THE ABSOLUTE STABILITY OF NONLINEAR SYSTEMS

by

TE-LUNG CHANG

B.A.Sc. in E.E., Cheng Kung University, 1966

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the Department of

Electrical Engineering

We accept this thesis as conforming to the

required standard

Research SUpPErvisSOr..iiveeeevesancnaasnas Ceeteasaaaaaa

Members of Committee....... Cere st asese v ans e e eannn

Members of the Department
of Electrical Engineering
THE UNIVERSITY OF BRITISH COLUMBIA

Y

February, 1970



In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, | agree that
the Library shall make it freely available for reference and study.

I further agree tha permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. |t is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission,

Department of zfA;cﬂ Cgéu?i
</

The University of British Columbia
Vancouver 8, Canada

Date A/L?ﬁ’%/ 9 //ff?’



ABSTRACT

This thesis is in two parts, both consideringbthe absolute stability
of nonlinear systems. In the first two chapters the stability of certain
classes of nonlinear time invariant systems involving severai nonlinearities
~ is considered. A number of graphical methods are given for testing the
Stability of these systems. The graphical fésts are equivalent to a weakened
form of the Popov criterion. The third chapter derive; a stability condition
for nonlinear systemé involving a linear time-varying gain. The timé—varyihg

gain is assumed to satisfy conditions on its magnitude and rate of change.
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CHAPTER 1 TIME INVARIANT NONLINEAR FEEDBACK SYSTEM AND

TIME VARYING NONLINEAR FEEDBACK SYSTEM

§1.1 Introduction

This thesis considers the absolute stability of the equilibrium

position, X = 0, of feedback systems defined by

X = AX + BY

Y = @(o) : (1.1.1)
T

c = C X,

or, in the time varying case,

.

X = AX + BY
Y = 0(,t) ' : (1.1.2)
g = CTX,

where X is an n-vector, Y is an m-vector, $ is an m-vector, A is an nxn con-—
stant matrix, B is anpnxm constant matrix, and CT is an mxn constant matrix.
) In (1.1.1), each element of ¢(o) is a nonlineér function of é alone,
" so that the system (1) is time invariant. In (1.1.2), each element of @(c,t)
is a time varying nonlinear function of both d and t. It is assumed that

the i-th element can be separated into a nonlinear part Qi(oi) and the time
varying gain ki(t), where Qi(oi,t) = Di(gi)ki(t). The system (2) is thus a
time varying nonlinear feedback system.

The transfer matrix [(s) of the linear part is

r(s) = Cl(sT-a) " B, ‘ (1.1.3)
where I is an nxn unit matrix. The feedback system (1) may be depicted as
shown in Fig. 1.1. The forward path consists of an mxm linear time invariant
matrix T (s) ;nd the nonlinearity matrix N.L. In Fig. 1.2, the forward path

of the time varying nonlinear feedback system (2) consists of the transfer
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Fig. 1.1 General time invariant nonlinear feedback system
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Fig. 1.2 General time varying nonlinear feedback system



matrix I'(s), the mxm diagonal nonlinearity matrix N.L. with elements
Ql(ol), gé(OZ)""Qm(Om) and the mxm diagonal time-varying gain matrix k(t)
with elements kl(t),kz(t),...km(t).

A wide variety of systems may be treated by choice of I'(s), some
forms of particular interesttare:

l(l) A series.system. 'The forward path consists of the single-

g _iﬁput single-output linear time invariant trapsfe; functions separated by
amnesic nonlinearities. This is shown in Fig. 1.3.

(2) A parallel system. The forward path cénsists ofvm—parallei
branches, éach of which has one nonlinearity in series with one linear time
invariant transfer function. This is shown in Fié. 1.4,

(3) An internal feedback systém. The forward path consists of
m-single nonlinear feedback loops. This is sﬁown in Fig. 1.5.

(4) A multi-circuit system. Such systems do not fall into the
previous clasées. Such a system is shown in Fig. 1.6.

The elements of the nonlinearity matrix are to be considered in
4 classes. In each if is aséumed that @(o) is a piece-wise continuoﬁé,angle
valued function of o,

(1) A sector nonlinearity; any function which satisfies the

condition
4 g (o)
kl < ° k2’ o #0
() =0, =20
where k2 > 0 and kl may be positive, negative or zero.
(2) A first and third quadrant nonlinearity; this is a special
case of (1).
0<¢§0)_<_k<oo, k>0,

for all finite nonzero values of ¢.
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(3) A monotonic nonlinearity; this belongs to a subclass of

(2), in which it is assumed that

d@ (o)
o > 0.

- (4) A monotonic odd nonlinearity; this beléngs to a subclass of

(3), in which it is further assumed that @(-o) = -p(c) for all o.
Furthermore, the elements of the time varying gain matrix to be

considered are assumed positive, bounded and continuous.

§1.2 Lyapunov Method

Investigations of the stability of such systems were initiated by
Luré who proposed a Lyapunov function of the form:

(o208
g, f 9. (2)dz, (1.2.1)

l.l 0

V(X) = XIPX +

i

(=]

. . .. .. . T
where P is an nxn symmetrical positive definite matrix (P = P~ > 0),

all Bi > 0 and the upper limits of the integral terms are the elements of

the matrix

o = C'x. (1.2.2)

It is obvious that V(X) is a positive function since

2 ,
0 < @(o)o <Ko . - (1.2.3)
From (1.1.1), the derivative of (1.2.1) is
7(X) = X.(APT+PA) +BTPXP(0) + X PB (o)

- BAX@ (o) + BCP(0), (1.2.4)
where B is a diagonal constant matrix with elements 81,82,...Bm.

From the Lyapunov second method, in order to fiﬁd the sufficient
condition of absolute stabiltiy, it is necessary to determine the conditions

under which V(X) is negative defiﬁite except at the null state, X = 0, where

'é(x) = 0.



In tS], it was shown that the conditions of absblute stability
of a time varying nonlinear system may be found from using the Lyapunov func-
tion (1.2.1) with all Bi = 0. This method of using Lyapunov functions &as
further developed by Narendra and Taylor [6] using the modified Lyapunov func-

tion, viz.,
T
V(X,t) = X' PX +

o,
8.k (t) /7 @, (2)dz, (1.2.5)
i 1 1 1

1 0

=]

" where ki(t) is a time varying gain.
In [4,5], it is also proved that the sufficient condition under
which the Lyapunov function is valid is similar to the Popov criterion, dis-

cussed below.

§1.3 The Popov Criterion

The sufficient condition of absolute stability for a controllable
and observable time invariant system with one nonlinearity satisfying (1.2.3)

'~ was established by V.M. Popov [1]. The Popov criterion takes the form

Re[(I+qiw) G(jw)] + % > 0 | (1.3.1)

for all w, where q is a nonnegative number.

A convenient graphical method exists for testing (1.3.1).

