
TERMINATION AND STORAGE REQUIREMENTS

IN A MODEL FOR PARALLEL COMPUTATIONS

by

IVAN 3CHNAPP
Dipl.Ing., Czech Technical University, Prague, 1966

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF .

MASTER OF APPLIED SCIENCE

in the Department of
E l e c t r i c a l Engineering

We accept this thesis as conforming to the
required standard

Research Supervisor

Members of the Committee

Acting Head of the Department

Members of the Department
of E l e c t r i c a l Engineering

THE UNIVERSITY OF BRITISH COLUMBIA
June, 1970

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r

an advanced d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t

t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y .

I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s

f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my Depar tment o r

by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n

o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my

w r i t t e n p e r m i s s i o n .

Depar tment

The U n i v e r s i t y o f B r i t i s h C o l u m b i a
V a n c o u v e r 8, Canada

Date

ABSTRACT

This paper deals with a grajjh-theoret i c model for p a r a l l e l

computations as formulated-by Karp and M i l l e r . A necessary condition

and a s u f f i c i e n t condition for self-termination of loops with unit

loop gain are presented. For the special case that W=U the necessary

and s u f f i c i e n t condition i s derived. A direct procedure for testing

termination properties of strongly connected graphs i s presented.

A method due to Reiter, for determining the rua ximura storage

required for a computation graph, i s extended to cover the general

case.

TABLE OF CONTENTS

ABSTRACT i
TABLE OP CONTENTS i i
LIST OF ILLUSTRATIONS i i i

ACKNOWLEDGMENT i v
1 . INTRODUCTION. 1

1 . 1 The K a r p - M i l l e r model 1

1.2 Research connected with p a r a l l e l computation models 6
2. TERMINATION PROPERTIES OF COMPUTATION GRAPHS 9

2 . 1 The K a r p - M i l l e r algorithm 9
2.2 Some necessary and s u f f i c i e n t c o nditions f o r

s e l f - t e r m i n a t i o n of loops 1 7

2.3 A d i r e c t method of t e s t i n g termination p r o p e r t i e s
of strong components 25

3 . STORAGE REQUIREMENTS 28
3 . 1 Maximum storage requirement - s p e c i a l case 28
3.2 Maximum storage requirement - general case 33

4 . CONCLUSIONS .40
REFERENCES 42

i i

LIST OP ILLUSTRATIONS

F i g u r e Page

1 Computation graph f o r Laguerre p o l y n o m i a l s ...5

2 Dependence of the amount of d a t a on the l o o p g a i n 18-19

3 T e r m i n a t i o n of loo p s 24

i i i

ACKNOWLEDGMENT

I wish to express my gratitude to Dr. E . L. Sigurdson for

his guidance and encouragement in carrying out this research, and

to Dr. G. F. Schrack for reading the manuscript.

I also wish to acknowledge the financial support of the

National Research Council.

iv

CHAPTER 1
INTRODUCTION

As s i g n a l propagation speeds represent a serious b a r r i e r
to i n c r e a s i n g the speed of s t r i c t l y s equential computers more
a t t e n t i o n has been paid i n recent years to'the use of the p a r a l l e l ­
ism i n t r i n s i c to most computational algorithms. A number of de­
signs have appeared which u t i l i z e a number of processors which may
simultaneously execute several steps of the computation (/ l / - / 5 /) ,

rather than overlapping of subfunctions i n sequential processing.
In general, values to be used.in a computation step are the

r e s u l t s of previous computation steps. This e s t a b l i s h e s c e r t a i n
precedence c o n s t r a i n t s upon the computation steps.

A model of such a system, s a t i s f y i n g a p a r t i c u l a r c l a s s of
precedence c o n s t r a i n t s , lias been formulated by Karp and M i l l e r /6/.

This t h e s i s studies some problems a r i s i n g i n connection with
t h i s model, i n p a r t i c u l a r t ermination p r o p e r t i e s (Chapter 2) and
storage requirements (Chapter 3).

In t h i s chapter we present the model and the r e s u l t s of pre­
vious research, and compare i t with other approaches to the p a r a l l e l
processing.

1.1 The K a r p - M i l l e r Model
The model represents the sequencing of a p a r a l l e l computation

by a f i n i t e d i r e c t e d graph. Each node of the graph corresponds to
an operation i n the computation (or to a processor assigned to per­
form that o p e r a t i o n) . Each branch represents a f i r s t - i n f i r s t - o u t

1

2

q u e u e o f d a t a d i r e c t e d f r o m o n e p r o c e s s o r t o a n o t h e r . To d e s c r i b e

d a t a t r a n s f o r m a t i o n b y p r o c e s s o r s , w i t h e a c h n o d e i s a s s o c i a t e d a

s i n g l e - v a l u e d f u n c t i o n d e t e r m i n i n g t h e d e p e n d e n c e o f o u t p u t s o n

i n p u t s . T h e e l i g i b i l i t y f o r i n i t i a t i o n o f a n o p e r a t i o n i s d e t e r m i n ­

e d b y t h e l e n g t h s o f t h e q u e u e s o n b r a n c h e s d i r e c t e d i n t o i t s

a s s o c i a t e d n o d e .

T h u s a c o m p u t a t i o n i s r e p r e s e n t e d b y a d i r e c t e d g r a p h G

c a l l e d a c o m p u t a t i o n g r a p h w h i c h i s g i v e n b y :

(i) a s e t o f n o d e s n ^ n ^ , . .

(i i) a s e t o f b r a n c h e s d ^ , . . d ^ , w h e r e a n y g i v e n b r a n c h d ^

i s d i r e c t e d f r o m a s p e c i f i e d n o d e n ^ t o a s p e c i f i e d

n o d e n • ,

(i i i) f o u r n o n n e g a t i v e i n t e g e r s A ,U ,¥ a n d T , w h e r e
• ° ° P P P P

T > ¥ , a s s o c i a t e d w i t h e a c h b r a n c h d .
P P P

H e r e , A^ g i v e s t h e i n i t i a l n u m b e r o f d a t a w o r d s i n t h e

f i r s t - i n f i r s t - o u t q u e u e a s s o c i a t e d w i t h d ; U g i v e s t h e n u m b e r o f
1 P P

w o r d s a d d e d t o t h e q u e u e w h e n e v e r t h e o p e r a t i o n Ch a s s o c i a t e d w i t h

n ^ t e r m i n a t e s ; V<T g i v e s t h e n u m b e r o f w o r d s remove;: f r o m t h e q u e u e

w h e n e v e r t h e o p e r a t i o n 0- i s i n i t i a t e d ; a n d T i s a t h r e s h o l d g i v -
. J P

i n g t h e m i n i m u m q u e u e l e n g t l i o f d ^ w h i c h p e r m i t s t h e i n i t i a t i o n o f
0-. U p o n i n i t i a t i o n o f 0. o n l y t h e f i r s t W o f t h e T o p e r a n d s f o r

J J P P 1

C h a r e r e m o v e d f r o m t h e q u e u e .

