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Abstract 

Haptoglobins are serum glycoproteins which form complexes with 

hemoglobin. Three phenotypes of haptoglobin e x i s t i n serum (Hp 1-1, 

Hp 2-1, Hp 2-2). The l a t t e r two types e x i s t as a se r i e s of polymers 

while the.former type e x i s t s as a homogeneous pr o t e i n . A l l three 

haptoglobin types consist of 3 (heavy), chains and a ( l i g h t ) chains 

which are attached by disulphides. The haptoglobin types d i f f e r i n 

t h e i r a chains; Hp 1-1 contains only a"*" chains, while Hp 2-2 contains 
2 1 2 only a chains and Hp 2-1 contains a and a chains. The hemoglobin-

haptoglobin 1-1 complex consists of one molecule of hemoglobin 

attached to one molecule of haptoglobin. 

The thesis has been divided i n t o three parts. The f i r s t part 

(Section III) i s concerned with the r e a c t i o n of haptoglobin with an 

octameric (double) hemoglobin obtained from an inbred s t r a i n of mice. 

In t h i s hemoglobin each of the hemoglobin dimers i s joined together by 

a disulphide bond. The fac t that haptoglobin binds ag dimers i n d i c a t e s 

that i t i s a b i v a l e n t molecule l i k e the antibody molecule, immuno­

g l o b u l i n G (IgG). This bivalence and re s u l t a n t resemblance to IgG i s 

examined by studying the r e a c t i o n of haptoglobin with t h i s mouse hemo­

globin i n which the aB dimer i s held together by a disulphide bond. 

The r e s u l t s of both p r e c i p i t a t i o n studies and acrylamide gel e l e c t r o ­

phoresis confirm the postulated bivalence of haptoglobin and i t s 

resemblance to an antibody. 

o 



The second part (Section IV) of the thesis i s concerned with 

confirming the r e s u l t s obtained i n studying the disulphides of hapto­

gl o b i n which were obtained by the c y s t e i c a c i d diagonal technique. 

These r e s u l t s predicted a model i n which the two halves of the hapto­

globin molecule were held together by a disulphide bond at p o s i t i o n 

21a. Also the r e s u l t s predicted an i n t r a c h a i n loop disulphide between 

h a l f - c y s t i n e s at po s i t i o n s 35 and 69 i n the haptoglobin a chain and an 

i n t e r c h a i n disulphide between a h a l f - c y s t i n e at p o s i t i o n 73a and the 

B chain. This s t r u c t u r e has been confirmed by studies on a cyanogen 

bromide fragment i s o l a t e d from haptoglobin which contains the i n t a c t 

a chain. Also the structure has been confirmed by studies on a hapto­

gl o b i n d e r i v a t i v e i n which the molecule has been s p l i t i n h a l f by the 

breaking of a disulphide bond. 

The t h i r d part (Section V) of t h i s thesis i s an i n v e s t i g a t i o n 

i n t o the nature of the 393 sulphydryl of hemoglobin when hemoglobin i s 

bound by haptoglobin. The r e s u l t s demonstrate that there i s a 

d e f i n i t e change i n the environment of t h i s sulphydryl upon formation 
14 

of the hemoglobin-haptoglobin complex. Studies with C-iodoaceta-

mide demonstrate however that 393 can s t i l l react i n the HbHp 

complex. 
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I 

INTRODUCTION 

Haptoglobin Structure 

Haptoglobin was discovered i n 1938 (1) when i t was found that 

serum had the property of increasing the peroxidase a c t i v i t y of hemo­

globin. U t i l i z i n g the measurement of the oxidation of potassium 

iodide by e t h y l hydroperoxide, Polonowski and Jayle found that, while 

hemoglobin has a low peroxidase a c t i v i t y with a pH optimum of 5.6, 

the ad d i t i o n of serum s h i f t e d the optimum to 4.2 with a considerable 

increase i n peroxidase a c t i v i t y . The existence of haptoglobin was 

confirmed s e v e r a l years l a t e r by paper electrophoresis (2) which 

demonstrated that a hemoglobin-haptoglobin (HbHp) complex could be 

separated from hemoglobin. The early work on haptoglobin also demon­

strated that t h i s p r o t e i n existed i n more than one form (3). 

Haptoglobin 1 was found to p r e c i p i t a t e between 54 to 64 per cent 

ammonium sulphate and to have a molecular weight around 100,000 

while haptoglobin 2 p r e c i p i t a t e d between 40 and 51 per cent ammonium 

sulphate and had a molecular weight greater than 200,000 (4). 

Haptoglobin 1 passed the physico-chemical tests of homogeneity— 

s o l u b i l i t y curve, e l e c t r o p h o r e t i c migration, and u l t r a - c e n t r i f u g a t i o n 

while haptoglobin 2 was found to be heterogeneous (5,6). 

A great breakthrough i n haptoglobin research came with the 

development of starch gel electrophoresis (7). Smithies and Walker 



2 

found that serum could be c l a s s i f i e d i n t o three types (8). Type 1 

produced and g l o b u l i n bands of about equal i n t e n s i t y . Type 2A 

produced s e v e r a l more bands which migrated on the starch gels between 

and 3 g l o b u l i n bands while the band decreased i n i n t e n s i t y . In 

type 2B the pattern was s i m i l a r to the 2A pattern except that the 

bands between the and 3 globulins moved more slowly. Using p a r t i a l ­

l y hemolyzed serum i t was observed that these proteins were pink before 

s t a i n i n g and were i n f a c t the hemoglobin-binding haptoblobins (9). 

The existence of these patterns i n sera was explained by the r e s u l t s 

of family studies (10). I t was postulated that there was a Hp"̂  gene 
2 

and a Hp gene which were autosomal and exhibited incomplete dominance. 

Thus the phenotypes observed would be Hp 1-1, Hp 2-1 and Hp 2-2. 

These would correspond to the previously observed serum patterns type 

1, type 2A and type 2B r e s p e c t i v e l y . P u r i f i c a t i o n of the haptoglobin 

components of serum confirmed these observations (9). Haptoglobin 1-1 

ran on starch as a s i n g l e hemoglobin binding component while hapto­

globins 2-1 and 2-2 ran as a s e r i e s of polymers with the 2-2 polymers 

running more slowly than the 2-1 polymers. 

At t h i s point the meaning of the multiple haptoglobin forms was 

a mystery. Although the r e s u l t s could be completely explained by 
1 2 2 po s t u l a t i n g a Hp and an Hp gene, the presence of the Hp gene i n 

some unexplained way led to the formation of a s e r i e s of polymers 

upon gel e l e c t r o p h o r e s i s . Some authors (9,11) suggested that the 

polymer observation was an aggregation a r t i f a c t but i t was generally 

accepted to be a r e a l phenomenon. Another break-through came when 
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h a p t o g l o b i n was reduced w i t h mercaptoethanol i n 8 M urea and, a f t e r 

r e d u c t i o n , a l k y l a t e d w i t h iodoacetamide (12). The polypeptides produced 

were analysed by s t a r c h g e l e l e c t r o p h o r e s i s i n 8 M urea u s i n g sodium 

formate b u f f e r at pH 4.0. A l l three c l a s s e s of h a p t o g l o b i n produced a 

slow running very dark band which was c a l l e d the 3 chain of h a p t o g l o b i n 

and a f a s t e r running l i g h t e r band c a l l e d the a chain. I t was observed 

that the a chain band produced by h a p t o g l o b i n 1-1 ran more q u i c k l y than 

the corresponding a chain band i n h a p t o g l o b i n 2-2 w h i l e h a p t o g l o b i n 2-1 

produced both bands. Thus the polymorphism of h a p t o g l o b i n could now 

be seen to be a s s o c i a t e d w i t h v a r i a t i o n s i n a chains and the occurrence 

of m u l t i p l e bands appeared to c o r r e l a t e w i t h the presence of the more 
2 

s l o w l y running band (a chain) observed upon g e l e l e c t r o p h o r e s i s . A l s o 
i t was found that the h a p t o g l o b i n 1-1 1s could be subdivided i n t o two 

IF IS 1 c a t e g o r i e s (a and a ) on the b a s i s of the m o b i l i t y of t h e i r a 

chains. Amino a c i d analyses of the p u r i f i e d a chains demonstrated the 
IF IS replacement of a l y s i n e i n Hp a by an a c i d i c amino a c i d i n a . The 

1 2 
amino a c i d analyses of the a and a chains were a l s o very s i m i l a r but 
they could not be e x p l a i n e d on the b a s i s of a simple p o i n t mutation. 

Instead f i n g e r p r i n t analyses i n d i c a t e d the presence of a new peptide 
2 

i n the a chain (13). This peptide had p r o p e r t i e s c o n s i s t e n t w i t h i t s 

r e s u l t i n g from the j o i n i n g of the c a r b o x y l t e r m i n a l of the a"*" chain 

to the amino t e r m i n a l of another a"*" chain. Amino a c i d analyses showed 

that t h i s j u n c t i o n peptide i s s l i g h t l y s m a l l e r than one which would 

occur by j o i n i n g the c a r b o x y l t e r m i n a l peptide to the amino t e r m i n a l 
2 

peptide. Since the a chain was a l s o shown to have about twice the 



molecular weight of the the evidence s t r o n g l y i n d i c a t e d that the 

polymeric haptoglobins had r e s u l t e d from a g e n e t i c event i n which a 

crossing-over had occurred at the DNA l e v e l w i t h a r e s u l t i n g p a r t i a l 

gene d u p l i c a t i o n . 

This e x c i t i n g r e s u l t represented, f o r the f i r s t time, the 

d e t e c t i o n at a molecular l e v e l of a p a r t i a l gene d u p l i c a t i o n and a l s o 

served to i n d i c a t e how the h a p t o g l o b i n polymers could be formed. The 

e x i s t e n c e of gene d u p l i c a t i o n s had been p o s t u l a t e d before and was based 

upon c y t o l o g i c a l observations on the bar locus i n D r o s o p h i l a (14). 

Since the time of the h a p t o g l o b i n d i s c o v e r y the presence of a p a r t i a l 

gene d u p l i c a t i o n has been detected i n many other p r o t e i n s and i n 5s 

RNA (15,16). 
2 

F i n g e r p r i n t analyses of the a chain a l s o i n d i c a t e d that the 
IS IF 

chain r e s u l t e d from the f u s i o n of the genes f o r the a and the a 
2 (F S) 

chain. Thus once the d u p l i c a t i o n had occurred to form the Hp ' 
gene then a much more l i k e l y g e netic event than t h i s i n i t i a l occurrence 

2FF 2SS 

would be the formation of Hp and Hp genes by c r o s s i n g over. 

S i m i l a r l y the formation of a t r i p l e c hain gene by m i s p a i r i n g should 

occur. Nance and Smithies have obtained evidence f o r the former 

p r e d i c t i o n (18) w h i l e the d i s c o v e r y of h a p t o g l o b i n Johnson appears to 

provide evidence f o r the l a t t e r (19). 

S e v e r a l other h a p t o g l o b i n phenotypes have been i d e n t i f i e d . 

These i n c l u d e Hp C a r l b e r g and Hp 2-1M i n which i t appears i n the 

former case that there i s an underproduction of a"*" chains and so 2-2 

polymers appear along w i t h the 2-1 polymers w h i l e i n the l a t t e r case 



2 there i s an underproduction of a chains so that the f a s t e r running 

polymers of s m a l l e r molecular weight are present i n greater p r o p o r t i o n 

(20). Other abnormal hap t o g l o b i n phenotypes are b e l i e v e d to be 
P H L 

caused by the Hp , Hp , and Hp genes but the gene a b n o r m a l i t i e s have 

not been c h a r a c t e r i z e d (21). With the Hp gene a d i f f e r e n t m o b i l i t y 

has been observed f o r the a chain i n a c i d i c urea s t a r c h g e l s (22). 

Both Hp Marburg and Hp Bellevue (23,24) are b e l i e v e d to r e s u l t from 

mutations i n the 8 chain of haptoglobin. Haptoglobin 2-1 Johnson, 

which migrates as a s e r i e s of polymers moving, more s l o w l y than hapto­

g l o b i n 2-2 polymers, when examined i n the urea gels produces a normal 
1 2 a chain and a new band which migrates more s l o w l y than the a 

band (25). 
1 2 

The complete sequence of both the a and a haptoglobin chains 
has now been e s t a b l i s h e d (26). The a"*" chain contains 84 amino acid s 

2 
and the a chain has 143 (Figure 1). Both chains have an amino t e r m i n a l 
v a l i n e and a c a r b o x y l t e r m i n a l glutamine and c o n t a i n no methionine or 

phenylalanine. There are four h a l f - c y s t i n e s i n the â " and seven i n the 
2 

a chain. The sequence of the h a p t o g l o b i n a chains has been compared 

w i t h known sequences of some of the l i g h t chains of a n t i b o d i e s (Bence-

Jones p r o t e i n s ) using a computer program developed by F i t c h (27). The 

r e s u l t s i n d i c a t e d a homology between the r e g i o n around h a l f - c y s t i n e 

86 i n the Bence-Jones p r o t e i n s and h a l f - c y s t i n e 35 of the h a p t o g l o b i n 

a chain. This r e s u l t i n d i c a t e d that there was p o s s i b l y a common 

e v o l u t i o n a r y o r i g i n f o r haptoglobins and a n t i b o d i e s . 



Haptoglobin a 1 84 residues o^F^Lys at p o s i t i o n 54 
a 1S=Glu at p o s i t i o n 54 

1 10 20 
-Val-Asn-Asp-Ser-Gly-Asn-Asp-Val-Thr-Asp-Ile-Ala-Asp-Asp-Gly-Gln-Pro-Pro-Pro-Lys-

30 40 
-Cys-Ile-Ala-His-Gly-Tyr-Val-Glu-His-Ser-Val-Arg-Tyr-Gln-Cys-Lys-Asn-Tyr-Tyr-Lys-

50 60 
-Leu-Arg-Thr-Gln-Gly-Asp-Gly-Val-Tyr-Thr-Leu-Asn-Asn-Glu-Lys-Gln-Trp-Ile-Asn-Lys-

70 80 
-Ala-Val-Gly-Asp-Lys-Leu-Pro-Glu-Cys-Glu-Ala-Val-Cys-Gly-Lys-Pro-Lys-Asn-Pro-Ala-

84 
-Asn-Pro-Val-Gln-COOH 

Haptoglobin a 2 143 residues 

1 10 20 
-Val-Asn-Asp-Ser-Gly-Asn-Asp-Val-Thr-Asp-Ile-Ala-Asp-Asp-Gly-Gln-Pro-Pro-Pro-Lys-

30 40 
-Cys-Ile-Ala-His-Gly-Tyr-Val-Glu-His-Ser-Val-Arg-Tyr-Gln-Cys-Lys-Asn-Tyr-Tyr-Lys-

50 -Lys- 60 
-Leu-Arg-Thr-Gln-Gly-Asp-Gly-Val-Tyr-Thr-Leu-Asn-Asn-Glu-Lys-Gln-Trp-Ile-Asn-Lys-

70 80 
-Ala-Val-Gly-Asp-Lys-Leu-Pro-Glu-Cys-Glu-Ala-Asp-Asp-Gly-Gln-Pro-Pro-Pro-Lys-Cys-

90 100 
-Ile-Ala-His-Gly-Tyr-Val-Glu-His-Ser-Val-Arg-Tyr-Gln-Cys-Lys-Asn-Tyr-Tyr-Lys-Leu-

110 -Lys- 120 
-Arg-Thr-Gln-Gly-Asp-Gly-Val-Tyr-Thr-Leu-Asn-Asn-Glu-Lys-Gln-Trp-Ile-Asn-Lys-Ala-

130 140 
-Val-Gly-Asp-Lys-Leu-Pro-Glu-Cys-Glu-Ala-Val-Cys-Gly-Lys-Pro-Lys-Asn-Pro-Ala-Asn-

143 
-Pro-Val-Gln-COOH 

FIGURE 1 
CORRECTED SEQUENCES OF THE a 1 AND a 2 CHAINS OF HAPTOGLOBINS 
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The h e a v i e r 3 chains of h a p t o g l o b i n have a molecular weight of 

40,000 to 42,000 (28,29,30) and c o n t a i n a l l of the carbohydrate 

attached to the molecule. Haptoglobin contains 14 to 16 per cent 

carbohydrate which has the composition, 4.6 per cent s i a l i c a c i d , 4.2 

per cent glucosamine, 0.2 per cent fucose, and 5.6 per cent hexose 

(31). The 3 chain has an amino t e r m i n a l i s o l e u c i n e (32,33) and t h i s 

c h ain appears to have a very s i m i l a r s t r u c t u r e i n a l l three major 

c l a s s e s of haptoglobins (34). 

The d i s u l p h i d e bonds of h a p t o g l o b i n (35) have been i n v e s t i g a t e d 

u s i n g the c y s t e i c a c i d d i a g o n a l technique (36). When these s t u d i e s 

were performed a f t e r h a p t o g l o b i n was d i g e s t e d w i t h pepsin only one 

d i s u l p h i d e peptide could be i s o l a t e d i n good y i e l d . This peptide 

corresponded to a r e g i o n of the a chain of h a p t o g l o b i n which contained 

the h a l f - c y s t i n e at p o s i t i o n 21 (Figure 2). A peptide a l s o running 

o f f the d i a g o n a l i n a corresponding p o s i t i o n was not observed and 

so i t appeared that t h i s peptide was l i n k e d to i t s e l f and thus a 

symmetrical l i n k a g e occurred between the a chains of h a p t o g l o b i n . By 

performing c y s t e i c a c i d diagonals on h a p t o g l o b i n peptides a f t e r 

t h e r m o l y s i n d i g e s t s of h a p t o g l o b i n 1-1 i t was p o s s i b l e to account 

f o r a l l of the d i s u l p h i d e s i n haptoglobin (Figure 2). Peptide T h l 

represents a sequence of the a chain from p o s i t i o n 11 to 21 and again 

confirms that the h a l f - c y s t i n y l group at p o s i t i o n 21 i s j o i n e d i n a 

symmetrical i n t e r c h a i n l i n k a g e i n the h a p t o g l o b i n molecule. Peptide 

Th2 A corresponds to residues 61 to 71 i n the a chain w h i l e Th2 B 

corresponds to residues 31 to 38 i n the a chain. Thus t h i s d i s u l p h i d e 



PEPSIN DISULPHIDE 

H e A l a Asp Asp Gly Glu Pro Pro Pro Lys Cys H e A l a His Gly 
PI j 

H e A l a Asp Asp Gly Glu Pro Pro Pro Lys Cys H e A l a His Gly 

THERMOLYSIN DISULPHIDES 

H e A l a Asp Asp Gly Glu Pro Pro Pro Lys Cys 
TH1 | 

H e A l a Asp Asp Gly Glu Pro Pro Pro Lys Cys 

A l a V a l Gly Asp Lys Leu Pro Glu Cys Glu A l a Th2a 
TH2 | 

V a l Arg Tyr Gin Cys Lys Asn Tyr Th2b 

TH3 
V a l Cys Gly Lys Pro (Pro Lys Asp) T h 3 a 

Th3b r 
H e Cys Pro Leu Ser ( Asp Lys ) 

T H 4 

Tyr Gin Glu Asp Thr Cys T 
Phe Asp Lys Cys(Ser A l a ) 

V a l A l a Asp Gin Asp Glu Cys 
TH5 r 

Phe Cys 

F i g u r e 2 STRUCTURES OF THE HAPTOGLOBIN DISULPHIDE PEPTIDES 
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peptide demonstrates that the h a l f - c y s t i n y l group at p o s i t i o n 35 i n the 

a chain i s j o i n e d to a h a l f - c y s t i n y l group at p o s i t i o n 69 i n the a 

chain. Peptide Th3 A i s i d e n t i c a l to an a chain peptide corresponding 

to residues 72 and 78 i f an a d d i t i o n a l h a l f - c y s t i n y l group i s placed 

at p o s i t i o n 73 i n the a chain sequence. R e i n v e s t i g a t i o n of the a 

chain sequence has shown that i n f a c t a h a l f c y s t i n y l group i s present 

at t h i s p o s i t i o n . Thus the 3 chain i s j o i n e d to the a chain by a h a l f -

c y s t i n y l group at p o s i t i o n 73 i n the a chain. Peptides Th3 B, Th4, 

and Th5 cannot be assigned to the a chain and so must be present i n 

the 3 c h a i n of haptoglobin. The d i s u l p h i d e s of h a p t o g l o b i n w i l l be 

discussed f u r t h e r i n S e c t i o n IV of the t h e s i s . 

Hemoglobin S t r u c t u r e 

Hemoglobin without doubt has been the most a s s i d u o u s l y s t u d i e d 

p r o t e i n . This i s p r i m a r i l y because i t could be e a s i l y obtained i n 

l a r g e q u a n t i t i e s i n a high s t a t e of p u r i t y (3). Hemoglobin c o n s i s t s 

of an apoprotein p a r t , g l o b i n , and an oxygen c a r r y i n g chromophore, 

heme. I t c o n s i s t s of 4 polypeptide c h a i n s , two a chains and two 3 

chains each w i t h a molecular weight of about 16,500 r e s u l t i n g i n a 

hemoglobin molecular weight of 65,000 (38). I t was demonstrated by 

sequencing the hemoglobin chains (39,40) that the two types of chains 

had homologous s t r u c t u r e s (41). 

In comparing v a r i o u s g l o b i n chains i t has been shown that the 

chains have r e l a t e d sequences i n a l l regions and that 64 residues are 

i d e n t i c a l i n the a and 3 hemoglobin chains. However these chains 
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only share 21 i d e n t i c a l residues w i t h myoglobin. 

The three dimensional s t r u c t u r e of hemoglobin i s now known at 

a r e s o l u t i o n of 2.8A° (42). The four chains are arranged t e t r a h e d -

r a l l y around an a x i s of two-fold symmetry and the conformation of the 

chains c l o s e l y resembles the conformation of myoglobin (43). In 

general terms, the nonpolar residues r e s i d e i n the i n t e r i o r of the 
0 

molecule forming Van der Waals contacts and the p o l a r residues are 

at the surface. G l y c i n e residues and a l a n i n e residues a l s o appear to 

r e s i d e at the surface of the molecule. Each chain c o n s i s t s of e i g h t 

h e l i c a l regions (A-H) w i t h seven corners and some n o n h e l i c a l areas. 

When the three dimensional s t r u c t u r e of hemoglobin was d e t e r ­

mined (43) i t was found that the s t r u c t u r e of each of the hemoglobin 

chains was remarkably l i k e the three dimensional s t r u c t u r e of myoglobin. 

In f a c t more recent r e s u l t s i n d i c a t e that the three dimensional 

s t r u c t u r e of myoglobin provides a model around which a l l hemoglobin 

and myoglobin conformations f i t (44). However i n comparing the 

primary s t r u c t u r e s of a l l of the known v e r t e b r a t e g l o b i n chains only 

nine residues remain i d e n t i c a l . A l l of the three dimensional 

s t r u c t u r e s appear to be s i m i l a r because of the maintenance of a 

p a t t e r n of nonpolar and p o l a r residues (44) of which the nonpolar 

residues appear to be the most i n v a r i a n t . The evidence i s based on the 

r e s u l t s of x-ray s t u d i e s and an a n a l y s i s of the sequences of many 

hemoglobin chains of the v e r t e b r a t e s . 

C h a r a c t e r i s t i c amino a c i d s are u s u a l l y found between the 

h e l i c a l regions i n the hemoglobin chains. For example, i n the B chain 



each of the f i v e p r o l i n e s occurs i n p o s i t i o n two of a h e l i x . Model 

b u i l d i n g demonstrates t h a t , because of i t s imino group, i n any a h e l i x 

c o n t a i n i n g N residues p r o l i n e can only e x i s t at p o s i t i o n s 1, 2, 3 or 

N+l (44). P o s i t i o n 1 i s o f t e n occupied by a s e r i n e , threonine, 

a s p a r t i c a c i d or asparagine. The hemes are l o c a t e d i n hydrophobic 

pockets and are attached by coordinate covalent bonds to h i s t i d i n e s 

at p o s i t i o n F8.. There are s i x t y i n t e r a c t i o n s between g l o b i n chain 

atoms and heme atoms which are w i t h i n 4A° and a l l but three are non-

p o l a r . The s i m i l a r i t i e s i n the s t r u c t u r e s of g l o b i n chains i n the 

regions corresponding to these i n t e r a c t i o n s i s s t r i k i n g . 

Each a chain of hemoglobin i s i n contact w i t h two 3 chains and 

w i t h the other a chain. The converse i s true f o r each 3 chain. The 

contact a j 31 i s more extensive than the contact a^32- I t c o n s i s t s of 

110 atomic i n t e r a c t i o n s which are mainly nonpolar. The contact a^32 

has only 80 i n t e r a c t i o n s (Figure 3). Again they are mainly nonpolar 

but there i s one c l e a r hydrogen bond between a s p a r t i c 94 and aspara­

gine 102. Upon deoxygenation of hemoglobin there i s a l a r g e movement 

i n the a^32 area w i t h a displacement by as much as 5.7A° f o r some con­

t a c t atoms w h i l e movement i n the r e g i o n of the a j $ i contact i s s l i g h t 

w i t h the contact becoming more ext e n s i v e . The ai$2 contact i s such 

th a t i t allows the two subunits to s l i d e past each other w i t h a 

r e s u l t a n t e f f e c t on the environment of the hemes. The e l e c t r o n 

d e n s i t y maps do not show d e f i n i t e contacts between l i k e chains a l ­

though they probably e x i s t . 



