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ABSTRACT

Thié ﬁaper deals with a graph-theoretic model for parallel
computations as formulated- by Karp and Miller., A necessary condition
and a sufficient condition for self—terminafion of loops with unif
loop gain afe presented; For the special case that W=U the necessary‘
aha sufficient condition is‘derived. A direct procedure for testing
fermination properties of strongly connected graphs is presented.

A'mgthod due to Reiter, fof determining the ma ximum étorage
required for a computatién graph; is extended to cover the general

case.
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CHAPTER 1

INTRODUCTION

As signal propagation speeds represent a serious barrier
to increasing the speed of strictly sequential computers more
attention has been paid in recent years to'the use of the parsllel-
ism intrinsic to most computational algorithms. A number of de-
~signs have appeared which utilize a number of processors which may
simultaneously exccute several steps of the computation (/1/-/5/),
rather than overlapping of subfunctions in sequential processing.

In general, values to bhe used in a computation step are the
results of previous computation steps. This establishes certain
precedence constraints upon the computation steps.

A model of such a system, satisfying a particular cliass of
precedence constraints, has been formulated by Karp and iiller /6/.

This thesis studies some problems arising in connection with
this model, in particular termination properties (Chapter 2) and
storage requirements (Chapter 3).

In this chapter we present the model and the results of pre-
vious research, and compare it with other approaches to the parallel

processing.

1.1 The Karp-Miller Model

The model represents the sequencing of a parallel computation
by a finite directed graph. Each node of the graph corresponds to
an operation in the computation (or to a processor assigned to per-

form that operation). Each branch represents a first-in first-out



queue of data directed from one processor to another. To describe
data transformation by processors, with each node is associated a
single-valued function determining the dependence of outputs on
inputs. The eligibility for initiation of an operation is‘determin-
ed by the lengths of the queues on branches directed into its
associated node.

Thus a computation is represented by a directed graph G

called a computation graph which is given by:

(i) a set of nodes NygNgy eyl

(ii) a set of branches dl"'dt’ wvhere any given branch d
is directed from a specified node n. to a specified
node n.,
J
(iii) four nonnegative integers A_,U ,W_and T , where
: P p’p P
T 2 Wb, associated with each branch do'

p

Here, Ap gives thie initial number of data words in the
first-in first-out queue associated with dp; UP gives the number of
words added to the queue whenever the operation Oi associated with
n. ﬁerminatés; WP gives tlhe numbervof words rewmove:w from the queue
whenever the operation Oj is initiated; and T _is a threshold giv-
ing the miniwuin queue length of dp which permits the initiation of
Oj' Upon initiation of Oj only the first Wp of the TP opefdnds for
Oj are removed from the queue.

The operation Oj associated with a given node n'j is eligible
for initiation if and only if, for each branch dp directed into nj,
the number of words in the queue associated with dp 1s greater than
or equal to TP. After Oj becomes eligible for initiafion, WP words

are removed frowm each branch dp directed into nj. The operation Oj



is then performed. When Oj terminates, U(l words are placed on each
branch d_ directed out from nJ.VThe times required to perform the
steps mentioned above are left ﬁnspecified by the original model as
presented in /6/.

These constraints on initiation lead to the following defin-
itions of the possible sequences of initiations associated with a
given computation graph G,

Let E be a sequence of nonemply sets Sl,SZ,..,SN,..; such
that each set SN is Q subset of{l,Z,..,l}, where £ is the number of
nodes in G. | | |

| Let x(j,0) = 0, and, for N> 0O, let x(j,N) denote the nunber
of sets Sm’ 1€mg& N, of which j is an element.

The sequence E is an execution of G if and only if for all K,
the following conditions hold:

(i) if j€ S\T and G has a branch dP directed from n, to

+1
Dy then Ap + pr(i,N) - pr(j,N)Z.Tp,

(ii) if E is finite and of length R, then for each J there
exists a node n; and a branch dp directed from‘ni to

D

. : . _ l"' . . T
ng such that Ap + pr(l,R) \lk(J,R)< -

An execution L of G is called a proper execution if the follow-

ing implication holds:
(iii) if, for all n, and for every branch dp directed from
n; to nys AP + pr(i,N) - pr(j,N)Z:Tp, then je S,
for some R> N. -
The sequence E may be interpreted as giving a possible

temporul sequence of 1initiations of operations throughout the per-

formance of the parallel computation specified by G; the occurence



of SN‘denotés the simultaneous initiation of Oj for all jE€ SN'

- Condition (i) states that in order for node n‘_j to initiate
for the x(j,N + 1)-th tiﬁe, the queue lengths on its input branches
must be greater than, or equal, to the respective branch thresholds.
Condition (ii) defines the circumstance under which an execution
terminates, i.e. under which the computation defined by G halts.
This computation terminates when every node of G is unable to
initiate. Condition (iii)’requires that a node, if able to initiate,
actually will do so after some finite number of initiations of other
nodes.