T h e o p e r a t i o n 0. a s s o c i a t e d w i t h a g i v e n n o d e n . i s e l i g i b l e
J J

f o r i n i t i a t i o n i f a n d o n l y i f , f o r e a c h b r a n c h d d i r e c t e d i n t o n . ,
P J

t h e n u m b e r o f w o r d s i n t h e q u e u e a s s o c i a t e d w i t h d i s g r e a t e r t h a n

o r e q u a l t o T^. A f t e r C h b e c o m e s e l i g i b l e f o r i n i t i a t i o n , ¥ w o r d s

a r e r e m o v e d f r o m e a c h b r a n c h d d i r e c t e d i n t o n . . T h e o p e r a t i o n 0.
P J J

3

i s then performed. Vhen Ch terminates, words are placed on each

branch d directed out from n.. The times required to perform the

steps mentioned above are l e f t unspecified by the o r i g i n a l model as

presented in /6/.

These constraints on i n i t i a t i o n lead to the following defin­

i t i o n s of the possible sequences of i n i t i a t i o n s associated with a

given computation graph G.

Let E be a sequence of nonempty sets ,S,j > • . >Ŝ r, . . , such

that each set Ŝ T is a subset o f £ l , 2 , . . , whore X is the number of

nodes in G.

Let x(j,0) - 0, and, for N>0, l e t x(j,N) denote the number

of sets S , l<m<N, of which i i s an element,
i n ' ' 0

The sequence E is an execution of G i f and only i f for a l l N,

the following conditions hold:

(i) i f j C S v,. and G has a branch d directed from n. to
J N+l p l

n., then A + U x(i,N) - W x(j,N)> T :
(i i) i f E i s f i n i t e and of length R, then for each j there

exists a node n. and a branch d directed from n. to l p l
n. such that A + U x(i,R) - W x(j,R)<T . j p p v ' ' p x J ' ' p

An execution E of G is calle d a proper execution i f the follow­

ing implication holds:

(i i i) i f , for a l l n. and for every branch d directed from
l J p n. to n., A + U x(i,N) - W x(j,N)>T , then j € S„ l j p p ' p J ' p' J li

for some R > N.

The sequence E may be interpreted as giving a possible

temporal sequence of i n i t i a t i o n s of operations throughout the per­

formance of the p a r a l l e l computation specified by G; the occurence

4

of S.. denotes the simultaneous i n i t i a t i o n of 0. for a l l }€. S,-.

Condition (i) states that in order for node n_. to i n i t i a t e
J

for the x(j,N + l) - t h time, the queue lengths on i t s input branches

must be greater than, or equal, to the respective branch thresholds.

Condition (i i) defines the circumstance under which an execution

terminates, i . e . under which the computation defined by G halts.

This computation terminates when every node of G is unable to

i n i t i a t e . Condition (i i i) requires that a node, i f able to i n i t i a t e ,

a c t u a lly w i l l do so after some f i n i t e number of i n i t i a t i o n s of other

nodes.

The following example i l l u s t r a t e s these ideas:

Example 1.1

Consider the Laguerre polynomials defined by the recurrence

r e l a t i o n
L ^-.(x) = (2n + 1 - x)L (x) - n 2L ,(x) n+l ' n v ' n-1 v '

with i n i t i a l conditions

L Q(x) - 1

L x(x) = 1 - x

We want to compute the values of L n(x) for n = 2,3,..,N and for a

given x.

A computation graph for this calculation is in F i g . l . For

each branch the intermediate result is shown. Branch c o e f f i c i e n t s

are assumed to be A=0, U=Vi:=T=l unless otherwise shown. Brandies

(n^,n^)' (i . e . the branch directed from n^ to n^) and (n2>n 9) serve

as counters; the computation is terminated by the depletion of queues

associated with these branches. Node n^ produces 2n and n", and

places them on (n,,n~) and (n, ,n-j), respectively. Node n„ takes

5

A=N-1

U=0

(2 n+l-x)

2 n

n

n.

A=N-
U=0

L n - l (x >

Computation graph for Laguerre polynomials

F i g . 1

6

(l - x) from the branch ^ 2 ^ 2) and adds i t to the other input 2n; the
r e s u l t (2n+l-x) i s placed on (i ^ j n ^) . Node n^ forms the product of
(2n+l-x) and L n (x) and places the r e s u l t on (n^,n^). Node n^ m u l t i -

2

p l i e s L n_-^(x) by n and places the r e s u l t on (n^,n_). F i n a l l y , n^
produces the d e s i r e d polynomials L ^ x) , L ^ (x) , . . , L^,(x) and places
them on (n^,n^) and (n^,n^). The i n i t i a l data queue on (n^,n^) i s
L Q (X) = 1 , L ^ (X) = 1 - X and on (n^,n 4) i t i s L^(x)=l-x.

1.2 Research connected with p a r a l l e l computation models
Karp and M i l l e r fbf show that f o r every proper execution the

sequence of data words occuring on any branch of G i s always the
same thus ensuring the same computational r e s u l t . This property i s
r e f e r r e d to as the determinaoy of a computation graph. A l s o , they
give an algorithm to determine whether a computation terminates,
and a procedure f o r f i n d i n g the number of performances of each
operation i n G. F i n a l l y , they give necessary and s u f f i c i e n t con­
d i t i o n s f o r the lengths of data queues to remain bounded.

R e i t e r i n h i s Ph.D. t h e s i s fjf addresses himself to the
problems of storage, scheduling, and optimum assignment of operat­
ions to processing u n i t s . He gives an integer l i n e a r program f o r the
determination of the maximum storage required by a computation graph
G. He introduces a concept of an admissible schedule d e f i n i n g v a l i d
node i n i t i a t i o n times and c h a r a c t e r i z e s the c l a s s of a l l admissible
schedules i n the case W =T =1, U -0 or 1. He f u r t h e r shows that i n

P P P
t h i s case i t i s p o s s i b l e to f i n d a p e r i o d i c admissible schedule
which achieves the maximum computation rate (also see / 8 /) . He also
defines the cost of an assignment of node functions to processors

7

and gives a method f o r determining f e a s i b l e s o l u t i o n s when the maxi­
mum comjmtation rate has a lower bound. F i n a l l y , he extends the
model to incorporate a r e s t r i c t e d form of data dependency without
l o s i n g i t s detcrminacy.

A d i f f e r e n t approach to the g r a p h i c a l r e p r e s e n t a t i o n of a
computation i s taken by Martin / 9 / . He allows two types of node i n ­
put c o n t r o l . In the case of conjunctive input c o n t r o l a node can
i n i t i a t e only i f each branch d i r e c t e d i n t o the node contains at
l e a s t one data word. In the case of d i s j u n c t i v e input c o n t r o l a
node can i n i t i a t e only i f at least one branch directed into the node
contains at l e a s t one data word. S i m i l a r l y , conjunctive output
c o n t r o l places one word on each branch d i r e c t e d out from the node
and d i s j u n c t i v e output c o n t r o l places one word on a branch d i r e c t e d
out from the node according to an a p r i o r i p r o b a b i l i t y . The l a t t e r
represents a c o n d i t i o n a l t r a n s f e r which i s d e t e r m i n i s t i c every time
i t occurs but over many p o s s i b l e data sets may be modelled p r o b a b i l ­
i s t i c a l l y .

Note that the conjunctive input c o n t r o l and conjunctive out­
put c o n t r o l correspond to the T=vr=l case and U=l case i n the Karp
- M i l l e r model, r e s p e c t i v e l y . Also note, that because of c o n d i t i o n a l
t r a n s f e r s , t h i s model i s not determinate.