A sufficient condition for the absolute stability of a system with
many nonlinearities was given by Jury and Lee [2]. The condition requirgs the
Hermitian matrix:

KL+ HGw + B (-jw) (1.3.2)
to be positive definite for all w. Here K is a constant diagonal matrix of
K

eléments K ...Km, all of which are positive numbers such that the inequality

1’2

0 <¢.(c)o, <K, o2 O (1.3.3)
1 1 1 1 1

is satisfied for 1 = 1,2,...m, and where

HGW = (I + ju0) T(Go), | (1.3.4)
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Fig. 1.7 Popov criterion
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where Q is a constant diagonal ﬁatrix with elements qi,qz...qm whiéh are
nonnega%ive numbers. This forms a generalization of the Popov result.
For the time varying nonlinear feedback system, the sufficient
condition of absclute stability established by Rozenvasser is as below,
Re C(ju) + -% >0 ‘ (1.3.5)
for all w. Ig is but the Popov criterion with g =‘O.
| Other new criteria, similar fo the Popov's, were introduced by Zames’

and Falb [8,9], Yakubovich [4], Narendra and Taylor [6], Baker and Desoer

[10,11], Bergen and Rault [12], and Anderson [13].

§1.4 LZ Stability

The concept of the L

9 stability has been introduced by Sandberg [14].

It is closely related to asymptotic stability.
L2 is the space of square integrable, valued functionjon_[to,w), it is

assumed that L2~isfé linear, ipner-product,Vformed space; the inner product of x

is

and y in L2 _ |

<x,y> = o x(£)y(e)de < =, (1.4.1)
. o .
and the norm of x is ||x “2 = V/<x,x>.

Suppose o(x) is in LZ[O,w], o(t) is uniformly continuous, and &(t)
is bounded, then the state . a(t) approaches null state if the sufficient condi-
£
tion of absolute stability of a time invariant nonlinear system, the Popov

criterion, is satisfied. A further L2 bounded condition was introduced by

Zames [8,9].
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CHAPTER 2 THE ABSOLUTE STABILITY OF A TIME INVARIANT NONLINEAR

FEEDBACK SYSTEM

§2.1 Introductign

In the prévious chapter, it was mentioned that the ﬁonlinear systems
can be considered in 4 classes according to the form of thg.transfer matrix
['(s).

Testing absolute stability of a single-loop time invariant nonlinear
system using the modified Nyquist diagram was first initiated by Popov, basing
the method on his criterion. Further developments using a graphical method
to test thé absolute stability of a npnlinéar system have been fgrnished By
Naumov [15], Meyer and Hsu [16], and‘Murphy [171.

A graphical method of testing fhe absolute stability of a time
inVariantbseries_system with m-nonlinearities and m-identical linear transfer

functions was introduced by Davies [18]. -

§2.2 A Graphical Test of the Absolute Stability of a Series System with

Nonlinearities and Identical Transfer Functions

Consider a series system with the linear time invariant transfer

function matrix

s 0 0<——0 G(s) S
. _ AN
, _ G(s) O ~ ?
r(s) (2.2.1)
—G(é}.\ N |
N N
NN N
<~ N\ 0
NN\
N 0 -G(s) O / .

The input, o, (t), and output, ¢i(oi), of the ith nonlinear element satisfy the
i

inequality

0<og.,0.(,) < 0.2. : (2.2.2)
i7i7d i



AY

UnsTable reguon

Stable region

Fig. 2.1 Graphical criterion for the time invariant series system with 5
ideal nonlinearities and 5 identical linear transfer functions.
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Such a system falls within the class for which a Popov-like stability criterion

has been established. In applying this result, the matrix

HGGw) = (I+ie®)TGw), o (2.2.3)
where Q is an arbitrary, semi-positive, diagonal matrix of constants, is con-
sidered. A sufficient condition tb establish‘the absolute stabiiity of a
nonlinear system is that the Hermitian matrix (1.3.2) must be poeitive definite
for all w.

If all ﬁonlineaf elements are assumed to have the same upper bound;
that is, Ki = K for i = 1,2,...m, then, without loss of generality, K may be
taken as the indentity matrix. If Q=0, the stabiiity criterion is equi&alent
to the N?quist plot of G(s) lying within a symmetric m-sided polygon. In the
subsequent development it is not required that Q=0, but rather that all elements
of Q are equal; that is, Q=qI, where q is a positive scalar constant..

If Q is restricted in this manner, then

(I+juQTGw) = T'(Gw), , (2.2.4)
where P'(jd) is identical to T(jw) except that G(jw) has been replaced by
G'(Gw) = (14+jwq)CG{jw). Thus it is possibie to consider:the case 0=0 by applying
the earlier results for Q=O to G'(jw) insteed of G(jw) itself. If it can be shown
that G'(jw) lies within the appropriate polygoﬁ, for any positive q, then

stability has been established.

X :
§2.2.1 Main Method-Common Popov Line

Let [G'(jw)]| = v and G'(jw) = 6. If G'(jw) lies within a polygon,

then
y cos (8 - a) < 1, (2.2.5)
where o = zlﬂ- + X
m m
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and where i is one of m values each corresponding to the m sides of the polygon.

- * Now
G'(Gw) = (I+jwq)G(Jw) = (Itjuq) (RHII), _ (2.2.6)
where
G(jw) = Rw) + jI(w)L
Thus
Re G'(w) = R - jwl = ycoss, ) ‘ (2.2.74)
Im G'(jw) = wqR + I = y sins, (2.2.7B)
and
(Réqu)cosd + (wqR+I)sind <1, ‘ o (2.2.8A)
(Rcosu+Isind) + qw(—Icosd+Rsina) < 1. (2.2.8B).
Define |
-X(w) - Rcosq + Isina, » (2.2.94)
Y(») = w(-Icosoa + Rsina). (2.2.985
(2.2.8B) gives
X + qY¥ < 1. . | (2.2.10)

From (2.2.9A) and (2.2.9B), the m different modified Nyquist lcci are
plotted each corresponding to one of the m sides of the polygon. .To satisfy
inequality (2.2.10), all these loci must be to the.right side of a straight line,
the Popov line, which passes the point (-1,0) having slope 1/q. If such a straight

line exists, then the absolute stability of the system is established.
Example 2.1

Consider a feedback system of the type shown in Fig. 1.3 (m=3).

Let every nonlinearity satisfy the inequality
0<Po. <o | (2.2.11)
i'1 i’

where i = 1,2,3 and let évery linear block be represented'by
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. common

unstable reg[’ori stable region

Fig. 2.2 Modified Nyquist loci and the common Popov line for the series system,

32 (s+0.25) -
(s+1) (s+2) (s+4) for Example 2.1.

- m=3, G(s) =
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_ 32K (s+0.25)
T (s+1) (s+2) (st+4)

G, (s) (2.2.12)
1

The m different modified Nyquist loci and common Popov line are

shown in Fig. 2.2. Then, by setting q = 0.23, the absolute stability condition

K < 0.476 (2.2.13)

is obtained.

§2.2.2 Simplification in Particular Cases

Plottiﬁg the m different modified Nyquist loci is tedious if m > 4.

