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ABSTRACT

In this thesis Liapunov'é direct method is a@plied to transient
stability study of power systems. Szego's method is applied to a second
order power system in chapter two and a quadratic Liapunov function.applied
‘to the same system in chapter three. The hypervolume enclosed by the
quadratic V-function is maximized. Changes in the time derivative of the quad-
ratic V function are then made to meet the conditions of Liapunov V and 6
‘functions. Finally a maximized modified Liapunov function is constructed

from a tentative quadratic function for a three-machine system.
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1. INTRODUCTION

~QOscillations in the powervflow between,synéhronous machines
have long been known to be present. Since no real power systembis
truly in the steady state and there are always disturbances, ﬁhe
systém has to be continually adjusting to meét ﬁew operating conditions.
" In other words the power system has to have adequate transient stability
margins.

The stability characteristics of a power system during tran;
sient disturbances are usually analyééd from a set of nmonlinear differ-
ential equations known asithe swiné equations. The order of thése'
equations depends on the detail of representation of the synchronous
machines and associated controllers. The.solution of these equations
is usually obtained by step-by-step integration during and afterbthe
disturbance until the critical switching time is found.

The present trend towards interconnection of power systems in
order to raise utility factors and to improve the load factors and so
achieve more economical operation, increases‘the size and complexity
of power systems making the step-by-step méthod for stability studies
more tedious and costly.' A need arises for a more'econbmig and
straightforward method for studying stability. For this, the direct
method of Liapunov, [1], [2], is Qery useful. The method enables one.
to detefmine the stability of the equilibrium state without actual'-
solution of the system's differential equations. With a suitably
constructed Liapunov function the stability region of a power system

~can be established and the critical switching time can be obtained by

- carrying out only one forward integration of the swing equations.

The basic difficulty in the'application is the absence of a



unique methbd'fbr constfucting Liapunov functions although some
formalized methods, [3] to [12], have been déveloped:for certain
classes of functions. Some of these methods have been applied also
to power systems. Yu and Vongs;riya, [15], employed Zubov's method
and a truncated power. series of V-functions to study é one—méchine—
infinite bﬁs system. Rao, [17]1, used Cartwright's procedure, [5],.to
study one—machiné and three-machine systems. Applying Popov's theorem
and Kalman's procedure, [4], Pai, et. al., [18], studied a one;machine
system including governor action.. .The variable gradient .,methé,d -
developed by Gibson and Schultz, [6], was appliea by Rao and Desarkar,
[20], to a third order model of a one-machine system. The generélized
i Popov criteripn for multivariable feedback systemé was used by Willems,
[22], to develop a Liapunov function for multimachine éystems. Others.
éonstructed Liapunov_functioqs for one-machine, [14] [16], as well as
vﬁultimachine systems, [13], [19], [21], based on energy.integrals._ |
This thesis is an extension of thé transient stability studies
for power systems through the application of Liapunov's direct method.
Szego's method, [7]1, is aﬁplied in chapter 2 to estimate the transient
_stability region bf:a power systém. The Liapunov function obtained is
\'in the form of a power series. AAquadratic form Liapunov function is
considered in chapter 3, and the hypervolume enclosed by this function
is maximizéd subject to cergain constraints on the Liapunov function,
V, and its time derivative, G. The results are further improved by
eliminating the indefinite terms in V and by modifying the quadratic

V-function. In chapter 4 a Liapunov function for a three-machine

" * system 'is constructeéd. - Starting with a quadratic V-function, thie time’ ' o

derivative V is obtained and adjusted to be negative definite. The
‘actual V-function is ‘then formed and finally the volume enclosed by

the quadratic portion of this new V-function is maximized.



2. A POWER SYSTEM STABILITY STUDY BY

SZEGO's METHOD

Baséd onIZubov's work [23], [24]; Szego [7] suggested a
construction procedu;e to obtain Liapunov functions for syétems'ﬁith
n&nlinearities representable in polynomial form. The method is appiied
in this chapter to determine the stability region of é second order
nonlinear powér system.

The equations of a disturbedsppwér system aftgr final switching

I

are written in state variable form, with the final.equilibrium at the

L

origin? as follows

x = f(x) » f(O) =0 (2-1)
The stability region is expressed in the state space by its boundary
surface as

vev o (2-2)
where V is a Liapunov function apd Vm is the maximum value of V that

describes a closed surface tangent to V = 0.

2.1; POWER SYSTEM EQUATIONS

A typical power system is shown in Fig. 2;1. ‘It consists of
a salient pole synchronous generagorrcOnﬁected to én infinite bus
through ahigh voltage transmission 1ipe. The»transmission system
is representea by a series resistance f and reactance x. The transformer
is represented by.a reactance_xt. The charging effect of the line and
local reactive power are represented by a susceptance B and the local

load is represented by a conductance G at the machine terminal. The

e

total power output of the machine is P + jQ at. a terminal voltage Vt"

The infinite bus has a constant voltage Vo'



The following assumptions are made for the power system
undef study:
a - The internal induced voltage of gﬁe synchronous machine is constant.
b - The flux linkages iﬁ the rotor circuits of the synchronoué machine
are constant.

- ¢ = The meéhanical input to the synchrohous machine is constant.
d - The armature resistance is neglected.
The syhchronous machine dynamics are represented by a second order.
‘differential.equation.with:the voltage.relations ‘as shown in Fig. 2-2. .

' "Applying Thevenin's theorem, the system shown in Fig. 2-1 can’

be reduced to the simpler form of Fig. 2-3 where

. 1
Zeq =1/ [G+ 3B+ r+j(x+xt)]

v C Vo[r+j(x+xt)]
=V -
o o r+j(x+xt)+1/(G+jB)

Thus
r = {G[r2+(x+xt)2]+r} /A : 5 (2-3)
X, = {(x+xt)—B[r2+(x+xt)2]}>/Af
v =v /)3
A =1+ z[B(x+xt)(1—cr)+crj+(32+c;2)[r2+(x+xt)2]

Although the damper winding circuits are not included in the
machine equations, the damping effect is approximated [27], [15] by

sin26

2
D(§) D1 Cos™ § +D2

- 1 2 . l'l . "
D, =V X - X )
1 o ( q q) Tq

2.
. /(xe+xq)

(2-4)

l2 ] 1" 1 ] 2
D2 =V, (%d - xd) Tdo /(xe+xd)



Including the energy conversion power output, Pe(s), which

is derived in appendix I, the swing equation of the machine has the

form
% ds ' -
M~ +D(§) =— + P (8§) =P, (2-5)
2 dt e i
dt
where
|2 1
= I +B)+ i + + in (6+ +
Pe(G) BlEq + _B2 Cos (6+R) B3 sin (6 Y)]Eq B4 sin(8+y) Cos (8+R)
(2-6)
‘ ds 25 '
Let § = 8§ ,» — = 0 and —, = o in the steady state, and let
o’ dt dt2 :
‘the state variables be chosen as
Xy = 8§~ 66
. ds (2-7)
2 dt
The system equations in state variable form can be written as
17 %
- 1 A , ‘ '
Xy =3 [By = P (xy#6 ) = D(xy +5) x,] . (2-8)
which can be expanded into a power series to give
1T %
. _N i N i-1 _
X, =5 Py¥ytx, o qux) (2-9)
i=1 i=1 -

For the stability study the series may be truncated [15] after N terms.

The details of expansion are given in appendix II.

