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ABSTRACT 

Freeze-etching and t h i n s e c t i o n i n g were used to examine the f i n e 

s t r u c t u r e of the marine d i n o f l a g e l l a t e Peridinium trochoideum (Stein) 

Lemm. Among the cytoplasmic i n c l u s i o n s described were three t y p i c a l 

d i n o f l a g e l l a t e o r g a n e l l e s : a di n o c a r y o t i c nucleus with condensed 

interphase chromosomes, c h l o r o p l a s t s with thylakoids associated i n 

groups of three, and t r i c h o c y s t s contained i n membranous sacs. In 

ad d i t i o n to the above, dictyosomes, cytoplasmic membrane systems, 

f i b r o u s bodies and 'segregated bodies' were observed and described. 

Upon examining the gross morphology of the theca, i t was found that 

t h e c a l age could be determined by the extensiveness of sutures, p i t s , 

and b l i s t e r s which became predominant on the external t h e c a l membranes 

with age. C h a r a c t e r i s t i c a l l y , older c e l l s sometimes had continuous, 

deeply scored sutures with adjacent 'marginal suture bands' and i n t e r 

c a l a r y bands. I n d i v i d u a l t h e c a l p l a t e s of mature c e l l s were not com

p l e t e l y enclosed w i t h i n membrane sacs as commonly assumed and some 

adjacent p l a t e s were found to be continuous. Four membrane systems were 

found to be associated with the t h e c a l p l a t e s : the t h e c a l membrane and 

outer p l a t e membrane systems l a y above the p l a t e s , the inner p l a t e membrane 

and plasmalemma l a y below. Sutures were formed by i n f o l d i n g of the 

outer p l a t e membrane between adjacent p l a t e s . With the exception of the 

plasmalemma, the membranes associated with the p l a t e s displayed membrane 

asymmetry. In the mature, thecate,non-dividing c e l l s , densely s t a i n i n g 

i n c l u s i o n s termed 'pro-thecal bodies' were found to be d i s t r i b u t e d through

out the cytoplasm. Before ecdysis, each amorphous prothecal body t r a n s 

formed i n t o many v e s i c l e s each of which contained f i b r o u s m a t e r i a l i n an 

e l e c t r o n transparent matrix. I t appeared that the vast number of v e s i c l e s 
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so formed may have increased the c e l l ' s osmotic pressure enough to 

i n i t i a t e ecdysis. At ecdysis, the t h e c a l p l a t e s and o v e r l y i n g mem

branes were l o s t and the new w a l l was formed by deposition of material 

from prothecal bodies at the p r o t o p l a s t surface. The newly formed w a l l 

was continuous over the p r o t o p l a s t and no p l a t e s e x i s t e d as such. Pores, 

however, were present. The sutures, when f i r s t formed were shallow and 

discontinuous. 



TABLE OF CONTENTS 

page 

LIST OF PLATES AND FIGURES V 

ACKNOWLEDGEMENTS V±±± 
/ 

INTRODUCTION 1 

METHODS AND MATERIALS i+ 

OBSERVATIONS 

ULTRASTRUCTURE OF THE CYTOPLASM AND ITS INCLUSIONS 6 

ULTRASTRUCTURE OF THE THECA 9 

ULTRASTRUCTURE OF THE THECAL PLATES AND ASSOCIATED MEMBRANES ... I 2 

ULTRASTRUCTURE OF WALL FORMATION 15 

DISCUSSION 

CYTOPLASM AND ORGANELLES 19 

THECAL MORPHOLOGY 2 2 

PLATES AND ASSOCIATED MEMBRANES • • • • 2 3 

FORMATION OF THE WALL 2 ^ 

PLATES AND EXPLANATIONS • • »• • ° • 30 



V 

LIST OF PLATES AND FIGURES 

EXPLANATION OF FIGURES page 

PLATE I 
f i g u r e 1 
f i g u r e 2 
f i g u r e 3 

Chloroplast . 
c h l o r o p l a s t s 
sparse stroma 
thylakoids 

31 

PLATE I I 
f i g u r e 4 
f i g u r e 5 

Nucleus 
interphase nucleus 
chromosomes 

32 

PLATE I I I 
f i g u r e 6 
f i g u r e 7 

Nucleus 
nucleolus 
nuclear membrane 

33 

PLATE IV 
f i g u r e 8 
f i g u r e 9 
f i g u r e 10 
f i g u r e 11 

Fibrous Bodies 
p e r i n u c l e a r extension 
p e r i n u c l e a r f i b r o u s body 
pe r i n u c l e a r f i b r o u s body 
cytoplasmic f i b r o u s body 

3^ 

PLATE V 
f i g u r e 12 
f i g u r e 13 
f i g u r e 14 
f i g u r e 15 

Dictyosomes and Segregated Bodies ... 
dictyosome, o r i e n t a t i o n and l o c a t i o n 
dictyosome 
segregated body, l o c a t i o n 
segregated body 

35 

PLATE VI 
f i g u r e 16 
f i g u r e 17 
f i g u r e 18 
f i g u r e 19 
f i g u r e 20 
f i g u r e 21 

PLATE VII 
f i g u r e 22 
f i g u r e 23 
f i g u r e 24 
f igure 25 
f igure 26 
f i g u r e 27 

Tri c h o c y s t s 
t r i c h o c y s t s , cross s e c t i o n 
t r i c h o c y s t s , l o n g i t u d i n a l section 
t r i c h o c y s t , freeze-etching 
pore plug, freeze-etching 
pore plug, t h i n s e c t i o n i n g 
pores, freeze-etching 

36 

L i f e Cycle , 
mature thecate c e l l 
ecdysis 
naked f l a g e l l a t e stage 
r e s t i n g stage 
c y t o k i n e s i s 
immature thecate daughter c e l l 

37 



EXPLANATION OF FIGURES v i 

page 

PLATE VIII Morphology of the Theca ... • 38 
f i g u r e 28 young theca 
f i g u r e 29 theca, Nomarski.- i n t e r f e r e n c e 
f i g u r e 30 theca, phase contrast 

PLATE IX Morphology of the Theca 39 
f i g u r e 31 olde r theca, i n t e r c a l a r y band 

PLATE X Morphology of the Theca ^0 
f i g u r e 32 b l i s t e r s and p i t t i n g 
f i g u r e 33 suture and marginal suture band 

PLATE XI Thecal Plates and Membranes • • ^1 
f i g u r e 34 plaques and sutures 
f i g u r e 35 marginal suture band 
f i g u r e 36 p l a t e - membrane ass o c i a t i o n s 
f i g u r e 37 p l a t e - membrane ass o c i a t i o n s 

PLATE XII Thecal Plates and Membranes ^2 
f i g u r e 38 p l a t e - membrane ass o c i a t i o n s 
f i g u r e 39 suture c o n t i n u i t y 
f i g u r e 40 suture d i s c o n t i n u i t y 

PLATE XIII Thecal Plates and Membranes ^3 
f i g u r e 41 membrane ass o c i a t i o n s and asymmetry 
f i g u r e 42 the four membrane systems 
f i g u r e 43 c o n t i n u i t y of the inner p l a t e membrane 

PLATE XIV Thecal Plates and Membranes ^+ 
f i g u r e 44 inner p l a t e membrane 
f i g u r e 45 scars on the inner p l a t e membrane 

PLATE XV Prothecal Body ^5 

f i g u r e 46 young, mature c e l l 
f i g u r e 47 pre-ecdysis 
f i g u r e 48 pre-ecdysis 
f i g u r e 49 pre-ecdysis/ecdysis 



v i i 

EXPLANATION OF FIGURES page 

PLATE XVI Prothecal V e s i c l e s ^6 
f i g u r e 50 pre-ecdysis 
f i g u r e 51 pre-ecdysis 
f i g u r e 52 prothecal v e s i c l e s at w a l l 
f i g u r e 53 prothecal v e s i c l e s i n w a l l 

PLATE XVII Cytokinesis • ^7 
f i g u r e 54 e a r l y c y t o k i n e s i s , Nomarski i n t e r f e r e n c e 
f i g u r e 55 e a r l y c y t o k i n e s i s , phase contrast 
f i g u r e 56 e a r l y c y t o k i n e s i s , e l e c t r o n microscopy 

PLATE XVIII Cytokinesis ^ 8 

f i g u r e 57 pr o t h e c a l v e s i c l e formation at c e l l isthmus 
f i g u r e 58 v e s i c u l a r separation of daughter c e l l s 

PLATE XIX Cytokinesis ^9 
f i g u r e 59 new w a l l at isthmus 
f i g u r e 60 new inner p l a t e membrane 

PLATE XX Immature Daughter C e l l s 50 

f i g u r e 61 daughter c e l l s , u n d i f f e r e n t i a t e d thecae 

PLATE XXI Immature Daughter C e l l s 51 

f i g u r e 62 pore i n u n d i f f e r e n t i a t e d theca 
f i g u r e 63 appearance of sutures 



ACKNOWLEDGEMENTS 

I am indebted to Dr. T. B i s a l p u t r a f o r h i s i n s t r u c t i o n and 

guidance during the duration of t h i s study and f o r h i s assistance 

i n preparing t h i s t h e s i s . 

I would a l s o l i k e t o thank Dr. F.J.R. Taylor f o r h i s h e l p f u l 

comments and suggestions throughout the p r o j e c t . 



INTRODUCTION 

For the most part, c l a s s i f i c a t i o n of thecate d i n o f l a g e l l a t e s i s 

based on the p a r t i c u l a r shape and arrangement of c e l l w a l l p l a t e s 

which form the theca*of a given genus or species. Since non-thecate 

forms cannot be c l a s s i f i e d on the basis of t h e c a l morphology, they 

are u s u a l l y c l a s s i f i e d according to c e l l shape. 