In h i s work Martin studies the assignment of node comput­
ations to processors and t r i e s to minimize the average computation
time. Further research of t h i s model can be found i n /lO/, where an
approximative method f o r c a l c u l a t i n g the average computation time ± s

given, and /ll/, where procedures.are Riven.to determine a lower and an
upper bound on the number of processors required f o r maximum

8

p a r a l l e l i s m .

An a p p l i c a t i o n o f r e s u l t s o f t h e s e s t u d i e s t o a s s e m b l y - l i n e

b a l a n c i n g p r o b l e m s i s g i v e n i n /12/.

CHAPTER 2

TERMINATION PROPERTIES OF COMPUTATION GRAPHS

Pa r t 2.1 of t h i s chapter i s devoted to a p r e s e n t a t i o n of the

K a r p - M i l l e r a l g o r i t h m . The a l g o r i t h m i s used to determine whether

the computation s p e c i f i e d by a given computation graph terminates,

and to f i n d the number of performances of each o p e r a t i o n i n case the

computation terminates.

Sev e r a l theorems are given i n p a r t s 2.2 and 2.3 to improve

the e f f i c i e n c y of the al g o r i t h m .

2.1 The K a r p - M i l l e r A l g o r i t h m

Theorems and Lemmas of s e c t i o n 2.1 are proved i n /6/. Since the

number of performances of an ope r a t i o n 0 i s independent of the execu­

t i o n considered only i f t h i s e x c u t i o n i s proper, Karp and M i l l e r

r e s t r i c t t h e i r a t t e n t i o n to proper executions.

A node n_. of a computation graph i s s a i d to terminate i f and

only i f (i n the f o l l o w i n g i f f) j occurs i n only a f i n i t e number of

the se t s of a proper execution of G. N a t u r a l l y , t h i s number i s

the same f o r a l l proper executions of G.

To f u r t h e r study the te r m i n a t i o n of p r o p e r t i e s of computation

graphs we need to introduce a few concepts from graph theory.

A d i r e c t e d graph i s c a l l e d s t r o n g l y connected i f f given any

p a i r of nodes n. and n. there e x i s t s a d i r e c t e d path from n. to n.. A

s p e c i a l case of a s t r o n g l y connected graph i s the t r i v i a l graph which

has only one node and no branches.

For any d i r e c t e d graph there e x i s t s a unique p a r t i t i o n of

9

10

i t s nodes i n t o equivalence classes as f o l l o w s :
Two nodes n. and n. are i n the same clas s i f there e x i s t s a

d i r e c t e d path from n^ to n^ , and a d i r e c t e d path from n^ to n^.
A subgraph c o n s i s t i n g of the nodes of an equivalence c l a s s

and the branches of the o r i g i n a l graph connecting these nodes i s
then a s t r o n g l y connected graph. The subgraphs corresponding to the
node equivalence classes are maximal s t r o n g l y connected subgraphs
of the o r i g i n a l graph and are c a l l e d the strong components of the
graph. These strong components play a c r u c i a l r o l e i n the Karp-
M i l l e r algorithm.

Lemma 2.I
Let G' be a s t r o n g l y connected subgraph of a computation
graph G.'Then e i t h e r every node of G' terminates or nonedoes.

We say that 0' terminates i f every node of G' terminates.
Divide a l l the nodes of a computation graph G in t o two classes

according to whether they terminate or not. Then by Lemma 2.1 the
set S of terminating nodes i s a union of sets of nodes of some
strong components of G.

The s t r o n g l y connected subgraph G' which would terminate i f
i t were i s o l a t e d from the r e s t of G i s c a l l e d s e l f - t e r m i n a t i n g .

Let us examine when a strong component i s s e l f - t e r m i n a t i n g .

Lemma 2.2
Let d^=(n^,iij) be a branch of a computation graph. Then n^
terminates i f n. terminates.

l

11

r s
This loads to the following concepts: Let G and G' -be

strong components of G. Then define Gr >_ GS i f either Gr. = GS or there exist
r s such nodes n - 6 G and n.€ G that there is a directed path from n.

1 j 1

to n . i n G.
J

Theorem 2.3
s

A strong component G of a computation graph G terminates
r r

i f f there exists G such that G i s self-terminating and

G r> G s.

s r Thus G terminates i f f i t is self-terminating or some G is s e l f -

terminating and there is a directed path from some n . 6 G to some

n - £ G b. Therefore to determine the set S we examine strong com-
r s r

ponents for self-termination in such order that i f G >. G , then G

is examined f i r s t .

Now the problem is how to determine 'whether a strongly con­

nected subgraph G' is self-terminating. For this purpose Karp and

M i l l e r use properties of the 1OO|JS contained in G'.

A computation graph L is called a loop i f i t consists of

d i s t i n c t nodes , n 0 , . , " a n d branches d^,d2,..,d£ such that d^ is

directed from to n^_ + 1 > k=l, 2, . . , / , - l , and d^ is directed from n^

to n^ .

Here we note that any strongly connected subgraph G' except

the t r i v i a l graph contains at least one loop.

Theorem 2.4

A strongly connected subgraph G1 is self-terminating i f f G'

12

contains a s e l f - t e r m i n a t i n g loop.

Given t h i s theorem the only problem i s how to e s t a b l i s h that a
p a r t i c u l a r loop i s s e l f - t e r m i n a t i n g .

Let L be a loop with branches d, ,d,,, . . ,d«. The product
it U .

g= TT rr^ i s c a l l e d the gain of the loop. There are 3 cases: g ^ l ,
i = l i

g=l, and g >1.
Loops with g < 1

Theorem 2.5

Any loop L f o r which g < l i s s e l f - t e r m i n a t i n g .

Loops w i t l i g=I

Theorem 2.6.

Let r~

P =

1 1 U ' " l
v i

u l
h

V l U l h u i u l
h V i h W l h w i

, V l h h U2 u i
Y ' l ''2

i
h-l h

1 '

T.I "1 W2 h
j

I

V , ' l V
h-l
h-l

I '

1 V i

i .

I

13

*1

/33

ft

A k - i " T k - i + 1

where fo l{ = y— k=2 , 3 ,. .

and

k-1

/ 3 i =
A i - T x + 1

Then the necessary condition for self-termination of a loop

with g=l is

P /3 < 0

Karp and M i l l e r give a necessary and s u f f i c i e n t condition for s e l f -

termination in the following special case:

Theorem 2.7

If , for l£k^X,, Vi'. = U , =1, then the loop L i s self-terminating

i f f (i . e . Z A < Z (T,-l)).
k=l " k=l k k=l k

In case that Theorems 2.6 -and 2.7 cannot be applied Karp and M i l l e r

derive an upper bound on the numbers of x^erformances of nodes of a

self-terminating loop.

Theorem 2.8

Let L be a self-terminating loop with g=l. Let X* be a positive

integer solution of the system

OC^ = a

14

U 1
OC = - i a

2 M1
 a

U l U 2

u u
ry, - _ —£

U
a

whore a i s an a r b i t r a r y parameter. Let

X =

x n

X,

where X^ i s the number of performances of node n^, k=l,2,..,
Then at l e a s t one component of X i s l e s s than the correspond
ing component of X*.

Loops with g >1
Theorem 2.6 i s v a l i d also f o r t h i s case.
I f L i s s e l f - t e r m i n a t i n g then we get the f o l l o w i n g upper

bound:
X < y i - P fi 1-g '-

Having obtained an upper bound f o r X we can t e s t s e l f - t e r m i n a t i o n
of a loop by applying a procedure given i n the f o l l o w i n g theorem.

