receiver phase detector and a more careful initial adjustment should
minimize this discrepancy in future work.

As seen by the values for the average total intensity <T2> in
Tabie 6.la, the fraction of total average power transmitted in the axial
direction witﬁ the medium in place is considerably less than that without the

medium. This indicates a high degree of scattering by the present spheres in



TABLE 6.1

RESULTS FOR ESTIMATED AVERAGE FIELD FUNCTIONS

(a) TFunctions Least Susceptible to Phase Errors

Averége Mode® C (T) <T2> c? <12> C2/<12> ar
Density
. 1 0.657 0.666 0.455 0.431 1] 0.0237 18.2 0.106
183 °
scf .
2 0.645 0.656 0.441 0.417 1 0.0247 16.9 0.107
1 0.447 0.464 0.227 0.200 {1 0.0265 7.55 0.107
+
366
scf _
2 0.444 0.460 1. 0.224 0.197 | 0.0265 7.45 0.109
(b) Functions Most Susceptible to Phase Errors
Averacge . ’ 2 2
ge | Mode 1, I 1.1 o
Density cae * () ( X < y > |« X Y> H T
1 -0.26° ] -0.67° ] 0.0115 [ 0.0122 | 0.0029 0.24 9.99
183 T
scf o o o
2 1.35 0.95 0.0117 { 0.0130 { 0.0027 0.22 10.3
‘ 1 2.28% | 1.42°10.0119 | 0.0146 {0.0027 | 0.20 16.0°
+
366
scf
2 5.00° 5.94° 10.0132 | 0.0133 +0.0032 | -0.24 15.9°

tresults for

*mode 1:

T

‘ 183 scf density based on 35 data scans;
results for 366 scf density based on 39 data scans

and T

computed from T and T;
mode 2: T and 1 computed from T, and T

y
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the off;forWard and backward directiéns, in contrast to the results for similar
average.densities of large Styrofoam spheres ohtained by the Sylvania group.49
This difference is of course to be expected énd highlights the necessity for
future expériments.with a wide rangé of constituent scatterer parameters.

Results of accuracy estimates. As indicated previously, the primary

purpose of the present experiments was to determine the suitabilify of the
physical model with respect to the statistical accuracy obtainable. This ﬁas
accomplished by means of two different methods used to compute the sampling
variances of the four estimated mean values: (Ty), (Ty), (T) and (t).

The first method was based on computation of the spatial autocorrel-
ation and autocovariance functions for Ty, Ty, T and t. The autocovariance

for a function f is defined

(£ £X)) - (£)?

Re(X) - (£)2

e

ke (641)

where R¢(X) is the autocorrelation function and X is the separation distance.

The autocorrelation functions were first computed for each data scan using the

formulaS7

Ng
R (msX) = nsf iZ% £(18X) £(iAX + mAX) (6.2)

—m

where AX is the distance between adjacent samples, m is the separation distance

in terms of samples, and n_. is the number of samples per scan. The overall

S

estimates for the Rf were then obtained by averaging the results over all scaﬁs,
and the overall estimates for the K¢ were obtained from the definition (6.1).
The correlation coefficients, or normalized autocovariance functioms,

Kf(mAX)

! = 6.3
K § (maX) < (6.3)
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for the amplitude T and phase T are given'in figure 6.8. The curves for Tx
and_Ty are not given because they are almost identical to those for T and T
respectively.

Tﬁe autoéovariance curves'obtained are only accurate for separation
distances m up to about 5% or 10% of the number of samples per data scan
(i.e.; n, = 304) .57 The sections of the curves in figure 6.8 computed for
separation distances beyond those given showed very erroneous behavior due.to
the inherént unequal weighting of certain sections of samples with the use of
formula (6.2), and the loss of accuracy from fewer samples. It can be assumed,
however, that the true correlation beyond a separation distance of about thirty
samples is very close to zero because of the fact that the half-power beam of
the transmitting antenna illuminates a circular area of only 3.6 inches
diameter at the center of the medium. The combining of all data scans as a
single data segment to obtain greater accuracy of the autocovariance function
tails éould be easily accomplished on a computer with a larger memory capacity
than the present PDP-9.

Estimates of the sampling distribution variances for (Ty), (Ty>, (T)

and (t), based on the correlaﬁion data, were obtained from the formula”®
1 el -
R 2 -1 i
%F) =% [Of +2 iz:l(l nc)Kf(lAm] | (6.4)

[od

where n, is the total number of correlated samples. The equivalent number of
uncorrelated samples n for each field component was then obtained from

g.2
£

G(%) = "—“"n (6-5)

Table 6.2 (method 1) gives the computed results using this approach in the

form of the equivalent number of uncorrelated samples per scan and the

corresponding distance between these samples for each of the four field
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TABLE 6.2

ACCURACY CALCULATIONS BASED ON FQUIVALENT
UNCORRELATED SAMPLES

(a) Equivalent Number of Uncorrelated Samples per Scan

of Ty, Ty, T, and T.
Average | ., +
Meth
Density fethod Ty Ty T T
1 14 16 15 17
183
scf
2 20 5 22 5
1 18 19 18 19
366
scf ™~
2 25 10 24 9

(b) Distance in Inches between Equivalent Uncorrelated Samples

of TX, Ty’ T, and T.
Average +
Density Method Ty Ty T T
1 2.8 2.6 2.7 2.3
183
scf
2 2.0 9.2 1.8 7.6
1 2.3 2.1 2.3 2.2
366
scf
2 1.6 4.2 1.7 4.6

tMethod 1 - using covariance calculations and equation (6.4)
Method 2 - using variance calculations of means over individual
scans
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components. The results are based 6ﬁ approximating the summation in (6.4) by
the sum of positive terms only; up to and including i = 30. |

The accuracy obfainable from an analog average of the data scans can
be esfimatéd by drbpping,the ofz tefm in the calculation of 0<%> in equation
(6.4). The approximately one more uncorrelated sample per scan which wéuld Be
added from such a scheme indicates that a faster sampling rate for the digital
technique would be unwarrented.