Recently, Dodge and Crawford (19) "have est a b l i s h e d a p o t e n t i a l l y 

valuable system f o r the u l t r a s t r u c t u r a l c a t e g o r i z a t i o n of d i n o f l a g e l l a t e 

c e l l surface l a y e r s . Thus non-thecate and thecate forms can be c l a s s i 

f i e d u l t r a s t r u c t u r a l l y using the same comparative system. The simplest 

degree of organization e x i s t s i n c e l l s which possess a s i n g l e l a y e r of 

f l a t t e n e d v e s i c l e s at the c e l l surface. Progressive degrees of organiza

t i o n are based p r i m a r i l y on the a c q u i s i t i o n of rudimentary pla t e s within 

the v e s i c l e s and subsequent thickening and elaboration of such p l a t e s 

i n h e a v i l y thecate forms. Their survey shows that when p l a t e s occur, 

each p l a t e i s f u l l y enclosed by a membrane sac. 

I f one assumes that thecate forms arose from non-thecate forms, 

the most obvious sequence would appear to be v i a the establishment of 

w a l l m a t e r i a l w i t h i n surface v e s i c l e s s i m i l a r to those found i n Amphidinium 

(17) or Oxyrrhis (19). In other words, a phylogenetic sequence of p l a t e 

development may be r e f l e c t e d by the phenetic sequence of t h e c a l structure 

beginning from the simple non-thecate forms to the elaborate thecate forms. 

This premise i s based on the assumption that p l a t e s of the thecate forms 

are enclosed by membrane sacs or v e s i c l e s . Although one might expect to 

* The term theca i s \ised to describe both the thecal plates and the 
associated membranes collectively. 
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be able to f o l l o w the development of such p l a t e s within these v e s i c l e s , 

to date there i s no e l e c t r o n microscopic evidence of such t h e c a l onto

geny. On the contrary, there are reports which describe young thecate 

d i n o f l a g e l l a t e s as having continuous, u n d i f f e r e n t i a t e d walls (7.25). 

To complicate the matter, the sequence of events leading to daughter 

c e l l formation i n d i n o f l a g e l l a t e s can be q u i t e v a r i a b l e . In a few the

cate d i n o f l a g e l l a t e s an e c d y s i a l stage may occur whereby the theca i s 

l o s t e i t h e r p r i o r to or a f t e r c y t o k i n e s i s . For instance, i n Peridinium  

w e s t i i (35) cy t o k i n e s i s takes place i n s i d e the parent theca p r i o r to 

ecdysis, whereas i n Gyrodinium c o h n i i (Crypthecodinium cohnii) (25) 

and Gonyaulax polyedra (22) cy t o k i n e s i s occurs w i t h i n a c y s t a f t e r ecdysis. 

Forms such as Pyrodinium bahamense (7) and Peridinium triquetrum (6) do 

not undergo ecdysis. Instead, each of the daughter c e l l s r e t a i n s one-half 

of the parent theca and subsequently reforms the missing h a l f . The 

l a t t e r i s most common w i t h i n the group. 

As Braarud (6) has shown, the theca of Peridinium trochoideum (Stein) 

Lemm. i s l o s t completely p r i o r to cy t o k i n e s i s and each of the daughter 

c e l l s must form an e n t i r e l y new theca. When l i v i n g m a t e r i a l of P.  

trochoideum i s observed, i t becomes apparent that c e l l w a l l formation 

takes place r a p i d l y . This would suggest that a great deal of w a l l 

m a t e r i a l or i t s precursors are probably synthesized and stored p r i o r to 

cy t o k i n e s i s . 

With l i g h t microscopy, i t i s d i f f i c u l t to follow the development 

of the theca. The cl o s e a s s o c i a t i o n of the newly formed w a l l m a t e r i a l 

on the plasma membrane with the underlying cytoplasmic matrix and i n 

c l u s i o n s obscures the d e l i c a t e d e t a i l s of p l a t e d i f f e r e n t i a t i o n . Examina

t i o n of thecae of f u l l y developed c e l l s i n s i t u i s a l s o d i f f i c u l t f o r the 
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same reason and therefore, gross d e t a i l s of the p l a t e s , t h e i r sutures, 

and pores have had to be determined from d i s s o c i a t e d thecae, often stained. 

Thecal s t r u c t u r e has been used as an important c r i t e r i o n i n the recog

n i t i o n of species i n the Dinophyceae. Consequently, the added d e t a i l 

provided by the e l e c t r o n microscope should r e s u l t i n a more complete 

understanding of t h i s important d i n o f l a g e l l a t e s t r u c t u r e . 

E l e c t r o n microscopic studies on d i n o f l a g e l l a t e c e l l walls have i n 

the past been accomplished by shadow-casting (14), negative s t a i n i n g 

(31), or t h i n s e c t i o n i n g techniques (26). Adequate assessment of the 

i n vivo topography of the t h e c a l p l a t e s i s d i f f i c u l t to obtain using 

these techniques. To obtain a three-dimensional representation of the 

c e l l w a l l from e l e c t r o n micrographs of t h i n sections, a large number of 

s e r i a l sections must be taken from both t a n g e n t i a l and c r o s s - s e c t i o n a l 

planes through the theca. Shadow-casting and negative s t a i n i n g tech

niques require chemical cleansing and drying of the w a l l which may 

destroy or d i s t o r t some of the three-dimensional features and d e t a i l s . 

In t h i s study, freeze-etching and t h i n sectioning techniques were 

used to e l u c i d a t e the f i n e s t r u c t u r e and formation of the theca of the 

marine d i n o f l a g e l l a t e P. trochoideum (Stein) Lemm. Freeze-etching 

enables three-dimensional r e l i e f s to be obtained from l i v i n g or f i x e d 

m a t e r i a l using p h y s i c a l rather than chemical methods (32). 
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Mater i a l s and Methods 

Peridinium trochoideum (Stein) Lemm. was obtained from the Culture 

C o l l e c t i o n of Algae, Indiana U n i v e r s i t y ( C o l l e c t i o n Number LB 1017) and 

was grown i n Chihara medium (10) supplemented with soil-water extract. 

Cultures were maintained at 20-25°C. and were i l l u m i n a t e d with f l u o r e s c e n t 

l i g h t f o r 16 hrs. per 24 hr. period. 

The majority of m a t e r i a l f o r freeze-etching was frozen d i r e c t l y i n 

the c u l t u r e medium. However, some mat e r i a l was f i x e d f o r 1 hr. i n 2.5% 

glutaraldehyde buffered with sodium cacodylate (pH. 6.8) p r i o r to f r e e z 

in g . 

The freeze-etching technique was s i m i l a r to that described by Moor 

(32) and was performed on a Balzers BA 360M Freeze-Etching u n i t . Freezing 

was accomplished by p l a c i n g a suspension of ma t e r i a l i n a 3 mm. gold 

support cup, immersing the cup i n l i q u i d Freon 22 (cooled i n l i q u i d n i t 

rogen) and then q u i c k l y t r a n s f e r r i n g i t to l i q u i d nitrogen. Deep f r a c t u r 

i n g was achieved by taking low speed cuts across the m a t e r i a l . Cutting 

and sublimation were performed at -100°C. and sublimation time was 1 

min. at 3 x 10 -^ Torr. pressure. The etched material was shadowed with 

platinum/carbon and subsequently strengthened by carbon evaporation. 

The r e p l i c a was released d i r e c t l y i n 70% sulphuric a c i d and a f t e r 1 hr., 

i t was t r a n s f e r r e d to d i s t i l l e d water. The r e p l i c a was then placed i n 

sodium hypochlorite f o r a f u r t h e r 1 hr. to remove remaining debris. 

A f t e r thorough washing i n d i s t i l l e d water, the r e p l i c a was picked up and 

mounted on a Formvar coated g r i d . 

M a t e r i a l f o r t h i n sectioning was f i x e d i n one of two ways: (a) 

f o r 1 hr. i n a combination of 2.5% glutaraldehyde and 2.5% formaldehyde 



(from paraformaldehyde) i n 0.1M sodium cacodylate b u f f e r , pH 6.8. 

2% sucrose (w/v) was added to adjust the osmolarity of the f i x a t i v e 

t o that of the growth medium; (b) f o r 1 hr. at 4°C. with 2.5% g l u t a r a l d e 

hyde i n 0.1M sodium cacodylate b u f f e r , pH 6.8. 10% DCMU (v/v) was added 

to the f i x a t i v e to i n h i b i t oxygen evolution during f i x a t i o n . A f t e r 

p o s t - f i x a t i o n with 1% 0s04 i n cacodylate b u f f e r f o r 1 hr., the c e l l s 

were concentrated by gentle c e n t r i f u g a t i o n and embedded i n 1% agar (w/v). 

The agar-embedded c e l l s were dehydrated using a graded s e r i e s of ethanol 

and i n f i l t r a t e d with i n c r e a s i n g concentrations of Spurr's embedding medium 

(40) i n ethanol or Maraglas (4) i n propylene oxide. F i n a l l y , the agar-

embedded c e l l s were cured i n 100% r e s i n . 'Sections were cut on a P o r t e r -

Blum MT-1 Ultramicrotome using a du-Pont diamond k n i f e and were post 

stained with saturated uranyl acetate i n 70% methanol and lead c i t r a t e 

(36). Both sections and r e p l i c a s were observed with a Zeiss EM 9A 

e l e c t r o n microscope. 

Wall m a t e r i a l f o r l i g h t microscopy was obtained by c o l l e c t i n g thecae 

shed from c e l l s which had been l e f t i n hypotonic d i s t i l l e d water over

night. Micrographs of thecae and l i v i n g m a t e r i a l were obtained using a 

Z e i s s Photomicroscope with phase contrast or Nomarski i n t e r f e r e n c e 

i l l u m i n a t i o n systems*-
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OBSERVATIONS 

ULTRASTRUCTURE OF THE CYTOPLASM AND 
ITS INCLUSIONS 

Among the most common cytoplasmic i n c l u s i o n s observed with the 

el e c t r o n microscope i n c e l l s of P. trochoideum are c h l o r o p l a s t s (C, 

f i g . 1), starc h grains (SG, f i g . 4), n u c l e i (N, f i g . 4), pe r i n u c l e a r 

f i b r o u s bodies (PFB, f i g . 9), cytoplasmic f i b r o u s bodies (CFB, f i g . 11), 

dictyosomes (D, f i g . 12), 1 segregated bodies' (SB, f i g . 14), mitochondria 

(M, f i g . 14), and t r i c h o c y s t s (T, f i g . 16). 

