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//ABSTRACT
/

7/
This thesis deals with the identification of parameters in distributed

i
'

parameter systems. Two senéitivity methods, namely; Meissinger's method and the
method of structural sensitivity are extended to obtain the sensifivity coeffi-
cients of discretized distributed parameter systems. The method of Bingulac
and Kokotovic is extended to identify parameters in the one and the two dimen-
sional parabolic differential equations.

CSMP (continuous system modeling programme) is used throughout to
simulate the systems.-
| Results for both sensitivity schemes are obtained, and it is found
that although structural sensitivity is advantageous for parameter identification
in ordinary differential equations, this is not the case for partial differéntial

equations.
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1. INTRODUCTION

1.1 Identification

In order to control a process, it is necessary to obtain a mathematical
model of that process. 'The procedure by which this model is obtained is
called identification. When the input and the response of the system are

(7)

used in the identification procedure''”, rather than some test signal, the

v

procedure is known as '"on-line'" identification. Many procedures exist for
the identifying, tracking, and estimating of system states and (or) parameters(l—6).

Applications of parametér identification lie in the two areas of
process optimization and model building. In process optimization, the para-
meters are chosen to optimize the response of a system.with respect to a
'particulaf criteria. This can be seen in Figure 1.;.

For model building, one would like to determine a model of the system
so that the model behaviour and that of the system approximate one another..
The model parameters are chosen to accomplish the optimum match. This can
be seen in Figure 1.2.

The model building approach is considered in this thesis. Let the
unknown system parameter vector be A. A model is constructed with parameter
vector replacing the unknown system parameter vector. The tracking parameter
vector o is determined by minimizing an error function f(é).

(12-17,27)

Many procedures exist to minimize an error function The

(28)

gradient or steepest descent method is used to identify the unknown parameter

vector in this work. If y is an element of o, the steepest descent equation is

= _Kéfigl.ég
dt ae 3y

' dy | for K > 0 (1.1)

We will define e as the output error i.e. the error between the model
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response Ym and that of the system Y, Since the system response is not a
function of a, de/da = aYm/Ba.

The next section will introduce us to the methods for obtaining
aYm/aa, the gradient of the model response with respect to the parameters

under study.

1.2 Sensitivity Analysis.

Sensitivity analysis arose from the need to consider the deviations
from some set value of the parameters in a control system. It is possible
to establish an indirect relationship between the pafameter variations and the
resulting deviation of the object function. This relation is obtained by

(11)

means of parameter sensitivity coefficients , which are defined as the
gradient of the model response with respect to the parameters under study.
Meissinger's method for obtaining the parameter sensitivity coefficients is
the basis for the work which uses the model structure to generate the sensi-
tivify coefficients(8_ll).

With the knowledge of the sensitivity coefficients, the tracking

parameters y in equation (1.1) can be obtained, as will be seen in the next

section.

1.3 Parameter Optimization

The parameters are obtained by using .the iterative scheme developed

(26)

by Bingulac and Kokotovic . This method consists of successive iterations
to determine the parameters which minimize the performance function. This is

summarized in Figure 1.3.
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1.4 The Problem Considered

"on-line'" identification of distributed

This thesis deals wi£h the
parameter systems. The model building scheme is used, and so the form of.
the system is assumed known. The distributed parameter systemé under study
are the one and the two dimensional parabolic differential eduationé in which
the unknown parameters are spatially dependent. The one dimensional parabolic
dif{erential equation with spatially dependent parameters is the heat equation
for a rod which is constructed cf an inhomogeneous medium, i.e. tﬂe séecifié
heat of the material is spatially dependent. The two dimensional parabolic
differential equation under consideration is the heat equation for a slab of
- inhomogeneous material. The object of the work is to identify the spatially

dependent specific heat parameters.

1.5 Previous Work Done on Identifying Distributed Parameter Systems -

Identification of distributed parameter systems has heen attempted

(18-23) (20)

by various authors . Perdreauville and Goodson ‘have extended



(21) to make it applicable to the identification of partial

Shinbrot's method

differential équations. This scheme consists of obtaining an integral

transform in the spatial domaipgywhich when applied to the partial differential
/

equation and integrated by pa}ts yields an algebraic equation. This method

can not be applicable to a Eartial differentialvequation with spatially

dependent parameters, because no integral transform can be found in the

spatial domain.

Others(22’23)

have identified parameters in distributed parameter
systems by statistical means. An extensive literature search has been done

and it has been found that no one has identified spatially dependent parameters

in the parabolic differential equation.

1.6 Scope of the Thesis

Certain classes of ordinary differential equations have been -
identified psiﬁg the method of Bingulac and Kokotovic. This method requires
the sensitivity of the model fesponse with respect to the parameters under
study. Two methods are employed to obtain the.sensitivity coefficients,
namely, Meissinger's method, and that of structuralnsensitivity.

This thesis extends the method of Biﬁgulac and Kokotovic, Meissinger's
method; and the method of structural sensitivity to the identification of
spatially dependent parameters in parabolic partial differential equations.
The distributed parameter systems Weré discretized spatially and the above
method were employed.

. Chapter 2 deals with the schemes available to discretize partial
differential equations.

Chapter 3 develops Meissinger's method and the method of structural

sensitivity for discretized distributed parameter systems. It is found that



struétural sensitivity is of little use when applied to the systems under study.
Chépter 4 deals with the identification\of distributed parameter
systems using the method of Bingulaq and Kokotovic and the sensitivity methods
developed in Chapter 3. The S/360 continuous modeling programme used on the
IBM 360/67 computer is applied to specific examples.
Chapter 5 consists of a recapitulation of the high points and a

suggestion for future work.



