AN ALGORITHM FOR ESTIMATING THE MEDIANS OF A WEIGHTED
GRAPH SUBJECT TO SIDE CONSTRAINTS, AND AN
APPLICATION TO RURAL HOSPITAL
LOCATIONS IN BRITISH COLUMBIA

by

ROY ALEXANDER WHITAKER
B.A., University of Exeter, 1962
MSc., Pennsylvania State University, 1965

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

In the Department
of
Geography

We accept this thesis as conforming to
the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
March 1971
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Geography

The University of British Columbia
Vancouver 8, Canada

Date April 27, 1971
ABSTRACT

Plant location as a centralized planning objective in which some agency has control over most of the system elements can be reduced, in many circumstances, to the problem of finding the medians of a weighted graph. This concept is feasible if it can be assumed that each location sought is constrained to a subset of p nodes on an n node network. This combinatorial programming problem can be formally stated as follows: if G is a weighted graph, \(w(v_i, v_j) \) the weighted distance of node \(v_i \) to node \(v_j \), and \(X_p \) is any set of p nodes on G \((x_1, x_2, \ldots, x_p) \), then the required set of p nodes \(X_p^* \) on G is the p median of the graph if it satisfies the expression

\[
\sum_{i=1}^{n} w(v_i, X_p) \geq \sum_{i=1}^{n} w(v_i, X_p^*)
\]

Although this objective can be explicitly optimized by branch bound algorithms, those developed to date can become computationally infeasible for some large scale problems. A fast method for estimating the medians of a weighted
graph is given which will provide optimal or near optimal solutions on any type of network. The heuristic procedures adopted in this study can be generalized in terms of three basic steps; 1) partition the graph to obtain an initial feasible solution, 2) re-iterate over step 1 to achieve a local minimum, and 3) perturb this convergence to test for a lower bound. The design of steps 1 and 3 are crucial to the success of the algorithmic method. Two procedures are given for the basic partitioning of the graph, one of which is a modification of a criterion originally developed by Singer (1968). The other method introduces a node elimination recursion which appears, experimentally, to be the more efficient procedure for certain types of weighted networks. Efficient perturbation methods are developed for testing the lower bounds obtained.

The basic model structure is modified by the introduction of heuristics for the constrained plant location problem under a wide variety of restrictions. Numerical procedures are suggested for restricting the search to a subset of m potential plant sites among all n nodes on the network. Heuristics are developed for forcing certain locations into solution, for placing upper bound constraints on plant sizes, and for restricting the maximum link distance over which a particular allocation might be made.
Attention is given to the problem of estimating the joint minimization of plant and transportation cost functions over a network surface. For dynamic location-allocation systems an explicit dynamic programming formulation is developed for the optimal sequencing of plant locations over time subject, if necessary, to periodic variations in all cost functions and node weights.

An application of the basic median algorithm to the problem of rural hospital locations in Southeast British Columbia is demonstrated, and computer codes are listed for all the specified models.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES.</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER I - INTRODUCTION AND STUDY OUTLINE</td>
<td>1</td>
</tr>
<tr>
<td>Objectives of Study</td>
<td>2</td>
</tr>
<tr>
<td>Scope of the Study</td>
<td>4</td>
</tr>
<tr>
<td>Study Outline</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER II - REGIONAL HEALTH PLANNING: SOME PERSPECTIVES AND PROBLEMS</td>
<td>8</td>
</tr>
<tr>
<td>The Rationale for Regional Health Planning</td>
<td>8</td>
</tr>
<tr>
<td>Historical Antecedent for Regionalization</td>
<td>11</td>
</tr>
<tr>
<td>Some Inherent Problems in Regional Planning</td>
<td>18</td>
</tr>
<tr>
<td>The Role of the Modern Hospital</td>
<td>19</td>
</tr>
<tr>
<td>The Role of Social Medicine</td>
<td>22</td>
</tr>
<tr>
<td>Insurance Coverage and the Utilization of Medical Care</td>
<td>28</td>
</tr>
<tr>
<td>Medical Care in the Rural Setting</td>
<td>30</td>
</tr>
</tbody>
</table>
CHAPTER III - AN ALGORITHM FOR ESTIMATING THE MEDIANs OF A WEIGHTED GRAPH SUBJECT TO SIDE CONSTRAINTS

Problem Statement ... 41

Formulation of the Problem in Terms of a Weighted Graph ... 46

Some Previous Approaches to the Problem ... 48
(a) Exact Solution Methods ... 48
(b) Heuristic Solutions ... 52

The Singer Algorithm ... 57

Some Comments on These Algorithms ... 69

Some Alternative Partitioning and Perturbation Methods ... 70

An Algorithm for Estimating the Medians of a Weighted Graph ... 73

Restrictions on Potential Plant Sites ... 76

Plant Size Upper Bounds ... 78

Maximum Distance Constraint ... 92

Plant Cost ... 93
<table>
<thead>
<tr>
<th>Chapter IV - An Application of the Median Algorithm to Rural Hospital Locations in a Sub-Region of British Columbia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of Regional Study Area</td>
</tr>
<tr>
<td>Generation of a Medical Demand Network</td>
</tr>
<tr>
<td>for Southeastern British Columbia</td>
</tr>
<tr>
<td>A Measure of the Locational Efficiency</td>
</tr>
<tr>
<td>of the Hospital System of Southeast British Columbia</td>
</tr>
<tr>
<td>Prediction of Actual Flow Patterns Within</td>
</tr>
<tr>
<td>the Sub-Region</td>
</tr>
<tr>
<td>A Method for Estimating Optimal Plant Size</td>
</tr>
<tr>
<td>Over the Current System of Hospitals</td>
</tr>
<tr>
<td>in the Region</td>
</tr>
<tr>
<td>Chapter V - Summary and Conclusions</td>
</tr>
<tr>
<td>Literature Cited</td>
</tr>
<tr>
<td>Appendices</td>
</tr>
<tr>
<td>I. Node Populations and Demands by Medical Categories</td>
</tr>
<tr>
<td>II.</td>
</tr>
<tr>
<td>III.</td>
</tr>
<tr>
<td>IV.</td>
</tr>
<tr>
<td>V.</td>
</tr>
<tr>
<td>VI.</td>
</tr>
<tr>
<td>VII.</td>
</tr>
<tr>
<td>VIII.</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Short Distance Matrix for Figure 4</td>
<td>63</td>
</tr>
<tr>
<td>2.</td>
<td>The A Matrix for Figure 4</td>
<td>64</td>
</tr>
<tr>
<td>3.</td>
<td>Possible Solutions to the 4 Medium Problem of Figure 6 by Cooper's Heuristics</td>
<td>81</td>
</tr>
<tr>
<td>4.</td>
<td>Solution Tableau for Figure 6</td>
<td>88</td>
</tr>
<tr>
<td>5.</td>
<td>Optimal Sequencing of Plant Locations for a Hypothetical Example</td>
<td>112</td>
</tr>
<tr>
<td>6.</td>
<td>Absolute Number of School District Separations by Medical Categories</td>
<td>124</td>
</tr>
<tr>
<td>7.</td>
<td>Comparison of Distance Minimizing Results:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constrained and Unconstrained Solutions</td>
<td>131</td>
</tr>
<tr>
<td>8.</td>
<td>Comparison of Constrained and Unconstrained Location Systems</td>
<td>133</td>
</tr>
<tr>
<td>9.</td>
<td>Flow Pattern Prediction: Distance Minimizing and Interactance Models</td>
<td>136</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Relationship Between Plant and Transportation Cost Functions</td>
<td>43</td>
</tr>
<tr>
<td>2.</td>
<td>Piecewise Linear Approximation of a Concave Plant Cost Function</td>
<td>43</td>
</tr>
<tr>
<td>3.</td>
<td>Principles of the Application of a Branch-Bound Algorithm to Plant Location</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>A 10 Node Sample Network Problem</td>
<td>62</td>
</tr>
<tr>
<td>5.</td>
<td>An 11 Node Sample Network Problem</td>
<td>65</td>
</tr>
<tr>
<td>6.</td>
<td>A 10 Node Sample Network Problem for Plant Size Constraints</td>
<td>65</td>
</tr>
<tr>
<td>7.</td>
<td>A 20 Node Sample Network Problem</td>
<td>66</td>
</tr>
<tr>
<td>8. a)</td>
<td>2 Median Solution for Figure 4</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>b) 3 Median Solution for Figure 4</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>c) 3 Median Solution for Figure 5</td>
<td>67</td>
</tr>
<tr>
<td>9.</td>
<td>2 Median Solution (Limited Potential Sites) for Figure 4</td>
<td>70</td>
</tr>
<tr>
<td>10. a)</td>
<td>4 Median Solution (Plant Size Constraints) for Figure 6</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>b) 2 and 3 Median Solutions (Plant Size Constraints) for Figure 4</td>
<td>89</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>c). 2 Median Solution (Maximum Distance Constraint) for Figure 4</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>11. a). Combined Plant-Transportation Cost Solution for Figure 4</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>b). 3 Median Solution (Plant Costs and Plant Size Constraints) for Figure 4</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>12. Forward Recursive Dynamic Solution for Figure 7</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>13. Forward Recursive (Node 9 Forced) Dynamic Solution for Figure 7</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>14. Backward Recursive Dynamic Solution for Figure 7</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>15. School District Locations in Southeast British Columbia</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>16. Medical Demand Network: Node and Potential Hospital Sites</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>17. Illustration of Dendogram Algorithm for a Six Subject Example</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>18. Graphical Display of a 40 Subject Dendogram Grouped by the Ward Algorithm</td>
<td>183</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

I should like to extend my gratitude to the many people whose assistance and encouragement made possible the completion of this study. I am indebted to Dr. D. O. Anderson for his help with the epidemiological aspects of the study, to Dr. G. Gates and K. G. Denike for their comments on the logical structure of the algorithms, and to Dr. M. Church and M. J. Patterson for their valuable suggestions which led to improvements in the computer codes. To Mrs. M. Werntz I express my thanks for reducing the computer tapes of hospital separation data to manageable proportions, and to the British Columbia Hospital Insurance Scheme for making these tapes available. Finally I should like to acknowledge with appreciation the Central Mortgage and Housing Corporation for their generous support of this study over its last two years.
CHAPTER I

INTRODUCTION AND STUDY OUTLINE

Scientific and technological advances in medicine have created a need for refinements in the organizations through which health care is given. As medical technology grows ever more complex it has become increasingly apparent that an inherent tendency exists towards ever more specialization and fragmentation in the provision of medical care. This trend, together with mounting social criticism against the continuation of inequalities in the receipt of health care among some underprivileged segments of the population, has set in motion an inflationary spiral whose results are to be seen in medical costs rising more rapidly than the economy can comfortably sustain (McLachlan, 1967). The implications of such a trend are particularly serious if considered against the reality that the needs of medicine must compete with other sectors of the economy for the allocation of resources all too scarce for the number and variety of demands placed upon them.

The rational use of such resources as are allotted to the health care sector has therefore become a desirable end, one whose need has been increasingly recognized over the last few years. Yet given the complexity of the internal
relationships which exist among the various components of the medical sector, and given the multiplicity of exogenous environmental variables which bear upon it from without, such a goal requires or has required new planning strategies at almost every level of operation.

Objectives of Study

It is the aim of this study to focus upon one subset of these decision making processes, specifically those which are concerned with some facets of the location of hospitals in rural* areas. The construction and maintenance of hospital units represents the single most costly component of the health care system, and accounts for nearly forty percent of total expenditures on medical health (Klaman, 1969). At such a price it seems apparent that the community at large can no longer afford the practice of operating a separate hospital in localities where neither local needs nor the supply of qualified personnel can justify the construction of such costly units (Myers, 1961).

The end result of such policies, all too prevalent in the past, is to be seen in the underutilization of facilities and consequent high operating costs whose burden must eventually be borne by the taxpayer at large. In connection with this point McGibony and Block could state as early as 1949 that while some

*small hospitals are needed ... it is also obvious that by themselves they are not able to provide a complete service to the patient and

*non-metropolitan
that unless in some way they are tied in with larger hospitals they may provide, not service, but a disservice to their patients (McGibony and Block, 1949).

At the other end of the scale it is equally clear that the provision of too few facilities, particularly in rural areas, may result in the denial to people of reasonable access to a level of care necessary for the maintenance of their health. The objectives of this study represent an approach to the resolution of this conflict. In more formal terms they may be stated as follows:

1. To identify and assess some of the major components which control the movement of patients in rural areas, through the medical care system to some suitable hospital treatment.

2. To develop an operational model based upon the most significant criteria developed in 1., which can reproduce the system of flows in the existing network with some success, given the constraint of present locations at fixed sizes (measured in terms of some function of the number of beds now available).

3. To devise a hypothetical hospital system by means of such a model that consists of the number, sizes and locations of facilities which can satisfy the particular needs of patient areas subject to the constraints that,
 i. no patient, or maximum number of patients, be more than a maximum predetermined distance (or time) from hospital care and
 ii. that some upper bound in total cost, i.e. a system budget constraint, is not exceeded.

Comparison of the current and hypothetical location sets will allow the efficiency of the present operating system to be assessed with respect to the particular spatial needs of its dependent patient areas. Imbalances in the present network, if found, can suggest one basis for policy decisions concerning the future
location or relocation of hospital facilities, and for the determination or continuation of referral centres for more specialized types of care.

4. To make provision for the direct incorporation into the model of the present locational pattern at its current scale of operations. Then, given this, some future optimal or near-optimal system of hospital locations (at a particular point in time) may be devised if based upon some forecast of patient demand at discrete points or areas across that demand surface whose bounds are the bounds of the network as a whole. This objective simply recognizes that hospitals once built, and however wisely located they may or may not be, are liable to be maintained for as long as is possible. Locational inertia of this kind is directly attributable to the high initial investment costs of hospital construction and to the widespread pressures within communities to resist the closure of any medical facility once opened, particularly if there are no plans for the replacement of the facility in that locality.

5. To make allowance for the multiple location of facilities over time. If hospitals are to be located in space at successive time intervals then, for some given long term time period, which particular subset of all potential locations is required such that some overall criterion is minimized?

Scope of the Study

This study formulates a numerical allocation model to fulfill the objectives as stated above, and gives a partial application to one regionally defined sub network within the province of British Columbia. Fundamental to the question of hospital costs is the phenomenon of returns to scale which, in this field, are notoriously difficult to assess. A simple correlation of the relationship between the average cost of constructing and maintaining a bed and
the size of the hospital plant will actually suggest the opposite trend. The reality of the situation is more subtle since in practice there exists a hierarchy of services whereby larger hospitals, acting as referral centres, maintain specialized functions in addition to those lower order services which all facilities of a lower rank provide. This central place concept of a nested hierarchical structure of hospital services is fundamental to an understanding of scale economies for, as a rule, the more specialized a function is, the more complex is the equipment required, the more skilled its operators must be, and the less frequently it is in use. Consequently such services are costly to maintain relative to lower order functions. If these effects are held constant however, then, as Berry and others have demonstrated, for a given level of services unit bed costs will tend to decrease with increasing size of hospital (Berry, 1967).

In terms of the application of the model it has not proved possible to derive adequate cost curves since as intimated, this is a major undertaking in its own right. Furthermore, application of the algorithm to some desirable future locational pattern is dependent upon forecasting future demand functions for discrete patient areas and lies beyond the scope of this dissertation. The major component of the study will then, be the development of the model itself, and its testing will be confined to 1) an attempt
to reproduce the flow patterns now extant on the existing network and 2) the derivation of a hypothetical location system, with the same number of plants, which is more efficient in terms of certain key criteria than is the present one. This latter aim should provide some insights into the potential improvements which might be made within the current operating system.

Study Outline

This study consists of three additional chapters whose outline is given below. In Chapter II some contemporary trends in medical health planning are discussed together with some recent analyses of hospital location systems. The rationale for health planning is evaluated; some aspects of the movement of the patient through the medical care system are examined, and some implications of this knowledge in terms of improved medical planning are assessed. The role of the hospital in the system is discussed and a critical review of some previous medical location models is attempted.

Chapter III provides, first of all, a formal statement of the general plant location problem, of which hospital location, at least in rural areas or the inter urban context, may be considered as a particular case. Certain specific constraints which are of significance in the formulation of the general problem are incorporated into this statement. Secondly, a review of previous attempts
to solve the problem is provided. Finally, a detailed description of the algorithm itself is given, and some sample problems on a variety of networks are illustrated to demonstrate the flexibility of the model design for a fairly wide range of potential plant location problems.

Chapter IV partitions British Columbia into sub-regions of a size which can be computationally handled by the algorithm. One of these regions is then selected and analysed in terms of the limital objectives previously specified. The basic algorithm is subjected to some modifications which seem appropriate to the particular case under study, and the fundamental strengths and weaknesses of the formulation are discussed together with some suggestions for potential improvement and development.
CHAPTER II
REGIONAL HEALTH PLANNING: SOME PERSPECTIVES AND PROBLEMS

The Rationale for Regional Health Planning

The last decade and a half in North America has witnessed a surge of interest in the concept of regional planning as the appropriate milieu within which to institute much needed improvements in medical health. Prior to the Hill-Burton Act of 1946, the responsibility for the provision of medical care had essentially been in local community hands (McNerney, 1962). As long as the costs of medical care remained low relative to the demands of other sectors of the economy this responsibility did not prove to be a severe financial burden to most communities, and for the few for which it was (frequently rural areas), public opinion at large was not sufficiently agitated to demand corrective action at the national level. As these costs have risen sharply over the last twenty years however, under the stimulus of changing health care patterns and increasingly sophisticated medical technology, the disparities between the tax bases of rich and poor communities, defined all too often upon urban-rural lines, and the attendant differentials in the quality of available care which this has caused, have become both medically and politically intolerable.
In response to these needs increasing support from both provincial and national sources has now become the norm, and although local revenue resources will continue to be of some importance in the financing of local medical services for a considerable time to come, this role will inevitably be diminished in the future.

As local financial autonomy has declined so has the opportunity arisen for the rational planning of health facilities upon a more realistic geographical basis than was formerly feasible. The evils of unco-ordinated planning have been well documented in the health planning literature (see for example Letourneau, 1965; Cardwell and Kucka, 1961). The duplication of expensive equipment and personnel in adjacent or nearby hospitals; the installation of specialized care facilities at locations where the demand is not sufficient to warrant them; and a virtually de facto competitive spirit among some hospitals to install facilities with little regard to the overall needs of their dependent service areas, all bear testimony to the inefficient use of existing medical resources.

Concomitant with these abuses are a series of parallel problems which are a reflection of the maldistribution of resources over the continent at large. Inadequate and low quality facilities are common in many outlying and underprivileged areas of both Canada and the United States. The distribution of facilities and personnel appears, in many instances, to be more a reflection of the economic
status of a community than its actual health needs, and the organization of that health care suffers all too frequently from a closer correspondence with local political jurisdictions, than with the natural movement of people along well defined links of communication (Weinerman, 1951). Few organizations too, are as fragmented as the varied components of the health care system. Following Schaefer, Hilleboe defines five levels of organization at which this fragmentation occurs. First there is a horizontal fragmentation, caused by a partitioning of responsibility often ill defined, at the federal, state and local levels. Secondly, vertical fragmentation into a multiplicity of agencies, commissions, departments, divisions, bureaus, and offices, each of which occurs at the three horizontal levels of organization. Sectional arrangement of health programs among public, private and voluntary organizations provides a third level of fragmentation. Next is the fragmentation of health activities along professional and technical lines, and finally fragmentation exists in the financing of health services through a variety of insurance and public grant schemes (Hilleboe, 1968). The inevitable consequence of such divisions is to be seen in ill-defined roles, overlapping responsibilities and poor communication among the varied levels of the organization, all of which contribute to a quality of medical care, below that which is now technically possible.
In response to these problems and to the unmet needs which are evoked by them has arisen the concept of regional planning, or the regionalization of medical facilities as it has come to be known. A succinct definition of this concept has been given by Donabedian and Axelrod (1961):

... regionalization envisages the unified planning of a functionally differentiated and carefully co-ordinated system of hospitals serving an entire geographic region demarcated, not by narrow political boundaries, but according to established patterns of seeking and providing medical care in a manner analogous to trading areas. Under such a plan, standards of medical care could be considerably improved throughout the region without costly duplication or inefficient deployment of scarce resources and skills. There would be established appropriately located central or base hospitals to which other small hospitals in the region would turn for help and advice. The central hospital would, in turn, assume considerable responsibility for supporting continuing professional education and medical and allied services in the hospitals associated with it.

Historical Antecedents for Regionalization

The earliest formal documentation of these concepts appears to have been contained in the Dawson Report, published in 1920, by the Ministry of Health in Great Britain. In this report, subsequently the basis for the organization of the British Health Service in 1947, was embodied the notion of a network of primary and secondary hospitals affiliated by strong links with a larger teaching hospital (Ministry of Health of Great Britain, 1920). The teaching hospital was envisaged as acting both as a referral centre for the smaller community hospital and as a base from which
medical, technical, and administrative assistance could be offered wherever necessary for the provision of higher quality care. The first expression of these ideals in North America came eleven years later in 1931 when the Bingham Associates Fund, partially under the stimulus of widespread public demoralization caused by the severe economic depression of 1929, organized the earliest system of regional health care in the United States. This program, based upon the New England Medical Centre in Boston, set out to offer a complete diagnostic and surgical service to the patients of referring physicians, and to provide a continuing post-graduate educational program for doctors in the affiliated network of smaller community hospitals, which covered most of Maine and much of northern Massachusetts (Lemboke, 1951).

But despite the promise of this early and successful beginning little more was achieved over the next fifteen years. The philosophy of individual responsibility in all spheres of life, not least in medical care, runs deep in North American life, and the strength of this tradition tended to foster an attitude of apathy, if not hostility, on the part of the general public towards wide-ranging regional programs (Sigmond, 1967). It was not until the passing of the Hill-Burton Act in 1946, that the stage became set for the subsequent widespread growth of regionally oriented health care programs.
The Hill-Burton Act was implemented as a direct consequence of a severe shortage of doctors and facilities in rural areas, and was focused principally upon efforts to attract physicians into these remote locations and to provide them with well equipped centres from which to operate. But the legislation has had a significant impact upon regional medical planning. Organization of the program at the state rather than the local level has strengthened the role of state health departments, a necessary prerequisite for the foundation of a wider and more functional pattern of health care. At the same time the delegation of the responsibility for fund raising to both state and community agencies has helped to stimulate interest in the health planning group and has served to dissipate some of the emotional opposition to the regional planning concept.

For all its strengths however there are certain in-built restraints in the Hill-Burton legislation which have prevented it from becoming the basis for a really effective system of medical regional re-organization. Most significant among these has been the reliance placed upon local participation in the financing of construction projects. Depending upon state and local per capita income levels this amount has come to vary from between one to two-thirds of the total cost of the project. Unfortunately those locations with the greatest need for new facilities have proved all too often to be those which are most economically depressed and unable to raise even the minimum revenues.
necessary to qualify for federal aid. As a consequence there has been a tendency to withhold funds from precisely those areas in most urgent need of them (Battistella, 1966). Secondly, the emphasis of the program has been upon the construction of new beds to the exclusion of the development of broadbased co-ordinated services at different levels of state and federal organization. In McNerney's view "too many hospitals may have been constructed in communities where real need may not have been so much for in-hospital beds as for well-equipped diagnostic or emergency clinics." (McNerney, 1962) A final failure of the Hill-Burton program has been seen in its voluntary tripartite structure of federal, state and local governments which has proved to be an unwieldy means for regional reorganization. Progress has been retarded in many states by outdated governmental machinery which is unrepresentative of the needs of communities, and by the lack of viable health organizations professionally trained and empowered by sufficient authority to carry through reforms.

The failings of the Hill-Burton Act provided lessons which were not forgotten in the preparation of the Heart Disease, Cancer and Stroke Act of 1965. This piece of legislation, sometimes known as the Regional Medical Programs Act, marked the first significant attempt on a national scale in North America to organize health services into a regional framework. The act specifically encouraged the creation of regions whose boundaries were to be defined in
terms of medically functional criteria. As such, the delimitations of the regions have, of necessity, cut across local and state lines in some instances, thereby offsetting some of the major shortcomings of the Hill-Burton Act. Insofar as the program has been successfully implemented services have been organized in the interdependent hierarchical structure fundamental to the regionalization concept. Decisions concerning the precise nature and range of services offered within each region have been decentralized and are being undertaken by local medical planning groups which are, in theory at least, more sensitive to the needs of local areas. Finally, and perhaps more important of all, the cost of the program has thus far been underwritten by grants from the National Institute of Health, and is therefore independent of the financial status of each region and its ability or otherwise to pay for the services it requires (Sanazaro, 1967; Kissick, 1967).

Reports on the current status of the Regional Medical Programs Act indicate that a successful beginning has been made, but as with any program on this scale of magnitude and innovation, problems have arisen from time to time to impede its rate of progress. Commitment from many institutions has been on a tentative basis so far owing to the limited duration of current financial support for the program. Assurances of longer support are seen as being vital to the achievement of the long term objectives of the plan (Stewart, 1967). The program has also been adversely
affected by a serious shortage of medical manpower in the United States. These shortages have placed restraints on the rate of implementation of some of the program's goals. Neither it is known to what extent this program's requirements for manpower have diminished the supply available to other deserving medical care schemes. This limitation has resulted necessarily in a relatively greater emphasis being given to medical training activities in the initial operating phases of the plan, and has created the false impression in some quarters that the Regional Medical Programs are primarily designed for this task.

In the Canadian context the concept of regional planning has been firmly endorsed by the report of the Royal Commission on Health Services and has been implemented to some extent ever since the establishment of the federal government's grant-in-aid program for construction in 1948. In the past however, regionalization, which is organized on the provincial level in Canada, has suffered from too much centralization at the top and a lack of sensitivity to local needs. In Wahn's view an inherent defect has been that "those who ultimately have the obligation to implement the plan are not actively involved in the preparation of the plan" (Wahn, 1967).

More recently a movement towards decentralization, in the planning function at least, has taken place, and both British Columbia and Ontario have now established a number of regional planning areas. The British Columbia plan came
into effect in 1967 with the creation of twenty-seven regional hospital districts throughout the province. In design these districts are seen to have several interdependent functions. Each area has established an Advisory Planning Committee whose task is to review the projects for construction and expansion submitted by the management boards of individual hospitals in the district, and to fit them into a priority plan (which may include recommendations for the creation of new facilities) which is then submitted to the central planning authority for approval. One major purpose of the plan has been to provide a grant-in-aid scheme which offers a more equitable way of sharing construction costs over the entire area which uses a hospital's facilities. As presently constituted the provincial government pays sixty per cent of construction costs in districts where the levy is up to four mills and eighty per cent in regions where the assessment is greater than this. The remainder is accounted for by district and federal contributions. Organization of services on this basis thus allows the local share of construction costs to be raised on a broader tax base than was formerly possible. Some commentators see possible long term weaknesses in the financing arrangements. In particular the 60:40 per cent basis for cost sharing is not considered adequate by some planners especially in the case of the larger referral hospitals, which treat many patients from beyond their district boundaries, but receive no extra recompense for this service (Anon, 1967).
Some Inherent Problems in Regional Planning

It is too early as yet to evaluate critically the successes of regional planning on this continent. Changes in the basic philosophy of organizational structure on this magnitude inevitably give rise to problems unforeseen and to roles as yet not firmly defined. To some degree this has already become apparent. Apart from such technical considerations as the prior delimitation of regional areas (see Klarman, 1964) experience with area wide planning agencies has frequently demonstrated a number of conflicting interests and purposes.

Co-operation among agencies and other planning bodies is clearly fundamental to successful planning on the regional level but where, as is often the case, different agencies or even departments within the same planning board, have different technical backgrounds and orientations, there has been a tendency to define and identify community health service needs in different ways. This in turn has encouraged selective attention upon the means to solve particular problems, rather than the prior first step of critically evaluating the underlying problems themselves (Arnold and Hink, 1968).

A second group of problems reflects a lack of definition in some instances of the roles which each of the various components of health care is to play in the overall context of health planning. The focus of the present concept of regional planning on a hierarchical structure of
hospital referrals needs to be extended to include all public health organizations and other related bodies, whose interests have a bearing upon both preventive and curative medicine. The total systems approach to health planning has been advocated by several authors (see for example Weinerman, 1969). Hilleboe has extended the idea further by urging the development of strong links where possible with other community planning objectives. In his view health planning is inseparable from these other goals. The question of the total resources available to meet all planning demands is one which is often overlooked by health administrators. The construction or modification of health facilities needs to be matched against the capacity of available building resources, and estimated manpower requirements should be a reflection of available or potentially available educational facilities if realistic objectives are to be attained (Hilleboe, 1968).

The Role of the Modern Hospital

In any definition of roles that of the modern hospital in the organization of health care is clearly one of fundamental significance. Many of the problems which have resulted from the past construction of facilities designed for the treatment of specific diseases have long been recognized, particularly where the control of infectious ailments has been the major objective. The tuberculosis sanitorium, long a familiar sight upon the landscape, has been rendered
almost obsolete by medical advances over the last twenty years (Hoge, 1967). But geriatric and psychiatric needs are on the increase in modern society, and account for a proportionately larger share of medical resources with every passing decade. The role of the community general hospital with respect to these needs is still as yet, a matter of some debate.

The continued use of separate long term geriatric and psychiatric care is sometimes thought desirable on the grounds that large scale incorporation of these services into the structure of the general hospital will diminish its efficiency by virtue of diseconomies of scale, and will, at the same time, prove to be inaccessible to many of the patients homes, a factor of some significance where long term care is involved. Against this it may be said that the consequences of such segregation are potentially more serious, particularly in an age where modern transport has increased the range of acceptable travel distances. The most intractable problem associated with the maintenance of separate institutions for this type of care is that of obtaining suitable qualified staff. Geriatric and Psychiatric hospitals have for long been regarded as depressed areas by both the public and the medical profession. Appointments to these positions are not, by and large, competitive, and staffing shortages remain a perennial factor, with all the attendant effects on the level and quality of medical care that this implies. Moreover segregation from
the district hospital centre tends to depress the interests of medical research into these ailments, and the isolation of the psychiatric patient suffers the further disadvantage of perpetuating public prejudices about the particular nature of this disorder (McKeown, 1966). Patients segregated upon the basis of such disease characteristics seldom, if ever, remain homogeneous with respect to their medical needs. Chronically ill patients may develop symptoms of acute illness while geriatric patients will frequently show signs of mental disorders. The net effect is that the institution in question either finds itself responsible for classes of patients whose needs are beyond its resources or must provide those resources itself, thereby encouraging a further duplication of facilities and personnel.

The alternative approach, which is now favoured by many medical administrators, is to abolish separate institutions for these types of care and to provide the whole spectrum of care in the community general hospital. Proponents of this policy argue that long stay units at the district hospital need not be inordinately expensive since chronically and psychiatrically ill patients need not be admitted to and retained in wards designed for the more expensive types of acute care. Because of the relative ease with which patients can be transferred within a single hospital complex, there seems to be no inherent reason why special long stay units cannot be constructed at lower
capital and maintenance costs for this specific purpose. Such units might further serve a double function by acting as convalescent homes for patients who no longer need acute care but who must remain hospitalized for a rehabilitation period (Bridgman, 1967).

The Role of Social Medicine

Thus far this discussion has centred upon the provision and organization of the curative aspects of hospital care. The emphasis on curative medicine, particularly in the hospital setting, made sense in the past when acute disease of the infectious variety was the overriding medical problem, and chronic disease was of much less significance owing to the shorter span of life which then prevailed. But this situation is no longer common, at least in technically developed parts of the world, and the role of public health programs and social and preventive medicine which has received less attention in the past, is now seen as being of potentially greater consequence in the future. The need for alternative approaches to in-patient hospital care takes on an added significance if the opinion of those who believe that hospital use is directly related to the supply of beds can be given credence (Roemer, 1961). Although Rosenthal has taken a contrary viewpoint in this controversy, Feldstein supports Roemer's findings, and in his analysis of hospital utilization in England, is drawn irresistibly to the conclusion that the existing supply of beds is the
correct one, whatever its level may be (Rosenthal, 1964; Feldstein, 1967).

The search for alternatives to hospital care requires some prior distinction of the concepts of "need" and "demand." If demand can be loosely defined as the actual receipt of medical care the concept of need is clearly more ephemeral in nature. Whether or not vast health needs actually exist as has sometimes been claimed is actually a debatable point. Indeed many physicians who practice among insured urban populations are of the opinion that the demands for health services often exceed the true needs (Task Force Report, 1970). But whatever the truth of the matter is, it seems clear that one of the primary aims of preventive medicine is to keep patients, where possible, from reaching the level of in-patient hospital care.

Preventive medicine has already achieved some striking successes in the control of infectious diseases. Vaccination programs, conducted on a mass basis, have virtually eliminated many of the contagious infections which took such a heavy toll in the past. Mass screening programs have offered additional opportunities for preventive medicine. But although they have proved themselves in the control of preliminary tuberculosis, there is much less consensus on their current overall worth as a widespread tool for the early detection of many types of disease. Many of these programs have proved to be expensive propositions when conducted upon a large scale, and they have not always proved to be as medically reliable as their proponents have
claimed. It seems clear that more cost effectiveness studies are required in this field and, at the very least, it is felt that they should be directed more selectively towards high risk groups in the population (Task Force Report, 1970).

One of the recurring problems which faces social medicine is that the public perception of what constitutes a serious health hazard is not always coincident with that of the medical profession. Cigarette smoking, often cited as a case in point, offers an excellent example of the type of conflict which can occur between, on the one hand, the financial benefits bestowed by a particular industry on the national treasury, and the aims and aspirations of public health programs on the other. James has aptly summarized this kind of ambiguity in attitudes by remarking that public pressure for the control of many medical problems is apt to set quite different priorities from those of the health professional. "Diseases," he comments, "appear to run an unpopularity contest before the public and it is rarely settled by incidence statistics" (James, 1967).

One of the keys to greater success in preventive medicine would seem to lie in an increased understanding of the complex processes by which individuals are motivated to seek health care and by the way in which patients move through the medical care system. In considering some of the mechanics of this process it is known that an intricate network of formal and informal interactions exists between
patients or potential patients on the one hand and the providers of health care, the physicians and other medical personnel, on the other. The events which characterize these interactions occur in particular settings in which attitudes which reflect social, economic and cultural attributes have a profound influence on the outcomes (Donabedian, 1968).

Many studies have been made of the utilization of health services by patients of widely varying backgrounds. From these certain generalizations may be deduced which show in effect that facilities are utilized most frequently by the young middle-aged, by females rather than males, and by those who have achieved a higher educational and socio-economic status. By corollary those individuals of lower educations attainments and increased age would appear to react more slowly to these symptoms and to delay in seeking help (Odoroff and Abbe, 1957; Feldstein, 1966). These conclusions would seem to be equally valid for those who are using preventive and detection services and for those who are seeking actual diagnosis and treatment. Friedson, Suchman and others have undertaken more sophisticated analysis in which linkage mechanisms between social characteristics and individuals perceptions of their symptoms and their responses to them are proposed (Suchman, 1965; Friedson, 1961). Rosenstock who has reviewed some of these studies comments upon the specific limitations of their focus which is confined to health behaviour undertaken in response to specific symptoms. In his words:
The findings are thus of unknown relevance to the situation confronting the person who must decide whether to seek preventive or detection services before the appearance of events that he interprets as symptoms. (Rosenstock, 1966)

The author then goes on to propose a model which attempts to explain health behaviour in individuals who believe themselves to be presently free of any definitive symptoms. He hypothesizes that the decision to seek preventive medicine in such a situation is dependent upon the extent to which an individual perceives his susceptibility to some particular condition; the extent to which he perceives its possible occurrence as being serious to him; and the degree to which he feels that some preventive test is appropriate for him insofar as it will diminish his perceived susceptibility. Once these conditions are obtained, then some cue of stimulus, either internally, or externally such as an impact from some communication media, is required to trigger an appropriate reaction (Rosenstock, 1966).

The validity of Rosenstock's model remains largely unknown at the present time, since there has been little empirical evidence thus far to substantiate these hypotheses. Such evidence as is available seems to suggest, as Rosenstock himself notes, that the behaviour patterns implicit in the health belief model tend to be exhibited more among the upper socioeconomic groups than the lower. It is precisely among these lower status groups however, that social medicine has been least effective to date, and where the need is
consequently greater. The classical referral pattern whereby patients seek the services of a physician and are referred by him where necessary to a specialist, or the lay referral system in which patients refer themselves directly to a specialist are less frequently seen in these social groups (White, 1967). The problem is further compounded by a relative inaccessibility of all types of medical care to these people. The decline of the general practitioner in North American medical practice is a well known phenomenon. A recent study by Dorsey of the changes in the distribution of physicians in Boston between 1940 and 1961 revealed a decline in the ratio of physicians per 100,000 population for all socio-economic areas of the city. For social classes 3-5, defined in the study as the lower status groups, this trend is particularly disturbing since the areas occupied by these groups have relatively low physician ratios to begin with (Dorsey, 1968). If, as in Friedson's view, convenient access to medical care is important to patients especially in terms of routine primary care, then the inference is that the urban poor will, in many cases, either ignore their initial symptoms, or refer themselves to the emergency department of the nearest hospital, a medically undesirable habit which appears to be very much on the increase in nearly every major community on the continent (Friedson, 1961; Coleman, 1967).

The decline of the general practitioner and the flight of other physicians and specialists to the suburbs or to
offices located adjacent, in many instances, to hospital complexes, has left a medical vacuum for many potential patients in the slums and ghetto areas of the larger cities. The concept of the neighbourhood health centre or clinic has been proposed as an answer to this medical gap. Yerby has described the essential features of these centres. They are community oriented in the sense of being located with respect to significant concentrations of the lower income groups; are open day and night; provide basic diagnostic and therapeutic services; are staffed not only by doctors, laboratory technicians and frequently required specialists, but also by public health nurses and social workers; and have a direct ambulance link with some hospital for immediate referral where necessary (Yerby, 1967). It is hoped that such centres will ultimately diminish unnecessary hospital in-patient admission, and will do much to reduce the pressure on hospital emergency departments which are not thought to be the appropriate milieu for primary health care.

Insurance Coverage and the Utilization of Medical Care

Interest in alternative approaches to hospital care has been further encouraged by speculation as to the potential long term effects of medicare and government sponsored insurance plans on in-patient hospital utilization. There is a considerable amount of evidence to show that medical services are used more frequently by those who carry health
insurance. Indeed the corollary of this—that people may be
deterred from obtaining necessary health care by virtue of
their lack of coverage is obviously the reason behind the
recent expansion of the role of governments in the medical
insurance field (Task Force Report, 1970). Studies in the
United States suggest that hospital admission rates are much
higher among the insured than the uninsured (Somers and
Somers, 1962). Whether or not this actually leads to over-
utilization is a debatable issue among medical administrators
since the hospital length of stay is generally shorter for
the insured person. In Canada the relationship between
hospital admission rates and insurance coverage appears to
be less clear. Andersen and Hull state that the introduc­
tion of universal hospital insurance into this country has
not produced a marked increase in the rates of admission
(Andersen and Hull, 1969). Peterson on the other hand
asserts that unnecessary admissions are occurring among some
patients admitted purely for diagnostic purposes (Peterson,
1967). It may be (although there is no direct evidence as
yet) that this apparent contradiction reflects a slight but
perceptible change in the physician culture of Canada which
traditionally, appears to have been hospital oriented. Thus
where unnecessary hospital admissions for diagnostic pur­
poses occur, they may, to some extent, be counterbalanced
by the movement towards group practice which, as the Task
Force has tentatively indicated, results in a reduction of
hospital usage.
Medical Care in the Rural Setting

Many of the difficulties which beset health administrators in the provision of medical care in metropolitan areas are magnified in the context of rural life. Rural health care is burdened by some particular problems which are peculiar to its setting. Although the mortality rates for rural inhabitants are less than for those of their urban counterparts morbidity during life appears to be greater, especially for chronic diseases (Roemer and Anzel, 1968). The provision of medical care for migrant agricultural workers and for Indians, who do not fit easily into the mainstream of North American life, presents almost unique difficulties. The benefits of good occupational health services are generally denied to rural workers. Fundamental to rural areas too, is the low population density which is reflected in greater distances between patients and the services they might expect to receive. The provision of these services is further compounded by the very low density of health personnel per unit area. The lack of health manpower in rural areas is a perennial problem. The ratio of medical professionals to population is less in the rural setting for every category of health personnel (Mott and Roemer, 1968). For the most part small rural communities have fewer advantages to offer the young physician when competing for his services in the open market. In particular the amenities available, both technical and social, are fewer (McNerney and Riedel, 1962). Moreover, even if it
were possible to attract personnel into these areas in large numbers, there is considerable doubt as to whether it would be worth the cost in terms of the degree to which they could be fully employed. Greater financing is then, clearly not the answer in itself. What is required for these areas is a flexible and mobile system of medical care which can be adequately incorporated into the concept of the regionalization of fixed facilities as previously described.

To some extent these goals have already been achieved. A number of schemes have been proposed and implemented. Flying doctor services and the use of helicopters in emergency situations have been comprehensively documented in the health planning literature (Duncan, 1966; Jacobs and McLaughlin, 1967). The training of para-medical personnel, who possess a limited number of the skills of the qualified physician, have been suggested for use in extremely remote locations (World Health Organization, 1954). In more accessible areas mobile health units have been advocated as offering an excellent method of providing care to communities too small to maintain a permanent health facility (Bodenheimer, 1969; Kilsdonk, 1966). Such units have been valuable in the treatment of endemic infectious diseases in Africa, and as a preventive medical aid, particularly for tuberculosis screening, in the more developed nations. Physicians in rural areas have been encouraged to pool their resources, records and equipment in particular central locations, and to maintain a series of simple satellite offices in
surrounding communities at which they spend a few hours per week at specified days and times (Canadian Medical Association, 1967).