The second method used in determining the accuracy was to estimate
the variances of the mean vélues over the individual data scans; dividing by
the number of scans to obtain estimates of the variances over all scans. The
results obtained by this approach, given also in Table 6.2 (method 2), are in
good agreement with the corresponding results for method 1,.except for the
components Ty and 1. The reason for the discrepancy is tha£ thé first method,
with the dropping of terms from the tails of KTy and K. in the computations
based on (6.4), is much less sensitive to phase drift than the second method.
The second set ofvresults can therefore be considered to be more accurate under
the actual conditions of considerable phase drift (see section 6.4.1). This
result strongly points to the need for improved phase stability in future
experiments,

The values for some of the field functions and their accuracy
estimates obtained by the second method are given in Table 6.3. These figures
are based in the normal manner on twice the standard errors of the means (see
section 3.4). Two sets of accuracy values are given, one assuming all data
scans contribute to the accuracy and the other assuming half the data scans
contribute to the accuracy. The reason for this is that the first set of
estimates are based on the assumption that all data scans are mutually
uncorrelated. Since half the scans were obtained by scanning the back sides of

the three layer-configurations, however, the mean field component values for



TABLE 6.3

ACCURACY ESTIMATES BASED ON TWICE-THE STANDARD ERRORS OF THE MEANS

(a) Results for 183 scf Average Density (35 data scans)
Cy Cy (1) (1) | (LA (2| or® | o
Function 0.645}0.0153 ]| 0.666| -0.67°| 0.0117]0.0130| 0.0112| 97.2
Estimate
Accuracy 0.008 | 0.018 0.008| 1.4° | o0.0010| 0.0008] 0.0011 6.4
Estimate 1
+ : :
Accuracy 0.012 ] 0.026 0.011| 2.0° |0.0014]0.0012} 0.0016 9.0
Estimate 2
(b) Results for 366 scf Average Density (39 data scans)
Cy Cy (1 (1) (1,%) (Iyz) ap? 0.2
Function | 4 4.5 10,0387 | 0.464| 1.42°]0.0132|0.0133| 0.0114 | 257
Estimate
‘Aceuracy g 097 | 0.012 | 0.007| 1.7° |0.0009 | 0.0008 | 0.0009| 16
Estimate 1
.}. .
Accuracy 0.010 | 0.017 0.010| 2.4° [0.0013{0.0012| 0.0012 23

Estimate 2

+accuracy estimates with maximum correlation between front-side
scans and back-side scans assumed

137
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the corresponding scans were probably highly correlated. The second set of
estimates can therefore be assumed to be 'worst-case" estimates under the con-
dition of maximum correlation between front—éide data scans and back-side scans.

The accufacy of estimatioﬁ could be increased still further by taking
data scans of more layer-configurations. It should be emphasized, howe&er;
that calculations of overall accuracy are only accurate if the daté scans are
taken in a manner so as to be relatively uncorrelated. One anomaly in the.
present technique for obtaining new sphere-configurations is that the density
of spheres in the center region of the medium remains the same after the
support-medium layers have been shuffled and oriented randomly. The effect of
the higher weight pléced on this particular density has been visually observed
by obtaining averages ofithe field-component signals over ali data scans.
Although this anomaly probably effects the accuracy estimates of this section
very little because of the size of the medium, it could be eliminated by
further introducing a random sliding between layers as suggested ih
séction 6.2.3.

6.5.3 Discussion of Overall Results .

The tests on the support-medium indicate that the problem of
obtaining uniform transmission characteristics of the incident beam is solvable.
Two other possible problems associated with the support-medium which could not
be investigated because of the difficulty involved are: (a) the effect of the
joints between the layers on the scattered fields of the constituent scatterers,
and (b) the effect on the scattered fields of the unavoidable inhomogeneity of.
the region surrounding the inserted scatterers. In general, because of the
presence of the support-medium, the validity of any comparison between experi-
mental and theoretical results is a problem which requires further research.

The experimental results on typical scatterer distributions indicate

that the proposed physical model is reasonably suitable from the point of view
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of statistical accuracy obtainable...Under conditions of negligible phase
reference instability and measurement errorg; the accuracy should oﬁly be
dependent on the size of the medium and the degree of correlation between
samples. The resuits show that conéiderable overlap between the circular
regions of half-power beamwidth illumination is possible before the corre-
sponding field samples become highly correlated.

The statistical accuracy appears to be sufficient that trends inAthe
results for the first two field moments (for a variation in the average density
of scatterers, for example) could be established from a set of data scans from
one side of a model having transﬁerse dimensiohé comparable with those of the
present one. More accurate results can be obtained for uniform distributions
by chaﬁging the layer-configuration of the support-medium. For other
distributions which do not allow this procedure (e.g., distribﬁtions in ﬁhich
the scatterer positions in other than a single layer are correlated), a slab
region of larger transverse dimensions would be necessary. The maximum
dimensions practicable are probably about 8' x 4',

From the two sets of results obtained, the accuracy of estimation
seems little affected by the average density of the distribution. The
parameter most affecting such accuracy is probably the transmitting antenna
beamwidth, although further experiments with differént beamwidths are required
to determine the exact behavior. The present experimental results give only an
indication of the accuracy obtainable for particular distribution and incident
‘beam parameters. Any future experiments performed using the present model must

.always include some means of estimating statistical accuracy.
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7. CONCLUSIONS

The main developments of this thesis which are considered to be
contributions to the subject of scaftering from random media of discrete
scatterers may be summarized as follows:.

I. The One-Dimensional Model

Extenéive use has been made of the one-dimensional model of randémly—
positioned planar scatterers as a tool in the investigation of general discrete-
scatterer theories and as a basis for providing further knowledge of the
physical and statistical characteristics of discreté-scatterer meaia:

A. Theoretical Developments

(i) An explicit series representation in orders—of—back—scattering has
been developed for the total field in plane-wave scattering froﬁ a fixed érray_
of non-identical planar scatterers.

(ii) Approximate series expressions based on the 0-B-S representation.have
been obtained for several average field functions of interest in the problem of
scattering from an ensemble of configurations of uniformly-random identical
planar scatterers. These expressions ﬁave been shown to be useful in predicting
the exact or approximate asymptotic behavior of the average field functions in
the limit as p > 0 and it is believgd that they may also prove useful in further
theoretical research directed towards the improvement of general discrete-~
scatterer theories.

