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ABSTRACT 

A t e l e v i s i o n band compression scheme which depends p r i m a r i l y on 

matching i n one sense the eye's s e n s i t i v i t y to f l i c k e r has been proposed. 

For a s t a t i c p i c t u r e as the source ma t e r i a l , i t i s found that the compression 

r a t i o i s not d i r e c t l y l i m i t e d by the f l i c k e r e f f e c t , but the p i c t u r e q u a l i t y 

assessed s u b j e c t i v e l y , f a l l s quite f a s t as the compression r a t i o i s increased. 

A compression r a t i o of 1.5:1 i s accompanied by a very small drop i n sub­

j e c t i v e q u a l i t y . Using a "high frequency boost" c i r c u i t the compression 

r a t i o can be increased to 3:1 under conditions of s a t i s f a c t o r y p i c t u r e q u a l i t y . 

Experiments were performed using as source a movie p i c t u r e , and 

higher compression r a t i o s than those for the s t a t i c p i c t u r e were i n d i c a t e d . 

A l l the experiments were performed using a simulated t e l e v i s i o n 

transmission system. The system was based on a l a s e r source, and i t i s an 

improvement on a system designed by Otto Meier i n 1968. 

( i i ) 
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I. INTRODUCTION 

Numerous pub l i c a t i o n s and references [1] - [5], [11] deal with 

the t e l e v i s i o n bandwidth compression problem. The need f o r v i s u a l com­

munication i s increased every day and a plethora of devices have been 

proposed i n this f i e l d . An example i s the v i s u a l telephone. I t i s said 

[4] that the sending of banking messages and the exchanging of t e c h n i c a l 

drawing messages w i l l only be possible i f a new t e l e v i s i o n system using 

r e l a t i v e l y narrow bandwidth can be made a v a i l a b l e . 

Compression techniques have been c l a s s i f i e d [5] into three d i f ­

ferent categories: pure s t a t i s t i c a l , psychophysical and a combination of 

the two. An example of the pure s t a t i s t i c a l approach i s the work done 

by C o l i n Cherry et a l . [4]. They pioneered a run-length-coding method 

and compression r a t i o s of up to 3.5:1 for a h a l f tone p i c t u r e have been 

obtained. Very elaborate work has been done by Schreiber's group [3] i n 

which the combination approach has been used. They took advantage of the 

fac t that the eye i s very s e n s i t i v e to the detection of edges and they 

proposed a system c a l l e d "Synthetic Highs". Experiments were c a r r i e d out 

by computer-simulation and e f f i c i e n t coding and quantizing methods were 

inves t i g a t e d . The re s u l t s were good, as shown by high compression r a t i o s 

of 5 or 6 to 1 for a h a l f tone p i c t u r e [5]. In comparison with b u i l d i n g 

e l e c t r o n i c equipment, computer-simulation has many advantages. However, 

computer simulation cannot be used for r e a l time studies because i t takes 

many seconds to generate a s i n g l e p i c t u r e frame, and i t i s v i r t u a l l y 

impossible to study the r e a l t e l e v i s i o n s i t u a t i o n which involves motion 

p i c t u r e s . 

An experimental system based on a coherent l i g h t source for 

processing v i s u a l signals has the remarkable property that i t i s very f a s t . 
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Real time studies can be undertaken and these can include the motion p i c t u r e 

problem. This analog system has noise problems but these can be tolerated 

by the eye and f i l t e r i n g i s easy to r e a l i z e . In p a r t i c u l a r we have used 

such an o p t i c a l system to perform the Fourier and the inverse transform; 

we could therefore study bandwidth compression under conditions which 

approach the p r a c t i c a l case very c l o s e l y . 

A s t a r t to the work reported here was made i n 1968 by Otto Meier 

[1], [2]. In h i s work a s e r i e s of high q u a l i t y and low q u a l i t y versions 

of the same pi c t u r e were presented a l t e r n a t e l y f o r equal i n t e r v a l s of 

time, T, on a t e l e v i s i o n monitor and a viewer was asked to state i f he 

could see any f l i c k e r i n g i n the display. Meier showed that the eye i s 

s e n s i t i v e to f l i c k e r frequency by very d i f f e r e n t amounts according to the 

highest s p a t i a l frequency present i n the pi c t u r e . With a view to obtaining 

reduction i n channel bandwidth, i t seemed natural to suggest that the 

t e l e v i s i o n p i c t u r e source encoder could be designed to match more c l o s e l y 

the f l i c k e r s e n s i t i v i t y of the eye. Although one can p r e d i c t that up to 

2:1 compression should be possible from Meier's r e s u l t s , he did not explore 

higher p o t e n t i a l compression r a t i o s . 

In the present work the apparatus used by Meier has been improved, 

so that higher q u a l i t y r e s o l u t i o n was obtained. This enables us to explore 

furth e r the proposed compression scheme. The absence of f l i c k e r i s only 

one c r i t e r i o n that the compression scheme must meet. One might ask how 

much the subjective impression of p i c t u r e q u a l i t y f a l l s as the compression 

r a t i o , C, i s increased. A further series of tests were made using a se r i e s 

of graded photographs i n which a subject was asked to p a i r p i c t u r e s having 

s i m i l a r subjective p i c t u r e q u a l i t y . Using t h i s technique, i t was found 

that the p i c t u r e q u a l i t y f a l l s quite fast as C i s increased, but a "high 

frequency boost" c i r c u i t o f f s e t s to a c e r t a i n degree this decline. 
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I I . BASIC OPTICAL SYSTEM AND CALCULATION 

Meier's o p t i c a l processing system used a l a s e r , three lenses and 

a closed c i r c u i t t e l e v i s i o n camera-monitor dis p l a y . A s o l u t i o n to the 

problem of plac i n g the lenses was ar r i v e d at using t r i a l and error techniques. 

An adequate theory to give the po s i t i o n s of the lenses and the stop s i z e s 

was not a v a i l a b l e . This d e f i c i e n c y i s supplied by. the theory part given 

i n this chapter which i s based on Vander Lugt's notation [6]. 

2.1 Basic O p t i c a l Elements 

2.1.1 S p a t i a l Fourier Transform 

A s p a t i a l Fourier transform of a pattern i s an array of points 

whose p o s i t i o n corresponds to frequency, and brightness corresponds to 

amplitude. F i g . 2.1 shows a simple t e s t pattern and i t s one- and two-

dimensional Fourier transform. F i g . 2.2 shows a half-tone p i c t u r e and i t s 

Fourier transform. 

