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ABSTRACT

Linear optimal regulators have been‘designed for poﬁer system
stabilization by dintroducing controi sigﬁals'to voltage regulétors and/or_
governors. A new technique is developed in this thesis to determine the
state weighting matrix Q of the regulator performance function with a
dominant eigenvalue shift of the closed loop opfimal system. The technique
is used to‘investigatg the stabilization of a typical one-machine infinite
system and a multi-machine system with different stabilization schemes.

The objective is to find the bést way to stabilize a power system. . An
optimally sensitive controller is also developed to offset the effects

of the changing system operating conditioné on the effort of the stabiiizing-
signal. The controller automatically adjusts its gains so that it alwajs
provides the system with the optimum stabilizing signal. A new multi-
machine state variable formulation, necessary for these studies,'is
developed. It requires minimum computations and retains all tHe'parameter
infofmation for sensitivify studies. An exact représentation of synchronous
machines is investigated and test methods are suggested for the determination

of exact circuit parameters.
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NOMENCLATURE

“ General

A system matrix
B ‘control matrix

Y state vector

u control vector

Q i positive semi-definite symmetric matrix, weighting matrix of Y
R positive definite symmetric matfix, weighting matrix of u
q vector, diagonal elements of Q

K Riccati matrix

G closed loop system matrix

K=£+jﬁ eigenvalue vector'of G

Xi,q - Seﬁsitivity vector of the eigenvalue Ki w.r.t. 4

S ‘sensitivity matrix

M composite matrix as defined in (4.18).

A,X,V eigenvalue vector, eigen&ector matrices of M and M'

o subscript denoting initial condition

Y time derivative of Y

* superscript denoting conjugate

or T superscripts dehofing transpose

A prefix denoting a linearized variable .
[ 1 diagonal matrix with elements of each machine

W synchronous angular velocity: 377 rad/s

) differential operator
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suffices a,d,q armature a-phase, d-axis, and g-axis windings
suffices F,D,Q rotor field, d-axis damper and g-axis damper windings

Aq sensitivity of matrix A with respect to parameter q.

System parameters (P.U., except as indicated)

Y network node admittance matrix

N .
ZN . network node impedance matrix
Zm network nodg impedance matrix in individualvmachine
coordinates
r+ix tie-line impedance
G+iB -terminal load admittance
R's,r's ‘winding resistances in 2, and per unit
X's,x's self and mutual reactances in @, and per unit
L's - self and mutual inductances, H
Zn armature base ohm, Q
xd,xé,xg d-axis synchronous, transient and subtransient reactances
xgo " newly defined open field d-axis subtransient reactance
xq,x: g-axis synchronous, and_subtrénsient reactances
Té,Tg short circuit d-axis transient and subtransient time
constants, s
Téo’Tao open circuit d-axis transient and subtransient time
‘ constants, s
TD ‘ d-axis damper winding time constant, s
T;O ‘ open circuit g-axis subtranéient time constant, s '
KA- exciter amplifier gain
Ty exciter amplifier time constant, s



System variables

exciter time constant, s

governor permanent droop

governor temporary droop

gate agtuator‘time constant, s

dashpét time constant, s

hydraulic turbihe.gaté time constant, s
water time constant, s

inertia constant

damping coefficient

(P.U., except as indicated)
optimal excitation signal, one-machine infinite system
conventional excitation control signal

optimal governor control signals with and without dashpot

one-machine optimal excitation control, multi-machine

system

multi-machine optimal excitation controls, multi-machine
system

optimally seﬁsitive excitation control

flux linkages, currents, voltages

torque angle, radians

angular velocity, electrical rad/s

exciter regulator voltage

gate actuator signal

dashpot feedback signal

-xi



FB’®

FB’ IDB’

DB*VQB

I

QB

gate movement
hydraulic head -

mechanical, electrical torques

machine voltages and currents in common coordinates
machine voltages and currents in individual coordinates

voltage and current matrices with diagonal elements

v and i of each machine
m m
sensitivity matrix of vm.with respect to 8.

infinite bus voltage

generator terminal voltage

generator output pbwer
applied voltages in Y, and'per unit
rotational voltages in V, and per unit
currents in A, and per unit

base armature voltage, current

base field, D-winding and Q—wiﬁding voltages

base field, D-winding and Q-winding currents.

xdi



1. INTRODUCTION
/-
The stabilization of power systems has become increééingly impor-
tant because of the increase in the size of power systemg{ the
number of interconnections, the voltage level, the number of large
generating units, and the introduction of fast-response excitation
systems and dc transmission lines. Much attention has been focussed
recently on the application of control signals to the excitation system
for stabilization, or stability contro],to-improve‘the ability of a
power system to return to its synchronous oﬁerating equilibrium after

a disturbance. These signals can be derived from shaft speedl’2’3,

’5’ ’

terminal frequeﬁcy , or terminal power7 8. They are used to off-
set the voltage regulator reference in the transient period'with the
object of producing positive damping torques on the synchronous
machine shaftg’lO. |

In view of the fast development of control theory,'more work
must be done tovexplore the possibility of deriving better methods
and techniques for power system stabilization. Optimal linear regulators
are designed and quadratic performance functions are chosenll’lz.

There are many problems unsolved. Four of them are mentioned
below. The first is that in the optimal state regulator design, the
choice of the weighting matrix Q associated with the performance function
is based entirely upon past experience or guessing. Therefore, the
designed controller is not nécessarily.the best. The second problem

is the normal controller is designed for only one particular operating

condition, and this condition cannot be estimated prior to a disturbance.



Can an optimal controller be designed to cope with the wide range
- operating condition? The third problem is the multi—machine dynamics
formulation. The proBlem’is’not how to obtain a set of stéte equations
but how tb avoid the large numbér of high-order matrix inversions an&
how tobretain all the parameter information for sensitiﬁity investigations,
Finally thére is the problem of . exact representation of synchronous
machines and how to determine the circuit pafameters from simple field
tests. This must be done in order to obtain an accurate evaluation of
system dynamic behaviour during and after a disturbance,

| This thesis provides some answers to fhe problems mentioned
above. In Chapter 2 the‘exact.equivalent circuits for the synchronous
machines are derived from the MKS voltage equations and by the use oﬁ
per unit systemé. Simple field tests 'to aetermine the exact
machine parameters are then suggested.

The mul&i—machine state equations are derived in Chépter 3
by relating the transmission network algebraic equations to individual
machine dq coordinates. _Detailed representation of excitation and
governor systems is presented. The one machine infinite bus system
is only a special case of the multi-machine system. Dynamic approxi-
mation of the formulation is then discussed.

A new technique for the design of optimal regulators is
developed in Chapter 4. The choice of the state weighting mgtrix
elements of Q of the performanqé.function_is related to theumoVements
of the doﬁinant eigenvalues of the closed locp system. The dominant

eigenvalues are shifted to the left on the complex plane within the



practical limits of the controller. o -A C-

The technique is then:applied.in Chapter 5 to-étébiiize a‘
typiéal oﬁe-machine infinite-bus system. Various»stabilizatidn
schemes are investigated. Optiﬁal excitation and/or go&ernor controls
are éompared with conventional excitation comntrol. Thé objective'is
to find the best way to stabilize a power system. o

Some  of the stabilization téchniques for the one-machine
infinite—bus system are further developed for multi-machine system
in Chapter 6. Although the one-machine design is more ofggﬂ than not
the only case considered, novmore difficulty is involved ig the
formulation or computation for¥ multi-machine systems.v Seﬁe;al ééhemes
are iﬁvestigated, muiti—machines with multi optimal controllefs or
With one optimal controller as compared with multi-machines with
individual optimal controllers or an equivalent one—machine with one
oﬁfimal controller.

An answer to the wide range operating condition ﬁrqblem is'
given invChapter 7. An optimally sensitive controller is developed
which provides stabilization for a power system which departs widely

from normal operation conditions. A comparison is .then made of the

optimally semnsitive control design with other nominal designs.
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2. EXACT EQUIVALENT CIRCUITS AND PAﬁAMETERS OF SYNCHRONQOUS MACHINES
For stability studies of large power systems, accurate re-
preséntation of the synchronous machine is required. As pointed out
by CanaylA, the conventional equivalent circuits for synchronous machines
do not giVe accurate computed field voltage and current values. He
suggested several circuits and showed éood agreement between his
test and calcﬁlated results. His circuit parameters were calculated
fromvdesign.

Questions arise: How to determine accurate circuit parametérs
from simple field tests and how to choose the equivalent circuits.

The circuits are not unique because of different base volts, base
~amperes and circuit elements.

In this chapter exact equivalent éircuits for synchronous
machiﬁes are derived from voltage equations in MKS units. Some
constraints are then imposed so that the equivalent circuits will lead
to the simplest form. A systematic procedure is then developed to

determine these circuit parameters from simple field tests.

2.1, d-Axis Exact Equivalent Circuits

Applying Park's transformation, the d-axis voltage equations

of a synchronous machine ian MKS unit can be written in the form



N I
veul = [, o [Xy Yar %ol | [Ta
v, | - 3 /
P R.F ‘ EXFa XF XFD IF« 2.1
0 R 3 x ‘i
9] By 2*pa *pr *p || | "n]

o .1
The X-matrix is not symmetric 5; Here all X's are reactances of

single-phase excitation except X, which is of three-phase excitation.

d
The numerical coefficient 3/2, and hence the asymmetry of the matrix,
results from the a,b and c three-phase excitation on the stator and
the F or D single-phase excitation on the rotor.

The matrix form itself suggests that the per unit reactances

must, and voltages and currents may, be defined as follows

x = X -EE-E X = X }—Q-B- X = ¥ i)-]i
dr aF v dp aD v FD _ “FD V
n . n FB
I T 1
3 n 3 n FB
X = (X, )= x = (X )2 x_ = _FB
Fd 2°Fa’V, “Dd 27Da’V pr = Xpr VDB
I i I
- _n - _FB . -y DPB
X1 =%y =Xy xp = Xy (2.2)
n FB i
DB
T I T
' 'p FB DB
r =R — Y = - Y. B = -
a a Vn F RF VFB D RD VDB
ig = T/ ip = Tp/lpg ip = Ip/Ipg
vg = Ve/Vy vi = Vp/Vpg

The matrix of x's is not necessarily reciprocal. To make

. , 16 . -, .
it reciprocal™, the following constraints must be imposed,



2'n In = Vesles = Vpe'pp / (2.3
/
//l
. resulting in 7
X I
X, = X, = —EE-(—EE) X, = x_. = _EQ._EE
aF ~ *Fd 7z I > 4D~ *pd Tz I
n n n n
- - g_XFD(IFB)(IDB)
T *or T 37 T T
n n n
x _Xa X =_2__E(i§)2 x =%XD(IDB)2 . (2.4)
d -z * "F 3z 1 > %p 37 ‘1 :
n n n n
= Eﬁ = 2__2(345)2 = Q.EP(EQE)Z
S z_'T » I'p T 37
n n n I’l
z =V /T

The d-axis wvoltage equations can be written now, in per unit, as

VaTla| T | Ta'PRg PXgp  PXgp a
Ve PXpy rF+pxF PXpr ip (2.5)
o | PXp4 PXpp pD+pr lD

One of the genéral d-axis equivalent circuitscérresponding to (2.5) is as
shown in Fig.2-1, which reduces to Fig. 2-2, the simplest form, if one
sets

X, = X, = X _ | (2.6)

Note that X400 Xpy and Xpg are mo longer leakage reactances. They are defined

as

de = a7 TR Fre T *F T ¥ra’ Fpp T *p T *mp. 2.7)



o %7 (rrdCepipg) o

Fig, 2-2 Simplified d-Axis Circuit

The following information, although not needed in the
determination of parameters from field tests, is useful in design.

From (2.6) the current ratios of (2.4) can be determined as follows

Tep _ 3 Xap
R
Top 3 %ar
In 2 XFD

Substituting (2.8) and (2.9) into (2.4) and the results into (2.7)

(2.8)

(2.9)

the circuit parameters of Fig. 2-2 can be expressed in terms of winding

parameters as follows



3 XaD XF XaD XaF o '
T 2X 7 X% (2.10)
FD ™n FD n :
< = §;XaF(§Q XaF _ an)
D& 2 XFD Zn' FD Zn
Koy = X . = X = §_§§E_X3D
FD Dd Fd 2 Z. ¥y
p o2 . L3 Elabp 37D laRp
a Zn F 2 Zn XFD D 2 Zn XFD

2.2. q-Axis Exact Equivalent Circuits

The q-axis voltage equations for a synchronous machine in

MKS unit are as follows

(2.11)

(@]
w
oo
>
>

N . .1 . . '
The X-matrix is again not symmetric 5. While Xq is a reactance of

X and X, are of single-phase excitation.