2, DISCRETIZING PARTIAL DIFFERENTIAL EQUATIONS

2.1 Introduction

The purpose of this chapter is to introduce the various schemes
available for discretizing partial differential equations, and to discuss
the pros and cons of the methods studied.

Let us consider the one dimensional heat equatioh with the spatially

dependent parameter a(x).

: 2
298x,t) g’é t) . o (x) 2afx,t) (th) : (2.1)

9x
where xe(O,xf) and te(O,tf)
with boundary conditions

a(x,0)| o = L(O) and q(x,£)|X=Xf = M(t) B C2))

and initial conditions

a(x,t) | __g = K(x) (2.3)

" Equation (2.1) has two indepehdeﬁt variable; the spatial variable
x, and the temporal'variable t. If we were to discretize equations (2.1) -
(2}3) we could discretize either or both of these variables.

The basic discretization schemes are:

(i) . Spatial discretization. The spatial variable is diéqretized.

(ii) Temporal discretization. Thé temporal variable is discretized.

(ii) Space time discretization. Both the spatial and the temporal
variables are discretized.

Let us now consider the pros and cons of the various methods.

2.2 Spatial Discretization

- To obtain the spatially discretized model we use the central differencing

(25)
formula

2q” (x,£)%q, 1 (£) - 24, (6) + q,_4(©)

5% (Ax) 2

(2.4)



where qj+l(t) = q(x + Ax,t)
qj(t) = q(x,t)
qj_l(t) = q(x - Ax,t)

The discretized version of equations (2.1) - (2.3) becomes

. ) 2

q.(t) = a, t) - 2q.(t) + q. .(t))/(ax) 2.5)

qJ( ) | J(qj+1( ) a4y -1 ) ( |
where j=1, .., n

with boundary conditions

Qg () = M) (2.6)

qb(t) = L(t) and
and initial conditions '

qj(t)lt=o = K B 2.7)

We now have n first order equations which represent the partial
differential equation. This can be represented by the following vector
~differential equation

0 = ANQ + ABQ,

where Q is an (nxl) vector, A is an (nxn) matrix, A is an (nxn) matrix, B

is an (nx2 matrix, and Q_ is-a (2x1) vector with the following form:
B )

.| o, 21 0 1

1 ' 1 1-21 ‘ 0
Q=1 ; A= 2 ;A= 1-2 1 ; B=1|. .
L 0 "1 0. 1

Q =19 41

To implement this discretization scheme on the analogue computer
one requires n integrators. The more accuracy one desires, the greater the

number of integrators needed, sincepx gets smaller and therefore n. gets larger.



2.3 Temporal Discretization

~ The temporal discretization scheme is arrived at by the backward

differencing discretization

?_q:qj(x) - qj_l(X)
at At

The discretized version of equations (2.1) - (2.3) becomes

a(x')_'a qj(x) _ qj(X) -9, () |

2 - At

oX
where q = q(xj,t) and j=1, ..., n
with boundary conditions
(0) =L, and L(x.) =M,
93 ] 954 ¢ h|
and initial conditions

450 = KG0)

(2.10)

(2.11)

(2.12)

(2.13)

Temporal discretization requires that qj_l(x) be stored from the

previous calculation so that qj(x) is the only unknown in equation (2.11).

This is the reason why backward differencing is used in equation (2.10).

The above equations can be represented by the following vector

differential equation

2
d
sra()<= = AQ + aBQy
dx
where
q 1 0O
1 -1 1
Q = s A= -1 1
9 0 -1
-1 0
T
b= ’ OB_, 90 qn+l'

0 1

(2.14)

Implementing the temporal discretization scheme on the analogue

computer presents a few difficulties. Continuous memory is needed, since the

10



11

qj;l function is required in the sélution of equation (2.11). Since this is
an analogue computer scheme, initial conditions on all the integrators must
be obtained. Both the initial conditions on 3q/9x and q are not usually given
‘and so they must be determined by using an iterative scheme. |

This method employs a feedback loop with four operatiohal amplifiers,
as can be seen in Figure 2.1. If the loop gain exceeds unity; the circuit
becomes unstablé due to the positive feedback introduced into the circuit by
the four operationél amplifiers. The stability requirement is l/a(x)At<l(25).

The difficulties just outlined make.temporal discretization unattractive

for use with this problem.

continuous q3-1
memory

Figure 2.1

2.4 Space Time Discretization

If all the independent variables in a partial differential equation
are approximated by finite difference expressions, the partial differential
equation is replaced by a syétem of simultaneous algebraic equations which can
be éolved on a digital computer. The time derivative can either be forward or

backward differenced.
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Forward differencing yields

A _ _ 2
9,441 ~ 94,5 7 0‘i(qi+1,j 2q; 4 % qi—l,j)At/AX (2715)

with boundary conditions

qu = Lj and qn+lj = Mj : (2.16)
and initial conditions
Go = K ‘ (2.17)
Backward differencing yields(ZA?L
- 2 ‘
U g4~ Ga,9 7 % Ggan, g1 7 29, 4T 9y g )AL 0x (2.18)

The forward differencing method, i.e. equations (2.15) - (2.17), is

(29)

usually solved explicitly on the digital computer. Forsythe and Wasow have
proven that the forward differencing method is stable and the discretization

error is of the order of (Ax)2 provided that ai>0 and

Mt<dx”/20, (2.19)
If these relations are not éatisfied, instability results due to the propagation
of roundoff and truncation errors. |
The implicit differencing method using equations (2.16) - (2.18) has
no stability requirement,.but requires the solutibn of nxm simultaneous
equations (2.18). This can be accomplished by using Gauss Elimination dr

Pivotal techniques. For many nodes this is very time consuming.