A simpler and more direct approach is possible if G(s) is of the form

G(s) = 55— | (2.2.14)
n (stD,)
=1 1
or
n
“ Dy e
G(s) = — (2.2.15)
I (s+D.) ’
=1

where p > 1l4m,
Ni and Dj are real positive constants, and'Ni > Dj for i = j.

If the transfer function G'(Gw) = (I+jwq)G(jw) having a3 and kl which
are found from the modified Nyquist locus for i = 1, satisfies the above conditions,
then‘

(1) The phase of G'(jw) is decreasing as w increases.

s t /. ZH ~T [ t /7
(2) For some w = w, > glving LG (ch) z_—a— and [G (ch)l <1, IG (Jw)!
decreases when w increases for w > wc.

And kl is the maximum value satisfying the absolute stability conditon.
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X(w)

Fig. 2.3 Modified Nyquist locus for i=1, and the corresponding Popov line for the
" 100

- serdes system, m=3, G(s) = ryToys) (s+20y -» for Example 2.2.1.

i

wW=00 ) . o . ‘>:\<*L<VL
0 0.5k f ' /-"”"T‘Q/
Q=
/
Fig. 2.4 Nyquist plot of (1+0.7888)G(s), where G(s) = __100 , and a

(s+1) (s+5) (s+20)
graphical testine the stahiliryv nf the cortoc cvetbom  me? i Twrmmet ~ O M. -
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0.5k

-ésk

F]g 2.5 |Modified Nyquist locus for i=1, and the corresponding Popov line

'51

for the series system, m—4 G(s)

Examole 2.2.2.
!

0

100

(Sfl)(s+5)(s+20) » for Example‘

N

Fig. 2.6 Nyauist plot of (140.766s)G(s), where G(s) = =il

Exznple 2.2.2.

(s¥1) (5+5) (a¥20) > 2nd

‘a graphical testing the stabLlltv of the series system, m—4 for
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Example 2.2

|

(1) Consider m = 3 with every linear element having a transfer function

o(s) = 100k
(s+1) (st5) (s+20) . (2.2.16)
From Fig. 2.3, |
q4y =.0'788’ (2.2.17)
and
ko= 1.46. o (2.2.18)

1 .

Setting q = 0.788, k < 1.46 is the absolute stability condition since,
as shown in Fig. 2.4, G'(s) staisfies the aﬁove conditions.

(2) Using the same approach the.absolute stability condition of the
system with 4 nonlinearities is obtained as: |

‘ k < 1,234 (2.2.195
by‘setﬁing q = 0.766.
| The information required for the previous method may be obtained
difectiy from the Nyquist Plot of G(s) by noting that the critical point is
that having phase ey and the corresponding value of q is given by tan(al—B)
where tanpg is the slope of G(s) at a= G- |

If the transfer function G(s) does not satisfy ;he special form of
(2.2.14) or (2.2.15), the Nyquist locus of G'(s) haivng qq and kl found from

inequality (2.2.10) for i=1 may be tested by the polygon criterion. If this

fails, the general approach must be adopted.

§2.2.3 Use of the Modified Nichols Chart to Obtain Q

' The use of the modified Nichols chart to obtain q and to test the
absolute stabilitv of the system with many nonlinearities is also possible.
A polygon will be described by some relationship between the log

amplitude and the phase of the form
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24im i

M = 20 Loglo sec (- - + ~ - 8)dhb, (2.?.20)
2 N -
where - — (i-1) < 6 < - 2n i,
m — — m

and i = 1,2,...m.
The stable boundary G' can be represented in the modified Nichols
chart. Let us consider )
1
2

2 , :
Mj =M - 20 loglo(}+Nj R (2.2.214)

and
8. =6 - tan © Ny (2.2.21B)
where j = 0,...
and Nj is an arbitrary, positive éonstant. (2.2.21A) and (2.2.21B) give a
family of the stable boundaries as shown in Fig. 2.7, each corresponding to
one of the constants N. Note that these curves are all of the same form and
may easily be sketched. |
If the locus of G(jw) is sketched and q is chosen, such that each
_point w, on the locus of G(jw) on the modified Nichols chart is beneath the
corréspondiné stable boundary Nj = qu,.then the absolute staBility of the

system is established.

Also, if the position of the point wj is known, and is beneath a

N,
family of stable boundaries N, then the corresponding values of qj = aly
' ]
j = 0,...2, is known, so that every point has one corresponding stable g

range. Then, any q in the interior g range is permitted to be chosen for
establishing the stability of the system. This seemingly complex procedure

is, in fact, quite straight-forward. If a range of q's is permissible, that

value of g is chosen which gives the greatest possible value of k.

Example 2.3

Consider the system in the Example 2.2 with every linear element G(s)

where
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Odb
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the series system, m=3, for Example 2.3.

and a family of boundaries for '

Fig. 2.7 Gain-phase plot for G(s) =
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.Fig. 2.8 Gain-phase plot for G(s) =

~120°

630

(s+10) (5+50) and a family of boundaries for the

series system, m=4, for Example 2.3.

Fig. 2.9 Gain-phase plot for G(s) -

t ; ’
he serjeg system, m=

6db
\v/ \—/7—_’5 0
e _— \ _/
15 | -
\——"//\ T~ 5 5
28— \\____%20/
415
120° 0;12

_500

" 580
_'\"'_-—\ -
(s+10) (s+50) and a family of boundaries for

5, for Example 2.3.
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k
(s+10) (s+20)

G(s) = 2 (2.2.22)

and m = 3. Comparing the frequency response curve of G(j&) with a family

of the stable boundaries as in Fig. 2.7, the value of q and stable condition

‘are :
' q = 0.067 - (2.2.237)

k <700, (2.2.23B)
Similarly, from Fig. 2.8 and Fig. 2.9, by setting q = 0.067, the

following absolute stability conditions

k < 630 for m 4, ) (2.2.24)

and

k < 580 form=5, , T (2.2.25)

are obtained.

r

§2.2.4 An Analogue-Computer Technique

This last method makes use of the analogue-computer to test the
abeolute stability of a nonlinear system.

The computer arrangement, which is shown in Fig. 2.10A and Fig. 2.1.0B,
is divided into two main parts. The first generates R and I, and depends cn
the particular transfer function being considered while the second gives the

_compoeents of G(jw) which are set to remain uechanged for differing systems.
The effect of varying q on the Gf(jw) locus is.eésily obtained by adjusting
a potentiometer. .

This method, however, suffers from difficultiee'in amplitude scaling.
Besides, the analogue-computer set-up becomes mofe complex with increase in
system order. |

It is also noted that to sketch the complete locus of G'{(jw) from
w, = 0 to .wM = o by the computer is impossible because the describing time
is proportional to Wy To improye the accuracy of the output it is necessary

to use a three- (or two-) stage programming and rescaling technique, and also

to limit the @ range which is dependent on the computer. characteristics.
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2.10A Computer program for R-I generator
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2.10B Computer program for X-Y producer
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Example 2.4
The system (m=3) has linear elements Gi(s) Qherg

k
(s+0.5) (s+1).

