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ABSTRACT 

The transient s t a b i l i t y of power systems is investigated using 

Liapunov's direct method. Willems' method i s applied to three-and four-

machine power systems with the effect of damping included. The distribution 

of damping among the machines of a multi-machine system i s studied, and 

optimum ratios are derived. An extension of Willems' method is used to 

include governor action in the system representation. Finally, the effect 

of flux decay on s t a b i l i t y regions is studied using Chen's method. 

i i 
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NOMENCLATURE 

x Vector of state variable 

x Time derivative of x 

V Liapunov function 

V" Time derivative of V 

V Value of V defining s t a b i l i t y region m 
t Time 

6 Angle between quadrature axis of synchronous machine 

and i n f i n i t e bus or a reference frame rotating at 

synchronous speed in the case of multimachine systems 

Steady state value of 6 

Value of 6 at the unstable equilibrum position 

Inertia constant i n KW -Sec/KVA 

H/(TTf ) 

System frequency = 60c/s 

Damping coefficient 

a/M, Relative damping constant of synchronous machine 

Mechanical power input to synchronous machine 

El e c t r i c a l power output of synchronous machine 

Instantaneous voltage proportional to f i e l d flux of 

synchronous machine 

Eg Voltage of i n f i n i t e bus 

E Steady state internal voltage of synchronous machine 

Total reactance between synchronous machine and i n f i n i t e 

bus 

Transient reactance of synchronous machine 

X Reactance of transmission line e 

v i i 

6 
o 
6 U 

H 

M 

f 

a 

R 

P 
m 

P 
e 

E' 
q 



Synchronous reactance of synchronous machine 

Open circuit transient time constant of synchronous 

machine 

(X + X,)/T' (X + X') 
e d o e d 

(X - X')E /T'(X o + X') d d B o e d 
The null matrix 

The unit matrix 

Laplace operator 

Product of three matrices, X and Y are n x n matrices 

and 1 is an n x n matrix with a l l elements equal to 1. 

v i i i 



INTRODUCTION 

Since the early days of a.c. electric power generation and 

u t i l i z a t i o n , oscillations of power flow between synchronous machines have 

been known to be present. The possiblity of such oscillations and the 

tendency of a system to lose synchronism appears to be more prevalent i n 

large systems. The s t a b i l i t y characteristics of a power system during 

transient disturbances may be assessed from i t s mathematical model: a 

set of nonlinear differential equations, known as the swing equations. 

These equations describe the power system dynamics, their order depending 

on the detail of representation used for the synchronous machines and 

associated control apparatus. Several methods are available for the 

solution of the transient s t a b i l i t y problem. For simple configurations 

under the usual assumptions of constant input, no damping and constant 

voltage behind transient reactance,the equal area criterion or the phase 

plane method may be used. When the study involves a large number of machines 

or when i t is necessary to take into account such refinements as transient 

saliency, f i e l d decrement, exciter action and damping, s t a b i l i t y studies 

are usually investigated through step-by-step numerical integration of the 

system differential equations unt i l the c r i t i c a l switching time is found. 

Such a method is cumbersome and very costly since an almost prohibitive 

amount of computation is required in i t s execution. Thus the need increases 

for the development of more direct methods for studying s t a b i l i t y . During 

the past few years the application of the second method of Liapunov to the 

problem of power system transient s t a b i l i t y using models of varying degree 

of complexity for the power systems has been found useful and straight 

forward. The approach involves choice of a suitable Liapunov function to 

estimate the region of asymptotic s t a b i l i t y around the equilibrum state of 
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the post f a u l t system and the c r i t i c a l switching time can be obtained by 

carrying out only one forward i n t e g r a t i o n of the swing equations. 

The d i f f i c u l t y i n the a p p l i c a t i o n of Liapunov's d i r e c t method 

i s that i n general there i s no obvious way to choose a s u i t a b l e Liapunov 

function. In many cases i n v o l v i n g a p h y s i c a l (mechanical or e l e c t r i c a l ) 

system the energy stored i n the system appears to be a natural candidate. 

Gless [13] studied 1~, 2-, and 3- machine systems representing the machines 

i n the simple form of a constant voltage behind synchronous reactance, neglecting 

a l l l o s s e s , damping, f l u x decaying and considering a constant input. El-Abiad 

•- and Nagappan [14] considered a multi-machine system i n c l u d i n g In t h e i r model 

losses and constant damping. 

Siddique [16] considers a s i n g l e machine system taking i n t o account 

f i e l d decrement and s i m p l i f i e d governor and regulator action. 

Other ap p l i c a t i o n s were made using formalized construction 

procedures, Yu and Vongsuriya [15] employed Zubov's method to develop a 

Liapunov function f o r one machine i n f i n i t e bus system using a second order 

model f o r the machine and i n c l u d i n g a damping c o e f f i c i e n t which i s a 

function of the angular displacement of the machine. Rao [17] used - Cartwright's 

[20] procedure to construct a V-function f o r a s i n g l e machine taking i n t o 

account the transient s a l i e n c y e f f e c t , a constant damping f a c t o r and a 

governor action represented by a si n g l e time constant. Rao also applied 

t h i s method to a s i m p l i f i e d 3-machine system. The v a r i a b l e gradient method 

[21] was applied by Rao and Desarkar [19] to a one-machine system i n c l u d i n g 

the e f f e c t of the f i e l d - f l u x linkage changes. 

Pa i , Mohan and Rao [18] applied Popov's theorem on the absolute 

s t a b i l i t y of nonlinear systems using Kalman's procedure [4] to construct 

a Lure-type Liapunov function f o r a one machine system with and without 

governor action. The generalized Popov c r i t e r i o n [8] for m u l t i v a r i a b l e 
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feedback systems was used by J.L. Willems.[9, 10] to develop a Liapunov 

function f o r n-machine power system. 

In t h i s thesis the s t a b i l i t y of single-machine as w e l l as m u l t i -

machine power systems i s i n v e s t i g a t e d using two d i f f e r e n t procedures to 

construct s u i t a b l e Liapunov functions. In Chapter I Willems' method i s 

applied to a three machine power system taking into account the damping 

e f f e c t . A four machine system i s considered i n Chapter II and the best 

d i s t r i b u t i o n of damping r a t i o s i s obtained by maximizing the hypervolume 

enclosed by the Liapunov function. Willems' method i s extended i n Chapter 

III to study a three.machine system i n c l u d i n g governor act i o n . In Chapter 

IV Chen's method i s applied to a s i n g l e machine i n f i n i t e - b u s system taking 

into account the decay i n f i e l d f l u x linkage. 
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CHAPTER I 

GENERALIZED POPOV'S CRITERION AND WILLEMS1 METHOD 

The s t a b i l i t y study of automatic feedback control systems 

containing single memoryless nonlinearities, figure 1.1, was initia t e d 

by Lure. Normally the nonlinearity is confined to a sector of the f i r s t 

and third quadrants as shown in figure 1.2. Popov [1] made a most important 

contribution to the problem by giving sufficient conditions for absolute 

s t a b i l i t y which are completely dependent on the frequency response of the 

linear part of the system. A procedure for constructing Liapunov functions, 

for such systems was introduced by Kalman [4]. 