Q” "Qa Q

The matrix form suggests the following definitions of per . unit reactances,

three-phase excitation, Xa

voltages and currents

_ | _ 3
XqQ _,XaQ IQB/Vn ’ XQq - (ZXQa)In/VQB ‘
x, = X /v, %4 = g IQB/VQB (2.12)
r = Ra In/vn s rQ = RQ IQB/VQB

i =1/1 , i

q q mn Q 'IQ/

IQB, Vy = vq/vn, vy = Uq/Vn



, , 16 , .
To make the x-matrix reciprocal™ , the following constraint must be

imposed _ ' _ //

3 _ :
5 VnIn = VQB IQB //
{
resulting in
Q@ " z I a 2
. =25 fem2 2% lep2
Q 37Z I ’ Q 372 1
n n n n

The per unit ¢-axis voltage equation now can be written as
v ~-u =!lr + px PX i
q q a q qQ

O_ prq rQ+pr iQ

q

The general g-axis equivalent circuit corresponding to (2.15) is as

Fig. 2-3.

X70

o

Fig. 2-3 General ¢-Axis Equivalent Circuits

where

= — =X —
¥qp T ¥q T FqQ Fp T ¥ T F

Although x

Qq

of Fig. 2-3 exactly represents the mutual

qQ

reactance and qu and XQQ the leakage reactances, mathematically,

(2.13)'

(2.14)

(2.15)

(2.16)



however, the branch reactance x can be set equal to xq or x. resulting

qQ Q

in two simplified equivalent circuits, Figs. 2-4 and 2-5 respectively.

o

Xay ‘ fa ) Xqt f

a

Fig. 2-4 q-Axis Circuits Fig. 3-5 q-Axis Circuit
X =X ‘ X o = X.)
( qQ ) ( qQ Q

q
The parameters of these two ciréuits can be easily determined from
field tests. They can also be expressed in terms of winding parameters:

Tig. 2—4,‘x = x
R T T

From (2-14) one has

I
QB _ g
In XaQ
Hence
2 %q *q_ |
X, = X, = X, = (5o - L)x (2.17)
QL Q Qq 3 X, XaQ q
o= ﬁﬁ. r = E.Eg{fﬂ_)z
a Zn Q 3 Zn XaQ
Fig. 2-5, qu = XQ
From (Z.14) one has
fo _ 3 *a0
In Z.XQ



Hence

- - - .3 _aQ _aQ ,
xqz xq qu (1 > X X ’)Xq B ' (2.18)
q Q
. _la . _'Q_RQ(EEQZ
= , =
a Zn Q 2 Zn XQ

- 2.3 Circuit Parameters in Terms of Conventional Parameters

From IEEE test codel7 eight conventional d-axis parameters,
: . . 1 " ‘T' 1" : 7 " ] .
leevs T 5 X4 Xy X35 Ty Td’ Tdo and Tdo can be determined There

are two identities

B 1]
4 4 4 _d (2.19)

To determine the seven d-circuit parameters of Fig. 2-2, with IEEE
test code, an extra test is necessary. It is suggested to measure a
newly defined parameter xgo or a damper time constant TD.

There are five independent equations for the two sets of

18 ,
parameters”  Dbesides ros

X X
DA*Fy,
X, =x, tx ., x\=x, +—F]
d dg Dd d dg XDd+XF2
X X X
X = xy, ek - (2.20)
pd*Fe " FFL*De 0o *nd
- T = .
Oy Trlao = *pa T ¥py
X X
b e T =k 4 DA¥FY

o D'do DR Xn4q +_XF£

It XHO is seperately determined, then we have another equation

X X
. bd by | (2.21)

de — xpy *oxp,

11
x'! = x
do



The solutions of the circuit parameters are

v | " LI
o X (RgmRy ) X gxy, (Xgmxy

- X =X - [/[X - S TN T_ 1
dg | (xd Xdo) (xd Xy
where
. "wo_ 11
*a*d T *a%do o
X = (x —x" )= (x' —x" (2-22>
d “do d.d
and
'—
T W U
pd  Fd7*de’ *Fy T % .-x| Dd
: d “d
[ "_
(g% qp) (Rg%4y)
Xy, = g : (2.23)
d ~d
x2
. = 1 Dd
- Y )
F ondo xd Xd
2
o
- 1 EgEgy)
D ondo X =X
Next, if TD is separately determined, we have another equation
,onD = xD/rD (2.24)
instead of (2.21). The solutions are (2.23) and
T”
x, =x' - (x,-x" ¥ (x'"-x" __do_ (2.22a)
aL d d °d"*"d "a’T -T"
D "do

The current ratio IFB/In of (2.4) can now be:determined, but not
IDB/In since there is no way to measure RD because of the short circpif.
The vol?age ratio VFB/Vn.can then be determined from (2.3).

‘The q-circuit parameters can be easily determined. TFor

Fig. 2-4 we have



*qQ" e E |
1" = 1" - + .
Xq XqQ+XQQ BN qorQ XQQ qu , (2.25)
A ,//
- The solutions are _ /
i 1" 2 ,"/
e L e (2.26)
X =X s X = AL T =) T ] 2.2
qQ q QL X %q Q onqo %, "Xy
For Fig. 2-5 we have:
X" =x w T r. =x , X =X _+X C 2.27
q qt * To'qo Q .7qQ q qQ q2 ( )
The solutions are
qu = X; , X =x -x" , r, = }” (x -x'") (2.28)

qQ T ¥Q*q™*q * o T w I" g T%q ‘

2.4, Extra Tests to Determine T _ and x|
" 1) -do

Two test methods are suggested to determine TD and one to

determine xgo. All methods were tested in the laboratory.

2.4.1., Determination of T. from a Varying Slip Test

The rotor is driven at various speeds. Positive sequence
voltages are applied to the armature winding with the field open. From
phase voltage-current ratio equivalent reactances xd(s) and xq(s) are
approximately determined. Replacing rh by rD/s in Fig.2.2, the imaginary

part of the circuit impedance is a function of slip s as follows

2
) .o xT.x
x.,(s) = x, - dP D , L (2.29)
d 47T a2
D oD s
or , rz .
L P B - (2.30)
xd—xd(s, 2 « s’ X2 . v
dD™D db

13
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X% (s)

A
0425

S - . L

(]

Fig. 2-6 Determination of T. from Slip Test

D

which can be plotted as Fig. -2-6 for the determination of TD.
An accurate value of X from open and short circuit tests, must

be used for the calculations.

2.4.2. Determination of T from Decaying Current Test

Q- oxis

Fig. 2-7 Connection for the Decaying Current Test

. 19 .
Kaminosono and Uyeda's indicial response method ? is

modified to determine T Since a clear step voltage is hard to

D’

obtain, a decaying current is used instead. Apply a constant current

14
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to one phase winding in the d-axis position and then suddenly short
circuit the armature terminals with the switch Sw in Fig. 2-7. The
rheostat R protects the power supply.

The voltage equations for Fig. 2-7 in Laplace transform are

0] = ra+sLd sLd-D Ia(s) - Ld LdD i,

0 . sLdD rD+sL ID(s) LdD LD o

(2.31)
D

where iao is the initial current in the armature winding. The solution

of Ia(s) can be written in a convenient form

s+ Tﬁ .
I (s) = i : (2.32)
a (s+ %-)(s+ %-) ao :
o 1 2 -
where
v _ 2 _ v — . '
T = TD(l KDd), T T, = T TL » Ty+T, = T +T, (2.32a)
and
T. =L /v T, =1L/t 2 . L2 /L.L (2.32b)
p = Ip/Tp o Tq = Lg/ty s Kpg = Lpg/Laly | '

Ia(s) of (2.32) can be resclved into two compbnents

i i

I_(s) = }0 + 22 . (2.33)
S+. T— S+ ’,f‘ a .
1 2

and it can be shown that the initial component current ratio

(2.34)

From Tﬁ, Tl + T2 of (2.32a) and_(2.34), the following solutions are

obtained



= . ‘ . . t = . . . )
Ty = (ygTy + 5,0T) /3, s Ty = TyTy/Tys Ty = (AT T /A (2
Tl’ TZ’ ilO and 120 are determined from a semilog plot as Fig<’2—8.
. /"
The Td value from (35) should be checked with /
. v (
. g‘x
p.o=37d (2.36)
d wr
» o a
;yo
3
gfn
g 4
§:
2

49 &0
TIME (m3)

Fig. 2-8 Reéalving‘Decaying-Current into Two Components

2.4.3, ‘Determination of x"
‘ do

Dalton and Cameron's method20 to determine XH is adapted

to determine xgo. The rotor remains stationary and the field winding

is open-circuited. Single phase voltage of rated frequency is applied to
each of a pair of stator térmiﬁais in turn, leaving the third terminal
open. Three such tests are performed with the rotor position fixed
throughout the tes;l The érmature voltage and current and the field
voltage are recprded in each.testf

Let the single~phase reactance X be a function of 6, the
angular position of the rotorv

X =K+ M cos 20 (2.38)

16
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and let the voltage-current ratio of the three tests be A, B, and C,

/

It can be shown that ) _ /
. - Y
+ B + S
e / (2.39a)
| 2 (Cc-n)?
and ' M = [ (B-K) + g
. - ’ . . (2.39b)
‘The open field d-axis subtransient reactance is then given by
+
" . K-M
xdo - 2 (2-40)

The plus sign should be used if the largest measured reactance, A, B

or C, and the largest measured field voltage occur in the same test.

2.5 Laboratory Test Results

The methods thus developed were applied to a small synchronous
machine to determine the circuit parameteré. From IEEE test code the
following d-axis parameters are determined.

r, = 0.729, x, = 16.280, x| = 2.74Q, x| = 2.42q

d d

d

1 = oo
Ty, = 0.27s, T = 0.027s

The per unit values can be obtained when the base ohm Zn is chosen.

From extra tests the following are determined

A TD = 0.049 s (varying slip test)
B Ty = 0.055 s (decaying current test)
C- xgo = 8.18 0 (adapted Dalton and Cameron)

The computed results of d-circuit parameters in ohms are as follows

17



18

*pd *ae *Fy DL Tp D

A 15.8 0.40 2.75 14.6 0.182 1.66 =/

X

B 15.5 0.68 2.38 10.9 0.176 1.28 /

c 15.9 0.33 2.8 15.5 . 0.184 1.76

The discrepancy in results of B is attributed to the difficulty of
resolving the decaying current into components. The field resistance
RF is 702 and the current and voltage ratios are

IFB/In = 0.0625 , VFB/Vn = 24

For the gq-axis

x =9.71 0, x" = 7.2.0
q . q

are determined by conventional methods and
" = 00,0165 s
qo
by a decaying current method similar to Fig. 2-7. The computed results
of gq-axis parameters

= 6.05 Q

i

Fig. 4 x 9.71 @, x 27.89

I}

bl rQ

= 2.51 9, ry = 0.407 0

qQ QL

Fig. 5 x,, = 7.2 8, xéQ



3. STATE VARIABLE EQUATIONS

/

OF MULTI-MACHINE POWER SYSTEMS21 //

r'(
/
/

In stabilization studies of large interconﬁected/multi—
machine power systeﬁs; the system dynamicé must be expressed in the
state variable form Y = AY + Bu. Laughton22 suggested a method of.
buiiding the A matrix ffom matrix elemination of algebraic and.
differential equations. Undri1123’24 proposed to build up the A
matrix from individual system submatrices. Undrill's method requires
a matrix invérsion of mn x mn for m machines each deécribed b? n-th
order equations. The system parameters are not retained in the
final fofmulation. This is also the case in Laughton's formulation.

In this chapter a new multi-machine formulation is proposed.
The main objective is to reduce the number of matrix inversions and
to keep them of low order. 'All the system parameters are retained in
the final formulation making it convenient for sénsitivity and control
studies. The synchronous machine parameters are based on an exact
equivalent circuit, and can.be determined from field tests as

described in chapter 2.

3.1. Terminal Voltages and Currents

Let the individual synchronous machine rotating coordinates
be d and q and the common rotating coordinates of the complete system
be D ahdAQ. Let the terminai voltages and currents of all machines in
dq coordinates be a vector vm.and a vector .1'.m and those in DQ coordinates

i

be a vector vy and a vector iN respectively, and let the phase relation


http://can.be

of the k~th machine with respect to the two coordinate systems be

as in Fig. 3-1. ' : /

9 : IO /

Fig. 3-1 Components of vk in dg and DQ Coordinates

>

Then we have for the k-th machine

N L1 . 30k,
Vik et v e A = e (3.1)
and for a group of m machines
_ .38 . oS,
vy = [e ]Vm’ iy [e ]1m (3.2)
The transmission system is usually considered as a static network in
stability and control studies,
iy = YNVN ; (3.3)
Substituting (3.2) into (3.3) we have
Vm = Zmlm ' (3~4)
where o
“3817, 1ol
Zm [e ]ZN[e J] (3.5)
and 1 .
Z. =Y ' (3.6)



Note that the highest order matrix inversion required in the formulation

is Y—l. Expanded we have

N //
v = R - X i /
d m m d (3.7)
v X R i
q “m m q
where
ZN=RN+JXN’_Zm=Rm+JXm (3.8)
R (i,§)] = (1,3) =X (i,3) coss .,
m RN N ij (3.9)
X (1,3) 'XN(l,J) Ry (1,3) s1naij
§,, =68, - 8§, (3.9a)
11 1 J
3.2. Nonlinear Machine Equationé
The synchronous machine equations are as follows. For
the i-th machine
Vg T PVt Tp i
Va T plpd T Tatd T wewd
_ o , (3.10)
vq = pwq ralq + wewd
0 = pip + rpip
0 = + r i
P¥q * Tolq
where
Vg * *rda ¥ 'p
vl 1 | x,. x X -1 '
d| = . dF d dn d (3.10a)
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(3.10b)

Note that -id and’~iq are.uéed in the synchronous generator equations.
Actually all the‘notations of (3.10) should be given a suffix
"i" for the i-th machine, except fo? p and & which are common to all méchines,
The suffix is dropped for clarityf It is also intended that the same
eqﬁations be used fof the description of multi-machine systemg. In such a
case all the v's;~ i's and Y's of‘(3.10), Become column vectors, and x's

and r's, diagonal matrices. These statements apply also to the rest of

the chapter.