2.2, SZEGO'S METHOD

A brief summary of Szego's method is given as foilows. A
éfétem repfesented by (2;15, if stable, will be eithér.globaliyvbr
Iocélly stable. According to Szego, the sufficignt condition for

local stability is that the time derivative of the Liapunov function by
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virtue)of equation'(Z—l), has thé form

V) = 0(x) - g(E(x)) - o (2-10)
where O(x) is a semidefinite function not identically equal to zero on
any nontrivial solution ¢f the systeﬁ (2—1), and g(x) is indefiﬁite
on a closed surface; i.e. €(x) = 0 is a closed surface or family of
surfaces and g(u) is such that g(0) = 0 and g(u)/u >0 for uf0. Differing
from LaSalle's and Zubo&'s methods, Szego required that V be iﬁdefinite
on a closed surface as an appfoximate identification of ﬁhe 1imit‘cycle.

e Aiééaé;;tic %ﬁgééi;;“;iéh‘vériagle.;éeffiéié;ts.é;iléd>the _“

generating V;function is chosen for the Liapunov function

V() = x AX) x (2-11)

where A(x) = {aij(xi’ xj)} R aij(xif #j) = aji(xi, xj) and the elements

aij(xi’ xj) do not contain X The latter assumption is justified
-[7], by the fact that limit cycles of the most general nonlinear
system in the phase spéce have atmost twb»réal intersections with
each of the hyperplanes_xi = constant (i=1,2,..., n-1).

Equation (2-11) is then differentiated, using (2-1), to

give an expression for V which 'is then adjusted by changing the

coefficients aij(xi’xj) to get the desired form given by (2-10).

2.3. ALGORITHM [25] 

Following Szego, the Liapunov function considered is

- 2 2 : 199
\Y f a(xl) x] + g(%l)xlx2 + x, (2-12)
By virtue of (2-9) the time derivative of V is A
. d £(x,)
- 2 da(x,) !
vV = [Za(xl)xl + x] - 17+ g(xl)xz + XX, E;;————] x,

. N i N jal.
+ [ g(xl)xl + 2x2][ X Pi¥) + X, g 4 ¥ ]
. i=1 i=1 .



There are in general two steps in Szego's method. First,

a suitable form for vV is established and, secondly, from this form

the actual V is constructed. However, a direct calculation of V is

possible in our case. Let a(xl) and g(xl) have the general form

_ - N
a(x) = © a xi
_ i=1
- (2-14)
_ i-1
£(xp) = 21 by x
SubStituting (2-14) into (2-13) gives
Y v— 2 » ‘d —
Vix) = A(xl)x2 + B(xl)x2 + C(xl) . (2-15)
whereA
® i-1, 3 i-1 N 1-1
A(x.) = T b, x + T (i-1)b.x +2 I q.x%
1 . i1 . i”l il
i=1 i=2 i=1
e . L ' . N . S N
| ! i+§-1
B(x,) =2 3% a,xy + £ (i-La.xt +2 s p.x; + £ 2b.q.x I
R R Loyt g g 13
> N 143
c(x,) = ¢ I bop. x (2-16)
S R L

2

V = 0 will describe two curves in the state space. MNow if A(xl), B(xl)

Equation (2-15) is of the second degree in x, and hence the equation

and C(xl) arevchoéen such that

Bz(xl) = AA(XI)C(Xl) : (2-17)

then the two curves will coincide and V will not change sign along

any line parallel to the %, axis. Condition (2-17) can be satisfied

by setting both A(xl) and B(xl) identically equal to zero. A(xl)s 0 gives

constapt‘term, bl + qu =0

coeficient of x 2b, + 2q2 =0

1° 2

o 2 _
coefflqlent of L 3b3 + 2q3 = Q



coefficient of xn-l, nb +2q_ = 0
: 1 n n .
thus
b, = =2 i =1,2,..., N
1 i qi’ 1= 1 ’....’
0o, >N (2-18)

B(xl),EO gives

coefficient of x,, 2a, + Zpl + b

1 % 19 = 0
- 2 =
coefficient of xi, 332 + 2p2 + bqu + bqu 0
3
) P + -
coefficient of X1 4a3 + 2p3 + blq3 b2q2 + b3q1 0
thus :
-1 i
T Pt R Piioga) o L2, AN

0 , 1 32N (2-19)

Equations (2-18) and (2-19) provide the algbrithm for calculating the
coefficients of the Liapunov function (2-12). The time derivative 6

now becomes

4‘.]-—

|
(@]
—~
"
[a
~

(2-20)

it+]j (2-21)

1
™
R
o
o
»

2.4, MAXIMUM VALUE OF THE LIAPUNOVJFUNCTION'

Using>the Liapunov function derived in the previous section,
the maximum value of V describing a closed eurve tangent to V=0 is
determined as follows. Consider equation (2-21), at the unstable

equilibrium position &= §"8 s ¥p 7 §15- 60 and

) ' i v A
1 us,q _ p.xy =0 . (2-22)
qiP; P (8 )] =

Thus V = 0 is a straight line parallel to the>xé axis and passing

through the point Xy =" -5 . Solving equation (2-12) for k

: o , One gets
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- ’ 7 2 7
x = ‘E(Xl)xljjé (Xl)xl - éa(xl)xl + 4V

) (2-23)
2 .

For the curve V = Vm'to be tangent toV =0 , the value of the square

A - uS
root must be equal to zero at X, = § - 60, thus

- . us "} 2, us us 2
Vo= [a(s §,) -7 & (8 8§,01(877-8 ) (2-24)
2.5. NUMERICAL EXAMPLE
Szego's method is now applied to study the stability of a

. particular-power system. .The synchronous machine under study has the..

following particulars:

1 . 1

X3 = 0.27 p.u. | Tdo = 9 sec.
v : . "
Xg = 1.0 p.u. T4 = 0.04 sec.
0
xq = 0.6 p.u. 1. = 0.07 sec.
95
Xy = 0.22 p.u. H = 4 KW sec/KVA
"
x = 0.29 p.u.
q P-4

:énd is delivering. a power of_0.753_+.j.0.03 p.u. £o the system at an
initiallterminal voltage of 1.05 p.u. fhé transmission system particulars
ére shown on Fig. 2-4.

A sudden threé—phase symmetrical short circuit to ground occurs
at (x) on one of the transmission lines near the generator end causing bus
A to gr&und. The faulty line is disconnected from the system at both
ends after a.fault duration of 8 cycles. The fault is then cleared
_and the line restored. . . - .

- and power output

~From the given initial terminal voltage Vt

- P+jQ, the initial operating conditions determined, [26], are



. e

Fig. 2-3

" Equivalent Power System

A 2r 2x Yo
& VT
f““" ), , :\f\u—-z.
SALIENT FOLE | /NF/N/T?ZUS
SYNCHRONOUS |
MACHINE o
Fig. . 2-4
' Numerical Example
X =0.7488 pu. X = 0. 27p u.
r =015 pu. P = 0753pu
B =0.067pu . Q=003 pu
- G =0.18pu. -



= 0.942 radians

(o]
I

V_ =0.989 p.u.

E = 1.053 p.u.