Gi(s) = (2.2.26)
The circuits of the two parts of the analogueAcomputer set—up are shown
in Fig. 2.10A and Fig. 2.10B, and the typical resultant loci for various values

of ¢q shown " in Fig. 2.11 lead to the choice q = 1.5. This therefore permits the

choice of k = 0.685.
max

§2.3 Absolute Stability of the Series Nonlirear System with Different Transfer

Functions

Let us consider the case where the identical linear transfer functions
in the previous section have been replaced by different linear transfer functions.

Now the transfer matrix I (s) may be written

s 0 0 < Gﬁ(s) N\
~ _
—Gl(s) o\ N ? )
T(s) = ™~ (2.3.1)
s -GZ(SN N - : .
0 ~ ™~ °
~o D
. -6 3() 0 7

Let us consider
HGjw) = (I+jwQ) T'Gw),
where I is a -unit matrix and Q is a diagonal constant matrix with elements

ql,qz,...qm;'thus H(s) may be considered as below,

0 0 ——0 G! ()
eis) o > 0
H(s) = 188 ~_ 1 (2.3.2)
. ™ ~— | te
—G2(5> \ \l 1
< ~ 0
| ~o-
0 -G' (s) o /
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where G'(s) = (l+jmqi)Gi(s), i=1,2,...m. (2.3.3)
i .
. Let IGi(jw)[ =Yy and Zﬂi(jw) = ei; then the Hermitian matrix

21 + H(jw) + HT(—jw) becomes

2 -y, € 00— — — m
( Yq 1 g Tme 1
je __-je
—‘Yle 1 2 Yze 2 N |
: y |
0 _erjez 2 ~ \ 0 (2.3.4)
™ ~o O ‘
~ ~ ~ ~ -jé
| \ ~ \ _Ym-—le m"l
D N~ Jde T
\ \:me 36— —=0 Yp1® T %

and must be positive definite for all w to satisfy the stability condition.

The first (m-1) principal minors of A are generated by the recurrence

relation - _ 2 TR -
Ai = 2Ai—l Yio1 Ai—2 >0, 1i=3,4,...m-1,
. _ _ _ 2 '
with A; = 2 and A2__ b= vy,
The last condition is
-j8 . je
2 =Y e 1 0 —_— B — ¥ e m
je -55\ : |
-~y 1 2 Yo 2 I > o,
A = ™~ N (2.3.5)
B je ™~ ™~ I
O‘\\ —YZE 2 2 N |
| ~ o \ -0 )
I AN ™~ ™~ Yp-1® ™
™~ ™~ ‘
Ie_jem———-—————>0 ~ 'ejem—l\ 2
o Ym-1
that is,
2 2 m, © m
A= 2Am_l-(ym_l +Ym)Am_2+(-l) (.ﬂ yi)e('Z ei)
i=1 i=1
m .
(-2 8.)
- m i=1 *
+(-1) (T vy.)e
., i
: i=1
= 24 .= ( °+ 2)A 4(—1)“‘(; )2 cos( I; 8.) >0 (2.3.6)
m-1""Ym-1 " 'm’ “m-2 LT i ’ T

i=1 Ci=1



and

Therefore, the absolute stability of a nonlinear system is assured if

of Gi(jw) lies within a circle of unit radius.

If all v < 1 for all w, i=1,2,...m, then

A2 =;4~yl > 3,

2
A, > A

2 .
27Ypby > 8y78y = (Amyp) - 2> 1,

2
A3 > A2+l = 4—yl+l > 4,

2
A4—A3 = A3~y3A2 > A3—A2 > 1,

A4 > A3+l >'S,
A.—A = A - 2A > A -A > 1
i-1 - fi-17Yi-1%i-2 7 %i-17%i-2 7O
Ai.> A__l+l > itl,

-A = A 2 A > A -A > i
m-1 m~2 m=2" 'm-2"m-3 m-2 m-3 i
Am—l > Am_2+l > m,

m m ’
A > 28 =28 ,+(-1) 2cos( 1 9,)
i=1
m, -,
> 2+4(-1) 2cos( L 8,) > 0.
i=1 *

zero so that

61 (jw) = G, (ju) -

29

(2.3.8)

every locus

Obviously, ay must be chosen

In order to test absolute stability of nonlinear system it is thus necessary to

sketch the loci of Gi(jw) and to obéerve whether all of the loci lie within the

unit circle.



30

As m - o, this result coincides with the previous result in §2.2,

but here the Gi(jw)'s are not necessarily the same.

§2.4 Absolute Stability of the Parallel Nonlinear System

The transfer matrix of the parallel nonlinear system shown in Fig. 1.4

may be written

Gl(s) szs)————————Gmfs)
G, (s) '
r(s) = ll | - | .
l l
! N |
Gl(S) G, (s) . Gm(S)

Suppose that Gi(s) = G(s), i=1,2,...m, and

G'(Gw) = (I+jug)G(Guw),

then
,Gi(jw) Gé(jw)-——-—— —-Gé(jw) S
| .
Gy (Juw) | _ : |
HGw) = | T | - |
|
| l |
kci(jw) Gé(jw) GI;l(jw) /
1 1———1
\ I |
= G'(jw) } | |
A
|
b |
1 1 1
Define
G(jw) = R(w) + jI(w),
R'(jw) = R(w) + qI(w),
and

I'(jw) = quR{w) + I(w).

(2.4.1)

(2.4.2)

(2.4.34)

(2.4.3B)

(2.4.3C)



Let us suppose the i~th nonlinearity satisfies

0<ao.0, () <o,
1 1 1 1

The Hermitian matrix is

1 1— —1
| |
1
21 + 2R' | | : :
|
| |
1 1 1
¢ 2(1+R") 2R'— — — —2R' N
( \)\ |
2R' 2 (1+R" :
o B NN {
| SN |
AN RN
| \\ N 2R
I N N
> 2R'"— —— —— —— 2R"  2(14R")“
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(2.2.2)

(2.4.4)

"The sufficient condition of absolute stability is that the Hermitian matrix

‘must be positive definite for all w; consequently, Ai > 0.

2(1+R") JR' — — —— —— 2R
AN |
2R’ 2 (14R'N |
\\‘ N |
b, - ~ AN \\\|
N N
| N ~
2R'"— — 2R! 2(1+R")
2(1+R") -2 22— —— -2
ZIR 2\\ o\:\— —<|)
= | NN
| '~ N\
NN
2R' 0—-_:0 N 2

Now



i
= + 2R
20, 1+ 2R

i

2028, _, + 2 ey + 2t

2

- 21”1A1 + (i-1)27r!

2% (14+4R") > 0.
Subsfituting (2.4.3B) in (2.4.5),

R(w) - qwI(w) + %—> 0.

Define
X(w) = R(w),
and .
Y(w) = wl(w).

(2.4.7A) and (2.4.7B) give

X(w) - q¥(w) +% > 0.

The condition

Am f X(w) - q¥(w) % %-> 0.

implies that

with slope %u

32

2.

(2.

(2.

(2.

(2.

(2.