15

Theorem 2.9 #
For a l l nodes n.€S the f o l l o w i n g i t e r a t i o n scheme converges

J
i n a f i n i t e number of steps to X;

*(0)<;>=° r _ („) ,
Ik -T +1+U xKa,{iT x ^ n + 1 ^ (j) = max J x ^ (j) ,

(i,p)6Z.j, i € S \ %

H e r e ^ j i s the set of ordered p a i r s (i , p) such that d^ i s a
brancli from node n. to node n..

The r e s u l t s given so f a r may be organized i n t o an algorithm f o r
determining which nodes of a computation graph G terminate and, f o r
the terminating nodes n.. , computing the number of performances x (j) .
This algorithm may be o u t l i n e d /6/ as f o l l o w s :

Step 1. From among the strong components of the computation graph
being considered (i n i t i a l l y t h i s graph i s G), s e l e c t one which i s
not covered by any other subgraph. C a l l i t G'.
Step 2. By applying Steps 2A,...,2D given below, t e s t whether G' i s
s e l f - t e r m i n a t i n g and, when i t i s , determine x (j) f o r each n.£G'.
Step 3. Form a new computation graph as f o l l o w s : I f G' i s not s e l f -
t e r m i n a t i n g , remove G' and a l l branches i n c i d e n t with nodes of G'.
I f G' i s s e l f - t e r m i n a t i n g , replace each branch d from n^G' to
n^G' by an "equivalent" branch d^, from n^ to n^ , having U^,=0,
A ,=A +U x (i) , T ,=T , and W , =V,T . Then remove G' . P P p p p p p
Step 4. I f the new computation graph i s nonempty, return to Step 1.
Otherwise the a n a l y s i s of termination i s complete.

4 The symbol fx! denotes " l e a s t integer greater than or equal to x."

16

The d e t a i l s of Step 2 are now described.
Step 2k. I f G' contains a branch d^ with U =0, go to Step 2D. I f
not, determine whether G' contains a loop with g < l . This i s equi­
valent to determining whether there i s a loop L sucli that

Z log (U / V) < 0 .
d € L P P
P

This determination can be c a r r i e d out by a shortest-route algorithm
given i n /13/. Enumeration of loops i s not required i n t h i s pro­
cedure. I f a loop with g < l e x i s t s , go to Step 2D; otherwise, go
to Step 2E.

Step 2B. Every loop of G' has .g > 1. Determine whether there i s a
loop not p r e v i o u s l y considered such that 0> Pyg. I f no such loop
e x i s t s , G' i s not s e l f - t e r m i n a t i n g ; r e t u r n to Step 3. I f such a loop
L i s found, determine upper bounds on the q u a n t i t i e s x^(k) by the
methods given above. These bounds hold, of course, only i f L i s
s e l f - t e r m i n a t i n g .
Step 2C. Continue applying the i t e r a t i o n scheme of Theorem 2.9, tak­
ing S to be set of nodes of G', u n t i l e i t h e r
(a) i t terminates, e s t a b l i s h i n g that G' i s s e l f - t e r m i n a t i n g , and
g i v i n g x (j) f o r each n.£G', or

J

(b) f o r some n and some k, x^ n^(k) exceeds the upper bound on x ^ (k) ,
e s t a b l i s h i n g that L i s not s e l f - t e r m i n a t i n g . Return to Step 2B.
Step 2D. G' i s s e l f - t e r m i n a t i n g . Apply the i t e r a t i o n scheme of
Theorem 2.9, tak i n g S to be the set of nodes of G', to obtain x (j)
f o r each n.£G'.. Return to Step 3.

17

2.2 Some necessary and s u f f i c i e n t conditions for .self-termination

of 1o o ps

As shown above, the K a r p - M i l l e r algorithm is.based on termin­

ation properties of loops. Consequently i t s e f f i c i e n c y depends main­

l y on the means available for testing self-termination of loops. In

the following we s h a l l derive some theorems testing these proper­

t i e s .

Theorem 2.10 '

If, for l^k<L,£, p— = 1, then the loop L i s self-terminating
b k

I
Z 1X1 £ o
k=l

PROOF; By Theorem 6 of /6/ the necessary and s u f f i c i e n t condition

for self-termination of a loop is the existence of a nonnegative

integer solution of the following system of i n e q u a l i t i e s :

, , v A^-Tjt+l+lixU)
x(l) > g

A1r-T^+1+U,,x(k)
x (k + l) > — — \ - . 'for k=l,2 , . . j e-l

k

This system reduces to

x(l)> /3£+x(i)
x(k+l)>/3 k+x(k) for k-1, 2 , . . , i - l

Since a l l x's are integers, we have

1 8

x(k+l) > f/3j+x(k) for k=l,2 f.. ,1-1

By summing l e f t and right-hand sides of the above i n e q u a l i t i e s ,

respectively, we get the necessary condition

To prove that i t i s also a s u f f i c i e n t condition we -ban.-, show that

i f i t i s s a t i s f i e d the system

x(l)=C

x(k+l)=x(k)+ f / 3 k] k=l , 2 , . . , 1 - 1

where C i s a s u f f i c i e n t l y large integer i s a nonnegative integer

solution of the above i n e q u a l i t i e s .

Consider the following examples

Example 2 . 1 A - 0

U=l

\V=T=2

A=2
Here g=l / 2 . The data d i s t r i b u t i o n after each node performes once i s

A ' = 0

U=l

W=T=2

T=Vf=l

U=l

A'=l

F i g . 2

1 9

Example 2.2
A = 0

A=l

Here g=2. The data d i s t r i b u t i o n a f t e r each node performs once i s

A ' = 0

T=W=1

A ' = 2

Example 2.3

A=l.

Here g-l. The data d i s t r i b u t i o n a f t e r each node performs once i s

A ' = 0

T=Vf=l

A'=l

Dependence of tlie amount of data on the loop gain

Fig.2

20

These examples indicate that (roughly speaking) for g > l the

"amount of data" increases, for g<1 i t decreases, and for g=l i t

remains constant. The following theorem gives this fact a precise

form.

Theorem 2.11 „
I u

Let L be a loop with gain g - II ^— . Let A. and A^ be the
i = l i

i n i t i a l and current number of words on the i - t h branch,

respectively, for i = l,2,..,j£. Then
JL I

i f g < l Z c i A i < 21 c.A^
i=l i=l
L 5L

i f g=l ' Z c.A. = Z c.A 0

. , l i • , I l i=l i=l
t L

i f g> 1 Z c. A. > Z. c.A
FA . , I I . , I I 1=1 i=l

where c^ - 1

and c. 4 TT T f -* 1 — for i=2,3,..,i.

PROOF; Suppose that W . words are taken from the j-th branch (j'^;C),
J

and L Tj_^ words are placed on the (j+l)-th branch. Taking into account

that c . , = c . d+i - j u. + 1

the change i n the sum F c.A. is
^ . , I l i = l

21

W .
c. ,U. , - c.V. = c. rr-L- U. , - C.W. = 0 0+1 J+l J J J J+l J J

Now suppose that Ŵ words are taken from the j2-th branch and U

words are placed on the 1-st branch. We have

C l

! i ! 2 V i h.
cz = u 2 u 3 u z = e ŵ

and the change in the sum

U
c i u i - C A = u i - i*x W = V 1 " i>

i s positive for g > l , negative for g < 1, and zero for g=l.