53.9 degrees

us

o
il

3.04 radians

174.28 degrees

For the system considered the maximum value of V is found to
be Vm =173 énd'it gives a critical reclosing time of 23.cyéles.‘ The
swing curve equations (2-8) are integrated forward using Runge-Kutta method.
- From the results i; isfound out that the critical’reclOSiné-time is 24
cycies;. Fig.‘2—5 show§ the aétual_fégioh of stability for fhe systém
conéidefed along with the stability region defined by‘the Liapunov
ifupction and a system trajectory for a fault duration of 8 cycles and

line reclosure after 23 cycles. A flow chart for the computer program

used. is shown in Fig. 2-6.
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3; MAXIMIZATION OF A QUADRATIC LIAPUNOV FUNCTION
In this chapter a quadratic Liapunov function of the form

]

V =x Ax : , _ (3-1)
is considered; where A ié a positive definite symmetric matri#. The
hypervolume énclosed by (3-1) is sought and maximized sﬁbject go
Aconstraints arising from conditions on the Liapunov function and its

time derivative. The stability region thus obtained for a power system
is very restrictive. Since fhis does not serve the object of this study,
- a new Liapunov.fﬁnctionris then spught by-eliminating the.indefinite
terméAin G‘And modifying v aéébrdingiy."Thé new V-furiction thus obtained

gives a very good estimate of the stability region for a power system.

"3.1. CONSTRAINTS ON A QUADRATIC V FOR A 2Ei ORDER POWER SYSTEM

To establish . asymptotic stability the Liapunov function must
satisfy the following conditions | N

a-yV is positi&e definite,

b - V is negative definite in an open region around the origin,

c - Vm tangent to V = 0.

Consider the second order power systém (2-8). . Let A of (3-1) be

11 12
. (3-2)
212 %22
then one has
Vo= a,x+ 2a, xx, +a,xi - (3-3)
#1171 7 “12%1%2 T %2272 ' ~
The Sylvester conditions for V to be positive definite are
A0 L (e

K [

a..a - a2 0 ' : ‘
11%22 ~ %12 7 - - . (a-2)
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Next, using equation (2-8), the time derivative V is

. | D(x) - D(x,) =P (xl)
V= 2l(ay, —ayy - )Xyt llagy A, Ty ox ¢t azz( )%,
p; P, (%) ,

812 1( M )} , (3-4)

To satisfy condition b, it is required that V be negative along the two

akes.x and Xg) and also that 02’ the second degree terms of V, are

1

negative definite. Along the x, -axis, V is given by

1
1 Pe (x ) ‘

: - pi—pe(xl)
The term xlﬁ———Tf———ﬁ is negative for

us us
-(2n - 8§ 7 + 80)<x1<6 - 60

thus one must have

aj, >0 . - - S (b-1)

Along the X, axis, V is given by

a
. 22 v 2
V = 2(a12 - ~ﬁ_'D(X1))x2

which is negative if

a

12

222 :
- —Et'Dmin(Xl) >0 o ) (b-2)

where Dmin is the minimum value of the damping coefficient, given by

. D_+D D.-D
min 12 .1 2 os(ox.4+25 )} =
Xy 1 o

D, (xl)=

min 2 2

2

To find V,, equation (3—4)-is.expanded into a power series by . = . .

the use of equation (2-9) to give

N

. . .
vV = 2{(allxl+a12 2)x +(a12x1+a22 2)( Elp JXL X I
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The second degree terms may be written

o . S 1, Y
Vo = 20x%,) | ag,p - glaggtagyagtase )t X
l(a +a,.q.%a, . p,) (a, ,+a ) X
2181172129172 00P A VA VAS] 2
and the conditions for 02 to be negative definite are
a;9P; <0 _ (b-3)
a..p,(a,,+a,,q,)~ l~(a +a d +a,.p )2>0 (b—4> |
S 812P1 %0127 %0 T T o 0P T o
- finally condition C implies
V=0 (c-l)
3V 3V 3V av '
Lo = -2 _ (C‘Z)
axl BXZ BXZBXl

Since Py is negative, conditions (b-1) and (b-3) are the same.

Also condition (b-4) can be rewritten as

| 2, 1 _ 2.
Pylayyay,may, ) - glagytay,407a,,p0) >0
which automatically satisfies condition (a-2).

To summarize, the final set of constraints are:

g3 = all>0

g4 = a12>0

| . 39D
o B TTTIM W T a;,>0 .

- o 2y 1 a2 . ol
g = "Py(ag72yy7a1, ) — 3lagtay,95729,p) >0 - (39



3.2. HYPERVOLUME BOUNDED BY V = x Ax

| The hypervolume bounded by the surface V =,§:A§) thch is to
be ﬁaximized,'is found»as follows. Since the matrix A of equation
(3-1) is positive definite, its eigenvalues Ai’ i=1,2,...,n are all
positive and the surface described by this equation is a closed one.

The pfoblem is then reduced to finding the volume bounded by

n ) _
V= T A, X, , i=1,2,...,n (3-6)
. i 71 .
i=1 ) .
Tet ’
c, = A/, , 1=1,2,...,n CG-n
then
-2 .
n  x, _
T - =1 : . (3-8)
. 2
i=1 ¢,
i

"and the required volume is given. by

/ -2 —
/l—x /c - ;Z/CZ
1 o d=1 —
=2 ‘ A /1_ 52,2 dx_qdx_o...dxg
o : . o i’ i

) . el -

G Vl -x /c Vl h §2/c

i=]1
resulting in
n-1 ‘
ey 1 4m
1=2G) 2 13557 V/al n odd
zn(%)n/? 3r7§7;——:; ¢V?/|A| ' n even (3-10)

' 7where |A| denotes the determlnant of matrix A. .Thé:detéiléiéfé.éiﬁéﬁ .

in appendix TIII.
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3.3. OPTIMIZATIONgTECHNIQUE

Of the si; coﬁstraints in equation (3;5); the last four afe
inequality constréints.' These can be traﬁsformed into equality cons-
traiﬁts [28],‘[29], by introducing some new free variables as follows.

Let

= a, .- 2_ =0
B3 T 81177Y17¢°

= T - 2— =0
By T 3277

= a Bg. - a -— 2_ =0.,
B5 T 40M T #2737

- 2, 1 - 2 2 .
86 = “P1(a138997a1, ) ~ G(ayy a0 m APy, — e=0 o (3R
- where Yi» yz,yyg‘and y, are free variables and ¢ is a small positive

constant. - . e e

An augmented space, Z, coﬁsisting of the x-space, the a-space
and the y-space is considered. The components of this new space are
given by

o)

2= (2 Zy oo 2

= (xlX2a11a12a22yl"'y4)‘ - | (3-12)
The problem is now defined as follows: minimize the cosf function
$(2) = -1(Z), subject to the constraints g(Z) = 0. The projected
gradient mgthod [30], [31], [32], as best-explained in [32], is employed

to solve thisvproblem. The method is summarized as follows.

Consider an augmented cost function

6 (2) = 6(2) +g (@)y | N o (-13)

where Vv is a vector of Lagrangé multipliers. Then
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‘(3—14)

where ¢Z, v and §Z are vectors and gz,is a matrix (For notation

see nomenclature). The steepest descent move is given by

. |
TTZ Sk (yve,)

(3-15)

where k is the step size, k>0. The question now is how to choose v.

The increment §Z must be chosen so that the new peint is in the- cons~

traint_surféce defined by g;O.' If a full correction is used for a

nominal value of g, 6Z must be chosen so that

G-g_ = gZ(S_Z_ = -g-

o or g+ g=20

“Substituting (3—15) into (3-16) and solving for v yields

vy_=»(gzgz)fl(g/k - 8,6,)

substitufing (3=17) into (3-15) gives

. o v L |
L 6:’1 = kqu)_Z_ gz(gzgz) .g.

where
-

4 ' 1
P= U - 8;(8;87) gy

where U is the unit matrix. Let the desired step size be gy

§3° = 8Z 82

yielding

2 '( )L
k=[50 & 8787/ &

Y

P o
Z82

(3-16)

(3:17>_

(3-18)

(3-19)
, thus

(3-20)

(3-21)
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3.4. NUMERICAL EXAMPLE
The same numerical example in chapter 2 is used here for the
‘maximized quadratic Liapunov function stability study. The results

obtained are:

>
0

430 1.002
1.002 12.02
Vm = 86 , tangent to V=0 at
Xy = 0.394 and x?r= 1.238

This V-function gives a critical reclosing time of 4 cycles after

fault occurance which is a very restrictive result as shown in Fig. 3-1.