Recently Anderson [6], [8] developed a theorem generalizing 

Popov's criterion and Kalman's procedure to investigate the st a b i l i t y of 

feedback control systems containing more than one nonlinearity. The 

theorem relates the concept of a positive real matrix to the concept of 

minimal realization of a matrix of transfer functions [7]. Liapunov 

functions based on Anderson's theorem were constructed by Willems [10] 

for multimachine power system s t a b i l i t y studies. Willems' method i s 

applied i n this chapter to a three machine power system. 

1.1 Generalized Popov's Criterion [8] 

Automatic feedback control systems with multi-nonlinearities, 

figure 1.3 and figure 1.4, can be descirbed mathematically in state / 

variable form by 

x = Ax - Bf(E) 
(1.1) 

e = Cx 

where 

x n vector 

e m vector 
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r=o N-L 
KS) 

G(s) N-L G(s) 

F i g . 1.1 Automatic Feedback Control System Containing Single Memoryless 
Non l i n e a r i t y 

f(S) 

F i g . 1.2 Nonlinearity Confined to a Sector of the F i r s t and Third 

Quadrant 
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F i g . 1.3 Automatic Feedback Control System With M u l t i - n o n l i n e a r i t y 

iws) 

N.L N.L A 

F i g . 1.4 Automatic Feedback Control System With M u l t i - n o n l i n e a r i t y 
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A n x n asymptotically stable matrix 

B n x m matrix 

C m x n matrix 

f(e) m vector satisfying the sector condition 

0 < f. (E.) < k. E
2 

— 1 1 1 1 

f i(0) =0 i = 1,2, , m 

Theorem [6] 

If there exist real diagonal matrices 

N = diag (n , n , . . . . , n ) 
m 

Q = diag .(q , q , , q ) 
i / m 

K = diag (k , k , , k ) 
l I , m 

with n > 0 , q > 0 , n +q >0 such that m — m — m m 

Z(s) = NK"1 + (N + Qs) W(s) 

is a positive real matrix 

where 

W(s) = C(sl - A) ̂ B (n x n) matrix of stable rational transfer 

function and W (°°) = 0 then the system is stable. The st a b i l i t y of system 

(1.1) can be determined by the Lure type Liapunov function 
rn Cx <V 

V(x,e) = x Px + 2Q / f(e) de (1.2) 
0 

where P i s a positive definite symmetric matrix determined 
T T PA + A P = -LL 

PB = CTN - LWQ + A TC TQ (1.3) 

WQ
TW0 = 2NK + QCB + B TC TQ 

where L, WQ are auxiliary matrices of order ( n x n ) , (n x m). 

1.2 Willems' Method [10] 

Willems applied the above technique to estimate the transient 

s t a b i l i t y regions for multimachine power systems. 
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Assuming that 

1. The flux linkages are constant during the transient period 

2. The damping power is proportional to the s l i p velocity 

3. The mechanical power inputs to the machines are constant 

4. Armature and transmission line resistances are neglected, 

The differential equations describing the motion of the machines can be 

put in the form 
d 26. d 6. 

M. — — + a, -r~- + P . - P . = 0 for i = 1,2 n 
i ,2 I dt ei mi , dt (1.4) 

with P . = G.E2 + E E.E.Y.. sin (6. - &*) i = 1,2, n 
ei i i , = 1 i ] l ] I J 

where E. = internal voltage of the ith machine i 
G. = local load conductance l 

Y., = transfer admittance between the ith and the ith machine 

At equilibrum 
d 6. d26. 

- 1 = w. = 0 , — = i = d). = 0, P . = P dt i ' 2 I ' ml el dt 

Let x = " 2n vector 

where to, a are column vectors with components 

to = [to^, u>2 > • • • • t i ) n ] 

a = [a^, o2> •••• a ] 

o, — 6T - 6n , o, = 6„ - 6„ , .... a =6 - 6° 
1 1 1 2 2 2 n n n 

Although the state variable vector x has 2n components the actual order of 

the system is (2n - 1) since only the differences between the rotor angles 

appear in the system equations. 



9 

Let 

M = diag (MJ (n x n) matrix 

( n x n ) matrix 

D =. an (m x n) matrix such that the vector e = Da has i t s 

(1.5) 
R = diag (-cO 

components 

- - o2> z2 ~ °1 ~ °3' n-1 1 n 

n 2 3 n+1 2 a4' ' 

m - " ( n - 1> 
m - -

m n-1 n 

where 

Define the function f(e) as 

f.(e.) = E E Y ( s i n (e. + e?) - s i n e?) ,• _ i o m Where i i p q pq i i I 1 i,z,...m wnere (1.6) 

p, q are the indic e s of the component of a on which c i s dependent. Let 

e? be the value of e for 6. = 26? and define the matrices A, B and C as l i i 

A = 

B = 

M 1R 0 
nn 

I 0 n nn 

-1 T M D 

nm 

(2n x 2n) matrix 

(2n x m) matrix 

L mn D (m x 2n) matrix 

The d i f f e r e n t i a l equatiors (1.4) become equivalent to 

x = Ax - Bf'(e) 
e = Cx 

(1.7) 

(1.1) 

The s t a b i l i t y of system (1.1) i s determined by a Liapunov function of the 

form (1.2). 

The time d e r i v a t i v e V i s given by 

V = - ( x T L - f(Cx) TW Q
T) (L Tx - W Qf(Cx)) - 2x TC TNf(Cx) (1.8) 
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The next step is to find the.matrix P of equation (1.2). Since by definition 
T T 

CB = B C = 0 mm 
and choosing 

N = 0 
mm 

m 
then substituting in equation (1.3) results in 

i) W = 0 0 mm 
PA + ATP = 

T T PB = A C 

-LL 

-1 

(1.9a) 

(1.9b) 

(1.9c) 

i i ) Z(s) = sC(sI - A) B is positive real i f a l l the damping constants 

are nonnegative 

i i i ) equation (1.8) reduces to 
T T 

V - -x LL x which is negative semidefinite 
Let P = 

where P^, P 2 > P^ are (n x n) square matrices. 