The contact a^B^ 

=1 

In 131 H9 

ala 128 H6 

1-gln 127 H5 

3-glu 125 H3 

pro 124 H2 

thr 123 HI 

phe 122 GH5 

3 ^ g l y 119 GH2 

arg 116 G18 

ala 115 G17 

leu 112 G14 

asn 108 G10 

2 1—met 55 D6 

—1—pro 51 D2 

j -—• tyr 35 CI 

val 35 B16 
•2 -1 

\ ^ v a l 33 B15 

^ a r g 30 B12 

Thirty-four residues, including about 110 atoms in contact. 

Figure 3 Interatomic contacts between 

Plain connecting lines indicate van der Waals contacts; broken ones 
indicate that the contact includes a hydrogen bond. The numbers on the 
lines wive the number of atoms contributed to the contact by the two residues 
on each side. 

The contact n,p, comprises thirty-four residues. Twenty-one. of these are 
common to all the normal mammalian haemoglobin sequences analysed so 
far. The contact « A comprises nineteen residues. All but one of these are 
common. The one replacement [C!i(M)/J (tin—»arg], reported for llama,, 
would not afl'ect the stereochemistry of the contact. 

sidues i n unl i k e hemoglobin chains 
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Hemoglobin has three s u l p h y d r y l groups per dimer which are 

lo c a t e d at p o s i t i o n s 393, 3112 and al04. Of these only one, 393, w i l l 

r e a c t w i t h iodoacetamide under normal c o n d i t i o n s (45,46). In 

deoxyhemoglobin t h i s c y s t e i n e becomes u n r e a c t i v e (47). This e f f e c t 

upon the r e a c t i v i t y of 393 a l s o appears r e l a t e d to the d i s s o c i a t i o n 

of hemoglobin from tetramers to dimers which occurs to a s m a l l extent 

under p h y s i o l o g i c a l c o n d i t i o n s (48) and can be increased by i n c r e a s i n g 

the s a l t c o n c e n t r a t i o n or by extremes of pH (48). D i s s o c i a t i o n occurs 

to a much s m a l l e r extent i n deoxyhemoglobin than i n oxyhemoglobin (49). 

X-ray c r y s t a l l o g r a p h y has revealed that the 393 SH i n t e r a c t s w i t h 

h i s t i d y l 397 and that t h i s h i s t i d y l r e s i d u e i s i n v o l v e d i n the 

contact which i s broken upon d i s s o c i a t i o n from tetramers to dimers 

(50,42). The decreased r e a c t i v i t y of 393 has now been exp l a i n e d as 

r e s u l t i n g from r e s t r i c t e d access to the exposed SH. This r e s t r i c t i o n 

i s caused by the i n t e r a c t i o n of h i s t i d y l 3146 w i t h the 3 c a r b o x y l of 

a s p a r t y l 394 (51). 

Over 100 v a r i e n t s of the normal hemoglobin s t r u c t u r e are now 

known (52). Most of these have been detected by abnormal e l e c t r o -

p h o r e t i c m o b i l i t y and the modified s t r u c t u r e can be expl a i n e d by 

s i n g l e base changes i n the gen e t i c code. In a European p o p u l a t i o n , a 

study showed the frequency of mutant hemoglobins to occur w i t h a 
1 frequency of about one i n two hundred (52). Se v e r a l abnormal hemo­

gl o b i n s have been observed which a f f e c t the subunit contacts i n 

hemoglobin (53). Those a f f e c t i n g the ai&2 c o n t a c t , which i s broken 
(ar£~^gln) 

when hemoglobin d i s s o c i a t e s i n s o l u t i o n , are Hb J Capetown a92 



Hb Chesapeake a 9 2 ( a r g ^ l e u ) , Hb Yakima 3 9 9 ( a s P ^ h l s ) , Hb Kempsey 
Q Q O (asp->asn) u u (asn-*thr) 899 r , Hb Kansas 8102 

Hemoglobin-Haptoglobin S t r u c t u r e 

The r e a c t i o n of haptoglobin w i t h hemoglobin can be detected 

by s t a r c h , paper, acrylamide or c e l l u l o s e acetate e l e c t r o p h o r e s i s , by 

u l t r a c e n t r i f u g a t i o n or by Sephadex chromatography (54). A l l of these 

techniques produce a s e p a r a t i o n of the HbHp complex from hemoglobin 

or h a p t o g l o b i n and the complex can be detected by i t s absorbance at 

407 or 540 nm or by i t s peroxidose a c t i v i t y . The complex i s extremely 

s t a b l e and does not d i s s o c i a t e at a l l under normal c o n d i t i o n s as there 

appears to be no exchange between i s o t o p i c a l l y l a b e l l e d hemoglobin 

and the complex (56). A l s o the complex w i l l form under c o n d i t i o n s of 

pH from 4 to 9 and i n 2M sodium c h l o r i d e (54). Human haptoglobin w i l l 

r e a c t w i t h hemoglobins from a s e r i e s of r e l a t e d animals and w i l l b i n d 

g l o b i n but w i l l not bi n d myoglobin (54). I t can be observed upon 

s t a r c h g e l e l e c t r o p h o r e s i s that a l l of the hapto g l o b i n polymers bind 

hemoglobin (9). There was a re p o r t that the l a r g e polymers bound 

l e s s hemoglobin per gram (56) but t h i s has been disproven and i t now 

appears that a l l polymers bind 0.7 grams of hemoglobin per gram of 

hapt o g l o b i n (54). 

In 1964, Nagel and Ranney reacted a v a r i e t y of hemoglobins w i t h 

h a p t o g l o b i n and t e s t e d the r e a c t i o n by s t a r c h g e l e l e c t r o p h o r e s i s (57). 

They found that hemoglobins A^, F, I , and Lepore bound haptoglobin 

w h i l e H and Bart's f a i l e d to show b i n d i n g . These l a s t two hemoglobins 



are tetramers of the 3 chain and the a chain of hemoglobin r e s ­

p e c t i v e l y . Since oxyhemoglobin H resembled deoxyhemoglobin A i n 

c r y s t a l s t r u c t u r e (58) they went on to t e s t t h i s p r o t e i n f o r r e a c t i o n 

w i t h h a p t o g l o b i n (59). I f hemoglobin were completely deoxygenated 

w i t h a s m a l l amount of d i t h i o n i t e , no b i n d i n g to hap t o g l o b i n was 

observed. This l a c k of b i n d i n g of deoxyhemoglobin was confirmed 

w i t h h a p t o g l o b i n 2-2 by a n a l y s i s i n the u l t r a c e n t r i f u g e (60). 

Deoxygenation of the oxygenated HbHp complex d i d not reverse the com­

b i n a t i o n and r e l e a s e deoxyhemoglobin and haptoglobin. Carboxypep-

t i d a s e A (CpA) t r e a t e d hemoglobin reacted w i t h h a p t o g l o b i n whether 

in' the deoxy or oxy form (60). In CpA-treated Hb the C-terminal 

h i s t i d i n e i s removed and conformational changes accompanying 

deoxygenation cannot occur (51). 

Two p h y s i o l o g i c a l l y s i g n i f i c a n t p r o p e r t i e s of hemoglobin are 

i t s reduced oxygen-carrying a b i l i t y under a c i d i c c o n d i t i o n s , "Bohr 

e f f e c t " , and the s i g m o i d a l nature of i t s oxygen b i n d i n g as a f u n c t i o n 

of oxygen t e n s i o n , u s u a l l y a s c r i b e d to "heme-heme i n t e r a c t i o n " (61). 

The hemoglobin-haptoglobin complex has r a d i c a l l y a l t e r e d oxygen-

b i n d i n g p r o p e r t i e s when compared w i t h f r e e hemoglobin (62) i n c l u d i n g 

a 3 0 - f o l d i n c r e a s e i n oxygen a f f i n i t y and a nonsigmoidal oxygen 

b i n d i n g curve. Further s t u d i e s showed the absence of a Bohr e f f e c t , 

no change i n the carbon monoxide combination r a t e w i t h pH, and a 

decrease i n the molar e x t i n c t i o n c o e f f i c i e n t (e) at 430 nm (63). 

These f i n d i n g s a l l suggest that i n the complex the hemoglobin can no 

longer undergo conformational changes. I n t e r e s t i n g l y , i t was a l s o 



found that HbHp 2-2 combines w i t h carbon monoxide f a s t e r than HbHp 1-1. 

Recently hemoglobins which show an impaired b i n d i n g to hapto­

g l o b i n have been reported (64). The f i r s t of these was a hemoglobin 

obtained a f t e r r e a c t i o n w i t h b i s (N-maleimidomethyl) ether (65). 

This b i f u n c t i o n a l maleimide reagent f i r s t adds to the 393 SH and 

then r e a c t s w i t h h i s t i d y l 397 (66). When prepared from human hemo­

g l o b i n t h i s d e r i v a t i v e shows reduced d i s s o c i a t i o n i n t o dimers i n a 

s i m i l a r manner to deoxyhemoglobin. However i t has been shown that 

horse b i s (N-maleimidomethyl) ether-Hb i s c r y s t a l l o g r a p h i c a l l y s i m i l a r 

to oxyhemoglobin and has s i m i l a r d i s s o c i a t i o n p r o p e r t i e s whether i n 

the oxy or deoxy form (67). 

In a d d i t i o n to the standard methods f o r stu d y i n g the hemoglobin-

h a p t o g l o b i n r e a c t i o n , Bunn (64) has devised an i n t e r e s t i n g new method. 

In t h i s method h a p t o g l o b i n i s added to a s o l u t i o n c o n t a i n i n g equal 

amounts of r a d i o a c t i v e and n o n r a d i o a c t i v e hemoglobin and then the 

complex i s separated from excess hemoglobin by g e l f i l t r a t i o n and the 

r e l a t i v e s p e c i f i c a c t i v i t i e s i n the two p r o t e i n s determined. Since 

the hemoglobin to be t e s t e d f o r b i n d i n g i s n o n r a d i o a c t i v e , i f the 

s p e c i f i c a c t i v i t y i n the complex peak i s grea t e r than i n the hemo­

g l o b i n peak, then the l a b e l l e d hemoglobin bound more r a p i d l y to hapto­

g l o b i n . 

Bunn (64) has t e s t e d a s e r i e s of hemoglobins, a l l m odified a t 

393 by treatment w i t h e i t h e r iodoacetamide, p-hydroxymercuribenzoate 

o 
I t s s t r u c t u r e i s 
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(pHMB), c y s t i n e , cystamine, or N-ethylmaleimide. In a l l cases he 

found that t h e i r combination w i t h h a p t o g l o b i n was e s s e n t i a l l y unchanged 

except f o r a s l i g h t l y f a s t e r r a t e of r e a c t i o n w i t h pHMB-hemoglobin. 

However both l e s s complete and l e s s r a p i d b i n d i n g f o r b i s (N-maleimidom­

e t h y l ) ether-hemoglobin (BME-Hb) to h a p t o g l o b i n were detected by g e l 

f i l t r a t i o n , peroxidase assays, and by the r a d i o a c t i v e hemoglobin 

method. When the BME-HbHp was rechromatographed on Sephadex G-100 no 

d i s s o c i a t i o n of the complex was observed. Bunn suggests that t h i s 

BME-hemoglobin shows decreased b i n d i n g because i t i s l e s s d i s s o c i a t e d 

and h a p t o g l o b i n only r e a c t s w i t h the d i s s o c i a t e d a3 dimer of hemo­

g l o b i n . Since i t has not been demonstrated that human BME-hemoglobin 

has the same conformation as human oxyhemoglobin t h i s c o n c l u s i o n cannot 

be drawn d e f i n i t e l y . However i t should be p o s s i b l e to t e s t t h i s 

i n t e r p r e t a t i o n by u s i n g human BME-hemoglobin or deoxyhemoglobin under 

c o n d i t i o n s of pH and i o n i c s t r e n g t h i n which they are as d i s s o c i a t e d 

as oxyhemoglobin. Since the hemoglobin-haptoglobin b i n d i n g i s so 

very strong i t seems l i k e l y that even a s m a l l degree of d i s s o c i a t i o n 

of hemoglobin would lead to a complete r e a c t i o n and so BME-hemoglobin 

and deoxyhemoglobin must b i n d l e s s t i g h t l y to h a p t o g l o b i n because of 

an a l t e r e d conformation. Thus i f hemoglobin d i s s o c i a t e s l e s s r e a d i l y , 

t h i s could e x p l a i n an e f f e c t on the r a t e of r e a c t i o n w i t h haptoglobin 

but not on the e q u i l i b r i u m . 

In a f u r t h e r study, Bunn has provided more evidence f o r the 

r e l a t i o n s h i p between hemoglobin d i s s o c i a t i o n and b i n d i n g to hapto­

g l o b i n (68). He found that Hb Kansas, which i s more h i g h l y d i s s o c i a t e d 
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than hemoglobin A, bound haptoglobin more r a p i d l y and that f o r Hb 

Chesapeake, which i s l e s s h i g h l y d i s s o c i a t e d , the reverse i s t r u e . 

Since the hemoglobin-haptoglobin complex has a molecular weight 

of 170,000 (4) i t was f e l t t hat 1 molecule of hapt o g l o b i n combines 

w i t h 1 molecule of hemoglobin. The f i r s t i n d i c a t i o n that h a p t o g l o b i n 

might b i n d "half-hemoglobin", the a3 dimer, came from L a u r e l l ' s 

l a b o r a t o r y when he observed t h a t , i f excess h a p t o g l o b i n was mixed w i t h 

hemoglobin, a new species was observed a f t e r s t a r c h g e l e l e c t r o ­

p h oresis at pH 7 (69). The new peroxidase p o s i t i v e band migrated 

between the HbHp complex and f r e e h a p t o g l o b i n and L a u r e l l suggested 

that i t was a complex of one hapt o g l o b i n and one a3 hemoglobin dimer. 

S e v e r a l years l a t e r , Hamaguchi (70) p u r i f i e d t h i s HbHp intermediate 

and showed that i t s molecular weight of 134,000 and heme content were 

c o n s i s t e n t w i t h L a u r e l l ' s p o s t u l a t e . 

The f a c t that h a p t o g l o b i n can re a c t w i t h f i r s t one a3 hemo­

g l o b i n dimer and then a second i n d i c a t e s that h a p t o g l o b i n i s b i v a l e n t 

and that the f u l l complex c o n s i s t s of ha p t o g l o b i n plus a p a i r of 

hemoglobin dimers. Further c o n f i r m a t i o n of t h i s model comes from 

the work of Nagel and Gibson (71). They were able to measure the 

r a t e of r e a c t i o n of hemoglobin w i t h h a p t o g l o b i n by measuring quench­

ing of the tryptophane fluorescence of haptoglobin by the heme 

groups. T h e i r r e s u l t s showed that the r a t e of r e a c t i o n d i d not 

inc r e a s e l i n e a r l y w i t h hemoglobin c o n c e n t r a t i o n and thus a d i s s o c i a ­

t i o n appeared to precede r e a c t i o n . They a l s o t e s t e d the r e a c t i o n of 

haptoglobin w i t h the i s o l a t e d a and 3 hemoglobin chains and observed 



a r e a c t i o n w i t h i s o l a t e d a but not w i t h 3 chains. When haptoglobin 

was incubated w i t h a chains and then 3 chains added, an i n i t i a l r a p i d 

r e a c t i o n was observed, but when the i n c u b a t i o n was w i t h 3 chains 

and then a chains were added, the r a t e was s i m i l a r to that w i t h a 

chains alone. This i n d i c a t e d that the a chains form a complex w i t h 

h a p t o g l o b i n which can then r e a c t r a p i d l y w i t h 3 chains. 

More r e c e n t l y another d e t a i l e d study of the r e a c t i o n of hemo­

g l o b i n chains w i t h h a p t o g l o b i n has a l s o provided i n t e r e s t i n g r e s u l t s 

(72). Both a and 3 hemoglobin chains were found to b i n d to hapto­

g l o b i n but to a much s m a l l e r extent than hemoglobin i t s e l f . The a 

chains had a higher a f f i n i t y than the 3 chains and four a chains 

could be bound per hapt o g l o b i n (Figure 4). The r e a c t i o n w i t h the 

chains appears to be r e v e r s i b l e and they can be d i s p l a c e d by adding 

hemoglobin. 

O u t l i n e of the Present Study 

The present study represents attempts to f u r t h e r understand 

both the nature of hemoglobin-haptoglobin b i n d i n g and some aspects of 

hapto g l o b i n s t r u c t u r e . This study has been d i v i d e d i n t o three p a r t s , 

one p e r t a i n i n g to s t u d i e s on hapt o g l o b i n b i v a l e n c e , one to s t u d i e s on 

the d i s u l p h i d e s of ha p t o g l o b i n , and the l a s t to s t u d i e s on the 

s u l p h y d r y l s of the hemoglobin-haptoglobin complex. 

The f i r s t p a r t of the t h e s i s ( S e c t i o n I I I ) i s concerned w i t h 

the r e a c t i o n of hapt o g l o b i n w i t h an octameric (double) hemoglobin 

obtained from an inbred s t r a i n of mice. In t h i s hemoglobin each of 
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the hemoglobin dimers i s j o i n e d together by a d i s u l p h i d e bond. The 

f a c t that haptoglobin binds a8 dimers i n d i c a t e s that i t i s a b i v a l e n t 

molecule l i k e the antibody molecule, immunoglobulin G (IgG). This 

b i v a l e n c e and r e s u l t a n t resemblance to IgG i s examined by studying 

the r e a c t i o n of haptoglobin w i t h t h i s mouse hemoglobin i n which the 

aB dimer i s h e l d together by a d i s u l p h i d e bond. The r e s u l t s of both 

p r e c i p i t a t i o n s t u d i e s and acrylamide g e l e l e c t r o p h o r e s i s confirm the 

po s t u l a t e d b i v a l e n c e of haptoglobin and i t s resemblance to an antibody. 

The second p a r t ( S e c t i o n IV) of the t h e s i s i s concerned w i t h 

confirming the r e s u l t s obtained i n studying the d i s u l p h i d e s of hapto­

g l o b i n which were obtained by the c y s t e i c a c i d d i a g o n a l technique. 

These r e s u l t s p r e d i c t e d a model i n which the two halves of the hapto­

g l o b i n molecule were he l d together by a d i s u l p h i d e bond at p o s i t i o n 

21a. A l s o the r e s u l t s p r e d i c t e d an i n t r a c h a i n loop d i s u l p h i d e between 

h a l f - c y s t i n e s at p o s i t i o n s 35 and 69 i n the hapt o g l o b i n a chain and an 

i n t e r c h a i n d i s u l p h i d e between a h a l f - c y s t i n e at p o s i t i o n 73a and the 

B chain. This s t r u c t u r e has been confirmed by s t u d i e s on a cyanogen 

bromide fragment i s o l a t e d from haptoglobin which contains the i n t a c t 

a chain. A l s o the s t r u c t u r e has been confirmed by s t u d i e s on a hapto­

g l o b i n d e r i v a t i v e i n which the molecule has been s p l i t i n h a l f by the 

breaking of a d i s u l p h i d e bond. 

The t h i r d p a r t ( S e c t i o n V) of t h i s t h e s i s i s an i n v e s t i g a t i o n 

i n t o the nature of the B93 s u l p h y d r y l of hemoglobin when hemoglobin i s 

bound by haptoglobin. The r e s u l t s demonstrate that there i s a 
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of the hemoglobin-haptoglobin complex. Studies w i t h C-iodoaceta-

mide demonstrate however that 393 can s t i l l r e a c t i n the HbHp 

complex. 
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MATERIALS AND METHODS 

Starch-Urea Gel E l e c t r o p h o r e s i s 

The v e r t i c a l method of Smithies was employed (73). E i t h e r 80 

to 83 g of s t a r c h (Connaught Me d i c a l Research L a b o r a t o r i e s , Toronto, 

Canada) or 67 to 70 g (Otto H i l l e r , E l e c t r o s t a r c h Company, Madison, 

Wisconsin, l o t 682) were weighed i n t o a one l i t r e beaker. Two hundred 

and f o r t y grams of urea were added and the two powders thoroughly 

mixed. Three hundred m i l l i l i t e r s of 0.083M sodium formate b u f f e r pH 

3.0 (prepared from 50 ml of s o l u t i o n c o n t a i n i n g 0.5M formic a c i d and 

0.1M sodium hydroxide) or 300 ml of aluminum l a c t a t e b u f f e r pH 3.7 

(stock s o l u t i o n of Sung and Smithies (74) d i l u t e d four f o l d ) were 

added to the mixture of s t a r c h and urea. Subsequent steps i n the pre­

p a r a t i o n of the gels c o n t a i n i n g urea followed the p r e v i o u s l y described 

method (75) except that degassing i s omitted (74). 

Bridge s o l u t i o n s f o r the formate gels were the same as those 

p r e v i o u s l y described (75) and f o r the aluminum l a c t a t e g e l s they were 

the four f o l d d i l u t e d stock aluminum l a c t a t e pH 3.7. The gels were 

s l i c e d and s t a i n e d by the method of Smithies, C o n n e l l and Dixon (75). 

Both the Amido Black s t a i n and the Wool Fast Blue S t a i n were used. 

The Wool Fast Blue s t a i n was not as s e n s i t i v e as the Amido Black s t a i n 

but the g e l could be destained more q u i c k l y . Thus, except when a pre­

l i m i n a r y a n a l y s i s was r e q u i r e d , the Amido Black s t a i n was used i n 



preference to the Wool Fast Blue s t a i n . 

Two dimensional s t a r c h urea g e l e l e c t r o p h o r e s i s was performed 

according to the method of Smithies, C o n n e l l and Dixon (76). However 

a 2-bladed c u t t i n g t o o l was used i n which the blades were 0.7 cm 

apart i n s t e a d of 0.4 cm. In the second dimension, g e l markers of r e ­

duced and a l k y l a t e d haptoglobins were i n s e r t e d at both ends of the g e l 

at the s t a r t i n g l i n e by means of a s m a l l p i e c e of Whatmann 3MM 

paper (73). 

Polyacrylamide D i s c Gel E l e c t r o p h o r e s i s 

Polyacrylamide g e l s were prepared f o l l o w i n g c o n d i t i o n s des­

c r i b e d by Davis (77). Although the c o n c e n t r a t i o n of acrylamide was 

a l t e r e d to s u i t p a r t i c u l a r experiments, the p r e p a r a t i o n of a f i v e per 

cent polyacrylamide g e l serves as an example of the experimental 

technique. 

Glass tubes approximately 10 cm i n len g t h and 5 mm diameter 

were used as moulds f o r the d i s c g e l s . The bottom of the tubes was 

sealed w i t h a rubber plug and the tubes were clamped i n a rack f o r 

f i l l i n g . Then 1.3 g acrylamide and 63 mg N, N^-methylenebisacrylamide 

were added to 25 ml of 0.1M sodium phosphate b u f f e r . Immediately 

before c a s t i n g of the gels 10 u l of tetramethylethylenediamine (TEMED) 

and 15 mg of ammonium persulphate were added to the acrylamide s o l u t i o n . 

The g e l l i n g s o l u t i o n was added to the glass tubes w i t h a Pasteur p i p ­

e t t e , t a k i n g care that i n each tube the l e v e l s of the g e l s o l u t i o n s 

were equal. Water was c a r e f u l l y l a y e r e d on top of the acrylamide 
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s o l u t i o n surface w i t h a m i c r o p i p e t t e i n order that the polyacrylamide 

g e l would have a f l a t meniscus. The g e l l i n g time v a r i e d c o n s i d e r a b l y 

w i t h the composition of the b u f f e r but by v a r y i n g the ammonium s u l ­

phate c o n c e n t r a t i o n the g e l l i n g time can be adjusted to about one-half 

hour. The polymerized g e l was washed on the surface w i t h d i s t i l l e d 

water to remove any unge l l e d m a t e r i a l . 

E l e c t r o p h o r e s i s was performed i n e i t h e r of two sets of apparatus 

which both were s i m i l a r to that described by Davis (77) and which 

could h o l d e i t h e r 8 or 20 g e l s . The gels i n the gl a s s tubes made 

e l e c t r i c a l contact w i t h the upper and lower c o n t a i n e r s which h e l d the 

e l e c t r o p h o r e s i s b u f f e r . Rubber plugs sealed the openings through which 

the gels penetrated the bottom of the upper c o n t a i n e r . U s u a l l y 

sucrose was d i s s o l v e d i n the e l e c t r o p h o r e s i s sample to i n c r e a s e i t s 

d e n s i t y . The sur f a c e of the g e l was f i r s t covered w i t h the e l e c t r o ­

p h o r e s i s b u f f e r and then 5 to 20 u l of sample were a p p l i e d onto the 

g e l s u r f a c e by a m i c r o p i p e t t e . The compartments of the apparatus were 

f i l l e d w i t h sodium phosphate b u f f e r u n t i l the platinum e l e c t r o d e s were 

covered. E l e c t r i c a l contact was made to a Heathkit IP-32 power source 

and e l e c t r o p h o r e s i s was c a r r i e d out at a maximum of 200 to 300 v o l t s . 

A f i n e w i r e o r , when a v a i l a b l e , the inner s h a f t of a 22-gauge hypo­

dermic needle was used to remove the g e l from the gl a s s tube. 

