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ABSTRACT 

This paper deals with a grajjh-theoret i c model for p a r a l l e l 

computations as formulated-by Karp and M i l l e r . A necessary condition 

and a s u f f i c i e n t condition for self-termination of loops with unit 

loop gain are presented. For the special case that W=U the necessary 

and s u f f i c i e n t condition i s derived. A direct procedure for testing 

termination properties of strongly connected graphs i s presented. 

A method due to Reiter, for determining the rua ximura storage 

required for a computation graph, i s extended to cover the general 

case. 
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CHAPTER 1 
INTRODUCTION 

As s i g n a l propagation speeds represent a serious b a r r i e r 
to i n c r e a s i n g the speed of s t r i c t l y s equential computers more 
a t t e n t i o n has been paid i n recent years to'the use of the p a r a l l e l ­
ism i n t r i n s i c to most computational algorithms. A number of de­
signs have appeared which u t i l i z e a number of processors which may 
simultaneously execute several steps of the computation ( / l / - / 5 / ) , 

rather than overlapping of subfunctions i n sequential processing. 
In general, values to be used.in a computation step are the 

r e s u l t s of previous computation steps. This e s t a b l i s h e s c e r t a i n 
precedence c o n s t r a i n t s upon the computation steps. 

A model of such a system, s a t i s f y i n g a p a r t i c u l a r c l a s s of 
precedence c o n s t r a i n t s , lias been formulated by Karp and M i l l e r /6/. 

This t h e s i s studies some problems a r i s i n g i n connection with 
t h i s model, i n p a r t i c u l a r t ermination p r o p e r t i e s (Chapter 2) and 
storage requirements (Chapter 3). 

In t h i s chapter we present the model and the r e s u l t s of pre­
vious research, and compare i t with other approaches to the p a r a l l e l 
processing. 

1.1 The K a r p - M i l l e r Model 
The model represents the sequencing of a p a r a l l e l computation 

by a f i n i t e d i r e c t e d graph. Each node of the graph corresponds to 
an operation i n the computation (or to a processor assigned to per­
form that o p e r a t i o n ) . Each branch represents a f i r s t - i n f i r s t - o u t 
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q u e u e o f d a t a d i r e c t e d f r o m o n e p r o c e s s o r t o a n o t h e r . To d e s c r i b e 

d a t a t r a n s f o r m a t i o n b y p r o c e s s o r s , w i t h e a c h n o d e i s a s s o c i a t e d a 

s i n g l e - v a l u e d f u n c t i o n d e t e r m i n i n g t h e d e p e n d e n c e o f o u t p u t s o n 

i n p u t s . T h e e l i g i b i l i t y f o r i n i t i a t i o n o f a n o p e r a t i o n i s d e t e r m i n ­

e d b y t h e l e n g t h s o f t h e q u e u e s o n b r a n c h e s d i r e c t e d i n t o i t s 

a s s o c i a t e d n o d e . 

T h u s a c o m p u t a t i o n i s r e p r e s e n t e d b y a d i r e c t e d g r a p h G 

c a l l e d a c o m p u t a t i o n g r a p h w h i c h i s g i v e n b y : 

( i ) a s e t o f n o d e s n ^ n ^ , . . 

( i i ) a s e t o f b r a n c h e s d ^ , . . d ^ , w h e r e a n y g i v e n b r a n c h d ^ 

i s d i r e c t e d f r o m a s p e c i f i e d n o d e n ^ t o a s p e c i f i e d 

n o d e n • , 

( i i i ) f o u r n o n n e g a t i v e i n t e g e r s A ,U ,¥ a n d T , w h e r e 
• ° ° P P P P 

T > ¥ , a s s o c i a t e d w i t h e a c h b r a n c h d . 
P P P 

H e r e , A^ g i v e s t h e i n i t i a l n u m b e r o f d a t a w o r d s i n t h e 

f i r s t - i n f i r s t - o u t q u e u e a s s o c i a t e d w i t h d ; U g i v e s t h e n u m b e r o f 
1 P P 

w o r d s a d d e d t o t h e q u e u e w h e n e v e r t h e o p e r a t i o n Ch a s s o c i a t e d w i t h 

n ^ t e r m i n a t e s ; V<T g i v e s t h e n u m b e r o f w o r d s remove;: f r o m t h e q u e u e 

w h e n e v e r t h e o p e r a t i o n 0- i s i n i t i a t e d ; a n d T i s a t h r e s h o l d g i v -
. J P 

i n g t h e m i n i m u m q u e u e l e n g t l i o f d ^ w h i c h p e r m i t s t h e i n i t i a t i o n o f 
0-. U p o n i n i t i a t i o n o f 0. o n l y t h e f i r s t W o f t h e T o p e r a n d s f o r 

J J P P 1 

C h a r e r e m o v e d f r o m t h e q u e u e . 

T h e o p e r a t i o n 0. a s s o c i a t e d w i t h a g i v e n n o d e n . i s e l i g i b l e 
J J 

f o r i n i t i a t i o n i f a n d o n l y i f , f o r e a c h b r a n c h d d i r e c t e d i n t o n . , 
P J 

t h e n u m b e r o f w o r d s i n t h e q u e u e a s s o c i a t e d w i t h d i s g r e a t e r t h a n 

o r e q u a l t o T^. A f t e r C h b e c o m e s e l i g i b l e f o r i n i t i a t i o n , ¥ w o r d s 

a r e r e m o v e d f r o m e a c h b r a n c h d d i r e c t e d i n t o n . . T h e o p e r a t i o n 0. 
P J J 
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i s then performed. Vhen Ch terminates, words are placed on each 

branch d directed out from n.. The times required to perform the 

steps mentioned above are l e f t unspecified by the o r i g i n a l model as 

presented in /6/. 

These constraints on i n i t i a t i o n lead to the following defin­

i t i o n s of the possible sequences of i n i t i a t i o n s associated with a 

given computation graph G. 

Let E be a sequence of nonempty sets ,S,j > • . >Ŝ r, . . , such 

that each set Ŝ T is a subset o f £ l , 2 , . . , whore X is the number of 

nodes in G. 

Let x(j,0) - 0, and, for N>0, l e t x(j,N) denote the number 

of sets S , l<m<N, of which i i s an element, 
i n ' ' 0 

The sequence E is an execution of G i f and only i f for a l l N, 

the following conditions hold: 

(i ) i f j C S v,. and G has a branch d directed from n. to 
J N+l p l 

n., then A + U x(i,N) - W x(j,N)> T : 
( i i ) i f E i s f i n i t e and of length R, then for each j there 

exists a node n. and a branch d directed from n. to l p l 
n. such that A + U x(i,R) - W x(j,R)<T . j p p v ' ' p x J ' ' p 

An execution E of G is calle d a proper execution i f the follow­

ing implication holds: 

( i i i ) i f , for a l l n. and for every branch d directed from 
l J p n. to n., A + U x(i,N) - W x(j,N)>T , then j € S„ l j p p ' p J ' p' J li 

for some R > N. 