Thus equation (1.9c) is equivalent to 
- I T T P M D = D 
-1 T P.M D = 0 2 nm 

and from the negative semidefinitness of 

PA + A P = PXM 1R + RM 1 P 1 + P 2 + P T 

P 2M _ 1R + P 3 

-1 T 
K M P 2 + P 3 

nn 

we get 
-1 -1 T P 3 = -P2M R = -RM P 2 

(1.10) 

(1.11a) 

(1.11b) 

(1.12) 

Since matrix contains m = ^ ~ —̂  columns with each column containing 

only two nonzero elements,+1 on the i t h row and -1 on the j t h row, the 
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solution of the equation YD =0 , where Y i s an unknown symmetric 
nm 

(n x n) matrix,is Y = ul where y is a scalar constant and 1 is an 

(n x n) matrix with a l l elements equal to 1. Applying the above reasoning 

to (1.11a) results in 
-1 -1 -1 T (M P.M - M )D = 0 1 nm 

P 1 = M + yMlM 

which is positive definite i f y >\i where y is the solution of the 
1 o o 

det,/M + u M1M/ = 0 o 

1=1 1 

-1 

(1.13) 

(1.14) 

from equations (1.11b) and (1.12) 
-1 -1 T R P0R D = 0 3 nm 

and hence 

P 3 = yRlR 

P 2 = -yRIM 

where y is a scalar constant and is taken equal to zero 

hence P = 0 
nn 

0 0 nn nn 

(1.15) 

(1.16) 

The matrix PA + A P is negative semidefinite i f , and only i f , the matrix 

Z(y) = 2R + y(MlR + RIM) is negative semidefinite 

Z(y) is negative semidefinite for certain values of y 

(1.17) 

where u.. is the solution of the det |z(u)| = 0 which is equivalent to 

n 
I 

n 

i=l j=i+l 
7 (M. 
4 J 

- M. 
l a . 

n 
- u(I M ) - 1 

i=l i 
(1.18) 

Equation (1.18) has a positive and a negative solution for y, the negative 
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one being u 

Substituting the value of P in equation (1.2) we obtain 
T T C x T V(x) = to Mco +y .to MIMco + 2/ f(e) de (1.19) 

0 

with i t s derivative 

V(x) = 2coTRio + 2uco TM1R (1.20) 

1.3 Stability Regions 

Since the derivative of the Liapunov function is negative 

serridefinite [9] the boundary of the transient s t a b i l i t y region can be 

obtained by solving the equations 

= 0 
o CO . 1 

for i = 1,2, n (1.21) 
a:v(x) _ n 

3.6. x 
The f i r s t equation gives co = to =....= to =0. The second equation 

1 z n 

gives the closest equilibrum state (necessarily unstable) to the origin 

x U. The region bounded by the closed surface 

V(x) = V(x U) 

and containing the origin i s a stable region. 

1.4 Numerical Example 

Consider the three machine system shown in figure 1.5. 

The differential equations describing the motion of the system are 
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F i g . 1.5 A Three-Machine Power System 
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d 26 
M 

1 d t 2 

dS 
+ K1 d r + P e l = P

m l 

d 26, d6, 
2 ~1~ + A2 dT + P 

(1.22) 

M 

dt 

3 dt 2' 

e2 " m2 

d6 
+ a 3 l T + P e 3 = P

m 3 

Let the state variable vector be 
dS. d6. d6. 

x = ( o S T 
dt ' dt ' dt 

Following the steps described i n section 1.2, the system equations(1.22) 

become 

x' = Ax - Bf(e) 

e = Cx 

where 
r a l A = — 

\ 
0 

a ? 

0 0 0 0 

0 ~ M 
2 

0 0 0 0 

0 0 J 
"M 3 

0 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

B = 1_ 1_ 0 

1 
M 
2 

M2 

0 1 1 0 "M 3 "M 3 

0 0 0 

0 0 0 

0 0 0 

C = 0 0 0 1 -1 0 

0 0 0 1 0 -1 

0 0 0 0 1 -1 



15 

w = 
E 1 E 2 Y 1 2 ( s l n u1 + E l } " sin 

f 2 ( e 2 ) = E 1 E 3 Y 1 3 ( s l n u2 + E 2 ) - s in 

f 3 ( c 3 ) - E 2 E 3 Y 2 3 (sin ( e 3 + e 3) - s in 

with = X4 " X 5 
o 

e l -< -«2 
e2 = X4 " X 6 

o 
e2 "I 

e3 = X 5 " X6 
0 

e 3 - 52 -«3 

= 2> 

=3> 

The Liapunov function i s then given by 

V(x) = M ^ - r M2X2 + M 3X 3 +u [M1X]_ + M2X2 + M ^ ] 2 

+ 2 [ E 1 E 2 Y 1 2 ( c o s e ° - cos (X 4 ~ X + e°) - % - s i n e°) 

+ E 1 E 3 Y 1 3 ( c o s e ° - cos (X^ " x
6 + e°) - (X^ - X g) s i n e ° ) 

+ E 2 E 3 Y 2 3 ( c o s e° - cos (X 5 - X g + e°) - ( x $ - X g) s i n e°) ] (1.23) 

The system studied has the following data 

E1 = 1.174 [22.64° p . u . Pir^ = 0.8 p . u . 

E 2 = 0.996 12.61 0 p.u.. Pm2 = 0.3 p . u . 

E 3 = 1.06 [-11.36° p . u . Pm3 = - l . l p . u . 
a l H-. = 3 KW. sec/KVA — = 10 Y, _ = 1.13375 p.u. 1 12 

a2 H = 7 KW. sec/KVA — = 7 Y = 0.52532 p.u. 2 M2 13 
a 

H = 8 KW. sec/KVA ~r = 3 Y 0 0 = 3.11850 p.u. 

3 M3 23 

A sudden 3-phase symmetrical short c i r c u i t to ground occurs on the trans

mission l i n e connecting machines 2 and 3 of Figure (1.5) close to bus 3. 

The unstable equilibrum state nearest to the o r i g i n i s calculated and was 

found to be at 
X, - X, = 2.61168 rad 4 5 
X. - X, = 2.95275 rad 4 6 

X 1 = X2 = X 3 = 0 ' ° 



16 

with V = 3.36. m 

The c r i t i c a l c l e a r i n g time obtained from the above V-function was found 

to be between 14-15 cycles. 

Figure (1.6) shows the function V= V p l o t t e d i n the two 
m 

dimensions (X. - X c ) , (X. - X,) f o r X = X„ = X„ = 0. 
4 5 4 b 1 2 3 

The actual c r i t i c a l c l e a r i n g time obtained from forward i n t e g r a t i o n of the 

swing equations using Runge Kutta method i s 20 cycles. 
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CHAPTER II 

OPTIMUM DISTRIBUTION OF DAMPING FOR MAXIMUM TRANSIENT STABILITY REGION 

In this Chapter Willems' method described in Chapter I is 

applied to a four machine power system and a study is made to find the 

optimum distribution of damping that maximizesthe region of s t a b i l i t y . 