Although in all these ways a measure of much needed flexibility has been introduced into the rural health system there still remains the fundamental problem of the provision of a number of fixed facilities, such as clinics or hospitals, which can serve as a basis for the organization of rural medical care, and to which patients can be sent when these other measures prove inadequate to their needs. Bearing in mind the costly financial burden of maintaining hospitals in the rural context it is perhaps surprising that so little objective analysis has been undertaken on the multiple location of medical facilities in this setting. As recently as 1966 Lord Llewelyn-Davies could say,

> Very little study has been made with regard to the location of health buildings ... the lack of study of this topic is striking when the literature of urban planning and development is examined. (Lord Llewelyn-Davies, 1966)

Since that statement was made a few researchers have turned their attention to this problem and a brief review of their models now follows.

Some Previous Models of Health Facility Location

At least three studies in recent years have considered methods by which the locational efficiency of existing or potential hospital networks might be measured. In the first of his two studies on this problem Schneider considers the
case of urban hospitals with particular reference to
Cincinnatti (Schneider, 1967). He postulates that the
locational imbalance of any one hospital can best be assessed
by analyzing the net pulling force of hospital in-patient
flows. Given discrete residential locations to which a
weight, representing numbers of patients is attached, he
seeks to find among them the point of minimum aggregate
travel by means of the Kuhn-Kuenne algorithm (Kuhn and
Kuenne, 1962). The difference between this computed centre
and the actual location is interpreted as a measure of the
locational inefficiency of the hospital in terms of the
area it serves.

Several aspects of this conceptualization deserve
further consideration. The Kuhn algorithm requires
Euclidean distance measures as its inputs, and while these
may be appropriate in the urban context it is unlikely that
they will be so in a rural setting. There is no guarantee
either that the optimal solution as computed by this method
will be constrained to a settlement or even adjacent to a
road. Finally this approach can consider only one hospital
at a time although heuristics have been developed by Cooper
for applying the algorithm to multiple plant location prob-
lems (Cooper, 1967).

In a later model Schneider extends his analysis to
locational imbalances in hospital systems. For each medical
category the centre of minimum total travel based on patient
residences is computed as before. Next this centre is found
with respect to hospital locations, the weights in this instance being the hospital admission figures. The differences between the two points is taken as an initial measure of imbalance in the system to which is added the disparity between the relative dispersions (standard distances) about the two centres, under the assumption that the greater the degree of patient dispersal relative to hospital dispersal, the greater the spatial inefficiency of location. Although this formulation has merit over the previous one it suffers from the disadvantage, as noted by the author, of exaggerating the standard distance measures in cases where patient demand is clustered into two or more spatially distinct areas (Schneider, 1968). Moreover, while this approach will give insights into imbalances in the present system it has less to say on where the best set of locations might be if more than one is desirable. It is clearly possible to postulate new locations and re-cycle the algorithm in an attempt to reduce the imbalance measure, but if the number of possible sites is large a combinatorial problem may be encountered which has no feasible computational solution.

Gould and Leinbach studied the problem of rural hospital locations in Guatemala. From five possible locations they set out to find those three which would minimize total patient distance travelled. They based their approach upon the classic transportation model. Setting initial hospital capacity to be equal at each site, they evaluated every possible combination of three out of the five potential
locations, assigning the flows from each patient area to the current set of hospitals in solution by means of a linear programming algorithm. By inspecting the best solution so obtained, inefficient cross flows were eliminated by adjusting the hospital size inputs and re-cycling the algorithm until a satisfactory flow pattern emerged (Gould and Leinbach, 1966). In fact, if an all combinations approach is adopted then the linear programming aspect of this solution procedure is quite unnecessary. All that is required is to assign the demand at each patient area to the closest one of the three hospitals currently in the solution. This procedure will give the optimal solution, and provide in addition the appropriate hospital size which will not necessarily be found by the Gould/Leinbach method. However, since the number of combinations rises very rapidly both as a function of the number of locations required and of the number of potential locations, this approach will rapidly become infeasible for even moderately sized problems.

Morrill and Kelley present a different model whose basic objective is to measure the efficiency of the location of capacity over an operating system of hospital sites. The authors make use of a modified gravity interactance algorithm in which patient flows from areas to hospitals are conceived to be not only an inverse function of distance, but are also related directly to hospital size and to the sizes and distances away of intervening opportunities (Morrill and Kelley, 1970). This conceptualization has behavioural
merit in the sense that size can be considered to be a crude
reflection of the hospital referral function and as such
patients will not necessarily be constrained to admittance
at their nearest facility. As with the Huff (1963) and
Lackshmanan and Hansen (1966) model initial use is made of
the interaction formulation to predict flows between resi-
dences and facilities. The divergence of the predicted from
actual hospital capacity is considered by the authors to be
a measure of the imbalance of the location of capacity. The
particular contribution of Morrill and Kelley is in the
algorithm by which hospital capacity is relocated so that
aggregate patient travel is reduced but in a manner which
is still consistent with the basic structure of the inter-
actance model. In their words:

An allocation can be considered optimal if the
model is interpreted as maximizing the joint
satisfaction of a heterogeneous population at
minimum distance, but where satisfaction re-
quires the use by some people, perhaps part of
the time, of a variety of opportunities.
(Morrill and Kelley, 1970; p. 286).

The re-allocating algorithm adjusts the sizes of the hospi-
tal by reducing capacity at underpredicted locations and
increasing it at overpredicted ones. This step which
amounts to using the predicted capacities as inputs, is
repeated until some acceptable level of convergence is
attained between two successive iterations.

It should be noted however, that after the initial
allocation the calculated divergence may be as much due to
imbalances in the gravity model as to actual imbalances in
the location of capacity. Furthermore the reduction in aggregate patient travel which might be achieved will not necessarily be one in which the capacity of location has been optimally redistributed. Several equilibrium states may exist and it is possible to devise network structures where this occurs to within quite low tolerance levels (under 5 per cent), and where the algorithm converges from a given starting point to some local minimum. An alternative method suggested here is to begin the cycling with an initial set of hospital sizes based not on the current operating levels but upon a set of values derived from allocating each area of patient demand to its nearest treatment centre. It is conjectured that this procedure will tend to give a better redistribution of capacity since the direction of adjustment to achieve consistency with the gravity structure is always away from the minimum distance allocation. This suggests that the equilibrium obtained upon termination of the iterations will tend to be nearer the desired goal than any other feasible solution. Experiments with a very limited number of small hypothetical examples have borne this out in some instances, and in other cases where both methods converged to the same approximate solution the proposed algorithm required fewer iterations to converge, particularly where the starting point was badly out of balance.

It is possible to test the viability of new facilities with the Morrill-Kelley algorithm by introducing
potential sites into the network and re-allocating flows according to the interactance mechanism in much the same way as was proposed by (Huff, 1966) for retail outlets. This model cannot however, test for the direct efficiency of location in the sense of solving for the optimal system of locations with respect to all possible sites. It is this particular problem with which this study is principally concerned.

A General Approach to Rural Hospital Location Systems

As suggested previously in this chapter the interrelationships among the many components of the health care system through which the patient receives medical care are very complex and not fully resolved as yet. The path of some patient to treatment at any hospital may be the culmination of a complicated chain of events. The role of accessibility in this process has received considerable documentation in the past (Morrill and Earickson, 1970; Marrinson, 1966). Even in metropolitan regions, where the pattern of cross flows can be expected to be complex, distance minimizing tendencies exert a significant influence (Lubin et. al., 1966). This principle is however, frequently violated by other offsetting factors. For the physician with hospital privileges the choice of preferred office location will tend to be influenced by accessibility to the hospital in which he practices, and where this coincides with a business district a considerable proportion of
the clientele may be expected to be in attendance during their working hours. Since the choice of hospital for treatment is normally dictated by the physician's preference this cannot always be expected to coincide with the patient's general area of residence. Case mix differences are also of importance particularly with respect to the less frequently utilized spectrum of services. Referrals to specialists and to hospitals for specialised treatments will clearly tend to offset the distance minimizing principle. Other hospitals which have particular religious or ethnic affiliations may draw patients from any part of the city. Finally there are a whole range of less well defined variables related to the quality of available services and the prestige of institutions and practitioners, which can and do complicate the whole pattern of patient flows.

Such intervening opportunities are, as is to be expected, much less in evidence in the rural context, where distances between communities resolve the problem into a study of inter rather than intra urban locations. Apart from specialist referrals (less than 10 per cent of all patients) the accessibility variable appears, with some exceptions, to be much the most dominant force. Since this is generally so the problem of optimizing hospital locations in rural areas can be conceptually reduced to one of finding the medians of a weighted graph subject to certain side constraints. Such a model is devised in the following chapter and tested in the fourth. The testing procedure
for assessing the locational efficiency of a set of sites over a given network is to measure the differences in total distance travelled between two solutions, one constrained to the existing system of locations and the other unconstrained. If a more realistic trip distribution pattern is desired, one in which patient areas are not allocated in block to a single centre, then these solutions should be modified by an interactance model. These various applications are undertaken in Chapter IV, together with a practical comparison of the two methods previously discussed for redistributing capacity over an operating location system.
CHAPTER III
AN ALGORITHM FOR ESTIMATING THE MEDIANS OF A WEIGHTED GRAPH SUBJECT TO SIDE CONSTRAINTS

Problem Statement

If hospital location can be regarded as a special case of the generalized plant location problem then the solution requires the determination of the number, sizes and locations of plants which will service at a minimum overall cost, a given set of demands at discrete points over space. The unit transport costs or distances between each demand point and potential location site must be known in advance, and if the number of specified plants is not known at the outset it will be assumed that a production cost function is associated with each potential plant location.

Because of the economies of scale inherent in plant production costs this problem, both theoretically and computationally, is one of considerable complexity. At the present time no undisputed exact analytical solution has been developed for the case where the plant cost functions are continuous and concave over the whole of their feasible range. It is known however, that under scale economies unit production costs will rise as the number of plants
increases, whereas conversely, the transportation costs will fall (Figure 1). In the twin cost plant location problem the goal therefore, is to achieve an equilibrium among these two opposing sets of functions such that the total cost level is minimized.

The real nature of many plant location problems is such that it is frequently desirable to impose, where possible, a further set of conditions and constraints upon the system. Such constraints can take a wide variety of forms and may include restrictions placed upon the size of plant operation, upon the maximum flow allowable over any one link, or upon some predetermined maximum distance any demand point may be from some supplying source. The number of potential locations may be less than the number of network nodes, or again there may be a priori reasons for forcing certain locations into the solution as, for example, when extensions to an existing distribution system are required. Multiple product allocation problems, stochastic demand functions and warehouse locations, intermediate between plant sources and customers, represent further potential variations upon the general formulation.

In this chapter a numerical method is developed for obtaining optimal or near optimal solutions to the plant location problem, subject where applicable, to a specific subset of all feasible constraints. Some advantage is taken in this model of an ingenious partitioning heuristic given
Figure 1
Relationship Between Plant and Transportation Cost Function

Figure 2
Piecewise Linear Approximation of a Concave Plant Cost Function
by (Singer, 1968) whose contribution will subsequently be reviewed. The particular problem specification to be considered here can be expressed as follows:

Given;

(1) The location of each destination.
(2) The demand at each destination for a single product commodity considered as a fixed non-stochastic variable.
(3) A vector of potential plant site locations.
(4) A subset of locations to be forced into the solution—if necessary.
(5) An upper bound on the size of each potential plant site—if optioned.
(6) A constraint on the maximum distance any destination may be from some supply source—if optioned.
(7) A set of unit transport costs (currency, time or distance) between each destination and each potential supply point which, since they are averaged unit values, may represent non-linearities.
(8) A vector of production functions—if optioned—of any type, which may or may not be identical for each prospective site.

Then determine;

(1) The number of supply sources required (unknown only if plant costs are optioned).
(2) The location of each supply source.
(3) The size of each supply source.
(4) The allocation of destinations to each supply point.
(5) The amount supplied from each plant source so chosen to each destination so allocated (may be fractional only if plant size upper bounds are imposed).
Such that the overall cost is minimized.

Mathematically this is a mixed integer programming problem of the form:

(1) \[\text{Min } = s = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} D_{ij} \lambda_{i} + \sum_{i=1}^{m} f_{i} (T_{i}) \lambda_{i} \]

subject to

(2) \[X_{ij} \geq 0 \quad (i=1,\ldots,m ; j=1,\ldots,n) \]

(3) \[\sum_{i=1}^{m} X_{ij} = B_{j} \quad (j=1,\ldots,n) \]

(4) \[\sum_{j=1}^{n} X_{ij} = T_{i} \quad (i=1,\ldots,m) \]

(5) \[\sum_{i=1}^{m} T_{i} = \sum_{j=1}^{n} B_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} \quad (i=1,\ldots,m ; j=1,\ldots,n) \]

(6) \[T_{i} \leq C_{i} \quad (i=1,\ldots,m) \]

(7) \[D_{ij} \leq V_{j} \quad (i=1,\ldots,m ; j=1,\ldots,n) \]

(8) \[\lambda_{i} = 1 \quad (i=1,\ldots,k) \]

(9) \[\lambda_{i} = \binom{0}{i} \quad (i=k+1,\ldots,m) \]
Where

\[\begin{align*}
 n &= \text{The number of destinations} \\
 k &= \text{The number of forced plants in solution (if any)} \\
 m &= \text{The total number of potential plant sites (including forced nodes)} \\
 X_{ij} &= \text{The commodity flow from plant } i \text{ to destination } j \\
 T_i &= \text{The volume of plant } i \\
 D_{ij} &= \text{The cost of transporting one unit of } X_{ij} \text{ from plant } i \text{ to destination } j \\
 C_i &= \text{The plant size upper bound constraint on plant } i \\
 B_j &= \text{The demand at destination } j \\
 V_j &= \text{Maximum distance (transport cost) constraint on destination } j \\
 f_i &= \text{Plant cost function at plant } i \\
 \lambda_i &= \text{A zero one variable; a one indicating a plant site is in the solution, a zero indicating it is not.}
\end{align*}\]

Formulation of the Problem in Terms of a Weighted Graph

For the purpose of subsequent exposition this mathematical specification of the problem may be rephrased in terms of a weighted graph. Consider a connected graph \(G \) with \(n \) vertices labelled \(v_i \), \(i = 1, \ldots, n \) and \(k \) branches or links. Each link has a length \(> 0 \) associated with it such that this length is the distance from some \(v_i \) to some \(v_j \). In addition each node has attached to it a weight \(b_i \) where \(b_i > 0 \) and is the demand at \(v_i \). If \(b_i > 1 \) for at least one
node on the network a weighted graph exists; otherwise the
graph is said to be non-weighted. The basic problem, with­‐
ow constraints, is to find a set of p nodes on the graph
such that the weighted distances from this set to all other
nodes on the graph is a minimum over any such set of p.

Designate any set of p nodes on G (x_1, x_2, \cdots, x_p) as \(X_p\) and let D = \(|d(v_i \ v_j)|\) an n by m distance matrix in
which each element \(d(v_i \ v_j)\) is the value of the shortest
path from vertex \(i, i=1; \cdots, n\) to vertex \(j, j=1; \cdots, m\), where
\(m\) is the number of potential plant sites \(m \leq n\). From \(|D|\)
generate a new matrix \(|W|\) such that \(w(v_i \ v_j) = d(v_i \ v_j)b_i\)
over all i and j. This weighted distance matrix \(|W|\) is
then, equivalent to the multiplication of each row i in
\(|D|\) by the corresponding weight \(b_i\) of the vertex \(v_i\). For
each node \(v_i\) let

\[
\begin{align*}
(10) \quad w(v_1 \ X_p) &= \min \left[w(v_1 \ x_1), w(v_1 \ x_2), \cdots, w(v_1 \ x_p) \right]
\end{align*}
\]

that is, find for each node its minimum weighted distance
to some member of the set \(X_p\). The required set of p nodes
\(X_p^*\) on G is the p median of the network if, for every other
possible set of \(X_p\) on G,

\[
\begin{align*}
(11) \quad \sum_{i=1}^{n} w(v_1 \ X_p) &\geq \sum_{i=1}^{n} w(v_1 \ X_p^*)
\end{align*}
\]
Some Previous Approaches to the Problem

As Scott has recently provided an excellent critique of plant location algorithms only a short survey of the current methods will be reviewed here (Scott, 1970). There are, briefly, two possible approaches to the problem; exact solution techniques and heuristic numerical methods.

(a) Exact Solution Methods

If plant costs are ignored then the basic location problem for any fixed value of p can be neatly structured and solved in a linear programming format (Revelle and Swain, 1970). The inclusion of production costs adds considerably to the complexity of the problem, and as previously noted, the value of p is not known at the outset. An exact solution method for cases where the plant costs are continuously concave over their whole range is given by Rutenberg (Rutenberg, 1968), but it remains to be conclusively shown that this algorithm will always converge to the optimal solution. Efroymson and Ray (1966) take a different, and computationally faster approach by approximating the concave cost function with piecewise linear segments (Figure 2), and solving again in an extended programming form. As a general rule the initial linear programming solution will not meet the integer restriction which requires each potential plant site to have a value of zero or one depending upon whether it is, or is not, active in the final solution. If each variable not satisfying this condition is now given
one of these values, and if every alternative is considered, a combinatorial tree can be constructed which represents the entire space of all feasible solutions. The generation of such a tree establishes a set of terminal states, each one of which is an integer solution. In practice it is not possible to search all of these, and the approach taken by Efroymson and Ray is to devise a branch-bound algorithm which will ignore evaluation of all such alternatives as lie along those branches of the tree whose descendent solutions are known, a priori, to be infeasible by virtue of some previously established lower bound integer solution.

The general nature of branch-bound algorithms can be readily illustrated with reference to Figure 3, although this is not precisely the method used by Efroymson and Ray. Consider a problem with n destinations and m possible plant sites where m ≤ n. Let m have the value of 3 and designate the 3 possible sites as X₁, X₂, and X₃. Any subset of this set may contain the optimal solution. Solve the problem first as an integer unconstrained linear program with a minimum cost of, say, equal to 70. All subsequent integer restricted solutions must be at least as great as this. Set X₁ equal to 1 and solve again to obtain a solution of 75. At this stage assume that neither X₂ nor X₃ has integer coefficients. Branch next on X₂ = 1 and obtain a bound of 78. Set X₃ = 1 and solve again with S = 85. This is one terminal state on the tree, an integer feasible solution.
Figure 3
Principles of the Application of a Branch-Bound Algorithm to Plant Location
Now backtrack down the tree and set \(X_3 = 0 \), keeping \(X_1 = 1 \) and \(X_2 = 1 \). A new lower bound with the objective function \(S = 83 \) is established. Next relax the explicit integer constraint on \(X_3 \), continue down the tree and set \(X_2 = 0 \). In solving this linear program with \(X_1 = 1 \), \(X_2 = 0 \) and \(X_3 \) unconstrained the obtained solution is 84. It is not necessary therefore to continue the search along this branch of the tree since restraining \(X_3 \) to either 1 or 0 must result in a solution \(\geq 84 \), the bound obtained when \(X_3 \) was unconstrained. When the constraints are relaxed on both \(X_2 \) and \(X_3 \), and \(X_1 \) is set =0, the unconstrained solution (in terms of \(X_2 \) and \(X_3 \)) again exceeds the lower bound on the best previously established integer solution for which \(S = 83 \), and any further evaluation in this direction is therefore quite unnecessary (see also Scott, 1969; White, 1969).

The disadvantages of the exact solution approach are generally acknowledged to be two-fold. Although the linear approximation of the concave cost curve may be achieved to any desired degree of accuracy, computer storage requirements tend to become excessive as the number of segments increases. It is more difficult to generalize upon the computational efficiency of branch bound algorithms since if a good integer solution is quickly found the amount of searching along the branches of the tree can be greatly curtailed, and the algorithm may rapidly converge to the
global minimum. As a rule however, these models tend to become computationally over-extended for the larger sized problems, and this tendency is considerably enhanced with each additional constraint that is placed upon the system.

(b) Heuristic Solutions

Heuristic algorithms generate, by contrast, solutions characterized by a much greater degree of computational efficiency at the expense of known accuracy in the final product. The two approaches can be used to complement each other if the branch-bound algorithm can be structured in such a way as to take advantage of the heuristic solution as an initial starting bound. In this manner the number of alternatives evaluated by the exact solution method may be greatly reduced if the heuristic solution is near optimal. It is even possible, since the concave cost functions need not be approximated in heuristic models, that this approach may actually find a lower cost solution.

Kuhn and Hamburger (1963) suggest an algorithm in which it is assumed that the best p sources will be contained among the best p+1 locations. This method locates the p^{th} plant at that site which offers the largest cost savings over the set of sources contained in the p-1 solution. The value of p is incremented sequentially until such time as the p+1 solution exceeds in cost the p^{th} solution, at which point the algorithm terminates. At each
stage in the cycling procedure some modification of the
current location system is allowed for by a bump-shift
routine which eliminates all such plants in solution as
have become uneconomical as a result of the generation of
subsequent plants.

Feldman et. al. (1966) consider the problem from the
reverse order and begin with all in potential plant sites
in solution. At each step one plant is eliminated until
no further cost reduction is attained. This is the point
at which scale economies achieved by increasing plant size
as the number of sources diminishes is offset by greater
transportation costs which accrue from the smaller number
of plants now in solution. An initial estimate of plant
size, necessary for the beginning solution, is derived
from each plant's local customer set defined as being those
destinations to which each plant is closest to in terms of
transportation costs alone.

The basic disadvantage of these methods is that on
any cycle in which the value of \(p \) changes the set of current
sources may tend to be too dependent upon the vector of
plants defined in the antecedent step. Two other funda­
mental approaches to the problem have been advocated in
which for any value \(p \) the network may be independently
broken into \(p \) descendent subgraphs. There are the vertex
substitution method and the partition approach.

In the first of these a set of \(p \) points is chosen
(often arbitrarily) as the initial source configuration.
Each node v_i is now assigned to that member of the set to which it is closest and a lower cost bound S, the objective function is calculated for this set of p, X_p. Some vertex v_j, not a member of X_p is now selected and in turn each $v_i \in X_p$ is replaced by v_j. If a lower bound of S is found during any one of these p substitutions then this set replaces X_p. If not, then some other v_j is chosen and the process is repeated. The algorithm terminates when a complete cycle has been made during which no reduction in S is found. Variations on this method has been proposed by Teitz and Bart (1968), and by Scott (1969). Note that this method involves a fairly extensive search pattern, which, while falling far short of a direct enumeration of all p combinations on the graph, is likely to become computationally prohibitive for the larger scale problem with several hundred nodes.

For networks of this magnitude the partitioning approach appears to offer the best alternative for estimating the required p median. Such methods can be generalized in terms of three basic steps.

i) Apply some criterion to partition the graph into some initial set of X_p nodes. Call this set the beginning set X_p.

ii) Next every other node or destination is assigned to some member of X_p by (10). Each subgraph G_i, $i = 1, \ldots, p$ now has an associated subset of nodes $v_r \in G_i$.

and for each such subgraph G_i there exists some node v_{ki} (not necessarily unique) for which

$$(12) \quad \sum_{r \in G_i} w(v_r, v_{ki}) = \min = S_i$$

where v_{ki} is designated as the median of subgraph G_i and S_i is the value of v_{ki}, or the aggregate weighted distance from v_{ki} to all other nodes in G_i where this value is at a minimum for one such node (v_{ki}) in G_i. The value

$$(13) \quad S = \sum_{i=1}^{p} S_i$$

over all possible partitionings of G into p subgraphs is the value whose overall minimum is sought. To test, at any stage, whether at least a local minimum obtains the following condition,

$$(14) \quad w(v_r, v_{k1}) \geq w(v_r, v_{kj}) \quad j=1, \ldots, p-1 \quad j \neq i$$

is examined for each G_i and for each node $v_r \in G_i$.

If this condition holds then v_r may be switched from G_i to G_j, notably to that G_j for which $w(v_r, v_{kj})$ is a minimum if v_{kj} is not unique. The value of S so obtained will be less than the previous value of S if (14) is a strict inequality, and will be less than or equal to it if (14) is satisfied as an equality. Step (ii) is reiterated until
such time as

(15) \[w(v_r, v_{k1}) \leq w(v_r, v_{kj}) \]

is met for all \(v_r \) over all \(G_i \). Alternative solutions may be obtained in instances where condition (14) exists as an equality, and will occur when the median of some subgraph(s) is not unique and condition (15) is met for all the combinations of the \(p \) medians of the subgraphs.

iii) The procedures of step ii) ensure at least a local minimum which may or may not be the optimal solution. Most partitioning methods contain some means of testing this lower bound by perturbing the solution; that is switching nodes according to some rule and re-calculating step ii).

The actual performance of any partitioning algorithm is clearly dependent upon the logical strength of the heuristics adopted for steps i) and iii). Although random starts will provide fast solutions they are generally much less desirable than systematic partitioning procedures. A heuristic given by Cooper consists of beginning with the set of all potential sites and eliminating one member at each step until only \(p \) nodes are left (Cooper, 1967). The elimination criterion (for Cooper's graph is non-weighted) is to take the closest pair of points on any iteration and to drop that one whose estimate of the single \(p \) median of the network is the higher. After completion of
step ii) the perturbation test on the lower bound first finds some G_i such that for any two nodes v_i and v_j, $d(v_i, v_j)$ is a maximum over all G_i. This median is then dropped to be replaced by both v_i and v_j. Since X_p now contains $p+1$ members the two closest medians are selected and in turn each one is dropped while step ii) is repeated.

The Singer Algorithm

Singer has developed an alternative algorithm of very considerable merit in which he presents an ingenious method for obtaining X_p based upon the attainment of a set of p nodes which are the maximum weighted distance apart. Let $|A|$ be an n by n (or m by m if the number of potential sites is less than n) symmetric matrix in which each a_{ij} element is the weighted distance apart of some v_i and some v_j, $v_i \neq v_j$. Then set $a_{ij} = \frac{d(v_i, v_j) b_i b_j}{(b_i + b_j)}$ which is equivalent to $a_{ij} = \frac{w(v_i, e) = w(v_j, e)}{e}$ where e is the fulcrum between each of the pairwise weighted vertices. For the non-weighted graph in which all $b_i = 1$, each a_{ij} value is simply equal to one-half of the shortest distance between each pair of vertices (Singer, 1968).

The aim behind this and most other partitioning criteria is to obtain that set of X_p nodes which, ceteris paribus, are the least likely in the final solution to be in the same subgraph set. Since node weights are traded against the distances between nodes, the Singer criterion
provides a logically sound springboard from which to begin the search procedure. In matrix \(|A| \) the maximum \(a_{ij} \) element will designate the two nodes \(v_i \) and \(v_j \) which are the maximum weighted distance apart. For \(p > 2 \), \(X_p \) is the required set of \(p \) nodes if, and only if, the minimum pairwise \(a_{ij} \) values among all pairs of nodes \(v_i, v_j \in X_p \) is a maximum over all such minimum values in every other set \(X_p \) in \(G \).

A computational method for obtaining \(X_p \) when \(p > 2 \) (evaluation of all combinations of \(X_p \) being generally infeasible) is given by Singer and may be illustrated for the case of \(p = 3 \).

i) Let \(a_{ij} \) be the maximum value in row \(i \) in the \(A \) matrix.

ii) Scan down the rows of \(|A| \) and choose some row \(r \) for which \(\text{maxmin}(a_{rj}, a_{ri}) \) is satisfied. That is pick the row in which the minimum of \(a_{ri} \) or \(a_{rj} \) is a maximum over all \(r(=n) \) rows. The associated node \(v_r \) is the tentative third node.

iii) Designate \(a_s \) as the minimum of \((a_{ij}, a_{rj}, a_{ri}) \).

iv) Repeat steps ii) and iii) for all pairs of nodes \(v_i \) and \(v_j \) in row \(i \) for which \(a_{ij} \geq a_s \). The set of \(p \) nodes for which the minimum value of \(a_s \) is a maximum is the candidate set from this row.

v) Repeat steps i) to iv) for all rows and choose that set of 3 nodes \((v_i, v_j, v_r) \) for which \(a_s \), as defined, is a maximum over all rows.
Generalizing to $p > 3$, find in each row i the $p-2$ maximum elements. There are $p-1$ indices associated with these elements, that is $p-2$ indices which correspond to the columns in $|A|$ containing the maximum elements, plus the index of the row itself. It is possible to speed up Singer's computational procedure by omitting step iv) until all rows of the matrix have been scanned at least once. This increases the probability of finding an initially good value for a_s. However in the author's experience even this improvement can be computationally exacting if not infeasible, should the actual required maximum value of a_s happen to be relatively small, or should a good upper bound for it not be established early in the search. Consider the example of a 100 node network with $p=6$. For any row i after one complete scan there may be many nodes, in terms of step iv), which exceed the current value of a_s. This implies therefore that there may be many combinations of $p-1$ nodes (the first member of which is always the row index) that require reiteration of steps i) to iii). If the value of p is large in both absolute terms and perhaps more significantly relative to m, then the number of combinations to be evaluated can easily become computationally prohibitive.

An alternative method for obtaining a good estimate of X_p in terms of the Singer criterion and which avoids the above difficulties may now be given. The principle is
to add nodes one at a time applying the maxmin criterion at each step. Satisfaction of this criterion will determine the next vertex to be added. Note that in the Singer method \(p - 1 \) elements are chosen prior to the application of the maximum criterion which is utilized only to find the \(p^{th} \) node for the candidate set from that row. In adding each new node by this suggested method it is not necessary in updating \(a_s \) to re-scan the columns of \(|A| \) belonging to those nodes already assigned to the candidate set, if the following procedure is adopted. For each row \(i \) (let \(p = 3 \) for illustration).

i) Scan the \(i^{th} \) column in \(|A| \) and store all \(a_{ji} \) values, \(j = 1, \ldots, m, j \neq i \), in some among say \(|BC| \). Pick the maximum \(a_{ji} \) value \(= a_s \) and store the associated node \(v_r \) where \(r \) denotes the row index in which \(a_s \) was found. The candidate set row has two members, \(v_i \) and \(v_r \).

ii) Branch next on \(v_r \) alone; that is scan only column \(r \) in \(|A| \). Consider again all elements \(a_{jr} \), \(j = 1, \ldots, m, j \neq i \) and \(j \neq r \). That is ignore the row indices of all the current members of the candidate set. Now if some \(a_{jr} < bc_j \) then replace the \(j^{th} \) element in \(|BC| \) with that \(a_{jr} \) value. Thus the values now stored in \(|BC| \) of those nodes not yet in the beginning set are always the minimum values in \(|A| \) with respect to those
members which are currently in X_p. For any node v_j then,
$v_i \neq v_j$ and $v_j \neq v_r$ its value in $|BC|$ is always
$\min(a_{ji}, a_{jr})$.

Now search among BC excluding bc_i and bc_r and
find some $bc_j = \max$, storing v_λ the associated node. Let
$a_s = bc_j \max = \min(a_{ir}, a_{li}, a_{lr})$. This is
the maximum of the minimum pairwise values of any other
λ with i and r in $|A|$.

iii) If $p > 3$ repeat step ii) until all p
vertices have been chosen, the candidate set X_p for
this row. Let $a_m = a_s$ the maximum value over p elements
(a_s always decreases with each additional node).

iv) Repeat steps i to iii) for all i rows.
If the last value for a_s for any row is $> a_m$ replace
a_m with a_s and store this set of nodes in preference.
If $a_s = a_m$ store both sets of nodes if they differ,
for these are alternate sets of X_p.

This partitioning heuristic may be illustrated
with reference to the network displayed in Figure 4.
In this and all subsequent example the node references
are designated as v_i, $i = 1, \ldots, n$, the b_i value of each
vertex is encircled, and the distance between each pair
of nodes is the figure lying adjacent to each link.
The distance of each vertex with itself is assumed to
be zero and the short distance and A matrices for this
Table 1
SHORT DISTANCE MATRIX FOR FIGURE 4

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>4.0</th>
<th>5.0</th>
<th>3.0</th>
<th>1.0</th>
<th>3.0</th>
<th>2.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
</tr>
</tbody>
</table>
Table 2

THE $|A|$ MATRIX FOR FIGURE 4

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>3.0</th>
<th>2.1</th>
<th>4.5</th>
<th>1.2</th>
<th>5.1</th>
<th>3.7</th>
<th>3.0</th>
<th>7.5</th>
<th>7.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.5</td>
<td>2.7</td>
<td>4.0</td>
<td>4.2</td>
<td>2.0</td>
<td>3.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1.0</td>
<td>0.0</td>
<td>2.1</td>
<td>1.6</td>
<td>0.9</td>
<td>1.4</td>
<td>0.3</td>
<td>0.9</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1.5</td>
<td>2.1</td>
<td>0.0</td>
<td>2.4</td>
<td>6.9</td>
<td>5.6</td>
<td>3.8</td>
<td>9.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>2.7</td>
<td>1.6</td>
<td>2.4</td>
<td>0.0</td>
<td>2.7</td>
<td>1.4</td>
<td>2.0</td>
<td>4.8</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>4.0</td>
<td>0.9</td>
<td>6.9</td>
<td>2.7</td>
<td>0.0</td>
<td>6.7</td>
<td>0.9</td>
<td>3.4</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>4.2</td>
<td>1.4</td>
<td>5.6</td>
<td>1.4</td>
<td>6.7</td>
<td>0.0</td>
<td>1.7</td>
<td>5.6</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>0.3</td>
<td>3.8</td>
<td>2.0</td>
<td>0.8</td>
<td>1.7</td>
<td>0.0</td>
<td>0.8</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>3.8</td>
<td>0.9</td>
<td>9.0</td>
<td>4.8</td>
<td>3.4</td>
<td>5.6</td>
<td>0.8</td>
<td>0.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>2.0</td>
<td>0.4</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>5.7</td>
<td>1.3</td>
<td>2.4</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
PLANT LOCATION-ALLOCATION 2 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5</td>
<td>18.00</td>
<td>18.00</td>
<td>0.00</td>
<td>18.00</td>
<td>1 2 4 5 7</td>
<td>3.0 1.0 3.0 2.0 5.0</td>
</tr>
<tr>
<td>2 8</td>
<td>24.50</td>
<td>29.50</td>
<td>0.00</td>
<td>29.50</td>
<td>2 3 6 8 9 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
</tbody>
</table>

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4</td>
<td>4.00</td>
<td>2.00</td>
<td>0.00</td>
<td>2.00</td>
<td>2 6 3</td>
<td>1.0 3.0</td>
</tr>
<tr>
<td>2 5</td>
<td>10.00</td>
<td>8.00</td>
<td>0.00</td>
<td>8.00</td>
<td>3 5 7 8</td>
<td>1.0 3.0 2.0 5.0</td>
</tr>
<tr>
<td>3 8</td>
<td>10.50</td>
<td>11.50</td>
<td>0.00</td>
<td>11.50</td>
<td>3 6 8 9 10 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>24.50</td>
<td>21.50</td>
<td>0.00</td>
<td>21.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3</td>
<td>22.00</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td>1 2 3 4</td>
<td>1.0 1.0 20.0</td>
</tr>
<tr>
<td>2 4</td>
<td>25.00</td>
<td>13.00</td>
<td>0.00</td>
<td>13.00</td>
<td>4 5 6 7 8 9</td>
<td>20.0 1.0 1.0 1.0 1.0</td>
</tr>
<tr>
<td>3 11</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>10 11 11</td>
<td>1.0 1.0 1.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>49.00</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3</td>
<td>22.00</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td>1 2 3 4</td>
<td>1.0 1.0 20.0</td>
</tr>
<tr>
<td>2 4</td>
<td>21.00</td>
<td>8.00</td>
<td>0.00</td>
<td>8.00</td>
<td>4 5 10 11</td>
<td>20.0 1.0 1.0 1.0 1.0</td>
</tr>
<tr>
<td>3 6</td>
<td>4.00</td>
<td>16.00</td>
<td>0.00</td>
<td>16.00</td>
<td>6 7 8 9</td>
<td>1.0 1.0 1.0 1.0 1.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>49.00</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8
graph are given in Tables 1 and 2 respectively. For the two median solution of this network the members of the set X_p for which a_{ij} is a maximum are v_4 and v_9 with a value of 9. For the three medians of this graph the initial partitioning is based upon each of the three sets of X_p ($v_4 v_7 v_9$), ($v_4 v_6 v_7$); or ($v_4 v_7 v_{10}$). The minimum pairwise distance between any two nodes in these three sets is a maximum over all such sets in the network with a value of 5.625.

The lower bound perturbation test suggested by Singer is to array first the subgraphs in decreasing order of the values S_i. Then for each subgraph G_i, that node $v_i \in G_i$ whose weighted distance to the median of some other subgraph G_j is least, i.e. for which $w(v_i, v_{kj})$ is a minimum, is switched to subgraph G_j and the resultant subgraphs are modified until condition (15) is satisfied. This procedure is repeated p times moving one node on each occasion. If a lower bound is found on any iteration then the whole testing process is again re-cycled. The solutions to the two and three medians of Figure 4 were actually obtained without recourse to the perturbation test and are shown in Figures 8a and 8b.
Some Comments on These Algorithms

One considerable advantage of Singer's algorithm is that for each value of p required, the graph is repartitioned. This means that the $X_p^+ + 1$ or $X_p^- - 1$ beginning set is not necessarily dependent upon the set of X_p^- present in the p^{th} or antecedent step.

It is not too difficult in practice however, to design networks in which neither the Singer nor Cooper criterion provides a good initial starting basis. Consider the network shown in Figure 5 for which the three median solution is required. Both of these methods (if weighted rather than simple distances are considered for Cooper's criterion) give a set of X_p^- containing nodes v_3, v_4 and v_11, which converge to a local minimum of $S = 148.0$. As it happens Cooper's perturbation test finds the global optimum (see Figure 8c) whereas Singer's test does not. In this respect Cooper's method seems to be consistently the better of the two approaches. Singer's perturbation routine suffers from the further disadvantage that at least p re-assignments and modifications must be made on each testing cycle, so that for big networks where p is also large, this task could conceivably become over-extended.
The basic problem with both the partitioning and perturbation heuristics of these and other algorithms is that nodes are evaluated individually and without sufficient consideration of the weights and distances away of their immediate neighbours. As a consequence biases can occur towards the inclusion of solitary nodes which lie far removed at the periphery of the network. This circumstance is sometimes prevalent with networks of a tree or dendritic design. Some clustering procedure which considers the relationship of each node to its surrounding neighbours is clearly desirable if this effect is to be diminished. In deriving \(X_p \) it is always possible to artificially increase the attraction of some particular site by adding to its weight the demands of all such surrounding nodes, not themselves contenders for a plant location, which are closer to it than to some other potential site. This procedure can be adopted wherever the number of network nodes is greater than the number of feasible sites, but where this is not so some other procedure is required.

Some Alternative Partitioning and Perturbation Methods

The problem of node agglomeration can be approached by adopting the following procedure which will be known hereafter as the weight shift elimination method. The details for deriving \(X_p \) with this heuristic may be given as
i) For each node \(v_i \) on the network find some other node \(v_j \) for which \(d(v_i, v_j) \) is a minimum. Store all \(v_i \) in some array say \(|AB| \), all \(v_j \) in \(|AC| \) and all \(d(v_i, v_j) \) in array \(|AD| \). Let some vector \(|B| \) contain the list of node weights for each potential site \(b_i, i=1, \ldots, m \).

ii) Scan array \(|AD| \) and find some element, the \(r^{th} \) element, for which \(d(v_i, v_j) b_i = w(v_i, v_j) \) is a minimum. Designate the associated node in \(|AB| \) as \(v_r \) and that in \(|AC| \) as \(v_s \).

iii) Eliminate node \(v_r \) from \(|AB| \). Rewrite arrays \(|AB|, |AC| \) and \(|AD| \) omitting the \(r^{th} \) element in each and reduce \(n \) to \(n-1 \) which is the number of nodes now extant in \(X_p \).

iv) Let \(b_r \) be the weight of node \(v_r \) and \(b_s \) the weight of node \(v_s \). Then change \(b_s \) so that \(b_s = b_s + b_r \). In this step advantage is thus taken of the weight of the node \(v_r \) which is dropped on each iteration. Specifically its weight is added to the weight of that node \(v_s \) to which it was closest before elimination. Each time \(d(v_i, v_j) b_i \) is calculated as in step ii) the value of \(b_i \) in the computation may therefore be greater than the actual weight of node \(v_i \) on the network. As nodes are progressively eliminated the weight transfers are cumulative, the weight of each dropped node consisting of the sum of all weights previously assigned to it in turn by nodes which were dropped.
on an earlier iteration. The net result of this cumulative weight shifting is to provide in effect a measure of node agglomeration.

v) In the final step array |AC| is searched and for all nodes \(v_j \) in |AC| for which \(v_j = v_r \) calculate a new value \(d(v_i v_j) \) \(v_j \neq v_r \). Replace the appropriate elements in |AC| and |AD| with the new values of \(v_j \) and \(d(v_i v_j) \) respectively. In other words a new nearest neighbour \(v_j \) is found for all nodes \(v_i \) whose closest node was \(v_r \) before its elimination.

Steps ii) to v) are repeated until \(X_p \) contains \(p \) nodes. This is the candidate set of beginning nodes based upon this heuristic. If the three median problem of Figure 5 is reconsidered the set of \(X_p \) derived by this procedure is \(v_3, v_4 \) and \(v_9 \) which is clearly a better initial feasible solution than those given by the other methods.

For perturbing the lower bound solution the following heuristic is suggested. Drop in sequence from one to three of the current medians and replace them in turn with some other potential plant site not presently in the lower bound solution. From among these nodes \(v_i, i=1,\cdots,m-p \) there exists one such member \(v_r \) for which

\[
(16) \quad \max \sum_{i=1}^{p} \sum_{j \in G_i} w(v_j v_r) - w(v_j v_{kl})
\]
where \(v_j \) is a member of \(G_i \) such that \(w(v_j, v_r) < w(v_j, v_{k1}) \). This ensures the choice of that node for which the sum of the differences of the weighted distances of all nodes which are nearer to it than to their assigned median, is a maximum.