Within the c h l o r o p l a s t s of P. trochoideum i t i s p o s s i b l e t o d i s t i n 

guish the associated thylakoids (TL) and two d i s t i n c t stromal regions -

the dense stroma (DS) and sparse stroma (SS) ( f i g . 1). The dense stroma 

appears to occupy the regions between t h y l a k o i d lamellae ( f i g . 1) 

while the sparse stroma occupies the c e n t r a l region of the c h l o r o p l a s t 

( f i g . 2). P a r t i c u l a t e components of both stromal types occur i n equal 

density. I t appears that the sparse^stroma i s l e s s densely stained 

because i t lacks a moderately dense amorphous component which i s prevalent 

i n the dense stroma. F i b r i l s (F, f i g . 2) s i m i l a r to DNA f i b r i l s of 

ch l o r o p l a s t s (2, 38) and mitochondria (3) al s o e x i s t i n the sparse 

stromal region. In preliminary f l u o r e s c e n t studies, c h l o r o p l a s t s of 

P. trochoideum showed a p o s i t i v e fluorescence f o r DNA. 

As expected, the thylakoids of P. trochoideum c h l o r o p l a s t s are 

associated i n c l o s e l y appressed groups of three ( f i g . 3). This i s s i m i l a r 

t o other d i n o f l a g e l l a t e p l a s t i d s (16). The extent of the a s s o c i a t i o n , 

however, i s not constant and i t i s not uncommon to see pseudo-grana of 

various s i z e s w i t h i n a given length of th y l a k o i d surface. D i s c o n t i n u i t i e s 



of s i n g l e t h y l a k o i d lamellae are marked i n f i g u r e 3 by arrows. Dodge 

has made s i m i l a r observations i n Aureodinium pigmentosum (15). 

The nucleus (N, f i g . 4) i s a t y p i c a l d i n ocaryotic type with 

nucleolus (NU), double membrane envelope (NE), and interphase chromo

somes which remain condensed and c o i l e d . Within the chromosomes ( f i g . 

5) i t i s p o s s i b l e to detect two d i r e c t i o n s of c o i l i n g , ( c o i l s p a r a l l e l 

to the chromosomal l o n g i t u d i n a l axis are marked by black arrows, c o i l s 

normal t o the l o n g i t u d i n a l axis are marked by white arrows). The 

chromatin of the chromosomes r e a d i l y resembles the sparse stroma of 

c h l o r o p l a s t s (cf. f i g s . 2 and 6). 

The nucleolus (NU, f i g . 6) appears to contain equal amounts of 

f i b r o u s and granular m a t e r i a l . Except f o r small n u c l e o l a r 'vacuoles' 

(arrows, f i g . 6) the s t a i n i n g density i s r e l a t i v e l y uniform. 

Although the nuclear envelope has never been observed to t o t a l l y 

break down, there are stages when the envelope has many large gaps 

( f i g . 7). At such times, the nucleus i s surrounded by many membranous 

v e s i c l e s (NV, f i g . 7) which might have a r i s e n from the nuclear envelope, 

and/or may contribute to i t s completion. 

An unusual f e a t u r e of the nucleus i s the large d i l a t i o n s of the 

p e r i n u c l e a r cisternum (PE, f i g . 8) wi t h i n which i s sometimes found a 

p e r i n u c l e a r f i b r o u s body (PFB, f i g s . 9 and 10). At a po i n t where the 

nuclear envelope i s expanded (arrow, f i g . 9), the inner nuclear membrane 

(INM) remains around the nucleoplasm while the outer nuclear membrane 

(ONM) expands to accommodate the f i b r o u s body and i t s granular matrix. 
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In other instances f i b r o u s bodies occur w i t h i n membrane bound 

i n c l u s i o n s i n the cytoplasm (CFB, f i g s . 11, 13, and 14). Both the 

nuclear and cytoplasmic f i b r o u s bodies appear i d e n t i c a l to f i b r o u s 

bodies found i n Peridinium w e s t i i (31), Woloszynskia micra (26), and 

Symbiodinium microadriaticum (23). Their o r i g i n , and f u n c t i o n are un

known. 

In c l o s e proximity to the nucleus l i e two other organelles. 

Dictyosomes are u s u a l l y found i n the juxtanuclear cytoplasm o r i e n t a t e d 

with the d i s t a l f a c e (secreting face) towards the nucleus (D, f i g s . 

12 and 13). Neither the dictyosome nor the extensive membrane system 

often located with i t appear to be d i r e c t l y involved i n any r e a d i l y 

recognizable or detectable f u n c t i o n during w a l l formation. The second 

s t r u c t u r e associated with the nucleus has been termed a 'segregated 

body' (SB, f i g . 14). I t i s always lo c a t e d immediately below the 

nucleus at the a n t a p i c a l pole of the c e l l . There i s no apparent de

l i m i t i n g membrane surrounding i t , yet i t i s d i s t i n c t l y segregated 

from the cytoplasm and not an extension of i t ( f i g . 15). I t contains 

f i b r o u s m a t e r i a l (FB) s i m i l a r to that observed i n nuclear and c y t o 

plasmic f i b r o u s bodies and s p h e r i c a l globules (GL), the periphery of 

which st a i n s denser than the center. Both f i b r o u s bodies and globules 

are contained within an amorphous matrix which appears to have a some

what dense center and l e s s dense border, (arrows, f i g . 15). The f u n c t i o n 

of t h i s i n c l u s i o n i s not known. 

The l a s t organelle to be discussed i s the t r i c h o c y s t . These 

organelles have the capacity to e j e c t from the c e l l . E j e c t i o n , however, 

has never been observed i n c u l t u r e s of P. trochoideum. In cross section 

the organelles appear as c r y s t a l l i n e square cores, 0.20^ i n diameter, 

bounded by a s i n g l e membrane (TS) which forms a sac around the core ( f i g . 16). 
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In l o n g i t u d i n a l view, f i b e r s can be seen extending from the pointed 

a p i c a l t i p of the core to the t r i c h o c y s t sac (TF, f i g s . 17 and 18). 

Tr i c h o c y s t sacs do not appear to be within t h e c a l pores (P, as seen i n 

f i g u r e 17). In most cases t r i c h o c y s t s are s p a t i a l l y r e l a t e d to the 

pores but the sacs and pores are independent. . Examination of the 

pore shows that i t i s an apparently i s o l a t e d s t r u c t u r e c o n s i s t i n g of 

a canal through the p l a t e m a t e r i a l (W) and a semi-spherical, membranous, 

pore plug occupying the canal ( f i g s . 19 and 20). The aperture of the 

canal i s ridged on the outer w a l l surface (R, f i g . 20) and when the 

p l a t e (W) i s observed i n surface view both the ridged aperture and 

pore plug can be i d e n t i f i e d ( f i g . 21). The average pore diameter i n 

P. trochoideum i s 0.12yi. 

ULTRASTRUCTURE OF THE THECA 

Excluding encystment, Peridinium trochoideum has a r e l a t i v e l y 

simple l i f e c y c l e (6). Mature c e l l s are u s u a l l y pear shaped and have 

short a p i c a l spines ( f i g . 22). In l i v i n g c e l l s , the g i r d l e i s e a s i l y 

observed but i n d i v i d u a l p l a t e s are rather d i f f i c u l t to discern. During 

ecdysis, the theca i s broken along the g i r d l e and the p r o t o p l a s t becomes 

s l i g h t l y enlarged and somewhat s p h e r i c a l ( f i g . 23). I t i s i n t e r e s t i n g 

to note that the p r o t o p l a s t appears to have already acquired an appreciably 

t h i c k surface l a y e r . Although Braarud (6) observed a hyaline excretion 

between the p r o t o p l a s t and theca during e a r l i e r studies on P. trochoideum, 

such an event was never observed i n the present clone obtained from Indiana. 

A f t e r f r e e i n g i t s e l f from the theca, the naked p r o t o p l a s t swims about f o r 

some time and i n doing so acquires an elongate shape ( f i g . 24). Later, 

the f l a g e l l a are shed and the p r o t o p l a s t assumes a r e s t i n g stage ( f i g . 25). 
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A s l i g h t c o n s t r i c t i o n i n the midregion i s the f i r s t i n d i c a t i o n of cyto

k i n e s i s ; subsequently a d i s t i n c t cleavage furrow i s formed ( f i g . 26). 

A f t e r separation, the young daughter c e l l s appear non-motile, s p h e r i c a l , 

t h i c k walled, and u n d i f f e r e n t i a t e d (with respect to thecal p l a t e s ) ( f i g . 

27). 

The epitheca of mature c e l l s of P. trochoideum i s composed of 
1, 2 

three s e r i e s of p l a t e s two of which are v i s i b l e i n v e n t r a l view 

( f i g . 28). The a p i c a l p l a t e s 1', 2', and 4' (four p l a t e s comprise t h i s 

set) are located around the apex while the precingular p l a t e s 1", 2", 

and 7" (seven p l a t e s comprise t h i s set) are adjacent to the g i r d l e . The 

small, narrow a p i c a l c l o s i n g p l a t e (CP) l i e s a n t e r i o r to the f i r s t a p i c a l 

p l a t e (1') between p l a t e s 2' and 4'. What has been p r e v i o u s l y described 

as a horn (27) appears to be two spines (H) which a r i s e from the a n t e r i o r 

end of the second and fo u r t h a p i c a l p l a t e s and extend upwards on both 

sides of the a p i c a l c l o s i n g p l a t e p a r a l l e l with the c e l l ' s c e n t r a l 

a x i s . A c t u a l l y , the spines are not elaborately tapered ( f i g . 29), rather 

they appear acute due to the perspective rendered by the f r a c t u r e plane. 

Normally, an a p i c a l pore e x i s t s i n the a p i c a l c l o s i n g p l a t e (12), but i n 

some c e l l s i t i s not observed ( f i g . 30). 

The two f l a g e l l a o r i g i n a t e on the v e n t r a l side from a s i n g l e 

f l a g e l l a r pore (FP) s i t u a t e d i n the deeply excavated g i r d l e (G, f i g . 28). 