Gels were s t a i n e d by keeping them f o r approximately 45 minutes 

i n a 0.1 per cent Amido Black (w/v) i n 10 per cent a c e t i c a c i d (v/v) 

s o l u t i o n . A f t e r the s t a i n i n g p e r i o d the dye s o l u t i o n was removed and 

the ge l s were destained i n 10 per cent a c e t i c a c i d . 
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Three d i f f e r e n t acrylamide g e l b u f f e r s ; 0.05M g l y c i n e , 0.01M 

T r i s , pH 8.5; O.IM sodium phosphate, pH 7.0; and 0.11M T r i s , 0.062M 

b o r i c a c i d , 2.5mM disodium [ e t h y l e n e d i n i t r i l o ] t e t r a a c e t a t e (EDTA), 

and a v a r i e t y of g e l lengths were employed i n the experiments described 

i n t h i s t h e s i s . However, where app r o p r i a t e the p a r t i c u l a r m o d i f i ­

c a t i o n s are discussed along w i t h the experiment. A more d e t a i l e d 

d e s c r i p t i o n of the technique of polyacrylamide g e l e l e c t r o p h o r e s i s can 

be found i n the a r t i c l e by Davis (77). 

E i g h t molar urea-polyacrylamide gels were prepared i n a s i m i l a r 

manner to that described above. However, because urea increases the 

volume of aqueous s o l u t i o n s the g e l s o l u t i o n was made up to volume 

a f t e r the urea was d i s s o l v e d . A l s o , s i n c e urea decreased the polymer­

i z a t i o n time f o r the g e l s , the c o n c e n t r a t i o n of ammonium persulphate 

and TEMED used was one-half that used f o r making gels that contained 

no urea. 

High Voltage E l e c t r o p h o r e s i s 

High v o l t a g e e l e c t r o p h o r e s i s was performed i n a v e r t i c a l 

apparatus using four b u f f e r s ; p y r i d i n i u m acetate pH 6.5 (100 ml 

p y r i d i n e — 4 ml a c e t i c a c i d — 9 0 0 ml wa t e r ) , p y r i d i n i u m acetate pH 3.6 

(10 ml p y r i d i n e — 1 0 0 ml a c e t i c a c i d — 8 9 0 ml wa t e r ) , f o r m i c - a c e t i c a c i d 

s o l u t i o n pH 1.9 (20 ml formic a c i d — 8 0 ml a c e t i c a c i d — 9 9 0 ml w a t e r ) , 

and p y r i d i n i u m formate pH 4.0 (48 ml p y r i d i n e — 3 5 ml formic a c i d — 

3920 ml water) on Whatmann 3MM paper. The apparatus i s described by 

Ryle (78) and the technique i s discussed i n d e t a i l by J . Legget 
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B a i l y (79). A s e r i e s of coloured markers, xylene cyanol FF (XCFF), 

methyl green (MG), orange G (OG), and c r y s t a l v i o l e t (CV) were used i n 

order to help monitor the progress of the e l e c t r o p h o r e s i s . 

The electrophoretograms were s t a i n e d f o r peptides or amino 

ac i d s w i t h a 0.5 per cent n i n h y d r i n i n acetone s o l u t i o n . For a per­

manent s t a i n a cadmium acetate n i n h y d r i n d i p p i n g reagent was used (80). 

Amino-terminal p r o l i n e was detected by d i p p i n g the electrophoretogram 

i n an i s a t i n s o l u t i o n (0.2 g i s a t i n , 100 ml acetone, and 4 ml a c e t i c 

a c i d ) . H i s t i d i n e was detected by spraying w i t h Pauly reagent (79). 

I t was p o s s i b l e to s t a i n f i r s t w i t h i s a t i n , then w i t h n i n h y d r i n and 

then Pauly reagent. However, i n order to remove most of the i s a t i n 

from the 3MM paper before n i n h y d r i n s t a i n i n g the 3MM paper was dipped 

twice i n ethanol. 

A c i d H y d r o l y s i s (82) and Amino A c i d A n a l y s i s (83) 

For a p r o t e i n h y d r o l y s i s 100 to 200 u l of 6N HCl (1:1 d i l u t i o n 

of reagent concentrated HCl) was added to 0.5 to 2 mg of l y o p h i l i z e d 

p r o t e i n i n a 10 by 70 mm Pyrex t e s t tube. A f t e r h e a t i n g i n an oxygen 

flame a s e c t i o n of the tube 2 to 3 cm from the top was p u l l e d to a 

bore of about 2 mm. The sample was then cooled i n an a l c o h o l dry i c e 

bath and the tube was connected by means of an adaptor to an o i l 

pump. The sample was evacuated and allowed to warm to room temperature. 

When bubbles of a i r ceased to form i n the sample the Pyrex tube was 

sealed under vacuum w i t h the oxygen flame. The sample was hydrolyzed 

f o r 15 to 20 hours i n a oven at 110° C. A f t e r h y d r o l y s i s the 



evacuated tube was cooled, opened, and then d r i e d i n a vacuum d e s i c ­

c a t o r over sodium hydroxide. 

P a r t i a l a c i d hydrolyses were performed i n 100 y l of 6N HC1 (1:1 

d i l u t i o n of reagent concentrated HC1) at 110° C. The hydrolyses were 

performed i n Pyrex tubes (10 by 70 mm). The samples were heated to 

100° C f o r 1 minute i n a b o i l i n g water bath and then hydrolyzed f o r 

19 minutes i n a 110° C oven. Then the samples were cooled, d i l u t e d 

f i v e - f o l d w i t h water, and l y o p h i l i z e d . 

Peptide h y d r o l y s i s was performed a f t e r e l u t i o n of the peptide 

w i t h water (0.3 to 0.4 ml) from a paper electrophoretogram. The 

peptide was e l u t e d i n t o a t e s t tube (84) and then d r i e d at 50° C i n a 

Buchler Rotary Evapomix. One hundred m i c r o l i t e r s of 6N HC1 was added 

to the d r i e d peptide and h y d r o l y s i s was performed i n the same manner 

as used f o r p r o t e i n s . 

Amino a c i d analyses were performed on a Beckmann 120 C amino 

a c i d a n a l y z e r according to the method of Spackman, S t e i n and Moore (83). 

The d r i e d h y d r o l y s a t e s were d i s s o l v e d i n 0.2 ml to 0.4 ml of 0.2N 

sodium c i t r a t e b u f f e r , pH 2.2. For p r o t e i n h y d r o l y s a t e s the p r e c i p i ­

t a t e r e s u l t i n g from the degradation of tryptophane by HC1 was removed 

by c e n t r i f u g a t i o n or f i l t r a t i o n through a M i l l i p o r e f i l t e r . Then a 

50 to 75 per cent a l i q u o t of the sample was used f o r a n a l y s i s . 

Amino a c i d a n a l y s i s of peptides was performed using a s i n g l e 

column procedure developed by Devenyi (85). Amino a c i d analyses of 

homoserine peptides were performed f o l l o w i n g the method of Tang and 

H a r t l e y (87). Dry h y d r o l y s a t e s were d i s s o l v e d i n 100 y l of 2N NH.0H 



and incubated at 37 C f o r one hour to convert homoserine l a c t o n e 

to homoserine. The samples were then d r i e d on a Buchler Rotary 

Evapomix and analyzed as described above. 

Amino-Terminal Amino A c i d and Carboxy-Terminal 
Amino A c i d Analyses 

Amino-terminal a n a l y s i s were performed f o l l o w i n g the dansyl 

c h l o r i d e method of Gray (88). A f t e r r e a c t i o n of the polypeptides 

w i t h dansyl c h l o r i d e (l-Dimethylaminonaphthalene-5-sulphonyl c h l o r i d e ) 

the sample was d r i e d on a r o t a r y evaporator and hydrolyzed i n 6N HC1 

as described i n the procedure f o r amino a c i d a n a l y s i s . In order to 

i d e n t i f y d a n s y l - p r o l i n e the sample was only allowed to hydrolyze f o r 

6 hours i n s t e a d of the normal 15 to 20 hour h y d r o l y s i s time. Dansyl-

amino acids were i d e n t i f i e d by the t h i n l a y e r chromatographic method 

of Black and Dixon (89). 

Carboxy-terminal a n a l y s i s was determined a f t e r d i g e s t i o n w i t h 

carboxypeptidase A. The enzyme was prepared by the method of P o t t s , 

Berger, Cooke and Anfinsen (90). Four m i l l i g r a m s of fragment PC I I I 

were d i s s o l v e d i n 200 y l of performic a c i d at 0° C and o x i d i z e d f o r 90 

minutes at 0° C (91). Then 1.0 ml of water at 2° C was added and the 

r e s u l t i n g s o l u t i o n was then f r o z e n and l y o p h i l i z e d . P e r f o r m i c - a c i d . 

o x i d a t i o n converted the fragment i n t o a denatured form which was 

s u i t a b l e f o r d i g e s t i o n w i t h carboxypeptidase. Carboxypeptidase d i g e s ­

t i o n of non-oxidized fragment r e s u l t e d i n only a very low y i e l d of 

amino a c i d s . Two m i l l i g r a m s of p e r f o r m i c - o x i d i z e d PC I I I were d i s s o l v e d 
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i n 100 y l 2N NH^ f o r 1 hour at 37° C to convert any homoserine lactone 

to homoserine and subsequently the s o l u t i o n was d r i e d . The fragment 

was then r e d i s s o l v e d i n 0.5 ml of 0.2N ammonium bicarbonate to which 

10 y l of carboxypeptidase A s o l u t i o n (44 yg) were added. D i g e s t i o n 

was allowed to proceed f o r 6 hours at 37° C. A f t e r d i g e s t i o n the 

amino a c i d s which were r e l e a s e d were absorbed on Dowex 50 and subse­

quently e l u t e d w i t h 5N NH^ (92). The amino a c i d c o n t a i n i n g s o l u t i o n 

was then d r i e d and analyzed on the amino a c i d analyzer as described 

p r e v i o u s l y . 

Enzymatic D i g e s t i o n s of Fragment PC I I I 

One per cent s o l u t i o n s of fragment PC I I I and pepsin (3 x c r y s t a l ­

l i z e d , N u t r i t i o n a l Biochemicals Corporation) were prepared by d i s s o l v i n g 

the p r o t e i n s i n an appropriate volume of 5 per cent (v/v) formic a c i d . 

To a given volume of PC I I I s o l u t i o n was added a 1/10 volume of pepsin 

s o l u t i o n . D i g e s t i o n was allowed to proceed f o r 16 to 18 hours at 

37° C. A f t e r t h i s time the sample was d r i e d on a r o t a r y evaporator and 

then r e d i s s o l v e d i n pH 6.5 b u f f e r (100 ml p y r i d i n e — 4 ml a c e t i c a c i d — 

900 ml water) equal i n volume to the volume of 5 per cent (v/v) formic 

a c i d used i n i n i t i a l l y d i s s o l v i n g the fragment. To t h i s s o l u t i o n was 

added a 1/20 volume of 1 per cent (w/v) porcine t r y p s i n (Novo I n d u s t r i ) 

s o l u t i o n (weight r a t i o enzyme to fragment = 1 to 20). Then d i g e s t i o n 

was allowed to proceed f o r from 5 to 7 hours at 37° C. A f t e r the 

See S e c t i o n IV f o r a d e s c r i p t i o n of PC I I I . 
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d i g e s t i o n p e r i o d was over the sample was again d r i e d and then d i s s o l v e d 

i n a s m a l l volume s u i t a b l e f o r e l e c t r o p h o r e s i s . 

P r e p a r a t i o n of Hemoglobins 

The hemoglobin used i n t h i s t h e s i s (except where i n d i c a t e d ) was 

prepared by Chan (54) f o l l o w i n g the method of Drabkin (37). Although 

the hemoglobin had been prepared as carbonmonoxyhemoglobin i t had been 

sto r e d as a powder at -20° C f o r s e v e r a l years and when r e d i s s o l v e d 

produced a spectrum i d e n t i c a l w i t h methemoglobin. 

Double molecules of mouse hemoglobin were prepared f o l l o w i n g 

the method of Riggs (93). Mouse blood of inbred s t r a i n DBA/2J was 

obtained from the Roscoe B. Jackson Memorial Laboratory, Bar Harbour, 

Maine. The c e l l s were washed 3 times i n 0.9 per cent NaCl and then 

were l y s e d i n an approximately equal volume of d i s t i l l e d water. The 

l y s a t e was then d i a l y s e d a g a i n s t 0.2M sodium c h l o r i d e f o r 24 hours 

w i t h four changes of s a l i n e s o l u t i o n . This s o l u t i o n was then s t o r e d 

f o r 1 to 2 weeks at 4° C. Double hemoglobin (HbHb) was separated 

from s i n g l e hemoglobin by chromatography on a Sephadex G-100 column 

(2.2 by 90 cm) usin g a sample volume of 3 ml (88). The column f r a c t i o n s 

c o n t a i n i n g HbHb were d i a l y z e d , l y o p h i l i z e d , and st o r e d at -20° C. 

Upon r e d i s s o l v i n g , t h i s m a t e r i a l produced the spectrum of methemo­

g l o b i n . In order to prepare l a r g e r amounts of HbHb, 15 ml of d i a l y z e d 

l y s a t e were f r a c t i o n a t e d on a Sephadex G-100 column (5 by 90 cm). 
14 

For the study of the r e a c t i o n of C -iodoacetamide w i t h oxy­

hemoglobin the oxyhemoglobin s o l u t i o n s were prepared from human red 



blood c e l l s (37), d i a l y s e d against 0.1M sodium phosphate, 0.2M sodium 

c h l o r i d e , pH 7.2, stored a t 4° C and used w i t h i n three weeks of 

pr e p a r a t i o n . 

Reactions w i t h Hemoglobin and the 
Hemoglobin-Haptoglobin Complex 

D i t h i o d i p y r i d i n e s 

The d i t h i o d i p y r i d i n e s (2-PDS and 4-PDS) were obtained from 

A l d r i c h Chemical Company, Milwaukee, Wisconsin. The r e a c t i o n between 

2-PDS or 4-PDS and hemoglobin (Hb) or the hemoglobin-haptoglobin (Hb-Hp) 

complex was followed by the absorbance of the s o l u t i o n s at 343 and 324 

nm, r e s p e c t i v e l y , w i t h a Model 15 Cary spectrophotometer (94). An 

a l i q u o t of. stock d i t h i o d i p y r i d i n e s o l u t i o n was mixed w i t h the hemo­

g l o b i n s o l u t i o n i n a spectrophotometer cuvette and the change i n A - j ^ 

or A^24 as a f u n c t i o n of time was determined using the hemoglobin 

s o l u t i o n as blank. A l l r e a c t a n t s were d i s s o l v e d i n 0.05M sodium 

phosphate, 0.05 sodium c h l o r i d e , pH 6.0. The f i n a l c o n c e n t r a t i o n of 

rea c t a n t s were Hb, 7.0 x 10~ 6M ( i n heme); 4-PDS, 3.3 x 10 _ 5M, f o r 

the r e a c t i o n of Hb and 4-PDS; and Hb 2.4 x 10~ 5M and 2-PDS, 2.5 x 
-4 

10 M w i t h the r e a c t i o n w i t h 2-PDS. 

14 
C-iodoacetamide 

14 

C-iodoacetamide (1.53 mCi/mMole) was obtained from Volk Radio­

chemical Company and reacted a t room temperature i n 0.05M sodium phos-
-4 

phate, 0.1M sodium c h l o r i d e , pH 7.3, w i t h Hb (5.7 x 10 M i n heme) or 
-4 

Hb-Hp (Hb 5.7 x 10 M i n heme to which an excess of Hp i s added) using 



a c o n c e n t r a t i o n of 4 x 10 M C-iodoacetamide. C o n t r o l r e a c t i o n s w i t h 
-4 

f r e e h a p t o g l o b i n were performed at 1.2 and 2.2 x 10 M haptoglobin. 

The r e a c t i o n s were terminated at v a r i o u s times by d i l u t i n g a 15 or 25 

y l a l i q u o t i n t o 0.2 ml of 0.07M 3-mercaptoethanol. The excess iodoa-

cetamide-mercapthoethanol adduct was removed on a Sephadex G-25 column 

(0.7 cm by 70 cm) usin g 0.05M T r i s - H C l , pH 8.0, or 0.01M NH^tKX^ as 

b u f f e r and the amount of r a d i o a c t i v i t y i n the p r o t e i n determined by 

mixing a 1.2 ml a l i q u o t w i t h Bray's s o l u t i o n (95) and counting i n a 

U n i l u x 1 l i q u i d s c i n t i l l a t i o n counter. The amount of the iodoacetamide 

attached to the hemoglobin was determined by the r a t i o of the c.p.m. to 

the absorbance at 407 nm. 
Reactions w i t h Haptoglobins 

Cyanogen Bromide Cleavage of Haptoglobins 

Cyanogen bromide (CNBr) cleavages were attempted i n three m e d i a — 

70 per cent formic a c i d or 0.1 or 0.01N sodium acetate b u f f e r , pH 4.7. 

For the formic a c i d r e a c t i o n a 3.3 per cent aqueous s o l u t i o n of hapto­

g l o b i n (Hp) was prepared and 3 pa r t s of t h i s s o l u t i o n was mixed w i t h 

7 p a r t s of a 14 mg/ml cyanogen bromide i n 98 per cent formic a c i d 

s o l u t i o n . The f i n a l c o n c e n t r a t i o n s of Hp and CNBr were 1 per cent and 

the molar r a t i o of CNBr to Hp was 1000 to 1. In g e n e r a l , the r e a c t i o n s 

were allowed to proceed f o r greater than 15 hours and then the s o l u ­

t i o n s were d i l u t e d w i t h water at l e a s t 4 - f o l d so that they could be 

e a s i l y f r o z e n and l y o p h i l i z e d . A s i m i l a r p r o t o c o l was f o l l o w e d f o r 

the acetate r e a c t i o n s . 
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Reaction of Haptoglobin w i t h a Mixture of 

Sodium S u l p h i t e and p-chloromercurisulphonate (pCMS) 

The 'half-molecule' of haptoglobin was prepared by the method 

of Rorstad and Dixon (96) which used sodium s u l p h i t e and p a r a c h l o r o -

mercurisulphonate. The r e a c t i o n was allowed to proceed f o r from 30 

to 60 minutes and the s o l u t i o n was then d e s a l t e d . In the p r e p a r a t i o n 
35 

of l a b e l l e d h a l f - h a p t o g l o b i n the s p e c i f i c a c t i v i t y of the S - s u l p h i t e 

was 11 mCi/mMole. 
Haptoglobin P r e p a r a t i o n 

Haptoglobin was prepared f o l l o w i n g the method of Chan (54). 

The s t a r t i n g m a t e r i a l was a s c i t e s f l u i d , a r i c h source of h a p t o g l o b i n , 

to which ammonium sulphate was added to give 55 per cent s a t u r a t i o n . 

The p r e c i p i t a t e was d i s s o l v e d i n 0.01M sodium acetate b u f f e r , pH 4.7, 

and d i a l y z e d a g a i n s t t h i s b u f f e r to remove the sulphate. Any p r e c i p i ­

t a t e forming during d i a l y s i s was removed by c e n t r i f u g a t i o n and the 

supernatant a p p l i e d to a DEAE-cellulose column e q u i l i b r a t ed w i t h 

0.01M sodium acetate b u f f e r at pH 4.7. The column was then washed 

w i t h a l a r g e volume of b u f f e r and then e l u t e d w i t h a grad i e n t of 

0.01M NaCl to 0.3M NaCl i n the same acetate b u f f e r . The p r o t e i n peak 

obtained was then d i a l y z e d against d i s t i l l e d water and l y p o h i l i z e d . 

The p r o t e i n was then d i s s o l v e d 0.05M ammonium acetate at pH 8.6 and 

run on a Sephadex G-200 column. One major peak of hapt o g l o b i n was 

u s u a l l y obtained w i t h a minor f a s t e r - r u n n i n g peak of caeruloplasmin 

and a minor slower-running peak of albumin and postalbumin. The 



h a p t o g l o b i n was then c h a r a c t e r i z e d f o r p u r i t y and hemoglobin b i n d i n g 

by s t a r c h g e l e l e c t r o p h o r e s i s (54) or by polyacrylamide d i s c g e l 

e l e c t r o p h o r e s i s . 
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HAPTOGLOBIN DOUBLE HEMOGLOBIN (Hb.Hb) REACTION 

Introduction 

Human haptoglobin of phenotype 1-1 i s constructed of two d i s ­

s i m i l a r p a i r s of polypeptide chains held together by disulphide 

bonds (12). The smaller a-chains have a molecular weight of 8,800 (92) 

while the l a r g e r , carbohydrate-containing 3-chains, possess a molecular 

weight of 40,000 to 43,000 (28,29,30) f o r a t o t a l of 98,000 ± 1,000 f o r 

the i n t a c t haptoglobin 1-1 molecule (28,30). The o v e r a l l s tructure of 

haptoglobin 1-1 thus bears a strong resemblance to that of immuno-

gl o b i n G. Since the complete amino acid sequence of haptoglobin a-

chains has been determined and a d e t a i l e d comparison between t h i s sequence 

and those of a s e r i e s of Bence-Jones proteins indicated homology between 

portions of the haptoglobin a-chains and Bence-Jones sequences (26), 

i t i s reasonable to examine whether haptoglobin and the immunoglobins 

possess any f u n c t i o n a l s i m i l a r i t i e s . The major function of hapto­

globin appears r e l a t e d to i t s remarkable property of binding hemoglobin 

extremely t i g h t l y and s p e c i f i c a l l y g i ving r i s e to a complex of M.W. 

163,000 with a stoichiometry of 65,000 gm of hemoglobin to 98,000 gm 

of haptoglobin 1-1 (4). Since hemoglobin i s normally contained with­

i n the red blood c e l l s i t can be considered that when i t i s released 

by hemolysis into the plasma, the l o c a t i o n of haptoglobin, i t becomes 

a p r o t e i n f o r e i g n to that p a r t i c u l a r compartment of the body. 



Thus hapt o g l o b i n i n complexing w i t h i t acts i n a manner analogous to 

that of an antibody b i n d i n g to a f o r e i g n p r o t e i n . Thus, i n some ways, 

hap t o g l o b i n can be considered f u n c t i o n a l l y as a c o n s t i t u t i v e hemoglobin 

antibody although there are a number of d i f f e r e n c e s between hap t o g l o b i n 

1-1 and immunoglobulin G (IgG). These i n c l u d e d i f f e r e n t s i t e s of 

s y n t h e s i s ( l i v e r and lymphoid t i s s u e r e s p e c t i v e l y ) , i s o e l e c t r i c p o i n t s , 

and molecular weights of the l i g h t chains (97,98) as w e l l as the 

absence of complement f i x a t i o n by the hemoglobin-haptoglobin complexes 

(99). The 1:1 s t o i c h i o m e t r y of the hemoglobin-haptoglobin complex 

would, at f i r s t s i g h t , suggest that h a p t o g l o b i n might possess only a 

s i n g l e b i n d i n g s i t e f o r hemoglobin, a c l e a r d i f f e r e n c e from antibody 

molecules such as IgG which are b i v a l e n t towards antigens. However, 

L a u r e l l (69) found upon adding l e s s than s t o i c h o m e t r i c amounts of 

hemoglobin to h a p t o g l o b i n that a d i s t i n c t i n termediate could be 

observed upon e l e c t r o p h o r e s i s and p o s t u l a t e d that t h i s complex con­

s i s t e d of a h a l f molecule of hemoglobin bound to one molecule of 

h a p t o g l o b i n (100). In more recent s t u d i e s Hamaguchi (70) has p u r i f i e d 

t h i s intermediate and has found that i t s molecular weight i s 140,000 

and i t s s t o i c h i o m e t r y indeed 1/2 hemoglobin to 1 h a p t o g l o b i n . In 

a d d i t i o n , Nagel and Gibson (71), i n s t u d i e s of the k i n e t i c s of the 

hemoglobin-haptoglobin r e a c t i o n have found evidence that the combination 

of h a p t o g l o b i n i s not w i t h i n t a c t hemoglobin tetramers but w i t h e i t h e r 

(a3) dimers or w i t h f i r s t a and then 3 hemoglobin chain monomers. 

In order to gain f u r t h e r i n s i g h t i n t o the number of b i n d i n g 

s i t e s i n h a p t o g l o b i n , the r e a c t i o n between c o v a l e n t l y - l i n k e d double 
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hemoglobin molecues (having e i g h t chains) and ha p t o g l o b i n has been 

s t u d i e d . Riggs (93) has shown that when the hemoglobin of c e r t a i n 

s t r a i n s of mice i s allowed to stand i n a i r , d i s u l p h i d e bonds can form 

between f r e e s u l p h y d r y l groups of c y s t e i n e residues i n the 8 chains 

g i v i n g r i s e to hemoglobin octamers (a^ 81+) i n which each p a i r of B 

chains i s connected by a s i n g l e , i n t e r m o l e c u l a r symmetrical d i s u l p h i d e 

bond. In t h i s s e c t i o n , such hemoglobin octamers have been found to 

combine r e a d i l y w i t h h a p t o g l o b i n to produce a s e r i e s of aggregates of 

i n c r e a s i n g s i z e which p r e c i t i p a t e at low i o n i c s t r e n g t h i n a manner 

analogous to the p r e c i p i t a t i o n of antigen-antibody complexes. The 

formation of these complexes can most e a s i l y be expl a i n e d i f hapto­

g l o b i n i s b i v a l e n t i n i t s combination w i t h hemoglobin. Treatment of 

these molecular aggregates of ha p t o g l o b i n and octameric hemoglobin 

w i t h mercaptoethanol converts them to the usu a l s i n g l e hemoglobin-

h a p t o g l o b i n complexes. 