The sequence E may be interpreted as giving a possible 

temporal sequence of i n i t i a t i o n s of operations throughout the per­

formance of the p a r a l l e l computation specified by G; the occurence 
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of S.. denotes the simultaneous i n i t i a t i o n of 0. for a l l }€. S,-. 

Condition ( i ) states that in order for node n_. to i n i t i a t e 
J 

for the x(j,N + l ) - t h time, the queue lengths on i t s input branches 

must be greater than, or equal, to the respective branch thresholds. 

Condition ( i i ) defines the circumstance under which an execution 

terminates, i . e . under which the computation defined by G halts. 

This computation terminates when every node of G is unable to 

i n i t i a t e . Condition ( i i i ) requires that a node, i f able to i n i t i a t e , 

a c t u a lly w i l l do so after some f i n i t e number of i n i t i a t i o n s of other 

nodes. 

The following example i l l u s t r a t e s these ideas: 

Example 1.1 

Consider the Laguerre polynomials defined by the recurrence 

r e l a t i o n 
L ^-.(x) = (2n + 1 - x)L (x) - n 2L ,(x) n+l ' n v ' n-1 v ' 

with i n i t i a l conditions 

L Q(x) - 1 

L x(x) = 1 - x 

We want to compute the values of L n(x) for n = 2,3,..,N and for a 

given x. 

A computation graph for this calculation is in F i g . l . For 

each branch the intermediate result is shown. Branch c o e f f i c i e n t s 

are assumed to be A=0, U=Vi:=T=l unless otherwise shown. Brandies 

(n^,n^)' ( i . e . the branch directed from n^ to n^ ) and (n2>n 9) serve 

as counters; the computation is terminated by the depletion of queues 

associated with these branches. Node n^ produces 2n and n", and 

places them on (n,,n~) and (n, ,n-j), respectively. Node n„ takes 
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A=N-1 

U=0 

( 2 n+l-x) 

2 n 

n 

n. 

A=N-
U=0 

L n - l ( x > 

Computation graph for Laguerre polynomials 

F i g . 1 
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( l - x ) from the branch ^ 2 ^ 2 ) and adds i t to the other input 2n; the 
r e s u l t (2n+l-x) i s placed on ( i ^ j n ^ ) . Node n^ forms the product of 
(2n+l-x) and L n ( x ) and places the r e s u l t on (n^,n^). Node n^ m u l t i -

2 

p l i e s L n_-^(x) by n and places the r e s u l t on (n^,n_). F i n a l l y , n^ 
produces the d e s i r e d polynomials L ^ x ) , L ^ ( x ) , . . , L^,(x) and places 
them on (n^,n^) and (n^,n^). The i n i t i a l data queue on (n^,n^) i s 
L Q ( X ) = 1 , L ^ ( X ) = 1 - X and on (n^,n 4) i t i s L^(x)=l-x. 

1.2 Research connected with p a r a l l e l computation models 
Karp and M i l l e r fbf show that f o r every proper execution the 

sequence of data words occuring on any branch of G i s always the 
same thus ensuring the same computational r e s u l t . This property i s 
r e f e r r e d to as the determinaoy of a computation graph. A l s o , they 
give an algorithm to determine whether a computation terminates, 
and a procedure f o r f i n d i n g the number of performances of each 
operation i n G. F i n a l l y , they give necessary and s u f f i c i e n t con­
d i t i o n s f o r the lengths of data queues to remain bounded. 

R e i t e r i n h i s Ph.D. t h e s i s fjf addresses himself to the 
problems of storage, scheduling, and optimum assignment of operat­
ions to processing u n i t s . He gives an integer l i n e a r program f o r the 
determination of the maximum storage required by a computation graph 
G. He introduces a concept of an admissible schedule d e f i n i n g v a l i d 
node i n i t i a t i o n times and c h a r a c t e r i z e s the c l a s s of a l l admissible 
schedules i n the case W =T =1, U -0 or 1. He f u r t h e r shows that i n 

P P P 
t h i s case i t i s p o s s i b l e to f i n d a p e r i o d i c admissible schedule 
which achieves the maximum computation rate (also see / 8 / ) . He also 
defines the cost of an assignment of node functions to processors 
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and gives a method f o r determining f e a s i b l e s o l u t i o n s when the maxi­
mum comjmtation rate has a lower bound. F i n a l l y , he extends the 
model to incorporate a r e s t r i c t e d form of data dependency without 
l o s i n g i t s detcrminacy. 

A d i f f e r e n t approach to the g r a p h i c a l r e p r e s e n t a t i o n of a 
computation i s taken by Martin / 9 / . He allows two types of node i n ­
put c o n t r o l . In the case of conjunctive input c o n t r o l a node can 
i n i t i a t e only i f each branch d i r e c t e d i n t o the node contains at 
l e a s t one data word. In the case of d i s j u n c t i v e input c o n t r o l a 
node can i n i t i a t e only i f at least one branch directed into the node 
contains at l e a s t one data word. S i m i l a r l y , conjunctive output 
c o n t r o l places one word on each branch d i r e c t e d out from the node 
and d i s j u n c t i v e output c o n t r o l places one word on a branch d i r e c t e d 
out from the node according to an a p r i o r i p r o b a b i l i t y . The l a t t e r 
represents a c o n d i t i o n a l t r a n s f e r which i s d e t e r m i n i s t i c every time 
i t occurs but over many p o s s i b l e data sets may be modelled p r o b a b i l ­
i s t i c a l l y . 

Note that the conjunctive input c o n t r o l and conjunctive out­
put c o n t r o l correspond to the T=vr=l case and U=l case i n the Karp 
- M i l l e r model, r e s p e c t i v e l y . Also note, that because of c o n d i t i o n a l 
t r a n s f e r s , t h i s model i s not determinate. 

In h i s work Martin studies the assignment of node comput­
ations to processors and t r i e s to minimize the average computation 
time. Further research of t h i s model can be found i n /lO/, where an 
approximative method f o r c a l c u l a t i n g the average computation time ± s 

given, and /ll/, where procedures.are Riven.to determine a lower and an 
upper bound on the number of processors required f o r maximum 



8 

p a r a l l e l i s m . 

An a p p l i c a t i o n o f r e s u l t s o f t h e s e s t u d i e s t o a s s e m b l y - l i n e 

b a l a n c i n g p r o b l e m s i s g i v e n i n /12/. 



CHAPTER 2 

TERMINATION PROPERTIES OF COMPUTATION GRAPHS 

Pa r t 2.1 of t h i s chapter i s devoted to a p r e s e n t a t i o n of the 

K a r p - M i l l e r a l g o r i t h m . The a l g o r i t h m i s used to determine whether 

the computation s p e c i f i e d by a given computation graph terminates, 

and to f i n d the number of performances of each o p e r a t i o n i n case the 

computation terminates. 

Sev e r a l theorems are given i n p a r t s 2.2 and 2.3 to improve 

the e f f i c i e n c y of the al g o r i t h m . 

2.1 The K a r p - M i l l e r A l g o r i t h m 

Theorems and Lemmas of s e c t i o n 2.1 are proved i n /6/. Since the 

number of performances of an ope r a t i o n 0 i s independent of the execu­

t i o n considered only i f t h i s e x c u t i o n i s proper, Karp and M i l l e r 

r e s t r i c t t h e i r a t t e n t i o n to proper executions. 