The following example illustrates these ideas:

Example 1.1

Consider £he Laguerre polynomials defined by the recurrence
relation |
L, (x) = (2n + 1 = x)L_(x) = n°L__ (x)
with initial conditions
Lo(x) =1
Ll(x) =1 - X
We want to compute the values of Ln(x) for n = 2,3,..,N and for a
given Xx. |
A computatioﬁ graph for this calculation is in Fig.l. For
each branch the intermediate result is shown. Branch coefficients
are assumed to be A=0, U=W=T=1 unless otherwise shown. Branches
(nl,nl)'(i.e. the branch directed from n, to nl) and (n2,n2)'serve
~as counters; the computation is terminated by the depletion of queues
associated'with these branches. Node ny produces 2n and n2, and

places them on (nl,nz) and‘(nl,n3), respectively. Node n, takes

2
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Computation graph for Laguerre polynomials

Fig. 1



(1-x) from the branch (n2,n2) and adds it to the other input 2n; the
result (2n+l-x) is placed on (n2,n4). Node n, forms the product of
(2n+1-x) and Ln(x) and places the result on (n4,n5). Node D4y malti-

plies L_ ,(x) by n? and places the result on (n3,n5). Finally, ng

n-1 v
produces the desired polynomials Lz(x), L3(x),.., LV(X) and places
them on (ns,n4) and (ns,nB). The initial data queue on (nS,n3) is

Lo(x):l, Ll(x):l-x and on (nS,n4) it is Ll(x)zl—x.

1.2 Research connected with parallel computation models

Karp and Miller /6/ show that for every proper execution the
sequence. of data words occuring on any branch of G is always the
same lhus ensuring the same computational result. This property is

referred to as the determinacy of a computation graph. Also, they

give an algorithm to determine whether a computation terminates,
énd a procedure for finding the number of performances of each
operation in G. Finally, they give necessary and sufficienl con-
ditions for the lengths of duta queues to remain bounded.

Reiter in his Ph.D. thesis /7/ addresses himself 1o the
problems of storage, scheduling, and optimum assignment of operat-
ions to processing units. He gives an integer linear program for the
determination of the maximum storage required by a computation graph
~G. He introduces a concept of an admissible schedule defining valid
node initiation times and characlerizes the class of all admissible
_ schedulgs in the case WP:TP:I, UP:O or 1, He further shows that in
this case it is possible to find a periodic admissible schedule
which achieves thie maximum computation rate (also see /8/). lle also

defines the cost of an assignment of node functions to processors



and gives a method for determining feasible solutions when the maxi-
mum computation rate has a lower bound. Finally, he extends the
modél to incorporate a restricted form of data dependency withouﬁ
losing its determinacy.

A different approach to the graphical represcentation of a
computation is taken by Martin /9/. He allows two types of node in-

put control. In the case of conjunctive input control a node can

initiate only if cach branch directed into the node contains at

least one data word., In the case of disjunctive input control a

node can initiate only if at least one branch .directed into the node
contains at least one data word. . Similarly, conjguxive(nmput
control places one word on each branch directed out from the node
and disjunctive output control places one word on a branch directed
out from the node according to an a priori probability. The latter
'reﬁresents a conditional transfer which is deterministic every time
it occurs but over many possible data sets may be modelled probabil-
istically.

Note that the conjunctive input control and conjunctive out-
put control correspond to the T=W=1 case and U=l case in the Karp
-Miller model, respectively. Also note, that because of conditional
transfers, this model is not determinate.

In his work Martin studies the assignment of node comput-
ations to processors and tries to minimize the average computation
time. Further rescarch of this model can be found in /10/, where an
approximative method for calculating the average computation time ig

A

given, and /11/, where procedures are given to determine a lower and an

upper bound on the number of processors required for maximun



parallelism,
An application of results of these studies to assembly-line

balancing problems is given in /12/.



CHAPTER 2

TERMINATION PROPERTIES OF COMPUTATION GRAPHS

Part 2.1 of this chapter is devoted to a presentation. of the
Karp-Miller algorithm. The algorithm is used to determine whether
the computation specified by a given computation graph terminates,
and to find the number of performances of each operation in case the
computation terminates.

Several theorems are given in parts 2.2 and 2.3 to impro&e

the efficiency of the algorithm.

2.1 The'Karp—Miller Algorithm

Theorems and Lemmas of section 2.1 are proved in /6/. Since the
number of performances of an operation Oj is independent of the execu-
tion considered only if this excution is proper, Karp and Miller
restrict their attention to proper executions.

A node nj of a computation graph is said to teéerminate if and
only if (in the following iff) j occurs in only a finife number of
the sets SN of a proper execution of G. Naturally, this number is
the-same for all proper executions of G.

To further study the termination‘of properties of computation

graphs we need to introduce a few concepts from graph theory.

A directed graph is called strongly. c¢onnected iff given any

- pair of nodes n; and nj there exists a directed path from n, to nj. A

special case of a strongly connected graph is the trivial graph which

has only one node and no branches.

For any directed graph there exists a unique partition of
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its nodes into equivalence classes as follows:
Two nodes ng und_nj are in the same class if there exists a
directed path from n, to nj, and a directed path from n. to n; .
A subgraph consisting of 1he nodes of an equivalence class
and the branches of the original graph connecting these nodes is
then a strongly connected graph. The subgraphs corresponding to the

node equivalence classes are maximal strongly connected subgraphs

of the original graph and are called the strong components of the

graph. These strong components play a crucial role in the Karp-
Miller algorithim.

Lemma 2.1

Let G' be a strongly connected subgraph of a computation

graph G. Then either every node of G' terminates . or nonedoes.

We say that G' terminates if every node of G' terminates.

Divide all the nodes of a computation graph G into two classes
.according to whetlher they terminate or not. Then by Lemma 2.1 the
set S of terminating nodes is a union of sets of nodes of some
strong components of G,
The strongly connected subgraph G' which would terminate if

it were isolated from the rest of G is called self-terminating.

LLet us examine when a strong component is self-terminating.