2.5. Conclusion

It was originally hoped to use the Pace 231-R analogue computef for
the work done in this thesis. The analogue computer could not be uséd due to
‘an insufficiency in the number of multipliers and integrators available in the

machine, This difficulty will be explained fully in Appendix B.
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To circumvent the‘difficultiéé with the analogue computer, the
s/360 continuous modeling programﬁe (CSMP) was used on the IBM 360/67 computer.
CSMP is a problem oriented progrémme designed to facilitate the digitall
éimulation of continuous processes; The gontinuoﬁs process is discretized:
by the programme. A complete explanation.o£ CSMP appears in Appendix A.

Since the digitai computer was used all the variables had éoAbe
discretized, and so; space time discretiéatibh had to be used. The proBlem
was looked at as though the spatial variable WAS discfetized and tﬁe témporal
variable was maintained in the continuous form. The CSMvprogram was theg
used to discretize the temporal.variablg. Since both tﬁe spatial and the
temporal variables were ultimately d13cretized; equation (2.19) had tb be
satisfied. Though we will call the diécrétization scheme used spatial dis-
crétization and will use the‘equatibns developed in Section (2.2), the space
time discretization scheme is realiy what is obtained using CSMP, as éan
Be seen from the preceeding argument. |

In the next chapfer the péraméter sensitivity coefficients are
obtained fér the spatially discretized partial differertial eqﬁations obtained

in this chapter.
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3. SENSITIVITY ANALYSIS

3.1  Introduction

Tﬁis chapter considers two methods to obtain the parémeter sensitivity
coefficients; namely; Meissinger's method, and the method of structural
sensitivity. These methods will be extended to obtain the parameter sensi-
tivity coefficients of the discretized parabolic differential equations obtained
in Section (2.2).

Though the method of structﬁral sensitivity is useful for ordinary
differential equations, it will become evident that there is little advantage

to it over the other method when applied to distributed parameter systems.

3.2 Meissinger's Method

Meiésinger's method for the generation of the parameter sensitivity
coefficients can be described by the following example.
Consider the second order differential equation‘
Y(t) + a,¥(0) + a ¥(6) = X(t) (3.1)
where X(t) is the forcing function.
Meissinger's parameter influence coefficients are defined as

U, = 3Y/8al and U, = aY/aaO (3.2)

1 0

Differentiating equation (3.1) partially with respect to a; and ags we obtain
Ul + alU1 + aodl = =Y (3.3)
U, + a0, + agUy = ¥ (3.4)

170 070

To obtain the sensitivity coefficients, equations (3.3) and (3.4)
muft be solved. These equations are sfructurally the same as equation (3.1)
but have different inputs.

Let us now apply Meissinger's method to the discretized differential

equation obtained in the previous chapter.



3.3 Application of Meissinger's Method to the One Dimensional Parabolic

Differential Equation

In Section (2.2) it was found that a one dimensional parabolic

partial differential equation can be put in the following vector form

Q = A\NQ + ABQB v
where A is a matrix of the unknown parameters. Let o be an element of A.

Differentiating équation (2.8) with respect to o we obtain

30 _ 3.
d0.  da [ArQ + ABQB]

a0
B

o

24 2 20
S AQ + A o Q + AX o

dA ab
+ = —= Q. +
ha DU T AL Ot AB

(3.5)

let U g 3Q/3a be called the sensitivity coefficient vector. Since

A, B, and QB are not functions of o. We obtain

9A :
=o3Q + AU | (3.6)

U

Applying Meissinger's method to the discretized version of

equation (2.8), namely equations (2.5) - (2.7) we obtain

. o, S, .
= —= : - : T -
Uy, 4(0) 2 Wigq,g = 20,4 ¥ 0g 41 2 in 29y + 4541 37D
where
v, . 2 aq. /50, (3.8)
i,j T .
with boundary conditions
u, ()] = o. and U, L(t)] = o. ’ (3.9)
1.3 i=0. el i=n+l

~and initial conditions
\

Ui,j(O) = 0, | ' (3.10)

15
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where i=i, veesy n and. j=1,..., n
énd
s6i3=1 - for  1i=j
/
// 61j = 0 for  i#]
/

If equation (2.5; consists of n first order equatibns,_Meissinger's
method requires the generatién of nxn first order sensitivity equations in
order to arrive at all the parametric sensifivity coefficients.

Let us now apply>Meissingér's method to the two dimensional parabolic

differential equation.

3.3.1 Application of Meissinger's Method to the Two Dimensional Parabolic

Differential Equation

Let us consider the two dimensional parabolic differential equation

2 E 2
M (x,y,0) = al) =L Guy,t) + EG) F (L, (3.11)
9x dy

where xs(O,xf),Aye(O,yf), te(O,tf)

with boundary conditions

: q(x,y,t)lx=0 = Ll(y,t) and q(x,y,t)ly=0 = Lz(x,t) (3.12)

q(x.,y,t).lx=xf = Ml(y,t) and q(x,y,t)ly=yf = Mz(x,t)

and initial conditions

q(x,y,t)jt=0 = K(x,y) (3.13)

We can discretize equation (3.9) with respect to the two spatial
variables x and y. Using the discretization developed in Section (2.2) we

obtain

. .=~_ - . E.l -
94, o lagyp =293 F a0 F Vz[qj+1 29y 4y 1) (3418

3 ax” A



where i=1, ., n and j=1,

., m., Let us pick m=n just for simplicity.