A node n_. of a computation graph i s s a i d to terminate i f and 

only i f ( i n the f o l l o w i n g i f f ) j occurs i n only a f i n i t e number of 

the se t s of a proper execution of G. N a t u r a l l y , t h i s number i s 

the same f o r a l l proper executions of G. 

To f u r t h e r study the te r m i n a t i o n of p r o p e r t i e s of computation 

graphs we need to introduce a few concepts from graph theory. 

A d i r e c t e d graph i s c a l l e d s t r o n g l y connected i f f given any 

p a i r of nodes n. and n. there e x i s t s a d i r e c t e d path from n. to n.. A 

s p e c i a l case of a s t r o n g l y connected graph i s the t r i v i a l graph which 

has only one node and no branches. 

For any d i r e c t e d graph there e x i s t s a unique p a r t i t i o n of 

9 
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i t s nodes i n t o equivalence classes as f o l l o w s : 
Two nodes n. and n. are i n the same clas s i f there e x i s t s a 

d i r e c t e d path from n^ to n^ , and a d i r e c t e d path from n^ to n^. 
A subgraph c o n s i s t i n g of the nodes of an equivalence c l a s s 

and the branches of the o r i g i n a l graph connecting these nodes i s 
then a s t r o n g l y connected graph. The subgraphs corresponding to the 
node equivalence classes are maximal s t r o n g l y connected subgraphs 
of the o r i g i n a l graph and are c a l l e d the strong components of the 
graph. These strong components play a c r u c i a l r o l e i n the Karp-
M i l l e r algorithm. 

Lemma 2.I 
Let G' be a s t r o n g l y connected subgraph of a computation 
graph G.'Then e i t h e r every node of G' terminates or nonedoes. 

We say that 0' terminates i f every node of G' terminates. 
Divide a l l the nodes of a computation graph G in t o two classes 

according to whether they terminate or not. Then by Lemma 2.1 the 
set S of terminating nodes i s a union of sets of nodes of some 
strong components of G. 

The s t r o n g l y connected subgraph G' which would terminate i f 
i t were i s o l a t e d from the r e s t of G i s c a l l e d s e l f - t e r m i n a t i n g . 

Let us examine when a strong component i s s e l f - t e r m i n a t i n g . 

Lemma 2.2 
Let d^=(n^,iij) be a branch of a computation graph. Then n^ 
terminates i f n. terminates. 

l 
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r s 
This loads to the following concepts: Let G and G' -be 

strong components of G. Then define Gr >_ GS i f either Gr. = GS or there exist 
r s such nodes n - 6 G and n.€ G that there is a directed path from n. 

1 j 1 

to n . i n G. 
J 

Theorem 2.3 
s 

A strong component G of a computation graph G terminates 
r r 

i f f there exists G such that G i s self-terminating and 

G r> G s. 

s r Thus G terminates i f f i t is self-terminating or some G is s e l f -

terminating and there is a directed path from some n . 6 G to some 

n - £ G b. Therefore to determine the set S we examine strong com-
r s r 

ponents for self-termination in such order that i f G >. G , then G 

is examined f i r s t . 

Now the problem is how to determine 'whether a strongly con­

nected subgraph G' is self-terminating. For this purpose Karp and 

M i l l e r use properties of the 1OO|JS contained in G'. 

A computation graph L is called a loop i f i t consists of 

d i s t i n c t nodes , n 0 , . , " a n d branches d^,d2,..,d£ such that d^ is 

directed from to n^_ + 1 > k=l, 2, . . , / , - l , and d^ is directed from n^ 

to n^ . 

Here we note that any strongly connected subgraph G' except 

the t r i v i a l graph contains at least one loop. 

Theorem 2.4 

A strongly connected subgraph G1 is self-terminating i f f G' 
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contains a s e l f - t e r m i n a t i n g loop. 

Given t h i s theorem the only problem i s how to e s t a b l i s h that a 
p a r t i c u l a r loop i s s e l f - t e r m i n a t i n g . 

Let L be a loop with branches d, ,d,,, . . ,d«. The product 
it U . 

g= TT rr^ i s c a l l e d the gain of the loop. There are 3 cases: g ^ l , 
i = l i 

g=l, and g >1. 
Loops with g < 1 

Theorem 2.5 

Any loop L f o r which g < l i s s e l f - t e r m i n a t i n g . 

Loops w i t l i g=I 

Theorem 2.6. 

Let r~ 

P = 

1 1 U ' " l 
v i 

u l 
h 

V l U l h u i u l 
h V i h W l h w i 

, V l h h U2 u i 
Y ' l ''2 

i 
h-l h 

1 ' 

T.I "1 W2 h 
j 

I 

V , ' l V 
h-l 
h-l 

I ' 

1 V i 

i . 

I 
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*1 

/33 

ft 

A k - i " T k - i + 1 

where fo l{ = y— k=2 , 3 ,. . 

and 

k-1 

/ 3 i = 
A i - T x + 1 

Then the necessary condition for self-termination of a loop 

with g=l is 

P /3 < 0 

Karp and M i l l e r give a necessary and s u f f i c i e n t condition for s e l f -

termination in the following special case: 

Theorem 2.7 

If , for l£k^X,, Vi'. = U , =1, then the loop L i s self-terminating 

i f f ( i . e . Z A < Z (T,-l) ). 
k=l " k=l k k=l k 

In case that Theorems 2.6 -and 2.7 cannot be applied Karp and M i l l e r 

derive an upper bound on the numbers of x^erformances of nodes of a 

self-terminating loop. 

Theorem 2.8 

Let L be a self-terminating loop with g=l. Let X* be a positive 

integer solution of the system 

OC^ = a 
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U 1 
OC = - i a 

2 M1
 a 

U l U 2 

u u 
ry, - _ —£ 

U 
a 

whore a i s an a r b i t r a r y parameter. Let 

X = 

x n 

X, 

where X^ i s the number of performances of node n^, k=l,2,.., 
Then at l e a s t one component of X i s l e s s than the correspond 
ing component of X*. 

Loops with g >1 
Theorem 2.6 i s v a l i d also f o r t h i s case. 
I f L i s s e l f - t e r m i n a t i n g then we get the f o l l o w i n g upper 

bound: 
X < y i - P fi 1-g '-

Having obtained an upper bound f o r X we can t e s t s e l f - t e r m i n a t i o n 
of a loop by applying a procedure given i n the f o l l o w i n g theorem. 
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Theorem 2.9 # 
For a l l nodes n.€S the f o l l o w i n g i t e r a t i o n scheme converges 

J 
i n a f i n i t e number of steps to X; 

*(0)<;>=° r _ („) , 
Ik -T +1+U xKa,{iT x ^ n + 1 ^ ( j ) = max J x ^ ( j ) , 

(i,p)6Z.j, i € S \ % 

H e r e ^ j i s the set of ordered p a i r s ( i , p ) such that d^ i s a 
brancli from node n. to node n.. 