The current solutions of (3.10a) and (3.10b) have the form

ig] = | Ypp Trg Yep | | Vp
—ia Yip Yiq Yip Uy (3.11a)
ip Ipr “nd Yo, ¥p
aﬁd
[—iq | Yqq 90 Vg
g Yoq Y Yq R

Note that the solution of currents from (3.10) for individual machines

does not involve equations of other machines. The Y matrices of (3.11)

are not the inverses of the x matrices of (3.10).

If equal per unit

mutual reactances are used, the elements of the Y matrices of (3.1la)

of individual machines can be determined directly from the d-axis exact

equivalent circuit of Fig. 2-2 using the well-known star-mesh relations

in network analysis.



Substituting i, and iq of (3.11) into (3.7), and the results

into V4 and vq of (3.10), we have

p[ vyl = [-Rt -RY,, O Y RY XY o
lpq : _XmYdF —we—XmYdd —Rqu —XmYdD —RYqQ
- .
where '
R = Re Zm.+ [ra] | (3.12a)

Substituting iF’ iD and iQ of (3.11) into Vs vD=O, and vQ=0 of (3.10),
we have

PV = “Tplpr VR T TRpaVa T TrimpVp t Vr

PVp = “Tpipp Y = Tplpa Ve T Tpion Vo (3.13)

Ply = TTo¥qq Yq T T¥an Yo

~ Thus the transmission line relation (3.7) at the machine terminals has
been included in the nonlinear state form of machine equations (3.12)

and (3.13).

3.3. Linearized Machine Equations

When equation (3.4) is linearized, it has three terms,
<Avm =2 Alm + JZm[Adi]lm - J[Aai]vﬁ_ . (3.14)
which can be written as

Av

M

il

z AL+ JU A8 ) (3.14a)

where

e
it

Z1 - Vm ' | (3.14b)



Note that AGS, im and v are column vectors and [AS], Im and Vm are

diagonal matrices, Since

the voltage equations V4 and.vq of (3.10) can be written as

vy =Py = [r ] i+ 3l Jv

m
After linearization and making use of (3.14a), we have

pAY = [Zm+<ra)JAim-j[we]Awm—j[wm] b +IU_AS

Expandediand with the substitution of id and iq from (3.11) we ha&e

P Awd = --RYdF —RYdd we+Xquq —RYdD XquQ
A~1‘bq _XmYdF —we~Xm¥dd —quq —XmYdD _RYqQ

!

C LB By BB, By, Ak

+

-Umq [wq] AS

Umd LlPd] Ame
Equation (3.13), after linearization, becomes

PAbp = = rp Yppolbp = rp¥p =8, = rp¥pp ¥y + Avg

= - ° - o A1l - °
pAvy ry Ypp &by — rp¥pg8¥y - rpipptavy

POV = = g Yoq 8%~ Tq¥aq MY

(3.15)

(3.16)

(3.17a)

(3.17b)

Equations (3.17a) and (3.17b) are the linearized multi-machine equations

3
in state variable form.

24
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3.4. Exciter and Voltage Regulator System

Fig. 2 shows the block diagram of a typical exciter voltage

regulator system

e

= f ! VF
l‘+ TE )

Fig. 3-2 A Typical Exciter-Voltage Regulator System

The corresponding state equations are

: 1 1
pAvF = - E-AvF + T—-AVR : o . (3.18a)
E. E : .
K K
1 A A
PAV, = = == Av_ - — Av. + — u : (3.18b)
R-TT, CRTT, e T TR
Since
vtAvt = vdAvd + quvq | . (3.19)
then from (3.1l4a)
av, ] =[r  -x ] [ag + [-u AS
d m m d mq (3.20)
Av X R Al U i
m m md

Substituting Aid and Aiq of a linearized (3.11) into (3.20), the results

into (3.19), and the results into (3.18b), we have

pAyR = A(7,1)AwF + A(7,2)Awd + A(7,3)Awq + A(7,4)A¢D

: K
: 1 _A
+A7,5)00, - T, by, + A(7,8)88 + T, ' (3.21)

where
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A(7,1) = MYdF s, A(7,2) = Mydd ,» A(7,4) = MYdD
ACT,3) = NY_, A(7,5) = NY
(1,3 = Ny s AL =W
,.' . i KA : .///
A(T8) = =5 (Vg0 = Vg Uy |
t .
Ky Ry
M= [E'——’\—/—] (VdRm + Vqu), N = [T . ](Vqu - Vde) ' (3.21a) ‘
At . At
KA .
Note that [T - 1, Vd, and Vq are diagonal matrices built up from the data
At :

of individual machines.
So far we have eight state variable sets in the order of

(IPF’ Rbd;d)qs wD’ wQS VF’ VR’ 6)

3.5. Torque Equations

The linearized torque equation ‘in MKS may be written

pAS = Bu_ | (3.22)
b = T[AT - AT - AT.] (3.23)
POUL T T8 e D ‘

Now if Awe's unit is changed from MKS to per unit, and per unit
mechanical torque Atm and electrical torque Ate are used in the formulation,

(3.23) becomes
'wnAwe Tn Awe'
= -5 (tQAtm - Dto ——L:); —Ate) | (3.23a)

P PP

where pp is the number of pole pairs, w, the base electrical rad/s, Tn
the base torque of the complete system, tOTn the base operating torque

of an individual primemover, and
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A D / Aw
D=v¢rT ® (3.23b)
on o
Thus we have
2
.wo .Awe
pAwe = 35 (to Atm - At - Dto —w—o—) . (3.24)
where
W w
1 o n,2 '
H = 5 J( o7 ) /Pn , , (3.24a)

and Pn is the base power of the system. Note that

Www = 1207 rad/s (3.24b)
on _ o

Thus w, = 1 if real time is chosen as the base of computation. Other-

wise all time constants and H must be multiplied by w . Now since

At

A(wdiq - wqid> ~(3.25)

and

Bt =g + 1.5h , (3.26).

for a hydraulic system, substituting id and iq from (3.11) into (3.25)

and the results into (3.24), we have

pAwe = A(9,l}AwF + A(9,2)Awd + A(9,3)Awq + A(9,4)A¢D

woD wgto. 3 wito
+ A<9,5)A\JJQ - -Z—ij— tkoe + ~7ﬁ g + Z q h (3.27)
where ‘ 2 -
Yo
0,1 = - 5 [b] Ygp
2
‘ wo
£(9,2) = - 55 (1] + [V 1Yy
: 2
wo
A9,3) = g ([0l + [T,D) |
wz : . (3.27a)
- . 9 .
A9,4) = = 5 [0 17y
2
u)o



-[I = X + Y [y,
[r, qq[wal 1olve!
SIIg0 = Yaplupl + Yaqlugd + Y plupd / (3.27b)
The complete state variable sets are /

{
t

(wF’_d}d’ qu l.UDs ‘J)Q, VF’ VR’ §, we> a, af, g h) - (3.28)

including governor actuator signal a and feedback a,. as in Fig. 3-3.

£

3.6. .  Governor-hydraulic System

Fig. 3-3 shows the block diagram of a typical governor-

hydraulic system

Fig. 3-3 A Typical Governor-Hydraulic System

The corresponding state equations are

--_._.Q. _-.1'... —_ A — ——
pa = - g am g as Uy AW T T Yg
a a 0o a a
T s R S SO W
Pag T T 7T 7% TwT e T Y
a a a a
(3.29)
I
Pg =y a- T 8
g g
‘ 2 2 2
ph = T 8 + T; g -7 h
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3.7. State Equations

There are altogether 13 sets of state variables, (3;&8).
Edch set is an m-vector for an m-machine system. Equation§;k3.l7a),
(3.17b), (3.18a), (3.21), (3.22), (3.27) and (3.29) are th; complete
sets of the system staté.equations. They are assembled into a matrix

equation form as

Y = A Y + Bu, . (3.30)
o ,
Y % A(wF  wd wq wD wQ Ve Vp 8 w, a ap ¢g h), -(3.30a)
: ’ . v :
u = (uE ua), . (3.30b)
K. ’
oooooo—T-‘-‘-c?)o 0O 0 0 0
B = A
. , -5 . (3.30¢)
0°0 00 0 0 0 o.o-%l——t—o 0
. ) T

and A is given'as equation (3.30d) including (3.21a) and (3.27a) as
the auxiliary equations. It is obvious that any other type of excitér
and governor systems can be easily incorporated with the rest of the state

equations.

3.8. Multi-machine System with an Infinite Bus

For the study of m machines with an infinite bus, the.matrix

equations (3.4) can be partitioned as

(3.31)

Linearization of (3.31) can be written as



A=

“Tpipp

A(7,1)

4(9,1)

-rFYF d 0
RYgy @K Yo
“Yo~XnTag -RY
' o ag
-rDYDd 0
0 “Tqlaq
0 0
VA(7,2) A(7,3)
0 0
A(9,2)  A(9,3)
0 0
o o
0 - 0
0 0

~Tplpp

~Tp¥pp

A(7,4)

A(9,4)

Xy
m qQ

-RYqQ

A(7,5)

A(9,5)

0

-1/TA

0

A(7,8)

0

0 0

Le] 0

—[vd]. 0

0 0

0 0

0 0

0 0

I 0

—:g? % o
-l/ona' -a/Ta

—Sk/wOTa -ed%/Ta

0 1/T
/ g

0 -2/T
/ g

-1/1

=1
T
r

»alv\
o |+ @

w-t

H

0

=1/T
/ g

2/T

(330d)




31

Av = [z z pil + 3z z I 0 |-V 0 . |'AS
m mm mee m . mm mee m m m
7 .
Avoo zoom 0000 Aloo zcom Zooco O loo 0 /yoo Aaoo (3 . 32)

Note that Im and Vm are diagonal matrices with im and Vo, as’ diagonal
elements respectively. Since for an infinite bus we have

Av =0 (3.33a)

o]

AS =0 (3.33b)

o]

Substituting (3.33) into (3.32) and eliminating AL results in

MW = Z_ A+ 3 U AS ' (3.14a)
m m m m m
where
U =21 -V,
m m m m
and
Z. = zmm -2 . me/zmw (3.34)

The linearized state equations of the multi~-machine system with and
without an infinite bus have exactly the same form. But we have to
eliminate the infinite bus when the network impedance matrix is expressed

in machine's dq coordinates, (3.34).

©'3.9. Simplification of Power System Dynamics

For system analysis and design purposes it is usually desirable
to simplfy the dynamic description of the system. Numerical approaches
of approximating high order systems by low order systéms are availabiezs’26l
The principle involved is to retain only the dominant eigenvalues of
the e*act system in the reduced model. The individual system parametric

values, however, are completely lost during the process of numerical

approximation.



The simplifiéétion of}power system dynamics is different
~in nature. It is governed mainly by the degree of accuracy of déscribing
‘the flux linkage variations of the synchfonous'machine windipgé. Three

different apﬁroximations are suggested /

A: complete description for tﬁe system, 7th order syn-
chronous machine, first order voltage regulator and 4th
order governor. |

B: mneglecting damper winding flux linkage variations, i.e.

Pp =P ¥y =0
C: neglecting damper and armature flux iinkage variations
P%=WQ=0,

and

i

pq)d = qu 0,
C': The same simplification as in model C, except that the

system has no governor representation.