A comparison between the stability region defined by this Liapunov

function and the actual region obtained by integrating the system
‘equations using Runge-Kutta method is given in the same'figure: Fig.

3-2, shows a flow chart of the program. used

3.5. A MODIFIED LiAPﬁNOV FUNCTION

From fig. 3-1, it is noticed that the reaéon for the'poor
estimation of stability region is due to the fact that the cufve é;O
is near to the origin. A bettef estimate will be obtained if this
curve is shifted away.

Consider the expression for V,

D(x,) D(x,) p,-p_(x,)
. ) 1. 2 ) 1 1P Xy
V=2[la) ma, 1%, + [agg=ay, =) + ay, () %,
p.-p_(x;) .
i e "1 :
+ago%( M )] | ‘ (3-4)

D(x.)
As pointed out in (b-2), (alz—azz——ﬁ—l-—-)x2 is always negative. Also

Pi-Pe(xi)

o oo 5 _LUS . us_
:alle( v ) is negative for (2n7-6 + 60)<xl<6 60. The



20 5 M

\&§\\§;‘ | | 3 | o .. |
3 +— 3 ¥ : ‘—5”;’3?1 1

s 10 15 200 25

6L _ -
e

. ;MIO ' M o - TRUE STABILITY BOUNDARY

© Fig. 3-1

ASTABILITY REGION BY A MAXIMIZED QUADRATIC

y-FUNCTION

)9 é C{'fcﬂj

(44



23

START

%

s I STORE Z IN Y J L k=0 BA 07

CALC. xe’ Te

.

carc. §, z .

]A_
-
CALC. B, v, Dy, D,, B,

B2, B3, By

PIRST?

e

L _cac. py, 0,
Dlady
-
FORM V, V, G, G,, P

-4

| z=z+m2 j I -
f » BA=4t"-g" (2,878

No

Kl Ve Qa' ¢az

3 o SET EQN. TO FAULT COND.

SET INTG. TIME TO CLEAR TIME
iy o

|

INTG. SYSTEM EQN. CALC. V, ¥

|

CHANGE PARAMETERS TO SET INTG. TIME TO THIRD ECOND
FINAL FINAL TIME
) No
CHANGE PARAMPTERS TO SET INTG. TIME TO SECOND No__~Tuirp?
POSTFAULT RECLOSING TIME
STOT
Fig. 3-2 ’

FLOW CHART FOR MAXIMIZING A QUADRATIC V-FUNCTION
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remaining two terms, however, change sign according to values of Xy

“and x,. If these indefinite terms are eliminated from V by subtracting

27

their integral, with respect to time, from the original V-function,

then V will be negative definite. Since e A

v D(x)) | p,~p_ (x,)
fo 2x2[(all—a12 ——3I~—)xl + 822(“f—"IT_—_—)]dt
X D(x,) ' p.-p_(x,)
P 1 i el
=2/, [(ayy-ay, ™ X A,y
D.4D : :
_ _ 1 72, 2 _ T T s ol
=(ayy-ay), —gy )%y~ £(xy) (3-22)
--whefé‘—
. 215(DyDy) ! g ‘
f(xl)=T [COS(2Xl+260)+2xlsin(2xl+260),—Cos 260]
. e m—————— 2a22 - - . e e - T e e . e e e —— -}». - - - - . e — ——— .—.-A.; — — s i ——— e+ rorm = _,_._ .-
+ v {E [B (s1n(x +6 +8)—x Cos(60+6)—sin(60+3))

- B3(COS(X1+50+Y) + xi sin(60+y) - Cos(éofj))] - Z-B4

[Cos(2xl+268+6+y) + 2x Sin(260+8+y) - Cos(260 +B+y) 1} (3-23)

: i
let N
v D. 4D
1 72 2
V=x Ax - (ajy-a),=7y) %) + £(x))
D.+D
_ 1 2, 2 2 | -
~a12( )x + 2312x1x2+a22 ) + f(xl) | (3-24)
Then :
. D(x ) p.-p_(x,)
_ _ 422 2 i el _
V—2(a12 ———_iq——_)XZ + 2312Xl(_——_if————) (3-25)

 us

usl .
+\-<SO)<x1 <& - 50)

which ‘is negative definite for -(2m-§



From (3-24) one has

- ._--2 - . _ D1+D2
12%2 ¥ Vg, = agpay, T Ixg T ayflx)) +ay,v

2 422

=a. ,.X

(3-26)

For any curve V = constant to be a closed one, there must

‘exist a value for x, such that the square root term equals zero resulting

1
in . 9
a. . .(D.HD.) a : '
2.712 71 727 =712
= + - -
\Y f(xl)‘ xl[ o 5y ] | | (3'27)

Thus the maximum value of V describing a closed curve is obtained
from (3-27) by differentiating the right hand side with respect to

x. and equating to zero,

1

2 , . |
3 azz(pi-ggxl)) , : » (3-28)
1 ayp(apyPixy)-a; )

X

. The value of'xl obtained from (3-28) is then substituted back in (3-27)
to give V.___. .
~ maximum

, is found by solving the

The value of V tangent to V:O, VT

" - two equations

V=0
. V . : .
ol ot | (3-29)
1 2 2 1 - -
and the value of V to be used for stability is V., or V . which~
T maximum '

ever is smaller, as shown in Fig. 3-3.
Applying the above procedure to. the same example, (2-8),

give , VT = 878.4 which is tangent to V=0 at xl=2.l

v . >V
maximum. T

- and x2=0.

Fig. 3-4, shows the resulting stability region to be very close to

the actual region obtained earlier.
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‘3.6. . CONCLUDING REMARKS

Although a maximizétidn technique for quadratic Liapunov
functiehs has been reported recently by Davison and Kurak [33], the
werk of this ehepter is independant. There are furthermore two major
differences in our works
1. To ensure that V is negative everywhere inside and on the surface
V, in Davison and Kurak's searching procedure they construct a grid
in the n—dimensioﬁal space, calculate v at every point where the grid

L .
Ax=V, 0<V<l and then constrain the

lintersects the normaiized eurface.§
maximum value of V to be negative. In our case the following constraints
are”iﬁtosed for the same purpose a) The second degree terms of V, Vz,
are to be negative definite and b) V=0 is tangent to V.

_2:_>Qavison and Kufak»state in their paper that the quadretie Liapunpv
function yields good estimates of stabiiity regions for nonlinear sys-
tmes. We found the regions unsatisfactory in the case of a power
system unless other terms were added to make sure that V is negative

definite. The results then give a better estimate of the stability

region,



29

4. A MAXIMIZED LIAPUNOV FUNCTION FOR A 3-MACHINE
POWER SYSTEM

In the previous chépter‘it was found that a quadratic Liapunov
function does not yield a good estimate of the stability region for a
ﬁower system. It is also noticed that thé expression of \i haéug_éf;;t“_
effect on the resulting stability regiog.