2.1 System Equations 

Under the same assumptions made in Chapter I the system equations 

are ~ 
d 6 d 6 

M: —-r- + a . — - + P .. = P . i = 1,2,3,4 (2.1) i ,2 I dt e i mi ' dt 
where 

P e l " A l sin <6i "V + A2 sin <61 - 6 ) 
r 

+ 
A3 sin <-\ "V 

Pe2 = A l sin + A4 sin < 6
2 - 5 ) 

y 
+ A5 sin "V. 

Pe3 = A2 sin <53 - V + A4 sin ( 53 - v + A6 sin - V 
Pe4 = A3 sin <S4 - y + A5 sin ( 54 - v + A6 sin <54 - V 

(2.2) and 

A 1 = E 1 E 2 Y 1 2 A 2 = E 1 E 3 Y 1 3 A 3 = E 1 E 4 Y 1 4 

A4 " E2 E3 Y23 A5 = E2 E4 Y24 A6 = E
3
E4 Y34 

Following the same steps described i n section 1.2 to represent (2.1) in 

the form 

(2.3) x = Ax - Bf(e) 

e = Cx 

the results are 

x = < U l 03 2 c o 3 C J 4 6 1 -6° <52 -6° 6 3 -6° -6°) T
 ( 2 4 ) 

e = (6 1 - 6 2 6 X -6 3 5 1 -6 4 6 2 -63 6 2 -6 4 63 -S^ ( 2 5 ) 

E = (x 5 - x 6 x 5 - x ? x 5 - x g x 6 - x ? x 6 - x 8 x ? - x 8 ) T (2.6) 
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A = 

A.(sin ( e . + e ? ) - sin e ° ) 

M l 
0 

0 

1 

0 

0 

0 

0 

M„ 0 
a. 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0. 0 0 

1 0 0 0 0 

(2.7) 

C = 0 

0 

0 

0 

0 

0 

1_ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1_ 
M, 

- zr- 0 

1_ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

rr- 0 

1_ 

1 

1 

1 

0 

0 

0 

1_ 

- rr- 0 

77- 0 -

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 0 

0 -1 

0 0 

1 -1 

1 0 

0 1 

• 0 

1_ 
M, 
-1_ 
M^ 

0 

0 

0 

0 

0 

0 

-1 

0 

-1 

-1 

(2.8) 
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2.2 Construction of Liapunov Function 

According to the expression for P given in section 1.2 

where 
nn 

nn 

nn 

P. = M +U M1M 

r 2 2 
M +pM 1 

yM1M3 

2 2 M2 +yM 2 yM2M3 yM2M4 

uKjM y M2M3 M2 + y M2 . P M3M4 

y M ^ yM3M4 

2 2 M. +yM. 4 4 

The Liapunov function i s then given by 

• vl+ vl + M £< h M4 X4 2 4 • u [M̂ X 1 + M2 X2 
+ M3X3 + M 4X 4) 2 

+2 [A^(cos - cos ( X5 " X 6 + e±) - <X5 - V sin £ 1 } 

+A2(cos e 2 - COS ( x 5 " X7 + e2) - ( x 5 - V sin £ 2 ) 

+A3(cos e'3~ COS (x 5 " X8 + E3) - ( x 5 - V sin e 3) 

+A, (cos e. -4 4 
COS ( X6 " X 7 + e4 } " < X 6 -v sin °\ 

Zl? 

+A^(cos e,.- COS ( X6 " X8 + e 5) - ( X6 - V sin 
+A6.(cos E6- COS (X ? " X8 + 

0 ^ 
E6> " (X ? - V sin e 6)] (2.9) 

2.3 Numerical Example 

The system chosen as an example 

is shown in Figure 2.1. 

E = 1.004 |0.0013 rad 

E 2 = 1.0410 10.103 rad 

E = 1.1900 J0.197 rad 

E. = 1.070 0.0772 rad 4 ' 

p.u. 

p.u. 

p.u. 

p.u. 
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Pmi = ° - 3 3 2 p - u - \ = 75350 P.u. D l = 1 , 0 P ' u " 

P ^ = 0.1 P.u. M2 = 1130 P.u. D 2 = 12.0 P.u. 

P m 3 =0.3 P.u. M3 = 2260 P.u. D 3 = 2.5 P.u. 

P„, = 0.2 P.u. M, = 1508 P.u. D, = 6.0 P.u. . 

A sudden .3-phase symmetrical short c i r c u i t to ground occurs close to 

bus 3 on.the transmission l i n e connecting machines 3 and 4 of Figure 2.1. 

The following table gives the stable equilibrum state of the p o s t - f a u l t syst 

and the unstable equilibrum state clo s e s t to the stable one. 

Internal 6, radians(stable) 6, radians (unstable) 
bus 

1 0.05630 0.06610 

2 0.15013 0.20136 

3 0.21430 3.0820 

4 0.02497 -0.02425 

The exact c r i t i c a l c l e a r i n g time was c a l c u l a t e d using Runge Kutta and 

was found to be at 30 cycles. 

When c a l c u l a t i n g the value of 1 the Liapunov function at the unstable 

equilibrum state and X, = X_ = X„ = X, =0.0 we obtain a value f o r 
1 2 3 4 

V^ = 3.155 which gives a c l e a r i n g time of 25 cycles . 

Figure, 2.2 shows the function V(x) = V^plotted i n the three 

dimensional space (X^ - X^), (X^ - X^), (X,.- Xg) with the components 
X = X = X = X. = 0.0. 1 2 3 4 
2.4 Optimum Damping D i s t r i b u t i o n 

a. 
The optimum d i s t r i b u t i o n of damping r a t i o s ( — ) i s obtained 

a. i 
by f i n d i n g the r e l a t i v e values of — to maximize the hypervolume enclosed 

i 

by the Liapunov function that defines the s t a b i l i t y region of the system. 

Considering the V-function (2.9) for a four machine system 
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Fig. 2.2 Stability Region V = V for X = X = X = X = 0 
m 1 2 3 4 
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T C x T 
V = to (M + yMlM)to + 2 f f (e) de 

where y i s given by 

f R u 2 " AklU -4 = 0 
which gives y 

u = 2 ( ) 
R 

where 
MM „ MM MM MM ? 