P r e c i p i t a t i o n Studies 

When s o l u t i o n s of mouse double hemoglobin (Hb.Hb) were mixed 

w i t h each of the three major ha p t o g l o b i n phenotypes (Hp 1-1, Hp 2-1, 

Hp 2-2) p r e c i p i t a t e s formed when the input r a t i o s of the two p r o t e i n s 

were w i t h i n c e r t a i n l i m i t s , a c l e a r d i f f e r e n c e from the r e a c t i o n of 

hap t o g l o b i n w i t h s i n g l e hemoglobin molecules which y i e l d s o n ly s o l u b l e 

complexes (55). Two s e r i e s of experiments were conducted; i n the f i r s t , 

( s e r i e s A ) , the c o n c e n t r a t i o n of Hb.Hb remained constant and the hapto­

g l o b i n c o n c e n t r a t i o n was v a r i e d , w h i l e i n the second, ( s e r i e s B), 
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in c r e a s i n g concentrations of Hb.Hb were added to a constant amount of 

haptoglobin. These mixtures were allowed to stand f o r several hours 

at 4° C. The extent of p r e c i p i t a t i o n i n se r i e s A was followed by 

measuring the decrease of absorbance due to Hb.Hb at 407 nm i n the super­

natant a f t e r c e n t r i f u g a t i o n of the p r e c i p i t a t e . The extent of p r e c i p i ­

t a t i o n was dependent upon i o n i c strength, there being l i t t l e p r e c i p i t a t e 

i n 0.2 M NaCl. However i n the b u f f e r that was r o u t i n e l y employed, 4 mM 

sodium phosphate, pH 6.2 there was extensive p r e c i p i t a t i o n . In Figure 

5, the p r e c i p i t a t i o n curves i n s e r i e s A of the three common haptoglobin 

phenotypes with Hb.Hb show a close resemblance to c l a s s i c a l antibody-

antigen p r e c i p i t a t i o n curves. In c a l c u l a t i n g the molar input r a t i o s 

of the three haptoglobin phenotypes and Hb.Hb i t i s necessary to take 

account of the f a c t that while Hp 1-1 i s a monomeric p r o t e i n of mole­

cular weight (98,000), Hp 2-1 and Hp 2-2 both e x i s t as a s e r i e s of 

stable polymers of increasing s i z e (98). However i t has been shown that 

the binding capacity per gram of each phenotype of haptoglobin i s 

v i r t u a l l y i d e n t i c a l (4) and that 1 mole of hemoglobin i s bound per 

98,000 gms of haptoglobin of any of the three phenotypes. In the case 

of Hb.Hb, whose molecular weight i s 130,000, i t appears that the species 

combining with haptoglobin i s not the f u l l double molecule but rather, 

as with the si n g l e molecules of human hemoglobin, there i s f i r s t cleavage. 

For Hb.Hb t h i s would produce disulphide l i n k e d h a l f hemoglobin molecules 

(aB-8a) as shown i n Figure 6. In accordance with t h i s scheme of cleav­

age the haptoglobin-hemoglobin r a t i o s are cal c u l a t e d i n every case on 

the basis of the 'monomeric u n i t ' of haptoglobin and the (aB-ga) molecules 
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F i g u r e 5 P r e c i p i t a t i o n curves w i t h the c o n c e n t r a t i o n 

of Hb.Hb maintained constant. The o r d i n a t e 

i s one-half the absorbance of the o r i g i n a l 

Hb.Hb s o l u t i o n minus the absorbance of the 

supernatant s o l u t i o n and t h e r e f o r e represents 

the amount of Hb.Hb p r e c i p i t a t e d . Hapto­

g l o b i n s o l u t i o n s were prepared by d i l u t i o n s of 

a concentrated h a p t o g l o b i n s o l u t i o n to f i n a l 

volumes of 0.5 ml; to each of these s o l u t i o n s 

0.5 ml of the Hb.Hb s o l u t i o n was added. In 

curve (a) the f i n a l c o n c e n t r a t i o n s are as 

f o l l o w s : Hb.Hb 0.16 mg/ml, Hp 1-1 v a r i e d from 

a h i g h c o n c e n t r a t i o n of 1.7 mg/ml down to 0.027 

mg/ml. In curve (b) Hb.Hb 0.20 mg/ml, Hp 2-1 

v a r i e d from 1.1 mg/ml to 0.018 mg/ml. In 

curve (c) Hb.Hb 0.20 mg/ml, Hp 2-2 1.4 mg/ml 

to 0.022 mg/ml. 
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F i g u r e 6 A scheme f o r the cleavage of Hb and Hb.Hb i n t o h a l v e s ; 
the d i s u l p h i d e bond i s between c y s t e i n e s at p o s i t i o n 
13 i n the 3-chain i n BALB/cJ mice. 
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having molecular weights of 98,000 and 65,000 r e s p e c t i v e l y . The r a t i o s 
1% are also c a l c u l a t e d on the basis of an E ° _ of 12.0 for the hapto-280nm 

globins and 17.5 for the mouse hemoglobin. 

In the s e r i e s B experiments, the haptoglobin concentration was 

kept constant and increasing concentrations of Hb.Hb added. P r e c i p i t a ­

t i o n was again observed and, as may be seen i n the photograph, (Figure 7), 

was dependent on the input r a t i o s of the combining pr o t e i n s . At both 

high (0.96) and low (0.015) r a t i o s of haptoglobin to a3-Ba, there was 

l i t t l e p r e c i p i t a t e but i n the range 0.06-0.48, p r e c i p i t a t i o n was exten­

s i v e . 

Acrylamide Gel E l e c t r o p h o r e s i s 

When solutions of Hb.Hb and haptoglobin 1-1 i n 0.112 M T r i s , 

0.062 M b o r i c a c i d and 2.5 mM disodium EDTA at pH 8.6 were mixed no 

p r e c i p i t a t i o n was observed. These soluble complexes were then examined 

by acrylamide d i s c gel electrophoresis i n the above b u f f e r . In 

Figure 8a, i t may be seen that a s e r i e s of hemoglobin-haptoglobin 

complexes appears with the r e l a t i v e concentration of each complex w i t h i n 

the s e r i e s depending upon the input r a t i o of the two p r o t e i n s . At high 

r a t i o s of haptoglobin/ag-ga (3.0-6.0) the major complexes migrated into 

the gels but as the r a t i o approaches that at which maximal p r e c i p i t a t i o n 

occurred at lower i o n i c strength, an increasing proportion of the com­

plexes barely entered the g e l s , thus behaving as i f they were very l a r g e . 

In Figure 8b, an enlarged photograph of the f i r s t s i x gels shows that 

up to s i x separate complexes of decreasing m o b i l i t y are resolved. 
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F i g u r e 7 A photograph (by r e f l e c t e d l i g h t ) of the 

t u r b i d i t y observed s h o r t l y a f t e r mixing 

Hb.Hb and Hp. To o b t a i n the p r e c i p i t a t e s 

a concentrated Hb.Hb s o l u t i o n was d i l u t e d 

to a f i n a l volume of 0.5 ml and added to 

0.5 ml of a hap t o g l o b i n s o l u t i o n . The 

f i n a l c o n c e n t r a t i o n s of Hb.Hb v a r i e d from 

2.3 mg/ml to 0.036 mg/ml w h i l e h a p t o g l o b i n 

1-1 was maintained constant a t 0.05 mg/ml. 

The white areas a t the bottom of the tubes 

are caused by r e f l e c t i o n from the g l a s s and 

are not i n d i c a t i v e of p r e c i p i t a t i o n . 
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F i g u r e 8a D i s c g e l e l e c t r o p h o r e s i s of mixtures of 

Hp and Hb.Hb. S o l u t i o n s were prepared 

by mixing v a r y i n g p r o p o r t i o n s of an 11.5 

mg/ml s o l u t i o n of Hb.Hb and a 10 mg/ml 

s o l u t i o n of Hp. The g e l s contained 5% 

acrylamide and 0.25% N,N' methylene-

b i s a c r y l a m i d e and were 0.5 x 7.0 cm. 

E l e c t r o p h o r e s i s was performed f o r 1.5 

hours at 200 v o l t s at 4° C. 
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F i g u r e 8b Enlarged photograph of the f i r s t 6 g e l s 

i n F i g u r e 8a. 



1 2 3 



Q u a l i t a t i v e l y , i t may be seen that as the p r o p o r t i o n of Hb.Hb i s 

increased each complex reaches a maximum c o n c e n t r a t i o n and then i s 

r e p l a c e d by a more s l o w l y running complex u n t i l the m a j o r i t y of the 

complexes are too l a r g e to migrate a p p r e c i a b l y i n t o the g e l . A 

s e r i e s of complexes c h a r a c t e r i z e d by i n c r e a s i n g sedimentation co­

e f f i c i e n t s has a l s o been observed by u l t r a c e n t r i f u g a t i o n of mixtures 

of h a p t o g l o b i n and Hb.Hb. The best evidence that the l a r g e s t species 

are found at r a t i o s of h a p t o g l o b i n to aB-Ba near 1.0 was obtained from 

3.5% acrylamide d i s c g e l s of l a r g e r pore s i z e . F i g u r e 9 shows that 

at a h a p t o g l o b i n to ag-gct r a t i o of 0.74 to 1.1 the major p r o t e i n band 

i s at the o r i g i n w h i l e at r a t i o s of 0.50 and 1.5 a g r e a t e r p r o p o r t i o n 

of the complexes runs w e l l i n t o the g e l s . Using 2.5% g e l s i n p l e x i ­

g l a s s tubes (101) s i m i l a r r e s u l t s have a l s o been obtained. Although 

the slow-running m a t e r i a l at the o r i g i n now enters the g e l , a s e r i e s 

of d i s c r e t e bands proceeding from the o r i g i n of the g e l s out to the 

p o s i t i o n of h a p t o g l o b i n or Hb.Hb cannot be observed because of s t r e a k i n g . 

This s t r e a k i n g a l s o prevents the o b s e r v a t i o n of a s e r i e s of bands i n 

the g e l s where Hb.Hb i s i n excess. However at r a t i o s near 1.0 there 

i s a d e f i n i t e i n c r e a s e i n s t a i n i n g of complexes, which although s t r e a k y , 

run much c l o s e r to the o r i g i n of the g e l and hence behave as i f they 

are much l a r g e r . 

I t would be expected that i n any complex formation between two 

p r o t e i n s each possessing two b i n d i n g s i t e s that the l a r g e s t complexes 

would be formed when an equal number of moles of each b i v a l e n t r e a c t i n g 

s p e c i e s i s present. In the present case i t has been assumed that the 
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Figure 9 Disc g e l electrophoresis of solutions prepared 

by mixing a 12.5 mg/ml s o l u t i o n of Hb.Hb with 

a 14 mg/ml s o l u t i o n of Hp 1-1. The gels con­

tained 3.5% acrylamide and 0.18% N,N' methylene-

bisacrylamide and electrophoresis was performed 

at 4° C for 1.3 hours at 200 v o l t s and 3.5 ma 

per g e l . 
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r e a c t i n g species from Hb.Hb i s a p a i r of d i s u l p h i d e l i n k e d ct3 u n i t s , 

otB-Bot, of molecular weight 65,000. Thus the l a r g e s t complexes should 

occur at a r a t i o of 1.0 and t h i s appears c o n s i s t e n t w i t h the f a c t that 

the complexes formed at t h i s r a t i o cannot enter even the l a r g e pored 

g e l s . In c o n t r a s t to these f i n d i n g s , maximal p r e c i p i t a t i o n was seen 

at r a t i o s of 0.2-0.6. Thus i t appears that complexes r i c h e r i n aB-ga 

tetramers are more i n s o l u b l e i n 4 mM phosphate at pH 6.2 than those 

l a r g e r complexes i n which the amount of hap t o g l o b i n and ag -3a i s more 

n e a r l y equal. 

The behaviour observed upon mixing h a p t o g l o b i n w i t h Hb.Hb i s 

i n strong c o n t r a s t to i t s r e a c t i o n w i t h normal hemoglobin where only 

two s o l u b l e complexes are formed, an intermediate of s t o i c h i o m e t r y 

1/2 Hb/1 Hp and the f u l l complex 1 Hb/1 Hp. Since the i n t e r m o l e c u l a r 

d i s u l p h i d e s of Hb.Hb can be cleaved under m i l d c o n d i t i o n s by 

mercaptoethanol (93), a 20 y l a l i q u o t of haptoglobin/Hb.Hb mixtures i n 

Tris-borate-EDTA, pH 8.6, was reacted w i t h 2 y l of 0.5 M mercaptoetha­

n o l f o r 1 hour at' 25° C fo l l o w e d by the a d d i t i o n of 2 y l of 0.6 M 

iodocetamide f o r 30 minutes at 25° C. 

In F i g u r e 10,the s e r i e s of ha p t o g l o b i n (aB-Ba) complexes formed 

at r a t i o s of 3.4 to 1.0 (Gel 6) and 1.1 to 1.0 (Gel 5) gave r i s e upon 

treatment w i t h mercaptoethanol to the p a t t e r n s seen i n Gels 2 and 1 

r e s p e c t i v e l y . At the higher input r a t i o of 3.4 (Gel 6) there i s s t i l l 

excess uncombined haptoglobin as w e l l as a s e r i e s of complexes which 

move w e l l i n t o the g e l . I t i s l i k e l y t hat these complexes are of the 

type depicted i n Fi g u r e 11a as Complex 1 and Complex 2. As i n d i c a t e d 



54 

Figure 10 Disc gels (5%) showing the e f f e c t of mercaptoethanol on 
Hp-(a$-Ba) complexes. Solutions were prepared by mixing 
an 8 mg/ml s o l u t i o n of Hb.Hb and a 14 mg/ml s o l u t i o n of 
Hp. Al i q u o t s were removed and then mercaptoethanol and 
iodoacetamide were added (see t e x t ) . E l e c t r o p h o r e s i s was 
performed f o r 2.3 hours at 200 v o l t s . Gel 3 shows the 
bands produced by mixing s i n g l e mouse hemoglobin molecules 
with excess haptoglobin. Gel 4 shows s i n g l e mouse 
hemoglobin. 



(a) Haptoglobin/(ot,P—s—s—P,a) input ratio = 3.4/1.0 
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Figure 11 A scheme to illustrate the possible complexes of haptoglobin 
with double hemoglobin at (a). High input ratio (b). Equi-
molar input ratio. 



i n F i g u r e 11a, a mixture of f r e e h a p t o g l o b i n , Complex 1 and Complex 2 

would give r i s e , upon treatment w i t h 3-mercaptoethanol predominantly 

to the 1/2 HbrlHp complex w i t h a smaller amount of the f u l l complex. 

This p r e d i c t i o n i s c o n s i s t e n t w i t h the p a t t e r n observed i n Fi g u r e 10, 

Gel 2. In c o n t r a s t , at the input r a t i o of 1.1/1.0, the complexes are 

very much l a r g e r (Figure 10, Gel 5) and upon t h i o l treatment (Figure 

10, G e l 1) gi v e r i s e almost q u a n t i t a t i v e l y to the f u l l Hb.Hp complex. 

Since the 1/2 Hb:Hp complex comes only from the ends of polymeric 

chains of Hb.Hb/Hp complexes, the absence of t h i s species i n Fi g u r e 10, 

Gel 1 and the predominance of the f u l l Hb:Hp complex i n d i c a t e s that 

the slow-running polymeric complexes of Hb.Hb/Hp formed at equimolar 

input r a t i o s of Hb.Hb and Hp are e i t h e r very l o n g , as de p i c t e d i n 

Fi g u r e l i b or a l t e r n a t i v e l y these complexes could be c i r c u l a r i n which 

case, the f u l l Hb:Hp complex would be the s o l e product. At the moment 

i t i s not p o s s i b l e to choose between these a l t e r n a t i v e s . 

In most antigen-antibody r e a c t i o n s , both antige n and antibody 

possess at l e a s t two b i n d i n g s i t e s . This leads to the formation of 

l a r g e , three-dimensional complexes which are o f t e n i n s o l u b l e . The 

i n t e r a c t i o n of hemoglobin w i t h h a p t o g l o b i n at f i r s t s i g h t appears not 

to be of t h i s type s i n c e the complex i s s o l u b l e and i t s o v e r a l l s t o i ­

chiometry i s c o n s i s t e n t w i t h a s i n g l e b i n d i n g s i t e on each p r o t e i n . 

However, the f a c t that at r a t i o s of Hb to Hp of l e s s than one an 

inter m e d i a t e complex of s t o i c h i o m e t r y 1/2 Hb/1 Hp i s seen suggests 

that only one of the two s i t e s i s occupied by a h a l f molecule of hemo­

g l o b i n and that the f u l l complex would comprise two h a l f molecules of 



hemoglobin combined at two separate s i t e s . Thus hemoglobin, a 

symmetrical and b i v a l e n t molecule, d i s s o c i a t e s i n t o two monovalent 

halves upon combination w i t h h a p t o g l o b i n . There i s , t h e r e f o r e , no 

p o s s i b i l i t y of forming l a r g e complexes as i n the case of an an t i g e n -

antibody r e a c t i o n . 

In the present study, a hemoglobin has been examined i n which 

the two halves of the molecule are c o v a l e n t l y l i n k e d by a d i s u l p h i d e 

bond so that i t behaves as a b i v a l e n t molecule. When ha p t o g l o b i n 

combines w i t h the b i v a l e n t hemoglobin a n o t i c e a b l y d i f f e r e n t behavior 

i s seen. Large complexes are formed which p r e c i p i t a t e at low i o n i c 

s t r e n g t h i n a manner very s i m i l a r to that of antigen-antibody r e a c t i o n s . 

As soon as the covalent l i n k a g e between the 8 chains of Hb.Hb i s broken 

the l a r g e complexes disappear and are replaced by the simple ones. 



IV 

THE DISULPHIDES OF HAPTOGLOBINS 

- STUDIES ON CYANOGEN BROMIDE REACTIONS WITH 

HAPTOGLOBIN AND ON HALF-HAPTOGLOBIN 

I n t r o d u c t i o n 

The a and B chains of the human haptoglobins are h e l d together 

by d i s u l p h i d e bonds (12). T h i s f a c t was based on the observations that 

h a p t o g l o b i n 1-1 migrated as a s i n g l e band on g e l e l e c t r o p h o r e s i s i n 8M 

urea but when very low concentrations of B-mercaptoethanol, a reagent 

which i s known to break d i s u l p h i d e bonds, were added the h a p t o g l o b i n 

was s p l i t i n t o i t s a and B chains. S i m i l a r l y the polymeric hapto­

g l o b i n s (2-1 and 2-2) maintained t h e i r s t r u c t u r e i n 8M urea but were 

s p l i t i n t o a and B chains by mercaptoethanol. 

As discussed p r e v i o u s l y Kauffman and Dixon i s o l a t e d an a-a' d i ­

s u l p h i d e peptide a f t e r pepsin d i g e s t s of h a p t o g l o b i n 2-1. The s t r u c t u r e 

of t h i s peptide i s shown i n F i g u r e 2 (page 8). In a d d i t i o n , Smithies, 

C o n n e l l and Dixon (76) have presented evidence f o r the e x i s t e n c e of an 

i n t r a c h a i n d i s u l p h i d e i n the a chain of h a p t o g l o b i n . A f t e r r e d u c t i o n 

of h a p t o g l o b i n 1-1 w i t h very low concentrations of mercaptoethanol, 

they detected a band a f t e r e l e c t r o p h o r e s i s which migrated s l i g h t l y 

f a s t e r than the completely-reduced a c h a i n . Thus t h i s p o l y p e p t i d e 

appeared to migrate f a s t e r than the f u l l y - r e d u c e d a c h a i n of h a p t o g l o b i n 

because i t contained an i n t r a c h a i n d i s u l p h i d e and thus had a more compact 



conformation. However, s i n c e i n these experiments no mercaptoethanol 

was i n c l u d e d i n the g e l b u f f e r , such a loop d i s u l p h i d e might have been 

formed by o x i d a t i o n during e l e c t r o p h o r e s i s and so need not n e c e s s a r i l y 

be present i n n a t i v e h a p t o g l o b i n . 

The b i n d i n g of the hapt o g l o b i n chains s o l e l y by noncovalent 

f o r c e s appears very u n l i k e l y because of the s t a b i l i t y of the molecule 

under a v a r i e t y of denaturing c o n d i t i o n s . In a d d i t i o n to i t s m i g r a t i o n 

as a s i n g l e band i n 8M urea, h a p t o g l o b i n 1-1 maintains i t s molecular 

weight a f t e r complete s u c c i h y i a t i o n (54), a very powerful method f o r 

d i s r u p t i n g n on-covalently bonded subunits (102), and i t i s not d i s s o c ­

i a t e d i n 0.1% sodium dodecyl sulphate (SDS) (96). A l s o the ha p t o g l o b i n 

polymers main t a i n t h e i r polymeric s t r u c t u r e i n 8M urea, a f t e r s u c c i n y l a -

t i o h (54) or i n 0.1% SDS. 

In 1961 (103) Dixon and C b n n e l l showed that when hapt o g l o b i n was 

t r e a t e d w i t h s u l p h i t e and parahydroxymercuribenzoate (pHMB) a l i m i t e d 

cleavage of d i s u l p h i d e bonds occurred. The product migrated i d e n t i c a l l y 

w i t h h a p t o g l o b i n i n borate s t a r c h g e l s but i n the a c i d i c 8M urea g e l s i t 

moved s l i g h t l y more r a p i d l y and e x h i b i t e d a broader band than hapto-

g l b b i i n Since there was only one product formed i t appeared that 

h a p t o g l o b i n was being s p l i t i n t o symmetrical h a l v e s . This i n t e r p r e t a ­

t i o n has been confirmed by molecular weight s t u d i e s oh the " h a l f - h a p t o ­

g l o b i n molecule" u s i n g g e l e l e c t r o p h o r e s i s i n sodium dodecyl sulphate 

(104,96). A l s o the very i n t e r e s t i n g o b s e r v a t i o n was made that i f the 

m u l t i p l e h a p t o g l o b i n polymers were t r e a t e d w i t h s u l p h i t e they were 

converted to a s i n g l e product which a l s o appeared to c o n t a i n a hapto­

g l o b i n l i g h t and heavy c h a i n (103). 



Since the bond cleaved by s u l p h i t e and p-chloromercurisulphonate 

(pCMS) must be symmetrical to give r i s e to symmetrical h a l v e s , i t 

seemed l o g i c a l that the s u l p h i t e must be s p l i t t i n g the ct-a' d i s u l p h i d e 

and thus breaking h a p t o g l o b i n i n t o h a l v e s . I t a l s o appeared that t h i s 

p a r t i c u l a r d i s u l p h i d e was r e s p o n s i b l e f o r ha p t o g l o b i n p o l y m e r i z a t i o n . 

Thus i t was p o s s i b l e to i n v e s t i g a t e the d i s u l p h i d e s of h a p t o g l o b i n 
35 

f u r t h e r by u s i n g S - s u l p h i t e f o r cleavage and then determining i n 

which p a r t of the molecule the r a d i o a c t i v i t y was l o c a t e d (96). This 

approach was attempted by t r e a t i n g the h a l f - h a p t o g l o b i n molecule, which 
35 

had been prepared w i t h S - s u l p h i t e , under more r i g o r o u s c o n d i t i o n s 

w i t h 8M urea and u n l a b e l l e d s u l p h i t e . In t h i s way, h a p t o g l o b i n was 

s p l i t i n t o i t s heavy and l i g h t chains which were subsequently separated 
on Sephadex G-75 (28). The r i g o r o u s c o n d i t i o n s l e f t o n l y a s m a l l amount 

35 
of the S - s u l p h i t e i n the ha p t o g l o b i n and t h i s was found i n the 3 
c h a i n f r a c t i o n . Thus at f i r s t s i g h t i t seemed that the a-a' d i s u l p h i d e 

35 

was not being s p l i t by S - s u l p h i t e . 

I t appeared p o s s i b l e to analyze the nature of the a-3 l i n k a g e s 

and a-a' l i n k a g e s f u r t h e r because the a ch a i n of h a p t o g l o b i n contained 

no methionine (28) . Thus i f one cleaved the ha p t o g l o b i n molecule w i t h 

a reagent which s p l i t peptide bonds at methionine r e s i d u e s the 3 c h a i n 

of h a p t o g l o b i n would be cleaved i n t o a s e r i e s of s m a l l e r fragments but 

the a c h a i n would remain i n t a c t . A l s o , s i n c e the d i s u l p h i d e bonds i n 

ha p t o g l o b i n would s t i l l be i n t a c t , one could study the 3 c h a i n peptide 

fragment(s) to which the a ch a i n was attached s i n c e the a chain could 

be c h a r a c t e r i z e d a f t e r the fragment c o n t a i n i n g i t was reduced w i t h 
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mercaptoethanol and a l k y l a t e d w i t h iodoacetamide (12). In f a c t , a w e l l 

c h a r a c t e r i z e d reagent f o r cleavage of methionyl p e p t i d e s , cyanogen 

bromide, appears to be w e l l s u i t e d f o r these s t u d i e s (105). 