This node is then substituted in turn for the following three medians, assuming a different median in each case. First drop the median of that \(G_i \) for which \(S_i \) is a minimum before (16) is executed. The second candidate median for elimination belongs to that subgraph whose \(S_i \) value is at a minimum after completion of (16). Finally the third candidate median is the one for which \(w(v_{k1}, v_{kj}) \) is least. This is the median whose weighted distance to some other median is a minimum over the network.

An Algorithm for Estimating the Medians of a Weighted Graph

This algorithm utilizes from one to four methods (at the user's discretion) for obtaining the initial partitioning of the graph. The best descendant solution from any one of these methods is retained as the estimated minimum bound. The first partitioning heuristic makes use of the Singer criterion as previously described. It is worth noting that since a set of \(X_p \) is derived for each row, for large scale problems with many hundreds of nodes computation can become exacting. For such cases an alternative procedure is to obtain just one candidate set which is
resolved from branching on that pair of nodes for which \(a_{ij} \) is a maximum over all such elements in \(|A| \). A second partitioning heuristic consists of adding nodes one at a time according to the maxmin principle such that \(v_r \), the next node added, is that one for which the minimum of \(w(v_r X_p^-) \) is a maximum over any such \(v_i \), where \(X_p^- \) contains nodes previously assigned to the candidate set and \(v_i \notin X_p^- \). This is really a sort of second-hand version of the Singer criterion, its main benefit being to provide a quick alternative set of \(X_p^- \) for the larger scale problem. The third partitioning heuristic is the weight shift elimination method, and the fourth is similar to the third but with step iv) omitted, and is therefore tantamount to a weighted version of Cooper's elimination procedure.

Any one or all of these partitioning heuristics may be used depending on the size of the network and the amount of computing time available. The weight shift elimination method gives, in the author's experience, the best initial starting solution. The short version of the Singer criterion can be recommended for the large network problem, since the derivation of \(X_p^- \) based on this heuristic is computationally faster than for any of the other alternative methods.

With the presentation of partitioning and perturbation methods now complete a formal description of the basic algorithm may now be given.
Step 1). Input the data consisting of a short path cost matrix and a vector of node demands, the b_i values. Appendix 3 gives a Fortran IV computer program (the Dantzig algorithm) for calculating all the shortest paths through a network. The minimum lower bound value S is initialized with an arbitrarily high number, and some index, say I, is set equal to zero.

Step 2). Partition the graph according to any or all of the heuristics just given. If, for methods one and two, more than one initial set of X_p is found, only the first two are retained. The user may wish to supply, in addition, his own set of beginning weights and/or an initial guess at the optimal solution. Let $J = \text{the total number of } X_p \text{ sets.}$

Step 3). Increment I by one. Consider the I^{th} set of X_p nodes and let these be designated as the initial p medians of the network.

Step 4). Assign nodes to the current set of medians by equation (10), find a new set of medians as in (12) and an objective function ϕ as in (13). Repeat this step for all combination of medians in the current list, and for a limited number of combinations of shared nodes if any, (i.e. nodes equidistant to medians). Store the current best solution.

Step 5). Compare ϕ and S. If $\phi < S$, let $S = \phi$ and go to step 4. If $\phi = S$ print the results for all combinations if any, and go to step 6.
Step 6). Drop one of the specified current best medians and replace it with a substitute as previously defined. Go to step 4. Repeat this step dropping the other two designated medians if different from the first and from each other. Go to step 7 after evaluation of all substitutes.

Step 7). If I = J the algorithm has completed its search for condition (11) and terminates. Otherwise proceed to step 3.

Restrictions on Potential Plant Sites

In some specifications of the plant location problem not every node need be considered as a potential plant site. Many locations because of their remoteness or lack of amenities can be safely excluded from consideration. The required set of \(p \) nodes is therefore to be chosen from among some subset \(m \) of all \(n \) nodes. Computationally this restriction is desirable since it has the advantage of both allowing larger networks to be handled and of considerably speeding execution times particularly with respect to step 2 in the main algorithm.

In other variations of the problem some expanding operation may be faced with the task of adding new facilities to an existing distribution system where \(k \) plants are already in operation. Conceptually \(p-k \) new plants are needed from among the \(m \) potential sites where \(m \leq n \).

The heuristics for handling these situations require first that the search for the set(s) of \(X_p \) be constrained
Figure 9
to those nodes designated in the subset m. If k > 0 then k nodes are forced into the solution, and the search for the remaining p-k nodes is conducted among that subset m-k, where the k designated nodes are some of those originally specified in subset m. This restriction will ensure that each node labelled k (where k > 0) will be assigned to a separate subgraph, and that the remaining p-k subgraphs will contain at least one member of subset m-k. The n nodes or markets are then assigned by (10), and the choice of median for each G_i is constrained to nodes v_k in those subgraphs where such a k labelled node is present, and from among such m-k members as are present in each subgraph where no v_k node exists.

These concepts may be illustrated with reference to Figure 4. Let m, the subset of potential plant sites, contain members v_1, v_4, v_6, v_7, v_9 and v_{10} with the added restriction that $v_4 = v_k$, the designated forced node. Then, for the two median of this graph X_p contains v_4 and v_9 by the first heuristic and v_4 and v_7 by the third, and the final solution is shown in Figure 9.

Plant Size Upper Bounds

Zangwill (1968) has shown that under conditions of unlimited plant size each destination will, in the optimal solution, be supplied by one and only one source. In practice however, it may happen that scale diseconomies in plant production costs or restrictions on the availability of
labour or other inputs fundamental to the production process necessitate the imposition of upper bounds on the potential capacity of some prospective location site. Such plant site constraints can imply that in the global minimum one or more markets may be supplied from more than one source.

The capacity restricted plant location problem has received little previous attention. Efroymson and Ray ignore this constrained situation while Rutenberg's approach is valid only for approximating plant size upper bounds. Among the numerical solutions only Cooper (1961) has considered this restriction and his heuristics will be examined here in some detail. Cooper's algorithm covers some four basic steps as follows:

i) The problem is solved first for the unrestricted case. Associated with each of the resulting medians is a subset of demand which may exceed the median plant size upper bound (capacity deficit) or may be less (capacity surplus).

ii) Next, in Cooper's words "let I- be any set with a capacity deficit and let I+ be any set with a capacity surplus. Choose a destination point \(v_r \) in the set I- such that the difference in the distances from \(v_r \) to the source of I- and from \(v_r \) to the source of I+ is a minimum."

iii) As much as possible of the demand of \(v_r \) is now re-allocated from I- to I+ and a new set of medians is computed for each subgraph.
iv) Each subgraph is next examined for any member of the set which may be closer to some other median with a capacity surplus, and if this condition holds, further re-allocation occurs. Steps i) and iv) are repeated until all deficits have been eliminated.

Notwithstanding the good results seemingly obtained by Cooper with this method two disadvantages of the formulation are readily apparent. The first of these is simply that there seems to be no guarantee that the medians of the unconstrained solution can together, satisfy the total network demand. Neither is there any certainty that each subgraph contains at least one potential median which will ensure this occurrence. If the upper bound constraints are sufficiently restrictive it is not impossible for the only p nodes capable of satisfying total node requirements, to be clustered together within the same subgraph upon termination of the unconstrained solution.

The second disadvantage is a direct consequence of the fact that step iv) in Cooper's algorithm only re-allocates node demands to medians with excess capacity. Under these circumstances the arbitrary order in which the I- and I+ sources are apparently chosen can be of considerable significance. Consider the network given in Figure 6 for which a 4 median solution is required. Let the plant size upper bound for each of the 10 plants be in sequence 8, 13, 10, 12, 11, 11, 7, 15, 8 and 9 units.
Table 3
POSSIBLE SOLUTIONS TO THE 4 MEDIAN PROBLEM
OF FIGURE 6 BY COOPER'S HEURISTICS

a) Unconstrained Solution

<table>
<thead>
<tr>
<th>Median</th>
<th>Associated Node</th>
<th>Node Volumes</th>
<th>Plant Size</th>
<th>Upper Bound</th>
<th>I-</th>
<th>I+</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₂</td>
<td>V₁, V₂, V₃</td>
<td>1, 10, 4</td>
<td>15</td>
<td>13</td>
<td>-2</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>V₄</td>
<td>V₄</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>+2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>V₆</td>
<td>V₅, V₆, V₇</td>
<td>2, 10, 1</td>
<td>13</td>
<td>11</td>
<td>-2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>V₈</td>
<td>V₈, V₉, V₁₀</td>
<td>10, 1, 1</td>
<td>12</td>
<td>14</td>
<td>+2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL 50 50 -4 +4 30

b) Plant Size Constrained Solution with V₄ and V₆ as the first I+ and I- sources respectively.

<table>
<thead>
<tr>
<th>Median</th>
<th>Associated Node</th>
<th>Node Volumes</th>
<th>Plant Size</th>
<th>Upper Bound</th>
<th>I-</th>
<th>I+</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₂</td>
<td>V₁, V₂, V₃</td>
<td>1, 10, 2</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>V₄</td>
<td>V₄, V₅</td>
<td>10, 2</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>V₆</td>
<td>V₆, V₇</td>
<td>10, 1</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>V₈</td>
<td>V₃, V₈, V₉, V₁₀</td>
<td>2, 10, 1, 1</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

TOTAL 50 50 62
In the unconstrained solution (Table 3) medians v_2 and v_6 have capacity deficits and medians v_4 and v_8 capacity surpluses. If the I-source chosen is v_6 and the I+ source is v_4 then, by the definition of step ii), node v_5 is switched from v_6 to v_4 so that the capacity constraints are explicitly satisfied at both of these plants. Median v_2 still exceeds its upper bound so that on the next iteration two units from node v_3 are switched to median v_8. Since each upper bound is exactly satisfied no further re-allocation occurs and the algorithm terminates with a solution of $S = 62.0$. This is not however the global minimum, for if median v_2 is chosen as the first I-source instead of v_6 then the optimal bound reduces to $S = 50.0$ (Figure 10a).

Two new sets of heuristics may now be presented which seem to offer consistently better results. In the first of these, the constrained solution approach, the capacity restrictions are satisfied at each step so that a feasible solution is ensured at every stage in the computation. Let the upper bound imposed on each potential plant site be labelled $c_i, i = 1, \ldots, m$. Then in any feasible solution, the restriction $t_i \leq c_i, i = 1, \ldots, p$ must apply where t_i is the current plant size for median v_{ki}. Now proceed in the following steps.

1) First ensure that for a given value of p there are p plants whose combined upper bounds are at least
equal to

\[\theta = \sum_{j=1}^{n} b_j, \]

the total demand on the network. Specifically find the \(p \) potential plant sites whose \(c_i \) values are a maximum. Test whether the summation of these \(c_i \) values \(\geq \theta \). If so, then a feasible solution exists.

ii) Among the \(m \) plant sites find a lower \(c_i \) value \(\phi \) such that any \(p \) combination of \(c_i \) values exceeding \(\phi \) will, when summed, be \(\geq \theta \). Of course there may (will probably) exist combinations of \(p \) nodes some of whose individual \(c_i \) values are less than \(\phi \) which are also feasible with respect to \(\theta \). The computation of \(\phi \) will act as an insurance policy to keep the solution feasible, if necessary, at some stages in the ensuing computation.

iii) Break open the network according to any of the partitioning heuristics previously given. Retain this set of \(X^p \) only if the sum of the corresponding \(c_i \) values exceeds \(\theta \). Otherwise repeat the step restricting the choice of \(X^p \) from among only those nodes whose \(c_i \) values are \(\geq \phi \). This procedure ensures the choice of an initial set of medians capable of satisfying the total network requirements.

iv) Define some vector say \(z \), which contains the current amount of unfilled storage available at each median in solution. Initially the \(z \) values will be set equal to \(c_i, i = 1, \ldots, p \).
v) Now allocate the demand of individual nodes to some one or more of the current median sets. The following procedure will provide a good basic start. Define for each such node v_i, $i = 1, \cdots, n$ some value x such that $x_i = d(v_i, v_{k1}) - d(v_i, v_{k2})$ where v_{k1} and v_{k2} are the closest two medians for that v_i respectively. Store all such x_i values and rank them in descending order of magnitude. The associated labelled nodes (corresponding to the x_i values) will now be assigned in this order, each one, or as much as possible of the demand at each one, to its particular v_{k1} median. After each assignment the value of the appropriate z element is reduced according to the amount allocated. If $z = 0$ for any median the upper bound constraint has been explicitly satisfied and no more destination requirements can be supplied from that source. The array x acts in effect as a penalty vector such that the node first assigned is always that one whose non-allocation to its designated nearest median might prove, should z become zero, to be most expensive in terms of transportation costs. Whenever some z value is reduced to zero then this step is repeated for all nodes whose demand is not as yet totally assigned, omitting from consideration the associated median and all others whose available capacity has been totally filled by previous allocations.
vi) This step reconsiders the allocations defined in the previous stage and makes readjustments where necessary. Consider each subgraph \(G_i \) in turn and search for some node \(v_r \in G_i \) which is nearer to the median of some other subgraph \(G_j \). Symbolically if there exists some \(v_r \) such that

\[
d(v_r, v_{k_i}) > d(v_r, v_{k_j})
\]

then let

\[
y_1 = d(v_r, v_{k_i}) - d(v_r, v_{k_j})
\]

where \(y_1 \) is the potential saving associated with the transfer of one unit of \(v_r \) from \(G_i \) to \(G_j \). Now examine the subset of nodes \(e \in G_j \) for some node \(v_\ell \) which is closer to \(v_{k_i} \) than \(v_r \). If \(d(v_\ell, v_{k_i}) < d(v_r, v_{k_i}) \) then calculate

\[
y_2 = d(v_\ell, v_{k_i}) - d(v_\ell, v_{k_j})
\]

where \(y_2 \) is the potential loss (in terms of \(v_\ell \)) of transferring back one unit of \(v_\ell \) from \(G_j \) to \(G_i \). Now compute

\[
y = y_1 - y_2
\]

and if \(y > 0 \) then the savings to be made from re-allocating \(v_r \) (or that portion of the demand of \(v_r \) in \(G_i \)) from \(G_i \) to \(G_j \) more than offset the losses of returning a like amount of the demand of \(v_\ell \) from \(G_j \) to \(G_i \). The actual amount re-allocated will clearly depend upon the relative sizes of the demands at \(v_r \) and \(v_\ell \). If \(b_r = \) the demand of \(v_r \) in \(G_i \) and \(b_\ell = \) the demand of \(v_\ell \) in \(G_j \) then when \(b_r \geq b_\ell \) an amount equal to \(b_r \) is switched from
6. to G_j. Where $b_r > b_\ell$ however, the amount transferred is equal only to b_ℓ. In each case of course an equal amount is returned from G_j to G_i (by route v_ℓ to v_{k1}) to maintain the equilibrium of supply and demand. This step is repeated until no further readjustments are possible, and the choice of v_r and v_ℓ on any cycle is determined by the maximum value of y.

The concepts discussed so far can be briefly illustrated with reference again to Figure 6. At termination of step iii) X_p consists of v_2, v_4, v_6 and v_8 whose plant sizes together satisfy θ, the total network demand. By the details of step v) the node order for assignment is v_2, v_4, v_6, v_8 since the corresponding values of x are, in descending order, 11, 11, 9, 9, 9, 4, 4, 4, 2, and 1. Node v_1 is thus assigned first since the difference in the distances to its nearest two medians (v_2 and v_4) is 11, which is a maximum, (though not unique), for any node on the network. The initial basic start given by step v) is shown in Table 4 (b) with $S = 62.0$. In examining this tableau note that 2 units of v_3 are assigned to G_4. The medians of all other three subgraphs are actually closer to v_3 than is v_8, the median of G_4. Consider G_2 which contains nodes v_4 (the median) and v_5. To transfer one unit of v_3 from v_8 to v_4 will reduce the cost (distance) from 19 to 6 so that $y_1 = 13$. Transferring one unit of v_5 back to G_4 from G_2 increases
the cost of supplying that unit from 5(d(v_5, v_4)) to 12(d(v_5, v_8)) so that the loss \(y_2 = 12 - 5 = 7 \). But the overall gain associated with this re-allocation is positive, \(y = 13 - 7 = 6 \) for each unit, and since two units can be transferred the total transport cost (distance) can be reduced by 12. Since no further readjustments can be made this is the optimal allocation (Table 4c, Figure 10a).

Note that steps v) and vi) are in fact actually a restatement of the classical transportation problem because the total network demand \(\theta \) can always be made exactly equivalent to the combined capacity of the medians in solution by the introduction of slack variables. The procedure of v) will always serve to provide a good initial basis, and although the method of step vi) for re-allocating flows will normally be less efficient than existing algorithms which employ the method of shadow costs, the problem of degeneracy does not appear to occur so that coding is considerably simplified.

vii) Let some value \(t_i \) be the total subgraph demand so that

\[
\sum_{i=1}^{p} t_i = \theta
\]

the overall network requirement. The medians of each subgraph are now re-calculated according to (12) subject to further restriction that only those potential sites \(v_i \in G_i \) whose upper bounds \(c_i \) are \(\geq t_i \) will be considered as candidates. This constraint ensures choice from among only
Table 4
SOLUTION TABLEAU FOR FIGURE 6

(a) Distance (Transportation Cost) Matrix

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>5</td>
<td>11</td>
<td>16</td>
<td>16</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>25</td>
<td>24</td>
<td>19</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Demands: 1 10 4 10 2 10 1 10 1 1 50

(b) Initial Allocation (Step v)

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

Demands: 1 10 4 10 2 10 1 10 1 1 50 62

(c) Optimal Allocation (Step vi)

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

Demands: 1 10 4 10 2 10 1 10 1 1 50 50
PROBLEM PART A. FIGURE 10(A) 4 MEDIAN SOLUTION (PLANT SIZE CONSTRAINTS) FOR FIGURE 6

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>13.00</td>
<td>11.00</td>
<td>11.00</td>
<td>1 2 3</td>
<td>1.0 10.0 2.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>12.00</td>
<td>12.00</td>
<td>12.00</td>
<td>3 4</td>
<td>2.0 10.0</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11.00</td>
<td>1.00</td>
<td>1.00</td>
<td>6 7</td>
<td>10.0 1.0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>10.00</td>
<td>26.00</td>
<td>26.00</td>
<td>5 8 9 10</td>
<td>2.0 10.0 1.0 1.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>50.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROBLEM PART B. FIGURE 10(B) 2 AND 3 MEDIAN SOLUTIONS (PLANT SIZE CONSTRAINTS) FOR FIGURE 6

CAPACITY CONSTRAINT CRITERION PREVENTS 2 LOCATION SOLUTION

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td>4 5 7</td>
<td>3.0 3.0 2.0 1.0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td>6 7 8</td>
<td>4.0 3.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13.50</td>
<td>0.00</td>
<td>13.50</td>
<td>2 3 7 9 10</td>
<td>1.0 0.5 1.0 3.0 2.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.50</td>
<td>33.50</td>
<td>0.00</td>
<td>33.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.50</td>
<td>11.00</td>
<td>11.00</td>
<td>1 2 7</td>
<td>3.0 1.0 3.5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9.00</td>
<td>12.50</td>
<td>12.50</td>
<td>4 5 6 7</td>
<td>3.0 2.0 2.5 1.5</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>3 6 8 9 10</td>
<td>0.5 1.5 1.0 3.0 2.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.50</td>
<td>32.50</td>
<td>0.00</td>
<td>32.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROBLEM PART C. FIGURE 10(C) 2 MEDIAN SOLUTION (MAXIMUM DISTANCE CONSTRAINT) FOR FIGURE 6

PLANT LOCATION-ALLOCATION 2 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16.00</td>
<td>25.00</td>
<td>25.00</td>
<td>1 2 4 5 7</td>
<td>3.0 1.0 3.0 2.0 5.0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10.50</td>
<td>16.00</td>
<td>16.00</td>
<td>3 6 8 9 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24.50</td>
<td>39.00</td>
<td>0.00</td>
<td>39.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NO SOLUTION FOUND ON THIS ITERATION SATISFYING MAXIMUM DISTANCE CONSTRAINT FOR 2 LOCATION SOLUTION

Figure 10
those nodes capable of satisfying the subgraph's demand. Since from the previous steps there is at least one such member in each G_i, the solution will always remain feasible.

viii) Steps iv) to vii) are reiterated until one full cycle fails to reduce the objective function S.

In the second set of heuristics, the unconstrained solution approach, the objective is to solve first the minimum transport cost solution without plant size constraints, but restricting choice of medians to some set of p, known a priori, to be capable together of satisfying θ. This solution is then subsequently modified to satisfy the plant upper bound restrictions. These goals are simply achieved as follows:

1) In partitioning the network choice of nodes is exclusively restricted to those potential sites whose c_i values exceed ϕ.

2) Each node on the network v_i, $i = 1, \ldots, n$ is assigned by (10) to its closest member of $X_p \cap G_i$. Upper plant bound violations are ignored for the moment.

3) The search for the median of each subgraph is again restricted this time to those members $v_j \in G_i$ for which $c_j \geq \phi$. From the previous restriction on step 1) there must be at least one such node in each subset.

4) Steps 2 and 3 are repeated and the lower bound test applied until a stable solution is attained. (N.B. In each of the two sets of heuristics nodes are only
considered for median replacement during the lower bound test, if and only if, it is known that they can guarantee the continued feasibility of the solution).

5) Using this local minimum (which may or may not be optimal) as a new starting basis steps iv) to viii) of the previous heuristic set are activated until no further improvement is found. This solution chosen is, of course, the best descendent one from any of the two given methods if both are optioned.

It is possible to solve some highly constrained problems with these sets of heuristics. Consider again the graph of Figure 4 in which, for this example, the m potential plant sites are restricted to \(v_1, v_3, v_5, v_6, v_8 \) and \(v_{10} \) and, as a further proviso, node \(v_8 \) is to be forced into the solution. Let the upper bounds on each of the m sites be set equal to 7, 7, 9, 5, 8 and 7.5 respectively. For the 3 median of this network the beginning set \(X_P \) consists of either \(v_1, v_5, v_6 \) or \(v_3, v_5, v_6 \). Each of the two heuristic sets converges to a local minima of \(S = 33.5 \) with nodes \(v_5, v_8, v_{10} \) as medians (Figure 10b). By the lower bound test \(v_{10} \) is dropped from solution and node \(v_1 \) is introduced as the new candidate median. The solution attained on termination is \(v_1, v_5 \) and \(v_8 \) with \(S = 32.5 \) (Figure 10b) which appears to be the optimal lower bound. It seems fair to say that this result is not obvious from inspection.
For this option the heuristics presented may be unsuccessful since solutions can sometimes exist which are not found during computation. The suggested method is simply to constrain the search for the median of each subgraph G_i, $i=1,\ldots,p$ to those nodes $v_r \in G_i$ for which $d(v_j v_r) \leq V_j$ for all $v_j \in G_i$, where V_j is the maximum allowable distance of v_j to some median on the network. For any potential median v_r not satisfying this condition then there exists at least one other node v_j whose distance to v_r is greater than the stipulated maximum. This amounts to satisfying equation (12) subject if possible to (17): $d(v_j v_{k1}) \leq V_j$ for all $v_j \in G_i$.

As an example reconsider Figure 4 and place the following maximum distance constraints on each node 0, 5, 4, 3, 7, 2, 0, 5, 3, 4, 8 and 5. Subject to these constraints the 2 median solution consists of v_1 and v_6, which are in fact, the only two vertices capable of satisfying condition (17). (Figure 10c). In the event, on any iteration, that p medians satisfying the constraint cannot be found, the least cost transport solution is chosen instead for the next cycle, and a message is printed to this effect. In extreme cases the algorithm may therefore terminate without printing a feasible solution even though one exists. One partial way out of this impasse might be to choose, for all subgraphs where the constraint cannot be currently satisfied, that node $v_j \in G_i$ whose value is a
minimum in the set, and continue from there. However even this scheme will not guarantee success and is not as yet incorporated into the computer code for this algorithm (see Appendix 5). It is possible, even desirable, to force into the solution those nodes whose distance constraints are very restrictive, so that the likelihood of not obtaining a feasible solution is sharply reduced. For many networks this procedure will provide the best alternative, since there seems to be no obvious way of ensuring even an initial set of X_p which is feasible. In other cases it may well be that the problem is soluble only if structured as a linear program.

Plant Costs

For the plant location-allocation problem which requires the simultaneous minimization of both plant and transport costs, the value of p for which this is a minimum will not usually be known at the outset. In the method given here the general strategy will be to calculate the total cost function for several fixed arbitrary values of p, choose the two solutions within which the optimum must lie, and beginning with the lower value of p, increment it sequentially by one until the $p+1$ solution exceeds the p^{th} solution.

As with the plant size constraint options two sets of heuristics will be given one of which will yield a better
estimate of the true lower bound. In the first of these
two methods the procedure is as follows:

i) Solve first the minimum transportation cost so-
lution. Determination of this p median will automatically
define the least cost allocation of markets to sources, so
that the plant size \(t_i \) of each source is also given. From
this the associated plant costs can be readily established.
This is the approach taken by Singer but his algorithm
terminates at this point presumably under the assumption
that the minimum transportation cost solution will also
define, for any p, the total least cost bound. While this
may generally be true it is not difficult to visualize
situations in which scale economies at some plants may be
more than sufficient to offset a non-optimal transportation
cost solution.

ii) This step differs from the previous one only in
terms of the median calculation. Specifically, choice of
median on each subsequent iteration is now determined by
an appraisal of both plant and transportation costs
together, rather than on the latter basis alone. Thus
for each \(G_1 \), \(S_1 \) now equals

(18) \[\sum_{j \in G_1} w(v_j, v_{ki}) + f_i(t_i) \] where
f_i is some function of t_i, the current source size, such that f_i(t_i) is the plant cost for that source at its present level of operation. In practice this function must be supplied for each potential site by the user as a subroutine.

iii) After repeating step ii) to achieve convergence there still remains the possibility that further advantage of the plant economies of scale can be gained by judicious manipulations of the current vector of allocations. A test is therefore made in which markets (or fractions of markets if size constraints dictate) are flipped one by one from each source currently assigned to it to those which are not. Let y_1 be the decrease in total costs (over some G_i) achieved by removing some market v_r from median v_{k_1}. Similarly let y_2 be the increase in total costs (over some G_j) effected by the addition of v_r to some v_{k_j}. If for any median v_{k_j}, \(y_2 < y_1 \) then some reduction in total cost (over the network) is feasible. Choice of \(v_r \) and \(v_{k_j} \) is dependent upon the maximum difference \(y_1 - y_2 \) (if any) found. This step is repeated until no further improvement is found, subject to the maintenance of at least one unit of demand at each source.

The second set of plant cost heuristics differs from the first in that nodes are assigned to medians on the basis of at least a partial evaluation of plant (in addition to transportation) costs. Consistent with the approach taken throughout this chapter the suggested procedure will be outlined in steps.
1) For each node \(v_j, j = 1, \ldots, n \) find the current median \(v_{ki}, i = 1, \ldots, p \) for which \(d(v_j, v_{ki}) \) is a minimum.

2) Each subgraph \(G_i, i = 1, \ldots, p \) now has a subset of nodes \(v_j \in G_i \) which satisfy Step 1). Rank each member of each subset in ascending order in terms of \(d(v_j, v_{ki}) \).

3) Assign first that member of \(G_1 \) which is closest to \(v_{k1} \). Secondly assign to \(v_{k2} \) that member of \(G_2 \) which is closest to \(v_{k2} \) and so on until \(p \) such assignments have been made. This operation ensures the allocation of at least one destination to each source and yields a beginning plant size for each median.

4) Tentatively assign to \(v_{k1} \) the member in the set of \(G_1 \) which is second closest to \(v_{k1} \). But before this allocation is confirmed the test given in step iii) of the previous heuristic set is made. Repeat this procedure for all remaining node assignments, the choice of order being determined by the ranking of the nodes in each subset. Each set of \(p \) assignments will then, take one member from each subset, but the test is activated only for the second and subsequent series of allocations. On any one series of such assignments after the initial allocations have been made it is feasible that some subsets may become exhausted of members. On termination all sets will of course be empty.

5) The medians of each \(G_i \) are now computed according to the total cost criterion of step ii), and steps 1 to 5 are again repeated until the lowest bound is found.
Applying these heuristics again to Figure 4 with plant costs set equal on any iteration to $10\sqrt{t_i}$ ($t_i =$ current size of plant i) at nodes v_1, v_4, v_6, v_9 and v_{10} and to $7\sqrt{t_i}$ for the other five potential sources, the lowest calculated bound of $S = 86.8$ occurs when $p = 3$, with medians v_1, v_4, v_6 or v_1, v_4, v_9 in solution (Figure 11a). With the same plant cost functions but size upper bounds of 4, 6, 7, 10, 12, 11, 8, 13, 9 and 10 respectively imposed upon each node, the three median solution of the graph consists of v_4, v_5 and v_6 with $S = 92.3$ (Figure 11b).

Dynamic Location-Allocation Systems

The heuristics for systems of static location-allocation problems given previously in this chapter are readily adaptable to the dynamic sphere of operations. This extension demands the sequential partitioning of a network over discrete intervals of time. Redefining t_j as some time period $j = 1, 2, \ldots, r$, then given some long term planning horizon t_r, and a budget constraint which allows for the construction of one or more facilities in any time interval t_j, the problem is to decide in which locations and in what order the plants should be built such that the overall costs (aggregate distances) are at a minimum over all periods under question.

This is a combinatorial programming problem which can always be explicitly solved by direct enumeration of
Problem 11(a) MINIMUM COST PLANT-TRANSPORTATION SOLUTION FOR FIGURE 4

Problem 11(a) MINIMUM COST PLANT-TRANSPORTATION SOLUTION FOR FIGURE 4

PLANT LOCATION-ALLOCATION 1 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6.00</td>
<td>6.00</td>
<td>12.00</td>
<td>2 3 4 5</td>
<td>1.0 2.0 3.0 4.0 5.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>6.00</td>
<td>6.00</td>
<td>12.00</td>
<td>23.15</td>
<td>2 4 5</td>
<td>1.0 3.0 2.0 3.0 2.0</td>
</tr>
</tbody>
</table>

PLANT LOCATION-ALLOCATION 2 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14.00</td>
<td>25.00</td>
<td>26.19</td>
<td>1 2 4 5 7</td>
<td>1.0 2.0 3.0 2.0 5.0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10.50</td>
<td>14.00</td>
<td>36.68</td>
<td>3 6 8 9 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>10.50</td>
<td>14.00</td>
<td>36.68</td>
<td>87.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.00</td>
<td>12.00</td>
<td>22.14</td>
<td>34.14</td>
<td>1 5 7</td>
<td>3.0 2.0 5.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4.00</td>
<td>2.00</td>
<td>14.00</td>
<td>16.00</td>
<td>2 4 3 3</td>
</tr>
<tr>
<td>3</td>
<td>10.50</td>
<td>14.00</td>
<td>22.68</td>
<td>36.68</td>
<td>3 6 8 9 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>10.50</td>
<td>14.00</td>
<td>22.68</td>
<td>58.82</td>
<td>86.82</td>
<td></td>
</tr>
</tbody>
</table>

Problem 11(b) 3 MEDIAN SOLUTION (PLANT SIZE CONSTRAINTS) FOR FIGURE 4

PLANT LOCATION-ALLOCATION 3 MEDIAN SOLUTION

<table>
<thead>
<tr>
<th>MEDIAN</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.00</td>
<td>6.00</td>
<td>17.15</td>
<td>23.15</td>
<td>2 4 5</td>
<td>1.0 3.0 2.0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10.50</td>
<td>14.00</td>
<td>36.68</td>
<td>3 6 8 9 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10.50</td>
<td>14.00</td>
<td>36.68</td>
<td>3 6 8 9 10</td>
<td>0.5 4.0 1.0 3.0 2.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>6.00</td>
<td>6.00</td>
<td>28.28</td>
<td>85.11</td>
<td>85.11</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11
all possibilities. In practice this is normally quite in-
feasible, and consistent with the heuristic approach taken
here, far fewer evaluations will be needed. With respect
to the particular formulation under consideration some
additional assumptions will be made. First the network of
all n destinations will be assumed to be unchanged over
all time periods in question. Next plants (medians) will
be added one at a time during each temporal interval, and
thirdly once chosen, each such source will be assumed to
remain fixed at its original location over all succeeding
periods. Actually the first two assumptions can be relaxed
with only minor modifications to the existing program, but
the third remains more restrictive reflecting as it does
the question of relocation costs and the troublesome prob-
lems of locational obsolescence.

Of the two possible approaches to this problem the
first makes use of a forward recursive procedure in which,
beginning with time period \(t_1 \), a single median is located
which is optimal with respect to all weighted distances over
the network. A second facility is added next in \(t_2 \) which
minimizes the sum of the aggregate flows subject to the
maintenance of plant 1 at its previously located site. For
any time period \(t+1 \) then, the next source to be added is
that one which minimizes the function
(19) \[S = \sum_{i=1}^{n} \sum_{j=1}^{t} x_{ij} d_{ij} + \sum_{i=1}^{n} x_{it+1} d_{it+1} \]

where \(t \) labels the \(t \) plants established in the preceding time periods 1 through \(t_j \) and \(x_{ij} \) and \(d_{ij} \) are as previously defined.

Consider this approach in terms of the twenty node network of Figure 7 where the long term planning goal \(t_r = 3 \). The single median of this weighted graph is period \(t_1 \) is either \(v_8 \) or \(v_9 \) with \(S = 184.0 \). Branching first on median \(v_8 \), node \(v_6 \) is added in \(t_2 \), and either \(v_{11} \) or \(v_{13} \) in \(t_3 \) with \(S = 68.0 \). The cumulated costs over all three periods total to \(360.0 \). Alternative branching on \(v_9 \) when \(t = 1 \) adds \(v_{17} \) in the second period and \(v_6 \) in the third with \(S = 81.0 \) and cumulated costs equal to \(380.0 \) (see Figures 12 and 13).

Although this approach is always optimal with respect to period \(t_1 \), on subsequent iterations over periods \(t_2, \ldots, r \), the probability is very high that it will become increasingly sub-optimal (Teitz, 1968). To guarantee the true global minimum it is necessary to resort to discrete dynamic programming methods where the recursion procedure will be backwards rather than forwards in time. The adoption of a backwards recursion depends upon the principle that a dynamically optimal system should always, at the fulfillment of the long term planning horizon, have a
Figure 12 FORWARD RECURSIVE DYNAMIC SOLUTION FOR FIGURE 7

<table>
<thead>
<tr>
<th>MEDIAN PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>MODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9</td>
<td>50.00</td>
<td>184.00</td>
<td>184.00</td>
<td>1 2 3 4 5</td>
<td>3.0 1.0 4.0 2.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 7 8 9 10</td>
<td>4.0 4.0 3.0 1.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 12 13 14</td>
<td>2.0 1.0 2.0 3.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 17 18 19 20</td>
<td>1.0 4.0 2.0 3.0 2.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>184.00</td>
<td>184.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIAN PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>MODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9</td>
<td>28.00</td>
<td>85.00</td>
<td>85.00</td>
<td>1 2 3 4 5</td>
<td>3.0 1.0 4.0 2.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 9 10 11 12</td>
<td>4.0 1.0 2.0 2.0 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 14</td>
<td>2.0 1.0</td>
</tr>
<tr>
<td>2 17</td>
<td>30.00</td>
<td>0.00</td>
<td>30.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 15 20</td>
<td>2.0 3.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>115.00</td>
<td>115.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIAN PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>MODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9</td>
<td>28.00</td>
<td>85.00</td>
<td>85.00</td>
<td>1 2 3 4 5</td>
<td>3.0 1.0 4.0 2.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 9 10 11 12</td>
<td>4.0 1.0 2.0 2.0 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 14</td>
<td>2.0 1.0</td>
</tr>
<tr>
<td>2 17</td>
<td>18.00</td>
<td>0.00</td>
<td>18.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 19 20</td>
<td>3.0 3.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>115.00</td>
<td>115.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIAN PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLANT COST</th>
<th>TOTAL COST</th>
<th>MODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9</td>
<td>22.00</td>
<td>30.00</td>
<td>30.00</td>
<td>1 2 3 4 5</td>
<td>3.0 1.0 4.0 2.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 9 10 11 12</td>
<td>4.0 1.0 2.0 2.0 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 14</td>
<td>2.0 1.0</td>
</tr>
<tr>
<td>2 17</td>
<td>18.00</td>
<td>0.00</td>
<td>18.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 19 20</td>
<td>3.0 3.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>115.00</td>
<td>115.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIAN</td>
<td>PLANT SIZE</td>
<td>FREIGHT COST</td>
<td>PLANT COST</td>
<td>TOTAL COST</td>
<td>NODES SERVICED</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 13
locational structure which is equivalent to that of a static system where \(p = t_r \) the long range goal. Hence at the outset it is necessary to minimize the following function.

\[
S_r = \sum_{i=1}^{n} \sum_{j=1}^{r} \sum_{j \in M} X_{ij} D_{ij}
\]

where \(M \) is the set of all potential plant sites. This is the solution for the static case when \(p=r \), and is tantamount to (1) without all the side constraints. Whether this solution is achieved by the heuristic methods given previously in this chapter or by some exact branch-bound algorithm, it now remains only to obtain an orderly sequencing of the plants given by (20) such that the long term cost accumulation is minimized.

It is this sequencing solution which is normally sought by dynamic programming, and the approach will usually be feasible up to a limit of about nine or ten time periods depending upon the size of the network. Beyond this, as will become apparent, dynamic programming tends towards infeasibility since computation increases very rapidly as a non-linear function of \(r \). Thus at any stage \(t \) backwards from the solution of (20) there are \(\binom{r}{t} \) or \(r! / t!(r-t)! \) combinations of possible locations. Over all time periods \(t_j, j = 1, \ldots, r \), there are then
Clearly the amount of calculation involved will be a function of both the size of the network (since each node must be assigned to one of the t locations), and of the size of r which is the maximum number of periods involved. If \(r = 10 \) for example, then by (21) the number of locational combinations which must be evaluated is in excess of 1000. Moreover once these solutions have been obtained there still remain some \(r! \) possible ways to order them, one of which will be the optimal sequence required. For \(r = 10 \) the number of such possible sequences or permutations is over one million. Although dynamic programming will actually evaluate for fewer sequences; by virtue of the computational effort implied in (21), \(r \) need never be very large before the problem in practice becomes hopelessly over-extended. The presentation of a dynamic program for the optimal sequencing of plant locations over time will be deferred to the next section. The remainder of this one will be devoted to exploring heuristics for the very long term planning horizon problem when \(r \) is in excess of say nine or ten.

The general procedure is actually simple and will be to recurse backwards taking advantage of the solution of each preceding step. Beginning with the solution to

\[
\sum_{t=1}^{r} \binom{r}{t}
\]
(20) define R as the initial subset of \(t = r \) medians so obtained. Then, working backwards, and using the heuristics previously given for the estimation of the \(p \) median of a weighted graph solve for any subsequent time period \(t, t = r - 1, r - 2, \ldots, 1 \), the following expression

\[
S_t = \sum_{i=1}^{n} \sum_{j=1}^{t} \sum_{j \in R} X_{ij} D_{ij}
\]

That is the solution is constrained to a search among the members (medians) of the set \(R \) which, at any stage, contains \(t+1 \) medians.

Although it is always possible to find counterexamples, this method will usually give satisfactory results. Referring back to the network of Figure 7, the results of the backward recursion can be seen in Figure 14. At completion of stage 1, \(t=3 \) and the minimum cost for three median solution of \(v_6, v_{11} \) and \(v_{17} \) is \(S_3 = 63.0 \). During periods \(t_2 \) and \(t_3 \) medians \(v_{11} \) and \(v_{17} \) are dropped leaving \(v_6 \) with \(S_1 = 60.0 \). The cumulated costs for all three periods are

\[
S = \sum_{j=1}^{3} S_j = 350.0
\]

which is less than either of the two results given by the forward recursive method.
<table>
<thead>
<tr>
<th>BEDIAS</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLAST COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH BEDIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>18.00</td>
<td>0.00</td>
<td>22.00</td>
<td>1 2 3 4 5</td>
<td>3.0 4.0 2.0 3.0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>10.00</td>
<td>11.00</td>
<td>11.00</td>
<td>6 9</td>
<td>8.0 1.0</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>22.00</td>
<td>30.00</td>
<td>30.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>53.00</td>
<td>0.00</td>
<td>53.00</td>
<td>18 19 20</td>
<td>2.0 3.0 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEDIAS</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLAST COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH BEDIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>17.00</td>
<td>0.00</td>
<td>20.00</td>
<td>1 2 3 4 5</td>
<td>3.0 4.0 2.0 3.0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>11.00</td>
<td>13.00</td>
<td>13.00</td>
<td>6 9</td>
<td>8.0 1.0</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>22.00</td>
<td>30.00</td>
<td>30.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>53.00</td>
<td>0.00</td>
<td>53.00</td>
<td>18 19 20</td>
<td>2.0 3.0 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEDIAS</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLAST COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH BEDIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>18.00</td>
<td>0.00</td>
<td>22.00</td>
<td>1 2 3 4 5</td>
<td>3.0 4.0 2.0 3.0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>10.00</td>
<td>11.00</td>
<td>11.00</td>
<td>6 9</td>
<td>8.0 1.0</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>22.00</td>
<td>30.00</td>
<td>30.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>53.00</td>
<td>0.00</td>
<td>53.00</td>
<td>18 19 20</td>
<td>2.0 3.0 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEDIAS</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLAST COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH BEDIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>25.00</td>
<td>55.00</td>
<td>55.00</td>
<td>1 2 3 4 5</td>
<td>3.0 4.0 2.0 3.0</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>10.00</td>
<td>13.00</td>
<td>13.00</td>
<td>6 9</td>
<td>8.0 1.0</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>22.00</td>
<td>30.00</td>
<td>30.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>100.00</td>
<td>0.00</td>
<td>100.00</td>
<td>18 19 20</td>
<td>2.0 3.0 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEDIAS</th>
<th>PLANT SIZE</th>
<th>FREIGHT COST</th>
<th>PLAST COST</th>
<th>TOTAL COST</th>
<th>NODES SERVICED</th>
<th>VOLUME SUPPLIED TO EACH BEDIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>50.00</td>
<td>187.00</td>
<td>187.00</td>
<td>1 2 3 4 5</td>
<td>3.0 4.0 2.0 3.0</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>10.00</td>
<td>13.00</td>
<td>13.00</td>
<td>6 9</td>
<td>8.0 1.0</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>22.00</td>
<td>30.00</td>
<td>30.00</td>
<td>7 8 15 16 17</td>
<td>4.0 3.0 3.0 1.0 4.0</td>
</tr>
<tr>
<td>NETWORK</td>
<td>50.00</td>
<td>100.00</td>
<td>0.00</td>
<td>100.00</td>
<td>18 19 20</td>
<td>2.0 3.0 2.0</td>
</tr>
</tbody>
</table>

Figure 14
In some instances it may be possible to combine the results of both the forward and backward recursive solutions. Let \(t_j \) (if it exists for a particular case) be some time period, \(0 > t_j \geq r \), in which the solutions of both methods are identical. Then the sequencing of the forward recursive method from period \(t_1 \) to \(t_j \) must always be at least as good as that given by the backward recursive method over the same time intervals. Alternatively, for any time period \(t_r \) back down to \(t_1 \), the optimal sequencing can always be explicitly solved by the dynamic programming methods of the following section providing \(r \) is not too large.