2.

m

4.7A)

4.7B)

4.5)

1 .
Hence,the new Popov line,shown in Fig. 2.12, passes through the point (- =, 0)
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LY

7 Popov line
~7

unstlable re\y/oﬂ Stable region

¥
P4

2.12 Extension of Popov criterion for the parallel system with m identical
nonlinearities and m linear transfer functions
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Chapter 3 ABSOLUTE STABILITY OF A TIME VARYING FREDBACK
SYSTEM WITH MONOTONIC NONLINEARITIES

§3.1 The Absolute Stability of the Single-Loop Time Varying Nonlinear

Feedback System

In recent years some results concerning the absolute stability of a
single-loop nonlinear syétem with a time varying gain have been obtained by
‘Rozenvasser (5], Zames [22], Bergen and Rault [12]. The results to be presented.
here extend this previous work.

Let us consider single-loop time varying nonlinear system shown

N

in Fig. 3.1.

In that system,

]

o, (t) fz g(t-1) e(t)dt for t > O

(3.1.1)
=0 for £t <0

is the zero-state resgonsé of the linear time invariant paft with transfer
function G(iw) = F[g(t)]. The input N(t) represents the zero-input fesponse of
g(t). The complete response of g(t) is thus

c(t) = o () + n{t). | (3.1.2)
Thé'input, o(t) = -c(t), and the output (o) of the amnesic nonlinearity N.L.
are related in the following manner:

(1) 0 < of(c) < o for o# 0, $(0) = 0,
(3.1.3)

B(o)) - #(o)

(2) 0< A <1 for o # o,.

The block, k(t), represents a linear time varying gain, thus

e(t) = k(£)Plo(e)].
The instantaneous value of this gain is constrained so that

(1) Kl < k(t) < K2, where K2 > Kl >0,

(2) bk(t)< k(t) < ak(t), where the number a> 0,and the number b
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is finite.
1t is assumed that the linear part is stable, more specifically,

(1) g(6) ¢ 1,(0,0), &) ¢ L (0,a),
(2) n(t) ¢ Ll(o,w):
(3) n(t) is differentiable and a(t) ¢ Ll(O,w).

. Céndition (1) above ensures that g(t) is bounded on (0,«) and that g(t) - 0

as t - «; besides,conditions (2) and (3) ensure that n(t) behaves in the same

_manner.
Denote
n(t)M = sup |n(t)],
t>0 A
g(t), = Sup |g(o)].
t>0
The Fourier transforms of g(t), e(t), etc., are denoted by G(jw)
E(jw), etc. The notation [l - || denotes norms in the space Ll(O,m). Thus

Hne)ll = f: In(t)|dt.

§3.2 . The Main Result

The main result is the following theorem.

§3.2.1 Theorem 1
Consider the system shown in Fig. 3.1 to which the assumptions made
above apply. Let y(t) be any real function such'thét
(1) y(t) = 0 for t <0, |
(2) y(t) <0 ' for t > 0,

‘ Kl

and let g be any nonnegative number. If
1 .
Rel [1+qju+Y (Ju) 1[G (Jw)+—]+aqG(Gu)}
.2 :

1
K.

Syl = -5 20 | @) -
1 2 :
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for all w, then

(1) suplo(t)] < =,
: t>0

(2) o(t) >0 as t » =,
(3) as {In(e)ll + In(e)!l > 0, the corresponding g(t) has the

property that Sup lo(t)! - 0.
t>0

§3.2.2 A Special Case of the Theorenm

It should be noted that if the time varying gain k(t) is monotonically
‘ e 01

non-increasing and a f_O;Vt > 0, then the condition (Ql) for absolute stability

may be replaced by

Re[1+ajutt G 1[G+ - [yl &= - 19
2 1 2
- a > 0 . (Qll)
for all w, 2K2 -

where again, q is any nonnegative real number.

§3.3 Proof of Main Result

The body of the proof of Theorem 1 will be given in a series of

appendices; a brief summary is given below in this section.

Define
o(t) for t <T
op () ={ |
0 for t > T,
ep(t) = k()Plon (1)1,
and
OeT(t) = fg g(t-1) eT(T)QT. | (3.3.1)
Thus
oeT(t) = oe(t) for t < T,
and

qu(t) 5 Ll(T,w).



The notation (x*y)(t) denotes convolution between x(t) and y(t);

(xxy) (€)= S x(Dy(e-1)dr.

Define )
gm_=‘g + o*y, Cm = ¢ + c*y.
Thén
T em(t)
Jo Lo (£) - K, Je(t)dt
= rgle - 9§§11§<t>dt ERLLACEE RICHOLS
Define .
T k(t—T)Q[GT(t-T-)]
R(1) = fO[OT(t"T) - K, ]k(t)Q[GT(tA),]dt.
Now 4
. R(T) _ Rl(T) + RZ(I)’
whefe
Rl(T) = f: [oT(t—T)—Q[OT(t—T)]]k(t)ﬁ[cT(t)]dt,
~and i '
R, (1) = £o01 - S k(g o, (-1 18l0, (0) a.

2
Frem Appendix 1,

S KBl ()]
R (D) < g g lop(e) - —— Ikl (0],
-and from Appendix 2,
Ry (D) <SG - £)e (o) at.
: 1 2

- Thus -

" K2 e (t)

R(1) j_fO[EI'OT(t) - K »]eT(t)dt.

The first term of the right side of (3.3.3) is always positive.

consider the second term of the right side of (3.3.3)

T, . e
fO[Y“(O - K—Z)](t>dt-

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

Let us now
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- (3.3.2)

5
4)
.5)
.6)
:7)
.§)
.9

.10)
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= g OY(T)[o(t 1) - S—(;%:*Tl]e(,t)dﬁr dt
2
e (t-1)
=/ foy(r)[o (t 1) - K ]eT(t)dT dt
Sy (IR - g (3.3.11)

But; employing (3.3. 10), it may be shown that’

£yl (o = g1 (E)e(t)de

2
. . K e (£) .
> foy(T)dT fO[K—l oT(t) - —Kz———]eT(t)dt (3.3.12)
e (t)
> IIny [— op(t) - e (t)dt. (3.3.13)
1 2
Substitution of (3.3.13) in (3.3.3) yields
T e, (t) | 2
fo[om(t) - Jle(t)dt + (— - ——) I yll f e (t) dt
2 l 2
K e (t)
> (1 - 2yl o, () - ———le (B)dt | (3.3.14)
: 1 0 2 .

and, from the assumptions of the Theorem 1, the right side of (3.3.14) is non-

negative. Hence,
e (£
K

Je(e)de + (——- - —) HyH f er ()%t > 0. (3.3.15)

T
S o () -
0" 'm 2 KK

Consider the following integral

T e, (6 11
1= fo[-oem(t) -~ qée(t) - K, - aqoe(t) + (RI - ;(Z) Hyll e(t)le(t)dt
=1, + 1, | (3.3.16)
where
ST e, (t) 11
Il = fo[—oem(t) - K2 + (K_l - K_z) llyll e(t)]e(t)dt, | (3.3.17)
and :
I, - fg - a5 (1) + ag_()]e(t)dt. (3.3.18)
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Now '
. T e, (t) 1 1
I = folo () - —— + G= = 30 lylle(®)]e(t)de
2 1 5
+ fg n (£e(t)dt (3.3.19)
giving, due to (3.3.15)
1, > S n (De(o)de. (3.3.20)
~In a similar manner, '
1, = fgq[é’(t)+a0(t)]e(t)dt+fgq[ﬁ(t)+an(t)]e(t)dt. (3.3.21)