Cyanogen bromide i s a u s e f u l reagent f o r p r o t e i n s t u d i e s . A l ­

though i t r e a c t s w i t h b a s i c groups i n p r o t e i n s i n a l k a l i , i n a c i d i t 

r e a c t s only w i t h c y s t e i n e and methionine. The r e a c t i o n w i t h c y s t e i n e 

i s a slow o x i d a t i o n to c y s t e i c a c i d and the reagent w i l l not r e a c t w i t h 

carboxymethylcysteine or S-benzylcysteine (106). The r e a c t i o n w i t h 

methionine i n a methionyl peptide r e s u l t s i n the cleavage of a peptide 

bond (Figure 12) and the methionyl r e s i d u e i s converted i n t o an e q u i l i ­

brium mixture of homoseryl and homoseryl l a c t o n e r e s i d u e s at the 

c a r b o x y l - t e r m i n a l p o r t i o n of the cleaved p e p t i d e . The mixture can be 

converted to homoserine la c t o n e by heating i n a c i d or can be opened to 

homoserine by treatment w i t h a l k a l i at room temperature. The reagent 

has now been used w i t h success on over 20 p r o t e i n s and f r e q u e n t l y i s 

the reagent of choice f o r l i m i t e d cleavage of peptide bonds. 

During t h i s i n v e s t i g a t i o n of the r e a c t i o n of cyanogen bromide 

w i t h haptoglobins i t was not known that the peptide Th3A i s o l a t e d by 

Kauffman and Dixon was i n f a c t a peptide from the a chain of hapto­

g l o b i n (see I n t r o d u c t i o n , page 8 ) , and that t h i s peptide was l i n k e d 

to the 6 chain of h a p t o g l o b i n . However, the s t u d i e s to be d e s c r i b e d 

are i n complete agreement w i t h t h i s l i n k a g e and, as w i l l be shown, do 

con f i r m the d i s u l p h i d e s presented i n the I n t r o d u c t i o n . 
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F i g u r e 12 The r e a c t i o n of cyanogen bromide 
w i t h a methionyl peptide. 
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Nature of the Reaction as Examined by Disc Gels 

Cyanogen bromide cleavages were attempted i n 70% formic acid 

and i n 0.01 or 0.1M sodium acetate buffers pH 4.7. The former has been 

used s u c c e s s f u l l y on IgG by Edelman (107) and the l a t t e r was attempted 

because i t was thought p o s s i b l e to get a more l i m i t e d cleavage under 

conditions where the pro t e i n maintains a more compact three-dimensional 

s t r u c t u r e . Also haptoglobin r e t a i n s hemoglobin-binding a b i l i t y at 

pH 4.7 and so i t might be po s s i b l e to obtain a fragment with hemo­

globin-binding a b i l i t y . 

The reactions at pH 4.7 were done with 0.01M or 0.1M sodium 

acetate, using Hp concentrations of 1% and CNBr concentrations of 0.5 

or 5%. In both cases the re a c t i o n s o l u t i o n developed a p r e c i p i t a t e 

a f t e r a short time and was not studied f u r t h e r . 

Reactions i n 70% formic a c i d were analyzed by d i s c gel e l e c t r o ­

phoresis as described e a r l i e r . Samples were dissolved i n T r i s - g l y c i n e 

4 to 5 times more concentrated than the gel b u f f e r . The r e s u l t s shown 

iri Figure 13 demonstrate that one main slow-running band and two f a s t -

running bands are formed by the r e a c t i o n and the pattern of bands appears 

s i m i l a r i n d i f f e r e n t haptoglobin types (Fig. 13a Gels 1 and 2). When 

electrophoresis i s c a r r i e d out f o r a longer time the slow-running band 

resolves into a s e r i e s of mult i p l e bands (Figure 13b Gels 3,4,5). 

These m u l t i p l e bands form a c h a r a c t e r i s t i c pattern with darker 

bands at the center and f a i n t e r bands at the outside. Because of t h i s 

v a r i a t i o n i n i n t e n s i t y of the bands they form a gaussian d i s t r i b u t i o n 

and f o r s i m p l i c i t y w i l l subsequently be r e f e r r e d to as 'gaussian' bands. 
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Figure 13 Acrylamide d i s c gel electrophoresis (7.5%) 

of the re a c t i o n products of cyanogen bromide 

with haptoglobins. 

Figure 13a shows the r e s u l t s a f t e r e l e c t r o ­

phoresis f o r 10 minutes at 300 v o l t s 

i n 0.05M gly c i n e , 0.01M T r i s pH 8.5. 

Figure 13b shows the r e s u l t s when e l e c t r o ­

phoresis i s c a r r i e d out for 75 minutes, 

Figure 13c - the acrylamide gels contain 8M urea 

and electrophoresis i s f o r 40 minutes 

at 300 v o l t s . Gels 1, 5, and 6 show 

CNBr Hp 1-1; 2, 3, and 8 show CNBr 

Hp 2-2; and 4 and 7 show CNBr Hp 2-1. 

Gel length 5 cm. 
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A s e r i e s of bands w i t h a s i m i l a r d i s t r i b u t i o n has been obtained a f t e r 

s t a r c h g e l e l e c t r o p h o r e s i s of the Hp 8 chain (76) and i t appears that 

a s i m i l a r phenomenon i s r e s p o n s i b l e f o r the p a t t e r n of banding i n both 

cases. Other s t u d i e s i n t h i s l a b o r a t o r y suggest that the p a t t e r n may 

be caused by a v a r i a b l e degree of attachment of s i a l i c a c i d r esidues 

to the h a p t o g l o b i n 3 chain (32). 

The CNBr r e a c t i o n products were a l s o analyzed by d i s c g e l 

e l e c t r o p h o r e s i s i n T r i s - g l y c i n e b u f f e r c o n t a i n i n g 8M urea (Figure 13c). 

Ten m i c r o l i t e r s of 2% (v/w) s o l u t i o n s of the r e a c t i o n mixture were 

a p p l i e d to the g e l s . The r e s o l u t i o n of bands i n the 8M urea g e l s 

appeared to be b e t t e r than i n the g e l s which contained no urea. 

I n a l l of the d i s c g e l s observed the p a t t e r n s obtained from Hp 

1-1, 2-1, and 2-2 were s i m i l a r , but the r e g i o n of maximum s t a i n i n g , 

although composed of a complex of bands, was i n d i f f e r e n t p o s i t i o n s i n 

the three h a p t o g l o b i n types (Figure 13c). However much c l e a r e r d i f f e r ­

ences were seen i n l a t e r s t u d i e s u s i n g s t a r c h g e l s to r e s o l v e the 

cyanogen bromide fragments (as discussed below). 

Since the a h a p t o g l o b i n chains should not be cleaved by cyanogen 

bromide and s i n c e there are only 4 methionines i n the 8 chain of hapto­

g l o b i n (28), i t was l o g i c a l to i n v e s t i g a t e more c l o s e l y the r e a c t i o n of 

cyanogen bromide w i t h the h a p t o g l o b i n polymers to see whether or not a 

polymeric s e r i e s was present a f t e r the r e a c t i o n of the h a p t o g l o b i n 

polymers w i t h cyanogen bromide. 

In order to examine the e f f e c t of cyanogen bromide on h a p t o g l o b i n 

polymers more c l o s e l y and to c h a r a c t e r i z e the r e a c t i o n f u r t h e r , a time 



study of the r e a c t i o n w i t h h a p t o g l o b i n 2-1 was performed (Figure 14). 

The r e a c t i o n was stopped at v a r i o u s times by a l Q - f o l d d i l u t i o n of the 

r e a c t i o n mixture and subsequent f r e e z i n g and l y o p h i l i z a t i o n . With the 

5 minute sample a s m a l l amount of r e a c t i o n could be observed (Figure 

14 Gel 2). New bands appeared running s l i g h t l y ahead of each of the 

polymers and these appeared a l s o to form a polymeric s e r i e s . A l s o a 

s m a l l amount of a f a s t - r u n n i n g band appeared. At 20 minutes (Figure 14 

Gel 3) the appearance of t h i s new s e r i e s and a l s o of the f a s t - r u n n i n g 

band was more pronounced. A l s o the m u l t i p l e "gaussian" bands began to 

appear. A f t e r 24 hours t h i s "new s e r i e s " was no longer present w h i l e 

the f a s t - r u n n i n g band remained and a new slow-running d i f f u s e r e g i o n 

was present (Figure 14 Gel 4 ) . 

Starch-Urea Gel Analyses of the R e a c t i o n Products 

Improved r e s o l u t i o n of the CNBr fragments i n pH4 s t a r c h g e l s 

r e l a t i v e to the s e p a r a t i o n i n acrylamde gels was obtained, p a r t l y be­

cause of the g r e a t e r l e n g t h of the s l a b g e l s and p a r t l y because of the 

d i f f e r e n t r e l a t i v e m o b i l i t i e s of the polypeptides at the lower pH. 

CNBr Hp 1-1 (Figure 15 s l o t 3) showed a d a r k - s t a i n i n g f a s t - r u n n i n g band 

not present i n the other haptoglobins (Figure 15 s l o t s 4,5). The 

l a t t e r appeared to have a g r e a t e r p r o p o r t i o n of slower-running bands. 

A f t e r r e d u c t i o n and a l k y l a t i o n , the CNBr Hp 1-1 produced the hapto­

g l o b i n chain (Figure 15 s l o t 6) w h i l e the CNBr Hp 2-1 produced both 
2 2 and a chains (Figure 15 s l o t 7 ) , and CNBr Hp 2-2 produced the a chain 

(Figure 15 s l o t 8 ) . The p r e d i c t i o n that CNBr would not a t t a c k the a 

chains of h a p t o g l o b i n was thus confirmed. 
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Figure 14 Acrylamide d i s c gel a n a l y s i s of the r e a c t i o n 

of CNBr with Hp 2-1 as a fu n c t i o n of time. 

Figure 14a shows the r e s u l t s of elect r o p h o r e s i s 

i n a 4% g e l at 300 v f o r 150 minutes using T r i s -

g l ycine b u f f e r . Figure 14b shows an a n a l y s i s of 

the same samples using 7.5% gels at about 300 v 

f o r 85 minutes. For the 7.5% gels a good separa­

t i o n was achieved by running the elect r o p h o r e s i s 

twice as long as i t takes a marker of bromophenol 

blue to migrate from the top to the bottom of the 

g e l . Gels l a l b , 2a 2b, 3a 3b, 4 a 4b, show the 

r e s u l t s a f t e r r e a c t i o n times of 0 minutes, 5 min­

utes, 20 minutes, and 24 hours r e s p e c t i v e l y . Gel 

length 7 cm. 
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F i g u r e 15 A n a l y s i s of the CNBr Hp r e a c t i o n s u s i n g s t a r c h 

g e l e l e c t r o p h o r e s i s i n 8M urea-formate b u f f e r 

pH 4.0. Gels 1 and 2 show haptoglobins 1-1, 

and 2-1 r e s p e c t i v e l y which have been reduced 

and a l k y l a t e d . Gels 3, 4, and 5 show the 

r e s u l t s of cyanogen bromide r e a c t i o n w i t h 

haptoglobins 1-1, 2-1, and 2-2 r e s p e c t i v e l y . 

Gels 6, 7, and 8 show the CNBr r e a c t i o n products 

of 1-1, 2-1, and 2-2 r e s p e c t i v e l y a f t e r they 

have been reduced and a l k y l a t e d . P r o t e i n con­

c e n t r a t i o n s were; 

samples 1 and 3, 6 to 8, 2% 

samples 3 to 5, 3% 

Samples 6 to 8 were reduced w i t h 0.04M 6 -

mercaptoethanol f o r 30 minutes and a l k y l a t e d w i t h 

O.IM iodoacetamide. 
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In the hope of l o c a t i n g which band(s) contained the a c h a i n s , 

two-dimensional s t a r c h g e l e l e c t r o p h o r e s i s was performed. As shown 

i n F i g u r e 15 (page 70) a s e r i e s of bands was r e s o l v e d i n the CNBr 

haptoglobins and, a f t e r r e d u c t i o n and a l k y l a t i o n , h a p t o g l o b i n a chains 

were obtained. I f a s l i c e of g e l c o n t a i n i n g these CNBr-produced bands 

was removed and t r a n s f e r r e d to another g e l c o n t a i n i n g mercaptoethanol 

w i t h subsequent e l e c t r o p h o r e s i s at r i g h t angles to the f i r s t d i r e c t i o n , 

then any bands which contained the a chains should be reduced by the 

mercaptoethanol i n the second g e l and a chains should appear. By the 

use of a h a p t o g l o b i n marker i n the second dimension i t should be 

p o s s i b l e to a s c e r t a i n which bands were a chain bands and thus which 

band i n the f i r s t dimension contained the h a p t o g l o b i n a ch a i n s . A l l of 

the p o l y p e p t i d e s which c o n t a i n no d i s u l p h i d e s should r e t a i n the same 

m o b i l i t y i n the second dimension as i n the f i r s t . The method i s a 

di a g o n a l technique i n which d i s u l p h i d e - c o n t a i n i n g p o l y p e p t i d e s w i l l 

run o f f the d i a g o n a l . 
f 

In the case of CNBr ha p t o g l o b i n 1-1, a peptide running o f f the 

di a g o n a l w i t h the same m o b i l i t y as the a 1 c h a i n (Figure 16) was observed. 

This a 1 chain was produced by the f a s t - r u n n i n g band i n CNBr Hp 1-1 

which d i d not appear i n the other h a p t o g l o b i n s . Using h a p t o g l o b i n 2-2 

(Figure 17) a s e r i e s of a 2 chains running o f f the d i a g o n a l was obtained. 

Thus a polymeric s e r i e s of bands, w i t h each band i n the s e r i e s c o n t a i n ­

i n g an a c h a i n , appeared to be present i n h a p t o g l o b i n 2-2 a f t e r cyanogen 

bromide cleavage of t h i s polymeric h a p t o g l o b i n . 



Figure 16 Two dimensional urea-formate e l e c t r o p h o r e s i s of CNBr 
Hp 1-1. In the second dimension the g e l con t a i n s 
0.1M mercaptoethanol. 
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F i g u r e 17 Two dimensional s t a r c h g e l a n a l y s i s of CNBr Hp 2-2. 

In the f i r s t dimension the g e l c o n t a i n s aluminum 

l a c t a t e b u f f e r and 8M urea. In the second 

dimension the g e l contains formate b u f f e r , 8M 

urea and 0.2M mercaptoethanol. 



*• CD 

8 M Urea-Aluminum L a c t a t e 



Studies of the Reaction of CNBr w i t h the 

H a l f - H a p t o g l o b i n Molecule 

As discussed p r e v i o u s l y , h a l f - h a p t o g l o b i n (1/2 Hp) can be 

formed by l i m i t e d cleavage of h a p t o g l o b i n w i t h sodium s u l p h i t e and 

p-chloromercurisulphonate and appears to r e s u l t from the s c i s s i o n of 

a l i m i t e d number of d i s u l p h i d e bonds as s u l p h i t e i s known to cleave 

d i s u l p h i d e bonds. Thus the h a l f - h a p t o g l o b i n i s a u s e f u l d e r i v a t i v e 

f o r the study of the p a r t i c u l a r d i s u l p h i d e ( s ) b i n d i n g the two halves 

of the h a p t o g l o b i n molecule. 

F i g u r e 18 shows the r e s u l t s of a s t a r c h - u r e a a n a l y s i s of the 

products obtained a f t e r h a p t o g l o b i n was cleaved w i t h s u l p h i t e and 

p-chloromercurisulphonate (pCMS) according to the method of Rorstad 

and Dixon (96). In agreement w i t h the previous r e s u l t s , the product 

of the r e a c t i o n ( h a l f - h a p t o g l o b i n ) i s seen to migrate more r a p i d l y i n 

the g e l s than h a p t o g l o b i n (Figure 18a). 

The nature of the s p l i t t i n g of h a p t o g l o b i n by sodium s u l p h i t e 

and pCMS has been examined by f u r t h e r c l e a v i n g the h a l f - h a p t o g l o b i n 

w i t h cyanogen bromide i n 70% formic a c i d . H a l f - h a p t o g l o b i n produced 

by the sulphite-pCMS r e a c t i o n w i t h haptoglobin must have e i t h e r a 

s u l p h i t e group or a p-mercurisulphonate group attached to one of i t s 

c y s t e i n e s . The s t a b i l i t y of these two groups when attached to c y s t e i n e s 

i n p r o t e i n s has not been s t u d i e d e x t e n s i v e l y . However, the S-sulpho-

c y s t e i n e group i n S-sulphokeratin i s s t a b l e from pH 1 to pH 9 (108). 
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Fig u r e 18 a) Demonstration of the formation of Hp/2 by s t a r c h - u r e a 
g e l e l e c t r o p h o r e s i s . S l o t 1, h a l f - h a p t o g l o b i n ; s l o t 
2, ha p t o g l o b i n . 

b) Comparison of the r e a c t i o n products of Hp 1-1 and Hp 12 
w i t h CNBr by s t a r c h g e l e l e c t r o p h o r e s i s i n formate-urea. 
S l o t 1, CNBr ha p t o g l o b i n ; s l o t s 2 and 3, CNBr h a l f -
h a p t o g l o b i n . 
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F i g u r e 18b compares the peptides produced by the r e a c t i o n of 

cyanogen bromide w i t h half-Hp 1-1 ( s l o t s 2 and 3) w i t h the peptides 

produced by the r e a c t i o n w i t h Hp 1-1 ( s l o t 1 ) . A l l of the fragments 

i n the ha p t o g l o b i n 1-1 r e a c t i o n mixture appeared to be present i n the 

h a l f - h a p t o g l o b i n mixture. However, the f a s t - r u n n i n g , d a r k - s t a i n i n g band 

appeared to be much f a i n t e r i n the h a l f - h a p t o g l o b i n r e a c t i o n mixture 

than i n the Hp 1-1 r e a c t i o n mixture. In a d d i t i o n two new very f a s t -

running bands appeared i n the C N B r - s p l i t h a l f - h a p t o g l o b i n s l o t which 

were not present i n the C N B r - s p l i t Hp 1-1 s l o t . The r e a c t i o n of CNBr 

w i t h h a l f - h a p t o g l o b i n was terminated a f t e r 10 hours whereas that w i t h 

h a p t o g l o b i n 1-1 was terminated a f t e r 18 hours. However, i t i s not 

l i k e l y that t h i s d i f f e r e n c e i n the d u r a t i o n of the r e a c t i o n s would 

account f o r the d i f f e r e n c e s i n g e l p a t t e r n s . The d i f f e r e n c e i n pa t t e r n s 

between C N B r - s p l i t Hp 1-1 and C N B r - s p l i t h a l f - h a p t o g l o b i n must have 

been caused by the previous s p l i t t i n g of ha p t o g l o b i n 1-1 by sodium 

s u l p h i t e and pCMS. This p r e d i c t i o n has been confirmed by g e l a n a l y s i s 

of a 20-hour CNBr h a l f - h a p t o g l o b i n r e a c t i o n . 

The f a s t - r u n n i n g d a r k - s t a i n i n g p e p t i d e , v i r t u a l l y absent i n 

C N B r - s p l i t h a l f - h a p t o g l o b i n , corresponded to the CNBr fragment shown 

by two-dimensional g e l e l e c t r o p h o r e s i s to c o n t a i n the a chain of hapto­

g l o b i n . A l s o , s t u d i e s of the p u r i f i e d CNBr fragment PC I I I (see s e c t i o n 

on p u r i f i c a t i o n and p r o p e r t i e s of fragments, p. 80) confirmed that t h i s 

f a s t - r u n n i n g d a r k - s t a i n i n g peptide d i d c o n t a i n the a c h a i n . Thus the 

a c h a i n - c o n t a i n i n g peptide i n C N B r - s p l i t Hp 1-1 was almost absent i n 

C N B r - s p l i t h a l f - h a p t o g l o b i n . However, s i n c e the h a l f - m o l e c u l e of 



79 

h a p t o g l o b i n s t i l l contained the a chains and s i n c e only two new bands 

appeared i n the C N B r - s p l i t h a l f - h a p t o g l o b i n , i t f o l l o w s that these 

new f a s t - r u n n i n g bands i n the h a l f - h a p t o g l o b i n must c o n t a i n the a chains. 

H a l f - h a p t o g l o b i n c o n s i s t s of two e s s e n t i a l l y i d e n t i c a l species 

d i f f e r i n g by only the presence of e i t h e r a S-sulpho-cysteine or 

p-mercurisulphonate mercaptide i n the molecule. Treatment of the two 

e s s e n t i a l l y i d e n t i c a l h a l f - h a p t o g l o b i n s w i t h CNBr, should produce two 

a l t e r e d p e p t i d e s , one c o n t a i n i n g a S-sulpho-cysteine and the other a 

p-mercurisulphonate mercaptide, which p r e v i o u s l y had formed a symmetrical 

bond. These new CNBr fragments would be expected to have molecular 

weights one-half that of the corresponding fragment from n a t i v e hapto­

g l o b i n . 

In C N B r - s p l i t h a l f - h a p t o g l o b i n two new bands appeared, one which 

ran s l i g h t l y f a s t e r than the a chain of h a p t o g l o b i n and one s l i g h t l y 

slower. A p o s s i b l e e x p l a n a t i o n f o r the e x i s t e n c e of the two new bands 

i n C N B r - s p l i t h a l f - h a p t o g l o b i n i s that under the c o n d i t i o n s of cyanogen 

bromide cleavage, the s u l p h i t e was hydrolyzed from the S-sulpho-

c y s t e i n y l peptide thus removing a negative charge from t h i s peptide. 
35 

This p o s t u l a t e has been confirmed by Rostad and Dixon (96) using S-

s u l p h i t e - l a b e l l e d h a l f - h a p t o g l o b i n . They have shown that 70 to 80% of 

the r a d i o a c t i v i t y was r e l e a s e d from the h a l f - h a p t o g l o b i n under the 

c o n d i t i o n s of CNBr cleavage. The slower-running of the two new bands 

probably has the mercurisulphonate mercaptide group. Since the two new 

bands d e r i v e d from h a l f - h a p t o g l o b i n ran f a s t e r than the a c h a i n - c o n t a i n ­

i n g band d e r i v e d from h a p t o g l o b i n , they must be of s m a l l e r s i z e because 
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the i n t r o d u c t i o n of a negative charge by s u l p h i t e or mercurisulphonate 

would decrease r a t h e r than i n c r e a s e the m o b i l i t y of these c a t i o n i c 

p o l y p e p t i d e s . 

P u r f i c i a t i o n and P r o p e r t i e s of Cyanogen Bromide Fragments 

In order to prepare s u f f i c i e n t m a t e r i a l f o r f u r t h e r c h a r a c t e r i ­

z a t i o n of the a c h a i n c o n t a i n i n g fragments from the CNBr-treated hapto­

g l o b i n s , the CNBr r e a c t i o n mixture was f r a c t i o n a t e d by i o n exchange 

chromotography on phosphocellulose. Ion exchange was used i n preference 

to g e l f i l t r a t i o n because the two-dimentional s t a r c h g e l (Figure 17, p.75) 

i n d i c a t e d that the alpha chains from Hp 2-1 and 2-2 were s t i l l present 

as a polymeric s e r i e s and so would not appear as a s i n g l e peak upon g e l 

f i l t r a t i o n but would be e l u t e d as a broad peak or s e r i e s of peaks. 

However, i t was known th a t the i s o e l e c t r i c p o i n t s of the polymers were 

a l l s i m i l a r (4) so that a s i n g l e peak f o r these a c h a i n - c o n t a i n i n g 

fragments might be obtained upon i o n exchange chromatography. Chro­

matography was performed at pH 4.0 i n 8M d e i o n i z e d urea s i n c e i t was 

known from the s t a r c h g e l s t h a t a l l the CNBr fragments were p o s i t i v e l y 

charged under these c o n d i t i o n s . Phosphocellulose was chosen i n p r e f e r ­

ence to c a r b o x y m e t h y l c e l l u l o s e s i n c e each phosphoryl group would possess 

a f u l l n egative charge at t h i s pH and would r e t a i n h i g h c a p a c i t y f o r 

absorbing c a t i o n i c p r o t e i n s . 

As shown i n F i g u r e 19, three peaks were obtained a f t e r chro­

matography of a l l three h a p t o g l o b i n types. In the case of h a p t o g l o b i n 

1-1 and h a p t o g l o b i n 2-2 there was a s a l t and a pH gradient (Figure 19a,c) 
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F i g u r e 19 Phosphocellulose (Bio-Rad L a b o r a t o r i e s Lot #6049) 

chromatography of the fragments obtained a f t e r the 

r e a c t i o n of haptoglobin w i t h cyanogen bromide. 

Top F i g u r e CNBr Hp 1-1; column 0.9 cm; g r a d i e n t , 
500 ml 0.05M formic a c i d , 0.01N NaOH, 
8M d e i o n i z e d urea, pH 4.0 to 500 ml 
0.03M formic a c i d , 0.016M NaOH, 8M urea, 
2M NaCl pH 4.6, (3.5 ml f r a c t i o n s ) ; 
20 mg of sample were d i s s o l v e d i n 1.0 
ml of s t a r t i n g b u f f e r and then a p p l i e d 
to the column. 

Middle F i g u r e CNBr Hp 2-1; column 0.9 by 50 cm; 
gradient 500 ml 0.05M formic a c i d , 0.01M 
NaOH, 7.2M urea pH 3.8 to 500 ml 0.05M 
formic a c i d , 0.01M NaOH, 7.2M urea^O.SM 
NaCl. The sample contained 120 mg and 
12 to 15 ml f r a c t i o n s were c o l l e c t e d . 