2.1.2 Approximation and Operational Notation of Some Basic Elements 

(a) l i g h t wave and f i l m 

l i g h t wave: A(x,y) = |A(x,y) |exp[j(j)(x,y) ] 

f i l m : f(x,y) = |f(x,y)|exp[j£(x,y)] 

A(x,y) 
f(x,y) 

(a) 

f(x,y) 

A(x,y) f(x,y) A(x,y) A(x,y) f(x,y) 

(b) 

F i g . 2.3 Light Wave and Film 
(a) O p t i c a l System 

• (b) Block Diagram 



Illlllllll 

(a) 
F i g . 2.1 (a) L i n e s test pattern (b) Two-dimensional Fourier 

transform of (a) 

I I I t t ' l 

(c) 
( c ) One-dimensional F o u r i e r transform 

of (a) 

n i i 
1 

(a) 
F i g . 2.2 (a) Half-tone p i c t u r e (b) One-dimensional Fourier 

transform of (a) 
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follows: 

w i l l be: 

(b) Spherical lens 
1 

I f F = Focal length; f =—;- and a function I/J i s defined as 
r 

ijj(x,y;f) = exp [j — (x + y ) ] 

Then the approximation and notation of a s p h e r i c a l lens 

if<x,y;f) = e x P [ - j ^ ^ + y 2 ) 1 i ( x,y;f) 

f(x,y) exp [ ] f(x,y) 
f ( x , y ) ^ ( x , y ; f ) 

f ( x , y ) 
2 2 exp[-j ^ r ( x + y ) ] (b) 

(a) 

F i g . 2.4 Spherical Lens 
(a) O p t i c a l System 
(b) Block diagram 

(c) C y l i n d r i c a l lens 

t|i(x;f) - exp[-j -^T x ] 

k 2 

^ ( y ; f ) - exp[-j j^- y ] 

(d) free space 
D = distance between two planes 

1 
d = D 

approximation of free space w i l l be: 

! T e x p [J 2D 
= 1 k 2 2 d -ijj(x,y;d) - — exp [j — (x + y )] 
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f(x,y) g(u,v) 
di^(x,y ;d) 

f(x,y) g(u,v) 

(a) (b) 

F i g . 2.5 Free space 

(a) O p t i c a l System 
(b) Block Diagram 

2.2 Design of the O p t i c a l System 

The system using o p t i c a l f i l t e r i n g techniques f o r th i s work con­

s i s t s of three parts (Figure 2.6). The f i r s t part displays a Fourier 

transform F(u,v) of a s p a t i a l pattern f ( x , y ) , i n plane P^- The second 

part i s a f i l t e r H(u,v)-a side band stop and a chopping wheel-in plane P^-

The l a s t part gives the inverse Fourier transform of the product F(u,v)• 

H(u,v). Such a system i s described by Vander Lugt [6] as a Variable-Scale 

C o r r e l a t o r . 

i n s e r t e d i n t h e i r appropriate places to obtain a "one-dimensional" Fourier 

transform and reconstruction. 

To s i m p l i f y the c a l c u l a t i o n , we assume that L., = 0; L. = 0. 
i 4 

Such an approximation i s very reasonable because of two reasons: 

1. A l l lenses are weak, that means: F 1,F„,F ,L ,L_,L C,L >>> , L 
1 2 j z j 5 6 1 

2. The lenses are not perfect; a f t e r some accurate c a l c u l a t i o n 

f i n e adjustment by t r i a l and error should be made. 

The set up i n t h i s lab. i s a 1:1 symmetrical system. The sym­

met r i c a l system i s simpler than one with a scale change. Meier [2] remarks 

that i t i s p r a c t i c a l l y impossible to a l i g n the asymmetrical system. 

The necessary modification i s made, two c y l i n d r i c a l lenses are 
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Fourier Transform Section Inverse Transform Section 

S p a t i a l F i l t e r 

F i g . 2.6 The O p t i c a l System Experimented 
F^: Laser beam expander 
F^: C y L i n d r i c a l lens 
F^: Spherical lens 

: Input plane 
Fourier Transform plane 

P : Output plane 

To a t t a i n the one to one symmetrical set up the separations i n 

F i g . 2.6 should s a t i s f y the following e q u a l i t i e s . 

L 3 = L 5 (2.1) 

L 2 + L 3 = L 5 + L 6 = 2F 3 (2.2) 

If a two dimensional s p a t i a l coordinate test pattern function 

f(x,y) i s placed i n plane P^, the l i g h t d i s t r i b u t i o n i n plane P 2 then 

w i l l be given by equation 2.3. 

F(u,v) = C - ^ ( u , v ; l 3 ) / / f ( x > y ) ^ ( x , y ; l 2 - f 1 ) 
P l 1 I 2 

. [x + —— u; 
1 2 ' 1 2 + 1 3 

h i 2 

• [y + J " v ; 1 ] dxdy 
2 1, + l ^ - f 9 

(2.3) 
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To obtain the Fourier transform along the h o r i z o n t a l axis and 

image along the v e r t i c a l axis i n the plane P^, the conditions f o r setting 

lenses are as follows: 

Imaging condition on v e r t i c a l axis 

X2 — - (2.4) 
1 + 1 - f 2 3 2 

or 
( 2 - 5 > 

\ L3 2 

Fourier transform condition 

17 ~ f-r - = 0 (2.6) 
1 + 1 2 3 

or 

^ - 4 + 1.3 (2.7) 

The proof of equations 2.3, 2.5, and 2.7 w i l l be found i n Appendix A-2. 

The lenses used here have the following characters. 

Laser beam expander F^ = 4 meters 
Spherical lens F^ = 2 meters 
C y l i n d r i c a l lenses F^ = 0.8 meter 

In s o l v i n g equations 2.5, 2.7, 2.1 and 2.2 the a x i a l p o s i t i o n s 

of lenses are obtained as i n Table 1. 

TABLE 1 
Th e o r e t i c a l Experimental Err o r 

L 2 2.895m 2.90 0.2% 

L6 2.895m 2.91 0.5% 

L 3 1.105m 1.1 0.5% 

L 5 1.105m 1.09 1.4% 



The close correspondence between experimental and th e o r e t i c a l 

values i n Table 1 indicates that the f i r s t order theory used i n this the­

o r e t i c a l treatment i s quite adequate. 