As a coro l l a r y we get a necessary condition for self-term­

ination of a loop, which i s ess e n t i a l l y equivalent to Theorem 2.6.

Corollary 2.12

A necessary condition for self-termination of a loop with

g > l and i n i t i a l number of words on the i - t h branch A?,

i=l,2,.., L i s that

T c.A°< J" c. (T.-l)
1=1 1=1

PROOF: If the loop is self-terminating, then after a f i n i t e number

of performances we must have

22

A. < T . - l f o r i=l,2,..,1 i - i ' ' '
and

T c.A.< > c.(T . - l) i i . , I X I i = l x x i = l

By Theorem 2.11

I I I
I c.A°< f c.A. < f c. (T . - l)

. , I l — I l — I l ' i = l A A i = l x x i = l

Now we s h a l l derive a s u f f i c i e n t c o n d i t i o n f o r loops with g=l

Lemma 2.13
Let L be a loop with g=l, and W\=T̂ f o r i = l , 2 , . . , L e t A?
be the i n i t i a l number of data words on the i - t h branch f o r
i=l,2,..,£. I f

Z c.A. < max c .V .
i = l 1 1 I<j<l J J

then the loop i s s e l f - t e r m i n a t i n g ,

PROOF: Let k be such number that

Tli en
JL

max c -V . = c, Vf,

c
.*—, c, 1
i = l k
t— n i ̂ k

Since

23

I c.A° = I c.A.

where A. i s the current number of words on the i - t h branch we have l

X* c X c
A, < 5" — A. = 7 — A°<W, = T, k c, l c, l k k i=l k i=l k

Thus the number of words on the k-th branch w i l l never reach the

threshold and the number of performances of node iij. i s zero. By

Lemma 2.2 every node of the loop terminates. Hence the theorem.

Theorem 2.14

Let L be a loop with g=l. Let A? be the i n i t i a l number of

data words on the i - t h branch, i = l,2,..,X. A s u f f i c i e n t

condition for self-termination of L is that

0 1

y c.A < y c. (T.-W.) + max c.V .
i = i 1 1 i i i 1 1 1 i * g j t J J

PROOF; Suppose that L does not terminate. Then after each node

performed at least once,

A i ^ W i , e - A i = (V V + A i
where

A[> 0 for i=l,2,..

If we replace A^ and T^ by A| and T̂ =Vr_̂ , respectively, the resulting

loop L' w i l l have the same termination properties as L, i . e . w i l l

not terminate.

. Then by Lemma 2.13

24

2_ c'A! > max c'.W.
i=l 1 1 l£j*Jt J J

Since c!=c for i=1.2,*.,£

f c.A 0 = f c.A. = ? c. (T.-YT.) + [c.A! = £ c. (T.-V.) + J_ c!A!>
i T i 1 1 i t i 1 1 1 1 1 i = i 1 1 i = i 1 1 1 i = l 1 x ~

T c(T.-W.) + max c'.W. = T c.(T.-W.) + max c .W.
i t l 1 1 1 l<j<Z J J i = l 1 1 1 l*j£ J J

which i s a contradiction.

To i l l u s t r a t e how strong the conditions of Corollary 2.12 and

Theorem 2.14 are consider the following two simple examples;

Example 2.4
n4

W=T=2 * U=2

Example 2.5

W=T=1

U=l

Here c^=c-j=l

c 2=c 4=2

Ic.A 0 = 2 =Ic.(T.-l) i i *~ l x l
and the loop terminates

A=0

Here c^=c 2=l and

max c.W.=1
l<j£2 J J

7c.A?=l= Zc•(T.-W.)+raax c.W.
1 1 1 1 1 l<g£2 J J

and the loop does not terminate

Termination of loops
Fig.3

25

2•3 A dire c t method of testing termination properties of strong

components•

As noted in /6/, the Karp-Miller algorithm requires the inspec­

t i o n of each loop of a strong component G' when G' is not self-term­

inating. If G' contains many loops a more direc t way i s desirable.

Consider the shortest-route algorithm given in / l 3 / . It is

used i n Step 2A of the Karp-Miller algorithm for testing termiation

properties (see part 2.1). If we use mu l t i p l i c a t i o n and associate

U A with branch d ,'rather than addition and log(U Ar), then, in p/ p p ° p' p' ' ' •
the absence of loops with g < l , the algorithm results in assigning

a rat i o n a l number to each node of G'.

On multiplying these numbers by the least common product of

thei r denominators each node n. w i l l have an integer OC . assigned.
l ° l ° If d =(n.,n.) i s a branch of a loop L with g=l, then 06. /oi. =\j A . p i ' j 1 o > j ' i p ' p

If L has g > 1, then for one and only one branch do we haveOc^/<X<

<U A ; for other branches of L OC./CX.̂ U A • P P' J/ i P P
Consider now an arbitrary loop L of G' with g=l. If L is s e l f -

terminating then by Theorem 2.8 the number of performances i s for at

least one node n.€ L less thanOC. .

J J
We shall show that the same i s v a l i d for loops with g>l.

Theorem 2.15

If L i s a self-terminating loop with g> 1, then at least one

component of X is less than the corresponding component of X?

here

X =

X,
X,

X ,

x*=

a l
oc 0

OC,,

a

a (U 1 A 1)

a(u 1A 1)(u 2A 2)-(fiV ;i-i)

26

where a i s an ar b i t r a r y parameter and X^ is the number of

jierf ormances of node n^, i=l,2,..,X.

PROOF; By Theorem 4 of /6/, X i s the minimum nonnegative solution

of (E-A)X>/3 , i . e .

0

1

0

0

u.

0

0 , . 0

0

0

• • •

u Jt-1
V l

0

x l V
x 2 ^ 2

• > •

• •

where /3-, = W 1

and fc.
A i - 1 - T i - 1 + 1

V l
i i — 2 , 3 , . . ,/£

Then

(E-A)X* =

U.

0

0

0

0

0

0

0

0

u 'l-l
l - l

0

a

tfl W2

^1^2 V l
W l W l

27

(E-A)X* = a

Now consider the vector X-X*.

(E-A)(X-X*) = (E-A)X - (E-A)X* > /3

If no component of X is less than the corresponding component of X*,

then (X-X*) is a smaller nonnegative integer solution of (E-A)X>/|

than X, which is a contradiction.

Theorems 2.15, 2.8, and 2.4 serve as a basis for a procedure

for testing termination properties of strong components, which may

be outlined as follows:

Step 1. Apply the shortest-route algorithm modified as shown above.

If a loop with g<1 i s found go to Step 2; otherwise continue u n t i l

each node n. of the strong component is assigned a constant^. .
l ° l

Step 2. Apply the i t e r a t i o n scheme of Theorem 2.9 to the nodes of

the strong component G1 u n t i l either

a) the scheme terminates, establishing that G' is s e l f -

terminating and giving the number of performances x(j) for each

n . € G 1 , o r
3

b) for some n and some k, x (k) exceeds the upper bound

C*k on x(k), establishing that G' i s not self-terminating.