(iii) The exact asymptotic forms for p - 0 in the planar-scatterer model
have been obtained for the coherent transmitted field and the average total and
incoherent intensities of both the transmitted and reflected fields. The
importance of the asymptotic forms in the improvement of theories applicable to
higher p has been illustrated. In particular, the exact asymptotic form

(1 + g+)N for the coherent transmitted field (T) has been used to modify the
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one-dimensional form of Twersky's free-space theory; the possibility of a
similar finite-N correction to the three-dimensional form of Twersk?'s theory
has been suggested.

(iv) Bésed on‘the 0-B-S approximations for the transmitted and reflected
fields and the existing theory of random phasor sums, physical conditioﬁs ﬁeces—
sary for the approximate validity of the bivariate Gaussian distribution in
describing the total field statistics of the one-dimensional model have been
given. Conditione necessary for the occurrence of a Rayleigh-distributed inco-
herent field amplitude with uniformly-distributed phase have also been outlined.
B. Monte Carlo Simulation

(i) "Exact" simulation results for use in the evaluation of approximate
theories for the one-dimensional model have been obtained.

(ii) Monte Carlo simulation applied to the approximate.O—B;S represeﬁt— \
ations for the field has been used to validate the approximate series exprese
sions for the average field functions obtained; the expression derived for (R2)
remains to be verified. A comparisqﬁ of "exact" simulation results and
theoretical data has shown certain of these theories to be in the main better
than the one-dimensional forms of existing general discrete-scatterer theories.

(iii) The limitations of the one-dimensional form of Twersky's free-space
theory for the coherent field and conditions neeessary for its approximate
validity have been illustrated by a presentation of results for a wide range of.
scattering parameters. The improvement contained in the "asymptotic correction"
to the free-space theory for (T) has been verified. The comparison of theoret-—
ical data for the free-space theory for (R) with "experimental" results is
: believed to be the first. )

(iv) A quantitative analysis of the total field distribution based on the

third and fourth field moments has been made and certain effects of multiple

scattering illustrated. The stated physical conditions necessary for the
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approximate validity of the bivariate Gaussian distribution have been verified.

(v) Simulation ﬁethods for the generation of a non-uniform diétribution
of planar-scatterer configurations weighted fowards periodicity have been
developed. .Based on the scattering-results obtained, criteria for the assump-
tion of uniform-randomness have been determined. The 1imita£ions of thé one-
dimensional form of Twersky's mixed-space theory for the coherent field have
been illustrated and conditions necessary for its approximate validity givén.
II. The Three-Dimensional Physical Model

(i) A new three-dimensional physical model of spherical scatterers in
which the Monte Carlo method is employed to control the scatterer statistics
has been developed for use in laboratory experiments at millimeter-wave
frequencies. It is believed that this model may be of vaiué in theoretical-
experimental investigations of the type performed previously onbthe Sylvania
physical model and in this work on the one~dimensional model.

(ii) An initial experimental investigation into the suitability of the
proposed model has been carried out. Experiments have been performed on the
support-medium and measurements of the forward-diffracted field in scattering
from typical distributions have been oﬁtained and analyzed to determine the
importance of disadvantages associated with the model. From the results
obtained, the disadvantages investigated appear to be minimal.

(iii) An initial investigation into the validity of the discrete position
approximation used in the three-dimensional model has been carried out employing
the results for similar approximations applied to the one-dimensional model. A
basis for a partial comparative—evaluation of the approximation in the two
models has been found and factors important in the future development of more

firm criteria outlined. Approximate theory necessary in the comparison has

been developed.
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APPENDIX A SUMMARY OF TWERSKY'S THEORIES FOR SCATTERING FROM
RANDOM MEDIA OF DISCRETE SCATTERERS

A.1 Twersky's Free-Space Theory for the Coherent Fie1d8

This theory is applicable to the problem of a plane wave

e_Jk'r obliquely incident at an arbitrary angle © on a slab-region

¢(F) =
distribution (i.e., bounded by the planes z = 0 and z = d) of one-, two-, or
three-dimensional scatterers random in one, two, or three dimensions
respectively. It contains the following assumptions:

(i) The scatterers are identical and similarly aligned.

-(i41) The ome-scatterer probability density function, defined

p(z) %f....fp_(fl,...,fN) 4F, dF, oo dEy @

is of the form

p(¥;) = o(¥)/N (A.2)

and is the same for all scatterers [p(fl) is the average density of scatterers
at fl].
(iii) The two-scatterer probability density function is the product of one-

scatterer forms, i.e.,

() (£.,)
éf....fp(fl,...,fN) df, dF, .... dFy = [p ;1 ] [?——N—Z—-} (A.3)

or equivalently, the two-scatterer conditional probability density function

defined

p(%,|T)) éfp(fl,fz) df, (A.4)

is equél to p(fl).

The free-space theory equations are also based on the approximate

relation
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N -
L, P T = (D) ['p(rs) J = o(Ey) | (A.5)

s=]#t N
valid for large N, and the heuristic approximation

(Ve = (¥ a8

where (w)s is the average total field with the position vector ¥_ held fixed,

s

etc. These two approximations can be combined to give the single approximate

equation

11

(g = ) +(U)g (A.7)

where (U)S is the average scattered field from a scatterer with its position
vector Ty held fixed. |
Recognizing that equation (A.7) is the form of the solution for a
single object excited by a set of plane waves and scattering into free space,
and using the following two additional assumptions, Twersky solved the result-
ing integral equations to obtain explicit expressions for the coherent field:

(iv) The coherent field internal to the medium is of the form

() = Az)e KT 4 B(z)e-dk" T (0 <z < d) (A.8)
where A and B are unknown functions of position within the medium (E' has the
magnitude k and the direction of the incident field reflected in the slab-
region face).

(v) The average density p of scatterers within the slab region is
constant.
Altogether, because of the assumptions and approximations required for mathe-
matical manageability, the expressions obtained by Twersky are most valid for
uniformly-distributed anisotropic point scatterers (line scatterers in two

dimensions, plane scatterers in one dimension), i.e.,



. 145

P(E 5By = (/MY ' (A.9)

For the problem of a plane wave normally incident on a slab-region
distribution of identical planar scatterers, the free-space theory gives the

following equations for the coherent transmitted and reflected fields:

(T)=D( - q?) e~d(n~Dkd (z > d) (A.10)
(R) = -QD(L - e 2dnkdy (z < 0) (A.11)
where
s P84 ~ ?izn +1) ’" 1 - Qzle‘zj“kd, i g (412
n2=v[1 -p(g++g_)/jk][1 —p(g+—g_)/jk'] | (A-13)

‘As discussed by Twersky,8 these approximate expressions are jdentical to those
pertaining to the field produced when a normally incident plane wave scatters
from a homogeneous dielectric slab of width d and refractive index n.