2.3 Frequency and Image-Position Relation 

In t his one to one system a 16 mm width picture i n the input 

plane w i l l correspond to a 16 mm width p i c t u r e i n the output plane which 

i s received by a v i d i c o n . The f i n e s t r e s o l u t i o n can be resolved by the 

vi d i c o n i s 250 l i n e s / p i c t u r e width, i n this case 250 lines/16 mm. 

To r e l a t e the p o s i t i o n of image points i n the F.T plane to 

frequency, f^, i n lines/p.w. i n the input and the output planes a simple 

test pattern was used. The distance from the f i r s t to second maxima was 

measured and i t i s proportional to the number of lines/p.w. i n the input 

and the output p i c t u r e s . 

The c a l i b r a t i o n i s shown i n F i g . 2.7 and i t demonstrates that 

f »x - a l i n e a r dependence -. 
x 

(a) (b) 1/4" :50 1/p.w. 
3/16":37.5 1/p.w. 
1/8" :25 1/p.w. 
1/16":12.5 1/p.w. 

Fig. 2.7 Image-Position Relation in Fourier Transform Plane 
(a) enlarged photo of a test pattern 
(b) one dimensional F.T of (a) shows a l i n e a r dependence of 

fx with respect'to x 
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I I I . STATIC PICTURE TESTS 

In t h i s chapter a b r i e f d e s c r i p t i o n of test procedure, apparatus 

and r e s u l t s are given. I t contains r e s u l t s of f l i c k e r experiments i n 

which the high q u a l i t y p i c t u r e i s presented f o r a period T and the low 

q u a l i t y p i c t u r e for T and i t i s shown that the sensation of f l i c k e r i s 
T L 

l a r g e l y independent of . This suggests that large compression r a t i o s 
T 

H 

might be p o s s i b l e . The subjective evaluation of compressed pictures was 

also measured and r e l a t e d to band-reduced but otherwise normal t e l e v i s i o n 

p i c t u r e s . I t i s shown that p i c t u r e q u a l i t y f a l l s r a p i d l y as the compression 

r a t i o i s increased but i t i s also shown that a high frequency boost c i r c u i t 

arrests to a c e r t a i n l i m i t t his d e t e r i o r a t i o n . 
3.1 Basic Idea 

The compression scheme considered here presents a s e r i e s of high 

q u a l i t y and low q u a l i t y versions of the same p i c t u r e . The high q u a l i t y 

p i c t u r e contains dc up to a highest s p a t i a l frequency fm. The low q u a l i t y 

p i c t u r e contains dc up to a s p a t i a l frequency fx. The d i f f e r e n c e between 

the two sets of p i c t u r e s i s due to the s p a t i a l frequency components l y i n g 

between fx and fm and i t w i l l be shown that the eye needs to have these 

components replenished at a low rate. Thus the basic idea i s to produce 

such pic t u r e s by a two-velocity-scanning system and t h i s w i l l r e s u l t i n a 

reduction i n the channel bandwidth. 

The experiments reported were performed using the analog apparatus 

described i n the next s e c t i o n . 

Define: 

T : period i n which low q u a l i t y video s i g n a l i s sent 

T : period i n which high q u a l i t y video s i g n a l i s sent 
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fm: highest s p a t i a l frequency i n high q u a l i t y p i c t u r e ( l i n e s / 
p i c t u r e width) 

fx: highest s p a t i a l frequency i n low q u a l i t y p i c t u r e ( l i n e s / 
p i c t u r e width) 

f: frame r e p e t i t i o n frequency 

F: . the bandwidth needed to pass the high q u a l i t y p i c t u r e ( i n Hz) 

F^: the bandwidth of the compressed system 

S: dimension proportional constant (lines/p.w. and Hz) 

I f i _ _ P (3-D 
H 

F = S • 60•fm 

v = s-f.f R f x + £ m ] 
R 1 + R 

F^ = F- J L . [ 1 + R ' £ x / f m ] (3.2) R 60 1 + R 

The experiments obtained the l i m i t fc<_f/(l+R) f o r which the f l i c k e r 

e f f e c t i s j u s t not noticeable under a number of conditions. 

f<? = f(R, fx, Contrast, Brightness) (3.3) 

1 1 
f G = f + T = T (1+R) (3.4) 

H L H V ^ 
For a fixed value T , f c = F(R) = F(fx) 

H 

or R = F(fx) = F(fc) (3.5) 

Thus (3.5) and(3.2) can be solved to obtain the compressed 
bandwidth. 

3.2 Test Arrangement 

D i f f e r e n t pictures were put i n the plane of F i g . 2.6 as 

test patterns, 

A mask i s placed at the Fourier transform plane P^ to remove a 
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h a l f of the s p a t i a l frequencies of a symmetrical spectrum. The t o t a l 

information to be reconstructed now corresponds to a s i n g l e sideband of 

a t e l e v i s i o n transmission system. 

A chopping wheel with v a r i a b l e OFF:ON r a t i o , R, was used to cut 

a l l s p a t i a l frequencies above a c e r t a i n l i m i t fx temporarily at a v a r i a b l e 

r e p e t i t i o n rate f . The high q u a l i t y p i c t u r e corresponds to the "ON" part; 
P 

the low q u a l i t y p i c t u r e corresponds to the "OFF" part. The output p i c t u r e 

at the plane P^ was received d i r e c t l y by a v i d i c o n (T.V. camera without 

lenses) and appeared on a T.V. monitor. 

An experiment was started by s e t t i n g fx to a chosen value and 

ro t a t i n g the wheel, Figure 3.1. At f i r s t when the chopping wheel rotated 

slowly the f l i c k e r e f f e c t x̂ as very pronounced and e a s i l y observed by a 

subject who was at 1.5 m from the monitor. The wheel v e l o c i t y was then 

increased to a point where the subject f e l t that no f l i c k e r i n g e f f e c t 

appeared. The value of r e p e t i t i o n rate at this point was recorded as 

fc ( c r i t i c a l f l i c k e r i n g frequency). 

Constrast r a t i o and brightness can be adjusted e a s i l y on the 

monitor to give a pleasing p i c t u r e and "maximum d e t a i l s " . F i g . 3.2 and 

3.3 show the apparatus set up. 