1-g
0

0

0

^ 0

-; CHAPTER 3

STORAGE REQUIREMENTS

In the Karp-Miller model each branch d^=(n^,nj) represents

a queue of data words which may be an output of operation 0^ assoc­

iated with node n^ and which may serve as an input for operation 0j

associated with node n^. Each data word has to be stored in a memory

location of a computer performing the computation, and the maximum

number of memory locations required becomes of int e r e s t . Chapter 3

i s devoted to th i s problem.

3•1 Maximum storage requirement - special case

In this part we present the results of / i f .

Let us introduce a branch parameter tr > 0: If d =(n..n.),X
r p p i J p

i s the fixed time required by node n^ to fetch i t s input data from

storage, process these data, and place outputs into memory locations

associated with the queue on branch d . Thus i f n. i n i t i a t e s at time
p l

t, i t places U data words upon branch d at time t+tT .
P P P um Another parameter we introduce is T^=max^TJ^| where the maxim

is taken over a l l branches d directed out from node n..
P i

A schedule is a set 4-{̂ -̂ ' * * ,(->t} w n e r e each is a funct­

ion
6. : {l,2,..,X.} -» R

such that for l < k < r £ X .
l
^ (k K d . U)

Here R i s the set of real numbers and X^ i s the number of i n i t i a t i o n s

28

29

of node n^ for any proper execution of G. If X^=0, i s undefined.

With each we associate a function

xi : R-{o,l,2,..,X.}

x.(t)=0 i f f either X.=0 or X . i l and t < 4 . (l) . 1 x 1 l l
For l < k < X i , x t(t)=k i f f 6 (k) ̂ t< 6 (k+l)

For X. >1, x.(t)=X. i f f <S-(X.)<t.
I ' i i i v i
For every branch d =(n.,n.) define

P i j
b d(t)=A +U x.(t-T)-W (x.(t)-E.(t))
p P p i p p J J

where

£.(t)=l i f there exists k, l ^ k ^ X . such that 6.(k)=t

£..(t)=0 otherwise.

A schedule is c a l l e d an admissible schedule i f , for

j=l,2,..,X
<S.(k)=t b 6 (t) > T j P P

for a l l branches d into n.. and for a l l k, 1 £ k £ X . .
P J J

A schedule <o is sequential i f for no nodes n., n., with
1 i ' j

n . . do we have i J
6.(k)< d.(r)< 6 . (k)+T.

I J I I

, f o r l £ k £ X . , l £ r < X . .
i J

These d e f i n i t i o n s are to be interpreted as follows:

<^(k)=t means that node n^ begins i t s k-th i n i t i a t i o n at time t

under the schedule (J.

x^(t) is the number of i n i t i a t i o n s of node I K , up to and including

time t, under the schedule <i.

b^(t) is the number of data words on branch d^ at time t. The quant­

i t y £.(t) is introduced for the following reason: A l l data transmit-
J

ted to node n^ by node n^ v i a the branch (n^,n^) must f i r s t pass

30

through storage. Then i f t i s a time at which n. does not i n i t i a t e ,

the storage requirement at time t i s

b 6 (t) = A +U x . (t - f)-W x . (t) .
P P P i • P P J

If n^ i n i t i a t e s at time t, the number of data words in storage at

time t i s
b 6 (t) = A +U x . (t - r)-V (x . (t) - l)
P P P i P P j

An admissible schedule specifies those node i n i t i a t i o n times cor­

responding to a proper execution. Thus a node n^ i n i t i a t e s at time t (d>.(k)=t for some l<k<X.) only i f each branch d directed into v l v
 I ' J p

n. contains at least T data words at time t. (b^(t)>T). F i n a l l y , l p ' p p
a sequential schedule is a schedule under which no node i n i t i a t e s

at the same time that some other node is executing.

For any admissible scheduled, define

A> = max T b 6 (t)
C 6 t p P

jkJ^ thus defines the maximum amount of storage required by the

admissible schedule 6.

Lemma 3.1

Let 6 be an admissible schedule for a computation graph G.

Then there exists an admissible sequential schedule (a.s.s.)

6 such that
^ 6 ' * <^6

This Lemma shows that in general a p a r a l l e l system i s more econom­

i c a l than a sequential system in the sense that i t needs fewer

storage locations.

31

Let
^U/ = max 6 i s &n admissible schedule^ .

^ i s the maximum number of memory locations that a computation

graph G can require.

Corollary 3.2 i_,

£M = oax(^/<? is an a.s.s.)

For any admissible schedule define
T<* = {t/t£ (6.(10,4. (kJ+'E) for 0 < k £ X . , i = l,2,..,/}.

are those times during which no node of G is executing under the

schedule 6 ; however, nodes of G may just be i n i t i a t i n g or terminat­

ing under 6 at some of the times t€ T^.

We then have the following r e s u l t :

Corollary 3.3

(Ms- wax max { ^ (" t) / C J is an a.s.s. and t 6 T^} .
6 t

Write b. f ° r ^ n e column vector with p-th component A , W for the

column vector with p-th component W , T for the column vector with

p-th component T , and, for any admissible schedule <$> define _b^(t)

to be the column vector with p-th component b ^ (t) , p=l,2,..,t.
Define a tXj£, matrix A with elements

a .=\V i f branch d i s directed into n. but not also out from n..
PJ P P J J

a . =-U i f brancli d is directed out from n. but not also into n..
P J P P J J

a . =Vr - U i f branch d i s directed out from n. into n..
P J P P P J J

a .=0 otherwise.
P J

32

F i n a l l y , l e t X be a column vector with i - t h component X^, i=l,2,..,

Theorem 3.4 #

Let G s a t i s f y b.>T-W. Then is determined by the following

integer linear program:

|b| - minU ^ I

subject to
0 <y_< X

where each y^, i=l,2,..£, i s an integer.

Theorem 3.4 enables us to determine the maximum amount of storage

required for a given computation graph, provided b>T_-W. What i f

thi s is not sa t i s f i e d ? We quote from /l/:

"In those cases where this inequality is violated, the program
/of Theorem 3.4/ i s inapplicable. Under such contingency one pos­
s i b l e course of action i s to simulate a l l possible admissible
schedules for G u n t i l a d i s t r i b u t i o n of data i s obtained which
s a t i s f i e s the above i n e q a l i t y , and then apply the program /of
Theorem 3.4/ to this data d i s t r i b u t i o n . Then the maximum storage
requirement is either that obtained through the simulation phase,
or that obtained by the program, whichever i s the greater. In
general, however, such a scheme would be impractical due to the
pot e n t i a l l y large number of possible d i f f e r e n t simulations i n ­
volved. "

n
If ii i s a n-dimensional vector, then define |x[= T, x. .

~~ i = l 1

33

3.2 Maximum storage requirement - general case

A node n^ of a computation graph can i n i t i a t e only i f for

every branch d^ directed into n^ the number of data words assoc­

iated with this branch i s not less than the corresponding threshold

T . Consequently, the number of data words on this branch after the

i n i t i a t i o n i s not less than T -V .
P P

Consider a computation graph Cr which does not s a t i s f y b> T-W,
i . e . there exists at least one branch d^=(n^,n..), d^ £ G such that

A < T -Vir . Let us assume that G contains only one node terminal to p p p
such a branch. Later we s h a l l show how to extend the results to the

case of more nodes terminal to such branches.