A Dynamic Program for the Optimal Sequencing of Plant Locations Over Time

The application of dynamic programming to plant location through time has received surprisingly little attention in the past. Bellman (1965) has demonstrated how this approach may be applied to the case of static systems but, to the author's knowledge, only Scott (1969) has explicitly considered the problem in its temporal context. Scott has provided a careful analysis of the potential advantages of dynamic programming over forward recursive procedures, but suggests that it is necessary to evaluate all \(r! \) possible sequences to find the global minimum, after solving for the solutions implicit in equation (20) and (21). Actually, as will be demonstrated, far fewer evaluations are needed. Indeed if
r = 10, only a few thousand calculations are required to solve the minimum cost sequence compared to several million if all possible orderings are examined. As it happens the computational difficulties associated with applying dynamic programming to plant location over long periods of time lie less in the sequencing problem than in the seemingly unavoidable need to evaluate a minimum cost allocation for all network nodes with respect to all \(\binom{t}{r} \) sets of possible locations at each period t in the analysis.

The fundamental recursive relationship of discrete dynamic programming is due originally to Bellman (1957). Improvising on a general format given by Wagner, (1969) this relationship may be explicitly expressed in terms of the plant location problem as follows:

\[
(24) \quad f_k(s) = \min \left[S_s + f_{k-1}(j) \right] \quad \text{for all } k = 1, 2, \cdots, r
\]

where

(a) \(f_k(s) \) is a minimum cost (aggregate distance) policy decision taken in state s with k more plants to locate.

(b) \(S_s \) is the cost of serving the network in state s with k locations in solution and

(c) \(f_{k-1}(j) \) is the optimal aggregate location costs back out of state j with k-1 plants to locate i.e.
optimal from state \(j \) back through all antecedent plant sequencing decisions in all previous stages to the commencement of stage 1 where \(r \) locations are in solution.

Since the application of this recursion is backwards in time any state \(j \) will contain one more location than any entering state \(s \), so that at the beginning of stage \(k=1 \) (time period \(t=r \)) all pre-determined \(r \) locations are present, and at the termination of stage \(k=r \) (time period \(t=1 \)) each state \(j \) will contain only one location. At every stage \(K \) in the dynamic process \(\binom{r}{r-k} \) new states enter into the solution, each such state \(s \) being a unique combination of the original \(r \) locations with \(r-k \) terms. For each one the decision \(f_k(s) \) taken with respect to some particular state \(j \) with \(r-k+1 \) plants (of which the locations belonging to state \(s \) must be a subset) is such that the act of transferring to or routing through state \(j \) constitutes a least cost optimal plant sequence for state \(j \) back to stage one. Since the function \(f_{k-1}(j) \) embodies the minimum cost plant sequence for some state \(j \) back through all preceding stages to \(k=1 \), the decision sought for states at stage \(k \) is simply the minimum of \(S_s + f_{k-1}(j) \) over all \(j \) for which state \(s \) is a subset.

This explanation is aptly summarized by the principle of optimality which states that:
An optimal policy must have the property that regardless of the route taken to enter a particular state, the remaining decision must constitute an optimal policy for leaving that state. (Wagner, 1969, p. 257)

The choice of some state \(j \) for any state \(s \) constitutes the decision by which state \(s \) is left.

These concepts can be clarified with reference to the hypothetical example of four stages shown in Table 5. Assume for some network a four location solution given by (20) with nodes 1, 2, 3 and 4 as the medians of the graph and \(S_4 \), the aggregate cost of supplying each destination from its closest median, as 10. The objective is to order the sequencing of the plants over time such that the cumulative long term cost function over all periods is minimized. In Table 5 there are four matrices each corresponding to one stage in the analysis with the columns referencing some state \(j \) and each row some entering state \(s \). For any stage \(k \) the number of locations in state \(s \) will indicate the time period \(r-k \), while those for state \(j \) have \(r-k+1 \) terms, each \(j \) being the signpost to the \(s=j \) entering state of period \(t+1 \). The number of entering states at any step will be all the \(r-k \) combinations of \(r \), i.e. \(\binom{r}{t-k} \) while for any stage \(k+1 \) the \(j \) states will be the entering states of the \(k^{th} \) stage.

At the commencement of stage 1, state \(j \) is the median series 1, 2, 3 and 4, and the entering states are 123, 124, 134, and 234, the combinatorial series down the
rows of Table 5(a). Let the minimum cost S_{s} of supplying the network for each one of these combinations or locations be $S_{123} = 16$, $S_{124} = 18$, $S_{134} = 15$ and $S_{234} = 19$ respectively. The cost entry in the first cell (16 + 10) represents the cumulated costs of serving the graph with medians 123 in time period 3 and 1234 in the fourth or final period. The inset box on the left contains the integer 4, which labels the median which will be added to the entering state 123 on its exit from this stage should it prove subsequently to be part of the optimal sequencing route. The inset box on the right of each cell contains a counter which references the row in the preceding stage matrix wherein can be found that member of the left inset box which is to be added in the next time period $t + 1$. The optimal decision policy for any entering state with respect to its feasible j exits is stored in the decision cell, the penultimate right most column of each matrix. Since for stage 1 there is only one exit state j no choice is involved in the contents of this decision cell.

For stage $k=2$ the entering states (there are $\binom{r-k}{k}$ of them) represent all the possible locational combinations of time period 2, and the leaving states indicate the routes to all the combinations of entering states in period $t=3$ ($k=1$). Consider the value of $S_{12} = 25$, the minimum cost of supplying all network destinations from medians 1 and 2. For this entering state either median 3 or 4 will be added at the
Table 5

OPTIMAL SEQUENCING OF PLANT LOCATIONS
FOR A HYPOTHETICAL EXAMPLE

(a) $k=1$ $t=3$ to 4

<table>
<thead>
<tr>
<th>Exit State j</th>
<th>Decision Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>16+10</td>
</tr>
<tr>
<td>3</td>
<td>18+10</td>
</tr>
<tr>
<td>15+10</td>
<td>19+10</td>
</tr>
<tr>
<td>Entering 124</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Entering 134</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Entering 234</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

(b) $k=2$ $t=2$ to 3

<table>
<thead>
<tr>
<th>Exit State j</th>
<th>Decision Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>25+26</td>
</tr>
<tr>
<td>2</td>
<td>27+26</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Entering 124</td>
<td>25+28</td>
</tr>
<tr>
<td>1</td>
<td>28+28</td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Entering 234</td>
<td>26+28</td>
</tr>
<tr>
<td>1</td>
<td>27+26</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Entering 34</td>
<td>27+25</td>
</tr>
<tr>
<td>1</td>
<td>27+29</td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
</tbody>
</table>
(c) $k=3 \quad t=1 \text{ to } 2$

<table>
<thead>
<tr>
<th></th>
<th>Exit State j</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>33+51</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
</tr>
</tbody>
</table>

(d) $k=4 \quad t=0 \text{ to } 1$

<table>
<thead>
<tr>
<th>Entering States</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Decision</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>States 0</td>
<td>1</td>
<td>0+85</td>
<td>0+83</td>
<td>0+85</td>
<td>0+84</td>
<td>83</td>
</tr>
</tbody>
</table>

Table 5 cont'd.
termination of the stage. If the choice is via state \(j \),
containing plants 1, 2 and 3, then from the previous stage
\(k-1 = 1 \), it is known that the combined costs of solutions
123 in \(t_3 \) and 1234 in \(t_4 \) are 26 as indicated by the
decision cell in row 1 of stage 1. Similarly if the
routing is through state \(j_2 = 124 \), the cost with respect
to this state is 28. Therefore, if locations 1 and 2 prove
later to be in the optimal sequence in time period 2, the
least cost decision, \(f_2 s \), will be to add median 3 rather
than 4 at the termination of this stage, since \(25 + 26 <
25 + 28 \), governs the minimum order for this state \(s \) back
to \(t = 4 \) (\(k=1 \)). The decision cell contains the value of
51, the cumulative costs of the three period solutions of
1,2; 1,2 and 3; and 1,2,3 and 4. The left inset box con­tains a 3, the requisite branching decision, and the right
inset box the value of 1 which is the column index of
state \(j = 123 \). Note that since the \(j \) states 134 and 234
do not include both medians 1 and 2 as subsets, they are
not feasible exit paths for state \(s=1,2 \).

At stage \(k=4 \) no states actually enter into the
solution since the time period reference is \(r-k=0 \). But
from this state there are four possible exits, medians
1, 2, 3 or 4 which may be entered at commencement of the
next time period \(t=1 \) (\(k=3 \)). It is worth emphasizing that
at any step in the dynamic process the only information
required from the previous stage is the values contained
in the decision cells of that matrix. This illustrates the
key principle of dynamic programming that for any state s the least cost path with k stages remaining is dependent only upon the result of the immediate decision, and some appropriate optimal policy established with k-1 stages left.

Upon completion of all stages the value of the minimum cost sequencing, given in the single decision entry of Table 5(d), is 83. To trace back the actual sequence which reflects this optimum through all four time periods is now an easy matter. The left inset box of the decision cell of 5(d) indicates that median 2 should be the first to be located in period t_1. The right inset box contains the integer 2 and gives the appropriate decision cell to reference in stage 3. Entrance to this cell in row 2 of 5(c) leads to the selection of median number 3 as the next plant to be sited. Continuing back in this manner results in the addition of median 1 at the commencement of $t=3$, and finally source number 4 completes the ordering in the last time period. The optimal sequence therefore locates plants 2, 3, 1 and 4 in that order. The cost of the allocations in each time period are stored in those cells of the cost column which are appropriate for the entering states, and for this example are $33 + 24 + 16 + 10 = 83$.

A computational short cut can now be introduced for finding all the feasible paths of the matrix for some stage
k. Remember that a feasible path exists only if state s is a subset of state j. The number of such paths for any k is given by

$$\binom{r-k+1}{r-k} \times \binom{r}{r-k+1}$$

which compares to

$$\binom{r}{r-k+1} \times \binom{r}{r-k}$$

total elements in any matrix. The number of active cells down each column is

$$\binom{r-k+1}{r-k}$$

and across each row is k. In the example of Table 5 feasible paths account for half or more of all cells for any stage in the cycle. For the larger problem however, this ratio may be very much less. If $r = 10$ then the total number of feasible routes (about 4000) over all r time periods is less than one forty-ninth of all possible paths. Because k will be at least equal to (and may be very much less) than j at any stage, it is computationally inefficient to evaluate by direct comparison each member of some entering state s against every member of each exit state j to test for feasibility. Even if the execution for any row can be terminated
upon counting \(k \) active cells, more than 50 per cent of all infeasible paths will still need be examined during the analysis. Since between half a dozen to more than one hundred operations (depending upon the sizes of \(r \) and \(k \)) may be necessary for the complete evaluation of each cell, significant computational savings will be realised if all feasible paths can be directly obtained. This task, in which the direction of the analysis will be down columns instead of across rows, can be accomplished as follows.

Consider state \(j=123 \) in stage \(k=2 \) of Table 5(b). There are three descendent subsets of \(r-k \) terms each, 12, 13 and 23 respectively. These combinations occupy rows 1, 2, and 4 of the six cells in column 1, each one of which references a unique descendant of all the \(\binom{r}{r-k} \) possible combinations of entering states for that stage. Furthermore every one of the descendants can be determined in strict lexicographical order. If each one of the three subsets of \(j=123 \) can be given a value which corresponds exactly to the rank of that combination in terms of all \(\binom{r}{r-k} \) descendants, then the cell which each should occupy will be uniquely determined. The rank of a combination can be obtained by means of the following method.

Let \(\binom{r}{m} = \binom{r}{r-k} \) be the number of combinations of locations or entering states at each stage in the analysis. Let \((b_1, b_2, \ldots, b_m) \) denote one of these combinations of
the \(r \) integers, and further define \((a_1 a_2 \cdots a_m)\) as a combination of \(r \) integers \(0, 1, \ldots, r-1 \) such that

\[
0 \leq a_1 < a_2 \cdots < a_m < r
\]

which implies that each element of the series
\((a_1, a_2, \cdots, a_m)\) is one less than its corresponding counterpart in \((b_1, b_2, \cdots, b_m)\). If \(R_v \) is defined as the required rank of the series \((b_1, b_2, \cdots, b_m)\) then

\[
R_v = \binom{r}{m} - \sum_{j=1}^{m} \left\{ \frac{r-1-a_m-j+1}{j} \right\}
\]

This derivation adapted from (Lehmer, 1964) concludes this section on dynamic plant location over time.
CHAPTER IV
AN APPLICATION OF THE MEDIAN ALGORITHM TO RURAL HOSPITAL LOCATIONS IN A SUB-REGION OF BRITISH COLUMBIA

In the preceding chapter a detailed description of an algorithm for estimating the medians of a weighted graph subject to side constraints was presented. In this chapter on application of the basic model (without constraints) to hospital locations in a rural sub-region of British Columbia is given. Although the algorithm is computationally feasible for large scale network problems, if judicious choice of the partitioning heuristics is made, only one part of the province will be subject to a detailed analysis here. The outline for this chapter is as follows:

1) A suitable sub-region for analysis is first chosen.

2) Specified medical data pertaining to this region is summarized in terms of a network of nodes and links where each node, the centre for some discrete surrounding area in space, represents in turn the demand over a one-year period for adult medical, adult surgical and obstetrical care, and each link represents the distance (normally road distances) between some pair of nodes. A subset of these nodes is further designated as potential sites.
3) The algorithm is tested upon the network in accordance with the stated aims and objectives detailed in Chapter I.

4) A short discussion of the results follows together with an appraisal of the validity of the general model formulation for this type of location problem.

Choice of Regional Study Area

The objective of this section was to attain a partitioning of the province of British Columbia into subregions such that each one formed a relatively self-contained unit with respect to the magnitude and direction of the linkages and flows within its bounds. To avoid possible bias which might be present if the actual pattern of hospital flows cuts across any natural nodal region, traffic flow data, collected by the provincial government during the summer of 1966, was utilized as the criterion upon which the partitioning was based. Notwithstanding some bias inherent in the recognition that this data was and is collected primarily for the purposes of tourism, it was felt that this information was the best readily available source for forming the crudely defined nodal regions necessary for this stage of the analysis.

Traffic flow data was gathered for eighty control points distributed randomly throughout the province. Given the traffic flow across each of the designated control
points, the distance of the link between any two points, and an assessment of the average traffic speed over any link (taken somewhat arbitrarily to be 35 m.p.h., with 25 m.p.h. on gravel roads and 40-45 m.p.h. on freeways), an estimate of road traffic density, or more specifically the average distance between vehicles over any link, may readily be obtained. For each such control point the weighted average of this measure over all links connected to it was calculated. Given one such value for each control station a grouping of the points was sought, subject to a contiguity constraint, for which the average intra-group differences among the points might be minimized while maximizing the average inter-group dispersion. Although this objective function is not easily realised the well-known hierarchical step grouping algorithm of (Ward, 1963) will tend to provide a good estimate of the optimal grouping, particularly where the natural clustering is strong.

Application of this algorithm (for which an efficient computer code incorporating a dendogram is given in Appendix 4) to the vehicle spacing measure revealed a well defined regionalization with six groups remaining. These regions were identifiable as a) Victoria and its environs, b) north-central and north Vancouver Island, c) Vancouver and the lower mainland as far east as Hope, d) the Sechelt peninsula, e) the mainland north of Lytton to Prince George and
west to Prince Rupert and f) south-eastern British Columbia from Hope to the Alberta border, bounded on the north by the Trans-Canada highway and on the south by the boundary with the United States. The last of these regions, wherein contrasts exist between closely clustered sets of communities where opportunities for in-patient hospital care are varied, and other areas of more dispersed settlement where distances between towns correspondingly reduce such choices, seemed to offer the best opportunity for a rigorous testing of the model, and was accordingly chosen as the sub-area for analysis.

Generation of a Medical Demand Network for South-Eastern British Columbia

As shown in Figure 15 the defined study area of south-east British Columbia covers some twenty-nine school districts which are the smallest geographical base for which medical data can be assembled from collected information. From 1966 data made available by the British Columbia Hospital Insurance Scheme in Victoria, hospital patient separations (diagnosis on discharge) were obtained disaggregated by medical, surgical and maternity categories. For each school district the following information was compiled:

1) The number of separations for each of the three medical categories over the one year period (Table 6).
Table 6
NUMBER OF SCHOOL DISTRICT SEPARATIONS BY MEDICAL CATEGORIES

<table>
<thead>
<tr>
<th>S.D.</th>
<th>Population</th>
<th>Medical</th>
<th>Surgical</th>
<th>Maternity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,624</td>
<td>521</td>
<td>473</td>
<td>126</td>
</tr>
<tr>
<td>2</td>
<td>11,051</td>
<td>645</td>
<td>625</td>
<td>267</td>
</tr>
<tr>
<td>3</td>
<td>8,665</td>
<td>389</td>
<td>825</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>4,461</td>
<td>352</td>
<td>314</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>16,011</td>
<td>875</td>
<td>915</td>
<td>305</td>
</tr>
<tr>
<td>8</td>
<td>3,336</td>
<td>256</td>
<td>255</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>11,319</td>
<td>533</td>
<td>790</td>
<td>270</td>
</tr>
<tr>
<td>10</td>
<td>3,269</td>
<td>164</td>
<td>215</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>24,138</td>
<td>984</td>
<td>1922</td>
<td>463</td>
</tr>
<tr>
<td>12</td>
<td>5,300</td>
<td>291</td>
<td>271</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>2,739</td>
<td>97</td>
<td>163</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>8,116</td>
<td>524</td>
<td>541</td>
<td>139</td>
</tr>
<tr>
<td>15</td>
<td>17,783</td>
<td>966</td>
<td>1140</td>
<td>324</td>
</tr>
<tr>
<td>16</td>
<td>2,438</td>
<td>194</td>
<td>203</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>2,998</td>
<td>252</td>
<td>215</td>
<td>46</td>
</tr>
<tr>
<td>18</td>
<td>5,696</td>
<td>314</td>
<td>265</td>
<td>172</td>
</tr>
<tr>
<td>19</td>
<td>8,237</td>
<td>382</td>
<td>379</td>
<td>197</td>
</tr>
<tr>
<td>20</td>
<td>11,911</td>
<td>1038</td>
<td>801</td>
<td>214</td>
</tr>
<tr>
<td>21</td>
<td>3,502</td>
<td>272</td>
<td>186</td>
<td>57</td>
</tr>
<tr>
<td>22</td>
<td>21,336</td>
<td>889</td>
<td>1112</td>
<td>355</td>
</tr>
<tr>
<td>23</td>
<td>33,730</td>
<td>1350</td>
<td>1770</td>
<td>556</td>
</tr>
<tr>
<td>24</td>
<td>39,249</td>
<td>1189</td>
<td>1661</td>
<td>832</td>
</tr>
<tr>
<td>25</td>
<td>1,895</td>
<td>61</td>
<td>90</td>
<td>62</td>
</tr>
<tr>
<td>30</td>
<td>6,519</td>
<td>497</td>
<td>462</td>
<td>184</td>
</tr>
<tr>
<td>31</td>
<td>7,465</td>
<td>419</td>
<td>513</td>
<td>196</td>
</tr>
</tbody>
</table>
Table 6 cont'd.

<table>
<thead>
<tr>
<th>S.D.</th>
<th>Population</th>
<th>Medical</th>
<th>Surgical</th>
<th>Maternity</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>5,878</td>
<td>426</td>
<td>322</td>
<td>139</td>
</tr>
<tr>
<td>77</td>
<td>4,691</td>
<td>422</td>
<td>321</td>
<td>59</td>
</tr>
<tr>
<td>78</td>
<td>3,055</td>
<td>264</td>
<td>230</td>
<td>47</td>
</tr>
<tr>
<td>86</td>
<td>11,141</td>
<td>661</td>
<td>690</td>
<td>197</td>
</tr>
</tbody>
</table>
2) The number of separations discharged from each of the thirty-three hospitals operating in the sub-region, that is the patient flow from each school district to each hospital.

3) The total population of each school district. Since the scale of most of the school districts proved to be too large to be of much practical value for analysis, it was necessary to disaggregate this information into a much finer net, one where each unit could be summarized by a single point or node. This was successively achieved in the following stages, each one necessarily entailing a certain measure of estimation at each step.

a) Using enumeration district population maps compiled from the National Census of 1966, each school district was disaggregated into these smaller geographical units for which the exact population figures were known. In a few instances the boundaries of the enumeration and school districts do not coincide and it was necessary to make an estimate of the proportion of enumeration district population which lay upon each side of the school district boundary. These estimates were adjusted to ensure that the sum of all enumeration district populations within the bounds of a given school district was set equal to the known population total of that school district.

b) The centres of population gravity for each of the enumeration districts were approximated with the aid of a
population dot distribution map of British Columbia prepared following the 1961 census by (Farley, et. al., 1961). In some cases depending upon the local distribution two or more points were assigned to the same enumeration district, while in others one point served to summarize the population of more than one district or parts of several, if population concentrations lay on either side of an enumeration district boundary. A set of geographical co-ordinates were then recorded for each of the 168 points compiled.

c) These co-ordinates together with their attached population weights enabled the centroids of the school districts themselves to be ascertained in terms of all the points lying within their boundaries. This analysis gave thirty-five such values of which six represented school districts surrounding the defined sub-region.

d) Incidence rates for each of the school districts were next compiled disaggregated by medical category. These rates were based upon the number of patient separations per 1000 population excluding all cases referred to hospitals beyond the region except those to Chilliwack, Lillooet and 100 mile house.

e) Finally an estimate of the demand or actual number of patient separations generated by each enumeration district was required. In utilizing the given co-ordinates of the school district population centroids, trend surface analyses were applied to all three sets of medical incidence data.
Since only thirty-five points were involved a sixth order trend surface analysis accounted in every case, as might be expected with so few values, for more than 90 per cent of the variation in each case. Attempts to use the sixth order trend equation as a means of estimating the incidence rate at each enumeration district centroid proved to be illusory however, owing to the extreme instability of the surfaces at their edges. The trends proved to be ill-defined up to the fifth order, little more than 50 per cent of the variation being explained at this level. As a consequence the generated surfaces did not provide a satisfactory approximation to the true ones so that the centroid estimations, particularly at the edges of the region, were subject to gross distortions. The required centroid incidence rates were finally interpolated from contour maps generated for each of the three sets of school district data. Given the enumeration centroid populations it was then a short step to calculate the estimated demand over each of the 168 enumeration nodes (Appendix 1). Figure 16 gives the position of all the centroids (nodes) with respect to their appropriate schools districts, together with the locations of the three hospitals on the periphery of the region.
Medical Demand Network: Node and Potential Hospital Sites
A Measure of the Locational Efficiency of the Hospital System of South-East British Columbia

By the methods specified in the preceding section three medical demand networks were condensed from population census data and hospital separation tapes. Figure 16 provides the cartographic representation of these networks, each one consisting of the same 171 nodes, of which 52 were assigned the status of potential hospital sites including the 33 facilities which are currently in operation in this region. The choice of each potential location was simply made on the basis of including nearly every node in the network whose population exceeded 1000 people.

A short path matrix (see Appendix 2) was next prepared between every node and each potential site, the distance between each node and itself being assigned, where applicable, a value of one. In the first three runs (one for each medical category) the solution was constrained to locations currently operating in and at the periphery of the area. These constraints were relaxed in the second series of analyses, the objective being to test the ability of the median algorithm to find sets of locations for which the total patient mileage on the network was less than that given by the constrained solutions.

The results of these analyses (presented in Table 7) show that the median algorithm solutions were consistently better than the constrained ones to the extent of 15 to
<table>
<thead>
<tr>
<th>Category</th>
<th>Total Patient Miles</th>
<th>Constrained</th>
<th>Unconstrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td></td>
<td>89,021</td>
<td>76,494</td>
</tr>
<tr>
<td>Surgical</td>
<td></td>
<td>96,860</td>
<td>83,077</td>
</tr>
<tr>
<td>Maternity</td>
<td></td>
<td>32,288</td>
<td>26,149</td>
</tr>
</tbody>
</table>
20 percent in each case. Table 8 provides details on the different hospital sets obtained in each solution. Since the algorithm is heuristic in design there can be no guarantee that these patterns of locations are optimal, but a careful scrutiny of data and results suggest no obvious improvements and it is conjectured that the obtained solutions are at least close to the global minima. Note that the three peripheral locations of Chilliwack, Lillooet and 100 Mile House are dropped in the unconstrained solutions in each case. Actually, since these facilities are in viable locations with respect to the surrounding communities they serve outside the bounds of the specified region, the actual measure of locational inefficiency implicit in the results will be somewhat exaggerated.

Prediction of Actual Flow Patterns Within the Sub-Region

Although the results given by the median algorithm reflect favourably upon the intrinsic structural strength of the model formulation, its applicability to the problem at hand still requires some further justification. Implicit in the analysis so far has been the central position of distance, for it is upon this variable that the locational structure of the regional hospital system has been essentially assessed. Yet the significance of this factor as a determinant of the actual pattern of trip distributions still remains to be positively demonstrated for this
Table 8
COMPARISON OF CONSTRAINED AND UNCONSTRAINED LOCATION SYSTEMS

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Const. Solution</th>
<th>Unconstrained Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Medical</td>
</tr>
<tr>
<td>Golden</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Invermere</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kimberly</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cranbrook</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fernie</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Michel</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Creston</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kootenay Bay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kašlo</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nelson</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Salmo</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Trail</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rossland</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Castlegar</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>New Denver</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nakusp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grand Forks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Greenwood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osoyoos</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oliver</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Keremeos</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Penticton</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Summerland</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kelowna</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 8 cont'd.

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Const. Solution</th>
<th>Unconstrained Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Medical</td>
</tr>
<tr>
<td>Vermont</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Armstrong</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enderby</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Revelstoke</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Salmon Arm</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chase</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kamloops</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Barriere</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Merritt</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Princeton</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hope</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lytton</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ashcroft</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Clinton</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lillooet</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chilliwack</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>100 Mile Hs.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
example. To test this question the number of separations from each node at each of the 33 operating hospitals were aggregated by their school district designations, and then compared to the actual flow patterns condensed from the hospital tapes.

These results are shown in Table 9 in which the entries down each column are computed percentages obtained from solution of the expression \((a - b)/a \times 100\), where \(a\) is the number of separations from any school district and \(b\) is the sum of the deviations between actual and predicted separations over all hospitals. The overall results were encouraging to the extent that the range of prediction varied from a low of 72.9 per cent for surgical care to a high of 86.7 per cent for medical. These results tend to confirm that a fundamental role is played by accessibility in rural medical trip pattern generation, and so gives strength to the verification of the median algorithm as a tool for hospital location planning in the rural inter-urban context.

Not all flows over the region are distance determined however, as is shown by individual anomalies in the values of particular school districts. Consider the example of school district 8 where the computed values are 31 and -33.3 for medical and surgical care respectively. The negative values for surgical actually indicate that the sum of the flow deviations is greater than the actual number of
Table 9
FLOW PATTERN PREDICTION: DISTANCE MINIMIZING AND INTERACTANCE MODELS

<table>
<thead>
<tr>
<th>S.D.</th>
<th>Distance Minimizing Model</th>
<th>Gravity Interactance Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medical</td>
<td>Surgical</td>
</tr>
<tr>
<td>1</td>
<td>90.4</td>
<td>78.4</td>
</tr>
<tr>
<td>2</td>
<td>92.6</td>
<td>78.2</td>
</tr>
<tr>
<td>3</td>
<td>88.7</td>
<td>91.2</td>
</tr>
<tr>
<td>4</td>
<td>86.3</td>
<td>82.8</td>
</tr>
<tr>
<td>7</td>
<td>83.8</td>
<td>91.5</td>
</tr>
<tr>
<td>8</td>
<td>3.1</td>
<td>-33.3</td>
</tr>
<tr>
<td>9</td>
<td>83.5</td>
<td>45.3</td>
</tr>
<tr>
<td>10</td>
<td>41.5</td>
<td>-27.4</td>
</tr>
<tr>
<td>11</td>
<td>93.5</td>
<td>95.4</td>
</tr>
<tr>
<td>12</td>
<td>84.9</td>
<td>4.1</td>
</tr>
<tr>
<td>13</td>
<td>62.9</td>
<td>42.3</td>
</tr>
<tr>
<td>14</td>
<td>79.3</td>
<td>61.9</td>
</tr>
<tr>
<td>15</td>
<td>96.9</td>
<td>90.4</td>
</tr>
<tr>
<td>16</td>
<td>80.4</td>
<td>62.6</td>
</tr>
<tr>
<td>17</td>
<td>89.7</td>
<td>68.4</td>
</tr>
<tr>
<td>18</td>
<td>89.2</td>
<td>81.9</td>
</tr>
<tr>
<td>19</td>
<td>84.8</td>
<td>47.7</td>
</tr>
<tr>
<td>20</td>
<td>84.4</td>
<td>51.6</td>
</tr>
<tr>
<td>21</td>
<td>94.1</td>
<td>28.0</td>
</tr>
<tr>
<td>22</td>
<td>92.8</td>
<td>87.4</td>
</tr>
<tr>
<td>23</td>
<td>93.3</td>
<td>92.8</td>
</tr>
<tr>
<td>24</td>
<td>91.1</td>
<td>91.0</td>
</tr>
<tr>
<td>25</td>
<td>86.9</td>
<td>100.0</td>
</tr>
<tr>
<td>30</td>
<td>89.9</td>
<td>62.8</td>
</tr>
<tr>
<td>31</td>
<td>91.4</td>
<td>65.3</td>
</tr>
</tbody>
</table>
Table 9 cont'd.

<table>
<thead>
<tr>
<th>S.D.</th>
<th>Distance Minimizing Model</th>
<th>Gravity Interactance Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medical</td>
<td>Surgical</td>
</tr>
<tr>
<td>32</td>
<td>91.1</td>
<td>84.5</td>
</tr>
<tr>
<td>77</td>
<td>88.2</td>
<td>20.2</td>
</tr>
<tr>
<td>78</td>
<td>80.3</td>
<td>33.0</td>
</tr>
<tr>
<td>86</td>
<td>76.4</td>
<td>42.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>86.7</td>
<td>72.9</td>
</tr>
</tbody>
</table>
trips. This school district contains the following labelled
nodes 47, 58, 59, 60, 61 and 62, of which only the last two
are assigned to New Denver hospital. The other four are
directed south in each case to Castlegar which is approxi-
mately only one mile nearer than the larger facility at
Nelson. In fact more than 50 per cent of these separations
were treated at the Nelson facility. This illustrates
again the cardinal disadvantage of simple distance mini-
mizing models in situations where, for any area of patient
demand, more than one treatment centre provides a feasible
alternative for care. This type of situation occurs com-
paratively infrequently in this particular application
since the rural context of the study, where distances
between communities are relatively great, tends to reduce
the viable alternatives for patient care except in special
cases where treatment demands referral to those larger
hospitals where the requisite facilities are available.

Notwithstanding this caveat it is fair to say that,
for the purposes of optimizing trip distribution prediction,
the interactance model offers a potentially more fruitful
approach. The structure of this model is behaviourally
more realistic for it allows for the possibility of assign-
ing patient demand from any one area to more than one
hospital. A gravity model of the genre proposed by Huf
(1963) was accordingly structured to test for improved trip
distribution prediction, though it should be emphasized
again at this point that the interactance model is not at all suited for optimizing locations over a network, which is the central concern of this study. The Huff model is of the general form

\[T_{ij} = \left(\frac{p_j^g}{d_{ij}^m} \right) / \sum_{i=1}^{n} \left(\frac{p_j^g}{d_{ij}^m} \right) \cdot C_i \]

where \(T_{ij} \) is the flow from node \(i \) to hospital \(j \)

\(p_j \) is the size of hospital, measured here in terms of the number of separations treated.

\(d_{ij} \) is the distance from node \(i \) to hospital \(j \)

\(C_i \) is the estimated demand for treatment by medical category at node \(i \) and

\(g \) and \(m \) are best fitting exponential parameters determined empirically in this application.

The rationale for this model expressed as it is here in its simplest form is that, ceteris paribus, the trip distribution between any node and hospital can be expected to vary as a direct function of hospital size and as an inverse function of its accessibility measured in simple distance.

Application of this model to the data gave the following results. The parameter \(g \) was calculated to be 1.5, 2.3, and 1.4 for medical, surgical and maternity care respectively, while 5.5, 4.4, and 5.7 proved to be the best fitting values for \(m \). Aggregating the nodes by school district gave predictions of 89.6, 78.7 and 87.7 per cent for each of...
the three medical categories which, as Table 9 shows, proved
to be a slight improvement on the overall performance of the
distance minimizing model.

Inspection of the results for individual school
districts shows striking improvements for school district 8,
although for the surgical data the general increases were
sometimes less spectacular, remaining, on occasion, below
the thirty per cent predicted level. It is difficult to
provide satisfactory explanations for these particular
results without recourse to detailed knowledge of the
medical patterns and linkages over these areas. One of the
weaknesses of this interactance model application and indeed
of most such algorithms where the parameters are empirically
determined as is normally the case, is that there is usually
little a priori theoretical justification which can be
ascribed to the functions \(g \) and \(m \). The measure for hospital
size is at best a crude indicator and is certainly much
less satisfactory than one which might be inclusive of the
range and scope of facilities present at each institution.
Note too that the distance measure gives no recognition
at all to the particular professional linkages and patterns
of referral which might prevail over certain parts of the
region. Moreover it is somewhat limiting to suppose that
the exponential effect of distance decay incorporated into
this model is necessarily constant over its whole range.
Many decay functions display a rapid decline over the first
few miles and amore gradual tailing off thereafter. Indeed the interesting analysis of (Morrill and Kelley, 1970) seems to bear this out for hospital usage, and the functions they tested were certainly of a more varied and complex form than the simple exponential effect used here.

Although all these considerations are indicative of real weaknesses in this particular formulation, the obtained results nevertheless suggest that interactance structures are appropriate to this type of problem in this setting. Where possible however, the determination of a priori parameters based upon in-depth behavioural studies of the medical patterns of a region is certainly to be preferred to a posteriori parameters on both theoretical and practical grounds. Such an approach would surely help to clarify particular idiosyncracies such as those reflected in the lower predicted values of Table 9. However the acquisition of such detailed knowledge is both expensive and time consuming and for this application has lain beyond the scope of the analysis.

A Method for Estimating Optimal Plant Size Over the Current System of Hospitals in the Region

As a corollary to the main aims of this chapter, a method for testing and relocating the imbalance of capacity over existing hospitals on a network is suggested by combined usage of the median and interactance models. In this problem as formulated by Morrill and Kelley (1970), and as described in Chapter II, the aim is to redistribute capacity
(hospital size) over a given set of centres so that patient travel is minimized subject to the behaviourally more realistic constraints of an interactance model structure.

The Morrill-Kelley method begins with some given measure of hospital size, allocates patients with the interactance model among the set of hospitals, calculates a new set of sizes based upon these allocations, and continues the iteration until an acceptable level of divergence is obtained between two successive cycles. The method proposed here differs from this procedure in that the set of initial hospital sizes is not taken as given, but is derived from some measure, either directly or indirectly, based upon the prior assignment of each patient demand area to its nearest facility. It was suggested in Chapter II that this method should tend to give a better redistribution, and experiments with some small sample networks have shown this to be so on occasion.

The results of an analysis using both methods on the generated medical and surgical data proved however, to be inconclusive in this respect, since both algorithms converged to approximately the same solutions. Actually the measured improvement was less than 10 per cent in both cases, although the proposed method required slightly fewer (3 to 4) iterations to converge. Perhaps these results are not too surprising on a network where nearly every
incorporated community has its own hospital and where, as a consequence, the distribution of plant capacity is near optimum at the outset.
Chapter V
SUMMARY AND CONCLUSION

Rapid changes in medical technology and in the material expectations of societies over the last decade have created demands for fundamental changes in the organization of health care. A review of the pertinent literature over this period reveals a quickening interest in the concept of regional planning as a suitable framework within which to institute policies, made urgent by the gross inflationary nature of medical costs, and by the growing awareness of the marked discrepancies which exist in the receipt of medical care among various segments of the population. The translation of these desires into operational planning tools has been the focus of much on-going effort in recent years. Among the spatial components of this field the problem of designing efficient hospital location systems for rural and developing areas, where budgetary limitations place severe constraints upon the number of available facilities, has been deemed a matter of some significance (Lord Llewelyn-Davies, 1966).

The results of this study strongly suggest that in the inter-urban context at least, the role of accessibility
is of fundamental importance in conditioning the magnitude and direction of many patient to hospital trips. This fact gives some prior justification for considering hospital location as a particular case of the more generalized problem of finding the medians of a weighted graph subject to certain side constraints. An algorithm for estimating these medians was presented in some detail in Chapter III. The heuristics devised tentatively appear to be at least as successful as those of other numerical algorithms, and are computationally more feasible than many for the large scale problem. It is conjectured, though by inspection rather than definitive proof, that they will generally lead to convergence with optimal or near optimal solutions.

Improvements in the median algorithm can arise only from the development of more efficient partitioning and perturbation techniques. The partitioning procedures of this model seem to be particularly successful for breaking open the graph in ways which will tend to lead to subsequent rapid convergence. The perturbation techniques can certainly be improved, but only at the expense of considerably expanding the search pattern to take account of particular, and perhaps unusual, network designs. The wisdom of such an expansion must however, always be judged against the prime advantage of heuristic over exact solution methods, that of more rapid computational convergence over extensive
network structures. The partitioning procedures alone should converge to results sufficiently good for the majority of practical applications.

The application of the median algorithm to the current hospital system of South-East British Columbia suggests that the current pattern of locations is not an optimal one. The inefficiency of the present locational structure with respect to the minimization of patient travel over the area, amounts to at least 10 per cent for each of the three types of care considered. The disadvantage of the algorithmic mechanism in restricting patient assignments to only one area, can be tempered by modifying the trip distribution with some suitably designed interactance model which, as demonstrated here and previously by Morrill and Kelley (1970), is behaviourally more realistic in this sense. If resources permit, then the a priori estimation of the interactance parameters is theoretically to be preferred to empirically determined functions.

Interactance models cannot however, be used to solve the quest for direct multi-location optimization on a connected weighted graph. Distance minimizing algorithm of the genre proposed here seem to offer at present the best potential tool for such problems, if accessibility can be shown to be a key variable and its minimization the prime goal. The operational algorithm developed in this
study should provide one decision-making basis from which to test the feasibility of proposed future hospital locations within a rural context, and under a wide variety of potentially measurable constraints.
LITERATURE CITED

Battistella, R.M. Directions in Regional Planning, Mimeographed, (1966).

Berry, R.E. "Returns to Scale in the Production of Hospital Services," Health Services Research, 2 (1967), 123-139.

Bridgman, R.F. "Integration of the Organization of Medical Care into Health and Town Planning," World Hospital, 3 (1967) 50-53.

Hilleboe, H. "Health Planning on a Community Basis," Medical Care, 6 (1968), 203-214.

Kilsclonk, R. "Travelling Clinics Bring Care to Cardston," Canadian Hospital, 43 (1966), 39-41.

Kissick, W.L. "Planning Programming and Budgeting in Health," Medical Care, 5 (1967), 201-220.

Klarman, H.E. "Approaches to Moderating the Increases in Medical Care Costs," Medical Care, 7 (1969), 47-52.

Letourneau, C. "Regional Hospital Planning," Hospital Management, 99 (1965), 41-44.

Marrinson, R. "Hospital Service Areas," Hospitals, 38 (1964), 52-54.

Myers, R.S. "Areawide Planning for Hospitals Leads to Good Medical Services," The Modern Hospital, 97 (1961), 113-116.

Wahn, E.V. "Regional Hospital Planning: Voluntary or Compulsory?" *Hospital Administration in Canada*, 11 (1969), 58-60.