Lemma 2.2
Let dp:(ni’nj) be a branch of a computation graph. Then n,

terminates if ni iterminatles.
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This lecads to the following concepts: Let GT and G° be
strong components of G. Then define G- > G° if either G© = G° or there exist
such nodes n;€ G' and nje G> that there is a directed path from n,

to n. in G.
J

Theorem 2.3

A sirong component G° of a computation graph G terminates

iff there exists G' such that G' is self-terminating and

T2 G°.

Thus G> terminates iff it is self-ferminating or some G' is self-
terminating and there is a directed path from some nie G¥ Lo some
nje G°. Therefo}e to determiné the set S we examine strong com-
ponents for self-termination in such order that if G'> GS, then G¥
is examined first.

Now the problem is how to determine whether a strongly con-
nected subgraph G' is self-terminating. For this purpose Karp and
Miller use'properties of the loops contained in G',

A computation graph L is called a loop if it consists of
distinct nodes nl,nz,..,nl‘and branches dl,d2,..,d£ such that dk is
directed from ny to>nk+1, k=1,2,..,-1, and %ﬁ is directed fromnm ny
to n .

HHlere we note that any strongly connected subgraph G' except

the trivial graph contains atl least one loop.

Theorem 2.4

A strongly connected subgraph G' is self-terminating iff G'



contains a self-terminating loop.

Given this theorem the only problem is how to establish that a

particular loop is self-terminating.

Lui
e=TT 7
i=1
g= l,(uu15;>1.

Loops with ¢ <1

is called the

Theorem

2.5

Let L be a loop with branches dl,d2,..;qz.

gain of the loop., There are 3 cases:

o

Any loop L for which g<1 is self-terminating.

Loops with g=1

Theorem 2.6 .
Let —
1
[i-l;
J
“l
Uy U
P= 1w,
1 "2
!
|
Y1 Y
\fl \Yz

The product

g<l,
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By
A -7, ;+1
ﬁ? where /gk = k—lw LSE k=2,3,-.;L
- k—l :
B
ﬁ J\I—T +l -
= . ' and = —
Ag 1 ML

Then the necessary condition for self-termination of a loop

with g=1 1is

PRLO

Karp and Miller give a necessary and sufficient condition for self-

termination in the following special cases

Theorem 2.7

-

If, for <Lk, 1 =Up=1, Lhcn the loop L is self-terminating
L l
Z/3}. (i.c. Z <5 (1),
k=1 k=1 k=1

~In case that Theoreuls 2.6 -and 2.7 cannot be applied Karp and Miller
derive an upper bound on the numbers of performances of nodes of a

self-terminating loop.

Theorem 2.8

Let L be a self-terminating loop with g=1. Let X*¥ be a positive

integer solution of the system

04 = a .
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wvhere a is an arbiirary parameter. Let

X

1=
H

X
L

- -

where Xk is the number of performances of node n k=1,2,..,4.
Then at least one component of X is less than the correspond-

ing component of X*¥,.

Loops with g >1

_ Theorem 2.6 is valid also for this case.
If L is self-terminating then we get the following upper
bound:
x<{——Pg

Having obtained an upper bound for X we can itest self-termination

of a loop by applying a procedure given in the following theorem.
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Theorem 2.9 #

For all nodes nJGS ihe following iteration scheme converges

in a finite number of steps to X;

,(O) . =0 ’

k( +i;) (n) A =T +1+U x(n)(i)

x ' (j) = max ¢ x (i), | min ( PP T P )
, (i,p)GZ_J., i€S p

Herez:;j is the set of ordered pairs (i,p) such that dp is a

branch from node ni to node nj.

The results given so far may be organized into an algorithm for
determining which nodes of a computation graph G terminate and, for
the terminating nodes n., computing the number of perforwmances x(j).

This algorithm may be outlined /6/ as follows:

Step 1. From awong ilhe strong components of the computation graph
being considered (initially this graph is G), selecti one which is
not covered by any other subgraph. Call it G'.

Step 2. By applying Steps 24,...,2D given below, test whether G' is
self-terminating and, when it is, determine x(j) for each njEG'.
Step 3. Yorm a new computation graph as follows: If G' is not self-
terminating, remove G' and all branches incident with nodes of G'.
If G' 1s self-terminating, replace ecach branch dp frow nfEG' to

,“j¢G' by an "equivalent" branch dP, from n; to N having Up,:O,

Ap,zAp+UPx(i), TP':TP’ and Wp,:Wp. Then remove G'.

Step 4. If the new computation graph is nonempty, return to Step 1.

Otherwise the analysis of* termination is coumplete.

# The symbol [x]1 denotes "least integer greater than or equal to x."
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The details of Step 2 are now described.
Step 2A. If G' contains a branch dp with UP:O, go to Step 2D, If

not, determine whether G' contains.a loop with g<«1l. This is equi-

valent 1o determining wliether there is a loop L such that

> log (U /% _)<O.
d €L L

p
This determination can be carried out by a shortest-route algorithm
given in /13/. Enumeration of loops is not required in this pro-
cedure. If a loop wilh g1l exists, go to Step 2D; otherwise, go
to Step 2B.
Step 2B. Every loop of G' has g>1. Determine whether there is a
loop not previously considered such that 02 P@. If no such loop
exists, G' is not self-terminating; return to Step 3. If such a loop
L is found, determine upper bounds on the quantities xL(k) by the
methods given above. These bounds hold, of course, only if L is
self~-terminating.
Step 2C. Continue applying the iteration scheme of Theorem 2.9, tak-
ing S 1o be set of nodes of G', until either
and

(a) it terminates, establishing that G' is self-terminating

oD
giving x(j) for cuach nJEG', or

(n)(

(b) for some n and some k, X k) exceeds the upper bound on XL(k),
establishing that L is not self-terminating. Return to Step 2B.
Step 2D. G' is self-terminating. Apply the iteration scheme of

Theorem 2.9, taking S to be the set of nodes of G', to obtain x(j)

for each njEGﬁ. Return to Step 3.
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2.2 Sonme necessary and sufficient conditions for self-termination

of loops

As shown above, the Karp-Miller algorithm is based on termin-
ation properties of loops. Conseguently its efficiency depends main-
ly on the means available for testing self-termination of loops. In
the following we shall derive some theorems testing these proper-

ties.