In the following a Liapunov function‘for a multimachine péwer
system is_constructed starting wi;h a tentative quadratic Liapunov
functioﬁ. After'fhe time dérivé;ive of this function is obtained, it is
adjusted to be negative definite in a-tégioﬁ-arouﬁd the brigin;v The

- ”actQal Liapunév function is then forﬁed, checked for positive definiteness

and, as a final step, the quadrati¢ portion is maximized.

4.1, ...E_QUAﬁoNs OF A g—MACHINE SYSTEM o o
Consider a three-machine sysﬁem as that of Fig. 4—1.. In
additiqn to the éssumptions of chapfer 2, the following assumptions are
made. |
a) The damping power is proportional to the slip frequency.
‘ bj- Resistance af transmission lines is neglected.
With théée assumptioﬁs, the differential equations describing the

motion of the system are

2 .

o ag
Ml‘ dt2 + Dl dt <+ Pel = Pil

a2 s, ds,
My =5+ Dy 3t TP =P

dt 't 4

d2.<s3j ds, .
My~ + D33t *Pe3 ™ Fys ) - o (4-1) -



oV

Fig. 4-1

 THREE MACHINE POWER SYSTEM



wherg
'Pel = kl sin(Gl—Gz) + k3 sin(61—63)
Péz -k sin (8)=8;) + k) sin(8)=8,)
Pe3'= ky sin(846,) + kzlsin(63‘—62)
R LR
Ky = Epfy ?23
k3‘= E1E3.Y13 (4—2)

At- the stable equilibrium position we have

as das dé

1 2 3
i -0 g0 s g =0
s, azaz d263 , :
=0 s 7~ =0 and — =0 ' (4-3)
dt dt” dt : : » '

Substituting (4-2) and (4-3) into (4-1) yields

1 aio(s0 _ <O . 0 _ 0
. P, k 51n(61l 62) + k3 31n(6l .63)

_ . o _ Oy , o__ (0
e Pl =k s1n(52 61) +-k2 51n(62 53)

(o]

P o=k sin(sg_— ei) + k, sin(Gg - 65) (4-4)



Let the state variables be

X =8 78

. (o]

Xp = § 74,

X, = _0

37 87 &
U
4 dt
L 0%
57 dc
da'
.3
and X6 =9

The system equations become

2 =%,
- X_z‘ = XS ST T T ‘ Tt e . - T T I . . T T T -
*3 7 %g

5.
|

1 . . o '
4 —‘ﬁi{kl[Sln(Gi - 5;) - Sln(xl - X%, + 5; - 5;)] + k3[51n(6;'63) -

R : o o
31n(xl I 53)] = D;x,}

-___1_. . o_o_>, _ o .0 s 200 Oy
Xg = Mz{kl[81n(52 51) s1n(x2‘.>§l + 6, 61)] + k2[51n(62 .63)
’ o o} '

sin(x2 - X4 + 62 - 63)] - DZ 5}
oLt tain(s® — 89y - oad _ .0 _ .0 .0 O _ Oy _
X, = M3 k3[31n(63 61) 51n(x3 X + 63 61)] + kz[S?n(63 62)

L ' 0 o _
31n(x3 Xy +.63 - 62)] - D3x6} K4:5)

4,2, CONDITIONS TO ENSURE NEGATIVE DEFINITENESS OF v

Consider a tentative quadratic Liapunov function of the form



V = xhx

.33

(4-6)
where A is a positive definite symmetric matrix. For the three
machine case one has
= ' ]
A al a2 a3 a4 a5 ‘a6
8y 87 3g 39 315 23
az 8g 415 83 314 %15
8 %9 %13 %16 %17 “18
85 410 214 217 219 %20
| %6 ®11 %15 ®18 %20 %21 (4-7)
Differentiating (4-6) with respect to time by virtue of (4-5) yields .
] V= 2[¢1(X) + o, (%) + 93(x) 4 ¢, (x)] (4-8)
where ) ‘
N o e T T DN e e
- o (1) = (% x, X)) |5 - — P, ~P
7l 172 73 Ml M2 M3 il el
a a, | a
M9 M10 Ml1 B0 Pas
1 2 3 *
a a a
M13 M14 15 PP,
|1 2 3 > e (4-9)
.¢2(x) = (x4 X X6 T X,
X5
%6 (4-10)
where ‘ M.D.+M.D M.D.+M.D
T = |vta - %1 a. ) %'(35“‘9' leM — a;7) %(36“13" - f{MB - 818;
(2, M, “16 20 My 13
SOS i e WV SO DN o i o SN
2°°5 9 M.M 17 107 M, 197 2°°11'°14 MM 20
172 2 _ 23
: M.D.4+M.D D
Loy o - aDytMsDy 1 _ 23732 3
5agta 3 ==—=—=ag) p(apyta Ty (a5~ ¥, 221
3 T MM, . 23 : 3 i
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. b . ) 3
$30)=Ceyxyxg) [ay - W 2,)  (ay - N, a5) (2= I, ) | [*4
D. D D
S 2 ’3 :
(@) =3 2g) (a; — g 21p) (ag =3 237)| %5
1 2 3
D D D
1 2 3 -
(ay -5 219 (ag "3 2140 @1y " i 215) ¥ (4-11)
_ 1 2 3 2
and
Ced a a
16 17 18 ]
¢, (x)=£(x,x.x )
4 4576’ | M M, M,
417 219 220
M, M, M,
418 220 41 |
] M) M, My ] (4-12)

In order to ensure that V is negative definite in a region around the

origin‘« its component functions, ¢'s, must be either negative definite or

semiaefinite. Examining equationé (4-9) to (4-12) we notice the following:

1.

-V—functidﬁ.

¢l(x) is a function of X1 X%, and X4 only and can be made negative in a

region around the origin.

¢ Which is negative definite if the

matrix T of equation (4~10a) is negative definite.

¢2(x) is a function in X4 X and_x

_'¢3(x) and ¢4(x) are both indefinite. .They can be eliminated from v

either by setting each identically equal to zero or by integrating

them with fespect to time and then subtracting the result from the .

In the following each componeﬁt of V is examined to develop the necessary

conditions for its elimination or to ensure the negative definiteness.

¢1(x) can be made either identically equal to zero or negative definite.

Knowing that the sum of the mechanical inputs to the system is equal to

the

sum of the electrical outputs, if we further set
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h_5_6
’
Mo My M
29 _%10_°un
Ml Mz- M3
%13 _ %14 _ %15 , |
oMy My ‘ (4-13)

in ¢1(x), this function will be identically equal to zero.
Substituting for Pe and Pi from (4-2) and (4+4) respectively into

(4—9) one gets:

i . a a a a a a !
. . . 10 13 14
¢1(X) N kl[sm(si_ 5(2))—Sln(xl_xz+‘8;—‘SCZ))][Xl(ﬁi - 'ﬁs' + Xz(ﬁg_ - T)+X3(_M— - T)]
T _ - 1 2 1 2 o1 2
a a a a a a
, o o ) ‘ o 0 5 6 10 11 14 15
ot k2[sm(<52—63) sm(x2 x3+62—<83)][xl(M v )+x2( a0 m )+x3(—'—~M BTN )]
: - 3 2 3 2 3
e e e i i g @ - mee—a a4 a
. .0_0 . o o 4 6 _9 11 13 715
+ k3[81n(61—63)—81n(xl x3+51—63)][x1(ﬁ—-— T )+x2(M m )+x3( m o )]
} 1 3 1 3 1 3
‘setting
8, 2. %9 B9 %14 f15
G ") =G T w) T O )0
1 2 1 . 2 2 3
25 _ %
M, M,
a a -~
1 3
e '31.3‘=‘ala. | “‘ - | |
T | : | (4-14)
%‘x) becomes i
' 3 Es , o o o o0
Ql(x) =(§I-— E;){kl(xl—xz)[81n(61-62)—81n(x1—x2+51:—52)]