Invoking the result of Appendix 3,

I, > a[k(T)8(1)-k(0)2 (0)+ tq[A(t)+an (1) Je(t)dt. C(3.3.22)
Recall that
f(T)f(t)dt = f:; fT(t)dt,

where fT(t) is the truncated version of f£(t) to between 0 and T. Hence from

(3.3.16),
o . eTm(t)
I = fo[—oeTm(t)‘— quT(t) - Kz - aneT(t)
11 ' |
+ (E— - E”?llYl'eT(t)]eT(t)dt _ (3.3.23)
1 2 : '

and, from the conditions of Theorem 1 and since

=
|

= - L TRel[1+qiort (30) 1[6(j0) + 5] + aqG(jw)
T =% K2
1 1. K
—(E— - E_)lly“ }ET(JN)ET(jw)dw>
1 2
it follows that

I <o0. | (3.3.24)

Since 1 = Il + I,, from Appendix 3 and after substituting (3.3.20) in (3.3.24),
q{k(T)2(T)-k(0)2(0)] < - fg[aqn(t)+nm(t)+qn(t)]e(t)dt. (3.3.25)
Define
ey = Sup Ie(t)l |



and invoking the conditions already imposed upon n(t),

right side of (3.3.25) must be less than the quantity

eyl (T iyl +aq) qinll +q Ilnll 1 = Mey.
Furthermore, considering the first term of the left sid
is monotonic,

o) > Pl 1},

Using (3.3.26) and (3.3.27) in (3.3.25) vyields

L k(D WL} < qe(0)6(0) + Me,.

From (3.3.28), 'since K < 1,
K2 -

%»emz < qk(0)8(0) + Me, .

The inequality (3.3.29) holds for any T > 0 and implies

KM KM
Sup |e(td] 5_—%—-+ [(—2?

1
)7 + 2K, k(0)(0)]
£50 q 2 :

n(t) and y(t), the

(3.

e.of (3.3.25), since

(3.

(3.

(3.

/2

(3.

40

3.26)

3.27)

3.28)

3.29)

3.30)

Furthermore, since ce(O) = 0 by (3.3.1), this bound on e(t) tends to zero with

linll + HAl.

It remains to be shown that le(t)] > 0 as t » ». After substituting

in (3.3.14) of (A 3.3) of Appendix 3 and using .(3.3.24),

K
2 T e(t)
a - E;lell)fo[c(t) -]

: e(8)dersgn ()e(c)

~qk(0)0(0) + afe[A(t)+an(e) e(t)dt < 0. 3.
Thus
5 T e(t), '
(1 - i;llyll)fo[o(t) - —Eg—]e(t)dt < gk(0)2(0) + Mey. @G.
From which it follows that
k(0)e(0) + Me
T e(t) 4 M
fo[o(t) - —K;—]e(t)dt < m (3.

2
1~ iyl
1

dt

3.31)

3.32)

3.33)
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Since right side of (3.3.33) is independent of T, then letting T+ o,

- . qk(0)¢(0) + Me _
INEIO --E;Elie(tht < K - , (3.3.34)

2 ‘ 2
1 - % Myt

1

and this bound on the integral tends to zero with |Inll + |Inll.

However, the bound already placed on e together with the conditions
demanded of g(t) require 6e(t) to be bounded and to tend to zero., It may noQ
be shown that the integral of (3.3.34) is infinite unless oe(t) -~ 0 as t »> o,
thus contfadicting (3.3.34); Therefore it can be concluded that o(t) - 0 as
t > o

-

Since Oe(t) is uniformly continuous and if Sup ]o(t)l does -not go to
t>0
zero as |Inll + llAll > 0, then (3.3.34) does not tend to zero either. This is

a contradiction. Hence, as linll + {}nll > 0, Sup lc(t)[ > 0. The proof is
t>0 :
therefore completed.

§3.4 Examples

Exampie 3.1
In the single-loop nonlinear system with a linear time varying gain
shown in Fig. 3.1, the linear part has a transfer function

K

G(s) = 7o) (v 2y

the input and output of the nonlinear part. satisfy (3.1.2), and the time varying

gain is such that

1= 1,k = 1.2,

(2) bk(t) < k(t) < ak(t), where a,b are real numbers such that a > 0,

(1) 1 < k(t) <1.2, i.e., K

and b is finite.

Suppose that a is large enough, q must be chosen zero. Let us assume

that y(t) is an exponential function such that
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)

.1..
) R (t) e) G(S)‘oé(_? b

3fl Single loop time varying nonlinear feedback system with zero-input

| - e
4] i 8 &
uz - i
...-4--
-
4

/1Y Gw

1 2738 4 KR

3.2 Bode diagram for a compensator l+y(s) ;‘%$§
s
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L v
-=e as t >0
SORR I
0 as t >0,
K2
where vy > 0, and 8 > 1.2 = T Then
1
- . K
S 1,0
Hy@ll =77 |- = e | dt = =< = .
0 Y B K2

Thus the conditions on y(t) are satisfied. After taking the Laplace transform

of y(t),
1 - (g-1) + ys
s + 8 B +ys . (3.4.1) -
Y .

The sufficient condition of absolute stability is

1+7Y(s) =1 -1
Y

B Fydyr ey, L. 10,2 |
Rel 5= 00 “16Gw) + 775] ; 1.2 > 0 (3.4.2)

for all w.

Let us define

Gl(jw) = G(jw) + 1.2

and ,

ves y = LB=1) + yiw .
Gl(Jw) = [ 3+ yiw ]Gl(Jw).

From the relation (3.4.2), the locus of Gi(jw) must lie on the right side of

0.167°
8

Gi(jw) in Gi(jw) may be considered as a compensator which is shown on the Bode

the vertical line passing through the point ( , 0). The multiplier of

diagram Fig. 3.2. The function of the compensator is to improve the characteristics

of Gl(jw). From the plot of Gl(jw) in Fig. 3.3, it is a simple matter to choose

the proper values of g8 and y. From the fact that the left-most point Wy = 2.5
on the locus of Gl(jw) lies between 8=t ana & and that 8 satisfied the relation
: Y Y

l{l—-— l—ﬂ << !;3 the stability condition
Blk- " K K Y
1 2 -2

K< 23.75 | (3.4.3)
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G- N
-9 - (1+jw)(2+] w)
' | | K; =23.75
23.75 2+s

Fig. 3.3 The plots of G(s) = and G'(s) = (ZzEJG(s) for

(st+1) (s+2)
Example 3.1.
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has been found by running a suitably written programme on the digital
computer.

It is noted that the combination S = 2 and y = 675 is not the best
one because of the particular choicé of y(t). That optimum y(t) which gives

the best combination of B and y may be determined by a digital computer techﬁique.