Theorem 2.10

W

If, for 1€ k<A, = 1, then the loop L is self-terminating

Uk -
iff

£

> [Bl<o0

k=1
PROOF: By Theorem 6 of /6/ the necessary and sufficient condition
for self-termination of a loop is the existence of a nonnegative

integer solution of the following system . of inegualities:

A =Ty +1+0, x(£)
W

x(1)2

AP_T

. k+1+ka(k)

x(k+1)2 for k=1,2,..28-1

W
"k

This system reduces +to

«(1)2 B, +x(£)
x(k+l)2/3k+x(k) for k=1,2,..,A-1

Since all x's are inltegers, we have



18

x(1) 2 [B5]x(2)
x(k+l) 2 E@£]+x(k) for k=1,2,..,4-1

By summing left and right-hand sides of the above inequalities,

respectively, . we get the necessary condition

L

gé& Egk]:so

To prove that it is also a sufficient condition we *tan. show that

if it is satisfied the system

x(1)=C
x(k+l)=x(k)+l?6k] k=1,2,..,4-1

wvhere C is a sufficiently large integer is a nonnegative integer

solution of the above inequalities.

Consider the following examples

Example 2.1 A=0

U=1 T=W=1
W=T=2 U=1

A=2
Here g=1/2., The data distribution after each node performes once is

U=1 T=W:==1

\V—_—T—"—‘2 U:l

Fig.2
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Lxample 2.2

A=0

U=1 T=W=1

T:\"l':l U:2
A=1

Here g=2. The data distribution after each node performs once is

Example 2.3

A=0

U=1 T=W=1

T=W=1 U=1

A=1

Here g=1. The data distribution after each node performs once is
8 I

Dependence of the amount of data on the loop gain

Fig.2



These examples indicate that (roughly speaking) for g> 1 the
"amount of data" increases, for g<1 it decreases, and for g=1 it
remains constant. The following theorem gives this fact a precise

form.

Theorem 2.11

£y
‘1L e . T i 0
et L be a loop with gain g = i Let Ai and Al be the
i=1 i ' '

initial and current number:of words on the i-th branch,

respectively, for i=1,2,..,£. Then

L : £ o
if g<1 S cA. < 2 c. Al
: 191 —= 171
i=1 i=1
_ A
if g=1 2 c.A, :Z c.A
jo1 V1T
if g>1 ZC.A.EZC.AQ
i=1 ** i=1p t 7
where . c1 & 1]
i-1 y ,
a,n(l Ci —A- -”FL for_i:2,3’oo,£o
Jj=1"j+1

PROOF: Suppose that'Wj words are taken from the j-th branch (j#4),
and Uj+1 words are placed on the (j+1)-th branch. Taking into account

that

the change in the sum 2: CiAi is
ci=1
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W,
U, o —celW. =c, U, . -c.W, =0
P RS B E2 NS L e B e R TS A

Now suppose that WL words are taken from the £-th branch and Ul

words are placed on the l-st branch. We have

Cl =1
NS S DU St
and the change in the sum
U
. 1 71 . . 1
c, U -— W = U - = == ¥ = U 1 - =
171 A 1 gy l( ‘ g)

g:-'lc

is positive for g>1, negative for g<1l, and zero for
As a corollary we get a necessary condition for self-term-

ination of a loop, which is essentially equivalent to Theorem 2.6.

Corollary 2.12

A necessary condition for self-termination of a loop with
g21 and initial number of words on the i-th branch Ag,

i=1,2,.., £is that
2 L
Z:c. j[ (T,-1)
i=1 i=1

PROOYF: If the loop is self-terminating, then after a finite number

of performances we must have



22

A. L T.-1 for i=1,2,..,4
i= i
and
{ 2 £
Z:C.A < Z:c.(T -1)
11 . 1
i=1 i=1

By Theorem 2.11

Now we shall derive a sufficient condition for loops with g=1.

Lemma 2.13
Let L be a loop with g:l,.and WizTi for i=1,2,..,4. Let A?
be the initial number of data words on the i-th branch for

i:l,z,oo’ZQ If
L 0 .
E: c. A max c.W.
i=1 Y 1gjep 9

ihen the loop is self—términuting.

PROOI: Let k be such number that
max c.W. = ¢, W,
15J<£ J k'k
Then 2
C.
1i=1 "k

Since
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£
%:c A Z:

1 1
i=1

where Ai is the current number of words on the i1i-ili branch we have

Thus the number of words on the k-th branch will never reach the
threshold and the number of performances of node nj is zero. By

Lemma 2.2 every node of the loop terminates. Hence the theorem.

Theorem 2.14

Let L be a loop with g=1l. Let Ag be the initial number of

data words on the i-th bfanch, i:l,2,..,l~ A sufficient

condition for self—-termination of L is that

Zc A. <ch(T =W, ) + max c; W .

1=
PROOF: Suppose that L does not terminate. Then after each node
- performed at least once,
A~2T-"“’r-, i.e. (T —“ ) + A'
1 11 1
- where
1\!20 fOI‘ i:1,2,oo,£’o
i

If we replace Ai and Ti by Ai and Ti:Wi, respectively, the resulting
loop L' will have the same termination properties as L, i.e. will
not terminate.