Applying Meissinger's method to equation (3.10) we obtain

/

o, :
Ui,j,k Ax2 Uifl/ 2Ui Ui-l i,k + Ay2 ~Uj+1 ZUj Uj_l ik
/
! s (3.15)
612!2k _ ].
* bagyy = 205ty Uy
Ax
and :
o, . :
i == [y . - ] B o
1,5.m sz Ui+1 2Ui ¥ Ui*lA i,m+ Ayz'[Uj+l 2Uj * Uj—l ]i,m
(3.16)
§i,q,m . A
=R - 2q, +q. 1,
Ayz j+1 j j-1° i
where U . | = aqij/asm are defined as the parameter

L3,k 8qij/aak aéd Ui,k,m

sensitivity coefficients, and where

6ijk -
= 0.
and’ .
§,, = 1.
ijm
= 0.

If equation (3.14} consists

see that Meissinger's method requires

when i=j=k

else

when i=j=m

else
of (rn*n) first order equations, we can

- 2 . .
us to generate (2xnxn") first order

17

sensitivity equations to arrive at all the parametric sensitivity coefficients.

The next section deals with the application of structural sensitivity

to the preceding problem.

3.4 Structural Sensitivity

The purpose of this section

is to extend structural sensitivity so

that it will be useful in determining the sensitivity functions of a discretized

partial differential equation.
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Kokotovic has shown that for a class of systems with 6ne direct
path all the sénsitivity.functions may be obtained simultaneously with the
use of one additional system model(s). This is .superior to Meissinger's
method because Meissinger's method requires the generation of a system model
for each parameter, as seen in Section (3.2).

The methods developed by Kokotovic(s-lo), Vuscovic and Ciric

(31)
deal only with systems where the mth branch transmittance in a signal flow
graph is Wm(s, ai) and where oy the parameter of interest only appears ip
that branch. Structﬁral sensitivity will be extended to those systems where
the parameters of interest appear in more than one branch transmittance i.e.
oy might appear in Wk(é, ai) and Wl(s, o aj).

The class of systems considered are those in which the outputs of
the feedback paths are brought together and subtracted from thé input and
there is one feedforward path. This class of systemsAis called the Kokotovié
class. A three loop Kokotovic system isvshown in Figure 3.1.

A spatially.discretized parabolic differential equation is not of
the Kokotovic class, as can be seen in Figure 3.2. B? applying signal flow
‘graph theory to the discretized system, it can become of the Kokotovicvclass
provided that one.of the boundary conditions.is set to zero (one feedforward
ﬁath). The parameteré'now appear in a more complicated form in the transmittance

in the feedback paths, as can be seen in Figure 3.3.-

The_sensitivity functions considered will be that of equation (3.8)

A .
U ., = 9dq/90q,
T T

With the partiai differential equation in the Kokotovic class it is

evident that the system equation becomes
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43(s) = W (s,ay,...,a )q (o) (3.17)

where Wj(s,a .,an) is the overall transfer function needed to obtain

l)
the output qj(s), and where qo(s) is the input (one of the boundary conditions).

Subsituting equation (3.17) into equation (3.8) we obtain

awj(s,oni an)

U, (s)

A W, (s o a;(s) - (3.18)

1...an) Sai

If the parameter o, appears in more than one loop transfer function, we must
apply the chain rule to equation (3.18) to obtain

n awj(s,al...an) ‘ awk(s,ai)
awk(s,ai) s

(3.19)

v, -
i,j Wj

o) L
1" " n’ k=1 i

v Lk
v

[}

.0
™
[vo]
(@

1
[

k

where

“k 8&5- | ) (3.20)
/ . 9 ) ' ' :
3.k J k

e

and
W

k
oo, .
1

o>
=i

C

K, i L (3.21)

k

The functions Bi kdepend on the system's structure, and the functions

b

Ck,

idepend on the structure of the links Wi.
1f

= o =—S5
Wk(s) s+2cxi then Ck§i ai(s+2ai)

Equation (3.20) defines the transfer functions from the system's

input qj to the point Sk 3 These points are called the sensitivity points.
3 . .

° To determine the sensitivity functions Ui ., it suffices to send

the signals from the sensitivity points Sg“_to the blocks Ckfiand sum the
: . s ’

results, as in equation (3.19). All the sensitivity functions are determined
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»/‘
/

by varying the input'qj of the sensitivity model. This can be seen in Figure
3.4, Since the system under study does not have a single output (as is the

case with ordinary differential eqﬁations), but has n outputs, the number

7
7

of equations required to genexéte the sensitivity coefficients is not reduced
by using struétural sensit%ﬁity.'
3.5 Conclusion

Structural sensitivity can not be applied to partial differential’
eqﬁations in general. The Systeﬁs considered using this method muét_be of
the Kokotovic class.: This implieé putting the systems into the Kokotovi¢
form, and hence limiting the systems studied to those in which only one
 boundary condition is considered.

Since the.system_equation has n ;QtPUté, structural sensitivity
requirgs us to solve (nxn) equations i.e. the same number of equations as in
Meissinger's method and hence no saving resulLs;

The only advantage to the application of structural sensitivity
is that once thé sensitivity model is obtained we need only vary the input

to the model to obtain all thé‘sensitivity coeffiéients.

Meissinger's method has none of the above constraints.

The next chapter will deal with the identification of parameteré
using fhe method of Bingulac.and Kokotovic and the sensitivity methods

developed in this chapter.