The simplification can be easily implemented on fhe high
order system equations (3.30) using matrix elimination technique. Tﬁe
linearized state form equations of a multi-machine power system with 5th
order synchronous machine, model B, with second order voltage regulafor
and exciter system are giVen in appendix A. TFrom the numerical example
of a typical one machine infinite system, Fig. 5-1, iF is found that the
dominant.eigénvalues differ very little from each other in the different
simplification mefhods. Table 3-1 shows the eigenvalues of,thé
typical one machine infinite system of different modelling. Although

there are dynamic couplings among all system state variables, roughly, the



Eigenvalues
model #1 #2 #3 #t4
' ‘ ~14.8,-2.24,
A .165+74.69 -15.2,-3.99 -1.15,-.034 -847+13151,-26. l -12.4
‘ _ _ ~15.1,-2.23, | _, o .. /!
B |.229454.67 | -16.9,-3.76 | 17710703, | -486£1857

~15.1,-2.23,

C |.234434.67 | =16.9,=3.77 | _3715" g3y

c' |.178+34.77 | -16.9,-3.68

Table 3 1 Eigenvalues of the Typical One Machlne
Infinite System of Different Modelling

4 column eigenvalues correspond to the mechanical system, the voltage
regulator and excitation system, the governor system, and the synchronous
machine armature and damper windings respectively. Here Column #1:

gives the dominant eigenvalues. -
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4, OPTIMAL LINEAR REGULATOR DESIGN

WITH DOMINANT EIGENVALUE SHIFT27

Optimal linear regulators have been designed for power

1,12

systemstabilizationl and for frequency controlzs. The perférmanCe

function J must be chosen in the quadratic form,

J =-%- éw(Y'QY + u'Ru)dt » , (4.1)

The choice of the weighting matrix Q of (4.1) is entirely left to
experience and guessing until satisfactory results are obtained;

Ip this chapter a new method is developed to determine
Q in conjunction with the dominant eigenvalue shift of the closed
loop system as faf as the pfactical contréllers permit. For the eigen-
value shift of an n-th order system, it is found that it is‘sufficient
to adjuét thé n diagonal elements of the Q matrix alone without the
need of.chahging the off—diagonai elements.A This also leaves out the
change in R élements which decide the relative strength of the different
control signals and can be left entirely to economical and practical

considerations.

4.1, Linear Optiﬁal Regulator Problem

The linear optimal regulator problem may be formulated as
follows. Consider the linearized system state equations
Y = AY + Bu . (4.2)
TFind the optimal control which minimizesthé chosen quadratic performance
funcfion of (4.1) subject to the system dynamics constraint (4.2). The

optimal control is given by29

34



u=-RT'B" K Y
and the Riccati matrix K satisfies the nonlinear matrix algebraic
equation

1

KA+ A'K - K BR "B'K = —-Q

With u decided,the closed loop system equations become

where

G=A-p?!

B'K

Thus the eigenvalues of the closed loop system G depend upon the
selection of Q for J in (4.1). Consequently the designéd optimal
controller is not necessarily the best since Q is arbitrarily chosen.
On the other hand if Q is adjusted.constantly and simultaneously wifh

the dominant eigenvalue shift of the closed loop system, the results

will be. the best.

4.2. FEigenvalue Shift Policy

The shift is restricted to the real part ard to the left.
Let all the eigenvalues of G be ordered as a vector always

with the eigenvalue with the largest real part as the first element,

35

(4.3)

(4.4)

(4.5)

(4.6)

Ai, and the rest in decreasing order of magnitude. A three-point shift

policy is established to avoid unnecessary and undesired large change

inf4q which may result in impractical controller gains

'

1. Assign a negative real shift € to the most dominant eigenvalue
A .
1 only
2. Keep all negative movements of less dominant eigenvalues,

e.g., those having negative real parts up to five or ten



times that of Al,ktkhﬁls and damp out all positive movements
~ to the right to avoid their to and fro motion.
3. Relax the movements of the remaining eigenvalues to avoid

unusually large controller gains.

4,3, The Shift

Let the incremental change in an eigenvalue Ai resulting
from the change in the diagonal elements of the Weighting matrix Q,
written as a vector q, be
= 3! : 4.7
Aki ki,q Aq ( )
since for a conjugate eigenvalue pair

o=t ! (4.8)

-Xi,q = Xi+l,q ' (4.9)
Therefore the increments
Axi =_AA§+1 (4.10)
There are, in general, k real eigenvalues and (n-k)/2 conjugate .
eigenvalue pairs of the n-th order closed loop system G, and only
(n+k)/é independent eigenvalues.need to be considered in the shifting
process. Let the number be p. Let the p-eigenvalue vector shift be
A =x,q Aq ' (4.11)
and let them be separated into real and imaginafy parts
AN = AE + jon (46.12)

Then the real part-of AX may be written
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AE =S+ Aq (4.13)
- where - . : d

S = Real (},q) o (4.18)

"4.4. Determination of Aq

Let'the number of dominant eigenvalues be m. = Since Al
cannot be shifted alone, let a weighted total real shift of the m
dominant eigenvalues be -

I = elAg(l) + szAg(z) % e + emAg(m) (4.15)

From (4.13) we have

= 4¢"Ag - (4.16)
where | |
b = (¢l,...,¢i,...,¢n)' - (4.16a)
and | |
¢, = 8,S(1,1) + 8,5(2,1) + ... 48 _S(m,i) - (4.16b)

The B's are positive numbers satisfying the shift policy point two.
To make T negative, Aq is moved in the direction of the
steepest descent,
Ad = -k¢ , Rv‘o . | (4.17)
The step size k is so determined that it will have a negative shift

for the most dominant eigenvalue Al.

4.5. Sensitivity Coefficients A,q

Although Chen and Shen30 gave two algorithms to compute

~A,q their method requires many computations and large computer storage.



A new sensitivity formula for A,q is developed in this section. The
computation of A,q and the solution of the Riccati matrix K will be
much simplified through an eigenvector matrix X of a composite matrix

M; o -
A -pr " 1p

-q _AY | (4.18)

The composite‘matrix M has the following propertiesBl’32

1. The 2n eigenvalues of M are symmetrically located with
respect to both real and imaginary axes of the complex plane. Let

the eigenvalue vector A of ‘M be partitioned as-

A= [AI’ AII]' (4.19)
where'AI has negative real parts and AII has positive real parts.
Then we have
App = -hy | - (4.20)
2. The eigenvalues with the negative real parts of M are the
same eigenvalues of the opfimal closed loop system G, i.e.
AI =»(kl""’ki""’xn>' (4.21)
3. The solution of the Riccati matrix equation (4.4) is
K= X, X" (4.22)
where )
o XI X111 ' ‘ (4.22a)
X1

is the eigenvector matrix of M, and the first column of the eigenvector

matrix X corresponds to the stable eigenvalues AI'
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4, The eigenvector matrix of M' may be written
X
V = Iv. 1T
X %

Let an eigenvector of the stable eigenvalué)\i of M be

— . 1
Xy = (XIi > XIIi),

and that of M' be

Vi = Kpyg s Xpppg

Following Faddeev and Faddeeva33; we have

AN, = VoM X,
1 .Ci i i

Wheré
cC, = VX
1 i 1
Since in our case
0 0
AM [-AQ O]
We shall have
i Ci III4 Ti
For the diagonal changes in Q We Writef*”
— ) 1 ‘
'Axi h Ai."'q Aq
where
M,q 7 Paiqrr M,q200 0 a0
and |
A Loy ) XL )
i,q] C, "IITi T1 ™

where -

)l

b

i,gn

"

(4.

(4.

(4.

(4.

.
“.
(.
.
.

.
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28)
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31)



i :

O
I

{ S}

N ~Ms

) [Xpyy (00X (30 = Xpppy ()% G (4.32)

4.6. Algorithm

The algorithm for the design of linear optimaivrégulators
with dominant eigenvalue shift is summarized in Figf 4=1.

! 0:0Q4 0:0+40 A AND X K
! OF M
A0
S CHECK
CONTROLLER
GAINS
4q

Fig. éfl Algorithm to Determine Q with Dominant Eigenvalue Shift

1. Start with a small arbitrary Q.

2. Find the eigenvalues A and eigenveétérs X of the composite
matrix M.

3. Calculafe K from the stable eigenvectors of X32 and check

the controller gains at each shift,
44, Find Aq from the sensitivity coefficieints X,q.
5. Update Q and repeat the process until a satisfactory eigen~-

value shift is made or until the practical controller's

limit is reached.
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5. OPTIMAL POWER SYSTEM STABILIZATION THROUGH
27

EXCITATION AND/OR GOVERNOR CONTROL

‘In this chapter the linear optimal regulator-design technique
developed in the previoﬁs chapter is applied to the optimal stabilization
of a typical one machine-infinite system, Fig. 5-1. Three different
optimal stabilization_schemes are investigateda the first with an
optimal excitation control Ups the second with optimal governor controls

and ué s, with and without the dash-pot, and the third with u_ plus

e

u

E

t

G control. The linear optimal stabilizing signals thus obtained are

tested on a high order nonlinear model of the system with detailed
description. It is found from the test results that the optimal controls
are more effective than conventional excitation control, that the optimal

governor control with the dash-pot removed is just as good as the optimal

t

G control is the best

excitation control, and that the optimal u_ plus u

E

way to stabilize a power system.

'5.1. System Data

A typical one machine-infinite system as shown in Fig. 5-1
is chosen for this study. The regulator-exciter and governor-hydraulic

systems are shown in Fig. 3--2 and Fig. 3-3 respectively.




i
i
;

Fig. 5~1 A Typical One-Machine Infinite System

The system data are as follows

r X - G B | vo vt
~,034 .997 . 249 . 262 1.02 1.05
oy " . " "
Xd xd xd xq xq TdO
.973 .190 .133 .55 216 L0436
Ry Ta Ty, Rp o 8¢
50 .05 .003 .182 05 .25

The controller constraints are,

exciter amplifier limits (p.u.) 8.83 and -7,
dash-pot signal limits + .025 p.u.,

governor gate speed limit .1 p.u./sec,
excitation cbntfol limits + .12 p.u. énd{“

governor control limits + .015 p.u.

For the design the synchrouous machine is described as a

TITRIRR <

.952

"

.0939

.02

4.63

third order system with (wF” 8§, w)' as the state variable vector. This

is done by neglecting the flux linkage variations in the armature and

damper windings.



5.2. Case 1l: wu_ Control

14

The system has an optimal excitation control u

The time

constant T. of a solid state exciter is neglected and the voltage

E

regulator of Fig. 3-2 is approximated as a first order system.

data given, the per unit linear state equations for the complete system

are
FA¢F
by,
18
[ Aw J‘
where

The optimal control signal u

-.196

-50.9

| -2.94

(-.O99A11)F - .OOAAVF - 6248 + 0.1Aw)

1.0
-20.
0

0

-1.39  -.003]
87.0  -2.4
0 1
-22.6  -.008]
. = 1000 u

is found as

The final value of the diagonal elements of Q are

(2524

U

The control weighting R is unity.

The eigenvalues of the initial svstem without u

and the eigenvalues of the final system with u

(.178 + §4.77

913.6

23865)

, =3.68

» =3.85

E
-16.9)
P control are
, =16.7)

[CSA
=
£

64

5 W

control are

Thus the dominant eigenvalue pairs are shifted from

(.178 + 34.77) to (=2.07 + 34.9)

For the

ex

(5.1)

(.1la)
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- 5.3. Case 2a: us Control, With DaSh—Q§t ‘ //

/
/
/

The system has an optimal governor control u Ihe 4=th

G
order governor hydraulic system is as Fig. 3-3 and the wvoltage regulator

is approximated as a first order system. For the data given the per

unit linear system state equations for the complete system are

" Y = AY + Bu , (5.2)
* where | |
Y = [AwF? évF, AG,.Aw, a,.ag, g, h]' | (5.2a)
u = ug (5.2b)
B = [0, 0, 0, 0, -50, -12.5, 0, 0]' (5.2¢)
- ' 1
-.196 1.0 =-1.39 -.003 0 0O 0 . 70
-50.9 =20 87.0 - =2.4 0‘ 0 0 0
A= 0 . 0 0 1 0 -0 0 0
~2.94 0 -22.6 -.008 0 0 38.8 58.2
0 b 0 -.133 =-2.5 =50 0 0
0 0 0 -.033 -.625 -12.7 O 0~ (5.2d)
0 0 0 0 2 0 =2 0
o 0 .0 0 -4 0 4 . =12.5
and R is set
R=1" : | . (5.2e)

The optimal control signal U is found as



»('OZSSAwF + .0012Avr_+ 12648 - 0254 Aw

+.08a - .112 a. - .3g - .4h) ' /

The final values of the diagonal elements of Q are

~_, (.56, 4.8 116, 6.8,
10

.034, .0019, .52, 0 )

The eigenvalues of the initial system without ug control are
(.23 + j4.67, -3.77, -16.9, -.034, 41.149, -2.23, =15)

and the eigenvalues of the final system with u, zontrol are

G
(-1.35 + 34.9, -4.1, -16.8, -.049, -1.2, -1.6, -15)
Thus the most domiﬁant eigenvalue pairs are shifted from
(.23 + j4.67)  to (—1.35 + §4.9)
The eigenvalue f0.034, éorresponding to a large time constant of the

dashpot, has slow response to system disturbance and does not affect

the earlier part of system stability.