Bottom F i g u r e CNBr Hp 2-2; column 0.9 by 25 cm; 
g r a d i e n t , 200 ml 0.05M formic a c i d , 
0.01M NaOH, 8M urea, pH 4.0 to 200 ml 
0.03M formic a c i d , 0.016M NaOH, 8M urea, 
0.8M NaCl pH 4.6; sample 40 mg. For 
l a r g e s c a l e p r e p a r a t i o n s of cyanogen 
bromide fragments 600 mg of CNBr 1-1 
was chromatographed on a phosphocellulose 
column 2 cm by 40 cm w i t h a grad i e n t of 
1 l i t r e of 0.05M NaCl, 0.05M formic a c i d , 
0.01M NaOH, 7.2M deionize d urea pH 3.9 
to 1 l i t r e of 0.4M NaCl, 0.05M formic 
a c i d , 0.01M NaOH, 7.2M urea. 
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but i t was subsequently found that an e q u a l l y good s e p a r a t i o n w i t h 

Hp 2-1 could be obtained using only a s a l t g r a d i e n t . The tubes 

corresponding to the o p t i c a l d e n s i t y peaks were pooled, and d e s a l t e d 

by chromatography on Sephadex G-25 coarse using 0.2N a c e t i c a c i d , 

and then l y o p h i l i z e d . 

The p u r i f i e d peptides were then analysed by starch-urea 

g e l e l e c t r o p h o r e s i s i n formate b u f f e r . The g e l (Figure 20) showed 

that the f i r s t peak e l u t e d from phosphocellulose represented the p a r t 

of the hap t o g l o b i n molecule which ran e l e c t r o p h o r e t i c a l l y as a s e r i e s 

of bands w i t h a gaussian d i s t r i b u t i o n (Figure 20 s l o t 13). The g e l 

a l s o showed that these bands were very s i m i l a r i n Hp 1-1 and Hp 2-2 

(Figure 20, s l o t s 13 and 7 r e s p e c t i v e l y ) and t h a t the m o b i l i t y of the 

bands w i t h i n t h i s s e r i e s d i d not change a f t e r r e d u c t i o n and a l k y l a t i o n 

(Figure 20, compare s l o t 4 w i t h s l o t 7 ). A s i m i l a r s e r i e s of bands 

was present i n the C N B r - s p l i t g c h a i n of h a p t o g l o b i n as shown by Hew 

(32). When examined e l e c t r o p h o r e t i c a l l y the second peak (PC I I ) from 

phosphocellulose showed s t a i n e d m a t e r i a l only i n the case of hapto­

g l o b i n 2-2 (Figure 20, s l o t 6 ) . The t h i r d peak (PC I I I ) i n the case 

of h a p t o g l o b i n 1-1 c o n s i s t e d of a major band which had a m o b i l i t y 
2 

almost the same as the a chain of haptoglobin and a f a i n t minor band 

(Figure 20, s l o t 11). A f t e r r e d u c t i o n and a l k y l a t i o n t h i s major 

pept i d e has a m o b i l i t y i d e n t i c a l w i t h that of the a"*" ch a i n ( s l o t 8) . 

In the case of CNBr Hp 2-2 t h i s same peak (PC I I I ) was a slow-running 
s t r e a k y band ( s l o t 5) which upon r e d u c t i o n and a l k y l a t i o n gave r i s e to 

2 
the a chain of hap t o g l o b i n ( s l o t 2 ) . 
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Fig u r e 20 Starch urea g e l e l e c t r o p h o r e s i s i n formate and aluminum 

l a c t a t e b u f f e r s of CNBr peptides a f t e r p u r i f i c a t i o n on 

phosphocellulose. 

1. CNBr Hp 2-2 
2. CNBr Hp 2-2, PC I I I , reduced and a l k y l a t e d 
3. CNBr Hp 2-2, PC I I , reduced and a l k y l a t e d 
4. CNBr Hp 2-2, PC I , reduced and a l k y l a t e d 
5. CNBr Hp 2-2, PC I I I 
6. CNBr Hp 2-2, PC I I 
7. CNBr Hp 2-2, PC I 
8. CNBr Hp 1-1, PC I I I , reduced and a l k y l a t e d 
9. Hp 2-1, reduced and a l k y l a t e d 

10. CNBr Hp 1-1, PC I reduced and a l k y l a t e d 
11. CNBr Hp 1-1. PC I I I 
12. CNBr Hp 1-1, PC I I 
13. CNBr Hp 1-1, PC I 
14. CNBr Hp 1-1 
15. CNBr Hp 2-2, PC I I I 
16. Hp 2-1, reduced and a l k y l a t e d 
17. CNBr Hp 2-1, PC I I I 
18. CNBr Hp 2-1, PC I I I , reduced and a l k y l a t e d 



Formate Aluminum L a c t a t e 
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I t was expected that another p o l y p e p t i d e i n a d d i t i o n to the 

a chain would be observed a f t e r r e d u c t i o n and a l k y l a t i o n of peak I I I . 

None was observed. However another p o l y p e p t i d e could have escaped 

d e t e c t i o n i f i t migrated so r a p i d l y as to move completely through the 

g e l under the e l e c t r o p h o r e t i c c o n d i t i o n s or i f i t washed out of the 

g e l d u r i n g s t a i n i n g and d e s t a i n i n g . 

The r e s u l t s of the two-dimensional e l e c t r o p h o r e s i s u s i n g aluminum 

l a c t a t e b u f f e r i n the f i r s t dimension and sodium formate b u f f e r c o n t a i n ­

i n g mercaptoethanol i n the second dimension have shown that the a chains 

were present i n a polymeric s e r i e s i n CNBr Hp 2-2. A f t e r f r a c t i o n a t i o n 

of CNBr 2-2 on phosphocellulose the t h i r d peak (PC I I I ) ran as a broad 

band during e l e c t r o p h o r e s i s . However when the PC I I I fragments from 

CNBr Hp 2-1 and CNBr Hp 2-2 were run us i n g aluminum l a c t a t e b u f f e r (74) 

i n 8M urea the bands which p r e v i o u s l y streaked were now r e s o l v a b l e i n t o 

a polymeric s e r i e s (compare s l o t s 15 and 17 i n the aluminum l a c t a t e 

g e l w i t h s l o t 5 i n the formate g e l ) . In f a c t , the s e r i e s bears a strong 

resemblance to the polymeric s e r i e s of Hp 2-1 and Hp 2-2 except t h a t 

the bands run f a s t e r . This r e s u l t was confirmed by d i s c g e l e l e c t r o ­

p h o r e s i s i n 0.1% SDS. Again a f a i n t s e r i e s of polymers was observed 

w i t h phosphocellulose peak I I I from 2-1 and 2-2 and a s i n g l e band was 

observed from 1-1. The polymers were seen to run c o n s i d e r a b l y f a s t e r 

than Hp 2-1 i n these d i s c g e l s . A f t e r r e d u c t i o n and a l k y l a t i o n of 

PC I I I from CNBr 2-1 (Figure 20, s l o t 18) a f a i n t f a s t - r u n n i n g band 

appeared which may represent a piece of the 3 chain attached to the 

a c h a i n by a d i s u l p h i d e bond. 



One problem i n the study of d i s u l p h i d e bonds i n p r o t e i n s i s the 

p o s s i b i l i t y of d i s u l p h i d e interchange which can r e s u l t i n the i n c o r r e c t 

assignment of d i s u l p h i d e s . The d i s u l p h i d e interchange r e a c t i o n was 

f i r s t c h a r a c t e r i z e d by Ryle and Sanger (109) who found an interchange 

i n s t r ong a c i d (6N HCl and ION ^SO^) and i n weak base pH 8.0 and 

above. These s t u d i e s were subsequently extended by Spackman, S t e i n 

and Moore who confirmed that the i d e a l pH f o r studying d i s u l p h i d e s 

was around pH 2(110). The occurrence of d i s u l p h i d e interchange i n a c t u a l 

p r o t e i n d i s u l p h i d e s t u d i e s was f i r s t observed f o r i n s u l i n (111) and may 

have c o n t r i b u t e d to i n c o r r e c t d i s u l p h i d e assignments f o r r i b o n u c l e a s e 

(110) and carboxypeptidase A (112). 

The c o n d i t i o n s used f o r the p r e p a r a t i o n of fragment PC I I I were 

r e a c t i o n i n 70% formic a c i d and chromatography at pH 4.0. Both of these 

c o n d i t i o n s are u n l i k e l y to cause d i s u l p h i d e interchange. A l s o , Edelman 

(107) has s t u d i e d the d i s u l p h i d e s of a myeloma p r o t e i n a f t e r r e a c t i o n 

i n 70% formic a c i d and has obtained no evidence f o r d i s u l p h i d e i n t e r ­

change. F i g u r e 15 s l o t 3 and F i g u r e 20 s l o t 14 show g e l s of Hp 1-1 

a f t e r r e a c t i o n w i t h cyanogen bromide and i n both cases that the PC I I I 

fragment i s one of the major bands. I f d i s u l p h i d e interchange had 

occurred d u r i n g the r e a c t i o n w i t h cyanogen bromide i t might be expected 

th a t the a c h a i n would not be present s o l e l y i n a major band i n PC I I I 

but i n a s e r i e s of minor bands. S i m i l a r l y the PC I I I fragment produced 

a major peak a f t e r i o n exchange chromatography i n d i c a t i n g that d i ­

s u l p h i d e exchange had not occurred. 



Further Studies on Fragment PC I I I 

Further c h a r a c t e r i z a t i o n of fragment PC I I I was c a r r i e d out by 

molecular weight determinations u s i n g 7.5% acrylamide g e l s which con­

t a i n SDS. The r e s u l t s (Figure 21) showed that fragment PC I I I ( g e l 5) 
2 

d e f i n i t e l y had a molecular weight not only g r e a t e r than the a c h a i n of 

h a p t o g l o b i n ( g e l 3) but a l s o g r e a t e r than chymotrypsinogen ( g e l 4 ) . 

The molecular weight of t h i s PC I I I fragment from h a p t o g l o b i n 1-1 was 

c a l c u l a t e d to be near 30,000 by the dodecylsulphate g e l technique (104). 

Fragment PC I I I must s t i l l have two a"*" chains and two p i e c e s of 8 

c h a i n s i n c e no d i s u l p h i d e s have been s p l i t . One can deduce t h a t the 

molecular weight of the 8 chain p i e c e i s approximately 6,000, i . e . , 
(M.W. PC I I I - 2 x M.W. of a 1) (30,000 - 2 x 9,000) , n n n 

2 = 2 = o » u u u ' 

Gel 7 shows that i n a d d i t i o n to the a 1 chain of h a p t o g l o b i n a band 

w i t h approximately the same m o b i l i t y as i n s u l i n (see arrow) i s obtained 

a f t e r r e d u c t i o n and a l k y l a t i o n of PC I I I , thus c o n f i r m i n g the a p p r o x i ­

mation of 6,000 f o r the molecular weight f o r the B chain p i e c e . 

The fragment of the 8 c h a i n of h a p t o g l o b i n which i s attached to 

the a c h a i n i n the PC I I I cyanogen bromide fragment has been i s o l a t e d 

by g e l e x c l u s i o n chromatography on Sephadex G-75 a f t e r r e d u c t i o n and 

a l k y l a t i o n of PC I I I . Figure 22 shows that a f t e r r e d u c t i o n and a l k y -
14 

l a t i o n w i t h C-iodacetamide two main bands of o p t i c a l d e n s i t y and 

r a d i o a c t i v i t y were seen (peaks 1 and 2) i n a d d i t i o n to the peak c o r r e s ­

ponding to the reagents. A s m a l l amount of other m a t e r i a l running near 

the v o i d volume was a l s o observed. A s i m i l a r s e p a r a t i o n of peaks 1 and 
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1 2 3 4 5 6 7 

Fi g u r e 21 E l e c t r o p h o r e s i s i n 0.1M sodium phosphate pH 7.0, 0.1% 
SDS. The g e l s were 10 cm long and contained 7.5% 
acrylamide, and 0.38% bismethylene acrylamide. The 
samples were d i s s o l v e d i n 8M urea before e l e c t r o p h o r e s i s . 
Gels were s t a i n e d overnight w i t h 1% Amido b l a c k i n 10% 
a c e t i c a c i d . Gel 1, i n s u l i n ; g e l 2, a 1 c h a i n ; g e l 3, 
a 2 c h a i n ; g e l 4, chymotrypsinogen; g e l 5, bovine serum 
albumin; g e l 6, CNBr Hp 1-1 PC I I I ; g e l 7, g e l 6 sample 
a f t e r r e d u c t i o n and a l k y l a t i o n . E l e c t r o p h o r e s i s was 
performed at approximately 50 v o l t s u n t i l a marker of 
hemoglobin moved 7.5 cm. 
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F i g u r e 22 Separation of Fragment I I I Polypeptides a f t e r Reduction 
and A l k y l a t i o n 

Fragment I I I (7.0 mg) was d i s s o l v e d i n 100 y l 0.16M 
b o r i c a c i d , 0.06M NaOH, 8.0M urea, 0.029M B-mercapto-
ethanol pH 8.8. A f t e r 15 to 20 minutes 20 y l of 0.6M 
1 I +C-iodoacetamide (.34 mci/mMole) were added. The pH 
of the s o l u t i o n was maintained w i t h 0.5M NH^OH and a f t e r 
30 to 40 minutes 20 y l of 1.4M B-mercaptoethanol was 
added and again the pH was maintained f o r 5 to 10 min­
ute s . The pH was brought down to about pH 2 using 1.0M 
HCl and a ml of 0.01M HCl was added to the s o l u t i o n . 
The s o l u t i o n was chromatographed on Sephadex G-75 (2 cm 
by 65 cm) using 0.01M HCl. F r a c t i o n s of 3 ml were 
c o l l e c t e d and from these f r a c t i o n s 100 y l a l i q u o t s were 
taken f o r s c i n t i l l a t i o n counting (see methods). 
The PC I I I sample had been chromatographed 2 times on 
phosphocellulose. 
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2 was a l s o obtained by chromatography on Sephadex G-50. The s e p a r a t i o n 

on G-50 showed a t h i r d peak of o p t i c a l d e n s i t y which appeared i n the 

v o i d volume. However, g e l e l e c t r o p h o r e s i s i n 0.1% SDS showed that t h i s 

peak c o n s i s t e d of three minor bands which were i m p u r i t i e s i n the PC I I I 

p r e p a r a t i o n . 

Gel e l e c t r o p h o r e s i s of peaks 1 and 2 i n 0.1% SDS confirmed that 

these peaks corresponded to the p o l y p e p t i d e s which had been observed 

p r e v i o u s l y upon g e l e l e c t r o p h o r e s i s . The s e p a r a t i o n s were performed 

i n 10% acrylamide g e l s and i t was found more s u i t a b l e to use 0.25% 

Coomassie Blue to s t a i n the g e l s i n s t e a d of 1% Amido Black (113). As 

can be seen i n F i g u r e 23, peak 1 corresponds to the a c h a i n of hapto­

g l o b i n and peak 2 corresponds to the fragment of the 6 c h a i n l i n k e d by 

d i s u l p h i d e s to the a c h a i n . 

Amino a c i d a n a l y s i s of the 3 c h a i n fragment i s shown i n Table I . 

When the number of amino a c i d r e s i d u e s i n the peptide were determined 

on the b a s i s of the value of carboxymethylcysteine being .95 the 

values f o r the other amino a c i d s were c l o s e to whole number values 

w i t h the only two exceptions being those values f o r homoserine and 

v a l i n e . However i n the case of homoserine i t i s known th a t h y d r o l y t i c 

l o s s e s amount to about 20% (113) and i n the case of v a l i n e there i s 

incomplete recovery during short times of h y d r o l y s i s . 

From s t u d i e s on the r e a c t i o n of cyanogen bromide w i t h the i s o l a t e d 

3 c h a i n of h a p t o g l o b i n , a peptide has been obtained which has a very 

s i m i l a r amino a c i d composition to the 3 c h a i n fragment obtained from the 

PC I I I fragment (Table I) (32). A l s o , t r y p t i c f i n g e r p r i n t s of the two 

s • 



Figure 23 Electrophoresis i n 0.1M sodium phosphate pH 7.0, 0.1% 
SDS. Gels contained 10% acrylamide, 0.5% bismethylene 
acrylamide and were 10 cm i n length. Samples were 
dissolv e d i n 0.1M borate NaOH buffer pH 8.8 containing 
8M urea. E l e c t r o p h o r e s i s was performed u n t i l a marker 
of bromophenol blue moved approximately 9/10 of the 
length of the g e l . Gel 1, 20 yg PC I I I reduced and 
a l k y l a t e d ; g e l 2, G50 peak 1 10 yg; g e l 3, G50 peak 2, 
10 yg; gel 4, G50 peak 2, 20 yg; g e l 5 i n s u l i n , 10 yg. 
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TABLE I 

AMINO ACID ANALYSIS OF @ CHAIN FRAGMENT ISOLATED FROM FRAGMENT PC I I I 
AFTER REDUCTION AND ALKYLATION 

The r e s u l t s presented are an average of two determinations. 

uM Residues Fragment Isolated 
from 8 chain by 
Hew and Dixon 

Carboxymethylcysteine 0.0232 .95 -
A s p a r t i c Acid 0.105 4.3 3.5 

Threonine .0253 1.0 .85 
Serine .0492 2.0 1.6 
Glutamic Acid .0305 1.25 1.0 

P r o l i n e .0525 2.1 1.8 
Glycine .0985 4.0 3.8 
Alanine .0520 2.1 1.8 
Va l i n e .0828 3.4 3.8 
Methionine .00 
Isoleucine .024 .97 ;85 
Leucine .051 2.1 2.0 
Tyrosine .0726 3.0 2.6 
Phenylalanine .0463 1.9 1.8 
Homoserine .0183 .75 .8 
Lysine - - 2.5 
H i s t i d i n e .0292 1.2 .8 
Arginine .0480 1.95 1.6 



3 c h a i n fragments i n d i c a t e that these fragments have i d e n t i c a l amino 

a c i d sequences. The only apparent d i f f e r e n c e between the amino a c i d 

compositions of the fragment obtained from PC I I I and that obtained 

from the 3 chain i s the low amount of carboxymethylcysteine present 

i n the fragment obtained from the 3 c h a i n . However, subsequent analyses 

of peptides obtained from the 3 chain fragment (fragment E) showed 

t h a t , i n s t e a d of carboxymethylcysteine, c y s t i n e was present (32). In 

f a c t , the sequence of t h i s fragment has now been completed by Hew, 

Kauffman and Dixon and i s shown i n F i g u r e 24. The sequence demonstrates 

th a t the fragment contains 4 v a l i n e s and thus confirms t h a t the h y d r o l y -

t i c c o n d i t i o n s used i n determining the amino a c i d a n a l y s i s r e s u l t e d i n 

incomplete r e l e a s e of v a l i n e . 

The sequence and amino a c i d a n a l y s i s of fragment E both demon­

s t r a t e that there i s only 1 h a l f - c y s t i n e i n t h i s p e p t i d e . Since t h i s 

fragment i s j o i n e d to the a chain by a d i s u l p h i d e bond, fragment E 

must be j o i n e d to the a chain by t h i s p a r t i c u l a r h a l f - c y s t i n e . From 

the r e s u l t s of Kauffman and Dixon i t can be seen that the sequence of 

the 3 chain c y s t e i c a c i d peptide (Th3B) which i s j o i n e d to the a chain 

i s i d e n t i c a l to a sequence present i n fragment E. Therefore the f a c t 

t h a t peptide Th3B contains a sequence i d e n t i c a l to that present i n 

fragment E demonstrates independently that the h a l f - c y s t i n e present 

i n Th3B i s attached to the a c h a i n . 

The presence of a 3 chain polypeptide i n the PC I I I fragment 

which was i d e n t i c a l i n sequence to the fragment i s o l a t e d by Hew and 

Dixon (fragment E) was f u r t h e r confirmed by amino-terminal and 



Pro-Ile-Cys-Pro-Leu-Ser-Lys-Asp-Tyr-Ala-Glu-Val-Gly-Arg-Val 

Gly-Tyr-Val-Ser-Gly-Try-Gly-Arg-Asp-Ala-Asn-Phe-Lys-Phe-Thr 

Asp-His-Leu-Lys-Tyr-Val-Hst 

F i g u r e 24 The sequence of fragment E 
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carboxy-terminal a n a l y s i s . The r e s u l t s of amino-terminal a n a l y s i s are 

shown i n F i g u r e 25. In F i g u r e 25a a n a l y s i s of the dansyl-amino a c i d s 

shows that from PC I I I a f l u o r e s c e n t spot w i t h a m o b i l i t y corresponding 

to that of e i t h e r d a n s y l - v a l i n e or d a n s y l - p r o l i n e i s obtained. However 

only a s m a l l s e p a r a t i o n of d a n s y l - v a l i n e and d a n s y l - p r o l i n e i s obtained 

i n t h i s system. A b e t t e r s e p a r a t i o n of these two dansyl-amino a c i d s 

was obtained a f t e r t h i n l a y e r chromatography i n a so l v e n t system con­

t a i n i n g chloroform 90 mis, isoamyl a l c o h o l 10 mis, and a c e t i c a c i d 

0.5 mis (Figure 25b). F i g u r e 25b demonstrates the s e p a r a t i o n of d a n s y l -

v a l i n e from d a n s y l - p r o l i n e i n t h i s system and shows that fragment PC I I I 

contai n s both p r o l i n e and v a l i n e as amino-terminal amino a c i d s . Since 

the amino-terminal of the a ha p t o g l o b i n chain i s known to be v a l i n e and 

the amino-terminal of fragment E i s known to be p r o l i n e the r e s u l t 

confirms the assignment of the 3 chain and fragment E as c o n s t i t u e n t s 

of fragment PC I I I . 

The r e s u l t s of carboxypeptidase A d i g e s t i o n of p e r f o r m i c - o x i d i z e d 

PC I I I are shown i n Table I I . These r e s u l t s showed that equimolar 

amounts of glutamine, homoserine, v a l i n e , t y r o s i n e , and l e u c i n e are 

r e l e a s e d from fragment PC I I I . L y s i n e was not determined i n t h i s 

a n a l y s i s because of the l a r g e amount of ammonia which s t i l l remained 

a f t e r the ammonia e x t r a c t i o n of the r e l e a s e d amino a c i d s from Dowex 50. 

Previous s t u d i e s on the carboxy-terminal of the a chain of ha p t o g l o b i n 

have shown that only glutamine was r e l e a s e d by carboxypeptidase A. 

Thus the remaining amino a c i d s must have been r e l e a s e d from the fragment 

attached to the a c h a i n . The other four amino a c i d s are found at four 
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F i g u r e 25 A n a l y s i s by t h i n l a y e r chromatography of the d a n s y l -
amino acid s obtained from the amino-terminal r e s i d u e s 
of fragment P C I I I . 1.0 mg of fragment was r e a c t e d , 
hydrolysed, d r i e d and then r e d i s s o l v e d i n 25 u l of 
2N ammonia. 1/5 to 1/8 of t h i s sample was used per spot 
f o r a n a l y s i s . 

25a A n a l y s i s u s i n g the system of Black and Dixon (89). 
Samples 1 and 5, d a n s y l - v a l i n e ; samples 2 and 4, 
d a n s y l - p r o l i n e ; sample 3, fragment PC I I I . 

25b A n a l y s i s using chloroform 90 ml, isoamyl a l c o h o l 
10 ml, and a c e t i c a c i d 0.5 ml as s o l v e n t . Samples 
are the same as i n 25a. 



TABLE I I 

AMINO ACID ANALYSIS OF THE AMINO ACIDS RELEASED BY 
CARBOXYPEPTIDASE A DIGESTION OF FRAGMENT PC I I I 

AFTER THE FRAGMENT HAD BEEN OXIDIZED USING 
PERFORMIC ACID 

uM Residues 

Homoserine 0.021 1.0 

Glutamine 0.023 1.1 

V a l i n e 0.018 0.88 

Leucine 0.017 0.84 

Tyrosine 0.017 0.84 



99 

of the f i v e carboxy-terminal p o s i t i o n s of fragment E, the other amino 

a c i d being l y s i n e which was not determined. Thus the data are c o n s i s ­

t e n t w i t h carboxypeptidase removing the f i r s t f i v e amino a c i d s from 

the carboxy-terminal of fragment E and not removing the h i s t i d i n e at 

the s i x t h p o s i t i o n . This h i s t i d i n e does not appear to be removed 

because i t i s next to an a s p a r t i c a c i d (a re s i d u e which carboxypeptidase 

A removes only very slowly) and i t i s known t h a t the penultimate r e s i d u e 

a f f e c t s the removal of the carboxy-terminal r e s i d u e (114). A l s o , a l ­

though l y s i n e i s not normally considered to be r e l e a s e d by carboxy­

peptidase A, i t i s one of the residues which i s r e l e a s e d s l o w l y by 

t h i s enzyme (114). 