F R " lV ( R l " V + O T ( R 1 " V + < R T
 ( R 1 " V + R ¥ ( R2 " V 

1 2 1 3 1 4 2 3 
MM MM 

+ RJ*7 ( R 2 " V 2 + O T ( R 3 - V 2 

2 4 3 4 
k.. = M, + M + M + M 1 1 2 3 4 
I t i s noticed that the in t e g r a l part of V does not depend on the damping 

coe f f i c i e n t s and therefore the hypervolume enclosed by the quadratic 

part alone i s to be considered.. This volume i s given by [22] 

where 

H = TT2 V 2 / 2 / \ . 

p q 1 

T 
V = to Aid 
q 
A = M + y M1M 

|A| = determinant of matrix A = k 2 ( l + y k^) 

k 2 = M1M2M3M4 

V q = N 1 + y N 2 2 2 2 2 N.. = M, to, + M oi + M_to0 + M.to, 1 1 1 2 2 3 3 4 4 
N, ( M ^ + M 2u 2 + M a) + M 4 O J 4 ) 2 

2 
Thus H p = JL_ ( N l + y N 2) V A2 + y k ^ 

For maximum volume 
" ' 3H 

3 ^ - 0 1 " 1.2,3, 4 ( 2 . 1 0 ) 
i 

b U t 8H 3H • 3f p = p 3y R 
3R, 3y ' 3f_ * 3R. i R l 
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Thus to s a t i s f y equation (2.10) 
H 3f 

£ = 0 or J - = 0 or 77^ = 0 1 = 1,2,3,4 9u 3 f B 3R 
K 1 

3H 2 k (N +u» ) 
i f • t k 2 < * i » * + 4 N2 " k l V 
which when equating to zero gives 

N x k 1N 1 - 4 N 2 

* = " T2

 o r ^ " 3 k l N o 

Both answers are rejected since the value of u depends on the values of 

state v a r i a b l e -= 
Zu FR - 2 k l A l + FR + 2 k l ^ 

The t h i r d p o s s i b i l i t y i s that 
3f M M ? M „ „ M. 
^ = ̂  ^ ( \ " R2> ( R l " ^ ^ " R 4 ) } = ° 

3f M M M 'JM 
1R! - J <" RT ( R 1 " 4 + I T ( R 2 " R3> + 17 ( R3 - R 4 » = ° 2 1 3 4 

3 FR M 3 , M l ̂ 2 2, M 2 ,2 2, . M 4 ^ 2 .2 

3 
3R„ 2 R 1 y R2 v 2 3y R. 3 4 3 R„ 1 4 

af M M M M 
R M4 , 1 ,J1 ^2 N 2 ,JL ^2 X 3 ,„2 „2v {- — (R, - R.) - TT1 (Ro ~ R,) " 7^ (R, - R P }= 0 3R. 2 R . l 4' R ' 2 4y R v 3 . 4; 

4 R. 1 2 3 4 
which gives 

R. = R 0 = R = R. 1 2 3 4 

Thus f or a maximum region of s t a b i l i t y the damping r a t i o s of a l l machines  

should be equal. 
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CHAPTER III 

EXTENSION OF WILLEMS1 METHOD TO INCLUDE GOVERNOR ACTION 

In t h i s chapter Willems' construction procedure i s extended to 

develop a Liapunov function for multimachine power systems i n c l u d i n g 

governor action. 

3.1 System Equations 

Assuming that f l u x linkages are constant, resistances are neglected, 

damping power i s proportional to s l i p v e l o c i t y and governor response may 

be represented by a s i n g l e time l a g transfer function, 
AP 
_m -K 

1 + T, (3.1) 

The equations of the i t h machine are 
d6. 

where 

dt x 

M ± 7dT = " V i " P e i + Pmoi + A P m i 
dAP .' , K. 

mi 1 • I 
" H F - = " TT A P m i - Y7 U i 

1 1 

(3.2) 

Pmoi i s the value of the mechanical input at steady s t a t e . 

Defining the vector 
o,T 

X = [to1 , to,, a) „» AP,^' A Pw,9» A P „ „ > 5 i " 5 i > " 6o> 5 „ ~ 6 „ ] ,m2 mn n 

B = 

M _ 1R M 1 0 

and the matrices 

A = 

Y Z 

I 

nn 
0 
nn 

0 0 nn nn 
-1 T M D 

nm 

nm 

C = 0 0 D mn mn 

(3.3) 

(3.4) 
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where Y = diag [- ] 
i 

Z = diag [- Tjr~ ] 
i 

M , R and D are as defined i n chapter I. 

Equation (3.2) takes the form 

k = Ax - Bf(e) 

e = Cx 

3.2 Construction of Liapunov Function 

(3.5) 

Applying Popov's generalized c r i t e r i o n , system (3.5) i s stable 

i f . (N + Qs)C (Is - A) i s p o s i t i v e r e a l matrix. 

Taking N = 0 and Q = I then sC(Is - A) "*"B i s p o s i t i v e r e a l i f the mm m 

damping constants are nonnegative. A s u i t a b l e Liapunov function f o r such a 

system i s 
T Cx 

V = x Px + 2 / f(e) d£ o 
where P i s determined from the requirement that 

PA + A P be negative semidefinite and that 
T T PB = A C 

Let P T T P P 12 13 
P P 12 2 

P13 P23 

23 

S u b s t i t u t i n g (3.7) into (3.6b) gives 
- I T T 

P M D = D 

-1 T P i nM D = 0 12 nm 
-1 T P 1 0M D = 0 13 - nm 

Subst i t u t i n g f o r matrix A i n equation (3.6a) one has 

(3.6a) 

(3.6b) 

(3.7) 

(3.8) 

V^M + PX3+M 1RP 1+YP 1 2+P13 P LM 1+P 1 2Z+M 1 r p
1 2 + Y P 2 + P 2 3 

P 1 2 M " l R + P 2 Y + P 2 3 + M " l p i + Z P 1 2 

P 1 3 M " l R + P 2 3 Y + P 3 

P 1 2 M " 1 + P 2 Z + M " l p i 2 T + Z P 2 

P 1 3 M " 1 + P 2 3 Z 

M _ l R P 1 3 + Y P 2 3 + P 3 
- I T T 

M P 1 3 + Z P 2 3 

nn 
(3.9) 
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Setting a l l off diagonal elements of (3.9) equal to zero give 

P . M - 1 + P *Z + M ^ R P * + Y P _ + P = 0 1. 12 12 2 23 nn 

M _ 1 r P 1 3 + Y P23 + P 3 = 0 
nn 

(3.10) 

(3.11) 

- I T T 
M P 1 3 + Z P 2 3 

= o nn 
(3.12) 

Equation (3.8), (3.10), (3.11) and (3.12) are solved for P . , P „ , P „ , P , 12' 
P 1 3 and P 2 3 to give 

P = M + y M1M 

P 1 2 = Y X M1M 

P 1 3 = Y 2

 M 1 M 

' P ^ - Y ^ ^ I M 

P3 = Y 2 ( Y Z _ 1 M _ 1 + M_1R)M1M 

P 2 = Y _ 1 ( Y 2 Z - 1 1 M - Y 1 (M 1M Z + M_1RM1M) -yMl - I ) 

where y and Y 2
 a r e constant scalarsand y is given by 

? n n 1 r*- J®~- 2 n 

y [S S - (M, - ̂  / - J - ) ] - y E Mj_ - 1 = 0 
i=l j=i+l * " j " i i=l 

(3.13) 