The g i r d l e i s left-handed, that i s , the g i r d l e forms a descending s p i r a l 

with the r i g h t end of the g i r d l e l y i n g below the l e f t ( f i g . 29). The 

transverse f l a g e l l u m l i e s i n the e n c i r c l i n g g i r d l e whereas the l o n g i 

t u d i n a l f l a g e l l u m l i e s i n the sulcus (SL, f i g . 29), a groove s i t u a t e d 

d i r e c t l y beneath the f i r s t a p i c a l p l a t e , p a r a l l e l to the axis of l o c o 

motion. The sulcus tends to broaden towards the c e l l antapex. There 

are no a n t a p i c a l spines or horns. 

•^Notation according to Kofoid, r e f . 24. 
Opiate formula same as given by Lebour, r e f . 27. 
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Plates from both the epitheca and hypotheca can be i d e n t i f i e d 

from the d o r s o l a t e r a l view of the c e l l shown i n f i g u r e 31. An i n t e r 

c a l a r y p l a t e of the epitheca, 2a (three p l a t e s comprise t h i s s e t ) , l i e s 

above the t h i r d and f o u r t h precingular p l a t e s . The t h i r d a p i c a l p l a t e 

which l i e s above the i n t e r c a l a r y p l a t e cannot be seen since the a n t e r i o r 

end of the epitheca i s embedded i n the matrix. The p o s i t i o n of the 

c e l l , however, allows the f i r s t a n t a p i c a l p l a t e , 1' 1'' (two p l a t e s 

comprise t h i s set) t o be seen l y i n g beside the f i r s t p o s t c i n g u l a r 

p l a t e , l 1 ' ' , and below the second and t h i r d p o s t c i n g u l a r p l a t e s , 2' 1', 

and 3 1 , 1 ( f i v e p l a t e s comprise t h i s s e t ) . 

As a r u l e , the g i r d l e i s subdivided i n t o three p l a t e s demarcated 

by sutures. The sutures are d i s t i n c t from the ridges since they are 

depressed i n the w a l l rather than protruding from i t (see S, f i g . 32). 

The f i r s t suture of the g i r d l e (Si) l i e s beneath the f i r s t p r e c i n g u l a r 

p l a t e , 1'1 ( f i g s . 28 and 29), and the second (S 2) i s found adjacent 

to the junction of the second and t h i r d p recingular p l a t e s , 2"' and 3'1 

( f i g . 31). 'The t h i r d (S^Jis found beneath the seventh pr e c i n g u l a r p l a t e , 

7'' ( f i g . 29).: The g i r d l e does not have extensive l i s t s , but the 

a n t e r i o r edge i s more deeply ridged than the p o s t e r i o r ( f i g s . 1 and 4). 

Although the s i z e v a r i a t i o n of c e l l s i n a c u l t u r e i s due to un

equal f i s s i o n during c e l l d i v i s i o n , aging a l s o accounts f o r d i f f e r e n c e s 

i n c e l l s i z e and c e r t a i n changes i n c e l l morphology. In general, young 

c e l l s which acquire a theca soon a f t e r maturity are pear-shaped ( f i g . 

28), but growth leads to the expansion of the c e l l i n t o an almost e l l i p 

s o i d shape ( f i g . 31) p r i o r to d i v i s i o n . Hence, the shape of the c e l l 

can be used to independently assess t h e c a l age. The texture of membranes 
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covering the t h e c a l p l a t e s a l s o i n d i c a t e s the developmental stage of 

the theca. A young but r e l a t i v e l y well-developed theca has surface 

membranes which have a r e l a t i v e l y smooth e x t e r i o r surface ( f i g . 28), 

whereas an older theca shows a s t r i k i n g a l t e r a t i o n of the surface. 

The outer surface membranes of the p l a t e s become h i g h l y undulated, 

p i t t e d , and b l i s t e r e d (B, f i g s . 31 and 32). There are, however, 

c e r t a i n regions on the surface of older thecae that are f r e e of 

p i t t i n g . These regions appear as small 'plaque-like' areas scattered 

over the t h e c a l surface (PL, f i g s . 33 and 34). 

In o l d c e l l s , sutures are sometimes bordered by a d i s t i n c t i v e 

'marginal suture band" (MB, f i g . 31, and 33). The band width i s 

f a i r l y constant f o r any one c e l l but the width varies among c e l l s 

with thecae of d i f f e r e n t ages. Older c e l l s u s u a l l y have wider bands, 

0.38 - 0.5 JA. wide. The band represents a s l i g h t l y elevated region of 

the theca adjacent to the recessed suture (MB, f i g . 32 and 33). I n t e r 

c a l a r y bands are also present i n some older thecae and appear on the 

opposite side of the suture as the marginal suture band (IB, f i g . 31). 

Since they are not s t r i a t e or pronounced they cannot be r e a d i l y observed 

with the l i g h t microscope. 

ULTRASTRUCTURE OF THE THECAL PLATES 
AND ASSOCIATED MEMBRANES 

One s t r i k i n g external feature of both mature and o l d c e l l s i s 

the r e l a t i v e d i s c o n t i n u i t y of p l a t e demarcation (sutures) at the t h e c a l 

surface (arrows, f i g s . 34 and 35). This i s due to the o v e r l y i n g p l a t e 

membranes. The t h e c a l membrane i s the outermost membrane and i t covers 
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the e n t i r e c e l l (TM, f i g s . 36, 37, and 40). I t can be seen that the 

th e c a l membrane ( f i g . 36) must be s l i g h t l y invaginated at the surface 

immediately above p l a t e junctions to form what i s recognized as a suture 

(S, f i g . 35). 

I n t e r c a l a r y bands have not been detected i n t h i n s e c t i o n i n g ; how

ever, marginal suture bands appear as thickened regions at the edges 

of two overlapping p l a t e s ( f i g . 36). In some cases the p l a t e s may bear 

a r i d g e (R, f i g . 36). The p l a t e m a t e r i a l i s e l e c t r o n transparent and 

hence appears nondescript. 

C l o s e l y appressed to and below the t h e c a l membrane i s the outer 

p l a t e membrane (OPM, f i g s . 36 and 40). The outer p l a t e membrane w i l l 

be defined as the membrane which l i e s immediately above the p l a t e . I n 

f o l d i n g of such a membrane between adjacent pla t e s occurs wi t h i n each 

suture (S, f i g s . 36 - 41). I t i s quite c l e a r from f i g u r e 37 that when 

sutures between p l a t e s are incomplete, the outer p l a t e membrane r e f l e c t s 

on i t s e l f and thus does not extend completely around the p l a t e . For 

the most part, the outer p l a t e membrane does not surround p l a t e s even 

when the p l a t e s are separate (arrow, f i g . 38). Possib l e attachment or 

c o n t i n u i t y of the suture with a membrane beneath the p l a t e has been ob

served only once (arrow, f i g . 39). I t can be proposed therefore, that 

such a membrane system does not completely enclose each p l a t e i n a sac-

l i k e manner. Instead, the pl a t e s generally appear to be flanked by two 

separate membrane systems, the outer p l a t e membrane immediately above 

and the inner p l a t e membrane immediately below (IPM, f i g s . 38 - 40). 

The inner p l a t e membrane cannot be regarded as the plasmalemma. 

The plasmalemma, defined herein, (PM, f i g s . 38 and 40) l i e s below the 

inner p l a t e membrane and d e l i m i t s a narrow band of cytoplasm at the 

pr o t o p l a s t periphery. This cytoplasmic band i s the r e s u l t of extensive 

vacuolation (V) of the p a r i e t a l cytoplasm and i s a common c h a r a c t e r i s t i c 
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i n mature c e l l s of P. trochoideum. Furthermore, the plasmalemma i s 

r e l a t i v e l y t h i n , whereas the inner and outer p l a t e membranes (and the 

th e c a l membrane) are not only t h i c k e r but are al s o asymmetric ( f i g s . 40 

and 41) ; the l a t t e r are about 150A* t h i c k with p a r t i t i o n s of 75/50/258 
o 

whereas the plasmalemma i s a symmetrically 100A t h i c k . In c e l l s with 

mature thecae, the thicker, p a r t i t i o n of both the inner and outer p l a t e 

membranes i s always found c l o s e s t to the p l a t e ( f i g s . 40 and 41). Where 

sutures e x i s t , the outer p l a t e membrane i n f o l d s and p a i r s . The two 

thinner p a r t i t i o n s become appressed and form a c e n t r a l p a i r i n g l i n e thus 

g i v i n g the suture an apparent p e n t a p a r t i t e appearance (S, f i g . 41). 

The f r a c t u r e d face shown i n f i g u r e 42 reveals a l l four membrane 

systems. Both the t h e c a l membrane and outer p l a t e membrane possess 

regions of p i t t i n g . The p l a t e m a t e r i a l has a r e l a t i v e l y smooth sur

face. The underlying inner p l a t e membrane has a r e t i c u l a t e surface whereas 

the plasmalemma appears s l i g h t l y r e t i c u l a t e and undulated. 

Since the four membrane systems can be recognized from t h e i r 

l o c a t i o n and morphology i n freeze-etched preparations, i t i s now 

p o s s i b l e to f u r t h e r demonstrate the r e l a t i o n s h i p between the suture and 

the underlying p l a t e membrane. In f i g u r e 43, both the plasmalemma and 

inner p l a t e membrane appear to be continuous over the cytoplasm even at 

p l a t e junctions. This supports the observations from t h i n sectioned 

m a t e r i a l ( f i g s . 37, 38, and 40) that there i s no connection between the 

outer and inner p l a t e membrane systems. 

Figures 44 and 45 r e v e a l the p l a t e - s i d e view of the inner p l a t e 

membrane. I f each p l a t e were surrounded by a p l a t e membrane one would 
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expect a f r a c t u r e below the p l a t e and above the inner p l a t e membrane to 

re v e a l sutures. Instead, no sutures, t e a r s , or membrane pr o j e c t i o n s 

occur on the membrane immediately below the p l a t e . The membrane, how

ever, does e x h i b i t d i s t i n c t scars (SC). These scars may represent 

places where the membranes of the inner and outer membrane systems 

may once have been c l o s e l y associated or even p o s s i b l y attached. 

ULTRASTRUCTURE OF WALL FORMATION 

In a d d i t i o n to the i n c l u s i o n s described p r e v i o u s l y one f i n d s 

l a r g e o s m i o p h i l i c bodies d i s t r i b u t e d c i r c u m f e r e n t i a l l y around the 

nucleus (PB, f i g . 46). These i n c l u s i o n s p l a y an important r o l e i n 

the formation of the w a l l , and w i l l be r e f e r r e d to as 'prothecal bodies.' 