. Then by Lemma 2.13
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> max c!W!
i=1 1<jst 9

Since-ci:c. for i=1,2,..,4

1

)2 A £ £ 2 L
0

Y c.Al = D c.A, = Z:c (T.-W.) + }E c.A! = z: c,(T.-w.) + zi clA!D>
i-1 ** it i=t i=1 *t  ix1 im1 YT

2 2

S e (T.=W.) + max ¢!W! = D ¢ (T.-W.) + max c.W,

imp ! 1§ 93 =t bt 1<5<

which is a contradiction.

To illustrate how strong the conditions of Corollary 2.12 and
Theorem 2.14 are consider the following two simple examples;

Example 2.4

Here 01=03=1

02=C4=2
0
YeiAl =2 =2c, (T;-1)

and the loop terminates

Example 2.5

A=1
Here c¢y;=c,=1 and
U=1 W=T=1 172
max c.W.=1
W=T=1 U=1 lﬁjﬁz
A=0

0
Sc.A.=1=Yc.(T.=V,)+max c_ W,
i7i AR A P PP
~and the loop does not terminate

Termination of loops
' Fig.3
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2.3 A direct method of testing termination properties of strong

components.,

As noted in /6/, the Karp-Miller algorithm requires the inspec-
tion of each loop of a strong component G' when G' is not self-term-
inaping. If G' contauins many loops a more direct way is desirable.

Consider the shortest-route algorithm given in /13/. It is

~used in Step 24 of the Karp-Miller algorithm for testing termiation
properties (see part 2.1). If we use multiplication and associaté
UP/\‘(P with branch dp,‘ruther than additign and log(Up/WF), then, in
the absence of loops with g<1l, the algorithm results in assigning
a rational number to each node of G'.

On multiplying these numbers by the leasi common product of
their denominators each node n. will have an integer o assigned.
If_dp:(ni’nj) is a branch of a loop L with g=1, thenCijﬂXi:Up/Wp.

If L has ¢ > 1, then for one and only one branch do we have0£j/03<
<U /W _; for other branches of L & /O =U /W .
PP J; 1 p P

Consider now an arbitrary loop L of G' with g=1. 1f L is self-
terminating then by Theorem 2,8 the number of performances is for at
ledst one node nje L less thanoC..

We shall show that the same is valid for loops with g>l.

Theorem 2.15

If L is a self-terminating loop with g> 1, then at least one

Here S - - _
kl d1 a
X oL all,/w
X=1.° x*= | L2 = ( l{ v
_Xlu _ocL_ a(ul/‘».vl)(Uz/wz)---(Li_/\gz_’)
- ad
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wvhere a is an arbitrary parameter and Xi is the number of

performances of node n,, i=1,2,..,4.

PROOI: By Theorem 4 of /6/, X is the minimum nonnegative solution
of (E-A)X2>B , i.e.
~ v,] [ 7 T
1 0 0 0 - X X A
' * VL 1 1
Yy
— 'r' l O » ° Y O :\2 ﬁ2
1
U
O - 'W'Z- 1 . . . . . _>_ °
2
U
0 0 0 L= X By
W L
N L-1 4 L 7 L
A,-T,+1 - A, =T, ,+1
vhere 61 = —£~ﬁ&—— ’ and B, = l—l, i-1 , 1=2,3,..,L.
] 1 W.
A p 2 i-1
Then :
B Qz_ ™
1 -0 0 . . 0 - a
'L
U U
- Wi 1 0 . . . 0 a Wl
1 1
U U, U
(E—A)z{_* = O - W-g- 1 . ‘ . . . a Wl .‘-v'—z-
2 1 72
Y1 Y1 % Yo
0 0 0 o T 1 Rl
B , 2 -1 _ 1 "2 -l
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.Now consider the vector X-X*.
(E-1) (X-X*) = (E-A)X - (E-A)X*> A

If no component of X is less than the corresponding component of X*,
then (X~X¥*) is a smaller nonnegative integer solution of (E-A)X>R

than X, which is a contradiction.

Theofems 2.15, 2.8, and 2.4 serve as a basis for a procedure
for testing termination properties of stroﬁg components, which may
be outlined as follows: | |
Step 1. Apply the shortest-route algorithm modified as slhiown above.
If a2 loop with g<1 is found go to Step 2; otherwise continue until
each node n. of the stironyg component is assigned a constantO&.

Step 2. Apply the iteration scheme of Theorem 2.9 to the nodes of
the sfrong component G' until either

a) the scheme terminates, establishing that G' is self-
terminating and giving the number of performances x(j) for each
anG" or (

.b) for some n and some k, x n)(k)'excceds the upper bound

ak on x(k), estublishing that G'.is not self-terminating.



CHAPTER 3
STORAGE REQUIREMENTS

In the Karp-Miller model each branch dp:(ni

,nj) represents

a queue of data words which may be an output of operation,()i assoc-
iatgd with node n, and which may serve as an input for operétion Oj

associated with node nj. Lach data word has to be stored in a memory
“location of a computer performing the computation, and the maximum

number of memory locations required becomes of interest. Chapter 3

is devoted to this problemn.

3.1 Maximun sforage requirement = special case

In this part we present the results of /7/.

Let us introduce a branch parameter’tp)»O: If dp:(ni,nj),’tP
is the fixed time required by node ng to fgtch its input data from
stérage, pfocess these data, and place outputs into memory locations
associated with the queue on branch dp' Thus if n. initiates at time
t, it places Up data words upon branch dp at time t+T§.