The r e s u l t s given so f a r may be organized i n t o an algorithm f o r 
determining which nodes of a computation graph G terminate and, f o r 
the terminating nodes n.. , computing the number of performances x ( j ) . 
This algorithm may be o u t l i n e d /6/ as f o l l o w s : 

Step 1. From among the strong components of the computation graph 
being considered ( i n i t i a l l y t h i s graph i s G), s e l e c t one which i s 
not covered by any other subgraph. C a l l i t G'. 
Step 2. By applying Steps 2A,...,2D given below, t e s t whether G' i s 
s e l f - t e r m i n a t i n g and, when i t i s , determine x ( j ) f o r each n.£G'. 
Step 3. Form a new computation graph as f o l l o w s : I f G' i s not s e l f -
t e r m i n a t i n g , remove G' and a l l branches i n c i d e n t with nodes of G'. 
I f G' i s s e l f - t e r m i n a t i n g , replace each branch d from n^G' to 
n^G' by an "equivalent" branch d^, from n^ to n^ , having U^,=0, 
A ,=A +U x ( i ) , T ,=T , and W , =V,T . Then remove G' . P P p p p p p 
Step 4. I f the new computation graph i s nonempty, return to Step 1. 
Otherwise the a n a l y s i s of termination i s complete. 

4 The symbol fx! denotes " l e a s t integer greater than or equal to x." 
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The d e t a i l s of Step 2 are now described. 
Step 2k. I f G' contains a branch d^ with U =0, go to Step 2D. I f 
not, determine whether G' contains a loop with g < l . This i s equi­
valent to determining whether there i s a loop L sucli that 

Z log (U / V ) < 0 . 
d € L P P 
P 

This determination can be c a r r i e d out by a shortest-route algorithm 
given i n /13/. Enumeration of loops i s not required i n t h i s pro­
cedure. I f a loop with g < l e x i s t s , go to Step 2D; otherwise, go 
to Step 2E. 

Step 2B. Every loop of G' has .g > 1. Determine whether there i s a 
loop not p r e v i o u s l y considered such that 0> Pyg. I f no such loop 
e x i s t s , G' i s not s e l f - t e r m i n a t i n g ; r e t u r n to Step 3. I f such a loop 
L i s found, determine upper bounds on the q u a n t i t i e s x^(k) by the 
methods given above. These bounds hold, of course, only i f L i s 
s e l f - t e r m i n a t i n g . 
Step 2C. Continue applying the i t e r a t i o n scheme of Theorem 2.9, tak­
ing S to be set of nodes of G', u n t i l e i t h e r 
(a) i t terminates, e s t a b l i s h i n g that G' i s s e l f - t e r m i n a t i n g , and 
g i v i n g x ( j ) f o r each n.£G', or 

J 

(b) f o r some n and some k, x^ n^(k) exceeds the upper bound on x ^ ( k ) , 
e s t a b l i s h i n g that L i s not s e l f - t e r m i n a t i n g . Return to Step 2B. 
Step 2D. G' i s s e l f - t e r m i n a t i n g . Apply the i t e r a t i o n scheme of 
Theorem 2.9, tak i n g S to be the set of nodes of G', to obtain x ( j ) 
f o r each n.£G'.. Return to Step 3. 
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2.2 Some necessary and s u f f i c i e n t conditions for .self-termination  

of 1o o ps 

As shown above, the K a r p - M i l l e r algorithm is.based on termin­

ation properties of loops. Consequently i t s e f f i c i e n c y depends main­

l y on the means available for testing self-termination of loops. In 

the following we s h a l l derive some theorems testing these proper­

t i e s . 

Theorem 2.10 ' 

If, for l^k<L,£, p— = 1, then the loop L i s self-terminating 
b k 

I 
Z 1X1 £ o 
k=l 

PROOF; By Theorem 6 of /6/ the necessary and s u f f i c i e n t condition 

for self-termination of a loop is the existence of a nonnegative 

integer solution of the following system of i n e q u a l i t i e s : 

, , v A^-Tjt+l+lixU) 
x( l ) > g 

A1r-T^+1+U,,x(k) 
x ( k + l ) > — — \ - . 'for k=l,2 , . . j e-l 

k 

This system reduces to 

x(l)> /3£+x(i) 
x(k+l)>/3 k+x(k) for k-1, 2 , . . , i - l 

Since a l l x's are integers, we have 
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x(k+l) > f/3j+x(k) for k=l,2 f.. ,1-1 

By summing l e f t and right-hand sides of the above i n e q u a l i t i e s , 

respectively, we get the necessary condition 

To prove that i t i s also a s u f f i c i e n t condition we -ban.-, show that 

i f i t i s s a t i s f i e d the system 

x(l)=C 

x(k+l)=x(k)+ f / 3 k ] k=l , 2 , . . , 1 - 1 

where C i s a s u f f i c i e n t l y large integer i s a nonnegative integer 

solution of the above i n e q u a l i t i e s . 

Consider the following examples 

Example 2 . 1 A - 0 

U=l 

\V=T=2 

A=2 
Here g=l / 2 . The data d i s t r i b u t i o n after each node performes once i s 

A ' = 0 

U=l 

W=T=2 

T=Vf=l 

U=l 

A'=l 

F i g . 2 
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Example 2.2 
A = 0 

A=l 

Here g=2. The data d i s t r i b u t i o n a f t e r each node performs once i s 

A ' = 0 

T=W=1 

A ' = 2 

Example 2.3 

A=l. 

Here g-l. The data d i s t r i b u t i o n a f t e r each node performs once i s 

A ' = 0 

T=Vf=l 

A'=l 

Dependence of tlie amount of data on the loop gain 

Fig.2 
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These examples indicate that (roughly speaking) for g > l the 

"amount of data" increases, for g<1 i t decreases, and for g=l i t 

remains constant. The following theorem gives this fact a precise 

form. 

Theorem 2.11 „ 
I u 

Let L be a loop with gain g - II ^— . Let A. and A^ be the 
i = l i 

i n i t i a l and current number of words on the i - t h branch, 

respectively, for i = l,2,..,j£. Then 
JL I 

i f g < l Z c i A i < 21 c.A^ 
i=l i=l 
L 5L 

i f g=l ' Z c.A. = Z c.A 0 

. , l i • , I l i=l i=l 
t L 

i f g> 1 Z c. A. > Z. c.A 
FA . , I I . , I I 1=1 i=l 

where c^ - 1 

and c. 4 TT T f -* 1 — for i=2,3,..,i. 

PROOF; Suppose that W . words are taken from the j-th branch (j'^;C), 
J 

and L Tj_^ words are placed on the (j+l)-th branch. Taking into account 

that c . , = c . d+i - j u. + 1 

the change i n the sum F c.A. is 
^ . , I l i = l 
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W . 
c. ,U. , - c.V. = c. rr-L- U. , - C.W. = 0 0+1 J+l J J J J+l J J 

Now suppose that Ŵ  words are taken from the j2-th branch and U 

words are placed on the 1-st branch. We have 

C l 

! i ! 2 V i h. 
cz = u 2 u 3 u z = e ŵ  

and the change in the sum 

U 
c i u i - C A = u i - i*x W = V 1 " i> 

i s positive for g > l , negative for g < 1, and zero for g=l. 