P 3 2 

40 
Laser and 
Pin-hole Beam 

expander Test pattern 

A 

WJ Spherical lens 

0 
c y l i n d r i c a l 
lens . . Sideband chopping 

T.V. camera 
c y l i n d r i c a l without lenses 
lens 

wheel s top 

1.1m l . l r 

4m tm 

-4L 

viewing distance 1.5m T.V. monitor 
F i g . 3.1 Test arrangement 

Beam expander telescope adjusted to F=4m 
Input plane; Test pattern: 16 mm width s l i d e 
C y l i n d r i c a l lenses; F=0.8m 
Fourier transform plane; chopping wheel and sideband stop 
Spherical lens; F=2m 
Output plane; T.V. camera without lenses 

r-
U 



F i g . 3.2 Test Apparatus 

(a) Laser and beam expander 
(b) Test p a t t e r n 
(c) O p t i c a l System 
(d) Monitor 

F i g . 3 . 3 O p t i c a l System Set up 

(a)-(e) C y l i n d r i c a l lenses F2 
(b) Chopping wheel 
(c) Sideband stop 
(d) S p h e r i c a l lens 
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3.3 Test Results 

3.3.1 Test Results 

Using d i f f e r e n t test patterns and d i f f e r e n t OFF:ON r a t i o R = 1, 

2, 3, r e s u l t s were obtained and they are reported on the following pages. 

To check the consistency of the r e s u l t s , three sets of tests 

were c a r r i e d out at d i f f e r e n t times at l e a s t one day apart. 

It i s shown that the experimental points varied s l i g h t l y f o r 

one subject but more noticeably from one subject to another. Only the 

upper bound or the worse cases are presented and used f o r compression 

r a t i o c a l c u l a t i o n s . 

3.3.2 Discussion 

The r e s u l t s of these tests show that fc i s l a r g e l y independent 

of 0FF:0N r a t i o R. The only changing f a c t o r when R i s changed, i s the 

q u a l i t y of the output p i c t u r e ; this point w i l l be considered more c a r e f u l l y 

l a t e r . 

The experimental points v a r i e d widely from one test p i c t u r e to 

the other; that means fc i s strongly dependent upon p i c t u r e content. 

Contrast r a t i o and brightness, as reported i n Meier's thesis [2], 

have l i t t l e i n fluence on f c . 

The mask used to suppress one sideband produced deleterious e f f e c t s 

which are i l l u s t r a t e d i n the next s e c t i o n . I t must be pointed out that 

with normal t e l e v i s i o n transmission the f i l t e r s which eliminate one side­

band are designed to alternate at 6 db/oct on the s k i r t s . The e f f e c t s of 

overshoot which we experienced are much exaggerated because we used a 

" b r i c k w a l l " f i l t e r . The problem was mitigated by placing the stop s l i g h t l y 

o f f center. Computations of fx take this into account. 



F i g . 3.4 T e s t P a t t e r n No. 1 

F i g . 3.5 C r i t i c a l f r e q u e n c y as a f u n c t i o n o f l i m i t 
f x o f t e s t p a t t e r n No. 1 
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Fig. 3.7 C r i t i c a l frequency as a function of l i m i t 
fx of test pattern No. 2 



F i g . 3.8 Test Pattern No. 3 

0 50 100 150 200 250 

F i g . 3-9 C r i t i c a l frequency as a f u n c t i o n of l i m i t 
fx of t e s t p a t t e r n No. 3 
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"Over a l l " f l i c k e r i n g always occurred when fx was lower than 

25 lines/p.w. The value of fc at fx = 0 i s j u s t a mathematical extrapol­

at i o n . The o v e r a l l f l i c k e r i n g e f f e c t i s due to d i f f r a c t i o n phenomena 

and w i l l be ref e r r e d to when we discuss the l i m i t a t i o n s of the system. 

The expression f c = fo exp [-kfx] used to approximate the Meier's 

r e s u l t s i s once again found to f i t the experimental points. 

Values of fo i n the actual tests varied from 35 to 40 Hz. The 

fa c t o r k l i e s between 0.005 to 0.01; f c i s i n Hertz ..;and fx i s i n 

l i n e s / p i c t u r e width. For the test pattern i n F i g . 3.4, f c - 35 exp (-0.0056 f x ) ; 

i n F i g . 3.6, f c = 35 exp (-0.0055 f x ) ; i n F i g . 3.8, f c = 40 exp (-0.0095 f x ) . 

3.4 L i m i t a t i o n of the Experimental System 

3.4.1 Noise due to coherent l i g h t source [10] 

Let g(x,t) be the complex amplitude of an o p t i c a l f i e l d . The 

instantaneous i n t e n s i t y I(x,t) i s given by: 

I(x,t) = g(x,t)- g*(x,t) (3.6) 

where g*(x,t) denotes the complex conjugate. 

As an image i s a combination of weighted and displaced d e l t a 

functions, we f i r s t examine the r e s u l t s of a two-point-source a d d i t i o n . 

If g(x,t) = g x ( x , t ) + g 2(x,t) (3.7) 

Then I(x,t) = g(x,t)•g*(x,t) 

g 1 ( x , t ) ^ g 1 * ( x , t ) + g 2(x,t)«g 2*(x,t) 
,(x, 

(3.8) 

+ g ( x , t ) . g 2 * ( x , t ) + g * ( x , t ) . g 2 ( x , t ) 

The time average i s : 
,. . . l i m 1 r^ 
I(x) = J I ( x , t ) d t (3.9) 

T -*- <*> 2T 



Incoherent a d d i t i o n 

In the incoherent case g^(x,t) and g 2(x,t) both vary randomly 

with time and also vary randomly with respect to each other. 

li m 1 r T , . ., . ,̂  lim 1 fT . . . . . , _ 
J g (x,t)-g * ( x , t ) d t = J g * ( x , t ) - g (x,t)dt=0 

X _ * o = 2T -T T —«> 2T ~ T 

(3.10) 

I(x) = I 1 ( x ) + I 2 ( x ) (3.11) 

i n general for n points 
n 

I (x) = E I.(x) (3.12) 
n i = 1 i 

Coherent a d d i t i o n 

For coherent l i g h t : 

g(x,t) = g l ( x , t ) + g 2(x,t) = § 1 ( x ) £
 j 2 7 f V t + g 2 ( x ) e j 2 7 T V t 

(3.13) 
where 

Then 

or 

g i ( x ) - A l ( x ) e ^ l ^ 

g 2(x) = A 2(x)e j (f'2( x) ( 3. 1 5) 

I(x) = |A 1(x)I 2 + |A 2(x)I 2 

4- A 1 ( x ) . A 2 ( x ) { e J [ ^ ( x ) - ( J , 2 ( - ) 3 + 

J[<|>2(x)-<|>1(x)] , (3.16) 

I(x) = | g l ( x ) + g 2 ( x ) | 2 (3.17) 

In general: 

I (x) = | I g . ( x ) I 2 (3.18) 
n i = l 1 
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(a) (b) 

Fig. 3.10 (a) Theoretical intensity d i s t r i b u t i o n i n 
the coherent and incoherent image of a 
bar test (after Skinner [10]) 

(b) Photograph from T.V. monitor 

Fig. 3.11 "Contour noise" effects on a 
half-tone picture due to 
coherent illumination 
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The e f f e c t of these c r o s s - c o r r e l a t i o n terms i n case of a bar 

test pattern i s shown t h e o r e t i c a l l y and experimentally i n F i g . 3.10. F i g . 