5.4. Case 2b: ué control, without dashpot

The dashpot is removed from Fig. 3-3 for this study. Neglecting
the actuator time constant Ta the governor transfer function can be
written as 1/(c + Tés) where Té = ng. For the data given the equations

for the complete system are



Mp| = [--196 1.0 -1.39  -.003 0 0 ]f{hh]+| 0O ul
AVF ~-50.9 =20 87 -2.4 0 0 AYF- 0
AS 0 0 0 1 0 0 AS 0 »
A .04 0 -22.6  -.008 38.8 58.2| |aw o | 63
g 0 0 0 -1 -2 0 ||g -40 |
| b e 0 0 .21 4 -12.5 | h | | 80
and R is set ' R=1 : ‘ (5.3a)‘

' is found as

The optimal control signal Ua
‘(.00628A¢F + .OOOZAVF-+ .023846 -~ ,016204w
-.0216g - .1 h)
The final values of the diagonal elements of Q are
107¢0, 0, .0063, 1.83, 31.1, 0)

|

G
(.715 + j4.35, -4.3, -16.8, ~.89, =-2.8)

The eigenvalues of the initial system without u! control are
and the eigenvalues of the final system with ué control are

(-3.7 + j4.9, -3.27, -16.8, -1.18, -2.12)
Thus the dominant eigenvalue pairs are shifted from

(.715 + j4.35) to (-3.7 + j4.9)

5.5. Case 3: up Plus ué Control

The system under study is the same as that of case 2b except

it has both up and u& control signals. The last term of the system

equations becomes
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0 1000 0 0O 0 O

[ 1' ["E) (5.4)
0 0 0 0 <40 80O u!
: G
«where .
_ 3.1 0
R = 10 [0 160] (5.43a)

and is chosen to coordinate the effort of excitation and governor control
signals.

The optimal u_, and ué control signals are found respectively

E

as

(—.O47A¢F - .002Av,, - .319A8 + 0.056w + .779g + .78h),

¥
(.OOSAwF +;0002AvF + .025A8 - .0127Aw - .045g - .094h)
The final values of the diagonal elements of Q are

(1.42, 0, .0859, 25.8, 82.28, .025)

\

G control are the

The eigenvalues of the initial system without u_ and u

E
same as those of case 2b and the eigenvalues of the final system with up
and ué control are

(-4.13 + j5.33, -3.6, -16.79, -.997, -1.66)

Thus the dominant eigenvalue pairs are shifted from

(.715 + 34.35) to (-4.13 + 35.33)

5.6. Nonlinear Tests

All the optimél stabilizing signals thus obtained are tested
on the same system of Fig. 5-1 but described by high order nonlinear
differential equations with the synchronous machine és a 7-th order system
-(wd, wq’ wF’ wD’ wQ’ 8, w), eXCitatign and governor systems respectively

as Figs. 3-2 and 3-3 with controller coenstraints. A conventional excitation



control as designed in reference 12

_.04s

EC ~ T+.5s ¥ G

u

using the speea‘deviation signal is also included for comparison.

The system disfurbance for the testg_is as félloWS: a three-
phase fault occurs at one of the system buses and the faulted line is
isolated at 5 cycles followed by é system restoration at 30 cycles. The
results are summarized in Fig. 5-2. The system responses for fhe system
.with conventioﬁal and the optimal excitation controls are displayed on
the left column of the figures, and the system responses for the system
with the Qﬁtimal governor, and the optimal governor and excitation controls
are displayed on the right column of the figﬁres.

From the results, it is observed that:

1. Alfhoﬁgh the effort of the optimal excitation control signal

up is smaller than that of the conventional excitation signal -

Upeo the system with Up control is much more stable.

2. The optimal governor control signal us

for the governor with-
out dashpot provides more damping for the sytem than that with
a dashpot.

3. The optimal excitation and governor signals, u_, and ué, when

E

coordinated, provide the best means for étabilizing a power

system, i.e., more damping with less effort than either up or
ué control. ‘In other words, for the same amount of effort,

the optimal u

o plus ué control has the ability to stabilize

the system under more severe fault conditions.

4¢



0.002 -

0.001 A

DELTR (DEG)

6.5 1.0 1.5 2.0

TIME (SECONDS)
{a)

T T T T
1.5 2.0

TIME (SECONDS)

(c)

(=] ©
g B
g 8
] 1

o
(=3
fei}
o
L

TERMINRL VOLTAGE (PU)°

-0.080 A

-0.100
0

T

T T T 20

8.5 1.0 1.5
TIME (SECONDS)
(e}

2.9

5
EY
#
B
>
a
o
u-'2~0' \ / / ‘\.‘ ’:/
1

-3.04 \og

» VAJ, ]

9. T T

0 05 1.0 : 210 5 3.0

TIME (SECONDS)
(9]

4

i 0.003 4
: .
! .
'i 0.002 :
E
D Zooor )\
i & \ 27T
= \ ST e
i %0.000 \ 7T = =
L \ /7 T
g SA A /4//
.001 4 /
Eq QO 01 \//
° ’ :
;. -0.002 4 :
I
i
{ -0.003 T T T T T T 1
) 0.5 1.0 1.5 2.0 2.5 3.0
‘ TIME (SECONDS)
; (b)
I
I 2004
|
!
| 15.0 5
|
[ 10.04
H G -
& s.04 Ny
1
- i\
— 0~ \\\\i_-—-_ = ST
5] s 5 =7 -
: ]
: -5.0 1 -
i -10.04
. -15.0 T T T T T -
: 0.5 1.0 1.5 20 - 25 3.0
: TIME (SECONDS)
(d}
0.040
0.0204 5
N
20.000 - \ sty I s
: T
] N
0.020 - %
5]
>
50040
@
z
&0.080
w
-0.080 -
-0.100 ;
0 0.5 1.0 15 210 2'5 30
. TIME (SECONDS)
: ()
3.0 !
_ 2.0
=
g
. 1.6 o~
8 \ N
PE o] [
i B \ 5
P \ §f
I oo.1.04
' E:J’ /
204 U/f
b -3.04
I ' : T y T ,
0 0.5 1.0 2.5 3.0

1.5
TIME (SECONDS)
(h)

Continued...



=50

0.0S 4 0.05 -
0.04+ 6.04 - \
/
~0.934 b /
5 50.03 /X
w002 4 = #/ AN
w®- i w0.02 4 /
<} =2 \
£0.01 g \
=0 © 50.01 - \\\\
£0.00 2 I \\\ ——
o =0.00 - RN
« @ M \ 5 __ S -
& Lo - ] P (. UL
=0.01 DR — S
; =0.01 // \ \ i
!
! i ///
-0 02.1 ~0.02 \,/ 5\\ \\ ////4
N NMA
-0.03 T T T ™ T -0.03 : ~ .
. 0 0.5 1.0 15 2.0 2.5 30 o j ' T T T J
. . . 0.5
TIME (SECONDS) . 1o TINE llskscunum 20 2.3 3.0
(i) (i)
- 0.100 o
0.075 -
20.050 1 % Vs 2
= ,\\‘ [ “ ‘f' -
0.0254f1 % L ; . - g
& s \ s Y R B AN U S N
By oog 4 \ ///f RN T ; A y I} N~ "
2 Vg k 4 ) g &
2 S % \ g
;::0,025 \)-‘/// b L o 005-{ ! \ /
Roosoq 1 W/ ’ 3 I N
NS ' -p.0104
-6.075 1
-0.100 — . . T T ' -0.015 — T :
0 0.5 1.0 1.5 2.0 2.3 3.0 0 0s 1.0 1’ 2.0 2.5 3.0
TIME (SECONDS) TIME (SECONDS)
(i) ' e (1)

Fig. 5.2 Nonlinear Test Results

1. up = 0, unstabilized system

2. Upe s conventional excitation control
3. up , optimal excitation control
4, Uss optimal governor control with dashpot

5. ué , optimal governor control without dashpot

\

G control

6. up plus u
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6. OPTIMAL STABILIZATION OF A MULTI-MACHINE SYSTEM2L

The optimal linear regulator design technique of determining
the weighting matrix Q in conjunction with the dominant eigenvélue éhift,
developed in chapter 4, is applied to the optimal stabilization of a
multi-machine system. Two systems are investigated, the first.with a

one machine optimal controller, and the second with a multi-machine

YEL >

optimal controllers, Each design is given a nonlinear test on

Upy
the same multi-machine system. It is found that the multi-machine

system with a one machine optimal controller u designed for the multi-

EI’
machine system is better than a one machine optimal controller, Ups
designed for the same system but approximated as a one machine-infinite

system, and that the multi-machine system with a multi-machine optimal

‘controller, u is better still than the multi-machine system with the

EM’

one machine optimal controller, u designed for multi-machine system.

EI’?

6.1. System Data and Description.

The system under study, Fig. 6~1, is the same as that of
reference 12, consisting of one thermo plant (#1), two hydro plants (#2

and #3), and an infinite system equivalent (#4).



—.09 - J'53

4 —.09 -~ 3.65 #3
Fig. 6-1- Typical Four-Machine Power System
(Admittances in p.u. on 1000 MVA)
The system data are as follows
1 m " it 1] 1
Plant ra xd xd 4 xq q Tdo Tdo qu TD H
#1 0019 1.53 .29 ,17 1.51 .17 4 029 .,029 .116 2.31
#21.0023 .88 .33 .22 .53 .29 8  .022 .044 .077. 3.4
#3 .0025 .97 .19 .13 .55 .216 7.76 .044 .094 .131 4.63
KA TA TE RF . vRmax VRmin
13 .21 .15  .129 4.5 0
45 .07 .5 .237 3.5 -3.5
50 .02 .003 .12 8.8 ~7

The operating conditions from load flow studies are
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Plant PO(MW) QO(MVA) Vto(p.u.) - B(deg.)
#1 26.5 37 1.04 -10.7
#2 518 ~31 1.025 11.8
#3 1582 -49.6  1.03 25 |

o 410 49.3  1.06 0

For the design each plant is modelled as a fourth-order system
(wF, Vi 8§, ®), a third-order synchronbus machine plus a first-order

exciterQregulator system, The linearized system equations are written as

Y = | A A

1 11 12 A13 LET B ]
Yy Bop Byp Ays ¥y Y, (6.1)
Y A A A Y u

3 31 32 33 3 L3
For the data given the numerical values of the A and B matrices are

[ =922 1 -.266 -.009 | .024

0 -.087 .002
A, = | -2.75 -2.78 -1.36 ~-.037 Ay, = |-.158 0 1.11 -.011
0 - 0 0 1 0 0 0 0
| -4.95 0 -55.5 =-.039 .222 0 8.17 .004
.072 0 -.25 .003 021 0 .121 .003
Al - |46 0 2.8 -.02 A, =|-1.1 0 -1.62 -.015
0 0 O 0 0 0 0 0
_.924 0 17.5 .02 -2.43 0 1.37 -.034
-.21 1 -1.6 -.005 .06 0 .46 1,002
Ay, = 1.9 -1.8 9.3 -.12 | A = -1 0. 1.49 -.04
0 0 0 1 0 0 0 0
fs.l 0 -56 .032] .12 0 29.8 -.028



-.002 0 .083 O 011 0 .22 o |
A.. = | -6.78 0 -10.1 ~-.0% Agp =| -2.1 0 1.7 -.123
31
_ 0 0 0 0 o o0 0
(-1.24 0 .498 =-.017 -07 0 6.37 ~.011
[(~.197 1 -1.2 -.003
Ayg = |-54.4 =20 70.1 -2.37
0. 0 0 1
-3.4 -21  -.017
) ‘ ’
B-=[0 3.1 00 0 0 0 00 0 0 0
60 0 0 0 0 78.9 0 0 O O 0 O
0 0 00 0 O 0 0.0 1000 0 O

The eigenvalues of the unstabilized multi-machine system are

-.013 + j7.8 -.018 + 37.4 +.177  + 33.98
-1.85 + 31.35 | -1  + j1.3 -3.84 -16.6
(#1) #2) : #3)

Although there are dynamic couplings among all three plants, roughly,
the three column eigenvalues correspond to three plants respectively.
Also the the first row eigenvalues of each column correspond to the plant

dynamics, § and w.

6.2. Case 1: One Machine Optimal Excitation Control Upr

Since it is found from the eigenvalue analysis of the unstabilized
multi-machine system that plant #3 is unstable, a one-machine optimal

, is designed for plant - #3 in order to stabilize

excitation control, Upp

the multi-machine system. In the design, of course, all system dynamics
are included.

The diagonal elements of the weighting matrix, Q, determined

from the dominant eigenvalue shift are the listed values timesflO_S, for R=L1.
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AwF - Av AS Aw

plant #1 | .011 .018 .348 19.6

plant #2 | .023  .536 .284 18.3

plant #3 0 0 .022 .523
The gains of uy, for plant #3 are
AWF AVF ‘ AS Aw

plant #1 | .0172 -.0128 .88 -.04

plant #2 | -.0345 -.0109 -.28 ~-.14

plant #3 | -,154 -.0066 -.878 .18

The eigenvalues of the final multi-machine system are

-1.17 + §7.86 | -.3  + 37.86 | -1.88 + $3.55

-1.77 + 31.36 | -1.02 + 41.25 | -3.6 , -16.6

(#1) #2) - (#3)

Thus the first two eigenvalues of the last column are shifted from +.177
f j3.98 to -1.88 + j3.55, indicating great improvement in damping of plant
#3. The control signal, up;s also improves the damping of plants #1 and

2.