4, PARAMETER IDENTIFICATION IN DISTRIBUTED PARAMETER SYSTEMS

4.1 Introduction

Iﬁ this chapter the sensitivity methodé developed in tﬁe previous
chapter are used in conjunction with the method of Bingulac and Kokotovic
in order to idéntify parameters in the first and second order parabolic
differential equations. ' The method of Biﬁgulac.and Kokotovic is presented

in the next section.

4.2 The Method of Bingulac and Kokotovic

The method of Bingulac and Kokotovic is applicable to parameter
identification problems using a mode controlled amalogue computer (or in our
case CSMP).

' -4 T
The parameter vector a = [o an] is adjusted by means of

1"
steepest descent in order to minimize a performance index J(a) of the form

' CT

J(a) = gg F(e)dt 4@ _ (4.1)

The sensitivity methods developed in the previous chapter are used

.in obtaining
. | T
s 2Eyae an : (4.2)
da so de _

It is assumed that the parameter vector a is held constant in
dériving equation (4.2). For this reason the computer is operated in two
modeé. In the compute mode, the parameter vector is held constant while
the constitutents of equation (4.2) are calculated. 1In the reset mode the

parameter vector is adjusted according to the steepest descent law

o by o (4.3)

25
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This method is summarized in Figures (4.1) and (4.2). The
increments in qj are required to be kept small because the directiqn of
steepest descent is steepest only in the vicipity of aj. The increments in
aj can be Rept smali by an appropriate choice of K in the above equation.
A compromise must be struck between the stability of the method and the speed
of convergence. Thé larger the valqe of K is, the faster is thé rate of
_convergence, and the greater is the risk of instability.

Let us consider now, the identification of the one dimensioﬁal

parabolic differential equation.

4.3 Identification of the One Dimensional Parabolic Differential Equation
We would like to identify the unknown parameters of the following

distributed parameter system,

9s 823 |
— (x,t) = B(x) —= (x,t) : (4.4)
ot 2
. ox .
with boundary and initial conditions previously used in equations (2.5) ~ (2.6)

and where B8(x) is the unknown spatially dependent parameter.

Let the model be

"2
Mt = e 22 e | (4.5)
t o 8x2

with the same initial and boundary conditions as above and where a(x) is a
chosen parameter.
Let the performance function be

X t

g= 55T, - six, 1)) %axde (4.6)

o o
which is quadratic and covers the entire space time domain.
Discretizing equations (4.4) - (4.6) spatially as in Section (2.2)

we obtain
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dsi : 5
e = B (s (B) ~ 28, (0) Si_l(t))/Ax (4.7)
da, o 5
T = (a4 (0) - 29, () + qi_l(t))/AX _ (4.8)
_ t. n 4
R of £y (a; - si)zdt (4.9)
i=1

Differentiating equation (4.9) with respect to o and substituting
into equation (4.3) yieldé

0. = K rtf
J 0

D

(q; - s,) Uijdt . o (4.10)

i=1

where j=1, .;., n

The sensitivity coefficien;s Uij are obtginable by using either of
the. schemes dgveloped in Chapter 3.

Before dealing with a few examples; a word is in order about the

choice of boundary and initial conditions.

4.3.1 Boundary and Initial Conditions

The boundary and the initial conditions are of the form

a(x,t) [ £y = L) q(x,t)lx=Xf = M(t) | (4.11)

K(x) ' (4.12)

a(x,t) |

The conditions are assumed not to be functions of the parameters
under study. It is also assumed that they are given for both the system
and the model.

Discretizing equations (4.11) - (4.12) spatially we obtain

qo(t) L(t) qn+l(t) = M(t)» (4.13)

qi(O) Ki where 1 = i, ..., n _ o (4.14)



The form of the boﬁndary conditions presents no problem provided
that e;ch value‘of qO(t)‘and qn+l(t) is introduced into equations (4.7) and
(4.8) at:the correct point in time i.e. as the time sweep progresses. This
is easily obtainable using CSMP.

Since it is assumed that the parameters under study are not functions
of the boundary and initial conditions, let us choose the easiest: conditions

to deal with, namely

|
o

q(xﬁt)lxz_.o._ 3 q(x’t)lx::x = 0 (4.15)

£ -
K(x) . (4.16)

q(x,t)|t=0

We are now in a position to deal with some examples.

4.3.2 Example #1

In this example Meissinger's method is used to obtain the sensitivity
coefficients. Here n=3 is chosen.

. The system equation is

dS; g
—_— = P - s \
e 2 [Si+1 2Si + Si—l] i=1l, ..., n (4.17)
Ax
with boundary conditions SO = S4 = (0 and initial conditions Si(O) = 1,
The model equation is
f%&i = oi ; + (4 18>
de .2 laj41.7 205 Tay3] ' '
. X ’
with boundary conditions 9, =9, = 0 and initial conditions qi(O) = 1.
Ther performance function is
tg D 2.
J= f I (q, - S,)7dt : (4.19)
SRR T R . |

The Meissinger sensitivity model is

29
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. . 8

ol 7 _ ' 1] _
Ui, = (U - 20+ Ugp Dyt =7 Loy —ay vag g (4.20)
Ax Ax
where o -
. / .
1= l, -/,o’/t, n ; J:l’ ey n

Where the boundary and initial conditions are

1 |
U, (0 =05 U= I.J‘zig. =0 o (4.21)

The update algorithm is _ -

15

o - Si)Uij dt v ' (4.22)

i=1

The gain constant in equation (4.23) is set at K=.02. Since n=3.
is chosen and the increment in x is set at .2, the length of rod considered
is .8 units. Figure 4.3 showé the steepest descent of the controller parameters
in the (al az) plane, plotted agéinst contours of equal J. To obtain_tﬁe
contours of equal J, 0g is set at a constant.