As a coro l l a r y we get a necessary condition for self-term­

ination of a loop, which i s ess e n t i a l l y equivalent to Theorem 2.6. 

Corollary 2.12 

A necessary condition for self-termination of a loop with 

g > l and i n i t i a l number of words on the i - t h branch A?, 

i=l,2,.., L i s that 

T c.A°< J" c. (T.-l) 
1=1 1=1 

PROOF: If the loop is self-terminating, then after a f i n i t e number 

of performances we must have 
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A. < T . - l f o r i=l,2,..,1 i - i ' ' ' 
and 

T c.A.< > c.( T . - l ) i i . , I X I i = l x x i = l 

By Theorem 2.11 

I I I 
I c.A°< f c.A. < f c. ( T . - l ) 

. , I l — I l — I l ' i = l A A i = l x x i = l 

Now we s h a l l derive a s u f f i c i e n t c o n d i t i o n f o r loops with g=l 

Lemma 2.13 
Let L be a loop with g=l, and W\=T̂  f o r i = l , 2 , . . , L e t A? 
be the i n i t i a l number of data words on the i - t h branch f o r 
i=l,2,..,£. I f 

Z c.A. < max c .V . 
i = l 1 1 I<j<l J J 

then the loop i s s e l f - t e r m i n a t i n g , 

PROOF: Let k be such number that 

Tli en 
JL 

max c -V . = c, Vf, 

c 
.*—, c, 1 
i = l k 
t— n i ̂  k 

Since 
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I c.A° = I c.A. 

where A. i s the current number of words on the i - t h branch we have l 

X* c X c 
A, < 5" — A. = 7 — A°<W, = T, k c, l c, l k k i=l k i=l k 

Thus the number of words on the k-th branch w i l l never reach the 

threshold and the number of performances of node iij. i s zero. By 

Lemma 2.2 every node of the loop terminates. Hence the theorem. 

Theorem 2.14 

Let L be a loop with g=l. Let A? be the i n i t i a l number of 

data words on the i - t h branch, i = l,2,..,X. A s u f f i c i e n t 

condition for self-termination of L is that 

0 1 

y c.A < y c. (T.-W.) + max c.V . 
i = i 1 1 i i i 1 1 1 i * g j t J J 

PROOF; Suppose that L does not terminate. Then after each node 

performed at least once, 

A i ^ W i , e - A i = ( V V + A i 
where 

A[> 0 for i=l,2,.. 

If we replace A^ and T^ by A| and T̂ =Vr_̂ , respectively, the resulting 

loop L' w i l l have the same termination properties as L, i . e . w i l l 

not terminate. 

. Then by Lemma 2.13 
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2_ c'A! > max c'.W. 
i=l 1 1 l£j*Jt J J 

Since c!=c for i=1.2,*.,£ 

f c.A 0 = f c.A. = ? c. (T.-YT. ) + [ c.A! = £ c. (T.-V. ) + J_ c!A!> 
i T i 1 1 i t i 1 1 1 1 1 i = i 1 1 i = i 1 1 1 i = l 1 x ~ 

T c(T.-W.) + max c'.W. = T c.(T.-W.) + max c .W. 
i t l 1 1 1 l<j<Z J J i = l 1 1 1 l*j£ J J 

which i s a contradiction. 

To i l l u s t r a t e how strong the conditions of Corollary 2.12 and 

Theorem 2.14 are consider the following two simple examples; 

Example 2.4 
n4 

W=T=2 * U=2 

Example 2.5 

W=T=1 

U=l 

Here c^=c-j=l 

c 2=c 4=2 

Ic.A 0 = 2 =Ic.(T.-l) i i *~ l x l 
and the loop terminates 

A=0 

Here c^=c 2=l and 

max c.W.=1 
l<j£2 J J 

7c.A?=l= Zc•(T.-W.)+raax c.W. 
1 1 1 1 1 l<g£2 J J 

and the loop does not terminate 

Termination of loops 
Fig.3 
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2•3 A dire c t method of testing termination properties of strong  

components• 

As noted in /6/, the Karp-Miller algorithm requires the inspec­

t i o n of each loop of a strong component G' when G' is not self-term­

inating. If G' contains many loops a more direc t way i s desirable. 

Consider the shortest-route algorithm given in / l 3 / . It is 

used i n Step 2A of the Karp-Miller algorithm for testing termiation 

properties (see part 2.1). If we use mu l t i p l i c a t i o n and associate 

U A with branch d ,'rather than addition and log(U Ar ), then, in p/ p p ° p' p' ' ' • 
the absence of loops with g < l , the algorithm results in assigning 

a rat i o n a l number to each node of G'. 

On multiplying these numbers by the least common product of 

thei r denominators each node n. w i l l have an integer OC . assigned. 
l ° l ° If d =(n.,n.) i s a branch of a loop L with g=l, then 06. /oi. =\j A . p i ' j 1 o > j ' i p ' p 

If L has g > 1, then for one and only one branch do we haveOc^/<X< 

<U A ; for other branches of L OC./CX.̂ U A • P P' J/ i P P 
Consider now an arbitrary loop L of G' with g=l. If L is s e l f -

terminating then by Theorem 2.8 the number of performances i s for at 

least one node n.€ L less thanOC. . 

J J 
We shall show that the same i s v a l i d for loops with g>l. 

Theorem 2.15 

If L i s a self-terminating loop with g> 1, then at least one 

component of X is less than the corresponding component of X? 

here 

X = 

X, 
X, 

X , 

x*= 

a l 
oc 0 

OC,, 

a 

a ( U 1 A 1 ) 

a(u 1A 1)(u 2A 2)-(fiV ;i-i ) 
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where a i s an ar b i t r a r y parameter and X^ is the number of 

jierf ormances of node n^, i=l,2,..,X. 

PROOF; By Theorem 4 of /6/, X i s the minimum nonnegative solution 

of (E-A)X>/3 , i . e . 

0 

1 

0 

0 

u. 

0 

0 , . 0 

0 

0 

• • • 

u Jt-1 
V l 

0 

x l V 
x 2 ^ 2 

• > • 

• • 

where /3-, = W 1 

and fc. 
A i - 1 - T i - 1 + 1 

V l 
i i — 2 , 3 , . . ,/£ 

Then 

(E-A)X* = 

U. 

0 

0 

0 

0 

0 

0 

0 

0 

u 'l-l 
l - l 

0 

a 

tfl W2 

^1^2 V l 
W l W l 
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(E-A)X* = a 

Now consider the vector X-X*. 

(E-A)(X-X*) = (E-A)X - (E-A)X* > /3 

If no component of X is less than the corresponding component of X*, 

then (X-X*) is a smaller nonnegative integer solution of (E-A)X>/| 

than X, which is a contradiction. 

Theorems 2.15, 2.8, and 2.4 serve as a basis for a procedure 

for testing termination properties of strong components, which may 

be outlined as follows: 

Step 1. Apply the shortest-route algorithm modified as shown above. 