The asymptotic forms of these equations in the limit as p = 0 are

Ng

(1Y~ eNEs | (a.14)
(R) ~ pg_(1 - eZNg+_2jkd)/2jk (A.15)
Q ~ jeg_/k(n + 1) (A.16)
n~1+ j08+/k (A~17)‘

Other details of the free-space theory are discussed in reference 8.

24

A.2 Twersky's Mixed-Space Theory for the Coherent Field

This theory is also applicable to the problem of a plane wave

incident on a slab-region distribution of scatterers but is based on "two-space"
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or "mixed-space' isolated scatterer amplitudes rather than the conventional
amplitudes: In a mixed-space isolated scatterer problem the incident wave
travels in one medium (propagation constant K) and scatters from a single
scatterer ihto another medium (e.g.; free space with propagation constant k).23

Tﬁe mixed-space theory includes all the assumptions and appro%i—
mations of the free-space theory except assumption (iv), the form of the

coherent field internal to the medium. In the mixed-space theory (V) is

assumed to be of the form

Ker

()= Ae_j + Be_jK'.r (0 < zz54d) (A.18)

where A and B are now constants, independent of position z, and K is the
"bulk propagation constant' of the medium. For a coherent field of this form,
equation (A.7) represents a mixed-space isolated scatterer probiem.

For the one-dimensional ensemble of planar scatterers, the mixed-

space formalism results in the free-space theory equations (A.10) and (A.1ll)

for {T) and {(R) . However, for the mixed-space theory
(n - Dgl
= : — (A.19)
(n + g,
and the bulk refractive index n = K/k satisfies the functional eduation
p : o]
F(n) =n?2 + — (gl - g")n+-— (gl +g')-1=0 (A.20)
jkoT T gk 0

In these equations g; and g' are the mixed-space forward- and back-scattering
amplitudes for a wave normally incident in "K-space" on an isolated planar
scatterer which scatters into "k-space'". Explicit expressions for gi and g'
for a dielectric slab of finite width are given in Appendix B. The asymptotic
free-space theory equations (A.14) to (A.17) apply also to the mixed-space
theory since g; > 8, g' >g ,and n~>1as p~>0.

The solution of the mixed-space equations involving n and the
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mixed-space scattering amplitudes is straightforward for certain types of
scatterers. Twersky24 has obtained explicit approximate solutions for the
separate cases of small sphericai scatterers and large tenuous scatterers. In
Appendix B én appréximate solution is given for "thin'" dielectric slab
scatterers and it is shown for these scatterers (as shown by Twersky for smail
spherés) that g; =g' >0 and n > n' as p > «» (where n' is the refractive index
of the slab material). More generally, the exact solution of the mixed—spéce
theory equations is difficult and a numerical method must be used. A numerical
solupi;n of equatioﬁ (A.20) and those of g; and gl for dielectric slab
scatterers of finité width was performed in the present work and is discussed
in Appendix B. section B.2.

The difference between the mixed-space and free-space.theories arises
for high p. As shown by Twersky,24 the mixed-space theory can appréximately.
describe certain dense distributions of finite-size scatterers if p is inter-
preted as p = N/(V - NV,), where V is the volume of the containing region and
Vs the volume occupied by a single scatterer. For slab-region distributions
of small spheres he Has shown that the bulk parameter equations of the mixed-
space theory reduce to existing forms and that the limiting behavior of such
distributions and distributions of large tenuous scatterers as p - « is
approximately correct. Experimental measurements on a model distribution of
large tenuous scatterers have furthermore confirmed the approximate validity
of the mixed-space theory for that particular case.49

For a distribution of "thin" dielectric slabs such that the approxi--
mate expressions in Appendix B for g;, gl, and n are valid, the mixed-space
theory gives almost exact results in the limit as p > @ if p = N/(d+w-Nw) and
if d in the equations for (T), (R), and D is replaced by d+w, the width of the
slab region occupied by the scatterers including their boundaries. This is

easily seen from equations (A.10), (A.11), and (A.19), since gl/g; = 1 for
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"thin'" slabs and -Q is the Fresnel reflection coefficient for the boundary
between the medium of the incident field and the slab region filled with

scatterers of refractive index n = n'. It is confirmed from the numerical

results in Chapter 5, section 5.4.

A.3 Theories for Other Average Field Functions

General discrete-scatterer theories for other average field funcfions
have also been of interest in the present work but have not been numerically
evaluated for the one-dimensional model. One theory for (Iz) developed by
Twerskys’11 is based on the conservation of energy principle. The general

relation obtained by Twersky for a slab region of uniformly-distributed

identical scatterers

(1%) = ofl ug ¢ l? drg C(a.21)

(us is the isolated scatterer function defined in section 2.3) can be readily
evaluated for the one-dimensional model. The (I2) expressions obtained for
the transmitted and reflected fields involve the free-space theory functions

Q, D, and n. In the limit of p » 0, these expressions reduce to

I 2

' g
<I?‘>_ ~ - E@ 1 - GZNRe$+) (z > d) (A.22)
+
lg_|2 ' NRe
(12) ~ - —=— (1 - e“7°%8y) (z < 0) (A.23)
2 Reg+

Thus, from the forward amplitude theorem for lossless planar scatterers (see
equation B.4 of Appendix B) and from the asymptotic forms for the -

coherent intensities as obtained from equations (A.l4) and (A.15), it is
readily observed that energy is conserved. This fact does not result in an
accurate theory for the one-dimensional model, however, as shown by the
theoretical results of section 2.7.