In mature c e l l s , these structures a r e / f o r the most part, f a i r l y amor

phous, although i t i s common to f i n d the structure permeated by vary

i n g amounts of membrane (MC, f i g . 47). 

P r i o r to ecdysis, the pro t h e c a l bodies of the mature c e l l undergo 

transformation, at which time the almost wholly amorphous i n c l u s i o n 

becomes traversed with i n c r e a s i n g amounts of membrane ( f i g . 48). 

Subsequently, the prothecal body becomes almost t o t a l l y composed of 

l o o s e l y packed f l a t t e n e d v e s i c l e s ( f i g . 49). Further transformation 

r e s u l t s i n the formation of v e s i c l e s whose l i m i t i n g membranes and con

tents are assumed to be derived from the prothecal body (see PV, f i g . 

57). Since the v e s i c l e s o r i g i n a t e from p r o t h e c a l bodies they w i l l be 

c a l l e d p rothecal v e s i c l e s . 

As prothecal v e s i c l e s migrate to the surface of the pr o t o p l a s t , 

an amorphous substance can be seen to accumulate between the plasma

lemma and the inner p l a t e membrane (arrow, f i g . 50). A f t e r migration 

of the prothecal v e s i c l e s to the plasmalemma, the deposition of ma t e r i a l 
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across the plasmalemma becomes extensive r e s u l t i n g i n the formation 

of a cushion of new w a l l m a t e r i a l (WM) between the plasmalemma and 

the inner p l a t e membrane ( f i g . 51). The c e l l u s u a l l y undergoes ecdy-

s i s at t h i s stage and the t h e c a l membrane, outer p l a t e membrane, and 

p l a t e s are l o s t . The prothecal v e s i c l e s c o n s t i t u t e a s u b s t a n t i a l 

p a r t of the p e r i p h e r a l cytoplasm of c e l l s at t h i s stage ( f i g . 52). 

Prothecal v e s i c l e s contain l i t t l e , i f any, of the amorphous 

component found i n the prothecal body; instead, they contain l o o s e l y 

intertwined f i b r o u s m a t e r i a l ( f i g s . 51 and 52). I t i s probably the 

i n c o r p o r a t i o n of t h i s m a t e r i a l together with the prothecal v e s i c l e 

membrane that gives the new c e l l w a l l a moderately dense s t a i n i n g 

c h a r a c t e r i s t i c at t h i s stage of development ( f i g . 53). 

During c y t o k i n e s i s , l i g h t microscope observations i n d i c a t e that 

new c e l l w a l l m a t e r i a l i s r e a d i l y d i s c e r n i b l e , e s p e c i a l l y at the isthmus 

of the d i v i d i n g . c e l l (WM, f i g . 54). I f plasmolysis i s induced at t h i s 

stage, the p r o t o p l a s t , with a d e f i n i t e new w a l l l a y e r (W), becomes 

separated from the o v e r l y i n g inner p l a t e membrane of the parent c e l l 

(IPMp, f i g . 55). The new w a l l material appears to be reasonably 

f l e x i b l e at t h i s time and remains c l o s e l y associated with the under

l y i n g p r o t o p l a s t . 

E l e c t r o n microscope observations of the same stage i n d i c a t e that 

an appreciable amount of w a l l material has been l a i d down at the proto

p l a s t surface (W, f i g . 56), thus confirming the l i g h t microscope 

observations. The prothecal bodies have decreased i n number by t h i s 

stage but p r o t h e c a l v e s i c l e s are s t i l l abundant i n the p e r i p h e r a l cyto

plasm adjacent to the new w a l l (PV, f i g . 56). Wall formation takes place 
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very r a p i d l y at the isthmus where, during l a t e c y t o k i n e s i s , the 

development of prothecal v e s i c l e s from prothecal bodies i s very 

evident ( f i g . 57). Eventually, the pro t h e c a l v e s i c l e s become d i s 

t r i b u t e d i n two bands across the isthmus (arrows, f i g . 58). Their 

subsequent f u s i o n and maturation r e s u l t s i n the separation of the 

parent p r o t o p l a s t i n t o daughter halves and the eventual formation of 

t h e i r new walls. 

The w a l l m a t e r i a l at the separation p o i n t appears as a 

very d e f i n i t e band (W, f i g . 59) and i s not nearly as f i b r o u s as 

that observed i n e a r l i e r stages (cf. f i g . 53). There i s no under

l y i n g inner p l a t e membrane at t h i s stage. A f t e r cytokineses and/or 

during e a r l y maturation, each of the daughter c e l l s acquires an 

inner p l a t e membrane (IPM, f i g . 60). This membrane i s asymmetrical 

and has i t s t h i c k e r p a r t i t i o n adjacent to the wa l l s i m i l a r to the 

inner p l a t e membrane of a mature c e l l . The membrane appears to 

o r i g i n a t e i n a zone between the plasmalemma and the w a l l and although 

i t i s d i f f i c u l t to e s t a b l i s h , i t appears that the new inner p l a t e 

membrane i s derived from moderately e l e c t r o n opaque ma t e r i a l associated 

with the w a l l (arrows, f i g s . 59 and 60). This m a t e r i a l probably 

represents aggregates of membrane components derived from the prothecal 

v e s i c l e s . 

Although the new inner p l a t e membrane i s now established, the 

outer p l a t e membrane and t h e c a l membrane are s t i l l absent. Some 

of the membrane covering the w a l l at t h i s time i s new and some rep

resents inner p l a t e membrane of the parent c e l l (IPMp, f i g . 60). The 
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l a t t e r can be recognized because i t has i t s thinner p a r t i t i o n adja

cent to the w a l l - the r e s u l t of w a l l deposition between i t and the 

plasmalemma. I t should be made c l e a r that both the outer p l a t e 

membrane and t h e c a l membrane of mature c e l l s have t h e i r t h i c k e r 

p a r t i t i o n s adjacent to the w a l l as described p r e v i o u s l y . 

Each young daughter c e l l of P. trochoideum thus possesses a 

c e l l w a l l which i s continuous but u n d i f f e r e n t i a t e d . That i s , there 

are no i n d i v i d u a l p l a t e s or sutures ( f i g . 61). Prothecal bodies 

observed i n young daughter c e l l s appear s i m i l a r to those of young, 

mature c e l l s . There are no signs of the ,amorphous component being 

traversed with membrane although membrane components can be seen 

adjacent to some amorphous i n c l u s i o n s (MC, f i g . 61). 

Examinations of a young c e l l with a developing theca shows that 

both sutures and p i t t e d regions are la c k i n g , but a f u l l y developed 

pore (P), i d e n t i c a l to that on the mature theca, (P. f i g . 28), i s 

present on the smooth surface ( f i g . 62). Figure 63 i l l u s t r a t e s an 

intermediate stage of p l a t e morphogenesis as defined by the f o r 

mation of the suture. At t h i s stage, the sutures (S) are shallow, 

and very discontinuous (arrows). Again pores are present and a l 

though p i t t e d regions can be observed on the t h e c a l surface, they are 

not as d i s t i n c t as i n the mature thecae shown i n f i g u r e s 32 and 42. 



19. 

DISCUSSION 

CYTOPLASM AND ORGANELLES 

With the p o s s i b l e exception of the segregated body, none of 

the organelles described i n the observations are unique to Peridinium  

trochoideum. 

The c h l o r o p l a s t s with t h e i r thylakoids associated i n groups of 

three are t y p i c a l f o r the group (16). What i s not common how

ever, i s the pseudogranal as s o c i a t i o n s between thylakoids of vary

ing s i z e . The stromal d i f f e r e n t i a t i o n i s another elaboration of 

c h l o r o p l a s t morphology. With two types of stroma, dense and sparse, 

i t seems l i k e l y that each type may p o s s i b l y have d i f f e r e n t yet probably 

l i n k e d f u n c t i o n s . On the basis of preliminary f l u o r e s c e n t studies 

and c h l o r o p l a s t u l t r a s t r u c t u r e of p l a s t i d genophores (2, 38) i t i s 

suggested that the sparse stroma may contain DNA.• 

The nucleus of P. trochoideum can be described as a di n o c a r y o t i c 

nucleus (46) on the basis of having c o i l e d and condensed interphase 

chromosomes. I t would appear from the u l t r a s t r u c t u r e of the chromo

somes that the chromatin f i b e r s lack the histone and r e s i d u a l p r o t e i n 

complex common to l a r g e r eucaryotic chromatin f i b e r s (11, 13, 30, 37). 

Unlike the nucleolus of eucaryotic c e l l s (animal c e l l s s p e c i f i c a l l y ) , 

the nucleolus of P. trochoideum i s r e l a t i v e l y simple and lacks the 

three detectable regions of the nucleolus r e f e r r e d to as the pars 

amorpha, pars f i b r o s a , and pars chromosoma (21). 

Although the nucleoplasm i s t y p i c a l f o r a dinocaryotic nucleus, 

the envelope displays c h a r a c t e r i s t i c s which tend to suggest a 

po s s i b l e nucleo-cytoplasmic r e l a t i o n s h i p common to a n o c t i c a r y o t i c 
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envelope. The n o c t i c a r y o t i c nucleus, as defined by Zingmark (46), has 

been described by A f z e l i u s (1) as having no interphase chromosomes 

and having nucleo-cytoplasmic communication through blebbing of the 

nuclear envelope. The v e s i c l e - a s s o c i a t e d stage observed i n P. t r o c h o i -

deum could p o s s i b l y be an analogous type of nucleo-cytoplasmic 

communication since not only are there large gaps i n the nuclear 

envelope but the v e s i c l e s themselves may be agents of transport. 