' o o o .0
- ; ) Oy - 48° -
+k2(x2 x3)[51n(62 63) 31n(x2 x4 8§17

3 3

. _ : ' o o . . .
+k3(x1'X3)[51n(61 =83)=sin(x;~x +8] —33)]}

" Gty



- which
—ﬂ—2(§i
5n—2(a§—5

—n—Z(Gi—

0
63)<(xl—x

46;)<(x -X )<n —2(6
§)<(X2"‘3)<Tr

3)<T

is negative definite for values of x

l’

2(6

2(6

. setting
a = "]?'1-‘ a
b
B M1 16
o o2,
10 M 19 °
2
a3,
15 M 21 °
3 )
o e e e e 2 DD D
_ 1
ag +ag = G- M, ) 3yz.
D
e (L3
ag + ayq = (M‘ + v )a18 and
e M Mg
D D
= (2,3
a1y T3y, (M2 + M3)aZO :

On the other hand, for ¢2(x) to be negative definite,

matrix T are

D
a= L
e l

160

M

U

D

(a l’)(alO M

D
(a,- =— a
b My

2

167130 -

~

1" 2)
2" &)

163

The expression ¢2(x) can be made identically equal to zero by

2 -

19) (a +a
2
ﬁ; ajg)(ayq-

O3

M

)

3

;and x

3

M,D 4+M.D

172

a

271
MlM 9

21)

sétisfying

417

1
- Z(all+al4

the conditions on

36

(4—16).

(4-17)



M,D, +M,D

M.D, +M.D

37

D
3 L2 21 1 . _3 _12 21 -
2 astag w2170 5815 — i 2pp) (agtag MM, 217
| 1My 3 ' )
M.D. 4M.D ‘ M.D.+M_D.
1, MDDy I e i o
3(agtayg M 218 (11ve14 ML 220))
| ity M3
M.D.4M.D M.D_+M.D " M.Di+M.D.
1 103130y 1 109150y - MyDithiah,
+5(agta, 5 - s 218’ (3085t — . 2170 (et MM 220
, 13 1M 23
D, M.D.4M.D |
1 Dy S e M 1o oy
- 3(a19” M, a19) (agtay 4 MM, a1g)1<0 (4-18)

¢3(x) can be eliminated by setting

a

On .the otﬁer hand one

" noticed that

D

= ——1 a . . . . - -
3
1 Ml 4
a, = E% a. = El a
2 M2 5 M1 9
.»é.-..— D3 a - Dl a — — b e SV . ———— e e e, A —
= 3 = ’
3 M3 6 ¥1 13
D
2
a2 "N, %10
‘ 2
a, = Bé a = EZ a and
8 M3 11 M2 14
12 M3 15

_ .1 2
S 2 S oxxde = (ag -y a)x
1 1
D D,
2 _ ) 2
- —z— alo)f X2x5dt = (a7 —;—alo)x2

(4-19)



- 2€a

2(a

'g(a

if one sets

one has

2 14, GOdE=(x
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which will be subtracted from the tentative Liapunov function.

-——-D3")f ‘dt-(a’—D—:’ yx2
M f1s7 0 TR T Ve T f1s57s
D _ : D |
ﬁ; aS)f xlXSdt + 2(a2 - ﬁz ag)f XX dt =
: D, D, .
2(a2.— ﬁ; as)xlx2+2(ﬁ;-a5 - ﬁ—.ag)f X2X4dt
D B D,
ﬁ;—a6)fixlx6dt+2(a3 - ﬁI~a13)f X X, dt =
_ D D, D
»2(a3 - ﬁ; a6)xlx3+2(ﬁ;~a6 - ﬁj-al3)f x3x4dt
Dj | D, lv
ﬁ;-allfo2x6dt+2(a8 - —;i?la)fx3x5dt =
Dy © oDy Dy
2(ag = g apxXgP2(G 2y - g ay,) Sxxgde
3 73 - 2 ,
— v]—)_z_ a = D—l a - ——— e s e e - - -
M, %5 My 9
EQ a, = El-a and
M‘3 6 M, 13
D D
3 2
—= a . =—=a_, (4~20)
My “11 T M, 14 ) | _
o D . D D
< _ 1 __2 __3 .
1%2%9) [ (31 M 3,0 (3, =3 ag) (ag M, 2 /Xl
D, D D, ,
S (a, - M, ag) (a; =g~ a;y) (ag - _3 ""11) )
D3 D D,
| (25 M, ag) (ag — -2y (g - M, 315) ¥3
(4-21)

- Finally ¢4(x) can be eliminated as follows. Knowing that the

r
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sum of mechanical inputs to the system is equal to the sum of electrical

outputs, in order to reduce ¢4(x) to zero one may set

316
20
My

(4-22)
On the other hand, similar to the case of ¢,(x), setting
- 18 9 _}7
. _ Mpa O, - Mpag,
- SR —— = , ; _ e e e
o My
M
- _3 '
a5y © a17 and
1
M M, ( M. ) '
— 3, 33T
a,, =—— a,, + ! (4-23)
21 Ml 16 MlMZ 17 }
in ¢, (x) result in
- a6 A7 . 1% o .0
2f¢4(x)dt = 2(—ﬁ1- E;-J {klfo [51n(61 —62)—31n(?1 2 l 2)]d(x )
¥27%3 o} 0 o
+ k2 S [51n(62 —63)—31n(x x3+62 63)]d(x2—x3
*17%3 o o o _
+ k3 J [s1n(5l —63)~sin(§ x3+6l v63)]d(xl—x3)} A(4f24)

which again will be subtracted from the tentative Liapunov function.
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There are sixteen different combinations of ¢l(x), ¢2(x), ¢3(x),

- and ¢4(X) thatAresult in a negative definite or semidefinite V. These

combinations are all imvestigated and a summary of the results obtained

is given in table 4-1. Out of these sixteen combinations only one results

in a positive definite V-function that has a negative definite time derivative.

This is the case where ¢1(x) and ¢2(x) are made negative definite and ¢3(x)

and ¢4(x) are integrated. Combining conditions (4-14), (4-18), (4—20)vand

(4-23) we end up with
V(%)
where

]

x Ax

and —2f¢4(x) dt is positive definite and is given by equation (4-24).

new matrix A is given by

FBl a D1D2 a
Ml 4 Mle 17
Mle' 17 M1 4 M2 17
DDy I .
Mle 17 Mle 17
D
a 2
4 = a
¥, 717
D M D.~D
1 2 271
— a — a,t———— a
Ml 17 Ml 4 M1 17
D1M3 a D2M3 a
| MM, T17 MM 1T

gfli - 2/, (x)dt

x Ax - 2/b (x)dt

g

£

N?LJj

Z' o
0o, W

»

17

N?lg?