APPENDIX III

A Computer Program for Calculating all or Some of the Shortest Distances Through a Network (the Dantzig Algorithm)
C **
C *** THIS PROGRAMME COMPUTES SHORTEST PATHS THROUGH A NETWORK. FOUR
C *** OPTIONS ARE POSSIBLE
C *** A). ALL ORIGINS TO ALL DESTINATIONS
C *** B). ALL ORIGINS TO SOME DESTINATIONS
C *** C). SOME ORIGINS TO ALL DESTINATIONS
C *** D). SOME ORIGINS TO SOME DESTINATIONS
C *** N.B. SHORTEST PATHS TO ALL DESTINATIONS ARE, IN FACT COMPUTED BUT
C *** PRINTING IS SUPPRESSED FOR THOSE DESTINATIONS NOT SPECIFIED
C *** PUNCHED OUTPUT IS OPTIONED (IN FORMAT 8F10.2)
C *** THE CANTZIG ALGORITHM IS USED
C **
C *** N.B. NETWORK NODES SHOULD BE LABELLED IN SEQUENCE 1,...,N
C *** DECK SET UP AS FOLLOWS*****
C *** 1) PROBLEM NAME CARD MAXIMUM OF 72 COLUMNS
C *** 2) PROBLEM PARAMETER CARD
C *** A), COLS 1-3 NUMBER OF NODES IN NETWORK (N)
C *** B), COLS 4-6 NUMBER OF ORIGINS FROM WHICH SHORTEST PATHS ARE TO
C *** BE COMPUTED (NN)
C *** C), COLS 7-9 NUMBER OF DESTINATIONS TO WHICH SHORTEST PATHS ARE
C *** TO BE COMPUTED (MM)
C *** D), COL 10 PUNCH 1 FOR (A) SHORTEST PATH NETWORK SUMMARY TABLE
C *** AND (B) FOR SHORTEST PATH ROUTINGS. PUNCH 0 FOR
C *** OPTION (A) ONLY
C *** E), COL 11 PUNCH 1 IF PUNCHED OUTPUT IS OPTIONED
C *** F), COL 15 CONSECUTIVELY PUNCH IN 1 IF THIS IS THE LAST (OR
C *** ONLY) JOB IN THE RUN
C *** 3) READ IN CARD(S) CONTAINING THE LIST OF NODES FROM WHICH SHORT
C *** DISTANCES ARE REQUIRED. 4 COLS PER NODE, IF THE TOTAL NUMBER
C *** OF SUCH ORIGINS IS EQUAL TO THE TOTAL NUMBER OF NODES IN THE
C *** NETWORK (I.E. IF N=NN) THEN IGNORE THIS INSTRUCTION
C *** 4) READ IN CARD(S) CONTAINING THE LIST OF DESTINATIONS TO WHICH
C *** SHORTEST DISTANCES ARE REQUIRED. 4 COLS PER NODE, IF THE TOTAL
C *** NUMBER OF SUCH DESTINATIONS IS EQUAL TO THE TOTAL NUMBER OF
C *** NODES IN THE NETWORK (I.E. IF N=MM) THEN IGNORE THIS
C *** INSTRUCTION
C *** 5) READ IN CARD(S) CONTAINING THE DISTANCE EACH NODE (FROM WHICH
C *** ITSELF) 4 COLS PER NODE, THE LAST COLUMN OF WHICH IS A DECIMAL
C *** FRACTION GREATER THAN OR EQUAL TO ZERO. E.G. IF THE DISTANCE
C *** IS ZERO THEN PUNCH 0000 IF THE DISTANCE IS 1 THEN PUNCH 0010
C *** OR IF THE DISTANCE IS 1.5 THEN PUNCH 0015
C *** 6) VARIABLE FORMAT CARD FOR READING IN DISTANCES FROM EACH NODE
C *** TO ALL ADJOINING NODES. E.G. (5F5.0) MEANS A MAXIMUM OF 5 SUCH
C *** VALUES OR LESS IF THERE ARE FEWER CONNECTED NODES) PER CARD
C *** OF 5 DIGITS EACH
C *** 7) READ IN A VECTOR CONTAINING THE NUMBER OF NODES EACH
C *** INDIVIDUAL NODE IN THE NETWORK IS CONNECTED TO. N.B. A NODE IS
C *** NOT CONSIDERED TO BE CONNECTED TO ITSELF. 4 COLUMNS FOR EACH
C *** VALUE. READ IN ALL VALUES (20 PER CARD) IN SEQUENCE I =1,N
READ IN DATA CARDS AS FOLLOWS:
FOR EACH NODE I IN THE NETWORK IN REGULAR SEQUENCE BEGINNING
 WITH NUMBER 1
A), READ IN CARD(S) CONTAINING A LIST OF ALL THE NODES TO
WHICH NODE, I IS CONNECTED. 4 COLUMNS PER NODE. N.B. A NODE IS
NOT CONNECTED TO ITSELF.
B), READ IN CARD(S) UNDER THE SPECIFIED VARIABLE FORMAT CARD
WHICH CONTAIN THE DISTANCES FROM NODE I TO ALL NODES SPECIFIED
IN A(A).
REPEAT INSTRUCTIONS 8(A) AND 8(B) IN SEQUENCE FOR ALL NODES
I = 1,...,N

**

PROGRAMMER - P.A. WHITAKER - DEPARTMENT OF GEOGRAPHY, UNIVERSITY OF
BRITISH COLUMBIA, JANUARY 1970

**

DIMENSION STORE(1000),LABEL(1000),NORIG(1000),MDEST(1000)
DIMENSION KS(1000),NS(1000),JS(1000),LS(1000),ID(1000),MS(1000)
DIMENSION MD(1000),MIN(4000),IS(1000),IJ(1000),DS(1000),PROB(18)
DIMENSION FMT(20),NVEC(1000),DIST(1000)
EQUIVALENCE (STORE(1),MIN(1))
REAL LABEL

READ IN PROBLEM TITLE AND CONTROL CARD
2 FORMAT (3I3,2I1,121,12)
3 FORMAT (20I4)
11 FORMAT (1H1,16X,17HPROBLEM NAME....,18A4//)
13 FORMAT (7X,22HNO. OF NODES IN NETWORK,15/6X,23HNO. OF ORIGINS SPECIFIED,15/)
14 FORMAT (7X,22HNO. OF ORIGINS IN NETWORK,15/6X,23HNO. OF DESTINATIONS SPECIFIED,15/)
15 FORMAT (20A4)
17 FORMAT (20F4.1)
90 FORMAT (10X,31HDISCONNECTION IN NETWORK SYSTEM/10X,22HCURRENT ORIGIN IN NODE,15/10X,29HNOES LINKED BEFORE ERROR ARE,20I4/146X,20I4)
135 FORMAT (1X,6HORIGIN,3X,11HDESTINATION,3X,8HDISTANCE,7X,14HROUTED THROUGH/)
140 FORMAT (3X,14,6X,14,7X,F8.2,4X,22I4/140X,22I4)
147 FORMAT (1H)
155 FORMAT (73X,4HNODE,9X,27HSHORTEST PATH NETWORK TABLE/)
160 FORMAT (3X,12I10)
170 FORMAT (1X,12F10.2/17X,12F10.2)
175 FORMAT (15F6.0)
1 READ (5,11) (PROB(I),I=1,18)
READ (5,2) N,NN,MM,KSW,KJV,NT,LFIN
WRITE (6,13) (PROB(I),I=1,18)
WRITE (6,14) N,NN,MM
IF (NN.EQ.N) GO TO 12

READ IN VECTORS OF ORIGINS AND DESTINATIONS IF OPTIONED
READ (5,3) NORIG(I),I=1,NN
GO TO 5
12 DO 4 I =1,N
4 NOR(I) =I
5 IF (MM.EQ.N) GO TO 8
DO 6 I =1,N
6 MDEST(I) =0
READ (5,3) (MD(I), I =1,MM)
DO 7 I =1,MM
J =MD(I)
7 MDEST(J) =J
GO TO 10
8 DO 9 I =1,N
MD(I) =I
9 MDEST(I) =I
10 JJ =0
READ (5,17) (DIST(I), I =1,NN)
READ (5,15) (FMT(I), I =1,20)
READ (5,3) (NVEC(I), I =1,NN)
C ********* READ IN ADJOINING NODES AND LINK DISTANCES
DO 40 I =1,N
L =JJ
NT =NVEC(I)
READ (5,3) (KS(J), J =1,NT)
READ (5,FMT) (STORE(J), J =1,NT)
DO 20 J =1,NT
IF (KS(J).EQ.O) GO TO 25
JJ =JJ+1
IS(JJ) =I
IJ(JJ) =KS(J)
20 DS(JJ) =STORE(J)
C ********** ARRANGE EACH NODES LINKED NEIGHBOURS BY ASCENDING DISTANCE
C ******** ORDER
25 L =L+1
IF (L.EQ.JJ) GO TO 40
LJ =JJ-1
27 IND =1
DO 30 J =L,LJ
IF (DS(J+1).GE.DS(J)) GO TO 30
TEMP =DS(J+1)
NR =IJ(J+1)
DS(J+1) =DS(J)
IJ(J+1) =IJ(J)
DS(J) =TEMP
IJ(J) =NR
IND =J
30 CONTINUE
IF (IND-1)27,40,27
40 MS(I) =JJ
LV =0
DO 200 II =1,NN
C ********** INITIALIZE ARRAYS
K =0
DO 45 I = 1, N
LS(I) = MS(I) - K
K = MS(I)
ID(I) = 0
LABEL(I) = 10.0**10
R = 10.0**10
KK = N-RRG(I)
KR = KK
ID(KK) = 0
LABEL(KK) = 0.0
DO 50 I = 1, JJ
50 MIN(I) = 0
NK = N-1
C ********* COMPUTE SHORTEST PATH FOR SOME NODE
DO 100 IN = 1, NK
DO 65 I = 1, JJ
IF (IJ(I) .NE. KK) GO TO 65
MIN(I) = -1
65 CONTINUE
TM IN = 10.0**10
KV = 0
LL = 0
DO 80 IK = 1, N
L = LL + 1
LL = MS(IK)
IF (LABEL(IK) .EQ. R) GO TO 80
IF (LS(IK) .EQ. 0) GO TO 80
DO 70 I = L, LL
MJ = IS(I)
NJ = IJ(I)
IF (MIN(I) .NE. 0) GO TO 70
RMIN = LABEL(MJ) + DS(I)
IF (RMIN .GE. TMIN) GO TO 70
JR = 1
TMIN = RMIN
KK = NJ
KV = MJ
GO TO 30
70 CONTINUE
80 CONTINUE
IF (KV .NE. 0) GO TO 95
C ********* CHECK FOR DISCONNECTION
KK = 0
DO 85 IV = 1, N
IF (ID(IV) .EQ. 0) GO TO 85
KK = KK + 1
MIN(KK) = ID(IV)
85 CONTINUE
IF (KK .NE. 0) GO TO 87
KX = 1
MIN(KX) = KR
WRITE (6, 90) KR, (MIN(IV), IV = 1, KX)
GO TO 205

95 LABEL(KK) = TMIN
NS(IN) = KV
JS(IN) = KK
ID(KK) = IN
MIN(JR) = 1
100 CONTINUE

IF (KSW * EQ. 0) GO TO 150

C ************ TRACE SHORTEST PATH ROUTING
DO 145 JX = 1, N
IF (MDEST(JX).EQ.0) GO TO 145

K = ID(JX)
IF (K.EQ.0) GO TO 145
KS(1) = JS(K)
KS(2) = NS(K)
KK = 2
LL = K - 1
IF (LL.EQ.0) GO TO 125
DO 120 I = 1, LL
K = K - 1
IF (KS(KK).NE.JS(K)) GO TO 120
KK = KK + 1
KS(KK) = NS(K)
120 CONTINUE

C ************ REARRANGE ROUTINGS IN INCREASING DISTANCE FROM ORIGIN
125 J = KK + 1
DO 130 I = 1, KK
J = J - 1
130 MIN(I) = KS(J)
IF (KV.EQ.1) GO TO 133
KV = 1

C ************ PRINT OUT HEADINGS
WRITE (6, 147)
WRITE (6, 135)
133 WRITE (6, 140) KR, JX, LABEL(JX), (MIN(J), J = 1, KK)
145 CONTINUE

150 IF (KSW.NE.0) GO TO 153
153 WRITE (6, 155)
150 WRITE (6, 160) (MD(I), I = 1, MM)
162 J = 0

C ************ PRINT SHORTEST PATHS FROM ORIGINS TO SPECIFIED DESTINATIONS
DO 165 I = 1, N
IF (MDEST(I).EQ.0) GO TO 165
J = J + 1
165 CONTINUE
STORE(J) = LABEL(I)
IF (MDEST(I).EQ.NORIG(I)) STORE(J) = DIST(I)
165 CONTINUE
WRITE (6,170) KR, (STORE(I), I = 1, J)
IF (KJV.EQ.0) GO TO 200
WRITE (7,175) (STORE(I), I = 1, J)
200 CONTINUE
IF (LFIN) 205,1,205
205 STOP
END
APPENDIX IV

A Computer Program for Ward's Hierarchical Grouping Algorithm with Dendogram
PROGRAM HIERARCHICAL GROUPING

THIS PROGRAM PERFORMS A HIERARCHICAL GROUPING ANALYSIS ACCORDING TO A CRITERION (MINIMIZATION OF INCREMENT TO WITHIN GROUPS VARIATION AT EACH STEP) GIVEN BY J.H. WARD. SEE AMER STAT ASSOC J. PAGES 236-244, IT IS ADAPTED FROM A BASIC CODING BY D.J. VELDMAN IN "FORTRAN PROGRAMMING FOR THE BEHAVIOURAL SCIENCES" CHANGES ARE AS FOLLOWS

1), SINGLE DIMENSIONED ARRAYS ARE USED TO DOUBLE THE SIZE OF THE PROBLEM WHICH CAN BE HANDLED ON ANY MACHINE. ACCESSING THE I,J VALUES IN MATRIX A MAY BE FRACTIONALLY INCREASED AS A CONSEQUENCE.

2), COMPUTING TIME FOR LARGE PROBLEMS IS APPROXIMATELY HALVED. THIS IS ACHIEVED BY A), SHRINKING AT EACH STEP THE DOUBLE LOOP SEARCH IN WHICH THE NEXT GROUP IS JOINED AND B), BY ELIMINATING THE DOUBLE LOOP IN WHICH THE CURRENT MEMBERS OF EACH GROUP ARE FOUND, STORED, AND PRINTED.

3), A CONTIGUITY CONSTRAINT IS INCLUDED. TWO GROUPS ARE CONSIDERED CONTIGUOUS IF ANY MEMBER OF ONE GROUP IS CONTIGUOUS TO ANY MEMBER OF ANOTHER GROUP.

4), A DENDROGRAM IS PRINTED ON THE LINE PRINTER IF OPTIONED

DECK SET UP AS FOLLOWS

1), PROBLEM OR TITLE CARD. MAXIMUM OF 80 COLUMNS ALLOWED

2), PROBLEM PARAMETER CARD

3), IDENTIFICATION NUMBERS OF ALL N SUBJECTS MAY BE RUN CONSECUTIVELY FROM 1,...,N IF OPTIONED - 4 COLS

4), VARIABLE FORMAT CARD FOR DATA E.G. (2F6.2,3X,4F10.5)

5), DATA CARDS--THESE MUST BE READ IN IN VARIABLE ORDER I.E. READ IN AS AN N BY M MATRIX WHERE THE N ROWS ARE VARIABLES AND THE M COLUMNS ARE SUBJECTS

VARIABLES I I I I I I I I
C *** 6), CONTIGUITY MATRIX. READ IN ONE ROW AT A TIME
C *** PUNCH IN THE NUMBERS (LABELS) OF THOSE SUBJECTS TO WHICH EACH
C *** SUBJECT IS CONTIGUOUS. 4 COLS PER NUMBER. E.G IF SUBJECT NO 1
C *** IS CONTIGUOUS TO SUBJECTS 4 AND 7 THEN PUNCH IN 4 AND 7. IF THE
C *** MAXIMUM NUMBER OF SUBJECTS ANY SUBJECT IS CONTIGUOUS TO EXCEEDS 2
C *** THEN TWO OR MORE CARDS WILL BE REQUIRED FOR EACH SUBJECT
C ** DIMENSIONING INFORMATION **
C *** IF N EQUALS MAXIMUM SIZE OF PROBLEM WHICH CAN BE HANDLED ON ANY
C *** PROCESSOR (199 FOR 32K STORAGE) THEN DIMENSION SIZE OF
C *** ARRAY A MUST BE SET EQUAL TO AT LEAST ((N*N)+N)/2
C *** DIMENSION SIZE OF ALL OTHER ARRAYS MUST BE AT LEAST N*2
C *** DIMENSION SIZE OF ARRAY Khold MUST BE AT LEAST N*2
C ** ** **
C *** PROGRAMMER - R.A.WHITAKER - DEPARTMENT OF GEOGRAPHY, UNIVERSITY OF
C *** BRITISH COLUMBIA, APRIL 1969
C ** ** **
C ** ** **
DIMENSION DC (200) , KG (200) , W (200) , LC (200) , CONT (200)
DIMENSION LAM (200) , NC (200) , MC (200) , A (20000)
DIMENSION Khold(400), Kstore(200), FMT(20), TITL(20), ID(200)
EQUIVALENCE (CONT (1) , D (1))
FORMAT (313,311,13,11,14)
FORMAT (20A4)
FORMAT (1X,19HPROBLEM NAME **** ,20A4/14HNO. OF SUBJECTS,15/15HNO.
OF VARIABLES,I14)
FORMAT (1X,17HWITH CONTIGUITIES///)
FORMAT (1X,20HWITHOUT CONTIGUITIES///)
FORMAT (20A4)
FORMAT (/5H STEP,14,2X,14,1X,28HGROUPS AFTER COMBINING GROUP,14,10
1H AND GROUP,14,20X,10HERROR = F13,4,5X,10HCUMULATED = F14,4/
FORMAT (/1X,46HCOUNTING CRITERION PREVENTS FURTHER GROUPING)
FORMAT (8X,5HCOUNT,15,1X,1H(,13,1X,6HITEMS),12I4/(30X,12I4))
FORMAT (1HI)
C **************************** READ TITLE CARD AND PROBLEM PARAMETER CARD
READ (5,6) (TITL(I),I =1,20)
READ (5,1) NS,NV,KP,KS,KT,KCONT,ML,IJ,KK
NP =((NS*NS)+NS)/2
NH =NS*2
WRITE (6,600)
WRITE (6,9) (TITL(I),I =1,20),NS,NV
IF (KCONT .EQ. 0) GO TO 41
WRITE (6,42)
GO TO 45
C **************************** READ IDENTIFICATION NUMBERS IF OPTIONED
IF (IJ)144,447,44
DC 48 I =1,NS
ID(I) =1
C
GO TO 46
READ (5,52) (ID(I),I = 1,NS)
GO TO 46
READ (5,6) (FMT(I),I = 1,20)
IF (ML.EQ.0) ML =20
IF (KP.EQ.0) KP =NS-1
LX =0
LL =((NS*NS)+NS)/2
DO 3 I =1,LL
4 A(I) =0.0
L =0
DO 24 JJ =1,NV
C ********* READ IN SUBJECTS IN VARIABLE ORDER - STANDARDIZE VARIABLES
C ********* IF OPTIONED
READ (5,FMT) (D(J),J =1,NS)
IF (KS.EQ.0) GO TO 12
BSUM =0.0
SUM =0.0
DO 4 I = 1, NS
SUM =SUM+D(I)
4 BSUM = BSUM+((D(I)*D(I))
FM =NS
XBAR =SUM/FM
SBAR =XBAR*XBAR
STD =SQRT((BSUM/FM)-SBAR)
X =1.0/STD
DO 8 I =1,NS
8 D(I) =(D(I)-XBAR)*X
12 NG =NS-1
DO 17 I =1,NG
K =I+1
DO 17 J =K,NS
X =D(J)-D(I)
L =I+(J*J-J)/2
A(L) =A(L)+(X*X)
17 CONTINUE
24 CONTINUE
DO 32 I =1,NG
K =I+1
DO 32 J =K,NS
L =I+(J*J-J)/2
A(L) =A(L)+0.5
IF (A(L).EQ.0.0) A(L) =0.000001
32 CONTINUE
C ********** READ IN CONTIGUITY MATRIX STORE AS MINUS VALUES IN A
IF (KCONT.EQ.0) GO TO 55
DO 53 I = 1, NS
READ (5,52) (KG(J),J =1,ML)
DO 51 JJ =1,ML
IF (KG(JJ).LE.I) GO TO 51
J =KG(JJ)
LL =I+(J*J-J)/2
A(LL) = A(LL) * (-1.0)

51 CONTINUE
53 CONTINUE
55 NG = NS
 KN = NS

C *** INITIALIZE ARRAYS

DO 60 I = 1, NS
 KG(I) = I
 KSTORE(I) = 1
 MC(I) = I
 LAM(I) = I
60 W(I) = 1.0

C ******** OBTAIN NEXT GROUP TO BE JOINED

KZ = 0
 CUM = 0.0

65 NG = NG - 1
 IF (NG.EQ.0) GO TO 120
 X = 10.0**10
 KW = KN - 1
 DO 75 II = 1, KW
 I = MC(II)
 MJ = II + 1
 DO 70 JJ = MJ, KN
 LL = I + (J**2 - J)/2
 IF (KCONT.EQ.0) GO TO 67
 IF (A(LL) .GE. 0.0) GO TO 70
90 CONTINUE
 X = DX
 L = I
 M = J
70 CONTINUE
75 CONTINUE

C ******** CHECK WHETHER CONTIGUITY CRITERION (IF OPTIONED) PREVENTS
C ******** FURTHER GROUPING

IF (KCONT.EQ.0 .OR. X .NE. 10.0**10) GO TO 76
 WRITE (6,107)
 GO TO 120
76 KZ = KZ + 1
 CUM = CUM + X
 IF (KT .NE. 1) GO TO 77
 KJ = NS + KZ
 KHO(!KZ) = L
 KHO(!KJ) = M
 CONT(KZ) = X
77 WRITE (6, 80) KZ, NG, L, M, X, CUM
 LJK = W(L)

C ******** UPDATE GROUP MEMBERSHIP AND SET ARRAY FOR DENDOGRAM

C}
K = LAM(M)
GO 85 I = 1, NS
IF (KG(I) .NE. M) GO TO 81
KG(I) = L
LAM(I) = LAM(L)
KSTORE(I) = KSTORE(I) + LJK
GO TO 85
81 IF (LAM(I) .GT. K) LAM(I) = LAM(I) - 1
85 CONTINUE
IF (KCONT .EQ. 0) GO TO 89
C ****** ENSURE NEW GROUP HAS CONTIGUITIES OF ELIMINATED GROUP
DO 87 I = 1, NS
IF (M .GT. I) GO TO 8
LL = M + (I * I - 1) / 2
GO TO 83
82 LL = I + (M * M - M) / 2
83 IF (A(LL) .GE. 0.0) GO TO 87
IF (L .GT. I) GO TO 84
LL = I + (L * L - L) / 2
84 LL = I + (L * L - L) / 2
86 IF (A(LL) .LT. 0.0) GO TO 87
A(LL) = A(LL) * (-1.0)
87 CONTINUE
C ****** UPDATE ERROR POTENTIALS - NEW GROUP TO REMAINING GROUPS
89 WS = W(L) + W(M)
LL = L + (M * M - M) / 2
X = ABS(A(LL)) * WS
LJ = L * (L + 1) / 2
LS = M * (M + 1) / 2
Y = ABS(A(LJ)) * W(L) + ABS(A(LS)) * W(M)
A(LJ) = ABS(A(LL))
DO 95 I = 1, NS
IF (I .EQ. L .OR. KG(I) .NE. I) GO TO 95
LL = I * (I + 1) / 2
XY = ABS(A(LL)) * W(I)
IF (I .GT. L) GO TO 88
LL = I + (L * L - L) / 2
LS = I + (M * M - M) / 2
GO TO 91
88 IF (I .LT. M) GO TO 90
LL = L + (I * I - I) / 2
GO TO 91
90 LL = L + (I * I - I) / 2
LS = I + (M * M - M) / 2
IF (A(LL) .LT. 0.0) GO TO 93
A(LL) = ATEMP
GO TO 95
C* REWRITE ARRAY OF REMAINING GROUPS SANS THE ONE JUST ELIMINATED

JJ = 0

DO 92 **I** = 1, **KN**

IF (**MC**(**I**) .EQ. **M**) **GO TO** 92

JJ = **JJ** + 1

MC(**JJ**) = **MC**(**I**)
J = **MC**(**I**)
NC(**JJ**) = **W**(**J**)

92 CONTINUE

KN = **KN** - 1
IF (**NG** .GT. **KP**) **GO TO** 65

C* ORDER MEMBERS OF EACH GROUP READY FOR PRINTING

JJ = 0

DO 96 **I** = 1, **KN**

LL = **NC**(**I**)
JJ = **JJ** + 1

96 CONTINUE

J = **LAM**(**I**)
K = **NC**(**J**)
LC(**K**) = **I**

100 NC(**J**) = **K** + 1

C* PRINT GROUP MEMBERSHIP

JJ = 0

DO 115 **I** = 1, **KN**

J = **JJ** + 1
JJ = **NC**(**I**) - 1

L = (**JJ** - **J**) + 1

IF (**L** .LE. 1) **GO TO** 115

LL = **LC**(**J**)
IF (**IJ** .EQ. 0) **GO TO** 114

DO 112 **K** = **J**, **JJ**

LJ = **LC**(**K**)
112 CONTINUE

LC(**K**) = **ID**(**LJ**)
114 WRITE (6, 110) **LL**, **L**, (**LC**(**LJ**), **LJ** = **J**, **JJ**)

115 CONTINUE

GO TO 65

120 IF (**KT** .NE. 1) **GO TO** 135

NY = **NS** - **NG**
IF (**NG** .NE. 0) **GO TO** 145

C* SET UP READY FOR DENDOGRAM - GROUPING COMPLETE

DO 130 **I** = 1, **NY**

LL = **KSTORE**(**I**)
KG(**LL**) = **I**

130 CONTINUE

GO TO 138

C* SET UP READY FOR DENDOGRAM - GROUPING INCOMPLETE DUE TO CONTIGUITY

C* CRITERION
Subroutine TREE

Function: This subroutine prints a dendogram on the line printer.

Variable Requirements:
- **DATA** (NP)
- **IMT** (29)
- **F_SPEC** (8)

Format Strings:
- **1 FORMAT** (14, 15(4X, I4))
- **2 FORMAT** (5X, 13(ITEMS GROUPED, 6X, 13(4X, I4))
- **3 FORMAT** (26X, 13(4X, I4))
- **16 FORMAT** (1X, 4HSTEP, 4X, 1HI, 4X, 1HJ, 4X, 5HERROR, 4X, 13(4X, I4))
- **17 FORMAT** (30X, 13(4X, I4))
- **20 FORMAT** (3X, 129(AI))
- **25 FORMAT** (2X, 14, 15(4X, I4))
- **26 FORMAT** (16(4X, I4))
- **27 FORMAT** (2X, 16(4X, I4))
- **32 FORMAT** (29X, A1)
- **34 FORMAT** (29X, A1, 1X, 101(AI))
- **55 FORMAT** (1HI)

Initialization:
- **LJ** = 0
- **DO 160 I = 1, NS**
 - **IF (KG(I).NE.1) GO TO 160**
 - **L** = 0
 - **DO 150 J = 1, NS**
 - **IF (KG(J).NE.1) GO TO 150**
 - **L** = L + 1
 - **NJ** = KSTORE(J)
 - **LC(NJ) = J**
 - **CONTINUE**
 - **DO 155 J = 1, L**
 - **LJ = LJ + 1**
 - **LAM(LJ) = LC(J)**
 - **CONTINUE**
 - **CALL TREE (A, NY, LJ, NP, NH, NS, MC, LAM, CONT, KHOLD)**
- **GO TO 135**
- **CALL TREE (A, NY, NS, NP, NH, NS, MC, KG, CONT, KHOLD)**
- **IF (KX.NE.1) GO TO 7**

End Subroutine TREE
KJ = LMJ / 2
KL = LJR / 2
FORM = 10.0
NL = KJ

IF (NL .LE. KJ) NL = N
WRITE (6, 55)

IF (LX .GE. L - 2) GO TO 19
MJ = LX
GO TO 13

19 MJ = L

13 IF (MRJ .NE. 1) GO TO 21
KW = LMJ

C ******** PRINT OUT HEADINGS
WRITE (6, 2) (KG(I), I = 1, NL, 4)
WRITE (6, 3) (KG(I), I = 2, NL, 4)
WRITE (6, 16) (KG(I), I = 3, NL, 4)
WRITE (6, 17) (KG(I), I = 4, NL, 4)
GO TO 22

21 NL = KJ + 1
KJ = KJ + KL

IF (KJ .GE. N) KJ = N
KW = LJR
WRITE (6, 1) (KG(I), I = NL, KJ, 4)
JJ = NL + 1
WRITE (6, 25) (KG(I), I = JJ, KJ, 4)
JJ = JJ + 1
WRITE (6, 26) (KG(I), I = JJ, KJ, 4)
JJ = JJ + 1
WRITE (6, 27) (KG(I), I = JJ, KJ, 4)

C ******** SET UP ARRAY ORDER FOR PRINTING
22 JS = 0
DATA(L) = JX
GO TO 40
9 JS = JS + 1
K = 0
L = 0

DO 5 I = 1, N
J = KG(I)
L = L + 1
JOKE(J) = L
DATA(L) = JW
L = L + 1
DATA(L) = JV
5 CONTINUE
L = L + 1
DATA(L) = JX

C *** OBTAIN NEXT LINE FOR PRINTING
14 K = K + 1
IF (K .GT. NJ) GO TO 40.
KP = NS + K
KM = KHOLO(K)
KK = K_HOLD(KP)
LL = (JOKE(KK) - JOKE(KM)) - 1
LS = JOKE(KM) + 1
LJ = (LS + LL) - 1
DO 10 I = LS, LJ
10 DATA(I) = JY

C ******** OBTAIN APPROPRIATE FORMAT AND PRINT LINE
IF (MRJ .NE. 1) GO TO 28
IF (CONT(K .LT. FORM) GO TO 80
NM = NM + 1
IMTQ3) = FSPEC(NM)
FORM = FORM + 10.0

80 WRITE (6, IMT) K, KM, KK, CONT(K), JX, (DATA(I), I = 1, MJ)
GO TO 11
28 WRITE (6, 20) (DATA(I), I = MRJ, MJ)

C *** CHANGE INDEXES MODIFY LINE
LS = LS - 1
LJ = LJ + 1
DO 12 I = LS, LJ
12 DATA(I) = JY
LS = (LL/2) + 1
JOKE(KM) = JOKE(KM) + LS
LS = JOKE(KM)
DATA(LS) = JY
GO TO 14

C ******** CHECK LINE STATUS WITH RESPECT TO BORDERS AND MODIFY ARRAYS
JJ = MJ - 1
LJ = MRJ + 1
IF (MRJ .NE. 1) GO TO 37
IF (NL .GT. KJ) GO TO 56
DO 43 I = 1, JJ
43 DATA(I) = JY
WRITE (6, 34) JX, (DATA(I), I = 1, MJ)
GO TO 65
56 WRITE (6, 32) JX
65 IF (JS .EQ. 9, 85)
37 IF (LX .GE. L - 2) GO TO 42
WRITE(6, 20) JY
GO TO 800
42 DO 31 I = MRJ, JJ
31 DATA(I) = JY
WRITE (6, 20) (DATA(I), I = MRJ, MJ)
800 IF (JS .EQ. 0) GO TO 9
85 DO 33 I = MRJ, MJ, 2
33 DATA(I) = JX
DO 70 I = LJ, MJ, 2
70 DATA(I) = JY
IF (MRJ .NE. 1) GO TO 39
WRITE (6, 34) JX, (DATA(I), I = 1, MJ)
GO TO 33
39 WRITE (6, 20) (DATA(I), I = MRJ, MJ)
38 IF(LX. GE. L-2) GO TO 41
C ******** SET UP INDICES FOR NEXT SECTION OF ARRAY
 MRJ = MRJ + KW
 LX = LX + LJR
GO TO 4
41 RETURN
END
APPENDIX V

An Algorithm for the Graphical Generation of a Dendogram From any Stepwise Hierarchical Grouping Method

Graphical display and even interpretation of the results of any type of stepwise hierarchical linkage analysis can frequently be enhanced by the presentation of the completed grouping in the form of the familiar tree graph or dendogram. An algorithm for achieving this goal is presented in this appendix.

The basic objective is to determine a unique positioning of the ordered groups such that in the descendent tree projected from this ordering no horizontal span (line), which bridges the vertical branches representing the junction of two groups at some step in the linking process, will intersect the span of some other pair of groups joined at any prior or subsequent stage in the generation of the dendogram. This goal will be assisted by the convention that on the completion of the grouping of any pair of groups i and j into a single member group i, all current members of the jth group will be given the label i. For a complete stepwise linkage of n subjects
some n-1 steps, or pairs of groups, will be generated.

To clarify the algorithmic procedure the following definitions will be made at the outset.

For any step in the grouping procedure

a) Let C be some vector in which is stored the file of the number of members each group currently contains. Any element \(c_k, k=1, \ldots, n \) will therefore be the number of subjects in group \(k \).

b) Let A be a singly dimensioned array which labels the group to which each of the \(n \) subjects belongs. Thus the value contained in the \(k^{th} \) cell of array A, \(k=1, \ldots, n \), is the group to which the \(k^{th} \) subject is currently assigned.

c) Let B be some array in which each of the \(k \) elements, \(k=1, \ldots, n \), contains an index referencing the order in which that subject (the \(k^{th} \) subject) joined the group wherein it is currently located.

The algorithm for obtaining the required unique ordering of all n-1 paired groupings may be described in the following steps.

1. Initialize arrays A, B, and C as follows:
Set the \(k^{th} \) element in A equal to \(k \). That is \(a_k=k \) for all \(k=1, \ldots, n \). Set all \(n \) elements of arrays B and C equal to 1.
2. Let i and j be the two groups joined at some (beginning with the first) step in the grouping analysis. Note that because of the aforementioned convention the label denoting group i is always < j.

3. Let \(\lambda = c_i \), the number of groups currently assigned to group i.

4. Scan all n elements in A, \(k=1, \cdots, n \), and for any element in A which satisfies the condition \(a_k = j \)
 (a) Set \(a_k = i \), which updates membership in group i and
 (b) adjust the \(k^{th} \) element of B as follows:
 Let \(m = b_k \) and reset \(b_k \) such that:
 \[b_k = \lambda + m = m + c_k. \]

5. Increment the number of members in group i by the number of members in group j so that \(c_i = c_j + \lambda \).
 Repeat steps 2 to 5 for a total of \(n-1 \) iterations.

6. Redefine j to be some index, initially set equal to zero, and generate a new array D with n elements, which will contain the ordered positioning of the groups as sought.

7. Increment j by 1. Let i be the index stored in the \(j^{th} \) cell of B, so that \(i = b_j \). Now set \(d_i = j \).

8. Repeat step 7 \(n \) times.
To illustrate this algorithm consider the problem of generating a dendogram from the stepwise hierarchical grouping of 6 subjects labelled consecutively 1 through 6. Suppose further that the following groups are paired in each of the n-1 steps: i) groups 1 and 6, ii) groups 3 and 4, iii) groups 2 and 5, iv) groups 1 and 2, and v) groups 1 and 3. The unique positioning of the ordered pairs for the generation of the dendogram from this stepwise grouping is illustrated in Figure 17. Figure 18 shows a 40 subject dendogram compiled from a set of data grouped by the well known Ward (1963) algorithm.
| Step | Groups | ℓ | $|A|$ | $|B|$ | $|C|$ |
|------|----------|--------|------|------|------|
| 1 | 1 and 6 | 1 | 123456 | 111111 | 111111 |
| 2 | 3 and 4 | 1 | 12351 | 111212 | 212010 |
| 3 | 2 and 5 | 1 | 12321 | 111222 | 222000 |
| 4 | 1 and 2 | 2 | 11311 | 131242 | 402000 |
| 5 | 1 and 3 | 4 | 111111 | 135642 | 600000 |

$|D| = 162534$

Figure 17: Illustration of Dendogram Algorithm for a 6 Subject Example.
Figure 17

Graphical Display of a 40 Subject Dendogram
Grouped by the Ward Algorithm
APPENDIX VI

A Computer Program for Estimating the Medians of a Weighted Graph Subject, if Optioned, to Side Constraints

*N.B. A much shorter and faster program of this algorithm which incorporates only the most effective of the various heuristic alternatives, and which does not evaluate combinatorial equalities if they occur, is nearing completion and will be available on request from the Department of Geography, University of British Columbia.
THIS PROGRAM ESTIMATES THE P MEANS (P LOCATIONS) OF A WEIGHTED GRAPH SUBJECT IF OPTICIOED, TO CERTAIN SIDE CONSTRAINTS. SOLUTIONS WILL BE OPTIMAL OR NEAR OPTIMAL.

METHOD: SEE AN ALGORITHM FOR ESTIMATING THE MEANS OF A WEIGHTED GRAPH SUBJECT TO SIDE CONSTRAINTS. DEPARTMENT OF GEOGRAPHY UNIVERSITY OF BRITISH COLUMBIA 1971.

N.B. NETWORK NODES SHOULD BE LABELLED IN SEQUENCE 1,...,N.

DECK SET UP AS FOLLOWS:

A) PROBLEM TITLE CARD MAXIMUM OF 80 COLUMNS ALLOWED

B) CONTROL CARD

1. COLS 1-3 NUMBER OF NODES ON THE NETWORK (N)

2. COLS 4-6 NUMBER OF POTENTIAL LOCATION SITES (M)

3. COLS 7-9 NO. OF NODES TO BE FORCED INTO THE SOLUTION IF ANY

4. COL 10 THIS CONTROL SPECIFIES THE MAJOR PROGRAM OPTION:
 1. PUNCH 1 FOR THE CLASSICAL PLANT LOCATION PROBLEM. HERE THE VALUE OF P IS UNKNOWN AND BOTH PLANT AND TRANSPORT COSTS OBTAIN. BEGINNING AT A SPECIFIED LOWER BOUND (SEE INSTRUCTION K1) P IS INCORPORATED AT EACH STEP UNTIL THE P+1 SOLUTION HAS A TOTAL COST > THAN THAT OF THE P SOLUTION
 2. PUNCH 2 FOR STATIC LOCATION OPTION WHERE THE VALUE(S) OF P ARE PRE-DETERMINED BY THE USER. (SEE INSTRUCTION K2)
 3. PUNCH 3 FOR DYNAMIC LOCATION BACKWARD RECURSIVE OPTION
 4. PUNCH 4 FOR DYNAMIC LOCATION FORWARD RECURSIVE OPTION

5. COLS 11-12 THIS CONTROL SPECIFIES THE NUMBER OF MEDIAN INDICATORS THE PROGRAM EXPECTS TO BE READ IN. IT IS DEPENDENT UPON THE VALUE PUNCHED IN COLUMN 10 AS FOLLOWS;
 1. IF COLUMN 10 CONTAINS 1 THEN PUNCH IN 1
 2. IF COLUMN 10 CONTAINS 2 THEN PUNCH IN THE NUMBER OF MEDIAN TO BE COMPUTED E.G. A 3 WOULD INDICATE THAT THE PROGRAM EXPECTS TO READ IN 3 CALCULATE 3 SEPERATE MEDIAN VALUES
 3. IF COLUMN 10 CONTAINS 3 OR 4 THEN PUNCH IN 2
 4. IF COLUMN 10 CONTAINS 5 OR 6 THEN PUNCH IN 3

6. COL 13 PUNCH 1 IF PLANT SIZE UPPER BOUNDS ARE OPTIONED (MA)

7. COL 14 PUNCH 1 IF A MAXIMUM DISTANCE CONSTRAINT (FROM EACH NODE TO SOME SOURCE) IS OPTIONED (KY)

8. COL 15 PUNCH 1 IF PLANT COSTS ARE INCLUDED IN THIS RUN (MY)

9. COL 16 THIS CONTROL OPTIONS A USER SUPPLIED WEIGHTING SYSTEM FOR PARTITIONING THE GRAPH IF THE USER DOES NOT WISH TO RELY SOLELY UPON THOSE GENERATED BY THE ALGORITHM. THE MAXMIN PARTITIONING CRITERION IS USED. PUNCH 0 IF THIS OPTION IS NOT SPECIFIED—PUNCH 1 IF EXTENDED (ROW BY ROW) SEARCH IS REQUIRED

10. COL 17 PUNCH 1 IF USER SUPPLIED DATA SUBROUTINE IS TO BE CALLED. SEE SECTION ON USER SUPPLIED SUBROUTINES (MY)

11. COL 18 PUNCH 1 IF USER SUPPLIED SUBROUTINE FOR REESTIMATING UNIT TRANSPORT COSTS IS CALLED. SEE USER SUPPLIED SUBROUTINES

12. COL 19 FIRST PARTIONING HEURISTIC OPTION—THE SINGER CRITERION—PUNCH 0 IF EXTENDED (ROW BY ROW) SEARCH IS...
REQUIRED - PUNCH 1 FOR SHORT SEARCH PATTERN - PUNCH 2 TO EXCLUDE THIS HEURISTIC OPTION

13. COL 20 SECOND PARTITIONING HEURISTIC OPTION PUNCH 0 IF EXTENDED SEARCH (ROW BY ROW) SEARCH IS REQUIRED. PUNCH 1 FOR SHORT SEARCH PATTERN - PUNCH 2 TO EXCLUDE THIS HEURISTIC OPTION

14. COL 21 THIRD PARTITIONING HEURISTIC OPTION - WEIGHT SHIFT ELIMINATION METHOD-PUNCH 0 TO INCLUDE THIS HEURISTIC PUNCH 1 TO EXCLUDE IT

15. COL 22 FOURTH PARTITIONING HEURISTIC-WEIGHTED VERSION OF COOPERS METHOD- PUNCH 0 TO INCLUDE THIS HEURISTIC PUNCH 1 TO EXCLUDE THIS HEURISTIC

SOME COMMENTS ON THE ABOVE CHOICES. FROM ONE TO ALL OF THE SPECIFIED METHODS MAY BE USED TO GIVE THE INITIAL START.

16. COL 23 PUNCH 0 IF ALL COMBINATIONS OF EQUIDISTANT NODES (NODES EQUIDISTANT FROM MORE THAN ONE CURRENT MEDIAN) ARE TO BE EVALUATED DURING COMPUTATION. MAXIMUM NUMBER CONSIDERED IS RESTRICTED. PUNCH 1 TO EXCLUDE ALL COMBINATIONS SEARCH OPTIONED PUNCH AS FOLLOWS: 1 IF THIS IS IN ADDITION TO PROGRAM GENERATED BEGINNING SETS OR 2 WITHOUT THE PROGRAM GENERATED SETS. N.B. THIS OPTION IS ONLY ALLOWABLE IF COLUMN 10 IS NOT VIOLATED

17. COL 24 IF USER SUPPLIED GUESS AT OPTIMAL SOLUTION IS OPTIONED PUNCH AS FOLLOWS: 1 IF THIS IS IN ADDITION TO PROGRAM ACTIVATED, PUNCH 1 IF THE SECOND SET OF PLANT COST HEURISTICS IS TO BE IGNORED.