Another parameter we introduce is'tizmax{tb} where the maximum
is.taken over all branches dP directed out from node n; .

A schedule is a set<$={61,62,..,qt} where each éi is a funct-
ion

6, : {1,2,..,x} > r

such that for l.<_li<r$Xi

' 6i(k)< éi(r)

Here R is the set of rcal numbers and Xi is the number of initiations

28
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of node n; fdr any proper execution of G, If XizO, éi is undefined.
With each di we associate a function
x; + R>{0,1,2,..,X}
x;(t)=0 iff either X;=0 or X;21 and <& (1).
For 1£k<X., x;(t)=k iff Gi(k)ét<6i(k+l)
For X, 21, x; (b)=X; iff 6i(xi).<.t.
For every branch dp:(ni’nj) define
bg(t )=AHU 0 (4T, )= (g (1) (1))
where _
Ej(t):l if there exists k,‘ lﬁkﬁxj such that 63. (k)=t
Qj(t):O otherwvise. A

A schedule 6 is called an admissible schedule if, for

j:].’z,oo’L

S (k)=t = bé(t)2T
5 () 3 bo(t)2 Ty
for all branches dP into nj, and for all k, 1;<_k$xj.

A schedule & is scquential if for no nodes N, nj, witlh

nigénj do we have
6i(k)_<_ 6J.(r)< éi(k)+'?.'i

for ‘151isxi, lérSXJ.

These definitions are to be interpreted as follows:
éi(k):t means that node ng begins its k-th initiation at time t
under the schedule Q.
xi(t) is the number of initiations of node ng, up to and including
time t, under the schedule ¢.
bg(t) is the number of data words on branch dp at time t. The quant-
ity €j(f).is introducgd for the following reason: All data transmit-

ted to node ng by node n; via the branch (ni,nj) rmust first pasé
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through storage. Then if 1 is a time at which nj does not initiate,
the storage requirement at time t is

6 — T - R\ -

bp(t) = Ap+bpxi(t T%) Mpxj(t).
If n'j initiates at time t, the number of data words in storage at
time t 1is

6 - 1 -T )=v -
bp(t) = AP+L xi(t tb) \P(xj(t) 1)

p
An admissible schedule specifies those node initiation times cor-
responding to a proper execution. Thus a node ny initiates at time
t (Gi(k):t for some 1.<_k$){i) only if each branch dp directed into
n; contains at least TP data words at time 1%, (b;(t)Z:Tp). Finally,
a sequential schedule is a schedule under which no node initiates

at the same time that sowe other node 1s executing.

For any admissible scheduleé>, define

(«'6: max Z bé(t)
t P P
M thus defines the maximum amount of storage required by the

admissible schedule O.

Lemma 3.1
Let 6 be an admissible schedule for a computation graph G.
Then there exists an admissible sequential schedule (aeses.)

4 such that

&6 2 ¢

This Lemma shows that in general a parallel system is more econom-
ical than a sequential system in the sense that it needs fewer

storage locations.
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Let
dk::nuu:{/%/é is an admissible schédule} .
Mis the maximum number of memory locations that a computation

graph G can require.

Corollary 3.2 3
(UJ: ma‘x(&/é/é iS an a.S.S.)

For any admissible schedule define

Ty = {4/t §(6,(k),6, (1)+T,) for 0OLKELX,, i=1,2,..,4}.
T, are those times during which no node of G is executing under the
schedule 6; however, nodes of G may just be initiating or terminat-
ing under 6 at some of the times t€T,.

We then have the following result:

Corollary 3.3

M = mé:x m%x{((%(t)/é is an a.s.s. and té"é} o

Wri{e b for the column vector with p-th component AP, W for the

column vector with»p-th component WP, T for the column vector with

p-th component TP, and, for any admissible schedule & define hé(t)

to be fhe column vector with p-th component bﬁ(t), p=1,2,..,%t.
Define a tX& matrix A with elements

apj:WP if branch dP is directed into n‘,j but nét also out from n..

.:—UP if branch dp is directed out from nj but not also into n..

a .=W -U if branch d is directed out from n. into n..
P P P J

a .=0 othervise,
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Finally, let X be a column vector with i-ih component Xi, i=1,2,..,4.

Theorem 3.4 #

Let G satisfy b 2T-W. Then wis determined by the following
integer linear program:
= IEI - minlef

subject to

where each Yio i=1,2,..4, is an integer.

Theorem 3.4 enables us to determine the maximum amount of storage
required for a given computation graph, provided b > T-W, What if

this is not satisfied? Vie quote from /7/:

"In those cases where this inequality is violated, the program
/of Theorem 3.4/ is inapplicable. Under such contingency one pos-
sible course of action is to simulate all possible admissible
schedules for G until a distribution of data is obtained which
satisfies the above ineqality, and then apply the program /of
Theorem 3.4/ to this data distribution. Then the maximum storage
requirement is either that obtained through the simulation phase,
or that obtained by the program, whichever is the greater, In
general, however, such a scheme would be impractical due to the
potentially large number of possible different simulations in-

volved."

e
.

# If x is a n~dimensional vector, then define |x| = i
1

o
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3.2 Maximum storage requirement - ceneral case

A node n, of a computation graph can initiate only if for
every branch dp directed into n. the number of data words assoc-
iated with this branch is not less than the corresponding threshold
TP..Consequently, the number of data words on this branch aftef the
initiation is not less than TP—WP.