The presence of nucleo-cytoplasmic communication by the envelope of 

a d i n o c a r y o t i c nucleus has been reported by Dodge and Crawford f o r 

Gymnodinium fuscum (18). In P. trochoideum there are.also large 

d i l a t e d areas between the inner and outer nuclear membranes where 

f i b r o u s bodies are observed. Nuclear associated f i b r o u s bodies have 

a l s o been described by Dodge f o r Aureodinium (15) and by Taylor f o r 

a symbiotic marine d i n o f l a g e l l a t e (42). These f i b r o u s bodies have 

a l s o been observed as membrane bound i n c l u s i o n s i n the cytoplasm of 

P. trochoideum and are very s i m i l a r , i f not the same as, structures 

observed i n Peridinium w e s t i i (31), Wolosynskia micra (26) and 

Symbiodinium microadriaticum (23). There i s a p o s s i b i l i t y , there

f o r e , that cytoplasmic f i b r o u s bodies might a r i s e from the p e r i 

nuclear f i b r o u s bodies which are released from the nuclear envelope 

at some stage. Other nuclear envelope elaborations have been des

c r i b e d by Kofoid and Swezy C}440 i n Gyrodinium corallinum and G. 

virgatum where the outer part of the nucleus appears as a t h i n a l v e o l a r 

l a y e r of e l l i p s o i d a l vacuoles and by Taylor (45) who described p e r i 

nuclear s t r u c t u r a l elements i n Gonyaulax p a c i f i c a . 
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The t r i c h o c y s t s observed i n P. trochoideum are morphologically 

s i m i l a r to those described i n other species (5, 18, 25, 31) but 

are smaller i n diameter, whereas reports from the above sources 

describe t r i c h o c y s t diameters of 0.2 to 0.4 p., the l a r g e s t found . 

i n P. trochoideum were 0.2 y.Trichocyst f i b r i l s s i m i l a r to those 

described by Bouck and Sweeney (5) and Messer and Ben-Shaul (31) 

were seen attached to the t r i c h o c y s t core. The a n t e r i o r end of the 

t r i c h o c y s t sac containing the core and f i b r i l s was not continuous 

with the pore plug but appeared to be terminal beneath the w a l l at 

the plasma membrane as i n P. w e s t i i (31). This s i t u a t i o n i s somewhat 

d i f f e r e n t to that described f o r Gonyaulax and Prorocentrum where the 

t r i c h o c y s t sac i s s i t u a t e d i n the w a l l adjacent to the p l a t e mem

brane which o v e r l i e s the pore (5). In P. trochoideum. the t r i c h o c y s t 

sac i s s i t u a t e d below the pore i n the w a l l which i s covered by the 

p l a t e membrane and the t h e c a l membrane. These membranes must be 

punctured during the release of the shaft. Although i t was not ob

served, the t r i c h o c y s t sac may p r o j e c t i n t o the canal p r i o r to d i s 

charge. 

The t h e c a l pores through which the shafts are ejected have an 

average diameter of 0.12 u which i s much smaller than pores (0.2 -

0.3 |a) described i n P. w e s t i i (31). However, t h i s can be r e l a t e d 

to the corresponding t r i c h o c y s t diameter of the two species. Assuming 

the discharged t r i c h o c y s t shafts are of smaller diameter than the 

r e s t i n g or charged form (31), no problem should a r i s e during e x i t of 

s t r i a t e rods of P. trochoideum through a 0.12 u pore. 
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THECAL MORPHOLOGY 

From the observations, i t i s c l e a r that surface morphology 

of the t h e c a l membranes of P. trochoideum r e f l e c t s i t s stage of 

development. Smooth surfaces are c h a r a c t e r i s t i c of young c e l l s ; 

with aging, p i t s , b l i s t e r s , sutures, marginal suture bands, and 

i n t e r - c a l a r y bands become p r o g r e s s i v e l y d i f f e r e n t i a t e d . Pores, 

on the other hand, are formed very e a r l y i n the ontogeny of the thecae. 

B l i s t e r i n g at the c e l l surface has been demonstrated i n Crypthe-
3 

codjnium c o h n i i (Seligo) Javornicky . where i t i s evident that the 

outer t h e c a l membrane and inner p l a t e membrane become separated 

from the w a l l (25). I t i s uncertain, however, whether t h i s i s a 

n a t u r a l occurrence analogous to the b l i s t e r s on the surface of P.  

trochoideum. 

Both marginal suture bands and i n t e r c a l a r y bands occur on thecae 

of P. trochoideum. Each i s d i s c r e t e i n morphology; the marginal 

suture band i s a d i s t i n c t i v e elevated region at the p l a t e margin 

adjacent to the suture, whereas the i n t e r c a l a r y band i s not elevated 

and borders the suture on the opposite s i d e to the marginal suture 

band. The i n t e r c a l a r y band i s g e n e r a l l y twice the width of the 

marginal suture band^ however both surface features appear as a f u n c t i o n 

of aging. Some i n v e s t i g a t o r s (29, 34) b e l i e v e that the i n t e r c a l a r y 

band represents a region of growth. The marginal suture band may 

a l s o f u l f i l l the same fu n c t i o n . 

3 
This taxon was r e f e r r e d to as "Gyrodinium c o h n i i ( S c h i l l e r ) " ( s i c ) . 
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PLATES AND ASSOCIATED MEMBRANES 

Compared to other species i n the genus, the c e l l w a l l m a t e r i a l 

of Peridinium trochoideum takes up l i t t l e , i f any, s t a i n and there

f o r e appears quite nondescript. In both P. w e s t i i (31) and P. cinctum 

(19, 22) the w a l l m a t e r i a l s t a i n s appreciably and one can e a s i l y 

detect i t s f i b r i l l a r nature. The m u l t i l a y e r e d cyst w a l l of P y r o c y s t i s spp. 

(M) has been examined using freeze-etching technique and the f i b r i l l a r 

nature of the w a l l i s q u i t e evident. As shown i n the observations, 

the mature w a l l of P. trochoideum shows no f i b r i l s e i t h e r i n t h i n 

sectioned or freeze-etched m a t e r i a l . 

Dodge (19) has shown that p l a t e s of Heterocapsa t r i g u e t r a 

possess two or more sides which bear r i d g e s ; the remaining sides 

have tapered flanges. This p l a t e c h a r a c t e r i s t i c was a l s o suggested 

as common i n P. trochoideum. However, from the current i n v e s t i g a t i o n , 

i t appears that i n P. trochoideum such a c h a r a c t e r i s t i c may occur 

only when a marginal suture band i s present. In most cases, p l a t e 

overlap occurs without any elaboration. 

In t h i s work, a d i s t i n c t i o n has been made between the two 

separate membrane systems which are i n contact with the plates. The 

outer p l a t e membrane was defined as that membrane which l i e s between 

the t h e c a l membrane and the p l a t e and the inner p l a t e membrane as 

l y i n g between the p l a t e and the plasmalemma. The reason f o r d e f i n i n g 

two separate p l a t e membranes i s .based on the f o l l o w i n g observations. 

F i r s t l y , each p l a t e was not . . completely enclosed nor t o t a l l y 

separated by one continuous membrane. Secondly, the membrane immediately 

under the p l a t e s was shown by t h i n s e c t i o n i n g and freeze-etching to be 



24. 

continuous over the pro t o p l a s t . F i n a l l y , a c y t o l o g i c a l l y w e l l 

defined membrane surrounding each p l a t e i n a manner s i m i l a r to 

that observed by Dodge (19) i n Wolozynskia coronata, Ceratium  

h i r u n d i n e l l a , and Peridinium cineturn could not be shown. 

Only once was the a s s o c i a t i o n of the outer p l a t e membrane and 

the inner p l a t e membrane observed t o form a p l a t e enclosure. Be

cause of t h i s , i t i s beli e v e d that the outer p l a t e membrane may have 

been continuous with the inner p l a t e membrane at one time^only to 

become d i s s o c i a t e d from i t during maturation. The v e s t i g i a l p o i n t 

of a s s o c i a t i o n i s probably represented by the scars observed on the 

inner p l a t e membrane. 

Whether the outer p l a t e membrane i s continuous with the inner 

p l a t e membrane or whether i t i n f o l d s i n a s s o c i a t i o n with a suture, 

apparently only the t h i c k e r p a r t i t i o n of the membrane l i e s adjacent 

to the p l a t e s . 

The organization of the theca c l o s e l y resembles that of Crypthe- 

codinium c o h n i i (25) i n which the outer p l a t e membrane was reported 

to form sutures by i n f o l d i n g . The fo l l o w i n g diagram i l l u s t r a t e s the 

r e l a t i o n s h i p between the various membrane systems and t h e c a l p l a t e s 

of P. trochoideum. 

Diagram 1. 
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The asymmetric t h e c a l membrane (TM) i s the outermost membrane 

and i s continuous over the e n t i r e c e l l . The outer p l a t e membrane 

(OPM) may at the e a r l i e s t stages of t h e c a l ontogeny surround each 

p l a t e (region 1). However, lack of a s s o c i a t i o n between the outer 

p l a t e membrane (OPM) and inner p l a t e membrane (IPM) i s d e f i n i t e l y 

predominant i n most c e l l s (region 3). I f one assumes that the 

outer p l a t e membrane and inner p l a t e membrane are one and the same 

during e a r l y development, then an intermediate stage of separation 

must e x i s t (region 2). In e i t h e r case, the t h i c k e r p a r t i t i o n of 

the membrane(s) always l i e s adjacent to the p l a t e . Sutures (S) 

have a t y p i c a l p e n t a p a r t i t e appearance as a r e s u l t of apposition 

of p a i r i n g membranes. The plasmalemma (PM) i s a r e l a t i v e l y t h i n 

symmetrical membrane containing the cytoplasm. In most c e l l s 

a p a r i e t a l cytoplasmic band i s a r e s u l t of vacuolation (V) at 

the c e l l periphery. 

Most of the r e s u l t s i n d i c a t e that c o n t i n u i t y between outer 

and inner p l a t e membranes i s l a c k i n g , i n mature c e l l s . I t i s not 

l i k e l y that d i s r u p t i o n at f i x a t i o n causes the breakage of a mem

brane which would otherwise enclose a p l a t e . I t would be d i f f i c u l t 

to j u s t i f y the f a c t that such a membrane would be subject to break

age at exactly the same poin t i n every c e l l observed. 
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The l a s t membrane to be discussed i s the plasmalemma. The 

question of determining and d e f i n i n g the plasmalemma may involve a 

semantic problem. Dodge contends that the outermost membrane of 

the d i n o f l a g e l l a t e i s the plasmalemma (19). I f t h i s i s the case, 

then at ecdysis the plasmalemma of P. trochoideum w i l l be l o s t and 
\ . . . 

an inner membrane must therefore be designated the plasmalemma. 