(3.14) 

Choosing y^ and Y 2 to be equal to zero, matrix P reduces to 

P = 

where 

p l 0 nn 0 nn 
0 
nn 

P2 0 
nn 

0 nn 
_ 

0 
nn 

0 
nn 

(3.15) 

P l = M + y M1M 

P 2 = - Y 1CiMl + I ) 

Thus for a three machine system, the Liapunov function i s 
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V(x) = M 1X 2 + M 2X 2 + M 3X 2 + u (ML^ + M 2X 2 .+ M 3X 3) 2 

T T T M T M T M T 
1 9 9 2 3 2 1 1 2 2 3 3 

+ K ^ X 4 + K ^ X 3 + K ; X 6 + ^ X 4 + X 5
 + V ^ X 4 + - k 2 - X 5 + l f 

+ 2 E 1 E 2 Y 1 2 (cos e± - cos (X ? - X g + e°) - (X ? - X g) s i n e°) 

+ 2 E 1 E 2 Y 1 3 (cos e 2 - cos (X ? - X + e°) - (X_, - X g) s i n e°) 

+ 2 E 2 E 3 Y 2 3 (cos e 3 - cos (X g - Xg + e°) - (X g - Xg) s i n e°) 

3.3 Numerical Example 

The same numerical example of Chapter I i s considered. With 

governor action taken into account the equations describing the machine 
dynamics are • . • 
d f i . I - to. dt i 
dto. 
~ - = -a.to. - P . + P . + AP . 
dt i x e i mox mx 
dAP K. 

mx x 1 . _ 
di— = " TT u i " TT A P m i 1 = 1 » 2 » 3 

x x 

System Data 

E. = 1.174 |22.64° P.u. -f- = 10.0 
1 ' M^ 

E 0 = 0.996 I2.61 P.u. ~ = 7.0 
2 M 2 

a 
E 0 = 1.006 1-11.36 P.u. — = 3 . 0 
3 M 3 

P =0.8 p.u. T, = 0.2 sec Y,. = 1.13375 p.u. mol r 1 12 

P _ = 0.3 p.u. T. = 0.22 sec Y, „ = 0.5232 p.u. mo2 r 2 13 
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P. _ = -1.7p.u. T 0 = 0.25 sec Y„„ = 3.11856 P-u.. mo3 3 23 
K± - K 2 = K 3 = 0.0 

The unstable equilibrum state close to the stable one is calculated by 

solving the equations 

^ X - ) = 0.0 (3.17) 

= 0.0 (3.18) 

=0.0 i = 1,2,3 (3.19) 

Equations (3.17) and (3.18) gives 

X = X = X = X = X. = X. = 0.0 1 2 3 4 5 6 
Equation (3.19) gives 

X., - X„ = 2.61168 rad 
/ o 

X, - X = 2.95275 rad 

with V = 3.36 m 
The c r i t i c a l clearing time obtained from the above V-function was found 

to be between 15~16 cycles while the exact clearing time obtained from the 

forward integration of the swing equations using Runge Kutta was at 20 

cycles. 

3.4 Concluding Remarks 

It is obvious from the material presented i n this chapter 

that the generalized Popov's criterion can be successfully applied to 

power systems including governor action. On the other hand the same 

method failed when applied to a power system taking into account the flux 

decay in the f i e l d circuits of the synchronous machines. The reason behind 

this failure i s that the nonlinearities introduced when considering flux 

decay are different in form from those considered by Popov. Thus i t is 

concluded that Popov's theorem is applicable to higher order power systems 



as long as the nonlinearities retain the same form. 
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CHAPTER IV 

A LIAPUNOV FUNCTION FOR A POWER SYSTEM INCLUDING FLUX DECAY 

(CHEN'S METHOD) 

When including the effect of flux decay in the f i e l d c i r c u i t of 

synchronous machines the power system can not be represented in a suitable 

form for application of the generalized Popov's criterion. A new method, 

developed by Chen, based on the use of an auxiliary exact differential 

equation derived from the given nonlinear differential equation representing 

the system, is applied in this chapter. The method is employed to construct 

a Liapunov function for a third order model of a synchronous machine con

nected to an i n f i n i t e bus with the effects of flux decay in the f i e l d 

included. 

4.1 Chen's Method [11], [12] 

Consider a set of n f i r s t order autonomous differential equations 

x = f(x) <*-D 

where both x and f(x) are n dimension vectors, a l l f^(x), i = 1,2, ....n 

together with their f i r s t partial derivatives are defined and continuous in 

some region Q of the state space E^ and the point x = 0 is an equilibrum 

point also in 11. 

Define g. = f, + f. + + f. - f . ^ f (4.2) 
l 1 2 l - l l+l n 

4-u n 
then _ . 

which gives T 

g x = 0 or g dx = 0 (4.3) 

Equation (4.3) i s said to be an exact differential equation in Q i f there 

is some single-valued differentiable function U(x) defined and continuous 

together with i t s f i r s t partial derivatives in some neighborhood of every 

point in Q such that 
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dU(x) = g T • dx 

dU(x) „„, ,T . T 
—rr- = VU(x) • x = g • x (4.4) 

which results in 
3U(x) = 

3 x i S i (4.5) 
i , j = 1,2, ..'..n 

3X. 3X. 
3 i 

T 
and U(x) = / g • dx 

c 

which is independent of any integration path C contained i n the domain 

of U(x). Thus equation (4.5) i s a necessary and sufficient condition for 

the exactness of (4.3). If equation (4.3) is not exact the U(x) does not 
T 

exist. A function h(x) can be added to g(x) such that (g + h) • dx i s 
an exact differential which pives 

dU(x) / . , N T 

= (g + h) - x (4.6) 

= (g + h ) T • f 

dU(x) T 
dt ~ h f 

For equation (4.6) to be an exact differential equation, then 

3U(x) , , 
"3XT = 8 i + h i I 

3(g ± + h ±) 3(g. + h.) 
a n d r r r ^ -

 = "gx 1 i» j = 1» 2, .. . .n (4.7) 
j i 

The function U(x) can be evaluated by the line integral 

U(x) = / (g + h ) T dx (4.8) 
C 

For an integration between limits o and x, (4.8) gives 
x 

U(x) - U(o) = / (g(y) + h ( y ) ) T . dy (4.9) 
o 

It remains then to select h(x) such that U(x) has the characteristics of 

a Liapunov function. These are given by 
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a) (g + h) » x is an exact differential dr 

i , j = 1,2, 
9(g. + h ) 3(g. + h ) 