Diagonal Analyses on Fragment PC I I I 

The d i s u l p h i d e s of fragment PC I I I were i n v e s t i g a t e d f o l l o w i n g 

the diagonal technique described by Brown and H a r t l e y (115). Using 

t h i s technique the pol y p e p t i d e under i n v e s t i g a t i o n i s d i g e s t e d w i t h 

an enzyme and the r e s u l t i n g peptides are separated by hig h v o l t a g e 

e l e c t r o p h o r e s i s . Then a s t r i p of paper c o n t a i n i n g the separated 

peptides i s p e r f o r m i c - o x i d i z e d , sewn onto another sheet of hig h v o l t a g e 

paper, and then, as described by Brown and H a r t l e y (115), e l e c t r o ­

p h o r e s i s i s again performed at the same pH as the f i r s t e l e c t r o p h o r e s i s 

but at r i g h t angles to the d i r e c t i o n of the f i r s t e l e c t r o p h o r e s i s . 

Using t h i s technique the peptides which do not c o n t a i n d i s u l p h i d e s 

form a di a g o n a l on the paper and d i s u l p h i d e peptides u s u a l l y migrate 

o f f the diagonal and so can be i d e n t i f i e d . In a d d i t i o n Brown and 
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H a r t l e y (115) have shown that t h i s method can be used f o r i s o l a t i n g 

and i d e n t i f y i n g d i s u l p h i d e peptides. 

In a n a l y s i n g d i s u l p h i d e - c o n t a i n i n g p r o t e i n s or polypeptides the 

enzyme or enzymes used f o r d i g e s t i o n i s somewhat c r i t i c a l because of 

two phenomena. On one hand many p r o t e i n s cannot be d i g e s t e d by some 

enzymes when t h e i r d i s u l p h i d e s are i n t a c t (110) and on the other hand 

when d i g e s t i o n i s allowed to proceed at s l i g h t l y a l k a l i n e pH d i s u l p h i d e 

interchange can occur (109). As a r e s u l t of these problems most pro­

t e i n s are i n i t i a l l y d i g e s t e d w i t h pepsin both because i t a t t a c k s n a t i v e 

p r o t e i n s and because i t a t t a c k s at low pH where d i s u l p h i d e interchange 

i s not favoured. Then, i f necessary, a f u r t h e r d i g e s t i o n w i t h another 

enzyme has o f t e n been used (110,115). 

In the present study on the d i s u l p h i d e s of fragment PC I I I 

d i a g o n a l analyses have been performed a f t e r pepsin d i g e s t s , p e p s i n -

t r y p s i n d i g e s t s , p e p s i n - t r y p s i n - c h y m o t r y p s i n d i g e s t s , p e p s i n - s u b t i l i s i n 

d i g e s t s , p e p s i n - t h e r m o l y s i n d i g e s t s , p a r t i a l a c i d h y d r o l y s e s , and 

p e p s i n - p a r t i a l a c i d d i g e s t s . The d i g e s t which appeared to be most 

s u i t a b l e f o r f u r t h e r study was the p e p s i n - t r y p s i n d i g e s t . 

The r e s u l t of a p e p s i n - t r y p s i n d i a g o n a l a n a l y s i s of PC I I I from 

h a p t o g l o b i n 1-1 i s shown i n F i g u r e 26. The peptide AA had i d e n t i c a l 

m o b i l i t i e s i n the f i r s t dimension to the 21 a d i s u l p h i d e peptide ob­

t a i n e d by Kauffman and Dixon from a pepsin d i g e s t of h a p t o g l o b i n 1-1 

and i n the second dimension to the 21 a c y s t e i c a c i d peptide obtained 

from h a p t o g l o b i n 1-1. A l s o , i t s i d e n t i t y w i t h the 21 a peptide was 

confirmed by the f a c t that i t gave a p o s i t i v e h i s t i d i n e r e a c t i o n w i t h 
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Figure 26 pH 6.5 di a g o n a l map of 1.5 mg of a p e p t i c - t r y p t i c 
d i g e s t of fragment PC I I I . BA1 i s the i s a t i n 
p o s i t i v e spot. E l e c t r o p h o r e s i s was performed i n 
the f i r s t dimension u n t i l a marker of c r y s t a l v i o l e t 
moved 13 cm. 
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the Pauly s t a i n and that i t reacted s l o w l y w i t h n i n h y d r i n . Peptide BA1 

was found to s t a i n blue w i t h i s a t i n reagent thus demonstrating that i t 

contained p r o l i n e as amino-terminal amino a c i d . I t was suspected that 

peptide BA1 came from the amino-terminal of fragment E which does have 

p r o l i n e at i t s amino-terminal. A l s o i t was reasoned that t h i s p r o l i n e -

amino- t e r m i n a l peptide would c o n t a i n h a l f - c y s t i n e and thus would run 

o f f the d i a g o n a l s i n c e i t i s only two r e s i d u e s removed from the only 

h a l f - c y s t i n e r e s i d u e which i s present i n fragment E. 

Peptides BA1, BA2, and BA3 have been i s o l a t e d from p e p t i c -

t r y p t i c d i g e s t s of fragment PC I I I i n s u f f i c i e n t amount and p u r i t y f o r 

t h e i r p o s i t i o n i n the h a p t o g l o b i n sequence to be e s t a b l i s h e d . The 

amino a c i d analyses and amino-terminal amino a c i d s of these peptides 

are shown i n Table I I I . Peptide BA1 as expected corresponded to the 

amino-terminal peptide from fragment E. This p e p t i d e would have a net 

charge of -1 at pH 6.5 and s i n c e i t contains one c y s t e i c a c i d , i t s 

charge must have been zero before o x i d a t i o n . Peptides BA2 and BA3 

are d e r i v e d from a p a r t of the a chain corresponding to residues 61 to 

77 and 64 to 77 r e s p e c t i v e l y . These two peptides have a net charge of 

-2 at pH 6.5 and s i n c e they c o n t a i n two c y s t e i c a c i d s t h e i r charge 

must a l s o have been zero before o x i d a t i o n . 

The d i a g o n a l map shown i n Figure 26 i n d i c a t e s that peptides BA2 

and BA3 are both attached by a d i s u l p h i d e to BA1 before performic o x i ­

d a t i o n because a l l three peptides had the same e l e c t r o p h o r e t i c m o b i l i t y 

before o x i d a t i o n . To f u r t h e r c o n f i r m t h i s p o i n t d i a g o n a l a n a l y s i s of 

p e p t i c - t r y p t i c peptides from PC I I I was performed at pH 4.0. As shown 
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TABLE I I I 

AMINO ACID ANALYSES AND AMINO-TERMINAL ANALYSES 
OF PEPTIDES BA1, BA2, AND BA3 

The peptides were obtained from 25 mg of a p e p t i c - t r y p t i c d i g e s t of 
fragment PC I I I as des c r i b e d i n methods. The peptides were e l u t e d 
from pre-washed Whatmann 3 MM paper w i t h 30% a c e t i c a c i d . 22% of 
each peptide was d r i e d and hydrolyzed f o r amino a c i d a n a l y s i s . Then 
2/3 of the h y d r o l y z a t e was used f o r a n a l y s i s . 

BA1 BA2 BA3 

yM yM* 
c o r r . 

Residues yM Residues yM Residues 

L y s i n e .0703 .052 0.9 .113 3.0 .063 3.0 

C y s t e i c .0534 .046 0.8 .0631 1.7 .0349 1.6 

A s p a r t i c .0800 .073 1.25 .0466 1.25 .0268 1.25 

Serine .0639 .063 1.1 0 0 0 

Glutamic .0181 .004 0 .0845 2.25 .0502 2.3 

P r o l i n e .132 .118 2.0 .0840 2.25 .0470 2.15 

G l y c i n e .0147 0 0 .0808 2.2 .0274 1.25 

A l a n i n e .0129 0 0 .0748 2.0 .0253 1.2 

V a l i n e .0115 0 0 .0726 2.0 .0228 1.05 

I s o l e u c i n e .0613 .061 1.0 0 0 0 

Leucine .0710 .064 1.0 .0416 1.1 .0239 1.1 

Amino 
Terminal P r o l i n e A l a n i n e A s p a r t i c A c i d 

*The micromolar values of peptide BA1 are c o r r e c t e d f o r a 10% contamin­
a t i o n by peptide BA2. 
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i n F i g ure 27 the i s a t i n - p o s i t i v e peptide was seen to be mated to three 

other peptides. The question remained as to whether two of these three 

peptides were i d e n t i c a l w i t h peptides BA2 and BA3. To answer t h i s 

q u e s t i o n a p e r f o r m i c - o x i d i z e d pH 4.0 electrophorogram of a p e p t i c -

t r y p t i c h y d r o l y s a t e of fragment PC I I I was run i n the second dimension 

at pH 6.5. Peptides BA1, BA2, and BA3 could be i d e n t i f i e d and so con­

firmed that the 8 chain must be attached e i t h e r to a h a l f - c y s t i n e at 

p o s i t i o n 69 or 73 i n the a c h a i n of h a p t o g l o b i n . 

Since peptides BA1, BA2, and BA3 are each present as doublets 

i n the pH 6.5 diagonals they must a r i s e from two d i s u l p h i d e peptides 

which are separated by e l e c t r o p h o r e s i s i n the f i r s t dimension. Thus 

there must be two otB d i s u l p h i d e peptides present i n p e p t i c - t r y p t i c 

d i g e s t s of PC I I I . The d i a g o n a l a n a l y s i s of PC I I I shows that peptide 

BN1 i s a l s o mated to BA1, BA2, and BA3. I f peptide BN1 contains 1 

c y s t e i c a c i d i t would have a net charge of +1 before o x i d a t i o n and 

s i n c e BA1, BA2, and BA3 a l l have charges of zero before o x i d a t i o n , 

t h e r e f o r e the net charge on the d i s u l p h i d e peptide would be +1. This 

i s c o n s i s t e n t w i t h the s l i g h t l y b a s i c m o b i l i t y of the d i s u l p h i d e peptide 

c o n t a i n i n g BN1, BA1 and BA2 or BA3. 

Kauffman and Dixon have shown that the 6 chain of h a p t o g l o b i n i s 

j o i n e d to a h a l f - c y s t i n y l group at p o s i t i o n 73 i n the a chain of hapto­

g l o b i n and that the h a l f - c y s t i n y l group at p o s i t i o n 69 i s j o i n e d to 

p o s i t i o n 35. The r e s u l t s of the p e p t i c - t r y p t i c diagonals of fragment 

PC I I I are c o n s i s t e n t w i t h t h i s s t r u c t u r e . Proposed s t r u c t u r e s f o r the 

two aB d i s u l p h i d e peptides i s o l a t e d from the p e p t i c - t r y p t i c d i g e s t s of 
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Figure 27 pH 4.0 diagonal map of 2.0 mg of a p e p t i c - t r y p t i c 
digest of fragment PCIII. The hatched spot i s 
i s a t i n p o s i t i v e . Electrophoresis was performed i n 
the f i r s t dimension u n t i l a marker of c r y s t a l 
v i o l e t moved 13 cm. 



fragment PC I I I are shown i n Figure 28. These two d i s u l p h i d e peptides 

d i f f e r only i n the s t r u c t u r e of one of t h e i r component h a l f - c y s t i n e 

peptides (from the a35 r e g i o n ) , the other two peptides (from the 6 

chain and from the a69 region) being i d e n t i c a l . As the h a l f - c y s t i n e 

peptides from the a35 r e g i o n are presumed to have d i f f e r e n t charges 

the presence of two d i s u l p h i d e peptides before o x i d a t i o n i s exp l a i n e d . 

Further Studies on H a l f Haptoglobin 

The r e s u l t s of Kauffman and Dixon (35) suggested that the two 

halves of the ha p t o g l o b i n molecule are l i n k e d together by a symmetrical 

d i s u l p h i d e bond l o c a t e d at the h a l f - c y s t i n y l r e s i d u e 21 of the hapto­

g l o b i n a ch a i n . Thus one would p r e d i c t that when haptoglobin i s s p l i t 

i n t o symmetrical halves by sodium s u l p h i t e and pCMS that the a21 

d i s u l p h i d e would be s p l i t and thus the c*21 h a l f - c y s t i n y l group would 

be present i n the h a l f - h a p t o g l o b i n as a mixture of S - s u l f o c y s t e i n e and 

the p-mercurisulphonate mercaptide d e r i v a t i v e . This p r e d i c t i o n has been 

examined by a n a l y s i n g the p e p t i c peptides produced when hapt o g l o b i n 
35 

which had been s p l i t by S-sodium s u l p h i t e and pCMS, was digested w i t h 

pepsin. 
F i g u r e 29 shows the r e s u l t s of an autoradiogram of a p e p t i c 

35 

d i g e s t of S - l a b e l l e d h a l f - h a p t o g l o b i n 1-1 a f t e r h i g h v o l t a g e e l e c t r o ­

p h o resis at pH 6.5. One major a c i d i c r a d i o a c t i v e band i s obtained from 

the p e p t i c d i g e s t . Previous r e s u l t s (35) had shown that (among the 

d i s u l p h i d e peptides) under the c o n d i t i o n s of p e p t i c d i g e s t i o n only the 

a-a' d i s u l p h i d e peptide was obtained i n good y i e l d . Thus t h i s r e s u l t 
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charge=0 

(Ala-Val-Gly)-Asp-Lys-Leu-Pro-Glu-C /ys-Glu-Ala-Val-Cys-Gly-Lys-Pro-Lys 

/ 
S 

Pro-Ile-Cys-Pro-Leu-Ser-Lys-Asp 

charge=0 

a35 peptide 

charge=+l 

charge=0 

(Ala-Val-Gly)-Asp-Lys-Leu-Pro-Glu-Cys-Glu-Ala-Val-C.ys-Gly-Lys-Pro-Lys 

Pro-Ile-Cys-Pro-Leu-Ser-Lys-Asp 

charge=0 

a35 peptide 

charge=+2 

Fi g u r e 28 S t r u c t u r e of a6 d i s u l p h i d e peptides obtained 
from p e p t i c t r y p t i c d i g e s t s of fragment P C I I I . 
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+ -

Figure 29 Autoradiogram of the a c i d i c peptides a f t e r 
high v o l t a g e e l e c t r o p h o r e s i s at pH 6.5 of 
a p e p t i c d i g e s t of 3 5 s-half-haptoglobin. 



suggested that the S-peptide was the a c h a i n p e p t i d e . 
35 

To f u r t h e r c h a r a c t e r i z e t h i s S - l a b e l l e d peptide 40 mgs. of 

the p e p t i c d i g e s t of l a b e l l e d h a l f - h a p t o g l o b i n was a p p l i e d to 20 cm 

of Whatmann 3 MM paper and electrophoresed at pH 6.5. The p o s i t i o n 

of the r a d i o a c t i v e peptide was determined by autoradiography and then 

the area corresponding to the r a d i o a c t i v i t y was cut out and sewed onto 

another p i e c e of 3 MM paper f o r pH 3.6 high v o l t a g e e l e c t r o p h o r e s i s . 

In order to o b t a i n pure p e p t i d e , e l e c t r o p h o r e s i s was performed f i r s t 

at pH 6.5 then at pH 3.6 and f i n a l l y at pH 1.9. 

This peptide at pH 6.5 had e x a c t l y the same m o b i l i t y as the dye 

XCFF and thus XCFF was a u s e f u l marker f o r l o c a t i n g the peptide at t h i s 

pH. At pH 3.6 the peptide ran f a s t e r than e - D N P l y s i n e but slower than 

c r y s t a l v i o l e t and at pH 1.9 i t had about 2/3 the m o b i l i t y of c r y s t a l 

v i o l e t . In order to p u r i f y the peptide i t was electrophoresed u n t i l i t 

had run 27 cm at pH 6.5. Some minor slower running r a d i o a c t i v e bands 

were observed but were very f a i n t . At pH 3.6 two peptides were 

observed. The minor peptide which c o n s i s t e d of about 1/4 to 1/3 of 

the amount of the major peptide was not s t u d i e d f u r t h e r . The major 

peptide was run u n t i l i t migrated 16 cm r e l a t i v e to a m i g r a t i o n of 10 

cm f o r E - D N P l y s i n e . At pH 1.9 a s i n g l e r a d i o a c t i v e band was observed 

which ran 20 cm r e l a t i v e to a m o b i l i t y of 29 cm f o r c r y s t a l v i o l e t . 

Ten cm of the s t r i p was then cut out and the r a d i o a c t i v e peptide 

e l u t e d chromatographically from the paper w i t h 0.5 ml d i s t i l l e d water. 

A f t e r d r y i n g , the peptide was hydrolysed i n vacuo f o r 15 hours at 

110° C and 3/4 of the sample was used f o r amino a c i d a n a l y s i s . 
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Table IV shows a comparison between the amino a c i d a n a l y s i s of 
35 the S-peptide and the amino a c i d composition of the c y s t e i c a c i d pep­

t i d e d e r i v e d from the p e p t i c 21ot-21a' d i s u l p h i d e peptide. The f a c t that 

these peptides had the same amino a c i d composition showed that the 
35 

S-peptide and the 2 1 a - c y s t e i c a c i d peptide represented the same 

sequence. 
35 

As mentioned p r e v i o u s l y , when S - l a b e l l e d h a l f - h a p t o g l o b i n was 

f u r t h e r cleaved using u n l a b e l l e d sodium s u l p h i t e i n the presence of 8M 

urea and the h a p t o g l o b i n chains were subsequently separated, the 

m a j o r i t y of the r a d i o a c t i v i t y was found i n the 3 c h a i n . This r e s u l t 

i s not c o n t r a d i c t o r y to the r e s u l t s obtained here s i n c e i t has been 

shown that under the c o n d i t i o n s of f u r t h e r cleavage w i t h u n l a b e l l e d 
35 

s u l p h i t e more than 80 per cent of the S - s u l p h i t e was l o s t from the 
35 

h a l f - h a p t o g l o b i n molecule (96). Thus i t can be argued that the S 

l a b e l on the a c h a i n was very l a b i l e and a l l of the s u l p h i t e was l o s t 

from i t under the above c o n d i t i o n s . The reason why counts were found 

i n the heavy chain r e g i o n i s not known at present but could have been 
35 

due to exchange of the S - s u l p h i t e , cleaved from the 21a p o s i t i o n , w i t h 

the f i v e h a l f - c y s t i n y l residues of the 3 c h a i n . 

The f a c t that the 21a-21a' d i s u l p h i d e was s p l i t i n the formation 

of h a l f - h a p t o g l o b i n has a l s o been demonstrated by d i a g o n a l analyses. 

F i g u r e 30a shows a P a u l y - s t a i n e d , p e r f o r m i c - a c i d - d i a g o n a l a n a l y s i s of 

h a p t o g l o b i n which has been digested w i t h pepsin. Only one Pauly-

p o s i t i v e spot was off. the d i a g o n a l . The m o b i l i t y of t h i s spot i n the 
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TABLE IV 

COMPARISON OF THE AMINO ACID COMPOSITION OF THE a-a' 
DISULPHIDE PEPTIDE OBTAINED AFTER PEPSIN DIGESTION 
OF Hp 1-1 WITH THE 35s-PEPTIDE OBTAINED AFTER PEPSIN 

DIGESTION OF 35S-Hp/2 

y M 3 5 S - P e p t i d e 
from Half-
Hap to glob i n 

Amino Acid Composition 
of Cy s t e i c Acid Peptide 
from 21 -21 1 Disulphide 
Peptide.* (Kauffman and 
Dixon). 

A s p a r t i c Acid 0.023 2.2 2 
Threonine 0.0 0.0 0 
Serine 0.001 0.1 0 
Glutamic Acid 0.013 1.2 1 
P r o l i n e 0.031 3.0 3 
Glycine 0.023 2.1 2 
Alanine 0.021 2.0 2 
V a l i n e 0.0 0.0 0 
Methionine 0.0 0.0 0 
Isoleucine 0.020 1.9 2 
Leucine 0.0 0.0 0 
Tyrosine 0.0 0.0 0 
Phenylalanine 0.0 0.0 0 
Lysine 0.0093 0.9 1 
H i s t i d i n e 0.0094 0.9 1 
Arginine 0.0 0.0 0 

* The amino acid composition was deduced from the sequence of the peptide. 
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Fi g u r e 30 Diagonal map of p e p t i c d i g e s t s of h a p t o g l o b i n 

and h a l f - h a p t o g l o b i n . Haptoglobin or h a l f -

h a p t o g l o b i n (4 mg) were d i s s o l v e d i n 0.4 mis 

of 5% formic a c i d . To t h i s s o l u t i o n 40 y l of 

a 1% pepsin s o l u t i o n were added and d i g e s t i o n 

proceeded f o r 17 hours at 37° C. Then the 

samples were d r i e d , r e d i s s o l v e d i n a s m a l l 

volume of pH 6.5 p y r i d i n e - a c e t a t e b u f f e r , 

a p p l i e d to 2.5 cm of Whatmann 3 mM paper, and 

diag o n a l a n a l y s i s was performed as des c r i b e d 

by H a r t l e y (115). A f t e r d i a g o n a l a n a l y s i s the 

paper was sprayed w i t h Pauly reagent. 
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f i r s t dimension was about 1/2 that of the marker XCFF and was equal to 

the marker i n the second dimension. In the second dimension t h i s spot 

corresponded i n m o b i l i t y to the 21a c y s t e i c - a c i d - c o n t a i n i n g peptide 

i s o l a t e d by Kauffman and Dixon. I t a l s o had the same m o b i l i t y as the 
35 

S - s u l p h i t e - l a b e l l e d peptide obtained from s u l p h i t e - l a b e l l e d h a l f -

h a p t o g l o b i n . A f t e r p e r f o r m i c - a c i d o x i d a t i o n of the 21a-21a' d i s u l ­

phide peptide the c y s t i n y l moiety which was present i n the peptide 

would be converted to c y s t e i c a c i d and, a f t e r s p l i t t i n g w i t h s u l p h i t e , 

the moiety would be converted to S-sulphocysteine. In both of these 

cases t h i s sulphur c o n t a i n i n g amino a c i d would be n e g a t i v e l y charged 

and so the peptide a f t e r o x i d a t i o n or a f t e r s p l i t t i n g w i t h s u l p h i t e 

would have the same change as w e l l as e s s e n t i a l l y the same s i z e . In the 

P a u l y - s t a i n e d d i a g o n a l of h a l f - h a p t o g l o b i n (Figure 30) the Pauly-

p o s i t i v e band which was o f f the dia g o n a l i n the case of Hp 1-1 i s 

not seen and i n s t e a d a new Pauly p o s i t i v e spot i s seen on the d i a g o n a l 

which has the same m o b i l i t y as XCFF i n both the f i r s t and second dim­

ensions. Again the r e s u l t i s c o n s i s t e n t w i t h the p r e d i c t i o n that the 

S-sulpho-peptide and the c y s t e i c peptide have the same m o b i l i t i e s . A 

schematic r e p r e s e n t a t i o n of the comparative diagonals i s shown i n 

Fi g u r e 31. 

The s p l i t t i n g of the 21a d i s u l p h i d e i n hapt o g l o b i n w i t h the 

r e s u l t i n g formation of h a l f - h a p t o g l o b i n can be seen i n two d i f f e r e n t 
35 

ways. In one case u s i n g S - l a b e l l e d s u l p h i t e , the peptide correspon­

ding to the sequence around the 21a p o s i t i o n has been i s o l a t e d , and 

i n the other case u s i n g comparative diagonals i t i s seen that the 21a 
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Fig u r e 31 Scheme to e x p l a i n the comparitive diagonals 
of haptoglobin and h a l f - h a p t o g l o b i n . 



d i s u l p h i d e peptide i s m i s s i n g i n h a l f - h a p t o g l o b i n but i s r e p l a c e d by 

another peptide which has the p r o p e r t i e s of a 21a-peptide i n the S-

s u l p h o c y s t e i n y l form. In a d d i t i o n i t was a l s o shown p r e v i o u s l y that 

a comparison of the cyanogen bromide fragments of h a p t o g l o b i n and h a l f -

h a p t o g l o b i n showed that the a c h a i n c o n t a i n i n g fragment (PC I I I ) was 

a l t e r e d i n the h a l f - h a p t o g l o b i n . Since PC I I I contains a p a r t of the 

3 c h a i n l i n k e d by a d i s u l p h i d e to the a c h a i n , and t h i s p a r t of the 3 

c h a i n (fragment E) contains only 1 h a l f - c y s t i n e i t i s apparent t h a t 

only a a-a' d i s u l p h i d e could have been broken i n the conversion of 

h a p t o g l o b i n to h a l f - h a p t o g l o b i n . 

D i s c u s s i o n and Conclusions 

The h a p t o g l o b i n 1-1 molecule con t a i n s nine d i s u l p h i d e bonds as 

shown i n F i g u r e 32. S i x of these d i s u l p h i d e s are i n t r a c h a i n d i s u l p h i d e s 

and the other three are i n t e r c h a i n . Four of the i n t r a c h a i n d i s u l p h i d e s 

are i n the 3 chains and two are i n the a chains connecting the h a l f -

c y s t i n y l 35 r e s i d u e s w i t h the h a l f - c y s t i n y l r e s i d u e s at p o s i t i o n 69. 

Of the three i n t e r c h a i n d i s u l p h i d e s one i s a symmetrical i n t e r c h a i n 

d i s u l p h i d e between the h a l f - c y s t i n y l r e s i d u e s at p o s i t i o n 21 i n the a 

c h a i n and the others are the a3 l i n k a g e d i s u l p h i d e s which j o i n the 3 

chains to the c*73 h a l f - c y s t i n y l r e s i d u e s . 