Clearly, the data d i s t r i b u t i o n w i l l s a t i s f y the requirement

b >T-W after the f i r s t i n i t i a t i o n of n.. In the following we derive
J

a method for finding the maximum storage required prior to the f i r s t

i n i t i a t i o n of n.. Then we apply methods of part 3.1 to determine the

maximum storage required after the f i r s t i n i t i a t i o n of n..
J

Given a computation graph G modify i t as follows:

For the node n^ jmt

a l l V .=T -=0
a l l U • .=0 J s

Note that the data d i s t r i b u t i o n of the modified graph G' i s not

affected by i n i t i a t i o n s of n.. In the following parameters of G'

w i l l be primed.

Lemma 3.5

Let <o = (6- (k.), d>. (k.), . . ,<J. (k.)} be a schedule,
L x l x l r2 12 xm xm

where ^ i ^ , i 2 , . . , i m } - I C { l , 2 , . . , j - 1 , j + 1,., l) and

34

x l x l x i x2 x2 x2 x2 x2 x3 x3
d i (k £ < <£. (k.) .

m-1 m-1 m-1 m ra
Then 6 i s admissible for G' i f f i t i s admissible for G;

moreover b*.(t)=b*(t) for 0 < t £ c ? . (k.).
m m

PROOF: By d e f i n i t i o n

x.(t)=o i f f t ^ 6 . (i)

x i(t)=k i f f t >6\(k) and t£<S\ (k+l)

Therefore x.(t)=x!(t) for i € l and 0 < t < d . (k.)
l l x ~- I l in m

and x. (t)=x! (t)=0 for i / l and 0 < t < 6 . (k.). i i i i m m
Also £ i(t) = £j(t) for i € I and 0 < t < d>i (1^),

m rn

and £. (t) = 6! (t)=0 for i / l and 0<t<6- (k.). i i / i i
m m

Let us examine b d(t)=A +U x (t-V)-V (x (t)-£ (t)) for d =(n
p p p r p p s s p r

There are four d i f f e r e n t cases depending on whether r and s are

elements of I or not.

(i) r € I, s € I
Here U =U1 , W =V»M

P P P P
and b 6(t)=A +U x (t - t)-\f (x (t)-£ (t))=lj 6(t) p v p p r v p p s x s p x

(i i) r e l , s ^ I

Here U
p = U p » x g(t)=x^(t)=0, £ g(t)=£^(t)=0

and b*(t)=A p+U ix r(t-r p)=b'J(t)

(i i i) r £ I, s 6 I

H ere Vp = Vp» x r(t)=x^.(t)=0

and b p (t)=Ap-Wp (x s (t) - £ s (t))=b'J(t)

(iv) r £ l , s £ l

Here x f (t)=x̂ .(t)=xs (t)=x^ (t) = £ g (t) = £, (t)=0

and b 6(t)=A =b6{t) P P P

35

We have thus established that

b£(t) = b£,(t) for 0*t<6. (k.).
ni m

Moreover, for a l l d =(n ,n), s€ I 'we have T'=T and ' p v r' s ' p p
b 6 (t) > T
P P

i f f . b'<Ht)>T' for 0 < t £ 6 . '(k.). p p 1 1 A r ram
This proves that 6 i s admissible for G i f f i t i s admissible for G'.

Lemma 3.6

The maximum storage S' required for the modified graph G'
max

is the same as the maximum storage S required for G prior
max

to the f i r s t i n i t i a t i o n 6 • (1) of n..
J J

PROOF: By Corollary 3.2 we need only consider sequential schedules.

The proof w i l l consists of 3 parts.

(i) Every sequential s chedul e d> = i 6>. (k.), <•> . (k.) , . . , (i . (k.) , . .>
1 1 2 2 m m

can be divided into time intervals
<o,6. (k)) , <<3. (k),6 (k)),..,<d (k) , L)),..

X l X l X l 1 l X2 12 1m 1m Sa+l ^m+l
From the d e f i n i t i o n of b^(t) and £^(t) i t follows that

S(t)< S(0) i f t<6- (k.)
1 1

and S(t)<S(<S. (k.)) i f (k.) < t < d i (k.)
in ra m m m+1 m+1

where 3(t)=|b 6(t)|

Thus to get S i t i s s u f f i c i e n t to examine S(t) at t=0, <£. (k.), max l ̂ "̂ 1'
(>• (k.), d>. (k.),..; i n other words i t i s s u f f i c i e n t to examine the

12 x2 x3 x3
integer sequence S (where S]ii=S(<S. (k.).

m m .
(i i) Here we s h a l l show that'S' i s i n f i n i t e i f f S i s i n f i n i t e . v max max
Let N be an a r b i t r a r y integer. If S' i s i n f i n i t e , then there exists

36

a schedule («> and integer M' such that

SM • > N

Take the i n i t i a l part of d> up to d> . (k.) and omit a l l i n i t i a t i o n s
Hi' XM'

of n.. Then by Lemma 3.5 we get an admissible schedule 6 for G which
J

requires the same storage as C>'.

Thus for some M<M' we have

S M = S M « > N "
In the same fashion we can show that S' i s i n f i n i t e i f S i s

max max
i n f i n i t e .

(i i i) Now suppose that S' i s f i n i t e . Then sequences S' are bound-v 1 1 max x m
ed by S 1 and there exists such a schedule d' and integer M' that J max
S^t=S' . Take the i n i t i a l part of 6 up to 6. (k.) and omit a l l M max l^p l ^ j ,
the i n i t i a t i o n s of n.. This by Lemma 3.5 w i l l give us an a.s.s. for

G with the same storage requirements as 6 . Thus

S ' =SV'(i —S., £v£> max iM' M max

On the other hand, since S i s f i n i t e , there exists a schedule Q
' max ' >

and integer N such that

N max
The i n i t i a l part of this schedule up to O. (k.) i s an a.s.s. o' for

XN • \\T

G' with the same storage requirements as o* This gives

s =s5=s'£̂ S'
max N N max

From this and S' < S we obtain max max
S =S1

max" max

Corollary 3.7

Let a l l branches of G s a t i s f y A >T -Yi with a possible ex-
p - p p 1

ception of branch (n.,n.). Modify G as follows:

Put a l l Vrj.=Tr;.=0, a l l U j g=0

37

Then the maximum storage S ^ required f o r G p r i o r to the
f i r s t i n i t i a t i o n of n. i s determined by the f o l l o w i n g integer
l i n e a r program:

max 1 —' 1 d-'
subject to

o < y k < x ^ . k/j

0 < y • < oo
• A'vib-T'+W'

where A', T', W', X' are parameters of the modified graph G'.

PROOF: Proof f o l l o w s from Lemma 3.6 and Theorem 3.4.

Lemma 3.8
Let G be a computation graph whose a l l branches s a t i s f y A >T - V i ' with a po s s i b l e exception of a branch (n.,n.,). p p p 1 i ' j "
Let X.> 0. Then £=b^(t), where _c i s defined belov/, for
some a.s.s. <S and some t € T^, t > <S. (1) i f f there e x i s t such
integers y^ , i = l , 2 , . . ,J& which s a t i s f y

(i) °-yk- Xk k ^
1 < y • < X .

J J
(i i) £=P_-AX^1-1L

PROOF: Analogous to that of Theorem 2.4 of /l/.