This problem of r e d e f i n i n g a plasmalemma i s superfluous i n P. trochoideum 

i f the plasmalemma i s defined as that membrane which i s i n d i r e c t 

contact with the cytoplasm. I t i s , u n l i k e the other membranes 

associated with the p l a t e s , symmetrical. 

FORMATION OF THE WALL 

The pro t h e c a l body i n non-dividing c e l l s was shown to be an 

e l e c t r o n dense, amorphous body. P r i o r to ecdysis, membrane com

ponents appear and traverse throughout the amorphous component of 

the body and there i s a marked decrease i n s t a i n a b i l i t y . At t h i s 

stage, the pro t h e c a l bodies appear i d e n t i c a l to the " a t y p i c a l p l a s 

t i d s " described i n Crypthecodinium c o h n i i (25). At ecdysis the amor

phous component of the pro t h e c a l body i s almost gone, being replaced 

by membranes which l a t e r form p r o t h e c a l v e s i c l e s . The essence of t h i s 

transformation appears to be the probable production of some soluble, 

e l e c t r o n transparent component from the amorphous material of the 

prot h e c a l body. Such a conversion r e s u l t s i n the formation of pro

t h e c a l v e s i c l e s , the consequence of which p o s s i b l y increases the 

osmotic pressure within the c e l l . Thus, at ecdysis such an increase 
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i n pressure i n s i d e the p r o t o p l a s t may be the a c t i v e f o r c e e f f e c t i n g 

the rupture of the theca. Although Braarud (6) believes that ecdysis 

i n P. trochoideum occurs as the r e s u l t of an excretion of hy a l i n e 

substance between the p r o t o p l a s t and theca, no such event occurred 

i n the clone of P. trochoideum from Indiana. 

A f t e r escape from the theca, the pr o t o p l a s t proceeds through 
z 

c y t o k i n e s i s . Having l o s t the p l a t e s and o v e r l y i n g membranes, i t i s 

surrounded by the inner p l a t e membrane and plasmalemma of the parent 

c e l l . The plasmalemma (as .defined herein) i s the only s t a b l e , w a l l -

associated membrane retai n e d during the c e l l c y c l e . 

I t i s assumed that the w a l l m a t e r i a l i s derived from prothecal 

bodies, packaged i n pro t h e c a l v e s i c l e s / a n d deposited by the l a t t e r 

at the s i t e of the new w a l l . I t i s most i n t e r e s t i n g that Bursa (8, 

9) has observed discharges of ectoplasmic c o l l o i d from Woloszynskia, 

Gyrodinium, and Peridinium which are capable of d i f f e r e n t i a t i n g i n t o 

membrane and p l a t e s t r u c t u r e s . Indeed, i f the ectoplasmic m a t e r i a l 

were prothecal v e s i c l e s or t h e i r counterparts one might expect such 

a phenomenon to occur. ' 

When the w a l l i s formed, m a t e r i a l i s deposited between the 

plasmalemma and the inner p l a t e membrane of the parent c e l l . There 

are no sutures and hence no d i s c e r n i b l e p l a t e s at t h i s stage and the 

w a l l e x i s t s as a continuous sphere over the p r o t o p l a s t . This s i t u a t i o n 

confirms the f a c t that the inner p l a t e membrane i s continuous. S i m i l a r 

studies have shown that Pyrodinium bahamense (7), Crypthecodinium  

c o h n i i (25), and Gonyaulax polygramma (44) a l s o e x h i b i t a stage i n 

which w a l l m a t e r i a l i s present but apparently not d i f f e r e n t i a t e d 

i n t o p l a t e s . 
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In P. trochoideum the f i r s t plate-membrane system to become 

es t a b l i s h e d a f t e r w a l l formation i s the inner p l a t e membrane system. 

The t h i c k e r p a r t i t i o n of t h i s membrane l i e s , as expected, adjacent 

to the w a l l . Formation of i n d i v i d u a l t h e c a l p l a t e s i s presumed to, 

take pl a c e concurrently with the formation of outer p l a t e membrane 

and t h e c a l membrane systems. I t seems quite probable that the mem

brane components f o r these systems e x i s t i n the u n d i f f e r e n t i a t e d 

w a l l as a consequence of the t o t a l incorporation of prothecal 

v e s i c l e s i n t o the w a l l . Indeed i f a prothecal v e s i c l e were to 

remain i n the w a l l as such, i t could w e l l form a pore plug. This 

could e x p l a i n the presence of pores i n very young thecae and e l i m i 

nates the ne c e s s i t y of invoking a d i s s o l u t i o n of w a l l m a t e r i a l i n 

the formation of a pore a f t e r w a l l deposition has taken place. In 

Prorocentrum, i t has been suggested that the f i r s t w a l l covering 

i s complete (14) and i t was assumed that d i s s o l u t i o n of w a l l 

m a t e r i a l r e s u l t e d i n pore formation. 

Sutures are not present on young thecae but apparently develop 

some time a f t e r w a l l m a t e r i a l has been l a i d down. Taylor (43) has 

found from l i g h t microscopy that young thecae of Gonyaulax tamarensis 

with l i t t l e or no surface markings do not break along expected suture 

l i n e s but fragment i n t o odd shaped pieces of w a l l m a t e r i a l . When 

sutures i n P. trochoideum f i r s t appear they are shallow and quite 

discontinuous. To f u l l y understand the process of suture formation 

i t w i l l be necessary to f o l l o w the development of the two ov e r l y i n g 

membranes of the w a l l (the t h e c a l and outer p l a t e membrane) and t h e i r 

subsequent c o n t r i b u t i o n i n su b d i v i s i o n of the w a l l i n t o d i s t i n c t l y 

shaped p l a t e s . Presumably the mechanism f o r c o n t r o l over p l a t e shape 
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must l i e within the c e l l and hence i t would appear l o g i c a l to expect 

a c t i v e s i t e s at the plasmalemma and/or inner p l a t e membrane that 

determine the format f o r a l l p l a t e s types. However, i t must be 

recognized that wherever incomplete sutures have been observed, 

d i s s o l u t i o n of w a l l m a t e r i a l appears to have been i n i t i a t e d on the 

e x t e r n a l face of the w a l l . 

Undoubtedly p l a t e formation i s an extremely complicated process, 

e s p e c i a l l y i f one were to attempt to explain the process from the 

b a s i c g e n e t i c a l c o n t r o l systems to the a c t u a l p h y s i c a l outcome of 

determining p l a t e demarcation. 
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PLATES AND EXPLANATIONS 

LEGEND 

B = b l i s t e r 
C = c h l o r o p l a s t 
CFB = cytoplasmic f i b r o u s body 
CH = chromosome 
CP = a p i c a l c l o s i n g p l a t e 
D = dictyosome 
DL = dense l a y e r 
DS = dense stroma 
F = f i b r i l s 
FB = f i b r o u s body 
FL = f o l d s 
FP = f l a g e l l a r pore 
G = g i r d l e 
GL = globules 
H - spine 
IB = i n t e r c a l a r y band 
INM = inner nuclear membrane 
IPM = inner p l a t e membrane 

• IPMp = parent c e l l inner p l a t e : 
M = mitochondria 
MC = membrane component 
N = nucleus 
NE = nuclear envelope 
NU = nucleolus 

NV = nuclear v e s i c l e s 
ONM = outer nuclear membrane 
OPM = outer p l a t e membrane 
P = pore 
PB = prothecal body 
PE = pe r i n u c l e a r extension 
PFB = p e r i n u c l e a r f i b r o u s bod 
PL = plaque 
PM plasmalemma 
PP pore plug 
R = ridge 
S = suture 
SB = segregated body 
SC scar 
SG s t a r c h g r a i n 
SL = sulcus 
SS = sparse stroma 
T = t r i c h o c y s t 
TF = t r i c h o c y s t f i b e r s 
TL = thylakoids 
TM - t h e c a l membrane 
TS = t r i c h o c y s t sac 
W = w a l l 
WM = w a l l m a t e r i a l 
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F i g u r e I. Chloroplasts (C) showing thylakoid lamellae (TL) i n 

ass o c i a t i o n s of three and dense (DS) and sparse (SS) stromal 

regions. 

x 21,600 

(inset^ x 36,600 

Figure 2. Sparse stroma showing f i b e r s (F) beli e v e d to be 

DNA. 

x 73,200 

Figure 3. Thylakoids (TL) i n associations of three. The 

margins of some of the small thylakoids are marked by 

arrows. 

x154,000 





PLATE I I 3 2 . 

Figure 4. T y p i c a l mesocaryotic nucleus (N) with c o i l e d and 

condensed interphase chromosomes (CH), nucleolus (NU), 

and double membrane envelope (NE). 

x 9,700 

Figure 5. Interphase chromosomes (CH) showing two d i r e c t i o n s 

of c o i l i n g : c o i l s p a r a l l e l t o the chromosome l o n g i t u d i n a l 

axis (black v e r t i c a l arrows) and c o i l s normal to the chromo

some l o n g i t u d i n a l axis (white h o r i z o n t a l arrows). 

x 59,000 





PLATE I I I 33. 

Figure 6. Fibre—granular nucleolus (NU) with small c l e a r 

n u c l e o l a r vacuoles (arrows). 

x 41,800 

Figure 7. P a r t i a l breakdown of nuclear envelope (NE) and 

a s s o c i a t i o n with nearby v e s i c l e s (NV). 

x 57,000 





PLATE IV 

Figure 8. Extension of outer nuclear membrane around f i b r o -

granular matrix of the pe r i n u c l e a r extension (PE). 

x 17,000 

Figure 9. Perinuclear f i b r o u s body (PFB) wit h i n p e r i n u c l e a r 

extension. Note separation of inner (INM) and outer (ONM) nuclear 

membranes (arrow.) 

x 57,000 

Figure 10. Per i n u c l e a r f i b r o u s body (PFB) apparently i n close 

a s s o c i a t i o n with the nuclear m a t e r i a l (CH). 

x 57,000 

Figure 11. Cytoplasmic f i b r o u s body (CFB). The f i b e r s do not 

occupy the e n t i r e i n c l u s i o n . 

x 12,100 





PLATE V 35. 