Figure 4.4 shows tﬁe steepest descent of the controller parameter
pafameters ;n the (az, a3).plane, plotted_against contours of equal J,
where the contours of equal J-are obtained by setting‘dl to é constant.

The iterative procedure was initiated from three locations to
check for local minima. As can be seen in Figure (4.3) and (4.4), the
initial guesses of (.2,.2,.2), (.05,.05,.05) and (.2,.05,.2) converged fo ﬁhe
optimum values of (.1,.15,.18).

| An unfortunate characteristic of the steepest desceﬁt method is its

(28)

slow convergence in the region of the optimum . If J has a narrow ridge,

i.e. if the J contours can be approximated by ellipses with high eccentricity,

(30)

then the convergence rate is even slower . This can be overcome somewhat

by increasing the gain constant K as the optimum is approached.
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4.3.3 Example #2 - Structural Sensitivity

In this example the method of structural sensitivity is applied
to the preceeding problem with the same choice of K, and initial guesses of a.
For n=3, we require six q{ links, as seen in Figure 3.4, where
W, (8a9) = ay/s
Q) =
W2( ) 2

W3(S?q2) = az/(S+2a2)

WA(S) =1 |
=W5(S{a3) = q3/S+ 2a3
_ S+2a
W6(S,ul) = 1
M,
Using equation (3.21) we obtain
S Cy..=1/a C = C = .. C =20
11 1 12 13 15
C21 = ..., = CZ6 =0
C32=S/a2(s+2a2) C31 = C33 Fee = C36 =0
C41 = ... 046 =0
C53 = S/a3(S+2u3) C51=C52=C54 = "'056 =0
Cpq = -5 /al(S+2al) Cop = o+ = G = 0
- From équation (3.19) we obtain
' 6
6
U,. =q, B, c, . = V., , for i=1,.,3
ij qJ kél jsk k,i kgl jsk,1 ?
i=1,.,3
The nine sensitivity equations‘become
7 = h) = * + .
LB qj[B 1 G By cj’61 S, C S, C

3,3 7 %320 = 845,3 7 S50

=
I
a
e
e
o

5,5 %,3) =855 C5 3
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The identification scheme using structural sensitivity produces
precisely the same results and requires the same computing time as in

Example #1 i.e. Figure (4.3) and (4.4).

4.3.4 Example #3

In this example, the same equations were used as in example #i.
Here R(x) = x2 + ax + b where a =-.25, and b = .11. The discretized
version of B becomes (.1, .17, .32). |

‘Figure 4.5 and Figure 4.6 show the steepest descent of tﬁe con-
troller parameters in the (qL, u{) and (dz, qB\ plane respectively.

The iterative procedure was initiated from two locations to check
: for local minima. As can be seen in the Figures, the initial guessesAof
(.CS, .05, .05), (.35, .35,..35) converged to the optimum value of (.1, .17,
.32). In Figure 4.6 a great deal of oscillation occurs due to the ridge at

the minimum.

4.3.5 Example #4
In this example the same equations were used as in Example #1.

Here n = 5. was chosen. With n

]

5. and the increment in x set at .2, the
léngth of the rod considered is 1.2 units. B(x) was set as a linear function

of x i.e. B(x) = ax + b where a

-.1 and b = .22, The discretized parameters
B become (.2, .18, .16, .14, .12). The a values converged to thgse values
from the initial guess of (.1, .1, .1, .1, .1) within fwenty iterations. This
can be seen in Figures (4.7) - (4.9).

: The greater the number ofldiscretizations; the more equations need

be solved i.e. for n = 5; 25 sensitivity equations are required to be

solved. The beauty of using CSMP‘is that there is no constraint on the number



35

¢ ' ean3Td

L OT°

| 0o2°

— 0o¢t°

s ¢=u

wmmo/mMHonmpma TEQOTISUaWIP dUQ



.30 _|
.20 —
2
.10 |

One dime sipnal parabolic se

n=3.

014

.004

)
(®)
Q
w
)
o

9¢



ONE DIMENSIONAL PARABOLIC CASE
n=5; 3 O((X)"3X+b

No.

l |
1@
of Iterations

I | I T T T T - T T T T
20 10 20
No., of Iterations

‘Figure L .7

LE



02- :

-7 ¥ 1 T T T
1b 20
No. of Iterations

Figure 4.8

ONE DIMENSTONAL PARABOLIC CASE

n=5; o&(x)=ax+b

T T T 1 1 T T

1
10
No. of Iterations

|
20

8¢



X 5

ONE DIMENSIONAL PARABOLIC CASE

n=5; «{x)=ax+b

{ 1] - l. l
10
No. of Iterations

Figure 4.9

6€



.40

of equations to be solved, other than the computer time required.