17

[V

17

17

(4-25)

(4-26)
The
Py P -
M. %17 MM, 217
1 12
M_ . D,-D, DM, .
a v
My T4 M 7MiM, 17
D "M, .. D.-D
3 3 371
— a —(a +—a )
M, 17 M, 4 4, 17
M. .
a 3
17 — a
M, “17
M M, -M M
2 21 3
— a, t———ma,_, — a
My C160 M 17 M 17
M M M. -M
3 3 43 1
M 217 Ml( 16 M, alzz
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. * positive semidefinite

+ positive definite

. ﬁb. %_ ¢2 §3 ‘% v v
| 1 0 0 .0 0 0 p.s.d
2 0 0 0 / 0 p.s.d
3 0 0 s 0 0 p.s.d
4 0 n 0 0 n.s.d p.s.d
5 n 0 0 0 n.s.d p.s.d _
. conditions
6 0 0 /S S 0 contradict
7 0 n 0 I n.s.d p.s.a
8- 0 n f 0 n.s.d p.s.d
9 n 0 0 J n.s.d p.s.d
10 n 0 i) 0 n.s.d p.s.d
.11' n n 0 0 n.d p.s.d
120 ~---n - S S fe— - pig.die p.s:d -
13 n 0 S s | n.s.d p.s.d
14 n n 0 S n.d p.d _séme as 16
15 n n S 0 n.d p.s.d
16 - n n S/ ‘f‘. n.d p.d. same as 14
Tab1e~4;i<
n -+ mnegative
I -+ integrated i
- n;s . > négative semidefinite .
n.d. + mnegative definite
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which is positive definite if

ai7>0
16 _ Y17,
oo
a, a ' R T
- L 50 | o (4-28)
1 M .
Also
’ Vo= 2[4, (0) + 9, (x)] | - (4-29)
- where’ _ .
a a,. D :
PN Y 0 _ - N N - o _.0
¢1KX)—(M1 T ) {kl(xl xz)[sm(dl §,)=sin(x —x,+8; =6,) ]
. o .0 . o 0
+k2(x2~x3)[s1n(62 -64)-sin(x, x3+62 63)]
: , o .0 , _ o .o
+k3(xl—x3)[31n(c‘5l —63)—s1n(xl x3+61 63)]}
and . (4-30)
¢2(x) = (x4 x5*x6)T X,
%s
Xo .(4—31)
— Dl —_
T=}(a-="a,,) 0 0
4 Ml 16
o P A LI b M e AN
M, MM, 17 0
0 0 Y(M3a4 P3?16 , M1P3 ~ Ms% ")
L | M MM, 177
(4-32)
which is negative definite if
My My My
—‘>,D— 21—)— and
3772771
a >M3'
3 4 o ‘ . (4-33)
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Thus we have a positive definite Liapunov function V(x) given by
(4-25) and its time derivative v given by (4-29). Equations (4-28) and

(4%33) define the relation between the three parameteré a and a

» | 4° %16 17°
.Finally the hypervolume enclosed by the quadratic part of V(x)AA

shall be maximized subject to (4-28), (4-33) along with the téngéﬁtuﬁbnditions

V=0
93V - aV v =0
) 9%y 90X, 09X, 0%y
2V_aV_ _ 3V 3V _
axl 8X3 3X3 BXl
a3V 3V 9V V. _ 0
oo 9%y 3%, 9%, 3%
3V V3V 3V =0
9%y 3%5 %5 9%y
e e 8V 3\-7 _ 3V 3"] - 0 >_ S e S
S I T | (4-34)

The same algorithm of chapter 3 is used.

4.4. NUMERICAL EXAMPLE

The three-machine system considered has the following data:.

— 0 b‘. =
El—l.174 L22.64 p:u. | o Pl Q.8 p.u.
E,=0.996 12.61° p.u. P,=0.3 p.u.
E3=1.006 1~11.36° p.u. P=-1.1 p.u.
H.=3 K.W.sec./K.V.A. Dy e

1 S == 10
M .
1
H.=7 K.W.sec./K.V.A. | ' DZ _
2 L
2
"H,=8 I.W.sec./K.V.A. ’ Dy o
3 -2 =3
) . ) . M3_

A sudden 3-phase symmetrical short circuit to ground occurs on



43

the transmission line connecting machines 2 and 3 of Fig. 4-1 close to

bus 3. The critical clearing time obtained from the above V-function is

18 .cycles. The actual critical clearihg time obtained from the system's

swing curves is 20 cycles.

The resulting Liapunov function, of the form (4-25), has the

following particulars

Vo=
x =
-
5.32 8.69
2.28 3.72
0.326 0.532
0.76 1.24
o loO.868 1.42

3.26 5.32 2.28 :.0.326

3.72 0.532
1.6 0.228
0.228 0.129

0.532 0.076

0.608 0.087

0.76

1.24

0.532"

0.076
0.402

0.203

0.868]
1.42
0.608
0.087

0.203

0.489

33.65 which is tangent to V=0 at the point

2.195, -0.137, -0.005, 0.112 x 1of3, -0.278 x 10"3, -0.595 x 1073

_'Fig; 4-2 shows the function V(x)=Vm plotted in the three dimensional space

and x

S ) 3

with the other components x

4 %5

and x

6

set to zero. This

Fig. shows the maximum deviations in the three rotor angles, with respect to

a reference frame rotating at synchronous speed, without losing synchronism

with each other.

4.5. . CONCLUDING REMARKS -

It is interesting to notice that when setting

in the Liapunov function of

(4-35)

equation (4-25), the resulting V-function is



Fig; 4-2

=X,

VA
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-

'. ‘exactly the same as that of Willems [22] and is givenAby_

= (3 : ' +
.V _ (x4 Xg x6) Ml O‘_ 0 X, _
0 M2‘0 Xg
0 ‘.O M34 x6

2{k. X172, . 0 Oy . o .0 _
1’0o [81§(xl—x2+6l —62) 51n(<‘3l 62)]d(xl x2) f

¥, X . o .0 . ,.0 .0 _
k2f62 3[S}n(x2—x3+52 —63)—51n(52 —63)]d(x2 x3) +

X, ~X . O _(Oy. . 0_.0 N .
k3 Ql ?[81n(xl—x3f61 —63) 51n(61 63)]d(x1 x3)} " (4-36)

' y
‘When applying this V-function to the same numerical example considered in

section 4.4., the resulting critical clearing time is 14 cycles compared to

18 cycles clearing time obtained from the V-function constructed in this

'chaptér.
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5. CONCLUSIONS
The direct method of Liapunov has been applied to the study of
transient étaﬁility in éower syétems. The following conclusions are drawn:i
1. Although Szego's procedure has been applied successfully to construct
a Liépunpv function for a second order single machine—infinitérgﬁ; ;§gtem,
work remains to be done in developing algorithms for applying this method to
highervorder systems.
‘2. An expressiqn--for the hypervolume enclosed by a quadratic form function
is deveioped and employed invmaXimizing the estimated stability region.
3. A construction proéedure forvoptimized Liapunbv functions for power
gysFems has been developed. It starts with a quadratic form and is modified
by the negative definite § constraints before maximization of the estimated
"stability region. The procedure has been applied successfully to a gingle
machine-infinite bus system as well as a three machine system. 
In general,.it remains to develop procedures for the construction

of Liapunov functions for multimachine power systems in which synchronous

machines and controllers are represented in great detail.



follows.