6.3. Case 2: Multi-Optimal Controllers u,

One would expect that a multi-machine system with multi-optimal
controllers will be better stabilized than the system with only one optimal
controller. This is studied as case 2. The multi-optimal controllers

are designed, of course, simultaneously considering all machine dynamics.



The diagonal elements of Q determined from the dominant eigenvalue

shift are the listed

values times 10-3,

bbp  bvg AS Aw
plant #1 145 001 2.64 97.2
plant #2 | 4.65 3.36 3.11 93.6
plant #3 .1 .0007  4.02  88.2

The weighting matrix elements of three plant controls which give the best

results are

R = diag (1, 2,

10)

The gains of the three control signals are:

U
EM(#1) _

AwF AvF AS Aw
plant #1 | -1.06 ~.029 -.639 =.18
plant #2 | -.052 -.0039 -.588  .0313
plant #3| -.073 -.0026 .127 .137

U_.
EM(#2)
| My, b A8 Aw
plant #1 | .0084 -.00427  .539 .0218
plant #2 |-.069 =-.0399 -.826  -.132
plant #3 1-,0406 -.00146 -.0097 -.10
Uep(#3) -
: Mg g AS Aw
plant #1 |-.00569 =-.0072 .38  ~-.0225
plant #2 |-.00832

plant #3

~.1123  ~.00497

-.718 ..

-.00369 .0718 -.0516

1156
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The eigenvalues of the final multi-machine system are

-1.01  + 37.64 | -.448 + §7.89 | -2.05 + 34.04
-1.94 4+ 31.099| -1.7 , -2.74 | -3.03 , -16.65

@y #2) | #3)

There is no doubt that a multi-machine system with multi-optimal controllers,

, 1s better than the system with a one plant optimal controller, u

YEM EL

6.4, Case 3: Approximated One-Machine Optimal Design

For comparison, the u_ optimal excitation control signal of the

E
same power system as cases 1 and 2, but approximated as a ome-machine

infinite system as in Chapter 5, is recorded here.,. The control signal

up = --.099Al1)F - .004AvF - 62048 + ,1Aw-

was designed for plant #3 as the cne-machine and infinite system. When

this signal is applied to plant #3 of the multi-machine system the eigenvalues

are
~.084 + 37.46 | -.1  + 37.8 | -3.3 + 34.5
-1.46 + 31.15 | -.63 + 3j1.51 | -2.88 , -15.9

(#1) #2) ' (#3)

When these results are compared with the eigenvalues of the unstabilized

multi-machine system, it is found that the u, control signal does improve

E
the damping of plant #3, butmnot much of plant #1 or #2.



6.5. Case 4: Subsystems OPtimal Design

One would be curious to know what would happen if'all-plants had

individual u, control:designs. This is to- say that all the dynamic

E

coupling of the three plants, off-diagonal elements of the A matrix in

(6-1), will be neglected and the individual optimél controllersg are

designed from

respectively. Applying the

individual weighting Q matrices are the listed values times 10 73

R = 1 in each design,

11

-A22

]

B33

dominant eigenvalue shift technique, the

1

A Y. +b.u

171

Y. +b.u

Y

2

3

272

+ b3u3

Mg A AS Aw
plant #1 0 0 2.296 72.88
plant #2 7x107%  L8x107% 2.219 69.38
plant #3 1 .19 0 .549 12.6

The gains of the individual optimal controllers are

'AWF AVF AS Aw
u (#1)°| -.0738  -.0231 —1.659 -.2018
ug (#2) | -.0446  -.0182  -.838 ~.228
up (#3) -.0035 -.455 .071

-.075

(6.2)



The eigenvalues of the individual closed loop systems are

. (@) (#2) (#3) |
-.418 4+ 37.48 || -.58 + 37.52 || -1.9 + 34.766 /

-1.868 + 31.25 | -1.1 + j1.16 || -3.23, ~-16.6 ,

Next the.eigenvalues of the multi-machine system are:

With uE(#l) alone

-.36 + 37.42 , +.014 + j7.84 -.11 + 33.96

~1.73 + 31 -.93 +31.4 | -3.86, -16.62
With up (#2) alone
-.097 + 34

~.04 + 37.45 l - 4 + §7.8

-1.89 + 31.29 .956 + 31.15

-3.84, ~16.62

With ug (#3) alone

-.064 + 37.46 ’ -.079 + j7.83 -2:33 + 34.08

~1.47 + 41.25

-.778 + j1.59 -3.24, -16.71

With all three uE's

-.419

1+

37.58 | =.463 + 37.843 | =2.53 + 74.47

-1.55 + j1.136 | +.169 , -2.25 -2.95, ~-16.7

Although the individual optimal controller provides good damping to the

individual plant, the effects on other plants are unpredictable.

" 6.6. Nonlinear Tests

The optimal stabilizing signals thus obtained are tested on the



"same system of Fig. 6~1 but described by high order nonlinear differential

equations including the controller's constraints. The system disturbance

for the tests is the same one used in the previous chapter. The test

results are summarized in Fig. 6-2.

From the results the following is observed

- u, controller, designed for the system approximated as one-

E

machine infinite system, case #3, provides the required damping
to plant #3 but not much to other plants.

u controller, case #1, provides damping to each plant in the

EI

system, allowing the controller to stabilize the system for

wider fault locations than the case with uE.

u_., controllers, case #2, provide the best stabilization for

EM

the whole system with less effort than the case with Up OF Upg.

.The simplified subsystems controllers fail to stabilize the

system.

6(



SPEEQ OEVIATIOH (PU)

TERMINAL VOUIRGE (PU}

DELTA (DEG)

' 1 ] ' .
(=] (=) (=] (=] < (=]

v
(=]

.801sS

0.0025
0.0020 -
0.0015 4
0.6010
£.0005 -
-0.0090
-0.0005 4

SPEED DEVIATICN (PU)

-0.0010 A

16.0 4

12.0 4

T T Y Y v . ~0.0015 T
1.0 1.5 ¢.J 2.5 3.0 "] 0.5
TIME (SECONDS)

(al) . !

24.0
20.0

16.0 4

~N
(=]
i

DELTR (DEG)

o
(=]
1

T

0.5

1.0 1.5 2.

" TIME (SECONDS)
{a2)

0

T Y Y T

1.0 2.0 2.5

» ]
]
5
(&}

1.5
TIME (SECONDS)

(b1)

05

.08 +

'

o

ny
1

TERMINAL V?LTRGE (PU)
o

0.5

T

1.0 3.5
TIME (SECONDS)

2.0

1.0 1.5 2.0 2.5 3.6° 0 9.5
TIME (SECONDS)

Ac1)

T

1.0 15
TIME (SECONDSI

c2)

SPEED DEVIRTION (PU)

DELTA (DEG)

GE (PU)
(=]

TERHINRL VOLTR
b

.08
.06
.04
.02 4

.00

Y T ¥ 1

1.0 1.5 2.0 2.5 2.0
TINE (SECONDS)
(a3)

Y J—

m.o ,qm N.u m.m.u.uv
TINE (SECONDS! .
" (b3)

1.0 1.5 2.0 2.5
TIHE (SECONDS)

(c3)

Continued...



EXCITRTION SIGHMAL (PU)

FIELD VOLTAGE {PU)

i
5 ;
9-' .
w
()
& :
g !
> ;
< :
W
CZ.
‘ - T T Y 1 T T T T R}
" ‘s zo 285 2.0 .03 0's 10 15 20 25 3.9 10 1s 20 2.5 2.0
TIME (SECONDS) TIME (ZECONDS) TIME (SCEINDS)
(d1) (a2} (d3)
2.08+ J2.08~
_ 0.044 P 0.044 -,
p )
N\ g 123 : / z /
-2-0.00 N =2-0.00 4
AN S PN \ g
~ = \ ~ &
\ ©-0.04- / \ / ©-9.044
\ z | { v >
A o~ =] \ / \ &
A\ / \\ — {2 \ \ =
/N E-0.084! \ / P Z-2.08
\ \ = i \ \ =
\_/ \ S L __/ \ ! S
> i \ =
| P W.g 124 + | —, LS W_p g2
'0.‘6 T T Y Bl v 1 ‘0]6 T T T T T L] '016 ) I T T T Y —_—
5 0.5 1.0 1.5 z.0 2.5 a0 . 0 0.5 1.0 1.5 2.0 2.5 3, 0 0.5 .0 1.5 z.0 2.5 3
TIME (SECONDS) TIME (SECONDS) TINE TSECONDS)
{57) 11(32) (93)
(plant #1) (plant #2) (plant #3)

Fig. 6.2 Nonlinear Tests of the Multimachine System (a three-phase fault disturbance)

1. with one optimal control Ups

with. u

3. E

on plant #3 .

on plant #3; approximated one machine-infinite system

2. with multi-optimal controllers Upy

4. with three individual“optimal controllers



7. OPTIMUM STABILIZATION OF POWER SYSTEMS s

OVER WIDE RANGE OPERATING CONDITIONS34 /

{

Nominal system operating conditions were assumed in chapters
5 and 6 for the design of the optimal stabilizing signals. In real
power systems the opérating conditions are not constant but subject to
the load demands over the system. The question arises: How can we design
an optimal controller for the power‘system sens@ti?e‘to and good for the
wide range of operating'condtionS?

In an attempt to answer this question, an optimally sensitive
controller is developed in this chapter. The controller is.capable of
adjusting its effort in such avmanner that optimum system stabilization
can always be aqhievéd over the wide range Qperating conditions.. The
sensitive controller thus designed under suéh conditios is tested on

the nonlinear model. The results are compared with that of the system

with a nominal controller..

7.1. Optimally Sensitive Linear Regulator Design

Constructing a controller which preserves optimality for a
nonlinear control system in spite of its parameter variations has been
: . ’ . . 35,36,37 .

the object of several recent publications . The synthesis of
linear optimally sensitive controllersby means of perturbation of the

Riccati equation (4.4) is dealt with in this chapter.

Let the linearized system equations be



Y = A(g) Y + Bu | '(7.1)

where q is a vector contains the m changable parameters of thqféystem.

" For a quadratic performance function 4

[N
1}
o

ém(Y'QY + u'Ru)dt, - (4.1)

the optimal control law is
u* = -R° T B' K(q) Y - (7.2)

where K(q) satisfies the Riccati matrix equation,

1

K(q)A(q) + A'(q)K(q) = K(q)BR "B'K(q) = -Q (7.3)

In conventional regulator design the contréller is computed for nominal

values of the plant parameters e

| u = -RB'K(q )Y , (7.4)

for a constant K(qo). This will be réferréd to as the nominal optimal
control hereaftér. But this becomes impractical for system over wide
range operating conditions. It .implies that it is necessary to recompute
K for a large number of sets of the plaﬁt paraméters q, and the implementation
of u* under every operating condition.

To approximate the control law of (7.2), an optimally sensitive
control'us is introduced. This control u tends to track the new optimum

of J whenver there is a variation in'q. The first order approximation u
, : : ' s

is written as m

__;~'-]-v K '.
u, = R °B [K(qo) - igl in Aqi]Y A (7.5)

The Riccati sensitivity matrices K are obtained from the differentiation
. qi.
of (7.3) w.r.t. q;
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K G+ G'K = -C (7.6a)
a; 93 1 ;
where //
-1, s
G = A - BR "B'K, / (7.6b)
and
. 1
C, =KA + A. K (7.6¢)
1 4 94

The second order approximation u, may be written as

1 v
1K, ba, E’i‘ K
q; 3 a4y

u =‘—R—1

m
s2 B [K(qo) + ig

Ainqj]Y (7.7)

where the sensitivity matrices Kq are computed frém equations (7.6),

1
and K from
149,
Kq q G + G‘Kq q = —02 : (7.8a)
RS TR s
where
C2 = K Gq + G' Kq + Kq Aq + Aé Kq + .
i3 j i j i i3
+ K A + A" K (7.8b)
495 939
and
_]_' .
G = A - BR "B'K (7.8c)
q. q q.
J J J

Equation (7.8a) is obtained by differentiating (7.6a) with respect to

qi. Other matrices of equations (7.6) and (7.8) are computed for q = g
The procedure can be extended to obtain a controller with higher order
approximation by adding more Taylor series terms. However, it will
become increasingly difficult to implement the high order controller

with a large number of changeable parameters., The structures of the nominal



controller and the optimally sensitive controller of the first order

approximation are shown in Fig. 7-1 a and b respectively. /
. /
/
- /..
- /
‘ SYSTEM
SYSTEM i
Iz Y= Afq)Y + Bu Y
. Y z -
Y=A(q)Y+ Bu v
! ~Yst aq
; + . '
£ R™'eK
-Uq ) : 9.
—I 4 .
R™'B K i
¢ R_,BIK
1 .
a. Nominal optimal regulator b. Optimally sensitive regulator

Fig. 7-1 Structures of Nominal and Optimally Sensitive Controllers

The Riccati sensitivity matrices, necessary for the optimal
sensitive regulator design, must be computed from the Lyapunov matrix
equations of (7.6) and (7.8). A new technique is developed to solve
these equations and is given in appendix B. The computational effort
is much reduced by the use of the known eigensystem of the closed loop

matrix G.