Example 3.2

Consider

K

R EENEn

where D is any positive real constant, instead of the.G(s) in the previous
problem and 1e§

| 0 < k(t) <1,
“and

bk(t) < k(t) < ak(t).
In this case, let us suppose y(t) = 0, then the condition of absolute stability
is |
Re{(1+qjw) [6(jw)+1]+aqG(fu)} > O 2 h.4)

for all w. "Rewritting,

R(w) - quI(w) + 1 + aqR(w) > O (3.4.5)
for all w, since
G(jw) = R(w) + jI(w). A (3.4.6)
Here KL(D—mz)
Rw) =
(l+w2)(D2+w2) , (3.4.74)
and K, (14D)w
I(w) = (l+m2)(D2+m2) (3.4.7B)
Define

X(w) = R{w) , (3.4.84)
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aﬁd
Y(w = wI(w) - aR(w). (3.4.8B)
Substituting (3.4.8A) and (3.4.8B) in (3.4.5),
X() - V() + 1 > 0. ' (3.4.9)
To satisfy inequality (3.4.9), the locus must be on the right side of
the straight'liﬁe passing through the point (-1,0) havinglpositive slope iu
From (3.4.8A), (3.4.8B) and (3.4.9), if a < 1+D~¢, where the small
number ¢ > 0 is arbitrarily chosen, and q is %5 then the stability condition (Q1)
is satisfied for any nonneéative real constant #. Besides, the modified Nyqﬁist
plot is on the right side of the Popov line. This is shown in Fig. 3.4.
If a £ 0, the sufficient condition of absolute stability is
R(w) - qul(y) + 1 > 0. . (3.4.10)
This is the Popov criterion and is satisfied for any nonnegative real constant k

by choosing q = 1

§3.5 Absolute Stability of a System with Many Nonlinearities and Many Time

Varying Gains

In the previbus seciions, the absolute stability of the system with
one nonlinearity and one time varying gain is established. Now, let us consider a
system with many nonlinearities and many time varying gains. Such a system is
shown in Fig. 3.5. The input ci and the output'Qi(oi) of the ith nonlinearity

are related by the following:

(1) 0< 0.8 () 5_oi for o, #0, 9,(0) =0,
dﬁi(oi) (3.5.1)
(2) o0< —55;——' <1, ,

and the instantaneous value of the i-th time varying gain is constrained so that

1) Kli ﬁ,ki(t) <K iy where KZi > Kli > 0,

2) bik(t)‘i_ki(t) j_aiki(t), where the number a > 0 and the number

1

2

bi is finite.
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X

Fig. 3.4 Modified Nyquist plot of G(s) - Te+1) (s9D)

for Example 3.2.

b @) ew) for
=N K [ TS |

Fig. 3.5 General time varying nonlinear feedback system with zero-input
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Besides,
o () = S5 r(t-ne(nd
.qg 0 te(r)dr
is the zero state response of the linear time invariant transfer matrix

P(jw) = FIT(t)], where

,Gll(jw) Glz(jw)——-——-——Glm(jQ)\
GZl(jw) Gzz(jw)——~——-——G2m(jw)
rGw) = | Ty (3.5.2)
1 |
| |
‘\Gml(jw)‘— —_— ——— Gmm(jw);

The input vector n(t) represents the zero-input response of I'(t). The complete

response of T(t) is thus
c(t) = ge(t) + n(t).

It is assumed that.all elements of the linear transfer matrix r(t)

are stable, more specifically,

1) gij(t) £ L2(O,M),,éij(t) £ Ll(O,w), i=1,2,...m, j=1,2,...m,
@ 0 (®) & L0,
(3) ni(t) is’differentiable and hi(t) £ Ll(O,m).

Condition (1) above eﬁsures that each element of r(t) is bounded on (0,)

and that gijqo,andconditions (2) and (3) ensure that W;(t) behaves in the same

manner as g, (t).

1]
Denote
m m
n.= I n, = £ Sup [n, ()],
I B Y
m m m m A
r. = I Zg..= ¢ I Sup|g. . (t)].
Mooge1 320 B 4o 421 0
The notation Il -ll denotes norms in the space Ll(O,w)'such that,

for example,
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m
holl = Ty & Ing(e)fac
i=1
Define
-1 ) . 1 -1 -1
Kl = diagonal matrix (kll,klz,....Klm)
-1 , , -1 -1 -1
K2 = diagonal matrix (Kzl’KZZ"f"KZm)’
and
A = diagonal matrix (al,az,....am).

§3.6 Theorem 2
Consider the system shown in Fig. 3.5 to which assumptions given
above apply. Tet Y(t) = diag{yl(t), yz(t)....ym(t)} be such that each element

is a real function and that

(1) y, (&) =0 for t <0, i=1,2,...m,
(2) y,(£) <0 for t > O,
| | | Kli
(3) llyi(t)H < T
21

Let Q be any positive semi-definite constant diagonal matrix. If

tﬁere exists anmxm matrix H(jw) such that
. . . . -1 .
H(Gw) = [IT+5wQ+Y (Ju) 1T (Gu)+K, "] + AQT(jw)

-1

_ -1_
[yll [k K71, (02)
and
. T, . . .. . .
(1) H(jw) + H (-jw) is a positive semi-definite Hermitian matrix
for all w,

(2) H*(jw) = H(-jw)

(3) Every element of H(jw) is analytic for all w,
then

() Suplé(t)\ < o, and Sup[o.(t)[ < o, i=1,2,...m,
= i
t>0 t>0
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(2) o(t) ~0 as t » «, and oy + 0 as t » o,
(3) as |in|] + ljnll » 0, the corresponding g has the property

Sup!gﬂt)1 >0, and Suploi(t)l > 0.
t>0 t>0

§3.7 Proof of Theorem 2

This proof follows the same vein asAthat of the previous Theorem.
The only difference here is that all vectors such as e(t), ge(t), n(e), n(e),
c(t), (), o(t) are m-vectors, and all matrices such as 0,Y are mxm matrices.
All formulae and the proofs of which developed in §3.3 still hold, except
that the proof of (3.3.24) must be performed in the following manner.

From (3.3.23),

v P e 1 _
' = fol-g g (£)-05_ (£)-K e, (£)-QAg . ()

-1

+ (Kl

-K;l)llYF|§T]gT(t)dt ‘ (3.3.23'}

© T t
= -IOQT(t).jOh(t—r)gT(T)dr dt,
where h(t) is the inverse Fourier transform of H(jw). From the condition of

Theorem 2 and Newcomb's result [25],

I' <0. (3.3.24")

This, howevér, is the same as (3.3.24).

Hence, by the same argument used in the proof of Theorem 1,

(1) Sup|o(t)] < =,
£>0

(2) o(t) >0 as t > o,

(3) as ||n}l + ||nl] > 0, the corresponding ¢ has the property

Suplgﬁt)l -+ 0.
>0

Now, Sup|o(t)| < = if and only if every component Gi(t) satisfies
t>0
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Sup|o 1y ] <.m /
tzp i(L) o .