C o r o l l a r y 3.9

Let G be a computation graph whose a l l branches s a t i s f y

A >T -V with a p o s s i b l e exception of a branch (n.,n.). p p p 1 * i J

38

Let X.>0. Then the maximum storage S^ required after the j ° max 1

f i r s t i n i t i a t i o n of n. i s determined by the following integer
J

l i n e a r program:

S"*" =1 b I -inin j Ay I max ' — 1 J-1

subject to

o < y k < \ k^j

Ay_<b - T + ¥

where ea.ch y k i s integer.

Theorem 3.10

Let G be a computation graph whose a l l brandies s a t i s f y

A >T -YY with a possible exception of a branch (n.,n.). P P P 1 J
Let X^ > 0. Then the maximum storage required is

M/ = max(3 ,) < max' max

PROOF: I. a) Suppose S ^ S 1
1 1 max max

There exists an a.s.s. for the modified graph G' which requires S m^ x

of storage. By Lemma 3.5 this schedule i s admissible also for G and

therefore i s an i n i t i a l part of some a.s.s. for G. Thus
A/> S > 3 1

C max max
and XC>max(S ,3"̂) C — max' max

b) Now suppose S >S
1 1 max— max

By Corollary 3.9 S^ a x= I b | -1 Ay_°l

whor e | Ay_°| = m i n | Ay_ |

subject to 0 ^ y k < X k k^j

39

Then by Lemma 3.8 S 1 =|b 6(t)|- for some a.s»s.» and
n i a x

/W/̂ S1 >s
C max— max

i . e . Xt/>raax(S ,3̂ ")
<• max' max

II . Let (•> be an arbitr a r y schedule for G. Then

|b 6 (t) | < S for t < d . (l) 1 — x " max j
and I b d (t)| ̂ 3 1 for t > 6 . (l)

1 — 1 max — j
Thus ii/<iraax(S ,)

Cr — max' max
The results of I. and I I . give M/= raax(S , S"̂), q.e.d.

b < max' max ' ̂

Theorem 3.10 and Corollaries 3.7 and 3.9 thus provide means

for finding the maximum storage for graphs where one and only one node

i s terminal to a branch which does not s a t i s f v A > T -W .
- p- p p

In case there are' r such nodes, we take a subset of these
nodes { n. ,n. ,..,n. , where 0 < s r. For a l l branches directed

^ Xl X2 s
into the nodes of the subset we put Yir=T=0, and for a l l branches

directed out from the nodes of the subset we put U=0. Then to this

modified graph we apply the following integer linear program:

S =jbl-min|Ay I max 1 — 1
 I J. i

subject to

0 < y k < X k M n ,n ,..,n.
1 2 s

l £ y • £ x .
xi x l

1 < y • < X .

16 y • £ X . J i i s s r r Since there are 2 sucli subsets we have 2 lin e a r programs.

The maximum required storage i s the maximum of the 2 p a r t i a l maximum

storage requirements.

CHAPTER 4

CONCLUSIONS

The Karp-Miller algorithm for testing termination properties

of computation graphs i s based on the termination properties of

loops. It i s , therefore, desirable to have means for testing loops.

A quantity related to the number of data words in a loop i s

introduced, which decreases for g < l , increases for g > l , and remains

constant for g=l, in the course of computation. This concept makes

i t possible to derive a simple s u f f i c i e n t condition (Theorem 2.14)

for self-termination of loops with g=l, and to give a shorter and

i n t u i t i v e l y more s a t i s f y i n g proof (Corollary 2.12) of necessary

condition of Theorem 2.6 due to Karp and M i l l e r . In the special

case that \V=U, the necessary and s u f f i c i e n t condition i s given

(Theorem 2.10). This condition has a simple form due to the fact

that data propagation has l o c a l character in this case. Since this

i s i n v a l i d i n the general case, one probably cannot hoj)e for a

simple form of the general necessary and s u f f i c i e n t condition.

The Karp-Miller algorithm i s not well suited for computation

graphs with many loops. Therefore, in part 2.3 of Chapter 2 a dir e c t

procedure for testing termination properties of strongly connected

graphs is derived. The procedure does not require inspection of

every loop as in the Karp-Miller algorithm. However, i t also uses

the i t e r a t i o n scheme of Theorem 2.9, which for large graphs may be

too lengthy.

Reiter in /l/ gives a linear integer program for determining

the maximum amount of storage required i n the special case that

40

41

b>T-W. Part 3.2 of chapter 3 extends h i s method to cover the general
case. The number of l i n e a r programs required i n our method increases
as 2 1 where i i s the number of nodes term i n a l to brandies which do
not s a t i s f y A^ > ̂ p""̂ *p» o u ^ -"-̂ appears to be more e f f i c i e n t than
s i m u l a t i o n of a l l p o s s i b l e schedules /7/, e s p e c i a l l y f o r h i g h l y
p a r a l l e l computations.

REFERENCES

flf Gregory J . and McReynolds R., "The SOLOMON computer", IEEE
Trans, on E l e c t r o n i c Computers, v o l . EC-12, pp.774-781,
Dec. 1963.

/2/ Schwartz J . , "Large p a r a l l e l computers", J.ACM, vol.13, No. 1,
pp.25-32, Jan.1966.

/3/ S l o t n i c k D.L. et al.,"The ILLIAC IV computer", IEEE Trans, on
Computers, v o l . C-17, No.8, pp.746-757, Aug.1968.

/A/ Thurber K.J. and Myrna J.W., "System design of a c e l l u l a r APL
computer", IEEE Trans, on Computers, v o l . C-19, No.4, pp.291-
-303, A p r i l 1970.

/5/ Koczela L.J. and Yvang G.Y., "The design of a h i g h l y p a r a l l e l
computer o r g a n i s a t i o n " , IEEE Trans, on Computers, vol.C-18,
No.6, pp.520-529, June 1969.

/6/ Karp R.M. and M i l l e r R.E., " P r o p e r t i e s of a model f o r p a r a l l e l
computations: deterrninacy, t e r m i n a t i o n , queuing", SIAM J . Appl.
Math., vol'.14, No.6, pp. 1390-1411, Nov.1966.

flf R e i t e r R., "A study of a model f o r p a r a l l e l computations",
Techn. Report No. RADC-TR-6S-350, Rome A i r Development Center,
Nov.1968.

/8/ R e i t e r R., "Scheduling p a r a l l e l computations", J.ACM, vol.15,
No.4, pp.590-599, Oct.1968.

/9/ Mart i n D.F., "The automatic assignment and sequencing of comput­
ations on p a r a l l e l processor systems", -Ph.D. Thesis, Dept. of
Eng., UCLA, Jan.1966.

/l O / Martin D.F. and E s t r i n G., "Path length on graph models of
computations", IEEE Trans, on Computers, vol.C-18, No.6,
pp.530-536, June 1969.

/ l l / Baer J.L.E. and E s t r i n G., "Bounds f o r maximum p a r a l l e l i s m i n
a b i l o g i c graph model of computations", IEEE Trans, on Comp.,
vol.C-18, No.11,.pp.1012-1014, Nov.1969.

/12/ R e i t e r R., "On assembly-line balancing problems", Operations
Research, vol.17, No.4, pp.685-700, July-Aug.1969.

/13/ Ford L.R. and Fulkerson D.P., Flows i n networks, Princeton
U n i v e r s i t y Press, P r i n c e t o n , 1962, pp.130-134.

42