18. COL 25 LEAVE BLANK IF PLANT COSTS ARE NOT OPTIONED OR IF THEY ARE AND BOTH SETS OF PLANT COST HEURISTICS ARE TO BE

19. COL 26 LEAVE BLANK IF THE PLANT SIZE CONSTRAINT OPTION...
IS NOT SPECIFIED. IF IT IS OPTIONED THEN PUNCH 0 TO ACTIVATE BOTH SETS OF PLANT SIZE CONSTRAINT HEURISTICS. PUNCH 1 TO ACTIVATE THE FIRST SET ONLY; PUNCH 2 TO ACTIVATE THE SECOND SET ONLY. —N.B. THE SECOND SET IS SLIGHTLY TO BE PREFERRED TO THE FIRST.

20. COL 27 LEAVE BLANK IF DYNAMIC LOCATION OPTION IS NOT SPECIFIED. PUNCH 1 IF A DIFFERENT SET OF MARKET DEMANDS (NODE WEIGHTS) IS TO BE READ IN FOR EACH TIME PERIOD —IF NOT PUNCH (21. COL 28 LEAVE BLANK IF DYNAMIC LOCATION OPTION IS NOT SPECIFIED. PUNCH 1 IF A DIFFERENT SET OF TRANSPORT COSTS (DISTANCES) IS TO BE READ IN FOR EACH TIME PERIOD — OTHERWISE LEAVE BLANK.

22 COL 29 LEAVE BLANK IF DYNAMIC LOCATION OPTION IS NOT SPECIFIED. PUNCH 1 IF A DIFFERENT SET OF PLANT COSTS IS TO BE READ IN VIA SUBROUTINE DATA (SEE SECTION ON USER SUPPLIED SUBROUTINE) FOR EACH TIME PERIOD — OTHERWISE LEAVE BLANK.

23. COLS 30-39 MAXIMUM COST BUDGET CONSTRAINT ON THE TOTAL SYSTEM IF OPTIONED. ONLY SOLUTIONS FOUND SATISFYING THIS ARE PRINTED.

24. COL 40 PUNCH 1 IF THIS IS THE LAST (OR ONLY) JOB IN THE RUN. C). READ IN THE NODE DESIGNATIONS (LABELS) OF ALL THE POTENTIAL LOCATION SITES — 4 COLS PER NODE. IGNORE THIS INSTRUCTION IF ALL NETWORK NODES ARE POTENTIAL PLANT SITES.

D). READ IN THE LIST OF NODES TO BE FORCED INTO SOLUTION IF ANY N.B. THESE NODES MIGHT LABEL AN EXISTING SYSTEM OF LOCATIONS TO WHICH NEW SOURCES ARE TO BE ADDED. ALTERNATIVELY THEY WILL REFLECT SOME A PRIORI REASONS WHICH REQUIRE A CERTAIN PLANT(S) TO BE IN SOLUTION.

E). READ IN VARIABLE FORMAT CARD FOR PLANT SIZE UPPER BOUNDS IF OPTIONED E.G. (10F5.1)

F). READ IN PLANT SIZE UPPER BOUNDS UNDER THIS FORMAT IF OPTIONED G). READ IN VARIABLE FORMAT CARD FOR MAXIMUM DISTANCE CONSTRAINT IF OPTIONED.

H). READ IN MAXIMUM DISTANCE VALUES IF OPTIONED UNDER THIS FORMAT IF OPTIONED.

I). READ IN VARIABLE FORMAT CARD FOR USER SUPPLIED WEIGHTING SYSTEM FOR INITIAL PARTITIONING IF OPTIONED.

J). READ IN THE USER SUPPLIED WEIGHTS UNDER THE SPECIFIED FORMAT IF OPTIONED.

K). READ IN A VECTOR (4 COLS PER NODE) WHICH CONTAINS THE VALUES OF ALL LOCATION(S) TO BE COMPUTED. THIS WILL BE DEPENDENT UPON THE VALUES PREVIOUSLY PUNCHED UNDER INSTRUCTIONS 84(COL 10) AND 85(COLS 11-12).

1. IF COL 10 IS PUNCHED 1 THEN PUNCH THE LOWER BOUND STARTING POINT FOR INCORRECTION OF THE VALUES OF P. E.G. A 2 WOULD INSTRUCT THE PROGRAM TO BEGIN WITH THE 2 MEDIAN SOLUTION AND INCREMENT THE VALUE OF P SUCCESSIVELY UNTIL THE P+1 SOLUTION EXCEEDS THE P SOLUTION AT WHICH TIME EXECUTION TERMINATES.

2. IF COL 10 IS PUNCHED WITH A 2 THEN THE PROGRAM EXPECTS TO COMPUTE AS MANY MEDIAN AS ARE SPECIFIED IN COLS 11-12. E.G.

IF THIS IS 3 THEN 3 MEDIAN VALUES WILL BE READ IN. SUPPOSE THESE TO BE 4, 7 AND 9 THEN THE 4, 7 AND 9 MEDIAN LOCATIONS OF THE NETWORK WILL BE COMPUTED.
3. If COL 10 is punched 3 then the program expects to read in 2 median values; an upper starting and lower finishing value respectively - in that order. E.g. if these values were 7 and 2 then the program would compute the 7 median solution first followed by the 6 median solution - (chosen from among the previous 7), and so on down to the 2 median solution.

4. If COL 10 is punched 4 then the program expects to read in 2 median values; a lower starting and upper finishing value respectively - in that order. E.g. if these values were 2 and 7 then the program would compute the 2 median solution first followed by the 3 median solution - (containing the 2 medians found in the previous step as forced nodes) and so on up to the 7 median solution.

L). Read in variable format card for reading in unit transport costs (short paths) from each node to all potential medians.

M). Read in the shortest path matrix under the specified format.

N.B. ***WARNING*** There will be N rows, one for each network node and M columns, one for each potential plant site. The J th column in the A(I,J) short path matrix must reference the distance from node I to the J th node specified in the list of potential plant sites (see C). E.g. element A(1,5) must be the distance from the first node to the fifth member of the subset of potential plant sites. Furthermore to save storage it is assumed that the short path matrix is symmetric i.e. the distance from node I to node J must be the same as from node J to node I for each such pair of elements in the matrix.

If this is not so the program will require some modification.

With matrix A redefined as a doubly dimensioned array.

N.B. If dynamic location is optioned see instruction R first.

N). Read in variable format for node (market) demands (weights).

P). Read in market demands (node weights) under format specified.

Q). Read in plant cost functions via subroutine data if optioned.

N.B. If dynamic location is optioned see instruction R first.

R). Ignore this instruction if 1), the dynamic location option is not specified or 2), if it is but only one set of transport costs (distances), node weights, and plant costs (if optioned) is to be read in. Otherwise repeat instructions L-Q for each time period where applicable. E.g. a 3 time period solution with different transport cost (i.e. short path) matrices and node weights (one set for each period) will require repetition of instructions L-P three times for a single set of transport.

C). Read in costs, but different node weights for all three periods carry.

CUT INSTRUCTIONS L AND M ONCE BUT N AND P THREE TIMES.

N.B. ***WARNING*** The ordering by which the different sets are read in is dependent upon whether the forwards or backwards recursion procedure is optioned. For a forwards recursion the first set(s) read in must refer to time period 1, the second set to time period 2, and the last set to the last time period. For the backwards recursion this ordering is reversed. The first set(s) read in must refer to the last time period, the second set to the second to last time period, and the last set to the first time period.

S). Read in user supplied guess at optimal solution if optioned.
C *** ALLOW 4 CJLS PER NODE. READ IN AS MANY SETS AS ARE SPECIFIED
C *** BY THE MEDIAN VALUE GIVEN IN COL 11-12. N.B. THIS OPTION IS
C *** ALLOWABLE ONLY IF COL 10 IS PUNCHED WITH A 2.
C *** USER SUPPLIED SUBROUTINES ***********
C *** THE FOLLOWING 2 SUBROUTINES MUST BE DEFINED BY THE USER IF PLANT
C *** COSTS ARE INVOKED.
C *** 1) SUBROUTINE DATA ---
C *** THIS SUBROUTINE IS USED TO READ IN PLANT COST FUNCTIONS FOR
C *** EACH POTENTIAL PLANT SITE WHERE THE FUNCTIONS VARY AMONG PLANT:
C *** CONSIDER THE FOLLOWING EXAMPLE: SUPPOSE EACH POTENTIAL SITE HAS:
C *** A COST FUNCTION OF THE FORM Y= A+BX WHERE A AND B ARE CONSTANT!
C *** X VARIES ACCORDING TO PLANT SIZE AND THERE ARE 10 SUCH SITES
C *** SUBROUTINE DATA
C *** COMMON DAT (2,10)
C *** DO 5 I =1,10.
C *** READ (5,1) A,B
C *** 1 FORMAT (2F5.2)
C *** DAT(1,1) =A
C *** DAT(2,1) =B
C *** 5 CONTINUE
C *** RETURN.
C *** END
C *** IN THE FIRST ROW OF MATRIX DAT ALL THE A CONSTANTS ARE STORED
C *** IN THE SECOND ROW OF MATRIX DAT ALL THE B CONSTANTS ARE STORED
C *** THE CONTENTS OF DAT ARE TRANSFERRED TO SUBROUTINE COST BY THE
C *** COMMON STATEMENT
C *** N.B. THIS SUBROUTINE CAN BE SUPPLIED AS A DUMMY PROVIDING THE
C *** PLANT COST FUNCTIONS ARE IDENTICAL FOR ALL PLANTS. IN SUCH A
C *** CASE THE COST FUNCTION CAN BE DEFINED DIRECTLY IN SUBROUTINE
C *** COST
C *** 2) SUBROUTINE COST ---
C *** THIS SUBROUTINE CALCULATES THE COST FUNCTION SUPPLIED BY THE
C *** USER. ITS ARGUMENT LIST MUST CONTAIN THE FOLLOWING: SUM THE
C *** CURRENT PLANT SIZE WHICH IS CALCULATED IN THE MAIN PROGRAM, LR
C *** THE INDEX REFERRING TO SOME PLANT, AND Y THE COST OF PRODUCING
C *** AMOUNT SUM AT SOURCE LR. - E.G. SUPPOSE THE COST FUNCTION IS OF
C *** THE FORM Y=A+BX, AND THAT THE CONSTANTS A AND B ARE NOT
C *** IDENTICAL FOR EACH PLANT. THEN, ASSUMING THIS INFORMATION TO
C *** HAVE BEEN READ IN VIA SUBROUTINE DATA AS JUST DEMONSTRATED WE
C *** HAVE
C *** SUBROUTINE COST (SUM,Y,LR)
C *** DOUBLE PRECISION Y
C *** COMMON DAT (2,10)
C *** Y =DAT(1,LV) + (DAT(2,LV)*SUM)
C *** RETURN
C *** END
C *** IF PLANT COSTS ARE THE SAME OVER ALL PLANTS THEN THE INDEX LV
C *** WILL NOT BE SPECIFICALLY ACTIVATED BUT IS NEEDED IN THE
C *** SUBROUTINE ARGUMENT LIST. N.B. VARIABLE Y MUST ALWAYS BE
C *** DOUBLE PRECISIONED.
C *** THE FOLLOWING SUBROUTINE MAY BE SUPPLIED BY THE USER AT HIS
C *** DISCRETION IF UNIT TRANSPORT COSTS REFLECT NON-LINEARITIES AND
C *** PLANT SIZE UPPER BOUNDS OBTAIN
C *** SUBROUTINE TCOST ---
C *** THIS SUBROUTINE MIGHT BE WRITTEN IN THE FOLLOWING CIRCUMSTANCES.
C *** IF THE PLANT SIZE CONSTRAINT IMPOSITION RESULTS IN SOME MARKET
C *** BEING SUPPLIED FROM MORE THAN ONE SOURCE (PLANT) THEN THE UNIT
C *** TRANSPORT COST OVER SOME LINK (WHICH IS AN AVERAGE VALUE BASED ON
C *** COST OF SHIPPING ALL DEMAND OVER THAT LINK), MAY BE MADE REDUNDANT
C *** IF THE COST FUNCTION IS NON LINEAR, THE USER CAN SPECIFY A
C *** FUNCTION IN TCOST TO RECALCULATE NEW UNIT COSTS BASED ON THE
C *** CURRENT AMOUNT ACTUALLY ALLOCATED OVER THAT LINK. THE ARGUMENT
C *** LIST IS IDENTICAL TO THAT OF SUBROUTINE COST I.E. SUBROUTINE
C *** TCOST (SUM,Y,LR)
C ********* DIMENSIONING INFORMATION *********
C *** DIMENSION THE FOLLOWING ARRAYS TO AT LEAST N (THE NUMBER OF
C *** NETWORK NODES) STORAGE SPACES --- MC,HN,IN,ID
C *** DIMENSION THE FOLLOWING ARRAYS TO AT LEAST M (THE NUMBER OF
C *** POTENTIAL SITES) SPACES --- UP,JN,C9,QS,PL,IB,KC,NZ,MZ,MRX,IX,JC,
C *** WHERE M7 IS SOME ADDITIONAL STORAGE SET ASIDE FOR SHARED NODES OR
C *** ALLOCATIONS. M7 IS DEFINED AT THE BEGINNING OF THE PROGRAM AS 50
C *** BUT MAY BE INCREASED FOR LARGE PROBLEMS --- RS,JS,JA
C *** DIMENSION THE FOLLOWING ARRAYS TO AT LEAST N+M7 --- LW,NC,B,D,JO,
C *** NB,KB,KB,LC
C *** DIMENSION THE FOLLOWING ARRAYS TO AT LEAST M+M7 --- E,P,MB,KB,LC
C *** DIMENSION ARRAY JQ EQUAL TO AT LEAST M+M8 WHERE M8 IS FOR
C *** ADDITIONAL STORAGE AND IS DEFINED AT THE BEGINNING OF THE PROGRAM
C *** AS 100 BUT MAY BE INCREASED FOR LARGER PROBLEMS WHERE THE PLANT
C *** SIZE CONSTRAINTS ARE VERY RESTRICTIVE
C *** DIMENSION ARRAY A MUST BE DIMENSIONED TO AT LEAST ((M*M)+M)/(M*(N-M)) SPACES
C *** DIMENSION ARRAY KG TO KR+9 STORAGE SPACES WHERE KR IS THE MAXIMUM
C *** NUMBER OF P MEDIANS SPECIFIED DURING ANY ONE RUN
C *** OBJECT CODE = APPROXIMATELY 75000 BYTES.

C *** PROGRAMMER - R.A. WHITAKER - DEPARTMENT OF GEOGRAPHY, UNIVERSITY OF
C *** BRITISH COLUMBIA, SEPTEMBER 1970

DOUBLE PRECISION E,S,S2,S3,S4,S6,SS,ASSM,P
DIMENSION PROB(20),FMT1(20),FMT2(20),FMT3(20),FMT4(20),FMT5(20)
DIMENSION LW(230),NC(230),P(230),D(230),MC(180),HN(180),PL(55)
DIMENSION C(55), I8(55), KC(55), NZ(55), MB(120), V(55)
DIMENSION JN(55), UP(55), MZ(55), MXR(55), JD(220), IN(180)
DIMENSION IX(55), E(120), LC(120), KB(120), JC(55), NB(220)
DIMENSION N(55), MT(55), ID(180), IZ(55), KG(1300), MK(55)
DIMENSION KD(230), DN(230), RS(50), JC(150), VR(55)
DIMENSION A(5000), JG(50), JA(50), JUD(10), P(180)

DIMENSION Q5(55), Q(55), MA(220), CJ(220)
DIMENSION F(20), NP(20), MP(20), W(20)
COMMON/COM1/MM, KP, MA, NM, JS, KY, J2, MRJ, MY, KVP, IKP, IZP, MG, IKS
COMMON/COM2/AM, AR, DS, BD, SX, PM, SY
EQUIVALENCE (KC(1), IX(1))

3 FORMAT (20A4)
5 FORMAT (3I3, I1, I2, 11I, F10.3, I1)
22 FORMAT (5X, 85HNUMBER OF LOCATIONS SPECIFIED IS LESS THAN NUMBER OF 1 NODES TO BE FORCED INTO SOLUTION)
23 FORMAT (5X, 74HNUMBER OF LOCATIONS SPECIFIED IS GREATER THAN NUMBER 1 OF POSSIBLE LOCATIONS)
138 FORMAT (4OHCAPACITY CONSTRAINT CRITERION PREVENTS A, I4, IX, 17HLOCALI 1ON SOLUTION/)
134 FORMAT (5X, 11OEXECUTION TERMINATING - SYSTEM HIGHLY CONSTRAINED - 1 INCREASE PLANT UPPER BOUNDS BY JUST 1 UNIT EACH AND RE-RUN)
1 READ (5,3) (PROB(I), I = 1, 20)
C ******** READ IN CONTROL AND TITLE CARDS
READ (5,5) N, M, MM, NM, KA, MA, KY, MY, MO, MW, J2, J5, J6, J9, J7, LJS, KZP, J1, I
1K5, I2, IKK, JKK, BD, LF IN
M7 = 50
M8 = 100
WRITE (6,2) (PROB(I), I = 1, 20)
2 FORMAT (1H1, 2X, 19HPROBLEM NAME , 20A4//)

IH = M+M7
LI = ((M*M)+M)/2+(M*(N-M))
IKP = (M*(M)-M)/2
SY = 10.0**15
PM = SY
K3 = 0
LE = 2
LZ = M+9
IF (BD.EQ.0.0) BD = 10.0**15
4 FORMAT (20A4)
IF (N.EQ.M) GO TO 8
6 FORMAT (2014)
C ******** READ IN POTENTIAL LOCATION SITES
READ (5,5) (JN(1), I = 1, M)
GO TO 9
8 DO 61 I = 1, N
61 JN(1) = 1
9 IF (N.EQ.M) GO TO 60
C ******** SET UP INDEXING SYSTEM IN ARRAY ID FOR REFERENCING SHORT C ******** PATHS STORED IN ARRAY A
C ******** SET UP ARRAY MC AS FOLLOWS.
C ******** ZERO VALUES INDICATE THIS NODE NOT A POTENTIAL PLANT SITE
C ******** LESS THAN ZERO INDICATES THIS NODE TO BE FORCED INTO SOLUTION
C ******** GREATER THAN ZERO INDICATES THIS NODE TO BE A POTENTIAL LOCATION
C ******** ACTUAL VALUES OF ELEMENTS REFERENCE THE COLUMN INDICES OF THE
C ******** SHORT PATH MATRIX A

DO 45 I =1,N
 ID(I) =0
 MC(I) =0
45 DO 50 I =1,M
 L =JN(I)
 ID(L) =I
 MC(L) =1
50 J =M
 DO 55 I =1,N
 IF (ID(I).NE.0) GO TO 55
 J =J+1
 ID(I) =J
55 CONTINUE
GO TO 70
60 DO 65 I =1,N
 ID(I) =1
65 MC(I) =1
70 IF (MM.EQ.0) GO TO 90
C ******** READ IN MODES (IF ANY) WHICH MUST BE IN FINAL SOLUTION
READ (5,6) (NC(I),I =1,MM)
 DO 80 I =1,MM
 J =NC(I)
 NP(I) =MC(J)
 MP(I) =MC(J)
80 MC(J) =MC(J)*(-1)
90 IF (MM.EQ.0) GO TO 10
C ******** READ IN PLANT SIZE UPPER BOUNDS - IF OPTIONED
READ (5,FMT3(I),I =1,20)
READ (5,FMT3) (UP(I),I =1,M)
GO TO 12
10 DO 11 I =1,N
11 UP(I) =SY
12 IF (KY.EQ.0) GO TO 13
C ******** READ IN MAXIMUM DISTANCE ANY DEMAND POINT IS TO BE FROM SOME
C ******** PLANT - IF OPTIONED
READ (5,FMT4(I),I =1,20)
READ (5,FMT4) (HN(I),I =1,N)
GO TO 15
13 DO 14 I =1,N
14 HN(I) =SY
C ******** READ IN USER SUPPLIED WEIGHTING SYSTEM - IF OPTIONED
15 IF (MQ.EQ.0) GO TO 18
 READ (5,FMT5(I),I =1,20)
 READ (5,FMT5) (CII,I =1,M)
C ******** READ IN VECTOR WHICH CONTAINS THE VALUES OF THE LOCATIONS
C ******** THAT ARE TO BE COMPUTED E.G. 2 FOR A 2 MEDIAN SOLUTION
18 READ (5,6) (JUD(I),I =1,KA)
 IVKX =0
64 IF (IKK.EQ.2) GO TO 63
 READ (5,4) (FMT1(I),I =1,20)
C ******** READ IN TRANSPORT COST, TIME, OR SHORTEST ROUTE MATRIX
35 DO 35 I =1,N
 K =ID(I).
 READ (5,-FMT1) (D(J),J =1,M)
 DO 35 J =1,M
 A(CHEC(J),J,H) =D(J)
35 CONTINUE
 IF (IKK.EQ.0) IKK =2
63 IF (12.EQ.2) 30 TO 67
C ******** READ IN NODE DEMAND VALUES
 READ (5,4) (FMT2(I),I =1,20)
 READ (5,FMT2) (D(I),I =1,N)
 IF (12.EQ.0) 12 =2
67 IF (Mw.EQ.0) 30 TO 118
118 SX =100.0
 IF (IVKX.EQ.1) GO TO 21
 IVKX =1
17 DO 17 I =1,N
 DS =OS + D(I)
 IJKM =0
 17 _}S =OS + D(I)
130 J =JN(I)
 IF (M(J))132,130,133
132 JJ = JJ + 1
 B(JJ) = 0.0
 JC(JJ) = I
 LS = LS + 1
 LC(LS) = I
 TSUM = TSUM + UP(I)
 GO TO 130

133 JJ = JJ + 1
 JC(JJ) = I
 B(JJ) = UP(I)

130 CONTINUE
 SUM = TSUM

127 IF (KP.EQ.1.AND.MA.EQ.0) GO TO 275
IF (KZP.EQ.2) GO TO 275
IF (MA.EQ.0) GO TO 140
C ******** CHECK THAT TOTAL NETWORK DEMAND CAN BE SATISFIED UNDER PLAN
C ******** SIZE UPPER BOUND OPTION
IF (KP.EQ.MM) GO TO 136
 CALL ASCEND(N,N,M,1,B,JJ,LW,JC,-1)
 KJ = (JJ - (KP-MM)) + 1
DO 135 I = KJ, JJ
 SUM = SUM + B(I)
136 IF (SUM - DS) 137, 139, 139
137 WRITE (6, 138) KP
 K9 = 1
 GO TO 503
139 IF (KP.EQ/MM) GO TO 140
 KJ = MM + 1
 KK = KP - MM
 K = KJ - 1
141 K = K + 1
 J = K - 1
 SUM = TSUM
 DO 142 I = 1, KK
 J = J + 1
142 SUM = SUM + B(J)
 IF (SUM - DS) 141, 143, 143
143 PM = B(K)
C ******** ANY COMBINATION OF NODES WHOSE PLANT SIZES EXCEED VALUE OF
C ******** WILL SATISFY THIS DEMAND
 L = K - 1
 AM = KP
 IF (B(L).LT.PM.OR.L.EQ.MM) GO TO 140
 IF ((PM*AM).GE.DS) GO TO 140
 PM = PM + 0.1
 K = K - 1
145 K = K + 1
 J = K - 1
 SUM = TSUM
 DO 144 I = 1, KK
 J = J + 1
144
IF (J.GT.KK) GO TO 146
IF (B(J).LT.PM) GO TO 145
SUM = SUM + B(I)
146 IF (SUM.GE.OS) GO TO 140
WRITE (6,134)
GO TO 503

MGB = 0
IF (KP.EQ.1.0 .OR. KZP.EQ.2) GO TO 275
IF (KP.EQ.MM) GO TO 174
DO 73 I = 1, M
L = JN(I)
PL(I) = D(L)
73 V(I) = D(L)
IF (N.EQ.M .AND. J7.EQ.1 .AND. J9.EQ.1) GO TO 159

C ******** ASSIGN NON POTENTIAL PLANT SITES TO NEAREST POTENTIAL SITE
JX = 0
DO 158 I = 1, N
AR = SY
JJ = ID(I)
DO 262 J = 1, M
IF (I.EQ.JN(J)) GO TO 262
LL = ICHECK(JJ, J, M)
IF (A(LL).GE.AR) GO TO 262
AR = A(LL)
IJ = J
CONTINUE
262 IF (MC(I).NE.0) GO TO 263
V(IJ) = V(IJ) + D(I)
IF (V(IJ).GT.UP(IJ)) V(IJ) = UP(IJ)
PL(IJ) = V(IJ)
GO TO 158
263 JX = JX + 1
JD(JX) = I
M2(JX) = I
NB(JX) = IJ
JC(JX) = IJ
Q(JX) = AR
DN(JX) = AR
NZ(JX) = IABS(MC(I))
IZ(JX) = NZ(JX)
158 CONTINUE
159 LX = 0

C ******** CALCULATE A MATRIX FOR THE FIRST AND THEN SECOND PARTITION
C ******** HEURISTICS, AND ON COMPLETION REPLACE SHORT PATH MATRIX.
CALL ARK (LI, M, O, A, V, UP, VR, LJ, KV, KR, LE, 0)
GO TO 180
171 IF (J5.EQ.2) GO TO 178
CALL ARK (LI,M,1,A,V,UP,VR,LJ,KV,KR,LE,O)

178 IF (MQ.EQ.0) GO TO 250
LJ =0
IF (MQ.EQ.2) LJ =1
CALL ARK (LI,K,0,A,C,UP,VR,LJ,KV,KR,LE,O)
GO TO 180

172 IF (MQ.EQ.0) GO TO 173
CALL ARK (LI,M,1,A,C,UP,VR,LJ,KV,KR,LE,O)

173 IF (J6.EQ.2) GO TO 250
LJ =0
IF (J6.EQ.1) LJ =1
KT =1
CALL ARK (LI,M,0,A,C,UP,VR,LJ,KV,KR,LE,1)

180 AM =0.0
IZP =0
JS =KP
AR =0.0
GO TO 205

174 DD 202 I =1,MM
202 KG(I) =LC(I)
IP =1
GO TO 275
205 KVP =0
SUMP =0.0
IF (IKS.EQ.2) KVP =1
IF (IKS.EQ.2) SUMP =PM
C ********** CALCULATE BEGINNING SETS BASED ON FIRST OR SECOND HEURISTIC
DO 240 I =1,M
II =1

210 IF (LJ.EQ.1) II =KV
IF (LJ.EQ.1.AND.MM.NE.0) GO TO 237
IF (UP(I),LT.SUMP) GO TO 235
JS =MM
J =JN(I)
IF (MC(J),LT.0) GO TO 235
JS =JS+1
LC(JS) =II

237 CALL SEARCH (N,M,A,B,IP,LC,NC,KG,MG,KG,UP,LJ,JN,LX,SUMP,LZ,KT,V)

216 KVP =1
SUMP =PM
IF (LJ.EQ.1) KV =KR
GO TO 210

235 IF (IKS.EQ.2) GO TO 236
SUMP =0.0

236 IF (LJ.EQ.1) GO TO 250
CONTINUE

250 LX =IP
MGB = MGB + 1
GO TO (171, 172, 259), MGB

IF (IJKM .EQ. 1) GO TO 269
IF (J7 .EQ. 1 .AND. J9 .EQ. 1) GO TO 275

C ********** SET UP FOR THIRD AND FOURTH PARTITIONING HEURISTICS
IF (J7 .EQ. 1) GO TO 266

LJ = 0

C ********** PARTITION NETWORK BASED ON THIRD AND FOURTH HEURISTICS
CALL PART (N, M, A, LI, JD, NB, DN, NZ, LJ, V, D, MC, ID, UP, MT, IB, KB, VR, CJ, NP

IF (J7 .EQ. 1) GO TO 273
LJ = 1
CALL PART (N, M, A, LI, MZ, JC, Q, IZ, LJ, PL, D, MC, ID, UP, MT, IB, KB, VR, CJ, NP

273 IF (MA .EQ. 0) IJKM = 1
269 JV = 0

IF (JM .EQ. 0) IJKM = 1
267 IF (IP .EQ. 0) JV = 1

DO 271 I = 1, JS
271 JC(I) = IP(I)
CALL ASCEND (N, M, N, 1, B, JS, JC, JD, I)
CALL COMP (IP, JV, JC, KG, M, LZ)

IF (NM .EQ. 2 .OR. KZP .EQ. 0 .OR. KP .EQ. 1) GO TO 182

C ********** READ IN USER SUPPLIED GUESS AT OPTIMUM SOLUTION - IF OPTIONED
READ (5, 6) (KD(I), I = 1, JS)

DO 278 I = 1, JS
278 J = KD(I)

IF (KZP .EQ. 1) GO TO 177
IP = 0
JV = 1
GO TO 181

177 JV = 0
181 CALL COMP (IP, JV, KC, KG, M, LZ)

182 MRJ = 0
NST(1) = 0
XW = 0.0001
S3 = SY
S53 = SY

C ********** THIS LOOP CONSIDERS EACH BEGINNING SET IN TURN
184 DO 500 II = 1, IP
MG = 0
IF (IKS.EQ.-1) IKS = 2
S1 = SY
S2 = SY
KKJ = 0
MIJ = MRJ
IXX = 0
KGT = 0.
C ********** GET THE NEXT BEGINNING SET
DO 335 I = 1, JS
MRJ = MRJ + 1
IB(I) = KG(MRJ)
335 MZ(I) = I
C ********** FIND AND STORE NEXT COMBINATION OF CURRENT MEDIANS
443 NT = 1
NA = 1
JP = 1
445 IXX(NT) = NA
447 IF (NT - JS) 447, 450, 447
NA = NA + 1
IF (NA - MZ(JP)) 447, 448, 447
448 JP = JP + 1
NT = NT + 1
GO TO 445
450 IF (MA.EQ.0) GO TO 312
AR = 0.0
DO 418 I = 1, JS
J = IB(I)
418 AR = AR + UP(J)
IF (AR.EQ.0) GO TO 497
312 KP K = 0
IF (IXX.EQ.0) GO TO 439
C ********** THE FOLLOWING SECTION TESTS THE LOWER BOUND OBTAINED FROM
C ********** SOME BEGINNING SET
KP K = 1
IF (IXX.GT.1) GO TO 304
419 IN(I) = I
DO 417 I = 1, JS
J = IXX(I)
LC(I) = IB(J)
L2 = LC(I)
JJ = JN(L2)
417 MT(I) = MC(JJ)
AR = 0.0
L6 = 0
L6 = 0
BM IN = SY
SM IN = SY
C ********** FIND MEDIANS TO BE DROPPED
DO 282 I = 1, JS
L2 = LC(I)
JJ = JN(L2)
IN(JJ) = 0
AR = AR + UP(L2)
AV = DN(I)
IF (MC(JJ) .LT. 0) GO TO 282
DO 280 J = 1, JS
IF (I .EQ. J) GO TO 280
L3 = LC(J)
AW = AI CHECK(L2, L3, M) * D(JJ)
IF (AW .GE. SMIN) GO TO 280
SMIN = AW
L6 = IX(I)
AX = UP(L2)
280 CONTINUE
IF (AV .GE. BMIN) GO TO 282
BMIN = AV
L8 = IX(I)
AXX = UP(L2)
282 CONTINUE
C ******** L6 IS THE MEDIAN TO BE CROPPED WHOSE WEIGHTED DISTANCE TO
C ******** SOME OTHER MEDIAN IS A MINIMUM
C ******** L8 IS THE MEDIAN WITH THE MINIMUM SUBGRAPH DEMAND
IF (L6 .EQ. 0) GO TO 521
AG = AR
ARR = AR
AR = AR - AX
ARR = ARR - AXX
IF (AR .GE. ARR) AR = ARR
L4 = 0
L7 = 0
BM = 0.0
SM = 0.0
LJ = 0
C ******** FIND SUBSET OF CANDIDATE REPLACEMENT MEDIANS
DO 287 I = 1, LR
IF (LW(I) .EQ. 0) GO TO 287
J = LW(I)
IF (IN(J) .EQ. 0 .OR. MC(J) .EQ. 0) GO TO 287
L5 = MC(J)
IF (IKS .EQ. 2 .AND. UP(L5) .LT. PM) GO TO 287
AS = UP(L5) + AR
IF (AS .LT. DS) GO TO 287
LJ = LJ + 1
KD(LJ) = L5
287 CONTINUE
IF (LJ .EQ. 0) GO TO 521
SM = 0.0
AM = SY
C ******** FIND THE CRITERION REPLACEMENT MEDIAN (L4).
DO 289 J = 1, LJ
NJ = KD(I)
DO 286 IJ = 1, JS
B(IJ) = 0.0
CM = 0.0
DO 288 IJ = 1, LR
IF (LW(IJ).EQ.0) GO TO 288
J = LW(IJ)
IF (IN(J).EQ.0) GO TO 283
JJ = NC(IJ)
JV = LC(JJ)
JX = ID(JJ)
LL = ICHECK(JX,JV,M)
JR = ICHECK(JX,NJ,M)
IF (AL(LL).LE.AJR)) GO TO 288
RM = (A(LL)-AJR)*CJ(IJ)
B(JY) = B(JJ)+RM
CM = CM+CM
288 CONTINUE
IF (CM.LE.SM) GO TO 239
SM = CM
******** FIND THE THIRD DROPPED MEDIAN
DO 291 IJ = 1, JS
IF (UDN(IJ)-B(IJ)).GE.AM OR MT(IJ).LT.0) GO TO 291
AM = CN(IJ)-B(IJ)
L7 = IX(IJ)
291 CONTINUE
289 CONTINUE
C ******** ELIMINATE EQUALITIES AMONG THE DROPPED AND THE ADDED MEDIANS
C ******** AND REPLACE DROPPED MEDIAN BY APPROPRIATE ADDED NODE
IF (L8.EQ.L6) L8 = 0
IF (L7.EQ.L6) L7 = 0
IF (L7.EQ.L8) L7 = 0
304 GO TO (305,306,307), IXX
305 IB(L6) = L4
306 IF (L8.EQ.0) GO TO 307
IB(L8) = L4
GO TO 439
307 IF (L7.EQ.0) GO TO 521
AG = AG+UP(L7)
AG = AG+UP(L4)
IF (AG.LT.DS) GO TO 521
IB(L7) = L4
439 JM = 0
JL = 0
IF (MG.EQ.1) GO TO 446
C ******** CALL SUBROUTINE FOR ASSIGNING EACH NODE TO SOME SUBGRAPH
CALL SORT (N,M,B,PLA,D,IX,IB,NC,LW,UP,OS,JM,JL,JA,JG,GO,RS,L1,ID
1E,DFN,MT,KD,MC,LJS,JD,M7,M8)
IF (JM.EQ.0) GO TO 405
C ******** FIND NEXT COMBINATION (IF ANY) OF NODES EQUIDISTANT TO MEDIA

LT = 1
LA = 1
LP = 1
390 JC(LT) = LA
IF (LT - JM) 395, 405, 395
395 LA = LA + 1
IF (LA - JA(LP)) 395, 395
400 LP = LP + 1
LT = LT + 1
GO TO 390
405 DO 410 I = 1, JS
410 VI(I) = PL(I)
DO 411 I = I, N
KD(I) = I
IF (NC(I) .EQ. 0) KD(I) = 0
411 CONTINUE
LR = N
IF (JM .EQ. 0) GO TO 438
C ******** UPDATE ARRAYS ACCORDING TO THIS COMBINATION. ARRAY KD WILL
C ******** CONTAIN THE NODES, ARRAY NC THEIR CORRESPONDING SUBGRAPHS AND
C ******** THE AMOUNT OF DEMAND ALLOCATED. INFORMATION ON MARKETS
C ******** SUPPLIED BY MORE THAN ONE SOURCE IS STORED IN ELEMENTS N+1-LR
DO 440 I = 1, JM
JJ = JG(I)
KK = JC(I)
KJ = JQ(KK)
V(KJ) = V(KJ) + RS(I)
IF (RS(I) .EQ. D(JJ)) GO TO 442
LR = LR - 1
KD(LR) = JJ
NC(LR) = KJ
DI(LR) = KS(I)
JD(LR) = 0
GO TO 440
442 NC(JJ) = KJ
440 CONTINUE
IF (MA .EQ. 0 .OR. IKS .EQ. 2) GO TO 438
C ******** CHECK THAT EACH MEDIAN CAN SATISFY ITS SUBGRAPH DEMAND
DO 413 I = 1, JS
LJ = IX(I)
LL = LB(LJ)
IF (VI(I) .LE. UP(II)) GO TO 413
GO TO 490
413 CONTINUE
C ******** STORE ARRAY VALUES IN ORDER READY FOR MEDIAN CALCULATION
438 CALL COUNT (M, JS, LR, IH, NC, LW, KD, R, D, IN, MKB)
IF (MA .EQ. 0 .OR. JM .EQ. 0 .OR. IKS .EQ. 2) GO TO 441
C ******** THE FOLLOWING SECTION ATTEMPTS TO RE-ASSIGN NODES MORE
C ******** OPTIMALLY UNDER PLANT SIZE CONSTRAINT OPTION.
AV = 0.0
MF = 0
X = 0.00001

C ******** TEST IF SOME NODE (VR) IS NOT ASSIGNED TO CLOSEST MEDIAN (MK)
DO 329 NS = 1, JS
JW = MKB(NS) - 1
JR = NS - 1
JZ = 1
IF (NS .NE. 1) JZ = MKB(JR)
DO 329 I = JZ, JW
IR = LW(I)
IF (JD(IR) .EQ. NS) GO TO 329
NJ = ID(IR)
JJ = IX(NS)
MK = IB(JJ)
LV = ICHECK(NJ, MK, M)

C ******** IF TRUE EXAMINE SUBGRAPH SETS OF ALL CLOSER MEDIANS. TEST
C ******** IF TRUE WHETHER SOME NODE IN 1 OF THESE SETS IS NEARER MK THAN IS VR
DO 328 J = 1, JS
IF (NS .EQ. J) GO TO 328
JJ = IX(J)
KJ = IB(JJ)
LL = ICHECK(NJ, KJ, M)
IF (A(LL) .GE. A(LV)) GO TO 328
AM = A(LV) - A(LL)
KN = MKB(JJ) - 1
JR = J - 1
KM = 1
IF (J .NE. 1) KM = MKB(JR)

C ******** IF TRUE THEN SET UP TO SWITCH NODES. DETERMINE FRACTIONAL
C ******** AMOUNTS TO RE-ASSIGN OR REMAIN
DO 318 IJ = KM, KN
IF (LW(IJ) .EQ. LW(I)) GO TO 318
IT = LW(IJ)
IV = ID(I)
LJ = ICHECK(IJ, MK, M)
LL = ICHECK(IJ, KJ, M)
AR = AM - (A(LJ) - A(LL))
IF (AR .LE. AV) GO TO 318
AV = AR
MF = 1
IK = IR
IL = IT
KV = IJ
MV = I
KR = NS
JX = J

318 CONTINUE
328 CONTINUE
329 CONTINUE
IF (MF .EQ. 0) GO TO 441.
C ******** REASSIGN NODES AND FRACTIONAL DEMANDS AMONG MEDIANS

AY = B(KV)
AX = B(MV)
IF (AX .GT. (AY - X) .AND. AX .LT. (AY + X)) GO TO 320
IF (AX .LT. AY) GO TO 322
AX2 = AX - AY
AY1 = AY
AY2 = 0.0
GO TO 323
320
AX1 = AX
AX2 = 0.0
AY1 = AY
AY2 = 0.0
GO TO 323
322
AX1 = AX
AX2 = 0.0
AY1 = AY - AY2
AY2 = 0.0
GO TO 323
323
CALL INCRE (LR, LR, KD, MD, NC, D, IL, AX1, JX, 2, IH, IH)
CALL INCRE (LR, LR, KD, MD, NC, D, IL, AY1, KR, 2, IH, IH)
IF (AX2 .EQ. 0.0) GO TO 324
CALL INCRE (LR, LR, KD, MD, NC, D, IL, AX2, KR, 2, IH, IH)
324
IF (AY2 .EQ. 0.0) GO TO 325
CALL INCRE (LR, LR, KD, MD, NC, D, IL, AY2, JX, 2, IH, IH)
325
IJ = IN(MV)
JJ = IN(KV)
KD(IJ) = 0
KD(JJ) = 0
GO TO 438
441
IF (LR .EQ. N) GO TO 446
C ******** AGGREGATE ANY FRACTIONAL ALLOCATIONS ACCORDING TO NODE AND TO SUBGRAPH
MJ = N + 1
CALL ASCEND (IH, IH, IH, MJ, D, LR, KD, NC, 3)
J = N
414
J = J + 1
IF (J .EQ. LR) GO TO 449
JJ = J + 1
DO 415 K = JJ, LR
IF (KD(K) .GT. KD(J)) GO TO 414
IF (KD(K) .EQ. 0. OR. NC(K) .NE. NC(J)) GO TO 415
D(J) = D(J) + D(K)
KD(K) = 0
415 CONTINUE
GO TO 414
449
IF (LR .EQ. N) GO TO 446.
J = N
CALL SHRINK (MJ, LR, J, KD, NC, D, IH)
LR = J
446
IF (MG .LE. 0) GO TO 327
NR = 0
CALL TEST (N,M,IH,LI,A,D,KD,MC,NC,ID,V,Q,IX,IB,LR,NR)
IF (NR.EQ.0) GO TO 489
CALL COUNT (M,JS,LR,IH,NC,LW,KD,B,D,IN,MKB)
327 DO 491 I = 1,JS
491 W(I) = V(I).
492 LD = 0
LS = 0
C ******** CALL SUBROUTINE TO CALCULATE MEDIANS
CALL MED (N,M,S,LS,P,NC,MB,MC,KD,8,D,IN,MKB)
3 IF (S.GE.S1) GO TO 483
SI = S
LS = LS
C ******** STORE CURRENT BEST SOLUTION IN SUBROUTINE TRANS
CALL TRANS (N,M,V,NZ,NC,MK,P,IJN,LD,NSK,KB,MD,CJ,Q,JS,LS,LR,IF
1,1,DN,F)
483 IF (MY.NE.O.AND.MG.EQ.0.AND.KP.NE.1.OR.IKS.EQ.25) GO TO 489
C ******** TEST FOR A LOWER BOUND SOLUTION PRINT BEST CURRENT SOLUTION
IF (S.GE.SSS-XW) OR S.GE.(ASUM-XW) GO TO 498
IF (S.GT.(S3-XW)) AND S.LT.(S3+XW) GO TO 452
IF (S.GT.S3) GO TO 498
NST(I) = 0
KGT = 1
S3 = S
452 IF (KGT.EQ.1) GO TO 489
CALL PRINT (N,M,V,NZ,NC,MB,MD,CJ,Q,JS,LS,LR,IF
1,1,DN,F)
GO TO 489
498 IF (KXJ.EQ.0.OR.MY.EQ.0) GO TO 489
CALL COUNT (M,JS,LS,IH,NC,LW,MK,IN,MKB)
DO 493 I = 1,JS
493 W(I) = VR(I)
GO TO 492
489 IF (JM.EQ.0) GO TO 497
C ******** TEST IF LAST COMBINATION OF EQUIDISTANT NODES IS EVALUATED
490 LA = JC(LT)+1
IF (LA-JA(IJLP)) 390, 390, 495
495 LP = LP-1
LT = LT-1
IF (LT) 490, 497, 490
497 IF (KPK,EQ.1) GO TO 485
C ******** TEST WHETHER LAST COMBINATION OF MEDIANS HAS BEEN EVALUATED
484 NA = IX(NT)+1
IF (NA-MZ(JP)) 445, 445, 484
484 JP = JP-1
NT = NT-1
IF (NT) 497, 485, 497
485 KXJ = 0
C ******** IF LOWER BOUND FOUND ON LAST ITERATION THEN RE-CYCLE