7.2. Sensitivity Equations of the Linearized Power System

For the design of optimally sensitive controllers it is necessary
to compute the system sensitivity matrices Aq. This‘section deals with
the derivations of these sensitiviﬁy matrices for a general multi-machine
power system.

There are in general (4n-1) variables that affect the steady

state operating condition for an n machine power system, three terminal

66



conditions for each machine and (n-1) angular differences between net- -

work buses. The operating conditions are expressed in terms o?,id’ iq’
vq, and 6§ which give the simplest sensitivity expressions. geéerring
to the multi-machine equations of chapter 3, the deviationg/;f Zm of
(3.5), U_of (3.14b), M and N of (3.21a),‘q;d and wq of (3.10) for
varying operating conditions are as follows

Az, = 3z (48] - jlas)z, | (7.9)

The real and imaginary parts respectively are

,ARm = —Xm[Aa] + [Aa]xm (7.9a)
and
X = R [A8] = [ASIR (7.9b)
Next;
AU = Z AT + AZ I - AV . . (7.10)
m m m m m m

using (7.9) and (3.14b), Um can be written as

AUm = Zm AIm + ij[AGJ - j[AG]Um - AVm ' | (7.11)

The real and imaginary rarts respectively are

AUmd = Rm AId - Xm AIq - Umq[AG] + [AG]Umq—AVd, V(7.11a)
‘and :
AU L = XdTg + RAT + U LI88] - [8830 4 = &V, (7.11b)

Note that Vm =V, + qu, and Im =1, + qu. They are diagonal matrices

d d
with Vo and im vector elements of each machine as the diagonal matrix

elements. Next, I

K, . VL,V

o A _ v ailan2 1 Va%g
M = [o=l{VaAR o+ VoA o+ [R1TAVGR = [P 1AV X+
A% . VWV ]
+ 4% x - d a1,y R } (7.12)
qgm 2 q m
t vt
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K ’ v

A : Td.2
AN = 7= ]{quRm - VAX + [==] AVqu +
At t
v,V ' v v,V
_g_ﬂ. 7 - 1-9 2 - d 1 .
+ . AN [Vt] AV X [~——‘1V2 1AV R } (7.13)

t t.
:

v,V v
d d . . ,
Note that [_~§g]’ [;—], etc. are matrices consisting of diagonal
v t : . .
elements compgted from data of individual machines. Finally the armature

flux linkage variations from the normal steady state operating conditions

are as follows,

From (3.10) we have Awd = u)O(Avq + r, Alq) _ 3 (7.14)
From (3.10b) we have <

| by = - 2 p (7.15

wq TG, i ( )

In the case of aone machine infinite system, all matrices become scalars

and the sensitivity equations (7.9) through (7.13) reduce to

AZ_ = OR_+ BX_ = o, (7.16)
AUmd = RAld - (Xm +4Xq)Alq (7.17)
AU = X Al +RAL - Av ©(7.18)

mg m d m o q q

K -
AM = VR - v v X )(x A1 - r A1)
T v3 qm d'gm” g q a d
At ‘
+ (v2X - v.v R)Av } (7.19)
d”m d'qgm’"q . . '
K
A 2 ,
AN = - V3 -de R+ vdvqkm)Avq
t

2 R . ' .
_(qum + vdqum)(qulq raAldn_ (7.20)



The system sensitivity matrices Aq, q=(id,iq,vq)', for a one machine
)
. /
infinite system of the 5th order synchronous machine model equations of

/

appendix B are as follows. : [

[ ]
A, = "0 .0 0 0 0 0 0
14
0 0 0 0 0 -X 0
m
0 0 0 0 0 R 0
0 0 0 0 0 0 0
M, Y. M. Y'. N. Y 0 0 A (5,6 0
1d dF id dd 1d.qq, 1d
0 0 0 0 o0 0 0
2 . ‘
. W v +r i 1
O - d a d
e =L 2%y
0 0 5 0. 0 0 —5 | (7.21)
¢ -
A, = 0 0 0 0 0 0 0
q -X
0 0 0 0 0 -R i
‘m wo
ra
0 0 0 0 0 =-(X_+ - -2
X, Xq) -
0 0 O 0 O 0 0 (7.22)
t Tt t . . »
M, Ydf M, Ydd Nquqq 0 0 Ai (5,6) 0
q q } q
0 " 0o 0 0 0 0. 0
wox wox wora ‘, v +x id+2rai
q 1 q ro_v! 1 - c
8 Yar 28 ddYqq) 28 Yqq O © 0. 28

- D
J



A = 0 0 0 0 0 0
v
q
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0O 0
M Y M Y' N Y!' 0 0 A (5,6)
dF . dd v . 4
Vg Vg ¢ 1 Vg
0 0 0 0 0 0
w .
0 0 =2 y! 0 0 0
L 2H “qq
where
M = -K, r (v2R - v,y X)/T v3
id A "a*'qdm dgm’ At
N, =K, r <V2X + v,v R )/T v3
id ATagm dgm At
: KA U + v, v U
Ay (5,6) = 57— [v,X = VR v d'q md _
d At 4 2 a
v
t
and
M, =K x tVZR - v,y X)/T V3
iq A"qg" 'gm d'qgm’ At
N =—Kx'(v2X + v,v R)/T v3
iq “A"qt q'm d'qgm”’" At
. 2 -
KA v'u + vdqum
| Ai (5,6) = T [VdRm + Vq??. - 5
q At \f
and
_ -2 . 3
M KA(vdX gV R )/TAvt
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0 _(7.23)

(7.24)

(7.25)



~ 2 . 3 .
qu = KA(VdRm +'Vdvqu>/TAVt | (7.26)
- Kov K
- __Ad _ _"A 2
Av (5,6) = T v 3 (VdUmd + vdqumq)
. q . 'At TAVt .

Although the system sensitivity matrices are derived in terms of the
variations Ai,, Ai , and Av , it is always possible to relate these

R , d q q’ .

variations to another measurable set through a nonsingular transformation.

For example,

by = 7L [ ap
big 4Q | (7.27)
Av Av
q [e]
where _ ; ~ -
: T - vd - rald Vq + x 1d lq
v +r i (v, +x i) i
d q d (7.27a)
v v v
d d
L - "v-' ra ';;“' Xq ‘\‘79"
t t t T o

7.3. Optimally Sensitive Stabilization of a Power System

The one machine infinite system of Fig. 5-1 is chosen for
this study. The synchronous machine is described as a 5th order system
with wF’ wd’.wq’ §, and w as the state variabies, appendix A. The voltage
regulatdr,is épproximated as a first order system by neglecting TE fqr

the solid state exciter system. Nominal system operating conditions are

in p.u.}
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P = 0952
)

s O’O=

leS, and _Vto

72

1.05 (7.23)'

The per unit linear state equations for the system at these nominal

operating conditions are

where

<
I

B

Y =

(© 0 0 1 0 0)

For the data given in chapter 5,

A =| -.660  8.55
0 .
44.9 -723
153 -2848
~418 6736
o 0
|es.es 6207

The technique of determining Q developed

applied to the nominal optimal regulater design of

u

1230
-250

~-368

86.6

= A(l.UF, wdg l‘)q, VF’ .6, w)'

the weighting factbr for control chosen as R = 1, Q is found to be

Q = diag. (0

The Riccati matrix is

AOY + Bu ©(7.29)
(7.29a)
(7.29b)
= 1000 Up (7.29¢)
1 0 0 1
0 59.9 449
0 -497 .954
-(7.294)
-20 1125 0 :
0 0 1
0 0 0
in chapter 4 is
the system. With
1.55 16.3 0 737.4 19084) (7.30)



~
1]

107x

[ 1.79 215 .08  .078 12.2 -2.48

.215 .04 -,003 .N08 .863 -.549

.08 -.003 .015 .005 1.1 114
.078 .008 .005 .004 .6 -.08 (7.31)
12.2 .863 1.1 .6 133 -6.5

~2.48 -.549  ,114 -.08 -6.5 7.78 |

The nominal optimal control through excitation is

Ygo T

(-.078 -.008 =-.005 -.004 =-.6 .08) Y (7.32)

The system sensitivity matrices, Aq of equations (7.21),

(7.22), and (7.23), are computed at the nominal operating conditions.

Their values are given in equations (7.33), (7.34), and (7.35). To

check the computation of Aq matrices, the system matrix A is computed from

the linearized equations (A.3d) and from the sensitivity equation

A= Ao + Aq'Aq. A good agreement between both methods is realized over

a wide range of system operating conditions.

—

0

© 2,75 6 0 202 0

—_

0 0 0 0 0
0 0 0 =470 0

0 0 0 138 0 (7.33)

0 41 0 0 0
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A, =[o0 o o 0 o0
1
q

0 o o 0 -137

0 0o 0 0 -678

31 =505 -1103 0 ° 1445

0 o o0 0 0

-7.3 77 .22 0 0

A = [o o 0 0 0
Vq

0 o 0o o0 377

0 o -0 0 o0

27 431 943 0 -140

0 o o 0 0

0 o 7% 0 0

The Riccati sensitivity matrices K

"'055

’—0003

(7.34)

(7.35)

are obtained by solving

the Lyapunov matrix equations (7.6) using the frequency domain technique

developed in appendix B. These matrices are

K. =10x[ 1 227 .009  .044
ld )
227 049 .002 .01
009 .002  -.002 0
044 .01 0 002
2104 —-.606 -.833  —-.469
| -1.85  -.396 -.094  -.092

-10.4
~-.606

~-.833

- 469

-196

7.

11

-1.85
-.396
-.094

-.092

7.11

1.32

-

(7.36)

7¢



e

R and'Ay

1.49
074
.045
.056
13.4

| 333
-, 654
-.022

-.031

13.1

1.51

074

-.013

-.003
.002
1.14

.292

~-.03
.04

-.025

—.004'
.836

-.267

equation (7.5), is then designed

045
-.003
015
004
756

<161

-.022

-.025

.013

1.23

$242

056
002
004
002
.578

.046

-.031
- 004

0
~.001
613

.085

(-.078 -.008 =.004 —.6

Ad Av
q

o

The control can be expressed

d, through

)| =hb

-56

31

~9.7

-1.5

4.2

-.07

-3.7

-.34 1.3

the transformation

-1.9

-2.4

13.4
1.14
756
.578
.112

-3.73

13.1
.836
1.23
.613
241

-6.61

.08) Y +

,333 |

292 |

.161
046

-3.73

~4.54
1.51 |
-.267
. 242
.085

-6.61

—.918ﬂ

The first order optimally sensitive excitation control,

470 92
-580 =46

-613 -85

in terms of APO, AQO, and Avt instead of

(o)

75

(7.37)

(7.38)

(7.39)



matrix T, equation (7.27),

o= L4460 1,17 (814 /
953 -.895  .399 / (7.40)

-.001  .234 .905

The results are

upg = (~.078 -.008 -.005 -.004 -.6 .08) Y +

3 -77  -8.9 =-2.6 =3.3 50 '"S51 |Y

C+ 10" '
10 (APO, AQO,A v, )

o -10 -6 1.1 =-.43 468 73

108 15 1.4 4.6 -928 =172 (7.41)