4.4 Identification of the Two-Dimensional Parabolic Differential Equation

We would like to identify the unknown parameters of the following

distributed parameter system’

2 S 2
) 3 )
LS (x,y,t) = r(x) ——E-(x,y,t) + v(y)-——§ (x,y,t) (4.23)
ot . 2 2
: ox ) X
where xe(O,xf), ye(O,yf),’ts(O,tf) with boundary conditions
s(x;y,t)lx=o. - Ml(y’t) d S(X’y’t)|x=xf = MZ(y’t) -
(4.24)
| S(X,y’t)|y=0. =. Nl(X,t) > S(Xay’t)ly=yf = Nz(x’t)
and initial conditions
S(X’y’t)|t=o. = P(x,y)
Let the model be
3 2%q 2%
j‘tl (x,y,8) = alx) —5 (x,y,t) + B(y) —5 (x,y,¢t) ' (4.25)
. ax . o9x
with the above initial and boundary conditions,
Let the performance function be
g g 2
° o o (q(x,y,t) - s(x,y,t)) dx dy dt (4.26)

Discretizing equations (4.23) - (4.26) with respect to the spatial
variables x and y, we obtain

r

) v,
. i ;
s, , =5 [s,,, - 2s, +s, . 1. +—~51Is,,, - 2s, +5s, ], (4.27)
1,] Ax2 i+l i i-17j Ay2 j+1 3 j-1°1 A
. e _-(_x_i.-_ _ 8‘ )
94,5 7 2 lagyy = 205 + a5 )5+ zjg lagyp = 295 + a1, (4.38)

where i = 1, ..n and j = 1,



with bound

ary conditions
%0,y T M5 *nt1,3 T 2,3
s M = N

1,0 = 71,1

and initial conditions

and performance function

n m
te

‘ z
o iél j=1 (qi’j‘ isj
Differentiating J with respect to X and o e obtain

t. n p

3 oaxay fof D% (qy - s, OU L dt
30ck i=l j=1 V )J l,u ’J’
. t n P
%%—-= 20xAy fof I T (qi . =8y .)Ui C m dt
“m i=1 j=1 s ] s J 3]
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(4.29)

(4.30)

(4.31)

(4.32)

Substituting equations (4.28) - (4.29) into the two dimensional update

algorithms .

yields

equations

= g = g 39
Aak K N and AB L 38
_ k m
.t n P
Ao, =-K [ 7. T £ (q, .-, U, . dt (4.33)
k °© ;.1 j=1 ql,g 1,37 71,3,k .
= .1 (te ™ P .
M =L JE y w(q -s, OU L _at (4.34)
l=l j=l ’J )J SJ’
The sensitivity coefficients U, |, and U, , are obtained by usiﬁg
i,3,k o 1,3,Mm : '

(3.15) and (3.16).



42

4.4.,1 Example #5

In this example Meissinger's method was employed to obtain the

sensitivity coefficients. Here'p’= m = 3. was chosen. The equations considered

were (4.27) and (4.28) with bquhdary conditions q, 559, =qx£4j =
L ’ ’ >

fori =1,.n and“j'él;dnand initial conditions qi j(O)
3

. =0

1. These were chosen

simply for convenience.
r(x) and v(y) were set as a linear function of x and y i.e. r(x) =
ax + b and v(y) = ay + b, With a = .25 and b = .05,>the discretized parameters
ri‘and vj become (.1, .15, .2). Figures (4.10) - (4.13) show that the parameter
guesses of (.2, .2, .2) and (.05, .05, .05) converged to the optimum.
For the two dimensional case Meissinger's method requires the
solution of (anxnz) equations, in our case this leads to. 54 sensitiﬁity equations.
The problem associated with identification using the method of
Bingulac and Kokotovic is the number of equations that are required to be
solved. For tﬁe two dimensional case as outlined abdve; nine system equations
are required, nine model equations are required, as well as the 54 sensitivity
equations.' Fof this example CSMP requires 62 seconds to compile the program
versus the 12 seconds of compilation time needed for example #1. This, of course,

is due to the number of equations that must be solved.

4.5 Conclusion

In this chapter five examples of identifying parameters in distributed
parameter systems using the method of Bingulac and Kokotovic were attempted.
Systems for n = 3 were easily identified using Meissinger's metﬂod to obtain the
‘sensitivity coefficients. It was found that structural sensitivity yielded no

economy in the number of equations that had to be solved, and yielded exactly the
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same results as Meissiqger's method as can be seen in Examples #1 and #2.

For the nonlinear parameter choice in Example #3, it was found that
a great deal of oscillation occurred while approaching the optimum. This
was due to the fidgé iﬁ the performance function. |

For Example #4 in which n = 5, the five parameters were identified
using Meissinger's method, however, the compilation time of CSMP was double
that of Example {1. This resulted because 25 sensitivity equations had to be
soived versus 9 sensitivity equations in Example #1.

For thé two dimensional case, Example #5, the parameters were easily
identified using Meissinger's method, however éompilation time of CSMP was sik
times'that of Example #1. This resulted becausé 54 sensitivity equations had
to be sol?ed in this example.

Though the method of Bingulac and Kokotovic can successfully be
employed to identify spatially dependent parameters in distributed parameter
syétems, its ultimate failiﬁg is in the number of sensitivity equations that

must be solved.
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5. CONCLUSION

5.1 Summary

;

‘This work has been conéerned with the identification‘of distributed

parameter systems of the pargbélic type with spatially dependent pérameters.
The method ofABingulac and K;kotovic, Meissingér's method, and structural.
sensitivity were extended to identify the above méntioned sysﬁems.

Chapter 2 deals with the discretization schemes available to dis-
cretize partial differential equations. It was seen that_spatial discrétization
could Be cﬁnsidered with CSMP'proQided that equation (2.19) is satisfied.