The e x i s t e n c e of only one unique ct3 d i s u l p h i d e i n h a p t o g l o b i n 

has been confirmed by s t u d i e s on the PC I I I fragment. From t h i s PC I I I 

fragment another fragment (E) has been i s o l a t e d which i s a p a r t of the 

3 c h a i n of h a p t o g l o b i n . This fragment E which i s the only 3 c h a i n 
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F i g u r e 32 St r u c t u r e of haptoglobin 1-1 showing the d i s u l p h i d e 
bonds. The p o s i t i o n ' of a l l f i v e h a l f - c y s t i n e s i n the 
B chain i s unknown. 
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fragment l i n k e d to the a chain contains only one h a l f - c y s t i n y l group 

and so there can only be one d i s u l p h i d e between the a and 6 chains i n 

h a p t o g l o b i n . The r e s u l t s of p e p t i c - t r y p t i c d i g e s t s are c o n s i s t e n t 

w i t h a s t r u c t u r e i n which there are two h a l f - c y s t i n y l groups at p o s i ­

t i o n s 69 and 73 and i n which one of these h a l f - c y s t i n y l groups i s 

attached to the B chain. 

I t i s i n t e r e s t i n g to observe that as a r e s u l t of the p o s t u l a t e d 

p a r t i a l gene d u p l i c a t i o n which gives r i s e to the 2a chain of hapto­

g l o b i n , the r e g i o n of the DNA corresponding to a sequence c o n t a i n i n g 

the h a l f - c y s t i n e at p o s i t i o n 73a has been d e l e t e d . Although the h a l f -

c y s t i n e which would be at 73a i f the a chain were completely d u p l i ­

cated has been de l e t e d i n the a 2 chain of hap t o g l o b i n there i s s t i l l 

a l i n k a g e of the a chain to the 8 c h a i n by the h a l f - c y s t i n e at p o s i ­

t i o n 132 a 2 . However, because one of the l i n k a g e h a l f - c y s t i n e s which 

would be present i f the a chain were completely d u p l i c a t e d i s missing 

i n a 2 , i n the case of both the a 1 and a 2 h a p t o g l o b i n c h a i n s , each a 

chain can be j o i n e d to only 1 B chain. 

The gammaglobulins are t e t r a c h a i n molecules w i t h two p a i r s of 

i d e n t i c a l chains and so s t r u c t u r a l l y resemble the haptoglobins. The 

d i s u l p h i d e s of the YG subclass y G l have been s t u d i e d i n d e t a i l (107, 

116,117). I t has been shown that y G l myeloma p r o t e i n s have two i n t r a ­

c h ain d i s u l p h i d e s i n each of the l i g h t chains and four i n each of the 

heavy chains. There i s only one unique l i g h t - h e a v y d i s u l p h i d e and 

there are two symmetrical d i s u l p h i d e s l i n k i n g the heavy chains. The 

d i s u l p h i d e s of the gammaglobulins d i f f e r markedly between the 



subclasses (117) and i t has been shown that i n subclass yG3 there are 

f i v e symmetrical i n t e r c h a i n d i s u l p h i d e s between the heavy chains. 

A l s o i t has been shown i n one antibody subclass yA2 that there i s no 

d i s u l p h i d e l i n k i n g the l i g h t and heavy chains (118). 

In comparing the d i s u l p h i d e s of yGl and hapt o g l o b i n 1-1 many 

d i f f e r e n c e s are apparent. In both the l i g h t and heavy chains (a and 3 

chains r e s p e c t i v e l y f o r haptoglobins) there are twice as many i n t r a ­

c h a i n d i s u l p h i d e s i n y G l as i n Hp 1-1. In a d d i t i o n there are twice 

as many symmetrical i n t e r c h a i n d i s u l p h i d e s i n YGl as there are i n Hp 

1-1 and the symmetrical i n t e r c h a i n d i s u l p h i d e s a t t a c h the heavy chains 

together i n yGl w h i l e they a t t a c h the a ( l i g h t ) chains together i n Hp 

1-1. In both molecules there i s one unique i n t e r c h a i n d i s u l p h i d e which 

i s l o c a t e d towards the carboxy-terminal end of each of the l i g h t chains. 

Recently a very i n t e r e s t i n g study on the r e f o l d i n g of hapto­

g l o b i n has been performed by B e r n i n i and B o r r i - V o l t a t t o r n i (119). 

These workers have been able to completely reduce ha p t o g l o b i n w i t h 

mercaptoethanol i n the presence of 8M urea and then by c a r e f u l l y 

r e o x i d i z i n g a mixture of a and 8 chains i n the absence of urea they 

have been to reform h a p t o g l o b i n . In the case of ha p t o g l o b i n 1-1 they 

have been able to o b t a i n a recovery of 85 to 90 per cent. In the case 

of h a p t o g l o b i n 2-2 they have been able to reform the ha p t o g l o b i n p o l y ­

mers w i t h a y i e l d of 60 to 70 per cent. A l s o these workers have been 

able to separate the a and 8 chains of h a p t o g l o b i n , remix them, and 

o x i d i z e the remixed chains to form h a p t o g l o b i n . In t h i s way they have 

been able to make Hp 2-1 from the chains d e r i v e d from Hp 1-1 and Hp 
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2-2. Studies on the r e o x i d a t i o n of the i n d i v i d u a l chains showed that 

a chains formed dimers w h i l e a formed polymers and 3 chains d i d not 

polymerize. 

The r e s u l t s of the I t a l i a n workers are completely c o n s i s t e n t 

w i t h those presented here. In the f i r s t i n s t a n c e the only symmetrical 

i n t e r c h a i n d i s u l p h i d e s that we have found i s between a chains. This 

e x p l a i n s why only a chains form dimers. S i m i l a r l y the cleavage of t h i s 

a-a' d i s u l p h i d e breaks down the h a p t o g l o b i n polymers and i t can be seen 

th a t the a-a' d i s u l p h i d e alone can be r e s p o n s i b l e f o r h a p t o g l o b i n 

p o l y m e r i z a t i o n . Thus the a 2 chain by i t s e l f should be able to p o l y ­

merize and t h i s has been found by B e r n i n i and B o r r i - V o l t a t t o r n i . 

F i n a l l y s i n c e there are no 3.-3' d i s u l p h i d e s the 3 chain should remain 

monomeric a f t e r o x i d a t i o n as found by B e r n i n i and B o r r i - V o l t a t t o r n i . 



V 

THE INFLUENCE OF HAPTOGLOBIN ON THE REACTIVITY 
ON THE -SH GROUPS OF HEMOGLOBIN 

This s e c t i o n of the t h e s i s examines the r e a c t i v i t y of the 893 

c y s t e i n y l r e s i d u e i n f r e e hemoglobin and i n the hemoglobin-haptoglobin 
i 

complex toward three s u l p h y d r y l reagents, iodoacetamide, 2,2 
i 

d i t h i o d i p y r i d i n e (2-PDS) and 4,4 d i t h i o d i p y r i d i n e (4-PDS) (46,94). 

Iodoacetamide i s one of a group of compounds c o n t a i n i n g a c t i v e 

halogen atoms which are used as reagents f o r s u l p h y d r y l groups. 

G e n e r a l l y the r e a c t i o n takes place w i t h the mercaptide i o n . The 

reagents w i l l a l s o r e a c t w i t h amino groups but the r a t e of r e a c t i o n 

w i t h s u l p h y d r y l groups i s much f a s t e r . P y r i d i n e d i s u l p h i d e s r e a c t 

w i t h s u l p h y d r y l groups by the d i s u l p h i d e interchange r e a c t i o n . The 

thi o p y r i d o n e products of the r e a c t i o n are almost e x c l u s i v e l y i n the 

tautomeric t h i o form and as a r e s u l t the u l t r a v i o l e t a b s o r p t i o n s p e c t r a 

of the th i o p y r i d o n e s i s q u i t e d i f f e r e n t from the corresponding 

d i s u l p h i d e s . 

P y r i d i n e D i s u l p h i d e and Iodoacetamide Reactions 

The d i t h i o d i p y r i d i n e s are e s p e c i a l l y s u i t e d f o r r e a c t i o n w i t h 

hemoglobin s i n c e the products of the r e a c t i o n absorb at 324 or 343 nm 

(94) where hemoglobin has l i t t l e absorbance. In c o n t r a s t , other 

reagents such as para-hydroxymercuribenzoate (PMB) and Ellman's reagent 

(121) absorb i n regions where hemoglobin a l s o absorbs s t r o n g l y . 
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Fig u r e 33 shows a comparison between the r e a c t i o n of 4-PDS w i t h hemo­

g l o b i n and i t s r e a c t i o n w i t h the Hb-Hp complex i n which i t can be seen 

that a f t e r complex formation w i t h h a p t o g l o b i n there was a greater than 

90 per cent i n h i b i t i o n of the r e a c t i o n r a t e of hemoglobin. As shown 

i n F i g u r e 34, the i n h i b i t i o n , i n the case of both 4-PDS and 2-PDS 

was p r o p o r t i o n a l to the amount of complex formed w i t h a maximum i n h i ­

b i t i o n at a 1 to 1 molar r a t i o of hemoglobin to hap t o g l o b i n . Although 

the r e a c t i o n w i t h the Hp-Hb complex was much slower than w i t h f r e e Hb, 
-4 

at a higher c o n c e n t r a t i o n of reagents, i . e . , 8 x 10 M 4-PDS and 9.2 
—6 

x 10 M Hb, r e a c t i o n w i t h Hp-Hb complex occurred and was e s s e n t i a l l y 

complete i n 10 minutes. 

S i m i l a r l y , the r e a c t i o n of iodoacetamide w i t h the complex was 
slower than that w i t h hemoglobin (Figure 35). The i n h i b i t i o n of the 

14 

r e a c t i o n of C-iodoacetamide w i t h Hb by Hp was 70 to 80 per cent 

whether the Hb was i n the form of methemoglobin or oxyhemoglobin 

whereas w i t h the d i t h i o d i p y r i d i n e s the i n h i b i t i o n was grea t e r than 90 

per cent. An e f f e c t of hapt o g l o b i n on the environment of c y s t e i n y l 

893 has a l s o been seen (122) by comparing the e l e c t r o n s p i n resonance 

(E.S.R.) spectrum of N - ( l - o x y l - 2 , 2 , 5 , 5 , - t e t r a m e t h y l - 3 - p y r o l i d o n y l ) 

iodoacetamide-labelled hemoglobin w i t h the l a b e l l e d Hb-Hp complex 

Since the r a t e of r e a c t i o n of s u l p h y d r y l reagents w i t h the 

Hb-Hp complex was markedly d i f f e r e n t from that of Hb, i t was necessary 

to determine the s i t e of r e a c t i o n on the Hp-Hb complex to be sure t h a t , 

i n f a c t , the r e a c t i o n was s t i l l w i t h the 893 s u l p h y d r y l group. Auto­

radiography (Figure 36), a f t e r complete a c i d h y d r o l y s i s and high 
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F i g u r e 33 The r e a c t i o n of 4-PDS w i t h hemoglobin, the hemoglobin-
haptoglobin (Hb-Hp) complex, and f r e e h a p t o g l o b i n . 
The o r d i n a t e represents -SH groups reacted per mole of 
hemoglobin tetramer. Thus complete r e a c t i o n would 
generate 2 moles of th i o p y r i d o n e per mole of hemo­
g l o b i n tetramer. 
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F i g u r e 34 The r e a c t i o n of 4-PDS and 2-PDS w i t h methemoglobin i n 
the presence of i n c r e a s i n g amounts of ha p t o g l o b i n . 
The i n i t i a l v e l o c i t y of the r e a c t i o n i s p l o t t e d against 
the molar r a t i o of ha p t o g l o b i n to hemoglobin. 
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F i g u r e 35 The r e a c t i o n of C-iodoacetamide w i t h hemoglobin and 
hemoglobin•haptoglobin mixtures. For the r e a c t i o n of 
•^C-iodoacetamide w i t h f r e e h a p t o g l o b i n , the r a t e i s 
p l o t t e d per 0.19 absorbance at 280 nm s i n c e the absor­
bance of hemoglobin at 407 nm i s 5.2 times that of 
h a p t o g l o b i n at 280 nm. 



126 

Figure 36 High voltage electrophoresis at pH 6.5 a f t e r 16 hour acid 
h y d r o l y s i s of arboxymethyl-Hb and l^C-carboxymethyl-
Hb-Hp. 36B i s a ninhydrin s t a i n and 36A i s an autoradio-
graph of the high voltage paper. Numbers 1, 4, and 7 show 
markers of S-carboxymethylcysteine and 3, 6, and 9 are 
3-carboxymethylhistidine. Numbers 2 and 8 show acid 
hydrolysates of carboxymethyl-Hb and number 5 i s the 
hydrolysate of carboxymethyl-Hb-Hp. 



v o l t a g e e l e c t r o p h o r e s i s at pH 6.5 showed that i n the Hb-Hp complex the 

major r a d i o a c t i v e spot was the same as that w i t h hemoglobin and had 

the same m o b i l i t y as a u t h e n t i c S-carboxymethylcysteine. Two minor 

spots which ran more slo w l y toward the anode than 3-carboxymethyl-

h i s t i d i n e were a l s o seen. Products w i t h s i m i l a r m o b i l i t i e s to these 

minor spots have a l s o been described i n a previous a n a l y s i s of the 

r e a c t i o n of hapt o g l o b i n w i t h iodoacetamide f o l l o w i n g a c i d h y d r o l y s i s 

(123). 

Comparison of Residues Reacting i n Hb-Hp Complex 
With Those i n Hb 

In order to i d e n t i f y which c y s t e i n y l r e s i d u e i n hemoglobin was 

r e a c t i n g , the technique of comparative p a r t i a l a c i d h y d r o l y s i s , dev­

eloped f o r comparison of the a c t i v e s i t e s of s e r i n e proteases, was 
14 

used (124). P a r t i a l h y d r o l y s a t e s of C-carboxymethyl-labelled Hb 

and Hb-Hp complex were separated by high v o l t a g e e l e c t r o p h o r e s i s at 

pH 3.6 and an autoradiograph of the electrophoretogram i s shown i n 

Fi g u r e 37. At l e a s t e i g h t r a d i o a c t i v e bands show i d e n t i c a l m o b i l i t i e s 

and appear i n approximately s i m i l a r p r o p o r t i o n s i n sample 1 ( f r e e Hb) 

and sample 2 (the Hb-Hp complex). This demonstrates c o n c l u s i v e l y that 

the s i t e of r e a c t i o n i n the Hp-Hb complex i s s t i l l at the 693 c y s t e i n y l 

r e s i d u e of hemoglobin. Sample 3 shows the products of p a r t i a l a c i d 
14 

h y d r o l y s i s of f r e e h a p t o g l o b i n a f t e r treatment w i t h C-iodoacetamide. 

The s i t e ( s ) of m o d i f i c a t i o n , which leads to the appearance of the two 

s l i g h t l y cathodic r a d i o a c t i v e bands, has not been c h a r a c t e r i z e d but 
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o r i g i n 

F i g u r e 37 High v o l t a g e e l e c t r o p h o r e s i s at pH 3.6 a f t e r 20 minute 
a c i d h y d r o l y s i s of l^C-carboxymethyl-Hb, 14c-carboxymethyl 
Hb-Hp and l^C-carboxymethyl Hp. E l e c t r o p h o r e s i s was 
performed at approximately 3,500 v o l t s u n t i l a marker 
of c r y s t a l v i o l e t had moved 22 cm. 
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f a i n t corresponding bands i n sample 2 i n d i c a t e that a s i m i l a r r e a c t i o n 

i s probably o c c u r r i n g w i t h the Hb-Hp complex. 

The e x p l a n a t i o n f o r the decreased r e a c t i v i t y of c y s t e i n y l 393 

i n the Hb-Hp complex cannot, at the moment, be unequivocal. Three 

p o s s i b i l i t i e s e x i s t , 

(a) There i s a covalent i n t e r a c t i o n between the s u l f h y d r y l 

group of the c y s t e i n y l residue at 393 and a group i n h a p t o g l o b i n , f o r 

example, a r e a c t i v e d i s u l f i d e . Two l i n e s of evidence make t h i s u n l i k e l y ; 

f i r s t , 393 can re a c t completely, a l b e i t more s l o w l y , w i t h iodoacetamide 

or the d i t h i o d i p y r i d i n e s so that the decreased r e a c t i v i t y i s e s s e n t i a l l y 

a r a t e phenomenon. Secondly, the Hb-Hp complex can be completely d i s ­

s o c i a t e d by s u c c i n y l a t i o n of amino groups (54) , a procedure which does 

not a f f e c t -SH or -S-S- groups but i s known to cause an extensive 

p h y s i c a l u n f o l d i n g of ha p t o g l o b i n and presumably d e s t r u c t i o n of the con­

formation of the hemoglobin b i n d i n g s i t e on haptoglobin. 

(b) 393 i s a "contact" amino a c i d (125) i n the hemoglobin s i t e 

bound by haptoglobin. This p o s s i b i l i t y has been explored by Bunn (64) 

who prepared s e v e r a l d e r i v a t i v e s of hemoglobin i n which 393 was modi­

f i e d by groups v a r y i n g i n s i z e from carboxymethylamido- (from 

iodoacetamide) to p-mercuribenzoate (from p-HMB) and found that there 

was no e f f e c t on the b i n d i n g of hemoglobin by haptoglobin. This would 

argue a g a i n s t the decrease i n r e a c t i v i t y of 393 i n the complex being 

the r e s u l t of a d i r e c t s h i e l d i n g by haptoglobin. Moreover, HbH (3^) 

i s not bound by haptoglobin (57) and i s o l a t e d 3-chain i s bound only 

weakly (72), so that i t seems u n l i k e l y that a major p o r t i o n of the 
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binding s i t e i s on the B-chain. 

(c) The t h i r d and perhaps most l i k e l y p o s s i b i l i t y i s that a 

conformational change i s induced i n the environment of 393 as a r e s u l t 

of the re a c t i o n with haptoglobin. The e f f e c t of haptoglobin on 693 i s 

very s i m i l a r to the decrease i n r e a c t i v i t y of 393 toward iodoacetamide 

upon deoxygenation of hemoglobin (47). Since t h i s e f f e c t has been 

inter p r e t e d (47) as r e s u l t i n g from the known conformational d i f f e r e n c e s 

between oxy- and deoxy-hemoglobin (42,50), the same type of conforma­

t i o n a l change upon haptoglobin binding seems reasonable. Detailed 

studies of the immediate environment of 393 (42,50) have shown that 

c y s t e i n y l 393 i s close to h i s t i d y l 397, a residue intimately involved 

i n the (a^,^^) contact area between the d i s s o c i a t i n g halves of the 

hemoglobin molecule (50). A more recent X-ray c r y s t a l l o g r a p h i c study 

i n d i c a t e s that upon formation of deoxyhemoglobin, h i s t i d y l 3146 forms 

a hydrogen bond with the 3 -carboxyl group of a s p a r t y l 894 and r e s t r i c t s 

access to the sulphydryl group of 893 (51) thus accounting f o r the 

decreased r e a c t i v i t y of 893 (47). Since the combination of haptoglobin 

appears to be with d i s s o c i a t e d a8 dimers of hemoglobin (70,71) i t i s 

poss i b l e that haptoglobin may react with some portion of the exposed 

0 . ^ , 8 2 contact area thus i n d i r e c t l y a f f e c t i n g the r e a c t i v i t y of 893 

toward sulphydryl reagents. 

Thus the evidence i n d i c a t e s that haptoglobin induces a confor­

mational change i n the v i c i n i t y of the 893 sulphydryl of hemoglobin. 

I t i s known that haptoglobin combines with a number of hemoglobins 

modified at 893 (64) but i t i s not known i f haptoglobin induces a 
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s i m i l a r conformational change i n these modified hemoglobins. 

The question a l s o a r i s e s as to how hemoglobins w i t h a modified 

conformation at 893 re a c t w i t h hap t o g l o b i n . Deoxyhemoglobin, known 

to have a d i f f e r e n t conformation at 893, does not combine w i t h hapto­

g l o b i n . Human bis(N-maleimidomethyl)ether hemoglobin, which i s modi­

f i e d a t 893 and has d i f f e r e n t d i s s o c i a t i o n p r o p e r t i e s than human 

oxyhemoglobin, r e a c t s l e s s completely w i t h h a p t o g l o b i n than oxy­

hemoglobin does. In f a c t t h i s 8ME-hemoglobin has r e c e n t l y been shown 

to have a d i f f e r e n t conformation i n the FG corner of the hemoglobin 8 

chain (the 893 region) (126). Thus two hemoglobins both w i t h d i f f e r ­

ent conformations i n the c y s t e i n y l 893 r e g i o n both have d i f f e r e n t 

a f f i n i t i e s f o r haptoglobin than oxyhemoglobin has. As a r e s u l t t h i s 

r e g i o n of the hemoglobin molecule or an area near t h i s r e g i o n appears 

to be the l i k e l y s i t e of hapt o g l o b i n a t t a c k . Since the a - j ^ contact 

r e g i o n i s near the 893 area a conformational change i n the 893 area 

could change the conformation i n the a-j.^ c o n t a c t area. The f a c t that 

both human deoxyhemoglobin and human BME-hemoglobin have d i f f e r e n t d i s ­

s o c i a t i o n p r o p e r t i e s than oxyhemoglobin (49,65) confirms the p r e d i c t i o n 

that these hemoglobins have d i f f e r e n t conformations i n the a^$2 c o n t a c t 

area than oxyhemoglobin. In the case of deoxyhemoglobin the d i f f e r e n t 

conformation i n the a j $ 2 c o n t a c t area has been demonstrated d i r e c t l y 

by X-ray c r y s t a l l o g r a p h y (43). As mentioned p r e v i o u s l y , t h i s change 

i n conformation i n the ̂ •^'2 c o n t a c t a r e a m a Y D e the reason that hapto­

g l o b i n r e a c t s d i f f e r e n t l y w i t h human BME-hemoglobin and human deoxy­

hemoglobin than w i t h human oxyhemoglobin. Since haptoglobin does 
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combine w i t h a8 hemoglobin dimers and does r e a c t more r a p i d l y w i t h 

hemoglobins which are d i s s o c i a t e d i n t o dimers to a greater extent (68), 

hapto g l o b i n appears to be combining w i t h an area of the hemoglobin 

molecule which i s exposed a f t e r hemoglobin d i s s o c i a t i o n . This area 

appears to be the a - i^2 c o n t ; a c t a r e a -

The f o l l o w i n g observations are c o n s i s t e n t w i t h the p r e d i c t i o n 

that haptoglobin combines w i t h the a ] $ 2 c o n t a c t area of hemoglobin; 

h a p t o g l o b i n combines w i t h the a6 dimer of hemoglobin; haptoglobin 

causes a conformational change i n a re g i o n of the hemoglobin molecule 

(893 region) which i s i n contact w i t h the c o n t a c t r e g i o n ; two 

hemoglobins w i t h modified conformations i n the c o n t a c t a r e a com­

b i n e l e s s completely or not at a l l w i t h h a p t o g l o b i n ; and hapt o g l o b i n 

combines most r a p i d l y w i t h those hemoglobins which are d i s s o c i a t e d to 

the g r e a t e s t extent. 

In recent years n i t r o x i d e d e r i v a t i v e s have been discovered 

which c o n t a i n unpaired e l e c t r o n s and are s t a b l e i n aqueous s o l u t i o n s 

(127). The attachment of these compounds to macromolecules has pro­

v i d e d new and e x c i t i n g i n f o r m a t i o n about the nature of p r o t e i n 

s t r u c t u r e because the e l e c t r o n s p i n resonance s p e c t r a of these modified 

p r o t e i n s has been s t u d i e d . 

Because the 893 c y s t e i n y l group of hemoglobin can r e a d i l y be 

modified and because i t i s s e n s i t i v e to the conformation of hemoglobin 

t h i s group has been modified w i t h s e v e r a l s p i n - l a b e l reagents and 

s t u d i e d i n d e t a i l i n H. M. McConnells l a b o r a t o r y (127,128). 
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One very i n t e r e s t i n g aspect of t h i s work was the demonstration 

of a new component i n the s p e c t r a of s p i n - l a b e l compounds a f t e r the 

s p i n - l a b e l reagents were attached to the 893 s u l p h y d r y l i n hemoglobins. 

In f a c t the s p e c t r a of horse carbonmonoxyhemoglobin and horse methe-

moglobin show d i f f e r e n t amounts of t h i s component (129). The explana­

t i o n f o r the v a r y i n g amounts of the new component i n the s p i n 

resonance spectrum of modified carbonmonoxyhemoglobin and methemoglobin 

was that the conformation of these two p r o t e i n s i n the area of the 

s p i n - l a b e l s was d i f f e r e n t . X-ray c r y s t a l l o g r a p h y of horse methemoglobin 

and horse carbonmonoxyhemoglobin had shown that these p r o t e i n s had 

i d e n t i c a l s t r u c t u r e s (130). However c r y s t a l l i z a t i o n of these two s p i n -

l a b e l l e d hemoglobins demonstrated that the d i f f e r e n c e i n s p e c t r a 

between the two p r o t e i n s remained (131) and thus the two p r o t e i n s 

appear to have a very s m a l l conformational d i f f e r e n c e which cannot be 

demonstrated by X-ray c r y s t a l l o g r a p h y . The d i s c o v e r y that h a p t o g l o b i n 

has an e f f e c t on human hemoglobin, which i s s p i n - l a b e l l e d at 893, 

opens up the p o s s i b i l i t y of i n v e s t i g a t i n g aspects of the nature of the 

hemoglobin-haptoglobin complex w i t h t h i s new and powerful technique 

(122). 
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