3.11 shows th i s e f f e c t on a h a l f tone p i c t u r e . 

The fringes due to coherent i l l u m i n a t i o n are the main contributors 

to. the f l i c k e r i n g . e f f e c t for high values of fx. F l i c k e r was perceived 

by the v a r i a t i o n i n i n t e n s i t y of f r i n g e l i n e s rather than the v a r i a t i o n 

of edges i n the p i c t u r e . 

3.4.2 L i m i t a t i o n of fx i n low frequency range 

As mentioned e a r l i e r , when the chopping wheel went too close 

to the sideband stop, (fx <25 lines/p.w.) the f l i c k e r i n g of the t o t a l 

area occurred. This f a c t can be explained by examining the Fourier trans­

form of a bar test pattern. F i g . 3.12(b) shows the i n t e n s i t y d i s t r i b u t i o n 

i n Fourier transform plane of a bar t e s t pattern. The width L of the 0 ^ 

order d i f f r a c t i o n pattern varies depending upon the s i z e W of the bar t e s t . In 

F i g . 3.12 L — 30. l i n e s when W — 1/18 of p i c t u r e width. If the wheel i s i n the 

p o s i t i o n shown i n F i g . 3.12(b) then the output l i g h t from plane P ( F i g . 2.6) 

w i l l act l i k e a s i n g l e s l i t l i g h t source. Reconstruction lenses w i l l 

produce a s e r i e s of fringes i n output plane Pg. These fringes are the cause 

of o v e r a l l f l i c k e r i n g and are shown i n F i g . 3.12(c). 



(c) 

Fig. 3.12 (a) Output of a bar test pattern from T . V . 
monitor fx = fm 

(b) Spatial one-dimensional Fourier transform 
of (a) 

(c) Fringes due to limitation of bandwidth 
fx<20 lines/p.w., output from T . V . monitor 

ro 
U> 
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3.5 Bandwidth Compression Ratio Calculations 

For r e a l i z i n g the t e l e v i s i o n system we propose a method using 

two scanning v e l o c i t i e s , a slow one for high q u a l i t y pictures and a f a s t 

one for band l i m i t e d p i c t u r e s . 

Equation 3.2 can be used to c a l c u l a t e the compression r a t i o C, 

f o r such a system. 

F = F — [ 1 + R f x / f m ] 
R 60 1 + R 

C - f - -f°-[ 1 + R ] (3.19) 
R 1 + Rfx/fm 

In the l i m i t case f = (1 + R)fc <_ 60 

• 60 1 
C = — [ ] (3.20) fc 

If we f i x I = second H 60 

1 + Rfx/fm 

then 
f c - - ^ _ (3.21) 

1 + R 

for each value of R, f c can be calcu l a t e d , arid the corresponding l i m i t f 

can be found i n the curves f c vs. l i m i t fx. 

Example: c a l c u l a t i n g the maximum compression r a t i o for te s t 

pattern No. 2, F i g . 3.6. 

1. R = 1 
60 

f c = = 30 
1 + R 

f i g . 3.7 gives fx — 30 lines/p.w. 

x 
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2. R = 4 
60 

fc = — = 12 
1 + R 

f i g . 3.7 gives fx — 180 lines/p.w. 

12 1 1 + 4 x 180/250J 

I t i s i n t e r e s t i n g to note that the compression r a t i o i n t h i s 

case goes down when the 0FF:0N •ratio i s increased. 

The upper l i m i t of 1.8 f o r compression i s disappointing but this 

i s predicated on the method of keeping T equal to a whole frame period. 

This w i l l not allow us to compress by a large amount. Other questions 

are: What i s the r e s u l t i n g p i c t u r e i f we send only one part of the high 

q u a l i t y p i c t u r e instead of a whole frame? How does the degradation change 

with respect to the compression ratio? The work following provides answers 

to these questions. 

3.6 P i c t u r e Quality Studies 

3.6.1 P o t e n t i a l compression r a t i o 

High q u a l i t y p i c t u r e period i n t h i s case i s : 
1 

TH = d + R ) f c * 6 0 

The compressed bandwidth then i s : 
60 

F R =

 s--o+l)fT- f c [ R f x + f m ] 

F = S ' 6 ° • [Rfx.+ fm] (3.22) 
R (1+R) 

The compression r a t i o w i l l be: 

F S•60•fm C 
FR S.60 

(1+R) 
[Rfx + fm] 

C = - 1 + R (3.23) 
1 + Rfx/fm 
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C tends to (1 + R) when fx goes to zero. 

The r e l a t i o n between- compression r a t i o and q u a l i t y of the r e s u l t i n g 

p i c t u r e w i l l be found i n the next s e c t i o n . 

3.6.2 Test r e s u l t s showing degradation vs. C 

In order to gain high compression r a t i o s we must take advantage 

of the eye, by sending f c sets of f r a c t i o n - of -picture-frames instead of 

fc sets of whole frames. However f o r C large the d i f f e r e n c e i n q u a l i t y i s 

pronounced and noticeable. In this section the r e l a t i o n between compression 

r a t i o and p i c t u r e q u a l i t y i s reported. 

To perform the test two s e r i e s of pictures were taken. One of 

them i s a s e r i e s of bandlimited but otherwise normal p i c t u r e s ; the others 

are p i c t u r e s obtained by varying 0FF:0N r a t i o R and f c . The assumption i s 

made that the p i c t u r e seen by the camera and by the eye are the same. In 

order to check the assumption, a long exposure time was set, and a p r i n t e d 

p i c t u r e obtained; t h i s was compared with respect to c e r t a i n c r i t i c a l d e t a i l , 

with the same p i c t u r e at a back of an unloaded camera. A close s i m i l a r i t y 

was established. 