Consider a computation graph G which does not satisfy b2 T-VW,
i.e. there exists at least one branch dp:(ni’nj)’ dpéiG-such that
AP< Tp—WP. Let us assume that G contains only one node terminal to
such a branch. Later we shall show how to extend the results to the
case of more ﬁodes terminal to such branches.

Clearly, the data distribution will satisfy the requirement
b2T-W after the first initiation of nj. In the following we derive
a method for finding the maximum storage required prior to the first
initiation of nj. Then we apply methods of part 3.1 to determine the
maximum storage required after the first initiation of nj.

Given a conmputation graph G modify it as follows:

For the node nj put ‘
all W_.=T_.=0
_ all Ujs:O
Note that the data distribution of the modified graph G' is not
affecied by initiations of nj. In the following parameters of G'

will be primed.

Lemma 3.5

Let & = {éil(k. ), &. (ke ),..,6i (ki.)} be a schedule,

}l 12 2 m m

where {il, igyeey i} = 1C{1,2,..,j-1,j+1,.,£} and
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éil(kil“tils 612“‘12) , 6i2(ki2)+ti2$ 613“‘13)
eeen 6 (kg )T, L6,

i i
m-1 m-1 m=-1 m m

t LR A A ]

Then 6 is admissible for G' irff it is admissible for Gj
morcover _G,(t) (1) for Oftféi (ki ).
m n
PROOT': By definition
x, (£)=0 iff t 26, (1)
x5 (b)=k iff © 26 (k) and tF6; (k+l)

Therefore xi(t):xi(t) for i€1 and OStSéi (ki )

‘ : m m
_ - : . <4 & )

and xi(t)_xi(t)-o - for %ﬁ{I and 0__t_.éim(kim).

Also €, (£)=€ (1) for i€l and 0£tZ26, (k, ),

. ’ m m

) _ - : ; <
and gi(t)‘si(t)‘o for %ﬁ{I and (3$1n_6im(kan).

e axamine he ) i x T Vv - : _
Let us examine bp(t)_Ap+prr(t p) hp(xs(t) Es(t)) for dP_(nr,nS).
There are four different cases depending on whether r and s are
elements of I or not.

(i) rel, se€l

Here u_=u', V_=W!
P P P P
and b8 (t)=a_+U x (=T )% (x (t)-E, (t)) BE(t)
(ii) rel, sé¢I.
Here . UP—LL’ X (t)_x (t)=0, Es(t):Eé(t):O
, C bO(t)ea +U A
and P(t)_AP+Ler(t—tb)_bp(t)
(iii) r¢I, sel
Here Wp:Wﬁ, X (t) '(t) 0
4 A W - 6
and bp(t)-up MP(A (t -&, (t))= b (t)

(iv) r¢iI, s¢l |
llere X, (t)= X '(t)=x (t '(t):és(t):gé(t):o

. ‘ 6- —A —pd
and bp(t)_Ap—bP(t)



We have thus established that

6 0 . <4< '
p_G(t) = QG,(t) for o_t_ci (k. ).

Moreover, for all dp:(nr’ns)’ s€1 we have Té:TP and

Gy
b(4) 27

iff bo(t) 2 T! for 0£1t<€6. (k. ).
P P lm 1m

This proves that 6 is admissible for G iff it is admissible for G'.

Lemma 3.0

The maximum storage S;

hax required for the modified graph G'

is the same as the maximum storage S required for G prior
. )

aax
to the first initiation 6,(1) of ny.

PROOF: By Corollary 3.2 we need only consider sequential schedules.

The proof will consists of 3 parts,

(i) Every sequential sChedule(S:{é. (k. ), 6. (k ),..,6 (k ),.:}
i i iV
1 1 2 2 m

can be divided into time intervals

0,6. (k. b. (k \,6. (k. )),es, )(, (k. 1)y e
< 1 < 1 1 < m m Yo+l T+l ’
From the definition of Eé(t) and £i(t) it follows that
S(t)< s(0) if +<6. (k. )
_ 1 0h
and S(t)< s(d. (k. )) it 4. (k. )<t<L4. (k. )
_ Yoo *n lm i Tm+l  tm+l
wvhere . S(t):'gé(tﬂ
Thus to get S~ it is sufficient to examine S(t) at t=0, 61 (k. ),

1 )
1 1’
éi (ki ), di (ki )y+e3 in other words it is sufficient to examine the

2 2 3 3
integer sequence S where S =S(é. (k. ).
m P iocod
(ii) Here we shall show that S' - is infinite iff S ~is infinite.
. max max

Let N be an arbitrary integer. If S&wx is infinite, then there exists
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a schedule Gland integer M' such that
s
Take the initial part of & up to 6 (k. ) and omit all initiations

e Iae
of nj. Then by Lemma 3.5 we get an admissible schedule 6 for G which-

requires the sume storage as 6.
Thus for some M<M' we have

6 &

S bM'

In the same fashion we can show that S! is infinite if S is
max max

> N.

infinite.
(iii) Now suppose that S) .y is finite. Then sequences S are bound-
ed by S&ax and there exists such a schedule & and integer M' that

1
ﬁ. =5' . + Take the initial part of & up to GEM'(kiM') and omit all

the initiations of nj. This by Lemma 3.5 will give us an a.s.s. for
G with the same storage requirements as G . Thus

Sl

max SM ! “SM -

ax

On the other hand, since qux is finite, there exists a schedule @

L&

and integer N such that

¢ o
N "max
The initial part of this schedule up to Q. (k. ) is an a.s.s. 9 for
: iy, 1\T