Another theory for <|w|2> developed by Twersky11 which also
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satisfies the energy principle is thé <w>—consistent approximation. This
theor? was obtained by the introduction of similar approximations into the
series representation for <|w]2>'as were shown to exist in the expanded form
of the compéct repfesentation for (@). Numerical results for this theory as
applied to a distribution of large tenuous scatterers have been shown té cém—
pare well with experimental results from a physical model of the distribution.49

Similar results for the application of this theory to the one-dimensional

model could also be of value.
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B.l Conventional Scatte

SCATTERING FROM A SINGLE DIELECTRIC SLAB

ring Amplitudes

For a plane wa

dielectric slab of width

ve normally incident in free space on a lossless

w = 2a and refractive index n' = Ver as shown in
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figuré B.1, the forward- and back-scattering amplitudes gy and g_ are given

respectively by

and

g_ = Ry

where

U

Al (n

The single slab transmis

referred to the slab cen

4“ ' erka
l+g, =T = A

(n|2 - 1) (e—Zjn"ka _ e2jn'ka)82jka
A'

'+ 1)2 e2in'ka o (nt - )2 em2in'ka

sion and reflection coefficients T, and R, are

ter as are the scattering amplitudes. The forward

amplitude theorem® for the slab scatterer, relating the total scattering

cross—-section o = |g+|2 + [g_!z to the forward-scattering amplitude g, is

o = lgg|? + |g_]|? = -2 Regy

(B.1)

(B.2)

(B.3)

(B.4)

Expansion of the exponentials in the expressions for g; and g_ yields

e—jkz
N ,
" (l+gy)e~ikz
Kz .
g_e

e W

Figure B.l

—a

A
|

Scattering from a Single Dielectric Slab
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the approximate expression for '"thin" slabs (i.e., n'ka << 1)
8y = 8. % - (n'? - ka [(n'z' - L)ka + j] £ gn (B.5)

Thus, for a‘”thid’élab, the back-scattering cross-section 2|g_|2 and the
forward-scattering cross~section 2|g+|2 are approximately equal. For a slab
of diélectric constant e, = 2.0 (i.e., the value used for the numefical
results in the thesis), the rectangular components of g+, g. and g, are
plotted as functions of the slab width Wyt (i.e., width in wavelengths A'
within the slab material) in figure B.2.

For a plane wave obliquely incident on the slab at an angle O with

the interface normal, the scattering amplitudes are more generally given by

L7'e2ikacos0

1+g, = (B.6)

(1 + 21)2 e2jn'kacosOr _ (1 - Z')2 e—2jn'kacosOp

(1 - Z.z)(e—Zjn'kacosOr _ ern'kacosOr)erkacosG

g. = — — (B.7)
(1 + Zu)2 c2]jn’kacosOp _ (1 - Z')2 e—2jn 'kacosOr

where

1
cosOp = — /n'2 - sinZ0 (3.8)

3

For a wave of perpendicular polarization (i.e., electric field vector

perpendicular to the plane containing the interface normal and the propagation

vector),
cos0
z' = (3.9)
/n'2 - sin20 »
For a wave of parallel polarizatiom,
/ 12 _ s 2
AREaAL sin’0 - (B.10)

n'? cos0®



-0.
Reg,
Reg_
Reg.,
-0.
-0.
~-0.
-0.
Img,
Img_
Img |
-0.
-0.
-0.
Figure

.3

0.4 0.

Regy

A )
\\\
\
. \
(a) Reg,, Reg_, and Reg Versus w,,
. v - .
OO 0.1 0.2 0.3 0.4 0.
7’
7
/7
7
7
7
7
/'
P
2 ',/'
”
P,/
Tmg_
4
Img,
6 \
AN
8 \

(b)

B.2 Scattering Amplitudes as a Function of wy . for e, =

Img,, Img_, and Img, versus wy,

, = 2.0

5

152



153
All the given equations can be generalized to include losses in the
slab by replacement of €, with the complex quantity er(l - j tand), where tan§.

is the loss tangent of the slab material.

B.2 Mixed-Space Scattering Amplitudes

For a plane wave ¢(z) = e—Jnkz normally incident on the slab within

a medium of refractive index n, and with the scattered waves again travelling

in free space, the more general scattering amplitudes are given by23

ejka . ) N
gl = —[2n (1 + med™@ 4 (n' - 1)(n' - nye INFInNka
(B.11)
- (' + DM+ n)e"j(”"zn')ka]
ejka nk ‘ . 2 ] k
gl = — [2nt( - e 33 (1 4 1) (n' - nyed(n¥2nT)ka
A (B.12)

+ (' = 1(n' + n)ed(n=2nika]

For a "thin'" slab, these mixed-space scattering amplitudes are given by the

approximate expression
gf =gl =- (2 -nMka[ (2 - Dka + 3] 2 g} (B.13)

corresponding to the result of equation (B.Sj forvfhe conventional amplitudes.
For n »> 1, these equations all reduce to the conventional forms.

In Twersky's mixed-spa;e theory for the coherent field, n is
identified with the bulk refractive index of the random medium, given by
equation (A.20) of Appendix A. Substitution of the "thin" slab equatioﬁ (B.13)
into equation (A.20) yields

+ a2 >v2 : ‘
2 1+ 2ap[1-3(n ka] n (B.14)

1+ 2ap [l - j(n'2 —rl)ka]
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Thus, as seen by this expression and that of equation (B.13), n + n' and

gf =gl =gy >0 as p > TFor p interpreted as p = N/(d + w - Nw) in the
manner discussed in Appendix A (where w = 2a is the scatterer width), equation

(B.14) can be rewritten in terms of the fractional "volume" Bo = Nw/(d + w) as

Bo(n'2 = 1 [1 - 3(n'? - 1)ka]
1 - jBg(n'? - L)ka

1+

3
il

(B.15)

12

1+ B,(n'2 - 1)[1-3(1-8y(n"2~ 1)ka]

Exact solution of the mixed-space theory equations (B.11l), (B.1l2),
and (A.20) is possible only by means of a numerical technique. For comparison

of mixed-space theory results with "

exact" simulation results in Chapters &
and 5, the Newton-Raphson method59 was employed. This well-known iterative
technique makes use of the equation

F(n'—l) :
ng = Nj-1 - — ‘ (B.16)

where n; is the value for n after i iterations and F'(n) is the derivative of
F(n) with respect to n. The initial value n, used in the iteration was the
free-space theory value given by equation (A.13). TFor the specific scattering
parameters chosen for study, this initial value was sufficiently close to the

actual mixed-space value for quick convergence of equation (B.16).
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APPENDIX C VALIDITY OF THE DISCRETE POSITION APPROXIMATION

IN SIMULATION STUDIES

The validity of a discrete probability density approximation to a
continuous probability density of scatterer positions is of interest in this
work mainly as it pertains to the construction of the three-dimensional
ﬁhysical model discussed in Chapter 6. However, the applicafion of such an
approximation in computer simulation studies of mathematical models may also
allow the use of simplified efficient techniques for processing thé random
numbers involved (e.g., in the sorting or rejection ﬁrocedures used) and its
validity is therefore of more general interest. In order that insight into the
problem might be obtained, the discrete position approximation (DPA) hés been
applied to the one-dimensional model considered in previous chapters. The
results of the study are given in this section and related where possible to
the three~dimensional model.