Similarly, g(t) - 0 as t » « if and only if every component Gi(t) satisfies

oi(t) >0 as t o> o,

and Suplgﬂt)l -+ 0 if and only if every component oi(t) satisfies
t>0

Suploi(t)l > 0.
t>0

§3.8 Example

Example 3.3

Let us consider the parallel system, where m = 3, each branch of
which has one nonlinearity and one time varying gain in series withAone linear
time invariant transfer function. Here these three parts of each the three
branches are identical to the corresponding‘ones used in Example 3.2. Suppose

that the matrix Y(t) = 0. Let us consider the matrix

H(jw) = (THje@ (T(Gu)+I) + a Qr(fu), _ (3.8.1)
~ where | .
' 1 1 1
f‘(jw) =G6Qw |1 1 1},
1 1 1
and
Q=ql
Rewritting,
11 1
H(jw) = (1+jwq+aq)¢(jw) 1 1 1+ Q+tjegI. (3.8.2)
1 1 1

Obviously, H*(jw) H(-jw), and the elements of H(jw) are all analytic for
all w.

Invoking the proof of §2.4, the Hermatian ﬁatrik
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R(jw) + HT(*jw) = Re(1+jwqtaq)G(Gw) + %u ‘ (3.8.3)

Following the argument used in Example 3.2, if a < 14D-e. and q
is-%, the sufficient condition Q2 of absolute stability is satisfied for any

positive real constant K.
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Chapter 4 CONCLUSIONS

A graphical method using the Popov line is poséible'for a particular
class of time invariant nonlinear system. The method may be simplified in a
number of cases.

Two alternative approaches, one using the Nichols chart, the
other the'analogue computer, are mentioned briefly and illustrated.

No simple graphical method exists to.test the absolute stability
of the‘parallel system with many different linear transfer functions, although
a graphical method using the Popov line to test the absolute stability of the
parallel syétem with many identical nonlinear transfer functions is péssibie.

Neither islthere any simple éraphical method available to establish
the criterion of absolute stability of a'mglti—circuit or an internal feedback
system. However, work on the determination of the criterion of absolute stability
for any one of the four classes méntioned in §1.1 by digital technique is
underway. The digital technique [23] is in essence concerned with location
'of the optimum combination of matrices Q and K which will define the boundary
of absolute stability region. It must be pointed out, however, that with the
systems that have been discussed so far in this thesis the graphical method
is so far simpler and less cumbersome in obtaining the requisite conditions
for absolute stability.

In chapter 3, Theorems 1 and 2 provide tﬁe sufficient, but not necessary,
conditions for the absolute stability of a time varying nonlinear system in
_which the nonlinear part must be monotonically nonlinear.

0f great importance.in establishing the
sufficient condition of absolute stability is the appropriate choice of A
and y(t). 1 + Y(s) is identical to the function describing some RC passive
network if y(t) is an exponential function. The optimum fegion of absolute

stability may be found by a digital technique.
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If the time varying gain is frozen, that is,k(t) = 1, the sufficient
condition (Ql) may be rewritten

Re [1+qjwtY (Gw) ] [G(jw) +‘}1(_] > 0.
2

This is the result of Baker and Desoer's [11].

For some classes of time varying nonlinear systems, it is possible

to use the  graphical method discussed in chapter 2.



55

APPENDIX 1

From (3.3.6)

R, (0)-Ry (1) = [5Tlop(6)-Plog(0)]] = [o,(t=)-Blay (t-1)11}

ﬂ[oT(t)]k(t)dt | | _ - (A1.1)

. Noting that #(t) and [o(t)-@(t)] are monotonic, and
¢1'¢2

0'1_02

-0 < <1,

>1

or A
(0,-0,) B,-9,) - (8,-9,)° > 0, (41.2)
or |
[(o)-8,)-(0,~0,)1(0,~0,) > O, (A1.3)
thus @(t) is monotonic increasing in [o(t) - O(t)].
Let us define

A = {2 (©)-Plog (D) ]-[og (t=0)-Plog (=) 1}Blog ()], (A1.4)

and observe that
A > P(t) - P(t-1),
where

o, (t)

P(t) =fT

o Plop(®ldlop(D-Blog (D11 (AL.5)

From (Al.1), (A1.4) and (AL.S),
R (0)-R (1) > S[R(E)-P(t-1)]k(E)dt 3 (A1.6)

and
R (D) <R (0) + SOIk(e+D-R()TP (D). (A1.7)

But



RLO) < S Tay(0) - 3;;) Ploy (011K ()¢ o, () ]dt,

and,since,

P(0) < [og(0)-Blog()118g,(0)]

LGN

8 o, (017 K prg (o)1,

< [gn(t) -
=0T 2 1

then

fg[k(t+T)—k(t)]P(t)dt < (R,K)) sep(t)de

K,-K
2 1 o k(t)
<7x; Jolor® T f

Substituting (A1.9) and (A1.10) in (Al1l.8) yields

K, k(t)@[cT(t)]
Ry (1) < fO if{c (t) - X ]k(t)ﬁ[oT(t)]dt.

1 2

[oT(t)]]k(t>@[oT(t)]dt-

56

(A1.8)

(A1.9)

(Al.lO)

(A1.11)
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APPENDIX 2

- From (3.3.7)

- B0 plo, (-0 Lo, (0) 1t (42.1)

R (T)A =
Z 2

O[l

Therefore,

Ry (%) < fo ey - ili;’ |k (e=0)p oy (=0 1| [ k()P0 (0)]] e

< Sl - ol Ike=0plo, (-0 1] [k(e)0lo, ()] [dt (a2.2)
' 1 2
giving
Ry(D) < TG - ) U I(e-0) B0y (e-0) 1 e
1 2
NUIOTIENOIE S SEVY R

from which (3.3.9) follows.
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APPENDIX 3 -

Since ak(t) > k(t), ak(t) > 0, and

o ()pLo ()] 22 plolds

o(t) > 0,
clearly,

Fiak(©) (0o (0)]de 2 k(D8 (), | (43.1)

J = qu(é(t)ao(t))i(t)ﬁ(t) > q fg[ll(t)©(t)+k(t)®[o(t)] 6(t)]dt

> q fp S @)oo

> q[k(T)o(T) ~ k(0)a(0)]. (A3.2)
Therefore,

1,=J+q fg[ﬁ(t)+an(t)]e(t)dt

> a[k(D(D)-k(0)0(0) + f[i(t)+an(t) Je(e)de. (43.3)
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APPENDIX 4

. .2
Since k(t) < ak(t) < 0 and O i_k(t;g[a(t)] < @(t), clearly,

2 .
‘s Tzf%; e(t)2de = fg ak(e) - k(f)géz(t)] > 1y K(De(o)de, (A4.1)

§ = alglse) + 5 e(t)le)de > afy [ke(O)+k(O)Plo(t)16(e) Tdt

> q[k(T)e(T) - k(0)o(0)]. (AG.2)

Therefore,

13 > alk(De(D) - k()a(0) + fy A(t)e(t)de]. " (A4.3)
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