The subjects were asked to match the compressed pictures to band-

l i m i t e d p i c t u r e s . The q u a l i t y of the p i c t u r e was divided according to the • 

highest frequency contained i n the bandlimited p i c t u r e s . 

Two c r i t e r i a were used to judge the p i c t u r e q u a l i t y i n this t e s t . 

(1) D e t a i l s of the p i c t u r e ; this i s r e l a t e d to high frequency 

range. 

(2) O v e r a l l pleasantness of the p i c t u r e ; this seems to be r e l a t e d 

to low frequencies range and the noise. 

The r e s u l t s are summarized i n F i g . 3.13. 
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50 100 150 200 250 

F i g . 3.13 Results of p i c t u r e - q u a l i t y - t e s t s 
A. Band l i m i t e d pictures 
B. Compressed p i c t u r e s ; R=l 
C. Compressed pictures; R= 4 

Applying equation 3.23 to the experimental points of F i g . 3.13 

we obtain the compression r a t i o s for d i f f e r e n t r e s u l t i n g output p i c t u r e s . 

The r e s u l t s are presented i n F i g . 3.14; picture q u a l i t y vs. compression 

ratio.. 

3.6.3 Discussion 

Before discussing the r e s u l t s of t h i s t e s t , a few things r e l a t e d 

to the p i c t u r e q u a l i t y should be.mentioned. 

From F i g . 3.15' to 3.18 we see that the q u a l i t y of the p i c t u r e s 

decreases•noticeably. F i g . 3.16, 3.17 and 3.18 have the same bandwidth 

but d i f f e r e n t output fronv the Fourier transform plane. F i g . 3.16 corresponds 

to a double sideband modulation i n plan P with fx = fm; the q u a l i t y of 
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F i g . 3.14 P i c t u r e q u a l i t y vs. compression r a t i o 
A. band l i m i t e d pictures 
B. compressed pictures R=l 
C. compressed pictures R=4 



Fig. 3.15 Original picture 

Fig. 3.17 Output picture corresponds 
to single sideband trans­
mission fx = fm 

Output picture corresponds to double-
sideband transmission; fx = fm 

Same as 3.16 except fx • 1/2 fm 
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t h i s - p i c t u r e i s obviously superior to the remaining two. F i g . 3.17 cor­

responds to a s i n g l e sideband modulation. F i g . 3.18 i s the same as F i g . 

3.16 except that fx fin/2. Although figures 3.17 and 3.18 correspond to 

the same bandwidth i n plane T ̂  but F i g . 3.18 looks more pleasing than 

3.17 i n s p i t e of the fac t that 3.17 contains higher frequencies and more 

d e t a i l s can be observed. The noise i n F i g . 3.17 due to the b r i c k w a l l 

stop, mentioned i n se c t i o n 3.3.2, i s another f a c t o r c o n t r i b u t i n g to low q u a l i 

However, s i n g l e sideband simulation should be used to avoid the complexity 

of two synchronous chopping wheels for. stopping the high s p a t i a l frequencies 

of both sides of the spectrum. I t also corresponds to the p r a c t i c a l case. 

From F i g . 3.14 we see that for a compression r a t i o smaller than 

1.6 the system with 0FF:0N r a t i o R=l gives a higher output p i c t u r e q u a l i t y . 

With the same compression r a t i o , say C = 1.5, F i g . 3.14 shows 

that f o r R = 1 the degradation of the p i c t u r e i s about 10%, f o r R = 4 about 

13%, whichmeans with this system we gain about 25% equivalent p i c t u r e q u a l i t y 

over the bandlimited p i c t u r e with the same bandwidth. For a higher compres-

sion r a t i o , a higher value of R i s necessary but the q u a l i t y of the pi c t u r e 

decreases f a s t e r as fx i s lowered and the advantage over the bandlimited 

system i s very small. This point leads us to the suggestion of attempting 

to restore the q u a l i t y of the pi c t u r e by boosting the high frequencies. 

3.7 High Frequency Boost 

We can boost the high frequencies to increase the q u a l i t y of the 

pi c t u r e . 

The high frequency boost i s a high pass f i l t e r which cuts, down 

one part of the low frequency range up to about .75 MHz. The r e s u l t s using 

the high frequency boost are shown i n F i g . 3.19, 3.20 and 3.21. 
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A. Band l i m i t e d p i c t u r e s 
Compressed p i c t u r e s ; R=l 

C. Compressed p i c t u r e s ; R=4 
D. Compressed p i c t u r e s ; R=4 

using high frequency boost 

F i g . 3.19 Results of "the high frequency 
boost" 
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A. Band l i m i t e d p i c t u r e s 
B. Compressed p i c t u r e s ; R=l 
C. Compressed p i c t u r e s ; R=4 
D. Compressed p i c t u r e s ; R<=4 

using high frequency boost 

compression r a t i o 

1 1.5 2.5 3. 

F i g . 3.20 Curves p i c t u r e - q u a l i t y vs. compression 
r a t i o showing e f f e c t s of the "high 
frequency boost" 



3.21 E f f e c t o f t h e " h i g h - f r e q u e n c y b o o s t " 

(a) n o r m a l s i n g l e s i d e b a n d p i c t u r e 
(b) , ( c ) , ( d ) c o m p r e s s e d p i c t u r e s , R=4, w i t h o u t 

h i g h f r e q u e n c y b o o s t 
( e ) , ( f ) , ( g ) c o m p r e s s e d p i c t u r e s , R=4, w i t h h i g h 

f r e q u e n c y b o o s t 
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For C > 2 F i g . 3.20 shows that the p i c t u r e q u a l i t y increases 

about 20% when using the high frequency boost with respect to the ordinary 

compressed p i c t u r e . Better r e s u l t s s t i l l can be expected because of the 

l i m i t a t i o n i n t h i s experiment that the h.f. boost i s an R.C f i l t e r whereas 

a b r i c k w a l l f i l t e r has been used to l i m i t the q u a l i t y of the low q u a l i t y 

p i c t u r e s . The two f i l t e r s should, i d e a l l y , have s i m i l a r slopes on t h e i r 

attenuation s k i r t s . 
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IV. MOTION PICTURE TEST 

I t i s p l a u s i b l e to expect that motion picture reproduction w i l l 

enhance some defect i n a compression scheme. The purpose of t h i s chapter 

i s to describe experiments used to i n v e s t i g a t e this problem. I t i s shown, 

perhaps s u r p r i s i n g l y , that a moving p i c t u r e can be compressed by a larger 

amount than a s t a t i c one before d e t e r i o r a t i o n becomes noticeable. 