486 IF (S1 - S2) < 0.000001 THEN RE-CYCLE

488 S2 = S1

IXX = 0

IF (KGT.EQ.1) KXJ = 1

KGT = 0

GO TO 443

IF (S3 < SSS) SSS = S3

IF (KP.EQ.1) GO TO 503

IF (KP.EQ.MM) GO TO 521

C ******** SET UP FOR DROPPING AND ADDING NODES

IF (IXX.EQ.3) OR (MG.EQ.1) GO TO 521

LP = LPS

IXX = IXX + 1

GO TO 443

521 IF (MA.EQ.0 OR IKS.NE.2) GO TO 527

IKS = -1

GO TO 528

C ******** RECYCLE CALCULATING PLANT COSTS ON SUBSEQUENT ITERATIONS

527 IF (MY.EQ.0) GO TO 500

IF (KP.EQ.MM. AND. MG.EQ.1) GO TO 503

MG = MG + 2

GO TO (525, 526, 522, 500), MG

525 MG = 1

GO TO 523

526 MG = -1

GO TO 523

522 MG = 2

523 IF (MG.NE.1) GO TO 524

528 S1 = SY

S2 = SY

524 LR = LPS

IXX = 0

IF (MG.NE.2) GO TO 443

IF (J1.EQ.1) GO TO 500

MRJ = MIJ

GO TO 183

500 CONTINUE

C ******** CHECK FOR SECOND PLANT SIZE CONSTRAINT HEURISTIC OPTION

IF (MA.EQ.0 OR IKS.EQ.1 OR IRS.NE.0) GO TO 503

IKS = 2

GO 509 J = 1, IZW

509 KG(I) = 0

GO TO 24

503 GO TO (501, 20, 502, 506), NM
IF (SSS .GE. ASUM .AND. LD .EQ. 0) GO TO 515
ASUM = SSS
KP = KP + 1
GO TO 64
KP = JS - 1
IF (LD .NE. 0 .AND. K .NE. 0) GO TO 515
IF (KP .LT. JUD(2)) GO TO 515
IF (K9 .EQ. 1) GO TO 21
C ******** SET UP FOR NEXT LOCATION SEARCH ON DYNAMIC BACKWARD RECURSION OPTION. ENSURE THAT SEARCH FOR THE P-1 SOLUTION WILL BE RESTRICTED FROM AMONG THE BEST P MEDIANS FOUND ON THIS RUN
DO 504 I = 1, N
IF (MC(I) .LT. 0) GO TO 504
MC(I) = 0
504 CONTINUE
DO 505 I = 1, JS
J = NST(I)
JJ = JN(J)
IF (MC(JJ) .LT. 0) GO TO 505
MC(JJ) = J
505 CONTINUE
GO TO 64
506 KP = JS + 1
IF (LD .NE. 0 .AND. K .NE. 0) GO TO 515
IF (KP .GT. JUD(2)) GO TO 515
IF (K9 .EQ. 1) GO TO 21
C ******** SET UP FOR DYNAMIC FORWARD RECURRENCE OPTION. ENSURE THAT THE P MEDIAN SOLUTION FOUND ON THIS RUN WILL BE FORCED INTO THE P+1 SOLUTION
DO 507 I = 1, N
IF (MC(I) .LT. 0) MC(I) = MC(I) * (-1)
507 CONTINUE
DO 508 I = 1, JS
NP(I) = NST(I)
MP(I) = NST(I)
J = NST(I)
JJ = JN(J)
MC(JJ) = MC(JJ) * (-1)
MM = JS
508 CONTINUE
GO TO 21
C ******** GET NEXT PROBLEM SET
515 IF (FIN) 520, 1, 520
STOP
END
C ******** THIS SUBROUTINE ASSIGN NODES TO THEIR APPROPRIATE CURRENT MEDIAN
DOUBLE PRECISION TC, RC, R
DIMENSION B(N), V(M), A(LI), D(N), KC(M), KB(M), U(M), Q(M), M(L(N)
DIMENSION K(N), JA(M7), JG(M7), RS(M7), JQ(M8), ID(N), R(M), DN(N)

DIMENSION KD(M),MT(M),MC(N),JD(N)
COMMON/COM1/MM,KP,MA,KM,JS,KY,J2,MRJ,MY,KVP,IKP,IZP,MG,IKS
COMMON/COM2/AM,AR,DS,BD,SX,PM,SY
IT =1
KX =0
LSK =0
JV =N
NR =1
C ******** INITIALIZE ARRAYS
 DO 45 I =1,N
 DN(I) =D(I)
 KD(I) =1
45 L(I) =1
 DO 7 I =1,JS
7 VI(I) =0.0
 DO 29 I =1,JS
 LJ =KC(I)
 LL =KB(LJ)
29 Q(I) =U(LL)
 IF (MG.NE.2.AND.MA.EQ.0) GO TO 82
 IF (IKS.NE.2) GO TO 1
 DO 3 J =1,JS
3 Q(I) =10.0**15
 GO TO 82
1 JV =0
 NR =1
 DO 73 I =1,JS
73 MT(I) =0
C ******** ESTABLISH PENALTY VECTOR, FOR EACH NODE STORE THE DIFFERENCE
C ******** BETWEEN ITS WEIGHTED DistANCES TO ITS CLOSEST TWO MEDIANS
C ******** ACTIVATED FOR PLANT SIZE CONSTRAINT ONLY
 DO 6 I =1,N
 IF (DN(I).EQ.0.0) GO TO 6
 JV =JV+1
 TEMP = SY
 TEMPI = SY
 DO 2 J =1,JS
2 IF (Q(J).EQ.0.0) GO TO 2
 JJ =KC(J)
 KJ =KB(JJ)
 II =ID(I)
 AX =A(IX,II,KJ,N)
 IF (J2.EQ.0.0) GO TO 61
 SUM =DN(I)
 CALL TCOST(SUM,TC,KJ)
 AX =TC
76 IF (AX.GF.TEMP) GO TO 34
 TEMPI = TEMP
 TEMP = AX
 MR = J
 GO TO 2.
34 IF (AX.GE.TEMP1) GO TO 2
 TEMPI =AX
 2 CONTINUE
 KD(JV) =MR
 IF (LSK.EQ.0) JD(JV) =MR
 MT(MR) =MT(MR)+1
 B(JV) =TEMP-TEMP1
 IF (MC(I).LT.0) B(JV) =-SY
 L(JV) =I
 6 CONTINUE
 LSK =1
 IF (JV.EQ.0) GO TO 12

C ******** RANK PENALTY VECTOR IN DESCENDING ORDER FOR NODE ASSIGNMENTS
CALL ASCEND (N,N,N,1,B,JV,KD,L,0)
IF (MG.NE.2) GO TO 82
C ******** SET UP NODE ORDER ASSIGNMENT FOR SECOND PLANT COST HEURISTICS
LR =1
JX =0
JY =0

75 JY =0
76 JY =JY+1
 IF (JY.GT.JS) GO TO 75
 IF (MT(JY)).EQ.77,76,77
 LJ =LR
 DO 80 I =LJ,JV
 IF (KO(I)).NE.JY) GO TO 80
 JX =JX+1
 JW =JX+1
 IF (JW.GT.JV) GO TO 83
 IF (JW.GT.I) GO TO 78
 JJ =KD(I)
 JR =L(I)
 II =I
 KK =II.
 DO 86 J =JW,II
 KK =KK-1
 KD(KK+1) =KD(KK)
 L(KK+1) =L(KK)
 86 CONTINUE
 KD(JX) =JJ
 L(JX) =JR
 78 LR =LR+1
 MT(JY) =MT(JY)-1
 GO TO 76
 80 CONTINUE
 83 IF (KX.NE.0) GO TO 82
 DO 84 I =1,JS
 JJ =L(I)
 DN(JJ) =0.0
 V(I) =V(I)+D(JJ)
 Q(I) =Q(I)-D(JJ)
 84 K(JJ) =I
IF (KX.EQ.0) NR = JS+1
KX = 1
C ********** CONSIDER EACH NODE IN ORDER FOR ASSIGNMENT
32 DO 10 I = NR, JV
 JJ = L(I)
 SUMMA = DN(JJ)
 MR = KD(I)
 IJ = 1
 MT(IJ) = MR
 JZ = MR
 IF (MA.NE.0.AND.LJS.NE.0.AND.MG.NE.2) GO TO 9
 JR = ID(JJ)
 RC = SY
 SUM = SUMMA+V(MR)
 SUMR = SUM
 CALL SET (MR, J2, JR, KC, KB, LI, TC, M, A, SUMMA, LV)
 IF (MG.NE.2) GO TO 22
 S = V(MR)
 CALL FCOST (S, SUM, LV, TC)
C ******** THIS LOOP ASSIGNED A NODE TO ITS APPROPRIATE MEDIAN
22 DO 8 J = 1, JS
 IF (JZ.EQ. J OR. Q(J).LE.0.0) GO TO 8
 SUM = SUMMA+V(J)
 CALL SET (J, J2, JR, KC, KB, LI, RC, M, A, SUMMA, LV)
 IF (MG.NE.2) GO TO 23
 S = V(J)
 CALL FCOST (S, SUM, LV, RC)
23 IF (RC-TC)26, 28, 8
28 IF (LJS)8, 31, 8
C ********** CHECK NUMBER OF EQUIDISTANT NODES FOR COMBINATION LIMIT
31 IF (IT-16)27, 27, 8
26 MR = J
 IJ = 1
 MT(IJ) = MR
 TC = RC
 SUMR = SUM
 GO TO 8
27 IF (MG.LE.0) GO TO 43
C ********** IN SECOND PLANT COST HEURISTIC OPTION ASSIGN NODE TO MEDIAN
C ********** WITH LARGEST CURRENT PLANT SIZE IN EVENT OF EQUALITY
 IF (V(MR).GE.V(J)) GO TO 8
 MR = J
 MT(1) = MR
 SUMR = SUM
 GO TO 8
43 SUMR = SUMR-SUMMA
 [J = I+1
 MT(IJ) = J
8 CONTINUE
9 IF (MA.EQ.0 OR. IK5.EQ.2) GO TO 63
S = SUMMA
LR = MT(1)
C ********** ARRAY Q CONTAINS AMOUNT OF AVAILABLE SPACE LEFT AT EACH
c********** MEDIAN. REDUCE Q AT PLANT WITH MINIMUM AVAILABLE SPACE
C ********** IN EVENT OF EQUALITY
DO 66 J = 1, IJ
 KJ = MT(J)
 IF (Q(KJ) .GE. SUMMA) GO TO 66
 LR = KJ
 SUMMA = Q(KJ)
66 CONTINUE
 MR = LR
 Q(MR) = Q(MR) - SUMMA
 DN(JJ) = DN(JJ) - SUMMA
 IF (SUMMA .LT. D(JJ) .OR. IJ .NE. 1) GO TO 67
 K(JJ) = MR
 V(MR) = SUMR
 GO TO 69
67 K(JJ) = 0
 IT = IT * IJ
 IF (IT .GT. 16) IJ = 1
 IF (I.J .EQ. 1) IT = 16
 JM = JM + 1
C ********** ASSIGN FRACTIONAL NODE DEMANDS AND/OR EQUIDISTANT NODES TO
c ********** MEDIANS
DO 64 J = 1, IJ
 KJ = MT(J)
 CALL INCRE (JM, JL, JG, JA, JQ, RS, JJ, SUMMA, KJ, 1, M7, M8)
64 CONTINUE
69 IF (Q(MR) .LE. 0.0) GO TO 10
END

C ********** THIS SUBROUTINE FINDS THE POTENTIAL PLANT SITES IN EACH
C ********** SUBGRAPH ARRAYS THEM AND CALCULATES MINIMUM AGGREGATE TRAVEL
C ********** COSTS FROM EACH ONE TO ALL OTHERS WITHIN THE SUBGRAPH
DOUBLE PRECISION Y, R, P, E, S, B1, B2
DIMENSION NZ(M), V(M), UP(M), D(IH), HN(N), IB(M), KC(M), F(M)
DIMENSION A(LI), NB(IH), LW(IH), MC(N), IC(N), MT(M), JN(M), CI(IH)
DIMENSION LC(LH), P(LH), E(LH), KB(LH), KD(N), MKB(M), MXR(M)
COMMON/CCLM1/ RM, KP, MA, NM, JS, KY, J2, MRJ, MY, KVP, IKP, IZP, MG, IKS
COMMON/COM2/ AM, AR, DS, BD, SX, FM, SY
L = 0
JW = 0
C ********** CONSIDER EACH SUBGRAPH IN TURN
DO 50 I = 1, JS
 JB = KC(I)
 JQ = IB(JB)
 JV = JN(JQ)
 JZ = JW + 1
JW = M(K)B(I) - 1
LJ = L + 1
L = L + 1
LC(L) = JQ

C ********* STORE PREVIOUS BEST SOLUTION IN ARRAY MXR
MXR(I) = L

CALL ASCEND (IH, IH, IH, JZ, C, JW, LW, NB, 2)
IF (MC(JV) .LT. 0) GO TO 7
L = L - 1

C ********* FIND POTENTIAL SUBGRAPH PLANT SITES AND STORE IN ARRAY LC
DO 85 J = JZ, JW
 K = LW(J)
 IF (M(C(K)) .LT. 0) GO TO 85
 L = L + 1
 LC(L) = M(C(K))
 IF (M(C(K)) .EQ. JQ) MXR(I) = L
85 CONTINUE

C ********* ARRAY LW CONTAINS ALL THE NODES IN THE SUBGRAPH SET
7 DO 9 J = LJ, L
 KB(J) = 1
 P(J) = 0.0
9 C ********* CALCULATE TRANSPORT (DISTANCE) COSTS FOR EACH POTENTIAL SITE
DO 10 II = LJ, L
 JJ = LC(II)
 DO 10 J = JZ, JW
 LL = LW(J)
 LV = ID(II)
 R = A(I CHECK(LV, JJ, M))
 IF (R .LE. HNII) GO TO 3
 KB(II) = 0
3 R = R * C(J)
 P(II) = P(II) + R
10 CONTINUE
IF (KY .EQ. 0.0 .OR. LD .EQ. 1) GO TO 15

C ********* CHECK MAXIMUM DISTANCE CONSTRAINT VIOLATION IF IMPOSED. STORE
C ********* MINUS VALUES IN ARRAY P FOR SITES NOT MEETING CONSTRAINT
JX = 0
DO 25 J = LJ, L
 JJ = LC(J)
 IF (KB(J) .NE. 0) GO TO 25
 IJ = JN(JJ)
 IF (M(C(IJ)) .LT. 0) GO TO 12
 P(J) = P(J) * (-1.0)
12 JX = JX + 1
25 CONTINUE
JJ = (L - LJ) + 1
IF (JX .NE. JJ) GO TO 15
LD = 1
15 M(T(I)) = L

C ********* CALCULATE TOTAL COST FUNCTION FOR EACH POTENTIAL SOURCE
DO 28 J = LJ, L
K = LC(J)
SUM = V(I)
E(J) = 0.0
IF (MG.EQ.0. AND. KP.NE.1. OR. MY.EQ.0) GO TO 28
CALL COST (SUM, Y, K)
E(J) = Y

28 CONTINUE
50 CONTINUE
IF (LO.NE.1. OR. KY. NE.1) GO TO 26
C ******** TEST WHETHER EACH SUBGRAPH HAS ONE POTENTIAL SITE NOT GREATER C ******** THAN MAXIMUM DISTANCE CONSTRAINT. IF TRUE SUBJECT ONLY PLUS C ******** P VALUES TO THE MEDIAN SEARCH. IF FALSE NO SOLUTION ON THIS C ******** ITERATION THEREFORE RESET P VALUES ALL POSITIVE AND CONTINUE
DO 27 J = 1, L
IF (P(J).GE.0.0) GO TO 27
P(J) = P(J)*(-1.0)
27 CONTINUE
26 XX = 0.0001
S = 0.0
LS = 0
L = 0
KK = 1
DO 2 I = 1, N
KD(I) = I
C ******** FIND THE MEDIAN FOR EACH SUBGRAPH
DO 45 I = 1, JS
LJ = L + 1
L = MT(I)
K = 0
SM = V(I)
IF (IKS.EQ.2) SM = PM
TEMP = SY
DO 30 J = LJ, L
IF (KY-1) 22, 23, 24
22 EX = PI(J) + E(J)
GO TO 29
23 EX = P(J)
GO TO 29
24 EX = E(J)
29 JJ = LC(J)
JL = JN(JJ)
IF (MC(JL).LT.0) GO TO 31
IF (P(J).LT.0.0 OR. UP(JJ).LT. SM) GO TO 30
IF (KD(JL).EQ.0) GO TO 30
IF (EX.GT.(TEMP-XX).AND. EX.LT.(TEMP+XX)) GO TO 32
IF (EX.GT. TEMP) GO TO 30
TEMP = EX
II = J
K = 1
LS = KK
GO TO 37
32 \quad IS = LS + 1
C ******** STORE NEW BEST SOLUTION IN ARRAY KB
37 \quad KB(LS) = LC(IJ)
30 \quad CONTINUE
 IF (K * N * E * 0) GO TO 52
 S = 10.0 * X * 15

GO TO 42
52 \quad IF (MA.EQ.0) GO TO 55
C ******** CHECK TO ENSURE THAT THE SAME NODE IS NOT CHosen AS A MEDIAN
C ******** IN MORE THAN 1 SUBGRAPH. CAN OCCUR IF PLANT SIZE CONSTRAINED
DO 71 IJ = KK, LS
 KV = KB(IJ)
 JL = JN(KV)
 KD(JL) = 0
 NZ(I) = LS
 S = S + TEMP
 KK = LS + 1

CONTINUE
55 \quad IF (MA.EQ.0) GO TO 55
C ******** CHECK BUDGET CONSTRAINT VIOLATION IF IMPOSED
42 \quad IF (S.LE.BD.OR.LD.EQ.1) GO TO 35
 LD = 2
35 \quad RETURN
END

SUBROUTINE PRINT (N,M,V,B,LW,KC,KB,SM,SB,JN,LD,NST,KD,MK8,K3,DN,IF
1,MR,LC,MT)
C ******** THIS SUBROUTINE PRINTS SOLUTIONS FOR THE LOWER BOUNDS
C ******** M.B. THE WRITE,DATA,AND FORMAT STATEMENTS IN THIS SUBROUTINE
C ******** ARE DESIGNED FOR A 130 PLUS LINE PRINTER
DOUBLE PRECISION TC,SM,SB,S,SI,S2
DIMENSION LW(IH),KC(M),KB(M),SM(LH),SB(LH),IMT(15),IMT(9),KD(IH)
DIMENSION JN(M),B(IH),V(M),NH(65),NST(M),ISPEC(5),ISPEC(5),MKB(M)
DIMENSION DN(IH),MR(M),LC(M),MT(M)
COMMON/COM1/MM,KP,MA,NM,JS,KY,J2,MRJ,MY,JNP,J2P,HP,IKS
COMMON/COM2/AM,AR,DS,BD,SX,PX,SY
DATA JV,JK/1H*,5/
DATA ISPEC/IH1,1H2,1H3,1H4,1H5/
DATA ISPEC/IH4,1H8,2H12,2H16,2H20/
DATA IMT/I4H(I4,,3H17,,4HF12,,3H2,F,4H14,2,4H,2F1,4H2,2,3H3X,,1H5,
13H4,,1H4,2H2,,1H5,4HF8.1,1H)/
DATA IMT/I3H(64,2HX,,1H5,3H14,,1H4,2HX,,1H5,4HF8.1,1H)/
DATA IMT/I3H(64,2HX,,1H5,3H14,,1H4,2HX,,1H5,4HF8.1,1H)/
2 FORMAT (1X,65A1,65A1)
5 FORMAT (5X,6HMEAN,2X,10HPLANT SIZE,2X,12HFREIGHT COST,2X,10HPLAN
1T COST,2X,10TOTAL COST,6X,14HNODES SERVICED,12X,30HVOLUME SUPPLIE
2D TO EACH MEDIAN/)
8 FORMAT (1/14X,80HNO SOLUTION FOUND ON THIS ITERATION SATISFYING MA
JORITY DISTANCE CONSTRAINT FOR A,14,1X,17LOCATION SOLUTION/)
11 FORMAT (5X,80HNO SOLUTION FOUND ON THIS ITERATION SATISFYING TOTAL
1 PLANT COST CONSTRAINT FOR A,14,1X,17LOCATION SOLUTION/)
12 FORMAT (5/44X,25HPLANT LOCATION-ALLOCATION,13,14H MEDIAN SOLUTION/)
70 FORMAT (4X,7HNETWORK,F12.2,F14.2,2F12.2/)

102 FORMAT (1X,65A1,65A1)
 IF (LD-1),7,9
 7 WRITE(6,8) JS
 GO TO 75
 9 WRITE(6,11) JS
 GO TO 75
 3 IF (NM.LT.3.0R.NSTIII.NE.0) GO TO 6
C ******** STORE LOWER BOUND MEDIANS IF DYNAMIC LOCATION IS OPTIONED
 DO 4 I =1,JS
 J =KC(I)
 NST(I) =KB(J)
 4 DO 1 I =1,65
 NH(I) =JV
 IF (K3.NE.0) GO TO 14
 K3 =1
 WRITE (6,2) (NH(I),I =1,65), (NH(I),I =1,65)
 14 WRITE (6,12) JS
 WRITE (6,5)
 S =0.0
 S1 =0.0
 S2 =0.0
C ******** ARRANGE SUBGRAPH MEDIANS IN ASCENDING ORDER FOR PRINTING
 DO 15 I =1,JS
 LL =KC(I)
 LC(I) =I
 MT(I) =KB(LL)
 15 DN(I) =0.0
 CALL ASCEND(N,M,M1,DN,JS,MT,LC,3)
C ******** CONSIDER EACH SUBGRAPH IN TURN SET UP INDICES FOR PRINTING
 DO 65 IJ =1,JS
 I =LC(IJ)
 JW =MK3(IJ)-1
 KR =I-1
 IF (KR.EQ.0) JZ =1
 IF (KR.NE.0) JZ =MK3(KR)
 L =MT(IJ)
 II =MXR(I)
 JJ =0
C ******** OBTAIN SUBGRAPH NODES FOR PRINT OUT.
 DO 10 J =JZ,JW
 JJ =JJ+1
 KD(JJ) =LW(J)
 10 DN(JJ) =B(JJ)
 TC =SM(I1)+SB(II)
 JY =JK
 IF (JY.GT.JJ) JY=JJ
 JX =1
 JP =-(JY-JX)+1
 LP =-(JK-JP)+1
 IMT(9) =ISPEC(JP)
 IMT(11) =ISPEC1(LP)
IMT(13) = ISPEC(JP)
WRITE (6, IMT) I, JN(L), V(I), SM(I), SB(I), TC, (KD(J), J = JX, JY), (DN(I), J = JX, JY).
31 JX = JX + 1
JY = JY + JK
IF (JX.GT. JJ) GO TO 33
IF (JY.GT. JJ) JY = JJ
JP = (JY-JX)+1
LP = (JK-JP)+1
IMTI(3) = ISPEC(JP)
IMTI(5) = ISPEC(LP)
IMTI(7) = ISPEC(JP)
C ********* PRINT OUT ALLOCATIONS
WRITE (6, IMT1) (KD(J), J = JX, JY), (DN(I), J = JX, JY)
GO TO 31
C ********* CALCULATE AND PRINT OUT TOTALS
33 S = S + SM(I)
S1 = S1 + SB(I)
S2 = S2 + TC
CONTINUE
WRITE (6, 70) DS, S, S1, S2
WRITE (6, 102) (NH(I), I = 1, 65), (NH(D), I = 1, 65)
75 RETURN
END
SUBROUTINE PART (N, M, A(I), JD(M), NB(M), B(M), NC(M), V(I), D(I), ID, UP, MT, IB, KB, VR, G(I), NP)
C ********* THIS SUBROUTINE OBTAINS THE INITIAL PARTITIONING SET OF POINTS
C ********* THE THIRD AND FOURTH HEURISTICS
DIMENSION A(I), JD(M), NB(M), B(M), NC(M), V(I), D(I), ID, UP, MT, IB, KB, VR, G(I), NP(M)
COMMON/C0M1/ MM, KP, MA, MM, JS, KY, J2, MR, JS, KVP, IKP, IZP, MG, IKS
COMMON/C0M2/AM, AR, DS, BD, SX, PM, SY
LM = M
IF (LM.EQ.MM) GO TO 30
IF (MA.EQ.0) GO TO 2
DO 1 I = 1, M
MT(I) = JD(I)
IB(I) = NB(I)
KB(I) = NC(I)
VR(I) = V(I)
1 G(I) = B(I)
IF (IKS.EQ.2) GO TO 23
2 AR = SY
C ********* THIS LOOP ELIMINATES ONE NODE. THE ONE WHOSE WEIGHTED
C ********* DISTANCE TO SOME OTHER POTENTIAL SITE IS A MINIMUM
DO 15 I = 1, LM
JJ = JD(I)
IF (MC(JJ).LT.0) GO TO 15
MJ = NC(I)
AM = B(I)*D(JJ)
IF (LJ.EQ.1) AM = B(I)*V(MJ)
IF (AM .GE. AR) GO TO 15
AR = AM
JR = NC(I)
JV = NB(I)
IJ = I.
15 CONTINUE

IF (LJ .EQ. 1) V(JV) = V(JV) + V(JR)
IF (V(JV) .GT. UP(JV)) V(JV) = UP(JV)
NP(LM) = JR
JJ = IJ - 1
KJ = IJ + 1
IF (KJ .GT. LM) GO TO 17

C ******** REWRITE AND SHRINK ARRAYS SANS DROPPED NODE
DO 16 I = KJ, LM
JJ = JJ + 1.
JD(JJ) = JD(I)
NB(JJ) = NB(I)
B(JJ) = B(I)
NC(JJ) = NC(I)
16 CONTINUE

17 LM = LM - 1
IF (LM .EQ. MM) GO TO 21
IF (LM .EQ. 1) GO TO 2
C ******** CONSIDER ALL NODES WHOSE SHORTEST WEIGHTED DISTANCE WAS TO
C ******** THE ELIMINATED NODE. FIND A NEW SUCH DISTANCE TO ANOTHER NODE
DO 20 I = 1, LM
IF (NB(I) .NE. JR) GO TO 20
JB = NC(I)
AR = SY
DO 18 J = 1, LM
JX = NC(J)
IF (JB .EQ. JX) GO TO 18
LL = ICHECK(JB, JX, M)
IF (A(LL) .GE. AR) GO TO 18
AR = A(LL)
IJ = JX
18 CONTINUE
NB(I) = IJ
B(I) = AR
20 CONTINUE
GO TO 2
21 IF (MA .EQ. 0) GO TO 30
C ******** DOES THIS SET OF P SATISFY TOTAL NETWORK DEMAND
C ******** IF NOT RE-CYCLE CONSIDERING ONLY NODES WITH PLANT SIZES > PM
AR = 0.0
DO 22 I = 1, JS
J = NP(I)
22 AR = AR + UP(J)
IF (AR .GE. DS) GO TO 30
23 JX = 0
DO 28 I = 1, M
SUBROUTINE SEARCH (N,M,A,B,IP,LC,NC,MC,KG,UP,LI,JN,LX,SP,LZ,KT,IV)

C ********** THIS SUBROUTINE FINDS THE SET OF P_NODES FOR THE FIRST AND
C ********** SECOND PARTITIONING HEURISTICS

DIMENSION A(LI),B(N),NC(N),KC(M),MC(N),LC(M),KG(LZ),UP(M),JN(M)
DIMENSION V(M)

COMMON/COM1/MM,KP,MA,NM,JS,KY,J2,MRJ,MY,KVP,IKP,IZP,MG,IKS
COMMON/COM2/AM,AR,DS,BD,SX,PM,SY

IF (JS.EQ.KP) JS =JS-1
K =1

C *** INITIALIZE ARRAYS
DO 4 I =1,M

4 B(I) =SY
NC(I) =1
RMAX =SY
IF (JS.EQ.MM.OR.MM.EQ.0) GO TO 2
JR =LC(JS).
DO 3 I =1,MM

3 II =LC(I)
LL =ICHECK(II,JR,M)
AP =A(LL)
IF (KT.EQ.1) AP =A(LL).AND.V(II)
IF (AP.LT.RMAX) RMAX =AP
CONTINUE

DO 6 I =1,JS

6 NC(I) =0
C ******** THIS LOOP FINDS THE NEXT MEMBER OF THE P_CANDIDATE_SET. FOR A ROW
DO 50 II = 1, M
 IF (UP(II) .LT. SP OR. NC(II) .EQ. 0) GO TO 50
 DO 48 J = K, JS
 LS = LC(J)
 LL = ICHECK(II, LS, M)
 AP = A(LL)
 IF (KT .EQ. 1) AP = A(LL) * V(II)
 IF (AP .GE. B(II)) GO TO 48
 48 CONTINUE
 IF (B(II) - TMAX) 50, 50, 46
46 MR = II
 TMAX = B(II)
50 CONTINUE
 JS = JS + 1
 LC(JS) = MR
 K = JS
 NC(MR) = 0
 IF (JS - KP) 42, 10, 10
10 IF (MA .EQ. 0) GO TO 5
C ******** TEST WHETHER THIS SET OF P SATISFIES NETWORK DEMAND UNDER PLANT CONSTRAINT
 IF (TSUM .GE. DS) 75, 5, 5
5 KVP = 1
 AR = TMAX
 IF (AR .GT. RMAX) AR = RMAX
 JK = 0
 KJ = 0
C ******** TEST WHETHER THIS P_SET HAS > MAXIMUM BOUND THAN BEFORE
 IF (AR .GT. (AM - XX) .AND. AR .LT. (AM + XX)) GO TO 7
7 JV = 0
8 DO 11 I = 1, JS
11 KC(I) = LC(I)
 CALL ASCEND (M, M, M, 1, B, JS, KC, NC, 1)
 CALL COMP (IP, JV, KC, KG, M, LZ)
10 CONTINUE
9 AM = AR
 IP = LX
 IF (LX) 7, 72, 7
72 JV = 1
 GO TO 8
SUBROUTINE TEST (N, M, IH, LI, A, B, KD, MC, NC, ID, V, Q, KC, KB, LR, NR)

C ********** THIS SUBROUTINE WHICH EXECUTES ONLY WHEN PLANT COSTS ARE
C ********** INCREASING ATTEMPTS NODE SHIFTING TO MAXIMIZE PLANT SCALE
C ********** ECONOMIES

DOUBLE PRECISION TC, RC
DIMENSION A(IH), KD(IH), NC(IH), B(IH), MC(N), ID(N), V(M), Q(M), KC(M)
DIMENSION KB(M)
COMMON/COM1/ MM, KP, MA, NM, JS, KY, J2, MR, MY, KVP, IKP, IZP, MG, IKS
COMMON/COM2/AM, AR, DS, BD, SX, PM, SY
NR = 0

5 MJ = 0
JX = LR
DO 100 I = 1, LR
 IF (KD(I).EQ.0) GO TO 100
C ******** FIRST CONTENDER FOR SWITCH
 JJ = KD(I)
 IF (MC(JJ).LT.0) GO TO 100
 JR = ID(JJ)
 MR = NC(JJ)
 AX = 0
 JZ = MR
C ******** ENSURE AT LEAST 1 UNIT OF DEMAND IS LEFT AT MEDIAN
 IF ((V(MR) - AX).LE.1.0) AX = AX - 1.0
 IF (AX.LE.0.0) GO TO 100
 AV = SY
C ******** TENTATIVELY ADD THIS NODE DEMAND TO SOME OTHER MEDIAN
 DO 80 J = 1, JS
 IF (Q(J).EQ.JR.OR.Q(J).LE.0.0) GO TO 80
 AY = AX
 IF (Q(J).LT.AY) AY = Q(J)
 SM = V(MR) - AY
 AM = V(MR)
 CALL SET (MR, J2, JR, KC, KB, LI, TC, M, A, AY, LV)
 CALL FCOST (AM, SM, LV, TC)
 AM = V(J) + AY
 SM = V(J)
 CALL SET (J, J2, JR, KC, KB, LI, RC, M, A, AY, LV)
 CALL FCOST (AM, SM, LV, RC)
 C ******** COMPARE COST DIFFERENTIAL
 IF (RC - TC).LT.0.0)
 80 CONTINUE

75 RETURN
END
C ******** IF COST REDUCTION OCCURS SWITCH NODES - MODIFY PLANT SIZES
IF (JZ.EQ.MR) GO TO 100
V(MR) = V(MR) - CM
Q(MR) = Q(MR) + CM
V(JZ) = V(JZ) + CM
Q(JZ) = Q(JZ) - CM
IF (AY.NE.B(I)) GO TO 60
NC(I) = JZ
GO TO 100
60 K(I) = 0
IF (AX.NE.B(I)) AX = AX + 1.0
BM = AX - CM
JX = JX + 1
KD(JX) = KD(JJ)
B(JX) = BM
NC(JX) = MR
JX = JX + 1
KD(JX) = JJ
B(JX) = CM
NC(JX) = JZ
100 CONTINUE
IF (MJ.EQ.0) GO TO 150
LR = N
J = N + 1
CALL SHRINK (J, JX, LR, KD, NC, B, I)
GO TO 5
150 RETURN
END
SUBROUTINE ASCEND (N, M, K, L, B, JS, LW, JD, KR)
C ******** A GENERAL PURPOSE ROUTINE FOR ORDERING DATA IN ASCENDING ORDER.
C ******** DATA IN ASSOCIATED ARRAYS MAY ALSO BE RE-ORDERED.
DIMENSION B(N), LW(M), JD(K)
LJ = JS - 1
KJ = 1
IF (LJ .LT. L) GO TO 5
1 IND = 1
JND = 1
JK = 0
DO 4 I = KJ, LJ
IF (KR .GE. 1) GO TO 2
IF (B(I + 1) .GE. B(I)) GO TO 7
TEMP = B(I + 1)
NR = JD(I + 1)
B(I + 1) = B(I)
JD(I + 1) = JD(I)
B(I) = TEMP
JD(I) = NR
IF (KR) 6, 3, 2
2 IF (LW(I + 1) .GE. LW(I)) GO TO 7
3 NS = LW(I + 1)
LW(I + 1) = LW(I)
LW(I) =NS
IF (KR.LT.2) GO TO 6
TEMP =B(I+1)
B(I+1) =B(I)
B(I) =TEMP
IF (KR.LT.3) GO TO 6
NR =JD(I+1)
JD(I+1) =JD(I)
JD(I) =NR
IND =1
JK =1
GO TO 4

IF (JK.EQ.1) GO TO 4
JND =1
GO TO 4

CONTINUE
IF (IND.EQ.1) GO TO 5
LJ =IND-1
KJ =JND-1
IF (KJ.LT.LJ) KJ =L
GO TO 1

RETURN

END

C ******** THIS SUBROUTINE CALCULATES THE A, AL MATRICES FOR THE FIRST
C ******** TWO PARTITIONING HEURISTICS AND REPLACES SHORT PATH MATRIX IN
C ******** ARRAY A AT THE TERMINATION OF THE SEARCH

DIMENSION A(LI),UP(M),W(M),V(M)
COMMON/COM1/MM,KP,MA,NM,JS,KS,K2,MRJ,MY,KVP,IKP,KZP,MG,IKS
COMMON/COM2/AM,AR,DS,BD,SX,PM,SY
DOUBLE PRECISION SX
SR =1.0/SX
IF (MGB.EQ.1) GO TO 55
IF (K.EQ.1) GO TO 11
DO 10 I =1,M
DO 10 J =1,M
LLL =J*(J-1)/2+I
10 A(LLL) =A(LLL)*W(I)*W(J)/(W(I)+W(J))
11 IF (LJ.EQ.0) GO TO 30
AX =0.0
AV =0.0
DO 15 I =1,M
DO 15 J =1,M
LL =J*(J-1)/2+I
AW =A(LL)
IF (K.EQ.1) AW =A(LL)*V(I)
IF (AW.LE.AV) GO TO 12
AV =AW
KV =I

12 IF (MA.EQ.0) GO TO 15
IF (UP(I).LT.PM.OR.UP(J).LT.PM) GO TO 15
IF (AW.LE.AV) GO TO 15
AX = AW
KR = 1
CONTINUE
GO TO 30
DO 20 I = 1, M
DO 20 J = I, M
LLL = J*(J-1)/2 + 1
S = A(LLL) * (W(I) + W(J)) / (W(I) * W(J))
MAX = (S * S) + 0.5
S = MAX
A(LLL) = S * SR
RETURN
END
SUBROUTINE COUNT (M, JS, LR, IH, NC, LW, KD, B, D, IN, MKB)
C ******** THIS SUBROUTINE ORDERS NODES BY SUBGRAPH AND SETS UP ARRAYS
C ******** FOR PENDING MEDIAN SEARCH
DIMENSION MKB(M), NC(IH), KD(IH), LW(IH), B(IH), D(IH), IN(IH)
DO 352 I = 1, JS
DO 353 I = 1, LR
IF (KD(I).EQ.0) GO TO 353
J = NC(I)
MKB(J) = MKB(J) + 1
353 CONTINUE
L = 0
DO 354 I = 1, JS
LL = MKB(I)
MKB(I) = L + 1
354 L = L + LL
DO 355 I = 1, LR
IF (KD(I).EQ.0) GO TO 355
J = NC(I)
K = MKB(J)
LW(K) = KD(I)
B(K) = D(I)
IN(K) = I
MKB(J) = K + 1
355 CONTINUE
RETURN
END
SUBROUTINE CMP (IP, JV, KC, KG, M, LZ)
C ******** THIS SUBROUTINE STORES THE SET OF P DERIVED FROM EACH
C ******** PARTITIONING HEURISTIC
DIMENSION KG(LZ), KC(M)
COMMON/COM1/ MM, KP, MA, NM, JS, KY, J2, MRJ, MY, KVP, IKP, IZP, MG, IKS
IF (JV.EQ.1) GO TO 20
DO 16 LM = 1, IP
MJ = (LM + JS) - JS
16 MJ = MJ + 1
C ******** HAS THIS SET OF P BEEN PREVIOUSLY OBTAINED. IF SO RETURN
C ******** IF NOT STORE THE SET OF P
 IF ((KC(LL)-KG(MJ))16,15,16
15 CONTINUE
 GO TO 30
16 CONTINUE
 IZP = IZP + 1
 IF (IZP.GT.2) GO TO 30
20 MJ = IP*JS
 IP = IP + 1
 DO 8 I = 1, JS
 MJ = MJ + 1
8 KG(MJ) = KC(I)
30 RETURN
END
SUBROUTINE TRANS (N,M,V,NZ,NC,MB,D,JS,K,C,J,D,L) &
C ******** THIS SUBROUTINE STORES THE CURRENT LOWER BOUND SOLUTION
DIMENSION NC(1), IH, MD(IH), KD(IH), D(IH), CJ(IH), Q(K), OS(M)
 DO 5 I = 1, JS
 F(I) = DN(I)
 VR(I) = V(I)
 Q(I) = QS(I)
 IZ(I) = NZ(I)
5 KB(I) = MB(I)
 IF (K.EQ.0) GO TO 35
 DO 20 I = 1, LR
 NB(I) = NC(I)
 MD(I) = KD(I)
20 CJ(I) = DJ(I)
35 RETURN
END
SUBROUTINE SET (MR,J2,JR,KC,KB,LI,TC,M,ASUMMA,LV)
DOUBLE PRECISION TC
DIMENSION A(LI), MC(M), KB(M)
 LJ = KC(MR)
 LV = KB(LJ)
 IF (J2.EQ.0) GO TO 90
 CALL TCOST (ASUMMA,TC,LV)
 GO TO 92
90 TC = A(CHECK(JP,LV,M))
92 TC = TC + ASUMMA
RETURN
END
SUBROUTINE INCRE (JM,JG,JF,JD,JS,MB,VA,SUMMA,JR)
C ******** THIS SUBROUTINE INCREMENTS SPECIFIED ARRAYS WITH NON UNIQUELY
C ******** ASSIGNED NODES OR NODES WITH FRACTIONALY ASSIGNED DEMANDS
C ******** ARRAY JG CONTAINS THE NODE LABEL, JQ THE RELEVANT SUBGRAPHS, JA
C ******** THE NO OF SUBGRAPHS COMMON TO EACH MEMBER OF JS, AND ARRAY RS
C ******** THE AMOUNT OF MARKET DEMAND ALLOCATED
DIMENSION JG(M7), JA(M7), RS(M7), JQ(M8)

IF (K.EQ.1) GO TO 5

JM = JM + 1

JL = JL + 1

JG(JM) = JJ

RS(JM) = SUMMA

JG(JL) = MR

IF (K.EQ.2) GO TO 10

JA(JM) = JL

RETURN

END

FUNCTION ICHECK (I, J, M)

***** THIS FUNCTION SUBROUTINE FINDS APPROPRIATE I,J ELEMENTS IN
***** THE SINGLY DIMENSIONED SHORT PATH MATRIX A

COMMON/COM1/MM, KP, MA, NM, JS, KY, J2, MR, MY, KVP, IKP, IZP, MG, IKS

IF (I.LE.M) GO TO 2

ICHECK = IKP + ((I-1)**M) + J

RETURN

2

IF (I.GT. J) GO TO 5

ICHECK = J*(J-1)/2 + 1

RETURN

5

ICHECK = I*(I-1)/2 + J

RETURN

END

SUBROUTINE SHRINK (MJ, LR, JI, KO, NC, D, IH)

C ***** THIS SUBROUTINE REWRITES ARRAYS AFTER NODE REALIGNMENTS HAVE
***** MADE SOME ARRAY ELEMENT REDUNDANT

DIMENSION KD(IH), NC(IH), D(IH)

DO 10 I = MJ, LR

IF (KD(I).EQ.0) GO TO 10

JJ = JJ + 1

KD(JJ) = KO(I)

NC(JJ) = NC(I)

D(JJ) = D(I)

10 CONTINUE

RETURN

END

SUBROUTINE COST (SUM, P, LR)

C ***** OPTIONAL USER SUPPLIED SUBROUTINE FOR CALCULATING PLANT
***** COSTS BASED UPON CURRENT SIZE OF THAT PLANT

COMMON NF(IO)

DOUBLE PRECISION P

IF (NF(LR).NE.1) GO TO 2

P = T**SORT(SUM)

GO TO 5

2

P = 10**SORT(SUM)

5

RETURN

END

SUBROUTINE FCOST (S, SUM, LV, TC)

DOUBLE PRECISION X, XX, TC

CALL COST (S, XX, LV)
CALL COST (SUM, X, LV)
TC = TC + (XX - X)
RETURN
END

SUBROUTINE DATA
C ******** THIS OPTIONAL USER SUPPLIED SUBROUTINE READS IN PLANT COST DATA FOR EACH PLANT. THIS INFORMATION MAY BE SUPPLIED TO SUBROUTINE COST VIA A SUITABLE COMMON STATEMENT
COMMON NF(10)
READ (5, 1) (NF(I), I = 1, 10)
1 FORMAT (10I1)
RETURN
END

SUBROUTINE TCOST (SUMR, R, JJ)
C ******** THIS OPTIONAL USER SUPPLIED SUBROUTINE RE-CALCULATES UNIT TRANSPORT COSTS OVER SOME LINK IF PLANT SIZE CONSTRAINTS MAKE THIS NECESSARY
RETURN
END
APPENDIX VII

A Computer Program for the Optimal Sequencing of Plant Locations Over Time by Dynamic Programming
A DYNAMIC PROGRAM FOR THE OPTIMAL SEQUENCING OF PLANT LOCATIONS OVER TIME

METHOD: SEE "AN ALGORITHM FOR ESTIMATING THE MEDIANS OF A WEIGHTED GRAPH SUBJECT TO SIDE CONSTRAINTS" - R.A. Whitaker PhD Thesis

DEPARTMENT OF GEOGRAPHY UNIVERSITY OF BRITISH COLUMBIA 1971

N.B. NETWORK NODES SHOULD BE LABELLED IN SEQUENCE 1,...,N

DECK SET UP AS FOLLOWS

A) PROBLEM TITLE CARD

B) CONTROL CARD

1. COLS 1-3 NUMBER OF NODES ON THE NETWORK (N)

2. COLS 4-6 NUMBER OF TIME PERIODS (NP) N.B. THE ASSUMPTION IS MADE THAT ONE PLANT IS LOCATED IN EACH TIME PERIOD

3. COLS 7-9 NUMBER OF PLANTS CURRENTLY IN OPERATION OVER THE NETWORK, IF ANY. (NK) N.B. IT IS ASSUMED THAT THE NUMBER OF PLANTS AS SPECIFIED IN COLS 4-6 IS TO BE ADDED SEQUENTIALLY WITH RESPECT TO THOSE ALREADY LOCATED (I.E. IN OPERATION)

4. COL 10 LEAVE BLANK IF PLANT COSTS ARE NOT INCLUDED. PUNCH 1 IF THE PLANT COST FUNCTIONS (WHICH ARE USER SUPPLIED) ARE THE SAME OVER ALL TIME PERIODS. PUNCH 2 IF A DIFFERENT SET OF PLANT COST FUNCTIONS IS TO BE READ IN FOR EACH TIME PERIOD SUBROUTINE DATA WILL BE NEEDED IF A 2 IS PUNCHED. (SEE SECTION BELOW ON USER SUPPLIED SUBROUTINES). N.B. THE COST FUNCTIONS SHOULD BE OF THE SAME GENERAL TYPE ALTHOUGH INDIVIDUAL PARAMETERS MAY CHANGE OVER TIME. IF THE USER WANTS TO SUPPLY DIFFERENT TYPES OF COST FUNCTIONS HE MUST DEFINE SEVERAL SETS OF DATA AND COST SUBROUTINES AND CALLING STATEMENTS IN THE MAIN PROGRAM.