Results are given for two types of discrete probability densities of
scatterer positions. In the first type (labelled "discrete non-uniform"), the
one-dimensional equivalent of that used for the three-dimensional model, the
scatterer positions are chosen uniformly at random from those available under
the condition that at most one scatterer occupy any one position (i.e., Fermi;

"statistics" in statistical mechanics). In the second type (labelled

Dirac
"discrete uniform'"), the positions are chosen uniformly at random from all
those available with no restriction on the number of the N scatterers per
position (i.e., Bose-Einstein "statistics" in statistical mechanics). The
average field functions shown for both types of discrete distributioﬂ are
plofted against the "occupancy ratio" Bg = N/nd, where n; is the number of
equally-spaced positions available. To most clearly display the effect of the

bPA, ny is varied rather than N, which is fixed at N = 10. The planar

scatterer amplitudes employed, g, = 0.2107'/-—101.’7o and g_ = 0.2035 /-102.29,
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are the same as those used earlier. The results are based on the exact wave

matrix theory for a fixed configuration with 1,000 sample configurations.
Results for the discrete non-uniform distribution are given in

figure C.1. Shown are curves of the phase and intensity of the coherent trans-

mitted field and the average incoherent intensity of the reflected field‘for a

series of dx values; The entire curves for dk = 2, 7,4and 12 are shown for

completeness although it is the first monotonically-varying portions which are

"experimental"

of present interest. Smooth curves have been drawn through all
points (included for dA = 7) except those for small values of ny where straight-
line segments are used to indicate the discrete nature of the results. Curves
for (I2) of the transmitted field are not given because they are similar in

form to those for the reflected field.

The results of figure C.l show the combined effect of-the DPA and ﬁhe
single-scatterer—-per-position requirement. They may be likened to those of
section 5.3 for the continuous non-uniform distribution and essentially the
same arguments may be applied to explain the oscillatory behavior displayed in
the curves. The main difference in the present results is that resonance
phenomena occur for certain mid-range values of Bd where the discrete-position
interval d/nd is approximately equal to an integral multiple of A/2. For later
comparison with the discrete non-uniform results for Py = 5 (i.e., dA = 2),
results for a continuous non-uniform distribution are also given in figure C.1,
To provide a valid comparison, these results havé been obtained using methéd A
of Chapter 5 with the additional requirement that the distance of closest
approach of z] and zy with the slab region boundaries be e/é, where e = d/nd,
The fractional "volume" By = Ne/d for the continuous distribution is then
equivalent to the occupation ratio Bg = N/nd for the discrete distribution.

The effect of the DPA alone is displayed by the discrete uniform

distribution results of figure C.2, Although resonance phenomena occur also
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for this distribution, only the first monotonically-varying portions of the
curves are given. A comparison of figures C.l and C.2 shows the single~
scatterer-per-position requirement of the non-uniform distribution to be the
predominant cause of deviation from the continuous distribution limit
(i.e., Bqg = 0) for low values of B4 and high Py» but the DPA to be increésingly
more dominant for decreasing Py e

Since the ﬁhysical differences between the one-dimensional planar-
scatterer model and the three-dimensional spherical-scatterer model are
considerable, the effect of the DPA in the latter caﬁ be expected to be some-—
what different. Some comparison can be made, however, once the main scattering
processes in each model are identified and written in the form of random phasor
sums. The transmitted field, as discussed in section 2.8, can be written as

Ny
TedT = Aoej90-+ 2: Asejes (c.1)
: s=1
where Aoejeo is a constant phasor, the AsejeS are random phasors representing
the significant scattering contributions to the random component of the field,
and Ny is the number of these contributions. The significant scattering
processes present in the oﬁe—dimensional model have already been identified and
the approximate transmitted field written in'the form of (C.l) in section 2.8.
For relatively low p in the three-dimensional model, it is well known that
single scattering is the only significant brocess. In this case, Aoejeo =1
and, for a field point on the beam axis (see figure C.3),
Glag,bg) [ £(vg,05) [ (dy + d)

A, = c.2
5 ,G(O’O)tsvs ( )

@
1l

—k(tS + vy - de - dr) + Argf(ys,d)s) (c.3)
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where G(as,¢s) = field pattern factor of transmitting antenna in the
- direction specified by as’¢s :

G(0,0) = field pattern factor along the beam axis

f(ys,¢s) = —g(ﬁs,fs)/jk = gcattering amplitude (unnormalized) of
spherical scatterer in the direction specified by Ygo g

¢g = polar coordinate in x,y-plane

[ns
|

= /(d, + 25)2 + 1 2

<
il

2 2
/(a, - 22 + x4

ts.
Tx_ G
de
~~ g\__51gn1f1cant‘volume
S~ of slab region
W\/\/‘

Figure C.3 Single-Scattering Geometry for the Three-Dimensional Model

The number of significant scattering contributions Ny is equal to the number
of scatterers in the volume of illumination in which the A, are significantly
large. Although the AS are functions of the scétterer amplitudes as well as
the radiation'pattern of the transmitting antenna, the limits of the
significant volume may usually be assumed to lie betweén the limits of that
illuminated by the half-power beam and that by the main lobe.