In place of a test pattern, a p r o j e c t o r with 16 mm f i l m i s used. 

The projector speed i s adjusted to match the T.V. camera i n the sense of 

avoiding stroboscopic e f f e c t s . D i f f e r e n t types of f i l m were used for t e s t i n g 

the f l i c k e r i n g e f f e c t . I t i s found that: 

(1) No f l i c k e r i n g could be perceived when fx > 125 lines/p.w. 

and the f l i c k e r e f f e c t was very weak. 

(2) The q u a l i t y of the p i c t u r e i n the f i l m i s generally low 
because of a long exposure time that i s employed i n the 
movie camera. 

(3) The most noticeable f l i c k e r was produced using a f i l m 
of a s t i l l object and t h i s case w i l l be discussed l a t e r . 

4.1 Analysis of Motion P i c t u r e Projector Mechanism 

In order to convey the i l l u s i o n of motion a number of frames, 

16 to 24, are projected per second. To eliminate the "smear" e f f e c t between 

two frames a chopping wheel i s used to cut-of f the l i g h t source when frame 

changes occur. The sequence of f i l m presentation i s i l l u s t r a t e d schematically 

i n F i g . 4.1 

(a) 

(b) 

1 2 3 4 5 6 7 

1 m 1 m 2 2 

J L 
T T, T„ T 0 T. T c 1' T_ Time o 1 .2 3 4 5 6 7 

F i g . 4.1 Moving-object f i l m p r o j e c t i o n 
(a) f i l m 
^ }-\ ^ o o n 11 o -n r- <ti r\ -f- f i 1 m -r\t-eio*r»T-iT-'3f--i/-v •n i to f- t m ^ 
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From T to the wheel covers the l i g h t source and the frame o 1 

changing occurs. From to the p i c t u r e i s displayed, and so on. If a 

s t i l l object was filmed the projected image vs. time follows the sequence 

i l l u s t r a t e d i n F i g . 4 .2 

t I • L 

To T l T 2 T 3 T 4 T 5 T 6 T 7 

F i g . 4 .2 Sequence of a s t i l l - o b j e c t - f i l m 
presentation 

Thus a s t a t i c p i c t u r e test and a second chopping wheel i n plane P̂  

w i l l simulate the moving-picture version of a s t i l l object. 

The arrangement of apparatus to perform t h i s test i s shown i n 

F i g . 4 . 3 . 

The speed of the motor d r i v i n g the chopping wheel can be adjusted 

to minimize the stroboscopic e f f e c t . 

4.2 Test Results and Discussion 

The same test pattern as F i g . 3.4 was used and the r e s u l t s are 

presented i n F i g . 4 . 4 . 

The experimental evidence given i n the graph of F i g . 4 .4 for a 

simulated moving p i c t u r e should be compared with the graph for the same 

s t a t i c p i c t u r e . Contrary to expectation, the s t a t i c p i c t u r e presentation 

i s more c r i t i c a l than the moving p i c t u r e presentation. The action of the 

p i c t u r e chopping wheel ( F i g . 4 .3) seems to make the eye le s s s e n s i t i v e to 

f l i c k e r from the chopping wheel i n the Fourier transform plane. Thus we 
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Fig. 4.3 Set up for motion-picture projector 
simulation 

40 r 

0 50 100 150 200 250 

Fig. 4.4 Critical flickering frequency as a function of 
upper limit spatial frequency fx, for test pat­
tern No. 1, Fig. 3.4, using the apparatus i l lus­
trated in Fig. 4.3 
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can expect more bandwidth compression using a "moving p i c t u r e " than a s t a t i c 

p i c t u r e . 

Small scratches and the s l i g h t side way movement i n the projector 

give tremendous changes of the spectrum i n Fourier transform plane, and the 

reconstruction s u f f e r s i n consequence from pronounced "noise" e f f e c t s . The 

same f i l m used with an incandescent i l l u m i n a t o r and a normal p r o j e c t o r 

produced only s l i g h t noise e f f e c t s . Good r e s u l t s were obtained using the 

la s e r source only with nearly new f i l m . 
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V. CONCLUSIONS 

A scheme for T.V. band compression i s described. I t i s based on . 

the eye's s e n s i t i v i t y to f l i c k e r i n a sense which i s explored i n the t h e s i s . 

The method i s supported by psychophysical experiments using a simulated 

version of the t e l e v i s i o n system. 

In Chapter I I , an adequate theory has been used to check the 

design of the simulated t e l e v i s i o n system. In t h i s s e c t i o n the " l i n e a r i t y " 

of frequency with p o s i t i o n i n the Fourier transform plane i s established. 

The major findings of the thesis are contained i n Chapter I I I . 

There i t i s shown that the s e n s i t i v i t y of the eye to f l i c k e r , f c , i s i n ­

dependent of the OFF to ON r a t i o and t h i s rather s u r p r i s i n g r e s u l t would 

lead one to expect unlimited compression r a t i o i f the c r i t e r i a were based 

s o l e l y on the absence of f l i c k e r . Experimentally the maximum compression 

r a t i o investigated was 2.75:1; at this r a t i o , however, the reduction of 

" p i c t u r e q u a l i t y " was c l e a r l y marked. A high frequency boost was proposed 

and i t i s shown that this i s e f f e c t i v e to a considerable degree i n a r r e s t i n g 

the f a l l o f f i n q u a l i t y with increase of C. In order to measure pi c t u r e 

q u a l i t y , a comparison technique was proposed i n which a- compressed p i c t u r e 

was "matched" to a normally scanned band-limited p i c t u r e . The r e s u l t s using 

this technique are contained i n the important graphs, F i g . 3.20. 

It i s shown i n Chapter IV that the motion-picture case i s le s s 

c r i t i c a l than the s t a t i c p i c t ure case and that one can expect more bandwidth 

reduction for the moving pi c t u r e transmission than for the s t a t i c p i c t u r e one. 

Some disadvantages remain i n the simulation system: 

(1) Noise due to coherent l i g h t source. "Contour noise" makes 

the c r i t i c a l f l i c k e r frequency higher than i t should be. 
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(2) The b r i c k wall f i l t e r used i n the Fourier transform plane 

did not match the R-C high frequency-boost c i r c u i t . Some improvement might 

be expected i f such a match was made. 

The band compression scheme proposed here depends upon the prop­

e r t i e s of the eye. I t seems reasonable to suggest, for further work, that 

i t be used along with a purely s t a t i s t i c a l encoder such as the run-length 

encoder of Cherry et a l . 
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APPENDIX 

A - l Properties of Function \p 

For the convenience of the reader some properties of i|i functions 

from Vander Lugt's paper [6] are given here. 