G' with the same storage requirements as Q- This gives

S —s? P

max N < max

From this and S' < S we obtain
max= ~max

RS}

max- maxX

Corollary 3.7

Let all branches of G satisfy APZ;TP~WP with a possible ex-
ception of branch (“i’nj)' Modify G as follows:

bl o o — — _—
Put all hrj“Trj"O’ all UjS_O



PROOTI':

PROOT:

37
Then the maximum storage Sm%‘ required for G prior to the
first initiation of nj is determined by the following integer
linear program:
—IThH1 -1 ‘,l
S nax=12I ninfA'y]
subject to

k#j

where A', T', W', X' are parameters of the modified graph G',
Proof follows from Lemma 3.6 and Theorem 3.4,

Lemma 3.8
Let G be a computation graph whose all branches satisfy

ur
had 1]

A 2T
Y P

Let Kj> 0. Then gng(t), where ¢ is defined below, for

wilh a possible exception of a branch (ni,nj,).

some a.s.s. G and some t €Ty, tz_éj(l) iff there exist such

integers y,, i=1,2,..,£ which satisfy

(1) . 0y X IA
1€ v.< XK.
Yi=%
(11) g=b-Ay 2 I-¥

Analogous to that of Theorem 2.4 of /7/.

Corollary 3.9

Let G be o computation graph whose all branches satisfy
P>‘TP-M) with a possible exceptltion of a branch (ni,nj).
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i ' . 1 :
Let Aj><). Then the maximum storage S ux required after the

W2

first initiation of nj is determined by the following integer
linecar prograin:

Jd .

| Smax_lhl-mlnlel

subject to

Osyké'\k k#J

1€y. €X.

=Y
Ay€b - T + )

wvliere each Yk is integer.

Theorem 3.10

Let G be a computation graph whose all branches satisfy

A E;T)—Wb with a possible exception of a branch (ni,nj).

P
Let Xj> O. Then the maximum storage required is
. 1
v = max(s ,S )
max’ max

Sl

PROOF: 1. a) Suppose S 2
max ma X

There exists an a.s.s. for the modified graph G' which requires Sﬁéx

of storage. By Lemma 3.5 this schedule is admissible also for G and

therefore is an initial part of some a.s.s. for G. Thus
M2 >s]
max max

~and - émeax(S gl )

]
max? Tmax

1 «
b) Now suppose S~ >385
maX = "max

| Wl 0
- , . ( — y
By Corollary 3.9 bmax—‘hl lay |
wvhere ‘ IAxolz min|Ay | ‘
subject to 0L ykg l\ik k#£j

1<y . £ X,
YiT %

Ay € b-T+i
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1

Then by Lemma 3.8 Smalegé(t)l for some a.s.s., and

(wzs? 55
max=" max

. 1
. > S
i.¢e é& ma((S‘Qh bmax)

IT. Let ¢ be an arbitrary schedule for G. Then

max
<1 :
and | |pé(t)l<s for +26,(1)

|pe(t)l <8 for 1<6,(1)

. e 1
Thus Foad émtm(smax’smax)

1

max)’ qee.d.

’l 2 S S e < y . .V = [E», S S

The results of I, and II. give M mmt(bmax,
Theorem 3,10 and Corollaries 3.7 and 3.9 thus provide means

for finding the maximum storage for graphs where one and only one node

is terminal to a branch which does not satisfy Apg T‘-Wn.

Py

In case there are r such nodes, we take a subset of these

nodes {Il , i ,..,n } where 0€s<r. For all branches directed
‘into the nodeb of the subset we put W=T=0, and for all branches

directed out from the nodes of .the subset we put U=0O. Then to this
modified graph we apply the following integer linear program:

—lbl-mln]Axl

» max
subject to
0Ly, <X, k,.l.nil,ni2, coamy
s
léy X
1 1
1$y < X
12 2
1y, £ Xy
: s . s r
Since there arve 2”7 such subsets we have 2° linear programs.

. . . . . T . .
The maxinum required storage is the maximum of the 27 partial maximum

storage rcquircments.



CHAPTER 4

CONCLUSIONS

The Karp-iMiller algorithm for testing termination properties
of computation graphs is based on the termination properties of
loops. It is, therefore, desirable to have means for testing loops.

A quantity related to fhe number of data words in a 109p is

introduced, which decreases for g <1, increases for g>1l, and remains

constant for g=1, in the course of computation. This concept makes
it possible to derive a simple sufficient condition (Theorem 2.14)
for self-termination of loops with‘gzl, and to give a shorter and
intuitively more satisfying proof (Corollary 2.12) of necessary
condition of Theorem 2.6 due to Karp and Miller. In the special
case that W=U, the necessary and sufficient condition is given
(Theorem 2.10). This condition has a simple form due to the fact
that data propagation has local character in this case. Since this
is invalid in the general case, one probably cannot hope for a
simple form of the general necessary and sufficient condition.

The Karp-Miller algorithm is not well suitedvfor computation
graphs with many loops. Therefore, in part 2.3 of Chapter 2 a direct
procedure for testing termination properties of strongly connected
graphs is derived. The procedure does not require insﬁection of
every loop as in the Karp-Miller algorithm. However, it also uses
the itcration scheme of Theorem 2.9, which for large graphs may be
too lengthy.

Reiter in /7/ gives a lineaf integer program for determining

the maximum amount of storage required in the special case that

40
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Qﬁzg;ﬁ. Part 3.2 of chapter 3 exteﬁds his method tp cover the general
cusé. The number of lincar programs required in our method increases
as 2? where i is the number of nodes terminal to brancles wvhich do
not satisfly APZ:TP-WP, but it appears to be more efficient than
simulation of all possible schedules /7/, especially for highly

parallel computations.,
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