T 
b) hlf 

ax. 
j 

dU(x) 
dt 

ax. 

is negative definite or semidefinite 

c) U(x) is positive definite 

Let h = 6(g) + V i K * ) 

where 6(g) is a known function of g(x). For n=3 6(g) is given by 

(4.10) 

6(g) = - /C 
3g-, 
axT 

3g. 3go 38-, 3g 9 J 3g, 
3^> d X 3 " / [ ( ^ " ixf> " 1 l c 3 ^ 3 " i x ^ ) d X 3 ] d X2 

- /C 
3g 2 3g 3 

3X„ 3X> d X 3 

L 
(4.11) 

and i|)(x) is a scalar function that has to be selected such that conditions 

b and c are satisfied. Substituting for h(x) from equation (4.10) gives 
X X X 

U(x) = / (g(y) + h(y)) Tdy = / (g + 0(g) ) Tdy + / V<Ky)Tdy 

U(x) = W(x) + ^(x) - lj, (0) (4.12)-

If ;jj(x) i s chosen such that (0)= 0, then 

U(x) = W(x) + i>(x) (4.13) 

conditions b and c can be restated as 

b) U(x) = W(x) + TJ;(X) is negative semidefinite 

c) U(x) = W(x) + (JJ(X) is positive definite 

where W(x) is directly evaluated from the system equation (4.1) with ^(x) 

serving as correction function to give U(x) i t s desired characteristics. 

4.2 Estimation of Stability Regions 

For locally stable systems a closed form solution for the 
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undetermined c o e f f i c i e n t s of the function- I|J(X) does not e x i s t . In t h i s 

case the s t a b i l i t y region i s estimated by generating a Liapunov function 

i n a s e r i e s form a f t e r expanding the system n o n l i n e a r i t i e s i n t o polynomial 

form. Thus W(x) can be w r i t t e n as the sum of homogeneous polynomials 

W(x) = F 6 2 .(x) + F o 3 ( x ) + F o m
( x ) (4.14) • 

where F 0j ( x ) i s a j t h degree homogenous polynomial. Thus 

U(x) = F o 2 ( x ) + F Q 3(X) + .... F ^ x ) + <Kx) 

and 

U(x) = - G o 2 ( x ) - G o 3 ( x ) G

m + S ^ + <KX> (4.15) . 

where-G Q J i s also a j t h degree homogeneous polynomial and s i s the highest 

degree of f ( x ) . Then the f i n a l Liapunov function i s obtained i n the following 

steps 

1. S t a r t i n g with ip(x) = 0, check the p o s i t i v e d e f i n i t n e s s of F (x) and 
o2 

G ^(x) . I f both are p o s i t i v e d e f i n i t e then U'(x) i s a Liapunov function. 

2. I f F „ (x ) and G „ (x ) are not p o s i t i v e d e f i n i t e , consider a quadratic 
o2 o2 n 

function ij^(x) = F^ 2 (x) with undetermined c o e f f i c i e n t s , thus 

IL(x) = [F (x) + F (x)] + F .(x) + .... F (x) 
1 o2 12 o3 o m 

U l ( x ) = -G 1 2 ( x ) . - G 1 3 ( x ) . . . . G 1 ( m + s ) ( x ) 

The unknown c o e f f i c i e n t s of ij> (x) are determined from 

i ) F 02 (x ) + F^ 2(x) i s p o s i t i v e d e f i n i t e 

i i ) G ^ ( x ) i s p o s i t i v e d e f i n i t e 

3. For a second approximation a homogeneous t h i r d order polynomial F^ C x ) 

i s added to U^(x) to give 

U 0 (x) = [ F 2 ( x ) + F (x)] + [F (x) + F „ . ( x ) ] + F (x) + .... F .(x) 

2 u ^ l z oi Li Q4 om 

U(x) = -G 1 2 ( x ) - G 2 3 ( x ) .... G 2 ( n t f s ) ( x ) 

-The c o e f f i c i e n t s of F 2 3 ( x ) are determined by s e t t i n g G 2 3 ( x ) = 0 

4. Further approximation can be made as required. 
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4.3 System Equations 

For a single machine connected to an i n f i n i t e bus the system 

equatior© including the effect of flux decay in the f i e l d [16] are 

X1 = X2 

X2 4 ( F
m l - - - X 1 9

q ' x - ' , s - ( X 1 + 6 ° ) ) 12 d 
X 3 = ~ n l X 3 ~ n

2
( c o s ( X i + 6°) " c o s 6°) (4.16) 

where X = 6 - 6 ° X 0 = X = 6 X = E"' - E 
z 1 3 q 

In order to apply Chen's method,equations(4.16) are expanded as follows : 

Put h = E B/M(X 1 2 + X'^ 

K 2 = K 1E 

Thus X 1 = X 2 

X2 = " K1 X3 S ± n ( X1 + " K
2

( s i n ( X1 + " s i n 6°> 

X 3 = - T ^ X - n 2(cos(X 1 + 6 ° ) - cos 6 ° ) 

which when expanded gives 

X1 = X2 
°° . °° i - l 

X = - E p xj- - X_ E q.X 
2 1=1 1 1 3 1=1 1 1 (4.17) 

CO 

X, = - n,X_ - E r. xj" 
3 1 3 . , i 1 

1=1 
where P». 

l 

K 0 2 . ,fO , ITT. -7j s m ( 6 + — ) 

K l . ,.o ̂  ( i - l ) . q ± = T y s m ( 6 + -— ' - ir) 

n2 • /*° ̂  (1 ~ 1) s 
— s m ( 6 + -=>—r— ' -v , ) 

r i i ! ^ u T 2 " > (4.18) 
4.4 Construction of Liapunov Function 

Applying Chen's method to the system equations (4.17) gives 
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g(x) E (p. + r X + X 3 J n
 q i X l 1 + ^ 3 

i = l 1=1 

1 , r l X l + X2 + n l X 3 i = l 

n 
-E 

i=l 
4.-1 + X„ P i X l ~ X 3 Z . q i X l ' "2 i= l 

6(g) = " ? , "«i + ^ i ) X 3 + I q i + l X 3 " l r i V X l _ 1 

i=l 

( l - n 1 ) x 3 

(4.19) 

(4.20) 

W(x) = -| X2 + 2X 2X 3 

1 Y2 " + 1 Pi-1 
2 q i x 3 + 1 , ( r 

i=2 

r . 
^ ) x j 

n+1 
+ E 

i=2 
( 2 X 2 r . _ 1 ^ i - i )

 xr - s z, q i - i
 xr 

i = J 

(4.21) 

4.5 Numerical Example [16] I 

The system taken as an example i s shown i n Figure 4.1 with the 

following data 

E = 1.02 P.u. 

6° = 0.42 rad 

M = 147 x 10~ 4 P.u. 