It seems reasonable that the wvalidity of the DPA is related to the
following interconnected factbrsﬁ

1) the number of basic phase cycles over which the BS vary,

(ii) the number of discrete values of the GS within a basic phase cycle
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of variation,

(iii) the number of discrete values of the AS over their range éf
variation, and

(iv) the average number of significant scattering contributions N; to the
random component of the field.
Since the Ag are coﬁstant in the one—diménsional model and random in the three-
dimensional model, it is in the relative "discreteness' of the phases 84 that
comparisons between the two models can best be made. |

In the one-dimensional model the range of 6; variation is governed
by dk and N (or py). In particular, it has been shown in Chapter 5 that
ces > 4ﬂdx/(N - 1) for uniformly-distributed scatterers. As seen from.the
results of figure C.2, the required number of discrete values of 8, per basic
cycle for a good approximation to a continuoﬁs distribution decfeases for
increasing Tgg - With py = 5 and Opg f 0.89m, for example, a good approximatidn
for the average field functions investigated is maintained for B4 as high as
0.6, or the number of discrete values of 85 per 2m radians as low as four.
| For py = 0.103 (i.e., dy = 97) and Opg = 431, a minimum of slightly greater
than one discrete value of 04 per basic phase cycle results in a good approxi-
mation and, except for a small interval of Bq values in the neighbourhood of
resonance (for these parameters the first resonance occurs for Bq = 0.05), a
discrete interval in 65 even larger than 27 reéults in a reasonably good
approximation (see figure C.l for these results).

In the three-dimensional modei the range of the 0y variations is
governed mainly by the averagé density of scatterers p, the distanceé of the
source and field points from the medium,.and the average locations of the
scatterers within the significant volume., This may be shown as follows: The

spherical scatterers are identified with average cylindrical-coordinate

locations ((rg),{¢s),(zg)) in a manner analogous to that in which the planar
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scatterers were considered in terms of their ordered-positions and essentially
identified with their average positions (zg). For slowly-varying Argf(yg,¢g),

variation in 0 is caused mainly by deviations in rg and z

14

g from their means;

to first-order .terms

6. ((r.),(z.))72 36 _((r.),(z )72
Geg . [ s s/ V% } Uri . [ s s s ] Gzi .4

Brs st

Physical reasoning or evaluation of both terms in (C.4) shows further that

variation in 6y is caused mainly by variation in rg and hence that

30, ((rgy)5(zy))
. s\\'s 8
gy = oty Org (C.5)
Thus, from equation (C.3),
2ﬂ(rs)ors ] )
Oe = - + (C-G)
s A J(de + (2g))2 + (rd?  V(dp - (202 + 1y 2

For the uniform-randomness of the scatterers in the present model,
the number of scatterers in a volume much smaller than that of the slab region
is approximately Poisson distributed; or more specifically, the distribution

of the increase in an arbitrarily—shaped volume V. about an average location

before a scatterer is reached is approximately exponential with p(Vg) = pe_pvs.
In spherical polar coordinates (rg,85,¢4) about the average locations,
= 13
Vg = 4mr;°/3 and
- 2 24322 : .
rs2 = (rg)c + ri%sin0) - 2(rgdr) sinbg cosgg .7
Thus, '
2 2\ _ 2
0,2 = (52 = (xg)

[}

w ™ 27
3 .
pJ( Jf jr e—&npré /3 [rézsinZGé - 2(rs)ré sineé cos¢é] rézsineg
0 0 0 .

dp! del drl
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3
r2 _ 8mp éu e~bmerg/3 o
s 3 0
- Cgp-2/3 (C.8)
or .
_ AT -1/3
ox, = o 1/3, c 2 5_1; /T(2/3) (c.9)

where T is the well-known Gamma function.

It is of interest to compare certain numerical results based on
equations (C.6), (C.9), and the experimental parameters specified in Chapter 6
with those given for the one-dimensional model. The number m of equivalent
discrete values of 04 per basic phase cycle. where m; is the number of discrete
positions per inch, is given by

T,
2 m,0.

m=—= (C.10)

Opg
For p = 183 scf and an average scatterer location on the x,y-plane (i.e.,
(zg) = 0) and the edge of the volume illuminated by the main lobe, Oes = 1,17
and m = 3.6; for p = 366 scf, Oes = 0.97m and m = 3.6 (independent of p). For
p = 183 scf and an average location on thé edge of the volume illuminated by
the half-power beam, Ogg = 0.47ﬂ and m = 8.5; for p = 366 scf, Ogg = 0.38w.
For an average location at (zg) = 0 and (rg) = qrs with p = 183 scf,
oes = 0,271 and m = 15; with p = 366 scf, Oes = 0.187 and m = 18,

Although Ges in the three—&imensional model is a function of the
average position of each scatterer, it is evident from the preceding results
that the average Ogg would be of the same order of magnitude as the value
oes = 0.89 obtained for Py = 5 in the one—dimensional model. If it is‘assumed
that the relationship between oeé and m for the DPA to be valid is the same as

in the one-dimensional model, the difference in Oes for each scatterer does

not matter since smaller Ogg are accompanied by larger m. If it is further
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assumed that actual values of Oes and m in the one~dimensional model can be
used to predict the validity of the DPA in the three-dimensional moéel, the
values of m for the three-dimensional 99g obtained appear to be approximately
within the necessary limits. It is in fact possible that the numerical
relationship between m and Ogg for the wvalidity of the DPA might need to be
even less stringent than in the one-dimensional model, since the unequal
truncation intervals in 64 would seem to preclude the possibility of strong
resonance effects as in the one-dimensional model.

The validity of the discrete non-uniform pfobability density which is
made nécessary in a DPA accounting for finite scatterer size is also of
interest. As seen by the one-dimensional model results of figures C.lAand C.2
for py = 5, the effect of the DPA is noticeable for lower values of B4 in the
discrete non-uniform distribution than in the discrete uniform distributionf
The explanation for this would seem to be that 99 remains relatively constant
for increasing Bd in the uniform case whereas in the non-uniform case it does_
not, being given approximately by Tgg = 4W(1_Ba)dk/(N_l) = 4ﬂ(1;8d)/pk in
analogy to equation (5.8) for the continuous non-uniform distribution. Thus,
for a given B4, Oes is smaller for the ndn—uniform distribution tban for the
uniform distribution while m is unchanged.