5. COL 11 PUNCH 1 IF USER SUPPLIED SUBROUTINE FOR READING IN PLANT COST FUNCTIONS IS SUPPLIED: OTHERWISE LEAVE BLANK (MN). SEE SECTION ON USER SUPPLIED SUBROUTINES.

6. COL 12 PUNCH 1 IF A DIFFERENT SET OF MARKET DEMANDS (NODE WEIGHTS) IS TO BE READ IN FOR EACH TIME PERIOD: OTHERWISE LEAVE BLANK (NZ)

7. COL 13 LEAVE BLANK IF THE MATRIX OF UNIT TRANSPORT COSTS (DISTANCES) FROM EACH NODE TO EACH NETWORK MEDIAN IS TO REMAIN THE SAME OVER ALL TIME PERIODS. PUNCH 1 IF A DIFFERENT SET OF TRANSPORT COSTS (DISTANCES) IS TO BE READ IN FOR EACH TIME PERIOD (KK)

8. COL 14 PUNCH 0 IF THE SHORT PRINT OUT IS OPTIONED. PUNCH 1 FOR THE FULL PRINT OUT WHICH INCLUDES MEDIAN PLANT SIZES, TRANSPORT (DISTANCES) AND PLANT COSTS, AND NODE TO MEDIAN ALLOCATIONS. (KRI)

9. COL 15 SINCE AS MANY JOBS AS ARE REQUIRED MAY BE RUN CONSECUTIVELY PUNCH 1 IF THIS IS THE LAST (OR ONLY) JOB IN THE RUN (LFN)

C) READ IN THE NODE DESIGNATIONS (LABELS) OF ALL PLANTS INCLUDING THOSE TO BE FORCED INTO SOLUTION, IF ANY, (I.E. THE EXISTING LOCATIONS ON THE NETWORK) AND THOSE TO BE SEQUENCED OVER TIME. N.B. THE ORDER FOR THESE WILL NORMALLY BE IN
ASCENDING ORDER. (SEE INSTRUCTION F FOR FURTHER CLARIFICATION)

READ IN SPECIFICATION INDICATORS FOR PLANT STATUS AS FOLLOWS:

(THERE WILL BE AS MANY INDICATORS AS THERE ARE NODES READ IN)

UNDER INSTRUCTION C). PUNCH 1 IF THE CORRESPONDING NODE LISTED IN C IS A CANDIDATE MEDIAN FOR SEQUENTIAL LOCATION. PUNCH 2 IF THE CORRESPONDING NODE IN C HAS FORCED STATUS (I.E. IS AN EXISTING LOCATION IN OPERATION) E.G. SUPPOSE THE NODES READ IN C UNDER INSTRUCTION C ARE 4, 15, 21, AND 34 Respectively AND FURTHER THAT NODE 21 IS FORCED. THEN MEDIAN 4, 15, AND 34 ARE TO BE SEQUENTIALLY LOCATED OVER 3 TIME PERIODS WITH RESPECT TO NODE 21 WHICH HAS BEEN LOCATED IN SOME PREVIOUS TIME PERIOD. THE LIST OF SPECIFICATION INDICATORS WILL THEREFORE BE 1, 1, 2, 1 AND 1. PUNCH THE REQUISITE 1 OR 2 IN EVERY FOURTH COLUMN.

READ IN VARIABLE FORMAT CARD FOR READING IN THE UNIT TRANSPORT COST (SHORT DISTANCE) MATRIX FROM EACH NODE TO EACH MEMBER OF THE LIST SPECIFIED IN INSTRUCTION C. E.G. (10F5.1)

READ IN VARIABLE FORMAT FOR READING IN MARKET DEMANDS (NODE WEIGHTS)

READ IN MARKET DEMANDS (NODE WEIGHTS) UNDER THE VARIABLE FORMAT SPECIFIED IN G. - N.B. IF COL 12 (INSTRUCTION B) IS PUNCHED WITH A ONE THEN AS MANY SETS OF WEIGHTS AS THERE ARE TIME PERIODS MUST BE READ IN. THE FIRST SET READ IN WILL REFER TO TIME PERIOD ONE, THE SECOND SET TO TIME PERIOD 2 AND SO ON.

IF COL 12 (INSTRUCTION B) IS NOT PUNCHED WITH A ONE THEN ONLY ONE SET OF WEIGHTS WILL BE READ IN.

READ IN PLANT COST FUNCTIONS VIA SUBROUTINE DATA IF OPTIONED.

IF A DIFFERENT SET OF FUNCTIONS IS SUPPLIED FOR EACH TIME PERIOD THEN THE FIRST SET READ IN MUST REFER TO THE LAST TIME PERIOD, THE SECOND SET TO THE NEXT TO LAST TIME PERIOD, ETC.

DOWN TO THE LAST SET WHICH REFERS TO THE FIRST TIME PERIOD.

IF THE LONG PRINT OUT IS OPTIONED (I.E. B.7 COL 13 PUNCHED WITH A 1) AND IF A DIFFERENT SET OF PLANT COST FUNCTIONS IS SPECIFIED FOR EACH TIME PERIOD THEN READ IN THE PLANT COST FUNCTIONS VIA SUBROUTINE DATA AGAIN, BUT THIS TIME IN REVERSE ORDER. I.E THE FIRST SET OF FUNCTIONS READ IN WILL REFER TO THE FIRST TIME PERIOD, THE SECOND TO THE SECOND TIME PERIOD AND SO ON DOWN TO THE LAST SET WHICH WILL REFER TO THE LAST TIME PERIOD.
*************** USER SUPPLIED SUBROUTINES ***************

THE FOLLOWING 2 SUBROUTINES MUST BE DEFINED BY THE USER IF PLANT
COSTS ARE INVOKED.

1. SUBROUTINE DATA ---
 THIS SUBROUTINE IS USED TO READ IN PLANT COST FUNCTIONS FOR
 EACH POTENTIAL PLANT SITE WHERE THE FUNCTIONS VARY AMONG PLANT
 SITES.
 CONSIDER THE FOLLOWING EXAMPLE: SUPPOSE EACH POTENTIAL SITE HAV
 E A COST FUNCTION OF THE FORM Y = A + BX WHERE A AND B ARE CONSTANT:
 X VARIES ACCORDING TO PLANT SIZE AND THERE ARE 10 SUCH SITES.
 SUBROUTINE DATA
 COMMON DAT (2,10)
 READ (5,1) A,B

 FORMAT (2F5.0)
 DO 5 I = 1,10
 DAT(1,I) = A
 DAT(2,I) = B
 CONTINUE
 RETURN

 END

 IN THE FIRST ROW OF MATRIX DAT ALL THE A CONSTANTS ARE STORED
 IN THE SECOND ROW OF MATRIX DAT ALL THE B CONSTANTS ARE STORED
 THE CONTENTS OF DAT ARE TRANSFERRED TO SUBROUTINE COST BY THE
 COMMON STATEMENT
 N.B. THIS SUBROUTINE CAN BE SUPPLIED AS A DUMMY PROVIDING THE
 PLANT COST FUNCTIONS ARE IDENTICAL FOR ALL PLANTS OVER ALL
 TIME PERIODS. IN SUCH A CASE THE COST FUNCTION CAN BE DIRECTLY
 DEFINED IN SUBROUTINE COST

2. SUBROUTINE COST ---
 THIS SUBROUTINE CALCULATES THE COST FUNCTION SUPPLIED BY THE
 USER. ITS ARGUMENT LIST MUST CONTAIN THE FOLLOWING; SUM, THE
 CURRENT PLANT SIZE WHICH IS CALCULATED IN THE MAIN PROGRAM, LR
 THE INDEX REFERRING TO SOME PLANT, AND Y THE COST OF PRODUCING
 AMOUNT SUM AT SOURCE LR. -- E.G. SUPPOSE THE COST FUNCTION IS OF
 THE FORM Y = A + BX, AND THAT THE CONSTANTS A AND B ARE NOT
 IDENTICAL FOR EACH PLANT. THEN, ASSUMING THIS INFORMATION TO
 HAVE BEEN READ IN VIA SUBROUTINE DATA AS JUST DEMONSTRATED WE

 HAVE
 SUBROUTINE COST (SUM,Y,LR)
 COMMON DAT (2,10)
 Y = DAT(1,LR) + (DAT(2,LR)*SUM)
 RETURN

 END

 IF PLANT COSTS ARE THE SAME OVER ALL PLANTS THEN THE INDEX LR
 WILL NOT BE SPECIFICALLY ACTIVATED BUT IS NEEDED IN THE
 SUBROUTINE ARGUMENT LIST. N.B. VARIABLE Y MUST ALWAYS BE
 DOUBLE PRECISIONED.

DIMENSIONING INFORMATION

DIMENSION SIZE OF ARRAY AS MUST BE GREATER THAN OR EQUAL TO
(N*M*KS) WHERE N IS THE NUMBER OF NETWORK NODES, M IS THE NUMBER
OF MEDIANS OR COLUMNS IN THE SHORT PATH MATRIX, AND KS IS THE
C *** NUMBER OF SHORT PATH MATRICES READ IN.
C *** DIMENSION SIZE OF ARRAY B MUST BE GREATER THAN EQUAL TO (N*NP)
C *** WHERE N IS THE NUMBER OF NETWORK NODES AND NP IS THE NUMBER OF
C *** DIFFERENT SETS OF NODE WEIGHTS READ IN.
C *** DIMENSION SIZE OF ARRAYS DS, DC, NB, MB, MUST BE GREATER THAN OR
C *** EQUAL TO 1 PLUS THE SUM OF ALL THE ENTERING STATES OVER ALL THE
C *** TIME PERIODS.
C *** DIMENSION SIZE OF ARRAYS KC, JC, CV, AND CJ MUST BE GREATER THAN OR
C *** EQUAL TO THE LARGER OF A) THE MAXIMUM OF (KK*J) WHERE KK IS THE
C *** NUMBER OF ENTERING STATES IN SOME TIME PERIOD AND J IS THE NUMBER
C *** OF TERMS IN THAT COMBINATORIAL SERIES OR B) N IN THE NUMBER OF
C *** NETWORK NODES. DIMENSION TO THE LARGER OF THESE TWO VALUES. N.B.
C *** IF THE NUMBER OF TIME PERIODS IS 10 THEN THE MAXIMUM OF THE
C *** EXPRESSION (KK*J) WILL BE LESS THAN 4000
C *** DIMENSION SIZE OF ARRAYS MC, KB, LB, JC, P, E, AND V MUST BE GREATER
C *** THAN OR EQUAL TO M WHERE M IS AS PREVIOUSLY DEFINED
C *** DIMENSION SIZE OF ARRAY JN MUST BE GREATER THAN OR EQUAL TO N
C *** SIZE OF ALL OTHER ARRAYS IS AS DEFINED
C ***--
C *** PROGRAMMER - R. A. WHITAKER - DEPARTMENT OF GEOGRAPHY, UNIVERSITY OF
C *** BRITISH COLUMBIA, JANUARY 1971
C ***--
DIMENSION IAC(5), MAC(5), IMT(15), LMT(9), FMT(20), PROB(20), MC(50)
DIMENSION AS(1000), KB(50), MB(1000), B(1000), LB(50), DC(1000)
DIMENSION DS(500), JC(500), KC(500), JQ(50), NB(200), JN(200), P(50)
DIMENSION E(50), V(50), NH(65), CV(2000), CJ(2000), FMT(20)
DIMENSION BS(1000).
DIMENSION LX(50), MX(50)

DATA JW, JK/1H1, 1H2, 1H3, 1H4, 1H5/
DATA IAC/1H1, 1H2, 1H3, 1H4, 1H5/
DATA MAC/1H4, 1H5, 2H12, 2H12, 2H20/
DATA IMT/4H14, 3H17, 4H12, 3H2, 4H14, 2H14, 4H21, 4H2, 2H12, 2H12, 1H5,
13H14, 1H4, 2H12, 1H5, 1H4, 2H12, 1H5, 4H8, 1, 1H/
DATA LMT/3H64, 2H12, 1H5, 3H14, 1H4, 2H12, 1H5, 4H8, 1, 1H/
DATA EQUIVALENCE (CV(1), KC(1)), (CJ(1), JC(1))

3 FORMAT (1H1)
4 FORMAT (36X, 25HPLANT LOCATION-ALLOCATION, I3, 16H MEDIAN SOLUTION, 14
1H - TIME PERIOD, 13/)
5 FORMAT (1H1, 19H PROBLEM NAME , 20A4//)
7 FORMAT (65A1, 65A1//)
8 FORMAT (5X, 6H MEDIAN, 2X, 10H PLANT SIZE, 2X, 12F 8H FREIGHT COST, 2X, 10H PLANT
1T COST, 2X, 10H TOTAL COST, 6X, 14H NODES SERVICED, 12X, 30H VOLUME SUPPLIE
2D TO EACH MEDIAN/)
10 FORMAT (313, 611)
11 FORMAT (4X, 7H NETWORK, F12.2, F14.2, 2F12.2/)
12 FORMAT (1X, 37H OPTIMUM SEQUENCING OF PLANT LOCATIONS//)
13 FORMAT (1X, 11H TIME PERIOD, 3X, 13H PLANT LOCATED, 3X, 11H PERIOD COST, 3X
11, 15H CUMULATED COSTS/)
14 FORMAT (8X, 14, 12X, 14, 3X, F11.2, 6X, F12.2)
15 FORMAT (2014)
25 FORMAT (20A4)

READ (5,25) (PROB(I),I =1,20)
WRITE (5,5) (PROB(I),I =1,20)
READ (5,10) N,NP,NK,LY,NW,NZ,IKK,KRZ,LF

C ******** READ IN NODE DESIGNATIONS (LABELS) OF BOTH FORCED PLANTS, IF ANY, (I.E. EXISTING LOCATIONS ON THE NETWORK), AND THE PLANTS TO BE ADDED TO THIS SYSTEM SEQUENTIALLY OVER TIME
NW =NP+NW
KW =NW
READ (5,15) (MC(I),I =1,NW)

C ******** READ IN SPECIFICATIONS TO INDICATE WHETHER SOME PLANT IS TO BE REFERENCED AS FORCED OR IS TO BE SEQUENCED OVER TIME
READ (5,15) (MB(I),I =1,NW)

C ******** SET UP INDEXING SYSTEM FOR REFERENCING PLANT STATUS
J =0
JJ =0
DO 20 I =1,NW
IF (MB(I).EQ.1) GO TO 18
J =J+1
KB(J) =I
MX(J) =I
GO TO 20
18 JJ =JJ+1
LX(JJ) =I

C ******** READ IN FORMAT FOR SHORT PATH MATRIX
READ (5,25) (FMT(I),I =1,20)

C ******** READ IN SHORT PATH MATRIX -- ALL N NETWORK NODES TO BOTH FORCED PLANTS, IF ANY, AND PLANTS TO BE SEQUENCED OVER TIME
MM =1
IF (IKK.NE.0) MM =NP
JM =0
DO 28 II =1,MM
DO 28 I =1,N
READ (5,FMT) (DC(J),J =1,NW)
DC 23 J =l,NW
JM =JM+1
AS(JM) =DC(J)
28 CONTINUE
MY =1
IF (NZ.NE.0) MY =NP

C ******** READ IN SET(S) OF NODE WEIGHTS
READ (5,25) (FMT1(I),I =1,20)
JS =0
DO 30 I =1,MY
READ (5,FMT) (DC(J),J =1,N)
DO 30 J =1,N
JS =JS+1
AS(JS) =DC(J)
30 CONTINUE
IF (MW.EQ.0) GO TO 35
CALL DATA
35 SX =10.0**15
C ******** CALCULATE OBJECTIVE FUNCTION FOR THE LAST TIME PERIOD; I.E. FOR
C ******** THE PLANNING HORIZON BASED UPON THE SET OF PREDETERMINED
C ******** LOCATIONS WHOSE TIME SEQUENCING IS SOUGHT
J =NK
DO 32 I =1,NP
J =J+1
KB(J) =LX(I)
32 CONTINUE
CALL ALLOC (N,P,V,E,B,XR,AS,KB,LY,MY,KW,JM,SX,J,JN,JS,MM)
C ******** INITIALIZE INDEXES AND FIRST EXIT STATE
NX =1
NA =NP-1
NR =1
LZ =NP
NY =NP-1
DC(NR) =XR
DS(NR) =XR
DO 40 I =1,NP
JC(I) =1
CALL FAC(NP,LJ)
40 DO 95 II =1,NY
MK =LZ-1
IF (NZ.NE.0) MY =MY-1
IF (IKK.NE.0) MM =MM-1
IF (LY.NE.2) GO TO 44
CALL DATA
44 CALL FAC (MK,LJ)
JJ =NP-MK
CALL FAC (JJ,1J)
LW =LP/(LJ*1J)
LJ =NR
J =MK
C ******** SET DECISION CELLS FOR THIS STAGE TO AN ARBITRARILY HIGH VALUE
DO 45 I =1,LW
LJ =LJ+1
DS(LJ) =SX
45 CONTINUE
C ******** DEFINE SOME ENTERING STATE AND EVALUATE ALLOCATIONS TO THIS
C ******** COMBINATION OF LOCATIONS
JV =0
MRJ =0
MT =1
MA =1
50 JQ(MT) =MA
IF (MT.EQ.MK) GO TO 55
MR =MA+1
IF (MR.GT.NP) GO TO 70
MA = MR
MT = MT + 1
GO TO 50

55 JX = NK
DO 60 I = 1, MK
J = J0(I)
JX = JX + 1
KB(JX) = LX(J)
60 CONTINUE

C ******** ASSIGN NODES TO CURRENT MEDIAN SET AND CALCULATE OBJECTIVE
C ******** FUNCTION
MRJ = MRJ + 1
BS(MRJ) = S

C ******** STORE THIS ENTERING STATE
DO 63 I = 1, MK
JV = JV + 1
KC(JV) = JQ(I)
63 CONTINUE

C ******** GET NEXT COMBINATION
65 MA = JQ(MT) + 1
IF (MA LE NP) GO TO 50
70 MT = MT - 1
IF (MT EQ 5, 72, 65)
72 MRJ = 0
KSJ = 0
NV = MK + 1
MJ = LR

C ******** GET DESCENDENT COMBINATIONS OF EACH ENTERING STATE BY SOME
C ******** EXIT STATE
DO 90 IV = 1, M X
KSJ = KSJ + L
KX = KSJ + 1
MT = 1
MA = 1
75 JQ(MT) = MA
IF (MT EQ MK) GO TO 78
MR = MA + 1
IF (MR GT L) GO TO 87
MA = MR
MT = MT + 1
GO TO 75
78 DO 79 I = 1, MK
J = J0(I) + MRJ
JN(I) = JC(J)
79 CONTINUE

C ******** GET RANK OF COMBINATION
I SUM = 0
DO 80 I = 1, MK
LJ = NA -(JN(NV-I)-1)
IF (LJ LT I) GO TO 80

-233-
IJ = LJ - 1
CALL FAC (LJ, KK)
CALL FAC (I, K)
CALL FAC (I, L)
ISUM = ISUM + K / (L * K)

80 CONTINUE

KR = LW - ISUM

C ********** CHECK LOWER BOUND IN APPROPRIATE DECISION CELL--UPDATE
C ********** DECISION CELL, COST CELL, LEFT AND RIGHT INSET BOXES
S = BS(KR)
LJ = KR + NR
KJ = MJ + IV
KX = KX - 1
SS = S + DS(KJ)
IF (SS .GE. DS(LJ)) GO TO 85
DS(LJ) = SS
DC(LJ) = S
MB(LJ) = IV
NB(LJ) = JC(KX)

C ********** GET NEXT DESCENDENT COMBINATION
85 MA = JQ(MT) + 1
IF (MA .LE. LZ) GO TO 75
87 MT = MT - 1
IF (MT) 85, 88, 85

88 MRJ = MRJ + LZ
90 CONTINUE

C ********** REPLACE EXIT STATES WITH ENTERING STATES, READY FOR STAGE II+1
LJ = LW * MK
DO 92 = 1, LJ
JC(I) = KC(I)

92 CONTINUE

C ********** UPDATE OTHER INDICES FOR NEW STAGE
LB(II+1) = LW
LZ = LZ - 1
LR = LR + NX
NX = LW
NR = NR + LW

95 CONTINUE

C ********** TRACE, OPTIMAL SEQUENCING PATH
JJ = 0
J = LB(NP)
JX = (NR - J) + 1
SUM = SX
DO 97 = 1, N
JJ = JJ + 1
IF (DS(J) .GE. SUM) GO TO 97
SUM = DS(J)
JV = JJ

97 CONTINUE
LJ = I
JQ(LJ) = JV
JJ = NP + 1
SJ = 0.0
DO 100 I = 1, NY
JJ = JJ - 1
JR = N - LB(JJ)
JX = JR + JV
NR = JR
LJ = LJ + 1
JG(JJ) = NB(JX)
CJ(I) = DC(JX)
CV(I) = CJ(I) + SJ
SJ = CV(I)
JV = NB(JX)
CONTINUE
CJ(NP) = DC(1)
CV(NP) = DC(1) + SJ

C ********** PRINT OPTIMAL SEQUENCING ROUTE
WRITE (6, 12)
WRITE (6, 13)
DO 105 I = 1, NP
J = J0(I)
K = LX(J)
WRITE (6, 14) I, MC(K), CJ(I), CV(I)
CONTINUE

C ********** CHECK OPTION FOR PRINTING MARKET ALLOCATIONS IN EACH PERIOD
C ********** IF NOT ACTIVATED GET NEXT PROBLEM
IF (KRZ.EQ.0) GO TO 180
WRITE (6, 3)
IF (LY.NE.0) GO TO 115
DO 110 I = 1, NW
E(I) = 0.0
CONTINUE

C ********** GET OPTIMAL ALLOCATIONS FOR TIME PERIOD II IN THIS LOOP
IF (NK.EQ.0) GO TO 123
DO 122 I = 1, NK
KB(I) = MX(I)
CONTINUE

122 IF (NZ.NE.0) IV = II
IF (IKK.NE.0) MM = II
IF (LY.NE.2) GO TO 124
CALL DATA

124 KS = (IV*N) - N
NW = NK
DO 125 I = 1, II
J = JG(I)
C ******** ARRANGE MEDIANS IN ASCENDING ORDER
LJ = NW - 1
IF (LJ .EQ. 0) GO TO 136

IN = 1
DO 135 I = 1, LJ
IF (KB(I + 1) .GE. KB(I)) GO TO 135
K = KB(I + 1)
KB(I + 1) = KB(I)
KB(I) = K
IN = I

135 CONTINUE
IF (IN .EQ. 1) GO TO 136
LJ = IN - 1
GO TO 130

C ******** DEFINE NODE TO MEDIAN ALLOCATIONS - CALCULATE OBJECTIVE
C ******** FUNCTION
136 CALL ALLOC (N, P, V, E, S, AS, KB, LY, IV, KW, JM, SX, NW, JN, JS, MM)

C ******** ORDER OPTIMAL ALLOCATIONS FOR PRINTING
DO 140 I = 1, NW
LB(I) = 0

140 CONTINUE
DO 145 I = 1, N
J = JN(I)
LB(J) = LB(J) + 1

145 CONTINUE
L = 0
DO 150 I = 1, NW
LL = LB(I)
LB(I) = L + 1
L = L + LL

150 CONTINUE
DO 155 I = 1, N
J = JN(I)
K = LB(J)
KS = KS + 1
JC(K) = L
CV(K) = B(KS)
LB(J) = K + 1

155 CONTINUE
C ******** PRINT OUT ALLOCATIONS
WRITE (6, 4) NW, II
WRITE (6, 9)
S = 0.0
S1 = 0.0
S2 = 0.0
RS = 0.0
J2 = 0
JR = 0
DO 170 I = 1, NW
JV = J2 + 1
JZ = LB(I) - 1
K = KB(I)
RC = P(I) + E(I)
JJ = (JZ - JV) + 1
JY = JK
IF (JY GT JJ) JY = JJ
JX = 1
JP = (JY - JX) + 1
LP = (JK - JP) + 1
JZ = (JV + JY) - 1
IMT(9) = IAC(JP)
IMT(11) = MAC(LP)
IMT(13) = IAC(JP)
WRITE (6, IMT) I, MC(K), P(I), E(I), RC, (JC(J), J = JV, JZ), (CV(J), J = JV, JZ)
160 JX = JY + 1
IF (JX GT JJ) GO TO 165
JY = JY + JK
IF (JY GT JJ) JY = JJ
JP = (JY - JX) + 1
LP = (JK - JP) + 1
JV = JZ + 1
JZ = JR + JY
LMT(3) = IAC(JP)
LMT(5) = MAC(LP)
LMT(7) = IAC(JP)
WRITE (6, LMT) (JC(J), J = JV, JZ), (CV(J), J = JV, JZ)
GO TO 160
165 S = S + P(I)
S1 = S1 + E(I)
S2 = S2 + RC
RS = RS + V(I)
JR = JR + LB(I) - 1
170 CONTINUE
WRITE (6, 11) RS, S, S1, S2
WRITE (6, 7) (NH(I), I = 1, 65), (NH(I), I = 1, 65)
175 CONTINUE
C ******** CHECK FOR LAST JOB IN THIS RUN
180 IF (LFIN NE 1) GO TO 1
STOP
END
C ******** ALLOC (N, P, V, E, B, S, AS, KB, LY, KRJ, KW, JM, SX, JX, JN, JS, MM)
C ******** THIS SUBROUTINE ASSIGN EACH NETWORK NODE TO ONE MEMBER OF
C ******** THE CURRENT SET OF MEDIAN
DIMENSION P(KW), E(KW), V(KW), JN(N), KB(KW), AS(JM), B(JS)
S = 0.0
KS = (KRJ * N) - N
C ********** INITIALIZE PLANT SIZE AND TRANSPORT COST ARRAYS
DO 5 I = 1, JX
P(I) = 0.0
V(I) = 0.0
CONTINUE

*** ALLOCATE SOME NODE TO NEAREST (LEAST COST) MEDIAN

J = KW*N
L = (KM*J) - J
DO 15, I = 1, N
TEMP = SX
DO 10 J = 1, JX
K = KB(J)
LL = L + K
IF (AS(LL) .GE. TEMP) GO TO 10
TEMP = AS(LL)
KK = J
10 CONTINUE

*** UPDATE MEDIAN PLANT SIZE AND TRANSPORT COST VALUES

L = L + KW
KS = KS + 1
V(KK) = V(KK) + B(KS)
SJ = (B(KS) * TEMP)
P(KK) = P(KK) + SJ
S = S + SJ
JN(I) = KK
15 CONTINUE

IF (LY .EQ. 0) GO TO 25

*** CALCULATE PLANT COST FUNCTIONS BASED ON PLANT SIZE IF OPTIOND

DO 20 I = 1, JX
J = KB(I)
SUM = V(I)
CALL COST (SUM, Y, J)
E(I) = Y
S = S + Y
20 CONTINUE

RETURN
25 RETURN

SUBROUTINE FAC (J, K)

*** THIS SUBROUTINE CALCULATES THE FACTORIAL OF A NUMBER

K = 1
IF (J .LT. 2) GO TO 10
DO 5 I = 2, J
K = K * I
5 CONTINUE
10 RETURN

SUBROUTINE COST (SUM, Y, J)

*** OPTIONAL USER SUPPLIED SUBROUTINE FOR CALCULATING PLANT COSTS BASED UPON CURRENT SIZE OF THAT PLANT

RETURN

SUBROUTINE DATA

*** THIS OPTIONAL USER SUPPLIED SUBROUTINE READS IN PLANT COST DATA FOR EACH PLANT. THIS INFORMATION MAY BE SUPPLIED TO

*** SUBROUTINE COST VIA A SUITABLE COMMON STATEMENT.
APPENDIX VIII

Program Deck set up for all Sample Problems

Discussed in Chapter III
FIGURE 8(A) MEDIAN SOLUTION FOR FIGURE 4

\begin{verbatim}
10 10 2 1
2
(10F1.0)
0453132456
4032455453
5305423121
3250243565
1442021345
3524203123
2533130234
4415312012
5526423102
6315534220
(10F2.1)
30100530204050103020
\end{verbatim}

FIGURE 8(B) MEDIAN SOLUTION FOR FIGURE 4

\begin{verbatim}
10 10 2 1
3
(10F1.0)
0453132456
4032455453
5305423121
3250243565
1442021345
3524203123
2533130234
4415312012
5526423102
6315534220
(10F2.1)
30100530204050103020
\end{verbatim}

FIGURE 8(C) MEDIAN SOLUTION FOR FIGURE 5

\begin{verbatim}
11 11 2 1
3
(11F2.0)
10 51516455150505455
1000 51516455150505455
5 5001011404645454950
1515100001303635353940
16161110100313736363839
45454030310000605056970
5151463637060011117576
5050453536 51100107475
50504535360511100107475
545449338697574740001
5555504039707675750100
(11F2.0)
0101202001010101010100
\end{verbatim}
FIGURE 9 2 MEDIAN SOLUTION (LIMITED POTENTIAL SITES) FOR FIGURE 4

10 6 12 1 1 4 6 7 9 10

2

(F1.0, 2X, F1.0, 1X, F1.0, F1.0, 1X, 2F1.0)
0453132456
4032455453
5305423121
3250243565
1442021345
3524203123
2533130234
4415312012
5526423102
6315534220
(10F2.1)
30100530204050103020

FIGURE 10(A) 4 MEDIAN SOLUTION (PLANT SIZE CONSTRAINTS) FOR FIGURE 6

10 10 2 11
(10F2.0)
06131012101107160505

4

(10F2.0)
00010612171617252626
01000511161516242525
06050006111011192020
12110600050405131414
1716110500304121313
161510063001091010
17161105040100101111
25241913120910001001
26252014131011101002
262520141310111010200
(10F2.0)
01100410021001100101

FIGURE 10(B) 2 AND 3 MEDIAN SOLUTIONS (PLANT SIZE CONSTRAINTS) FOR FIGURE 6

10 6 12 21

8

(10F1.0)
985489

2 3

(F1.0, 1X, F1.0, 1X, 2F1.0, 1X, F1.0, 1X, F1.0)
0453132456
4032455453
5305423121
3250243565
<table>
<thead>
<tr>
<th>1442021345</th>
<th>3524203123</th>
<th>2533130234</th>
<th>4415312012</th>
<th>5526423102</th>
<th>6315534220</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10F2.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30100530204050103020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 10(C) 2 MEDIAN SOLUTION (MAXIMUM DISTANCE CONSTRAINT) FOR FIGURE 10 10 2 1 1 (10F2.1)

<table>
<thead>
<tr>
<th>05403070200530408050</th>
<th>2</th>
<th>(10F1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0453132456</td>
<td>4032455453</td>
<td>5305423121</td>
</tr>
<tr>
<td>3250243565</td>
<td>1442021345</td>
<td>3524203123</td>
</tr>
<tr>
<td>2533130234</td>
<td>4415312012</td>
<td>5526423102</td>
</tr>
<tr>
<td>6315534220</td>
<td>(10F2.1)</td>
<td>30100530204050103020</td>
</tr>
</tbody>
</table>

FIGURE 11(A) MINIMUM COMBINED PLANT-TRANSPORTATION SOLUTION FOR FIGURE 10 10 1 1 1 1 1

<table>
<thead>
<tr>
<th>1</th>
<th>(10F1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0453132456</td>
<td>4032455453</td>
</tr>
<tr>
<td>3250243565</td>
<td>1442021345</td>
</tr>
<tr>
<td>2533130234</td>
<td>4415312012</td>
</tr>
<tr>
<td>6315534220</td>
<td>(10F2.1)</td>
</tr>
</tbody>
</table>

FIGURE 11(B) 3 MEDIAN SOLUTION (PLANT SIZE CONSTRAINTS) FOR FIGURE 4

<table>
<thead>
<tr>
<th>10 10 2 1 1 1 121 1 (10F3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 60 70100120105 80130 90100</td>
</tr>
</tbody>
</table>

3
FIGURE 13: FORWARD RECURSIVE DYNAMIC SOLUTION (NODE 9 FORCED) FOR FIGURE 20

<table>
<thead>
<tr>
<th>1, 3</th>
</tr>
</thead>
</table>

FIGURE 12: FORWARD RECURSIVE DYNAMIC SOLUTION FOR FIGURE 7

<table>
<thead>
<tr>
<th>9, 1, 3</th>
</tr>
</thead>
</table>

Data Table

<table>
<thead>
<tr>
<th>(1CF1.0)</th>
<th>0453132456</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4032455453</td>
</tr>
<tr>
<td></td>
<td>5305423121</td>
</tr>
<tr>
<td></td>
<td>3250243565</td>
</tr>
<tr>
<td></td>
<td>1442021345</td>
</tr>
<tr>
<td></td>
<td>3524203123</td>
</tr>
<tr>
<td></td>
<td>2533130234</td>
</tr>
<tr>
<td></td>
<td>4415312012</td>
</tr>
<tr>
<td></td>
<td>5526423102</td>
</tr>
<tr>
<td></td>
<td>6315534220</td>
</tr>
<tr>
<td></td>
<td>(1CF2.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30100530204050103020</th>
</tr>
</thead>
<tbody>
<tr>
<td>1221212211</td>
</tr>
</tbody>
</table>

Data Table

<table>
<thead>
<tr>
<th>(2CF2.0)</th>
<th>0010C3050302050604070670708050707070910</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0100020402010405036050606070606060809</td>
</tr>
<tr>
<td></td>
<td>0302000402010405036050606070606060809</td>
</tr>
<tr>
<td></td>
<td>05040400020306070506078080909080801011</td>
</tr>
<tr>
<td></td>
<td>03020202000104050340506067070706060809</td>
</tr>
<tr>
<td></td>
<td>020101030100030402050450506060505060708</td>
</tr>
<tr>
<td></td>
<td>0504040604030001040706070707030302020405</td>
</tr>
<tr>
<td></td>
<td>0605050705040100030605060666020201010304</td>
</tr>
<tr>
<td></td>
<td>040303050302040300030203020304050304040607</td>
</tr>
<tr>
<td></td>
<td>070606060405070603001020203070607070909</td>
</tr>
<tr>
<td></td>
<td>06050507060406050201000101000201020303040506</td>
</tr>
<tr>
<td></td>
<td>0706060806050706030201000203070607070809</td>
</tr>
<tr>
<td></td>
<td>0706060806050706030201000203070607070809</td>
</tr>
<tr>
<td></td>
<td>060505070604060502010001010201020303040506</td>
</tr>
<tr>
<td></td>
<td>0706060806050706030201000203070607070809</td>
</tr>
<tr>
<td></td>
<td>0706060806050706030201000203070607070809</td>
</tr>
<tr>
<td></td>
<td>09090910090805040709080907060204030301001</td>
</tr>
<tr>
<td>(2CF1.0)</td>
<td>3142343122123314232</td>
</tr>
</tbody>
</table>

Data Table

<table>
<thead>
<tr>
<th>(2CF2.0)</th>
<th>0010C3050302050604070670708050707070910</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0100020402010405036050606070606060809</td>
</tr>
<tr>
<td></td>
<td>0302000402010405036050606070606060809</td>
</tr>
<tr>
<td></td>
<td>05040400020306070506078080909080801011</td>
</tr>
<tr>
<td></td>
<td>03020202000104050340506067070706060809</td>
</tr>
<tr>
<td></td>
<td>020101030100030402050450506060505060708</td>
</tr>
<tr>
<td></td>
<td>0504040604030001040706070707030302020405</td>
</tr>
<tr>
<td></td>
<td>0605050705040100030605060666020201010304</td>
</tr>
<tr>
<td></td>
<td>040303050302040300030203020304050304040607</td>
</tr>
<tr>
<td></td>
<td>070606060405070603001020203070607070909</td>
</tr>
<tr>
<td></td>
<td>06050507060406050201000101000201020303040506</td>
</tr>
<tr>
<td></td>
<td>0706060806050706030201000203070607070809</td>
</tr>
<tr>
<td></td>
<td>0706060806050706030201000203070607070809</td>
</tr>
<tr>
<td></td>
<td>09090910090805040709080907060204030301001</td>
</tr>
<tr>
<td>(2CF1.0)</td>
<td>3142343122123314232</td>
</tr>
</tbody>
</table>
FIGURE 14 BACKWARD RECURSIVE DYNAMIC SOLUTION FOR FIGURE 7