For comparison the controller gains of the optimal signal u,
equation (7.2), for different operéting conditions are computed and
compared . with the resultant gains of the optimaily sensitive controiler
Upas in table 7~1. The speed and torque angle gains for both signals
are plotted in figure 7-2. It is clear that the optimally sensitive
controller Upe gains adjust themselves to cover the wide range operating

conditions and to match the absolute optimal controllers u¥ gains. The

E

dominant eigenvalues‘for the system with the different controllers at
different operating conditions are given in table 7-2. While a reduction
of stability of the system is observed when it departs from the nominal

operating condition, the optimally sensitive controller u g provides better

E

results than the nominal optimal controller Upg Although UE provides the

4
S

best stability, it is impractical to implement as stated before, on the

other hand there is no difficulty to implement uES; it is just as good as
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uE except for the worst operating condition (Po = 1.25, QO = .45,
v o= 1.055- ' : | /
t /
) ' /
. ;
system P=1.25 P =1,2 P =1.15 P =.952 P =.7 P =5 P =3
operating o_ 4 . O_ A 0_ 95 NOminal ° O_ 295 o_ ,
conditions Qo—’ 3 Qo_fg Qo—' QO=.015 Qo=—.15 Qo_—' Qo—'“z56
(V. =1.05)
t
o)
u 128 117 107 80.1 56.3 44.9 41.3
3] “Es
5/
uE 160 134 117 80.1 61 53.9 49.9
"ES| -376 ~434 =479 -603 -682  -691 ~648
o )
» uk' | -148 . ~-316 =420 -603 -660 -664 -661
c"-)O
— .
b - - - - - - -
N Upg 4.7 4.49 4,29 3.57 2.6 1.9 1f2
g A :
- UE -5.18 -4.77 ~4,45 -3.57 -2.75 -2.1 -1.5
86 : :
B - -
- | ugg | -5.18 -5.19 -5.17 -4.96 -4, 4 -3.9 -3.15
o o
N .
B uE ~4.57 -4.,88 -5 -4.,96 -4.3 -3.56 -2.5
8
g Upg -13 ~11.9 -10.9 ~-7.74 ~4.5 -ZiS' -.96
97 A
ug -16.7 ~13.9 =~11.9 -7.74 -5.1 -3.8 -2.9
&= | Ugg -104 -99.5 -94.9 -77.8 -55.8 -38.3 ~-21.6
uf | =117 - =107 -99 ~77.8 -58.8 -45.3 ~31

Table 7-1 Controller Gains For uES.and ug

" at Different Operating Conditions




Table 7-2 Dominant Eigenvalues of the System with the Different Controllers

Operating

Conditions uE=0 UEO uES /UE

?t.f 1.05 ' /

Po Qo
L717+92.86 1.49 .137 -2.1

1.25 .45 | -4.8 —4ti4. 3 ~4+93.8 -3.24§3.1
-16.8 -17.16 -17 -16.9
.56+13.47 467 -1.1 ~2.6

1.2 .3 4.5 -3.56+4.37 |  =3.3+13.9 ~2.743.7
~16.9 -17:15 -17 ~16.9
.44+33.9 -.449 -2 -2.7

1.15 .25 | =4.2 ~3.14§4.43 ~2.8+44.1 2.5+j4.1
-16.9 -17.1 -17 -16.97

Nominal 17+34.8 ~1.98+14.99 |  -1.98+14.99 | . ~1.98+i4.99

.952 .015| -3.6 ~2.89 -2.89 -2.89
~16.9 ~16.96 ~16.96 ~16.96
.023+15.2 ~1.39+15.3 ~1.6+§5.3 ~1.56+15.3

7 -5 ~3.4 ~4.4 -2.7 ~2.96
~16.8 ~16.6 ~16.9 ~16.89
~.02435.27 ~1.04+§5.3 ~1.28+§5.4 -1.22+§5.37

5 =.225 | =3.4 ~5.57 2.6 3.1
-16.8 ~16.1 -16.97 -16.8
-.023+15.25 |  -.66+35.2 ~.83+§5.3 -.83+§5.3

3 -.256 | -3.4 -6.8 2.7 3.3
-16.7 ~15.56 ~17 -16.7
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Fig. 7-2 Speed and Torque Angle Gains for the Controllers

(1) Uy (2) Upg '. (3) u§

P, (PU)

Both contrdllers u.. and u are tested on the nonlinear model

EO ES

of the system on two operating conditions,

PO = ,952, QO = 015, \EO = 1.05 (Nominal)
and
P = 1.2, Q = .34, v = 1.05
o 0 tO

The system disturbance is the same as in chapter 5. The test results
are summarized in Fig. 7-3. While the optimally sensitive controller

UES maintains system stability for the operating conditions of

(7.42), the nominal controller u 0 fails to do so.

E

(7.28)

(7.42)
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8. CONCLUSIONS

An exact representation of synchronous‘machines is presented
‘ _ /

~and a step by step derivation of the exact equivalent circui;/given in
Chapter 2. It is found that an extra test with the IEEE tést code is
needed to determine the d-circuit synchroﬂoUs machine parameters. Three
different methods are suggested, a varying slip test or a decaying
current test to determine the-D—damﬁer time constént TD,or an adaptation of
Dalton and Cameron's method to determine the newly defined open field
d-axis subtransient reactance XHO. No e#tra test is needed to determine
the q-circuit parameters. All three methods gave close results in
laboratory tests.

A ﬁew multi—machine-state variable formulation is presented in
Chapter 3. The largest matrix inversion is the nodal admittance matrix

Y All system parameters are retained in the final formulation,

N* _
convenient for sensitivity studies. Systems with an infinite bus are
also considered. The results have the same form as that of multi-machine
systems without an infinite bus. Dynamic simplification of power systems
is discussed. It is found from a numerical e#ample that EonVentional
simplification in power system engineering retains the most dominant
eigenvalues of the system.

A new technique for the design of optimal linear regulators is
developed in chapter 4. The weighting matrig Q of thé regulator per-
formance function is determined in conjunction with the dominant eigen-
value shift of the closed loop system. The eigenvalue sensitivities

of the optimal closed loop system with respect to the Q elements are

expressed in terms of the same eigenvector matrix of the composite matrix



M of equation (4.18), which is required for computing the Riccati
matrix K. ' A //

Applying the technique developed in Chapter 4, the‘éptimal
stabilization of a one machine infinite system is investigatea in Chapter
5. Three different methods of stabilizatioﬁ are considered, through
excitation, through the governor, or ;hrough both as compared with the
conventional stabilization through excitation control. It is found that
optimal stabilization through exeitétion is more effective than conventional
excitation stabilization, that optimal stabilization through a governor
without dashpot is better than that through a governor with a dashpot,
and that optimal stabilization through both excitation and governor without
dashpot is the best of all.

In Chapter 6, the stabilization of multi-machine systems is
investigated again using the technique develcped in Chapter 4. Several
cases are considered. It is found that a multi-machine system with

multi-machine optimal controller Up is better than the multi-machine

M’
system with only one optimal controller, Upps which is in turn better
than the multi-machine system with the approximated one machine infinite

system controller u It is also found that although the individual

B
optimal controller designs are effective in providing damping to individual
machines, their effects on other machines are upredictable. Therefore
the dynamic coupling of the multi—maﬁhine system must élWays be included
in optimal controller design.

The optimal controllers in Chapters 5 and 6 are éll for nominal
system operating conditions. Since the operating conditions of a real

system change from time to time, the controllers so far designed are not

adequate for varying operating conditions. In an attempt to face this



challenge an optimally sensitive controller is designed in Chapter 7.
It is found that the newly developed optimally sensitive controller
can adjust itself to stabilize a power system over a wide rangé of
operating conditions and the optimum stabilization is alwaysfachieved.
A new method to solve the Lyapunov type matrix equation necessary for
the design is also developed.

Although the techniques have been tested on the detailed non-
linear mathematical model of the systems, it is highly desirable to
implement them on a real power system. Other problems remain to be
solved. One is to develop test methods to determine exaét parameters of
synchrdnous machines with additiénal.rotor circuits. Another problem
is how to obtain better approximate representation for system loads and
infinite systems for power system dynamic studies. Finally there is the
challenging probiem of nonlinear optimal stabilization; which needs

more investigation to make it practical.



APPENDIX A

MULTI-MACHINE STATE FORM EQUATIONS /

FOR 5th ORDER SYNCHRONOUS MACHINE MODEL /

(

For a 5th order synchronous machine model, the damper flux linkage
variations are neglected, i.e.

pAY, = 0, ' » , (a.1)

Py, = 0, S (A.2)

implementing (A.1) and (A.2) into (3.30) and elimenating AwD and AwQ

from the results, system equations become,

¢

Y = AY + Bu, (A.3)
— ]
Y = A(wF Uy wq Ve VR 8 we) , (A.3a)
U = up, (A.3b)
K
B=1[0 0 0 0 Té 0 01", (A.3c)
- TA
_ 1 - '
rFYFF rFYFd 0 I 0 0 0
RY) RYY we+Xquq. 0 0 g [wq]
= _ ' - ' _pvy! -
A X Y w,~X Y Rqu 0 0 U [¥,]
0 "0 0 %l %— 0 0
£ E
] 1] | :_
M ip M 34 qq 0 T, A(5,6) 0
0 0 0] 0 0 1
-0t
A(7,1) A(7,2) A(7,3) 0 0 0 "0 0O D
L 2H
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where

A(5,6)
.A(7,l)
A(7,2)

A(7,3)

I
<
s

' -
Yer = Ypp = Ypp

t
<
o

' —
Yar = Yar ~ Yap

I
]
|
<

. .
YFd T "Fd FD

[
-
[

' -
Yaa = Yaa ~ Yap

Y' Y
“qq qq qQ

I
|
<

M and N are as given in (3.

incorporated into (A.3) if

KA _
= [—=](VyU -VU ) ,
TAVt d mq q md Y.
. 7/
2 /
w /
= - 2 1 ' /
0 Vg Yar | i
) .
Y
= e — L, t
2H lbq Ydd qu)
2
W _
= = —— LI v4 | t
21 WaWaa ~ Yqq) T VFlar!
vy =w ox /xox!
DD DF o d “Fd
v ly -_ w X, /x, x!
DD "DF o dF' "F d
vly == w X, /x.x"
DD "Dd. o “Fd'TF°d
-1 = t
oo Ypa T %/%g
-1
Y Y =
QQ Qq wo/xq

]

2la). The governor equations can be easily

required.

(A.3e)
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APPENDIX B

FREQUENCY DOMAIN SOLUTION OF LYAPUNOV MATRIX EQUATION

A new method for solving the Lyapunov matrix equation in-the
frequency domain is proposed. The highest matrix o;der used in the .
computation is the same as the éystem matrix and no matrix inversion. is
required. Two algorithmsare given,  the first uses the Leverrier algorithm
and the second uses the eigensystem of the system matrix. The equation
is usually of the form |

AR + KA = =0 - | (B.1)

where A is the system matrix, K the matrix to be solved and Q a positive
semi-definite symmetric matrix. - Equation (B.1l) consists of essentially
n(n+1)/2 linear equations for an n—brder sytem. The equation can be
expanded as
| N = g | (B.2)
and solved difectly. Since for a stable system N

© ATt At
e

K = fo Qe dt : (B.3)

which has finite value, the integral can be approximated as a series

summation and evaluated iteratively38’39.

40,41, 42

Transformation approaches
are also reported Solutions are obtained after (B.1l) is reduced
to a special form.

In what follows, the method of freqﬁency domain solution of

(B.1) will be presented. Applying Parseval's theorem (B.3) becomes

K = = F(s)ds (B.4)
213 —j .
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where
P(s) = (=sI = A" q(sI - Ayt (B.5)

K can thus be evaluated from the residue theorem. Let

-1
(sI - A) ~ = R(s)/g(s) (B.6)
- where
R ) A n-2 n-i-1
R(s) = Is + Rys + + R,s + +R
_ _ 0 n-1 _ _ n-i _
g(s) = det(sl - A) = s hls . his . hn
i=1,2, ...., n (8.7
The matrix coefficients Ri of the adjoint matrix polynomial R(s) and
the scalar coefficients hi of the characteristic equation g(s) can be
determined simultaneously by.Leverrier's algorithm33,
1
h, =< trace [A,], R, = A, - h,I
i i i i i i
(B.8)
Ay = A , A, = AR,
substituting (B.6) into (B.5) gives
R (-s) , R(s)
F = - 0 (B.9
| ) = %y Q26 (3.9
which can be written as
n Ci n Di
F(s) =i ot I (3.10)
i i=1 i

where Ci and Di are residue matrices of F(s) in the left and right half
complex planes respectively. It is assumed that‘)\i ére distinct. Let

g'(s) = d+g(s)/ds. -Thenv



T
R RO

C, = (s=A,) * F(s)| _, = Q — (B.11)
i i s=), g( Xi) g,(ki>
or T
TR QRO
Ci = - 55 (B.12)
22 1 (A |
it I
Applying the residue theorem one has
n
K= ¢ C, (B.13)
\ i
i=1 :
Since
o= * .
Ci+l Ci (B.14)
for conjugate-pair roots, A'+l = Af. For a system with m conjugate pair
i
roots and % real roots,
m n
K=2 % Real C,, ., + = C, (B.15):
i=1 2-1 7 soomen 3 ‘
The residue matrices Ci can be computed also from the eigenvalues and
eigenvectors of the system. Since
n R(A,
ORI >Esii ) (8.163
=1 8 g7
and Morgan has shown that43
r RO
X,V, = —A— B.17
33 g'(kj) ( )

: T
where Xj and vj are the normalized j-th eigenvectors of A and A" respectively,

equation (11) may be written as
no.... RT(Ai). R(A,)
= T T Q — '
4=1 8 (Aj>< AmA) T e Oy)

n.v.x, T
Iy aE Y
=143 i



= - VA.XT Q x.v?:‘ (B.18)
M i'i

h ' . /
where | ,/
UL ki + An] (B.19)

;

A, = diag[h, + AL, AL+

and X, V are eigenvector matrices of columns of Xi and Vi respectively;

i=1, ..., n.
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