For the three~dimensional model it would seem plausible to account
for the non-uniformity resulting from finite séatterer size in the same manner.
While the replacement for Ors = cp_1/3 in equation (C.6) would Be
Ors = c[(l—BO/Bm)/p]1/3 (where B, is the maximum B, physically possi?le) in the
continuous case, it would be Org = C[(l—Bd)/p]1/3 in the discrete case. If
this one-third power (or any fractional power) correction in 1-84 is actually
valid, higher values of B; in the three-dimensional model than in the one-
dimensional model might be tolerated Before breakdown of the DPA. Any

estimation of the maximum tolerable g, is complicated by the fact that the
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validity of the single-scattering approximation is also dependent on Bd»
however, and is thus impossible at present. The low values of Bdq ='0.013 and
Bq = 0.026 for the experimental distribution parameters of Chapter 6 would in
any case seem easily tolerable since they change the numerical values already
given for Oes very little,

Much further work including all four factors mentioned is necessary
to establish definite criteria for the validity of the DPA in the three-
dimensional model. Until such criteria are developed, however, oné precaution
can be taken to minimize the DPA error for higher density distributions than
those used for the experimental results of Chapter 6. This is to use a
discrete-position interval in the coordinate directions transverse to fhe beam
smaller than the diameter of the scatterers, the one-scatterer-per-position
requirement being modified accordingly. If no DPA were employed in these

"rejection" technique similar

coordinate directions at.all, a two-dimensional
to those used in Chapter 5 for the one-dimensional model could be employed.
Although the necessity of support-medium layers in the present model limits

the discrete~position interval parallel to the beam to be no smaller than the
scatterer diameter, it is evident from the preceding discussion that the
resulting error would be less important than that for the transverse coordinate
diregtions~as long as single scattering remains the only significant process.
It is the presence of significant multiple—scaftering effects and the necessity

for a DPA in the coordinate direction parallel to the beam that mus t ultimately

limit the range of average densities possible for study with the present model.
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APPENDIX D DESIGN OF MICROWAVE ANECHOIC CHAMBER AND POSITIONING DEVICE

D.1 Design and Testing of Anechoic Chamber

A small microwave anechoic chamber has been designed and constructed
for general use in scattering experiments of tﬁe type described in Chapter 6
and in antenna pattern meésurements. The design is standard, a wedge-shaped
back wall and lonéitudinally—baffled side walls being employed to achieve a
central "quiet' volume region, and therefore only limited details are given.

A simplified plan-view diagram of the chamber is shown in figure D.1.
Inside dimensions (not including absorbing material) are approximately
15'4" x 9'4" x 10' (height). The chamber shell is constructed of two-by-four
framing and plywood sheeting in four foot sections bolted together whichvallows
for easy extension in length. Power receptacles are located at suitable places
both inside and outside, swivel-fixture lights are located in the four upper
corners, and ventilation is provided by means of an exhaling fan and vents.
All inside fixtures are located at least critical positions to minimize
reflections.

The least critical surface areas are covered with Emerson & Cuming
Eccosorb FR330 absorbing matefial. B. F. Goodrich VHP-4 absorbing méterial
covers the critical back-wall area and a six foot wide area of the side walls.
The minimum reflectivity levels for these absorbers at X-band are -20db and
-45db respectively. The FR330 material limits the operating frequency range
to frequencies above 2.3 GHz. The longitudinally-baffled side walls and wedge-
shaped back wall produce a thirty-one inch diameter ''quiet zone" (i.e., volume
in which specularly-reflected contributions to the total field involve no
fewer than two surface reflections) running the entire length of the chamber to
within nineteen inches of the back-wall apex.

Detailed "one-way transmission' tests were performed on the chamber
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Figure D.1 Simplified Plan-View Diagram of the Anechoic Chamber

at 9.32 CGHz and 35.0 CHz using the B. F. Goodrich "free-space VSWR"
technique.60’6; With the remotely-controlled positioner described in the
following section used as a mount for the receiving antenna (vertically
polarized), traverses along two-foot horizontal and vertical radii from the
room axis were made at a distance of twenty-five inches from the back-wall
apex, with the aspect angle 6 of the antenna (see figure D.1) seﬁ at 10°

| increments between 40° and 320°. The 9.32 GHz measurements were made with 16db
Narda type 640 transmitter and receiver horns and the 35.0 GHz measurements
with the horns used for the experiments describéd in Chapter 6. Calculations
based on the standing-wave patterns obtained showed an average reflectivity
level®? within a two-foot diameter section of the quiet zone of -53db at

9.32 GHz (averaged over all aspect angles and one foot horizontal and vertical
radii)band better than -66db at 35.0 GHz. This level dropped to only -51db at
9.32 GHz along one-foot radii sections centered 1.5 feet from the chamber axis.

Plots of the reflectivity level versus aspect angle showed the largest source

of reflected power to be the back wall, as expected. For an aspect angle



of 6 = 0° (as used for the Chapter 6 experiments), no reflections from the
side walls were evident and for other forward aspect angles the reflectivity

level was considerably lower than the average.

D.2 Design of Remotely-Controlled Positioning Device

A remotely—controlled positioning device has been designed and
constructed for general use as a scanning platform in the type of experiments
described in Chapter 6 and as an antenna positioner for pattern measurements
and tests on the anechoic chamber. This device is cépable of a four-foot
horizontal movement, a one-foot vertical movement, and a 390° azimuthal
movement. The photograph shown in figure D.2 illustrateé the main features of
the mechanical design: The vertical—movemént system is mounted on the azimuth
rotator and both these systems are fixed to a platform which is propelled on
wheels along two horizontal tracks. A screw coupled to a dc gear motor
provides the horizontal drive and a screw coupled to a gear train and ac servo
motor, the vertical drive. An ac servo motor and gear train also drives the
azimuth rotator. The tubular center shaft allows either a scattering medium
or an antenna to be easily mounted in place.

Accurate open-loop control of the three coordinate positions is
achieved in the device by means of the speed-controllable motors and transmit-
receive synchro systems. The control box, locéted outside the anechoic
chamber, is shown in the center of the photograph on page 122. Position
readout of the horizontal and vertical coordinates is derived by means of
counters driven by single synchro receivers. Dual synchro transmitters and
receivers in the azimuth system, with gear ratios of 1:1 and 36:1, provide
both a course and fine indicatioﬁ of azimuth on two graduated circular dials.
Position readout resolution is 0.00625 inches in the horizontal direction,

0.005 inches in the vertical direction, and 0.1° in azimuth; accuracy is only

168
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Figure D.2 View of the Positioning Device

slightly less.

Potentiometers coupled to all three coordinate systems in the
positioner provide an electrical output of position for controlling an
X-Y plotter used in the measurement of free-space standing-wave patterns and
antenna patterns. A relay-battery circuit connected to the horizontal motor
input provides a two-level control voltage for use in processing the data
recorded during scanning of the physical model described in Chapter 6. Limit
switches incorporated in all three motor-drive circuits remove power to the

motors when the physical limits in the positioner are reached.
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