Chaptér 3 develops Meissinger's method and the method of structural
sensitivity for discretized distributed parameter systems. It was found that
- structural sensitivity can only be applied to those systems of the Kokofovic
class; and this implies that one boundary condition must be set to zero.
Structural sensitivity does not yield an economy in the number of sensitivity
equatiqns that need bé:solved as is the case in ordinary differential equations.
In fact, structural sensitivity requires the solution of the same number
- of sensitivity équations as that of Meissinger's methoa, and so strucfural
sensitivity is of little use.

| . Chapter 4 deals with the extension of the method of Bingulac and
Kokotovic to the identificapion of distributed parameter: systems using the
sensitivity methods deQeloped in the previous chapter. Both_sensitivity.
methods were employed.and it was found that they yieided the same results,
Though the method of Bingulac and Kokotovic can be successfully employed;
its ultimate.failing lies with the number of sensitivity equations that need

be solved.
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5.2 Suggestions for Further Research

The problem under study is suited to the hybrid computer and it
would be very interesting to approach it from thét point of view. This
would avoid the need for analoéue multipliers, track and hold deviges, and
external mode control devices, so that the number of equations to be considered

in the analogue portion of.the computer could be increased.



APPENDIX A

A.1 The Continuous Modeling Programme

. The S/360 CSMP is a problem oriented programme designed to facilitate

50

the digital simulation of continuous processes on large scale digital computers.

The general CSMP formulation of a model is divided into three
segments: Inipial; Dynamic; and Terminal; tha£ describe the computations to
be performed before, during, and after éacﬁ simulation run.

The initigl segment is intended exclusively for comﬁutation of
initial conditiéns;' The dynémié éegment consists of the system dynamics.
The terminal segment is used for those comﬁutations.désired”after completion

of each run.

A.2 The Method of Bingulac and Kokotovic Using CSMP

The method of Bingulac and Kokotovic can easily be programmed using
continuous system modeling. The two modes of operation discussed in Section
(4.2), i.e. the compute and the operate modes are obtained in the following
manner. |

The compute mode i.e. the mode in which the parameters are held
constant is simply obtained by setting the parameters to a set value in the
initial,ségment of the prégramme.

The reset mode i.e. the adjustment of the parameter values by means
of the steepest descent>algorithm (equation 4.3), is obtained by programming
the equation in the terminal segment of the programme. The.updated parameter

values are then used as the initial conditions for the next sweep.



APPENDIX B: ANALOGUE COMPUTER WORK

B.1 Introduction

This appendix- deals with the possible analdgue computer imple-~
mentations for the identification of distributed parameter systems, and
their failings. This results from a need for a large number of components
in the analoggg computer, namely; multipliers and integrators. The large
number of integrators is needed in order to build the track and hold circuits

required.

B.2 The Track and Hold Circuit

The track and hold circuit is obtained by using a pair of mode

controlled integrators. To obtain a mode controlled integrator the Memory

51

Logic Group (MLG) unit must be engaged. With the proper configuration on the

MLG patch panel, an S = 1 mode pulse will put a designated integrator into
the set mode. An S = 1 pulse will put the integrator into the reset mode.

| A track and hold circuit can be obtained by using a pair of mode
controlléd integrators connected as in Figure B.4. In the S = 1 mode,
integrator 1 follows the input and the relay in the figurs sets the output
to ground; In the § = l(S=0)_mode, integrator 2 tracks integ?ator 1. Since
integrator 1 is held at its final value, integrator 2vholds that valhe with

the reléy open.

B.3.1 Meissinger's Method; Implementation #1

The analogue computer implementation of this method can be accomp-
lished by using the repetitive operation mode on the analogue computer,

For a system with n=3,, three system, three model, nine sensitivity

equations and three update routines are required.
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Putting the update routines into thé continuous mode and all the
other integrators into the repetitive operation mode, we can implement the
scheme in Figures (B.1l) - (B.3) provided we have a sufficient supply of
components in the computer. Sincé three muitipliers are required in the
model equation, nine multipliers are required in the update routine, and
nine multipliers are required in the sensitivity model, we can not implement
the method on the analogue coﬁputér as the analogue computer has only

twelve multipliers.

B.3.2 Meissinger's Method; Implementation {2

Since the struﬁture of the sensitivity model equations is very
éimilar, as can be seen in equation (B.D,-we can cycle through three
sensitiﬁity equations with three different inputs to obtain the nine
sensitivity equations.

This scheme involves five modes of operation, namely; one mode
(M and ﬁ) fof the system and the model, three modes (S1, S2, S3) for the
sensitivity model, and one mode (S4) for the update routine.

» Since the.analogue computer 5as at most two modes of operation, it
is necessary to design an external mode controllef. This device consists
of thfee flip fiops, four AND gates and four.inverters, as seen in Figure.
B.5. The mode control signals previously described appear in Figure B.6.

The analogue computer implementation can‘be seen in Figures B.7 and
'B.8. All integrators with no mode control indicated in both the system and
the model are in the M mode. All the integrators with no mode control
indicated in the sensitivity model are in the M mode. Relay #1 and the
track and hold devices ensure that a,b,c, énter the circuit once during the

cycle and at the correct time.
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Since the implementation of this scheme requires 30 integrators,
the analogue computer could not.be used, as only 26 integrators are available

on the computer.

B.4 Structural Sensitivity Implementation

‘éince the sensitivity transfer functions are identical for each
input, input switching was considered. The same mode control‘as the previous
example can be used. Using this scheme, the nqmber of integrators needed

exceed the number available, and so the computer could not be used.

B.5 Use of the Hybrid Computer’

The problem with all the methods cited is either their lack of-
"~ multipliers or the lack of storége elements (track and hold devices i.e.
integrators). Uéing the hybrid computer for multiplication and storage

as well as integrator mode control would eliminate these difficulties.
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