If a loop with g<1 i s found go to Step 2; otherwise continue u n t i l 

each node n. of the strong component is assigned a constant^. . 
l ° l 

Step 2. Apply the i t e r a t i o n scheme of Theorem 2.9 to the nodes of 

the strong component G1 u n t i l either 

a) the scheme terminates, establishing that G' is s e l f -

terminating and giving the number of performances x(j) for each 

n . € G 1 , o r 
3 

b) for some n and some k, x (k) exceeds the upper bound 

C*k on x(k), establishing that G' i s not self-terminating. 

1-g 
0 

0 

0 

^ 0 
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STORAGE REQUIREMENTS 

In the Karp-Miller model each branch d^=(n^,nj) represents 

a queue of data words which may be an output of operation 0^ assoc­

iated with node n^ and which may serve as an input for operation 0j 

associated with node n^. Each data word has to be stored in a memory 

location of a computer performing the computation, and the maximum 

number of memory locations required becomes of int e r e s t . Chapter 3 

i s devoted to th i s problem. 

3•1 Maximum storage requirement - special case 

In this part we present the results of / i f . 

Let us introduce a branch parameter tr > 0: If d =(n..n.),X 
r p p i J p 

i s the fixed time required by node n^ to fetch i t s input data from 

storage, process these data, and place outputs into memory locations 

associated with the queue on branch d . Thus i f n. i n i t i a t e s at time 
p l 

t, i t places U data words upon branch d at time t+tT . 
P P P um Another parameter we introduce is T^=max^TJ^| where the maxim 

is taken over a l l branches d directed out from node n.. 
P i 

A schedule is a set 4-{̂ -̂  ' * * ,(->t} w n e r e each is a funct­

ion 
6. : {l,2,..,X.} -» R 

such that for l < k < r £ X . 
l 
^ ( k K d . U ) 

Here R i s the set of real numbers and X^ i s the number of i n i t i a t i o n s 

28 
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of node n^ for any proper execution of G. If X^=0, i s undefined. 

With each we associate a function 

xi : R-{o,l,2,..,X.} 

x.(t)=0 i f f either X.=0 or X . i l and t < 4 . ( l ) . 1 x 1 l l 
For l < k < X i , x t(t)=k i f f 6 (k) ̂  t< 6 (k+l) 

For X. >1, x.(t)=X. i f f <S-(X.)<t. 
I ' i i i v i 
For every branch d =(n.,n.) define 

P i j 
b d(t)=A +U x.(t-T )-W (x.(t)-E.(t)) 
p P p i p p J J 

where 

£.(t)=l i f there exists k, l ^ k ^ X . such that 6.(k)=t 

£..(t)=0 otherwise. 

A schedule is c a l l e d an admissible schedule i f , for 

j=l,2,..,X 
<S.(k)=t b 6 ( t ) > T j P P 

for a l l branches d into n.. and for a l l k, 1 £ k £ X . . 
P J J 

A schedule <o is sequential i f for no nodes n., n., with 
1 i ' j 

n . . do we have i J 
6.(k)< d.(r)< 6 . (k)+T. 

I J I I 

, f o r l £ k £ X . , l £ r < X . . 
i J 

These d e f i n i t i o n s are to be interpreted as follows: 

<^(k)=t means that node n^ begins i t s k-th i n i t i a t i o n at time t 

under the schedule (J. 

x^(t) is the number of i n i t i a t i o n s of node I K , up to and including 

time t, under the schedule <i. 

b^(t) is the number of data words on branch d^ at time t. The quant­

i t y £.(t) is introduced for the following reason: A l l data transmit-
J 

ted to node n^ by node n^ v i a the branch (n^,n^) must f i r s t pass 
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through storage. Then i f t i s a time at which n. does not i n i t i a t e , 

the storage requirement at time t i s 

b 6 ( t ) = A +U x . ( t - f )-W x . ( t ) . 
P P P i • P P J 

If n^ i n i t i a t e s at time t, the number of data words in storage at 

time t i s 
b 6 ( t ) = A +U x . ( t - r )-V ( x . ( t ) - l ) 
P P P i P P j 

An admissible schedule specifies those node i n i t i a t i o n times cor­

responding to a proper execution. Thus a node n^ i n i t i a t e s at time t (d>.(k)=t for some l<k<X.) only i f each branch d directed into v l v
 I '  J p 

n. contains at least T data words at time t. (b^(t)>T ). F i n a l l y , l p ' p p 
a sequential schedule is a schedule under which no node i n i t i a t e s 

at the same time that some other node is executing. 

For any admissible scheduled, define 

A> = max T b 6 (t) 
C 6 t p P 

jkJ^ thus defines the maximum amount of storage required by the 

admissible schedule 6. 

Lemma 3.1 

Let 6 be an admissible schedule for a computation graph G. 

Then there exists an admissible sequential schedule (a.s.s.) 

6 such that 
^ 6 ' * <^6 

This Lemma shows that in general a p a r a l l e l system i s more econom­

i c a l than a sequential system in the sense that i t needs fewer 

storage locations. 
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Let 
^U/ = max 6 i s &n admissible schedule^ . 

^ i s the maximum number of memory locations that a computation 

graph G can require. 

Corollary 3.2 i_, 

£M = oax( ^/<? is an a.s.s.) 

For any admissible schedule define 
T<* = {t/t£ (6.(10,4. (kJ+'E) for 0 < k £ X . , i = l,2,..,/}. 

are those times during which no node of G is executing under the 

schedule 6 ; however, nodes of G may just be i n i t i a t i n g or terminat­

ing under 6 at some of the times t€ T^. 

We then have the following r e s u l t : 

Corollary 3.3 

(Ms- wax max { ^ ( " t ) / C J is an a.s.s. and t 6 T^} . 
6 t 

Write b. f ° r ^ n e column vector with p-th component A , W for the 

column vector with p-th component W , T for the column vector with 

p-th component T , and, for any admissible schedule <$> define _b^(t) 

to be the column vector with p-th component b ^ ( t ) , p=l,2,..,t. 
Define a tXj£, matrix A with elements 

a .=\V i f branch d i s directed into n. but not also out from n.. 
PJ P P J J 

a . =-U i f brancli d is directed out from n. but not also into n.. 
P J P P J J 

a . =Vr - U i f branch d i s directed out from n. into n.. 
P J P P P J J 

a .=0 otherwise. 
P J 
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F i n a l l y , l e t X be a column vector with i - t h component X^, i=l,2,.., 

Theorem 3.4 # 

Let G s a t i s f y b.>T-W. Then is determined by the following 

integer linear program: 

|b| - minU ^ I 

subject to 
0 <y_< X 

where each y^, i=l,2,..£, i s an integer. 