D e f i n i t i o n of function . 

kf 2 2 ifi(x,y;f) = exp[j — — (x + y )] 

The properties of function: 

P-i K x , y ; f ) = Mx,y;-f) 

P - i i ^(-x,-y;f) = ij;(x,y;f) 

. P - i i i ^ ( x , y ; f 1 ) ip ( x , y ; f 2 ) = t ( x , y ; ^.4- f ) 

P-iv i^(x,y;f ) f ( x , y ; f 2 ) = ijj(x,y;f 1 - f 2 ) 

ijj (x,y; f 2 - f ) 
2 

P-v ^(cx,cy;f) = if)(x,y; c f) 

P-vi ^ ( x ; f 1 ) ^ ( x , y ; f 2 ) = Tj>(y ;f 2> ^ ( x ; ^ + f 2 ) 

P - v i i ^ ( y ; f x ) ^ (x,y ; f 2 ) = ^ ( x ; f 2 ) K y ; ^ + f 2> 

P - v i i i ip(x-u,y-v; f) = i|j(x,y;f) IJJ (u,v;f) exp[-jkf(ux I- vy)] 

p-ix if<(x,y;f) = K x . f ) * (y;f) 

P-x l i m ij>(x,y;d) = 1 
d — - 0 

P-xi lim diKx,y;d) = 6(x,y) 
d — 0 0 
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A-2 Proof of Equations 2.3, 2.5, 2.7 

The o p t i c a l system and block diagram to obtain Fourier transform 

i n plane P^ i s shown i n F i g . A.2.1. 

f ( x , y ) 

i> ( x , y ; f i ) 

( s ; f 2 ) 

1 2 ^ C^,y ; 1 2 ) | — — p . 

F(u,v) 

(a) 

l 3 ^ ( r , s ; 1 3 ) 'F(u.v) (b) 

F i g . A.2.1 One-dimensional Fourier Transform O p t i c a l 
Sys tem 
(a) O p t i c a l System 
(b) Block diagram 

From the block diagram we get 

F(u,v) = 1 2 1 3 // If ^ ( x , y ; f 1 ) f ( x , y ) ^ ( x , y ; l 2 ) ^ ( r , s ; l 2 ) 
P P 1 1 

e x p [ - j k l 2 ( r x + sy) ] \p (s ; f 2)\p ( r , s ; 1 ) 

I K U . V ; ! ) e x p [ - j k l (ur + vs)] dxdy drds 

(A.2.1) 

Af t e r using P - i i i F(u,v) becomes 

F(u,v) l 2 l 3 ^ ( u , v ; l 3 ) // ff ^ ( x , y ; l 2 - f 1 ) f ( . x , y ) ^ ( r , s ; l 2 + l 3 ) 
P l P l 

i K s ; f 2 ) e x p [ - j k l 2 ( r x + sy) ] 

e x p [ - j k l 3 ( u r + vs)] dxdy drds 

(A.2.2) 
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Using P-vi 

f(u,v) = l„l^(u,v;l. // // * ( x , y ; l - f ) f (x,yH (r; 1 + 1 ) 2 3 3 p, p , 2 i 2 3 
1 1 

i K s ; l 2 + l 3 - f
2 > e x P [ " J k l 2 r ( x + — u) ] 

12 
X 3 

ex p [ - j k l s(y + v)] dxdy drds 

\ 
From Handbook of Mathematical Functions, M. Abramowitz and I. A. 

Stegun [9], we have the r e l a t i o n (A.2.4) 
CO Q 

JJ ij;(x,y;f 1) exp [-jkf 2 (rx + sy) ] dxdy = — $ (r, s ; f 2 / f ±) (A.2.4) 

Using r e l a t i o n A.2.4 to carry out r,s i n t e g r a t i o n 

- h A 
F(u,v) = C-<Ku,v;l.) // ^ ( x , y ; l - f ) f(x,y)i^[x + — - u; ] 

P z 1 x2 1 + 1 1 ? 2 3 
1 1 

>My +~r v ; — ] dxdy (A.2.5) 
? 1 +1 - f 2.3 2 

This i s equation 2.3. i n Chapter I I . 

Imaging condition 
To perform the imaging system we use property P-xi to get the 

p o s i t i o n of lenses. By property P-xi, 
2 2 1 _ 1 1 1 
2 .<Hy+ — v; ] = <5(y +—2-v) (A.2.6) 

1 2 + 1 3 " f 2 H 1 2 + 1 3 - f 2 h 

A.2.6 w i l l be s a t i s f i e d when 

,2 
12 -* co or 1 2 + 1 = f 2 

V V f 2 
1 . 1 1 (A.2.7) 
L 2 L 3 F 

This i s equation 5 i n Chapter II. 
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Fourier transform condition 

Applied equation A.2.6 i n A.2.5 and using the s i f t i n g property of the 

6 function, we have: 

F(u,v) = C - K u , v ; l 3 ) . i K - p - v ; W * ( x ' 1 2 ~ f l ) f ( x ) ~ i v ) 

•2 ^2 

- h Z 
I | J [ X + - r — u ; -j T — i — ^ d x 

2 2 3 

Using property P - v i i i and c o l l e c t i n g terms, we have: 

F(u,v) = C- ( u ; l 3 ) [ ( v ; l 3 + ( 1 ^ ) - i - ] / f ( x , - - — - v ) 

[ x ; l - f l- ] 
1 + 1 2 3 

exp[-jk( ^ - L - ) x v ] dx (A. 2. 9) 
1 2 + 1 3 

A.2.9 has almost a Fourier transform form. We w i l l use P-x to make 

the \p function i n s i d e the i n t e g r a l be equal to unity. 

Thus by P-x 2 
1 - f — = 0 (A.2.10) 

1+1 2 3 
or 

L 2 + L 3 = F x (A.2.11) 

This i s equation 2.7 i n Chapter II and F(u,v) now i s : 

X3 X 3 V 3 F(u,v) = C - i K u , l 3 H [ v ; l 3 + ( 1
2 - f

1 ) ~f~ 1 / f ( x , - - I i - v ) e x p [ - j k ( T ~ | - ) x v ] dx 

(A.2.12) 

This equation shows that i n plane P 2 we obtain a one-dimensional 

Fourier transform F(u,v) of f ( x , y ) . 