Xf- ' = 0.3 P.u. 
d 

E' = 1.03 P.u. 
q 
.= 1.0 P.u. 

X = 0.2 P.u. on base 25 MVA e 
X, = 1.15 P.u. d 
To' = 6.6 sec 
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F i g . 4.1 Single Machine - I n f i n i t e Bus Power System 



3° 

A three phase short circuit at the middle of one transmission circuit as 

shown in Figure 4.1 occurs, the corresponHit-p-.V and V-functions 'are 

W(X) = | X 2
+ 2X 2X 3 - ? q i X 2

 + E C 1 - 1 . 1 - 1 ) * J 
i=2 

n+1 _ n+1 
+ E (2X„r. - 2X„p. ) X* - X 0 E q. . X. . 0 2 l - l 3 l - l 1 3 . „ M i - 1 1 i=2 i=3 

W(x) = - 2n 1X 2X 3 - q ^ r ^ - 2)X 3 - X 2 E r X* 1 

i=2 

i-2 

n+1 n+1 
+ 2X; E ( i - 1) V l x{~2 - X 2X 3 (2(1 - DP.., q . ^ x j " 1 

i=2 i=2 
n+1 i-1 

+ X3 E
 9

 ( q l r i - l + 2 ( r i l " ^ i - l * X l i=2 

+ 2X3 E ( n i - D q . ^ X ^ - X 2X 3 E (1 - 2) q X ^ 3 

i=3 i=3 

It is seen that F- „ and G' „ are not positive definite and successive oZ ol r 

approximations are needed. 

4.5.1 The Firs t Approximation 
T 

A quadratic function F ^ W = X Ax is added to W(x) . When solving 

for {F 1 2(x) + F
0 2 ( x ^ ^ positive definite and G 1 2 

we get 

A = 

positive definite 

-1.45 -0.109 

-0.109 -0.01 

153 

-1.0 

153 -1.0 50.5 

"Die f i r s t approximate s t a b i l i t y region boundary is obtained by calculating 

ct1 = min {U 1(x)/U 1(x) = 0, except the origin} where IJ^Cx) = W(x) + F ^ x ) . 

The c r i t i c a l clearing time i s calculated from the above V-function and was 

at 0.05 sec. 
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4.5.2 The Second Approximation 

A third order homogeneous polynomial ̂ .^Cx) "*"s a <^ e c* ^° U^( x) 

F 2 3 ( X ) = V l ' + a 2 X 2 X l + a 3 X 2 X l + a4 X2 3 + a 5 X 3 X l 
2 3 2 2 

4- a^X^X^ + a^X^ + 3gX2X3 +.3^X2X3 + ^iQ^^^2X3 

Solving for the unknown coefficients introduced by F2 3(x) from the con

dition 

gives 

G 2 3(x) = 0 

ax = 0.1472 a6 = 71.03 

a 2 = -0.31947 a7 = 1.9328 
-6 a 3 = 0.224456:. x 10 a8 = 0.08046 

,~--3 
a8 = 

a. = -0.46473 x 4 10 a9 = -0.042757 

a 5 = -15.752 a10 = = -0.04443 

The second approximate s t a b i l i t y region boundary i s obtained by calculating 

= min {U2(x)/u"2(x) = 0, except the origin} where U^Cx) = U^(x) + F 2 3(x) 

which gives a c r i t i c a l clearing time of 0.1 sec. 

4.5.3 The Third Approximation 

A complete fourth order homogeneous polynomial F^ C x ) is added 

to U 2(x) 

F 3 4(x) = a^X4 + a 2X 3X 2 + a ^ X j ^ a ^ X ^ + a^X2 

+ a 6 x J x 2 X 3 + a 7 X l X
3 + a ^ X 3 + . a ^ X ^ 

+ a 1 0X 1X 2X 3 + a ± / 2 -+ a 1 2X 2
3X 3 + a ^ x ] 

+ a14 X2 X3 + a15 X3 

The unknown constants introduced by F 3^(x) are calculated from the condition 

G 3 4(x) = 0.0 
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which gives 

a 1 = -40.694 

a 2 = 0.047175 

a 3 = -118.09 

a. = 0.64395 4 
a 5 = -112.98 

a, = 0.41651 
D 

a ? = -0.40783 

a g = -67.118 

a 9 = 0.058045 

a 1 Q = -0.56244 

a l l = - ° - 0 0 2 5 4 0 8 

a 1 2 = 0.003362 

a13 = ~ ° - 6 1 2 9 2 

a.. = 0.72708 14 
a 5 = -26.650 

Also the third approximate s t a b i l i t y region boundary i s obtained by 

computing a = min {U 3(x)/U 3(x) =0, except the origin} 

where U (x) = U 2(x) + ^ ( x ) 

which gives a c r i t i c a l clearing time of 0.083 sec. The actual c r i t i c a l 

clearing time i s calculated by integrating the system equations using the 

Runge-Kutta method and is found to be at 0.5 sec. Figures4.2.1, 4.2.2 

and 4.2.3 show- the function V(x) = Y . for the f i r s t , second and third 
max 

approximations respectively plotted i n the three dimensional space 

X l 5 x 2 and X . 



Fig. 4.2.1 First Approximation of Stability Region 
N3 



Fig. 4.2.2 Second Apprxoimation of Sta b i l i t y Region Co 



Fig. 4.2.3 Third Approximation of S t a b i l i t y Region 

3 
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CONCLUSIONS 

Two methods for constructing Liapunov functions have been applied 

to study the transient s t a b i l i t y of power systems. In Chapter I Willems' 

method was applied to a three machine system in which each machine was 

represented by a second order nonlinear differential equation. The optimum 

distribution of damping ratios among different machines in a multimachine 

power system was investigated in Chapter II by maximizing the hypervolume 

enclosing by quadratic part of the Liapunov function. Governor action was 

included ..in- the representation of the power systems in Chapter III and 

Willems' method was extended to enable construction of Liapunov functions 

for such systems. The effect of f i e l d flux decay is considered i n 

Chapter IV and Chen's method was employed to construct a Liapunov function 

for a third order model of a single machine connected to an i n f i n i t e bus. 

From these studies i t is concluded that: 

1. The efficiency of Willems' method, based on the generalized Popov criterion, 

i s not affected by the number of machines included i n the power system 

studied nor by the introduction of a governor 

2. For a maximum region of s t a b i l i t y , the damping ratios of a l l the machines 

should be equal. 

3. Willems' method cannot be applied when the effects of flux decay are 

included. 

4. Chen's method is applicable when power systems are represented in detail 

but i t yields very restrictive results unless a large number of successive 

approximations is performed. It is also shown that the s t a b i l i t y region 

estimated using this method does not increase monotonically with the 

number of approximations . 
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