Theorem 3.4 enables us to determine the maximum amount of storage 

required for a given computation graph, provided b>T_-W. What i f 

thi s is not sa t i s f i e d ? We quote from /l/: 

"In those cases where this inequality is violated, the program 
/of Theorem 3.4/ i s inapplicable. Under such contingency one pos­
s i b l e course of action i s to simulate a l l possible admissible 
schedules for G u n t i l a d i s t r i b u t i o n of data i s obtained which 
s a t i s f i e s the above i n e q a l i t y , and then apply the program /of 
Theorem 3.4/ to this data d i s t r i b u t i o n . Then the maximum storage 
requirement is either that obtained through the simulation phase, 
or that obtained by the program, whichever i s the greater. In 
general, however, such a scheme would be impractical due to the 
pot e n t i a l l y large number of possible d i f f e r e n t simulations i n ­
volved. " 

n 
# If ii i s a n-dimensional vector, then define |x[ = T, x. . 

~~ i = l 1 
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3.2 Maximum storage requirement - general case 

A node n^ of a computation graph can i n i t i a t e only i f for 

every branch d^ directed into n^ the number of data words assoc­

iated with this branch i s not less than the corresponding threshold 

T . Consequently, the number of data words on this branch after the 

i n i t i a t i o n i s not less than T -V . 
P P 

Consider a computation graph Cr which does not s a t i s f y b> T-W, 
i . e . there exists at least one branch d^=(n^,n..), d^ £ G such that 

A < T -Vir . Let us assume that G contains only one node terminal to p p p 
such a branch. Later we s h a l l show how to extend the results to the 

case of more nodes terminal to such branches. 

Clearly, the data d i s t r i b u t i o n w i l l s a t i s f y the requirement 

b >T-W after the f i r s t i n i t i a t i o n of n.. In the following we derive 
J 

a method for finding the maximum storage required prior to the f i r s t 

i n i t i a t i o n of n.. Then we apply methods of part 3.1 to determine the 

maximum storage required after the f i r s t i n i t i a t i o n of n.. 
J 

Given a computation graph G modify i t as follows: 

For the node n^ jmt 

a l l V .=T -=0 
a l l U • .=0 J s 

Note that the data d i s t r i b u t i o n of the modified graph G' i s not 

affected by i n i t i a t i o n s of n.. In the following parameters of G' 

w i l l be primed. 

Lemma 3.5 

Let <o = (6- (k. ), d>. (k. ), . . ,<J. (k. )} be a schedule, 
L x l x l r2 12 xm xm 

where ^ i ^ , i 2 , . . , i m } - I C { l , 2 , . . , j - 1 , j + 1,., l) and 
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x l x l x i x2 x2 x2 x2 x2 x3 x3 
d i (k £ < <£. (k. ) . 

m-1 m-1 m-1 m ra 
Then 6 i s admissible for G' i f f i t i s admissible for G; 

moreover b*.(t)=b*(t) for 0 < t £ c ? . (k. ). 
m m 

PROOF: By d e f i n i t i o n 

x.(t)=o i f f t ^ 6 . ( i ) 

x i(t)=k i f f t >6\(k) and t£<S\ (k+l) 

Therefore x.(t)=x!(t) for i € l and 0 < t < d . (k. ) 
l l x ~- I l in m 

and x. (t)=x! (t)=0 for i / l and 0 < t < 6 . (k. ). i i i i m m 
Also £ i(t) = £j(t) for i € I and 0 < t < d>i (1^ ), 

m rn 

and £. (t) = 6! (t)=0 for i / l and 0<t<6- (k. ). i i / i i 
m m 

Let us examine b d(t)=A +U x (t-V )-V (x (t)-£ (t)) for d =(n 
p p p r p p s s p r 

There are four d i f f e r e n t cases depending on whether r and s are 

elements of I or not. 

( i ) r € I, s € I 
Here U =U1 , W =V»M 

P P P P 
and b 6(t)=A +U x ( t - t )-\f (x (t)-£ (t))=lj 6(t) p v p p r v p p s x s p x 

( i i ) r e l , s ^ I 

Here U
p = U p » x g(t)=x^(t)=0, £ g(t)=£^(t)=0 

and b*(t)=A p+U ix r(t-r p)=b'J(t) 

( i i i ) r £ I, s 6 I 

H ere Vp = Vp» x r(t)=x^.(t)=0 

and b p (t )=Ap-Wp (x s ( t ) - £ s (t) )=b'J( t) 

(iv) r £ l , s £ l 

Here x f (t )=x̂ .( t )=xs (t )=x^ (t ) = £ g (t ) = £, (t )=0 

and b 6(t)=A =b6{t) P P P 
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We have thus established that 

b£(t) = b£,(t) for 0*t<6. (k. ). 
ni m 

Moreover, for a l l d =(n ,n ), s€ I 'we have T'=T and ' p v r' s ' p p 
b 6 ( t ) > T 
P P 

i f f . b'<Ht)>T' for 0 < t £ 6 . '(k. ). p p 1 1 A r ram 
This proves that 6 i s admissible for G i f f i t i s admissible for G'. 

Lemma 3.6 

The maximum storage S' required for the modified graph G' 
max 

is the same as the maximum storage S required for G prior 
max 

to the f i r s t i n i t i a t i o n 6 • (1) of n.. 
J J 

PROOF: By Corollary 3.2 we need only consider sequential schedules. 

The proof w i l l consists of 3 parts. 

( i ) Every sequential s chedul e d> = i 6>. (k. ), <•> . (k. ) , . . , ( i . (k. ) , . .> 
1 1 2 2 m m 

can be divided into time intervals 
<o,6. (k ) ) , <<3. (k ),6 (k )),..,<d (k ) , L )),.. 

X l X l X l 1 l X2 12 1m 1m Sa+l ^m+l 
From the d e f i n i t i o n of b^(t) and £^(t) i t follows that 

S(t)< S(0) i f t<6- (k. ) 
1 1 

and S(t)<S(<S. (k. )) i f (k. ) < t < d i (k. ) 
in ra m m m+1 m+1 

where 3(t)=|b 6(t)| 

Thus to get S i t i s s u f f i c i e n t to examine S(t) at t=0, <£. (k. ), max l ̂  "̂ 1' 
(>• (k. ), d>. (k. ),..; i n other words i t i s s u f f i c i e n t to examine the 

12 x2 x3 x3 
integer sequence S ( where S]ii=S(<S. (k. ). 

m m . 
( i i ) Here we s h a l l show that'S' i s i n f i n i t e i f f S i s i n f i n i t e . v max max 
Let N be an a r b i t r a r y integer. If S' i s i n f i n i t e , then there exists 
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a schedule («> and integer M' such that 

SM • > N 

Take the i n i t i a l part of d> up to d> . (k. ) and omit a l l i n i t i a t i o n s 
Hi' XM' 

of n.. Then by Lemma 3.5 we get an admissible schedule 6 for G which 
J 

requires the same storage as C>'. 

Thus for some M<M' we have 

S M = S M « > N " 
In the same fashion we can show that S' i s i n f i n i t e i f S i s 

max max 
i n f i n i t e . 