From the phasor diagram of Fig. 2-2, one has
- 2 2 _ . _ o _A
Vt Vd + Vq- . ‘ ~m~i~w»~(I 1)
where a
1]
Vd =V sinél+ | r -xe 1d
- \Y cos§ X T il : (1-2)
q . e edJ. q .
also -
= + i
Vd 0 0 Xq i S
] ] . . .
\Y E - i I-3
q q *a 0| | *q - (1-3)
éolving (1-2) and (I-3) for Vd’ Vq and id, iq and gets
V _ ) 1 . E! .
e i} ,é Vo xq(xe+%d) “Te¥q sing +4 TR i
A ! : A
\Y, r X x. (x +x) cos § 2 . _
q e 'd d* e “q r, +xq(xe+xq) (I-4)
and
i G Fr _ e I E
d - Yg‘ ¢ (xe+Xq) sinéit _g xe+x .
A4 A +X' e 1 \eos s (I-5)
\ q X X4 e os,. .
e
where
2 . ' . .
A r, + (xe+xq)(xe+xd) (1-6)
Let .
L2 i\ 2
Al—xq T +(xe+xd) / A

47

"APPENDIX I

Expression (2-6) for the electrical power output is obtained as

A, =1t x /A
q

2 e
A 2
A3 =Xy /;e +(xe+xq) / A
A, = [r 2 + x (x = )]1 /A
4 e e e "q _
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Ag = (xe+xq) / A
1
xd +xe
B = arc an( =)
T
e
. S [ X ""X ) R
WY.'-= arg tan (__gr__e-) ' : ) : . (1_7)
e - '

Substituting (I-7) into (I-4) and (I-5) yields

1 ’ 1
Vd = VO Al sinf —Al cosB siné + Eq A2
Vq A3 cosy A3 siny , cosd A4
and
1 — —
g\ =V |7As Ay . '
— coSsy — siny sind | +E A
X X q 5
: d . d
A _—Al A2 ’
i ~—— sinf ~—— cosB cos$ —_ (1-9)
q . X X - X .
B _..: e s e e e m e e e e — . q . B q - P R e . q e e e e e e e e
The electrical power output Pe(é) is given by
Pe(é) = (Vd Vq) i
. : (I-10)
q

Substltutlng (I- 8) and (I-9) into (I 10) glves
'2

P (6) = BlEq, + BZIcos (6+B)+B3 51n(6+Y)]E +B431n(6+y)cos(6+8) (1-11)
where>
. Bl % A (A +A4/X )
) B B, = v Al (A +A4/x )
! 1

By = Vo A R
By o ' 2,4k _1y
§:= -V, A1A3(Xq X(.1) (1 12).
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The expression (2-4) for the damping coefficient is eXpanded as

follows

‘Thus:

1, 1 2. 2
ﬁD(G) = M(Dl cos”§ + D2 sin”§)
Di+D D.~D
I e S R e
= M( 5 + 5 cos?28) .
»Substituting for &= xl+6O we get
D,+D D.-D
1 e S R e -
v D(Xl) = M( 3 + 5 co§(2xl+260))
~ Dy#D, DD
= o + T [cosZGd costl—s1n26o 31n2x1]
- D.4D, D.-D, - (2x 2 (2%
I + L_2 {cos28 (1- % + % —ed)
M M o 2. 4 .
- S ~bw-u -vg (2xl)3 (2xl)5 7
f51n260(2xl—ﬁ 37 + = )
= - ) q.x i-1 (II"l)
. il .
i=1
where
= D1+D2 - Dl_Dz cos280
Y] 2M
i-1 D.-D ‘ . :
2 ’ 1 72 L E=Dm. o -
'qi=—(i—l){ ( oM )cos[26O +—-E-—T],l 2,3, (I1-2)
At the equilibrium state: o -
Pi=Pe(60)
|2 ) . ll ) .o
—BlEq +[B2 cos(cSo+B)+B3 s1n(60+y)]Eq+B481n(60+Y)cos(60 +R) _(;I 3)



1 .-‘. . — __]; 1 . )
ﬁ(Pi—Pe,,(Xl_)) = M{BZEq[cosv(éov+6)—_cos(xl+60+8)]+

B3E;[sin(60+y)-sin(xl+do+yj]+B4[sin(60+y)dos(60+e)

—sin(xl+60+Y)COS(X1+60f8)]}

1, -
=ﬂ{B2Eq[cos(69+8)—cos(xl+60+8)}+
. \
B3Eq[31n(60+y)—s1n(x1+60+Y)]+

24

5 fsin(260+B+Y)~sin(2xl+260+B+Y)]}

l tro. af '_ . o
M{Bqu5L?ﬁ§6o+B)(l cosx1)+31n(60+3)51nxl]
T

+B3Eq[51n(60+y)(l—cosxi)—cos(60+y)51nxl]

B .
T ) C -ié[gin(260+6+y)(1—cos2xl)~cos(260+3+Y)sin2xi]} o
|
E 4
=g . 1M1
:?lﬁ—{Bzcos(60+B)+B351n(60+v)][ETi— ™ + ... ]
, .
"y )
+ M[B281n(60+8)—B3cos(60+y)][xl'— 3T f...]
B, | (2x)” ("
+§ﬁ[sin(266+6+y)( 5T - +...)--cos(2(S0 +8+y)
2xl)3
(le“T +...)]
IR |
= I P.X
g=1 * 1
where '
1 B i1 - i-1
p = —Itg M[B3cos(6o +y+ -§-n)—B251n(66+8+-§—‘ﬂ)]
. 21“1 i1
; L 6 -
4 H B4cqs(2 O+B+Y+f§— n)

50

(11-4)

" (II-5)
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APPENDIX IIT
In equation (3-5) the hypervolume bounded by V=x Ax is given by

_n“z—z/cz
LXgi¢y

i=1 , E
n-1 _
’Lc ll— z X, /c Jdx __ldxn_z...dxl -
AT -2 2 N (3-9)

n-2 2
c - x5 /e
n-1% L %y i
i=1
n-1
_ | _ _ -2, 2
I = A caVi 3 xy/ey dx g
i=1
n-2
Z _ 1IN 32
n-1 i=] —L
~2
c,
i
T TLet 7T T N T T T Ttk o T 7
X n-2
n-l =[—.§ ;<2 ‘gin 8
c i=1 7i
n-1 —
2
c,
i
hence » —————e
o - /—2 Axiz .
odx =g - L T cos 6de
i=l «c,
i
and_
/n—l /n—2 )—<2
-2 /. 1
1- 3 X, =/1- % — coB
- =l =5 4. 09 o
C. .
i
n-2 -2 w2
Il. - c n 1(1—121 i) J cos 6 de
2 W2
i
. n-2 -2
3 St (-2 i
i=1
2
c
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For the next step of integration use the substitution

- n-3
X _9 -2 .
# = 1—.51 i sin 6.
n-2 )
c. s
i
_ // ng3 -9
hence dx 9 = c _9 l—i=l fl. cos @ d6
2
c,
i

This procedure is repeadted. (n-1) times to give the final answer. 1t is noticed

that as a result of the kEE-step, the term f“/z cosk+led9'appeares, thus
a2 ;
the last integral is ;/2 cos"0d6 which is equal to
-7/2
/2
_ 1.3.5...(n-1) ,m
2fo cos 08d8 = 2 546 (2) n even
2.4.6...(n"1) |
2> 1.3.5...n n odd



The volume fequired is thus given b;

o 22 n
I=26Gr2 13570 if1 % | n odd
n n
2n(1>2 1 T
2 2.4.6...n 1i=1 "1 R n even
. n
but 2 e = @n/ "y
i=1 *t i=1

and the product of the eigenvalues of a matrix is equal to the matrix

determinant. Thus

n S
m. e, =/N"/|A]
i=1 i -
N o - n-1 ' ' :
N B R4 1 n v
and I = 2 (2) 1T3.5.. n_V@ /IAI“ n odd.

e aw® 3 KA weven

53.
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