( i i i ) Now suppose that S' i s f i n i t e . Then sequences S' are bound-v 1 1 max x m 
ed by S 1 and there exists such a schedule d' and integer M' that J max 
S^t=S' . Take the i n i t i a l part of 6 up to 6. (k. ) and omit a l l M max l^p l ^ j , 
the i n i t i a t i o n s of n.. This by Lemma 3.5 w i l l give us an a.s.s. for 

G with the same storage requirements as 6 . Thus 

S ' =SV'( i —S., £v£> max iM' M max 

On the other hand, since S i s f i n i t e , there exists a schedule Q 
' max ' > 

and integer N such that 

N max 
The i n i t i a l part of this schedule up to O. (k. ) i s an a.s.s. o' for 

XN • \\T 

G' with the same storage requirements as o* This gives 

s =s5=s'£̂  S' 
max N N max 

From this and S' < S we obtain max max 
S =S1 

max" max 

Corollary 3.7 

Let a l l branches of G s a t i s f y A >T -Yi with a possible ex-
p - p p 1 

ception of branch (n.,n.). Modify G as follows: 

Put a l l Vrj.=Tr;.=0, a l l U j g=0 
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Then the maximum storage S ^ required f o r G p r i o r to the 
f i r s t i n i t i a t i o n of n. i s determined by the f o l l o w i n g integer 
l i n e a r program: 

max 1 —' 1 d-' 
subject to 

o < y k < x ^ . k/j 

0 < y • < oo 
• A'vib-T'+W' 

where A', T', W', X' are parameters of the modified graph G'. 

PROOF: Proof f o l l o w s from Lemma 3.6 and Theorem 3.4. 

Lemma 3.8 
Let G be a computation graph whose a l l branches s a t i s f y A >T - V i ' with a po s s i b l e exception of a branch (n.,n.,). p p p 1 i ' j " 
Let X.> 0. Then £=b^(t), where _c i s defined belov/, for 
some a.s.s. <S and some t € T^, t > <S. (1) i f f there e x i s t such 
integers y^ , i = l , 2 , . . ,J& which s a t i s f y 

( i ) °-yk- Xk k ^ 
1 < y • < X . 

J J 
( i i ) £=P_-AX^1-1L 

PROOF: Analogous to that of Theorem 2.4 of /l/. 

C o r o l l a r y 3.9 

Let G be a computation graph whose a l l branches s a t i s f y 

A >T -V with a p o s s i b l e exception of a branch (n.,n.). p p p 1 * i J 
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Let X.>0. Then the maximum storage S^ required after the j ° max 1 

f i r s t i n i t i a t i o n of n. i s determined by the following integer 
J 

l i n e a r program: 

S"*" =1 b I -inin j Ay I max ' — 1 J-1 

subject to 

o < y k < \ k^j 

Ay_<b - T + ¥ 

where ea.ch y k i s integer. 

Theorem 3.10 

Let G be a computation graph whose a l l brandies s a t i s f y 

A >T -YY with a possible exception of a branch (n.,n.). P P P 1 J 
Let X^ > 0. Then the maximum storage required is 

M/ = max(3 , ) < max' max 

PROOF: I. a) Suppose S ^ S 1  
1 1 max max 

There exists an a.s.s. for the modified graph G' which requires S m^ x 

of storage. By Lemma 3.5 this schedule i s admissible also for G and 

therefore i s an i n i t i a l part of some a.s.s. for G. Thus 
A/> S > 3 1 

C max max 
and XC>max(S ,3"̂  ) C — max' max 

b) Now suppose S >S 
1 1 max— max 

By Corollary 3.9 S^ a x= I b | -1 Ay_°l 

whor e | Ay_°| = m i n | Ay_ | 

subject to 0 ^ y k < X k k^j 
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Then by Lemma 3.8 S 1 =|b 6(t)|- for some a.s»s.» and 
n i a x 

/W/̂ S1 >s 
C max— max 

i . e . Xt/>raax(S ,3̂ " ) 
<• max' max 

II . Let (•> be an arbitr a r y schedule for G. Then 

|b 6 ( t ) | < S for t < d . ( l ) 1 — x " max j 
and I b d (t )| ̂  3 1 for t > 6 . ( l ) 

1 — 1 max — j 
Thus ii/<iraax(S , ) 

Cr — max' max 
The results of I. and I I . give M/= raax(S , S"̂  ), q.e.d. 

b < max' max ' ̂  

Theorem 3.10 and Corollaries 3.7 and 3.9 thus provide means 

for finding the maximum storage for graphs where one and only one node 

i s terminal to a branch which does not s a t i s f v A > T -W . 
- p- p p 

In case there are' r such nodes, we take a subset of these 
nodes { n. ,n. ,..,n. , where 0 < s r. For a l l branches directed 

^ Xl X2 s 
into the nodes of the subset we put Yir=T=0, and for a l l branches 

directed out from the nodes of the subset we put U=0. Then to this 

modified graph we apply the following integer linear program: 

S =jbl-min|Ay I max 1 — 1
 I J. i 

subject to 

0 < y k < X k M n ,n ,..,n. 
1 2 s 

l £ y • £ x . 
xi x l 

1 < y • < X . 

16 y • £ X . J i i s s r r Since there are 2 sucli subsets we have 2 lin e a r programs. 

The maximum required storage i s the maximum of the 2 p a r t i a l maximum 

storage requirements. 



CHAPTER 4 

CONCLUSIONS 

The Karp-Miller algorithm for testing termination properties 

of computation graphs i s based on the termination properties of 

loops. It i s , therefore, desirable to have means for testing loops. 

A quantity related to the number of data words in a loop i s 

introduced, which decreases for g < l , increases for g > l , and remains 

constant for g=l, in the course of computation. This concept makes 

i t possible to derive a simple s u f f i c i e n t condition (Theorem 2.14) 

for self-termination of loops with g=l, and to give a shorter and 

i n t u i t i v e l y more s a t i s f y i n g proof (Corollary 2.12) of necessary 

condition of Theorem 2.6 due to Karp and M i l l e r . In the special 

case that \V=U, the necessary and s u f f i c i e n t condition i s given 

(Theorem 2.10). This condition has a simple form due to the fact 

that data propagation has l o c a l character in this case. Since this 

i s i n v a l i d i n the general case, one probably cannot hoj)e for a 

simple form of the general necessary and s u f f i c i e n t condition. 

The Karp-Miller algorithm i s not well suited for computation 

graphs with many loops. Therefore, in part 2.3 of Chapter 2 a dir e c t 

procedure for testing termination properties of strongly connected 

graphs is derived. The procedure does not require inspection of 

every loop as in the Karp-Miller algorithm. However, i t also uses 

the i t e r a t i o n scheme of Theorem 2.9, which for large graphs may be 

too lengthy. 

Reiter in /l/ gives a linear integer program for determining 

the maximum amount of storage required i n the special case that 

40 
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b>T-W. Part 3.2 of chapter 3 extends h i s method to cover the general 
case. The number of l i n e a r programs required i n our method increases 
as 2 1 where i i s the number of nodes term i n a l to brandies which do 
not s a t i s f y A^ > ̂ p""̂ *p» o u ^ -"-̂  appears to be more e f f i c i e n t than 
s i m u l a t i o n of a l l p o s s i b l e schedules /7/, e s p e c i a l l y f o r h i g h l y 
p a r a l l e l computations. 
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