Figure 12. Dictyosome (D) with d i s t a l (secreting) face towards 

nucleus. (N) 

x 28,500 

Figure 13. Dictyosome (D), cytoplasmic f i b r o u s body (CFB), and 

complex membrane system adjacent to nucleus. 

x 25,500 

Figure 14. Location of segregated body (SB) ju s t below nucleus 

(N) at a n t a p i c a l end of c e l l . 

x 18,000 

Fig u r e 15. The segregated body contains f i b e r s (FB) s i m i l a r to 

those i n nuclear and cytoplasmic f i b r o u s bodies and globules 

(GL) with dark s t a i n i n g p e r i p h e r i e s . These are embedded i n an 

amorphous matrix which c o n s i s t e n t l y has a large c e n t r a l dense 

region and a l e s s dense periphery (arrows). 

x 21,600 





PIATE VI 36. 

F i g u r e 16. Trichoc y s t s (T) i n cross s e c t i o n appear as square, 

c r y s t a l l i n e structures bounded by a s i n g l e membrane (TS). The 

c r y s t a l l i n e l a t t i c e of the t r i c h o c y s t core i s e a s i l y seen. 

x 59,000 

Figure 17. A t r i c h o c y s t (T) can be seen d i s l o c a t e d from a pore 

(P) and l y i n g adjacent to the c e l l membrane beneath the w a l l (W). 

Tri c h o c y s t f i b e r s (TF) can be seen at the core t i p . The over

lapping w a l l p l a t e s are separated by a suture (S). 

x 35,000 

Figure 18. As s o c i a t i o n of t r i c h o c y s t s (T) with the t r i c h o c y s t 

sac. The t r i c h o c y s t (T) has f i b e r s (TF) extending from i t s 

core to the top of i t s sac. 

37,800 

Figures 19 and 20. A continuous pore plug (PP) i s present i n the w a l l 

i n d i c a t i n g that i t e x i s t s as an independent st r u c t u r e from the 

t r i c h o c y s t s . 

x 60,000 

x 132,000 





PLATE VII 37. 

Figure 22. Thecate c e l l of P. trochoideum. 

x 940 

Figure 23. C e l l undergoing ecdysis. Note r e l a t i v e thickness of the 

p r o t o p l a s t surface l a y e r . x 940 

Figure 24. Free-swimming, elongate, naked p r o t o p l a s t . ( F l a g e l l a r 

s t r u c t u r e s enhanced photog_phically). 

x 940 

Figure 25. Resting p r o t o p l a s t a f t e r l o s s of f l a g e l l a . 

x 940 

Fi g u r e 26. C e l l undergoing c y t o k i n e s i s . Note the presence of 

w a l l m a t e r i a l across the isthmus. 

x 940 

Figure 27. A newly formed daughter c e l l . 

x 940 





PLATE VIII 38. 

F igure 28. V e n t r a l view of the epitheca and g i r d l e (G) of 

P. trochoideum showing a p i c a l (1 1, 2', 4'), p r e c i n g u l a r (1'', 

2 1'/ 7''), and a g i r d l e p l a t e (G) demarcated by a suture ( S ^ ) . 

The a p i c a l spines (H) a r i s e from the second and f o r t h a p i c a l 

p l a t e s (2 1 and 4') which border the a p i c a l c l o s i n g p l a t e (CP). 

The s i n g l e f l a g e l l a r pore (FP) l i e s i n the g i r d l e (G) immediately 

below the f i r s t a p i c a l p l a t e (1'). 

x 12,000 

Fig u r e 29. Light micrograph (Nomarski interference) showing the 

v e n t r a l view of an empty theca. To the l e f t of the f l a g e l l a r pore 

(FP) i s the f i r s t g i r d l e suture (S^) and below the pore and f i r s t 

a p i c a l p l a t e ( l 1 ) i s the sulcus (SL). 

x 1,200 

F i g u r e 30. Phase contrast micrograph of an empty theca showing the 

absence of the a p i c a l pore i n the a p i c a l c l o s i n g p l a t e (CP). 

The t h e c a l p l a t e s correspond to those seen i n the -freeze-etched 

m a t e r i a l i n f i g u r e 28. 

x 1,200 





PLATE IX 39. 

Figure 31. View of the l e f t side of an older theca showing p l a t e s 

of the epitheca and hypotheca: i n t e r c a l a r y (2a), p r e c i n g u l a r 

( 2 " , 3 1 1 ) , postcin g u l a r ( 1 ' " , 2"} 3'"), and a n t a p i c a l ( l " " ) . 

Pores (P), b l i s t e r s (B), and f o l d s (FL) can be seen on the t h e c a l 

surface. Only sutures (S) of the epitheca and hypotheca have an 

accessory marginal band (MB). The f o l d s are a r t i f a c t s probably 

derived by c e n t r i f u g a t i o n of c e l l s . The i n t e r c a l a r y band (IB) 

i s f a i n t e r and wider than the marginal suture band. I t l i e s on 

the opposite s i d e of the suture than the l a t t e r . 

x 9,500 





PLATE X 

Figure 32. The rough t h e c a l membrane surface i s scored by a suture 

(S) which i s associated with a marginal suture band (MB). Note 

that the suture (S) i s depressed i n t o the w a l l and the marginal 

band (MB) represents a s l i g h t l y elevated part of the theca. 

x 30,000 

Figure 33. Arrows i n d i c a t e points at which the sutures (S) are 

discontinuous. Note tha t the marginal band (MB), however, s t i l l 

maintains a continuous b e l t 0.36 ji i n width regardless of suture 

inconsistency. P l a q u e - l i k e areas (PL) f r e e of p i t s are scattered 

randomly on the surface. 

x 82,800 





PLATE XI 41. 

Figure 34. Porti o n of a mature t h e c a l surface showing sutures (S), 

pores (P), c i r c u l a r plaques (PL), and p i t t i n g . Where the t h e c a l 

membrane i s continuous over the p l a t e s the sutures cannot be 

detected (arrows). 

x 21,000 

Figure 35. Porti o n of an o l d t h e c a l surface showing the marginal suture 

band (MB) adjacent to the suture (S). B l i s t e r i n g (B) i s common 

on olde r thecae. x 14,000 

Figure 36. Cross s e c t i o n through the marginal suture band showing the 

thickening of both p l a t e s along the length of the suture (S). The 

p l a t e on the r i g h t bears a ridge (R). The nondescript w a l l (W) i s 

covered by the outer p l a t e membrane (OPM) and t h e c a l membrane (TM). 

The inner p l a t e membrane (IPM) l i e s below the w a l l . Note the absence 

of a connection between the inner p l a t e membrane and the suture. 

x 68,000 

Figure 37. Cross s e c t i o n through the marginal suture band at a poin t 

where adjacent t h e c a l p l a t e s are continuous. 

x 68,000 





PLATE XII 42. 

F i g u r e 38. The outer p l a t e membrane appears to terminate at the 

inner s i d e of the overlapping p l a t e s . Although there i s no 

connection between the suture (OPM) and the inner p l a t e membrane (IPM), 

dense m a t e r i a l i s l o c a t e d between the two systems (arrow). The 

plasmalemma (PM) contains a narrow p a r i e t a l cytoplasmic band 

which r e s u l t s from vacuolation (V) at or near the c e l l periphery. 

x 66,000 

Figure 39. The suture (S) appears to be attached to the inner 

p l a t e membrane (IPM) by means of a f o o t (arrow). Note that 

only the terminal p o r t i o n of the f o o t appears to be attached. 

x 40,200 

Fig u r e 40. The t h i c k e r p a r t i t i o n of the continuous asymmetric inner 

p l a t e membrane (IPM) l i e s adjacent to the t h e c a l p l a t e s . Note 

that there i s no d i s r u p t i o n of the inner p l a t e membrane along i t s 

length. One would expect such a membrane t o be disrupted at the 

p o i n t where a suture might be attached. 

x 110,000 





PLATE XIII 43. 

F i g u r e 41. Thin s e c t i o n through a complex junction of four t h e c a l p l a t e s . 

The asymmetric t h e c a l (TM) and p l a t e membranes (OPM) are about 15OS 

o 

t h i c k having p a r t i t i o n s of 75/50/25A. The sutures (S) appear penta-

p a r t i t e as a r e s u l t of the apposition of two outer p l a t e membranes. 

The t h i c k e r p a r t i t i o n of the outer p l a t e membrane always l i e s 

adjacent to the p l a t e (W). 

x 144,000 

Figure 42. Fractured surface showing the t h e c a l p l a t e s (W) and the 

four associated membranes. The t h e c a l membrane (TM) and outer 

p l a t e membrane (OPM) are p i t t e d ; the inner p l a t e membrane (IPM) 

s l i g h t l y r e t i c u l a t e , and the plasmalemma (PM) appears undulated. 
x 14,200 

Figu r e 43. The plasmalemma (PM) and inner p l a t e membrane (IPM) appear 

t o be continuous over the pr o t o p l a s t and independent of the 

o v e r l y i n g suture (S). 

x 23,200 





PLATE XIV 44. 

Figures 44 and 45. Continuity of the inner p l a t e membrane (IPM) 

over the p r o t o p l a s t . The outer surfaces of the inner p l a t e mem

branes bear scars (SC) which may represent s i t e s of previous 

a s s o c i a t i o n with sutures = outer p l a t e membrane. 

x 15,360 

x 18,600 





PLATE XV 45. 

F i g u r e 46. Densely s t a i n i n g prothecal bodies (PB) as they appear 

i n non-dividing mature c e l l s . 

x 12,000 

Fig u r e 47. An older c e l l of P. trochoideum. The p r o t h e c a l body (PB) 

i s composed of a membranous component (MC) and an amorphous com

ponent (AC). Prothecal v e s i c l e s (PV) can be seen forming at the 

l e f t . 

x 22,200 

Fi g u r e 48. Moderately s t a i n i n g prothecal bodies (PB) as they appear 

p r i o r to ecdysis. The p r o t h e c a l body at the top has progressed to 

a f u r t h e r s t a t e of d i f f e r e n t i a t i o n than the one below. Note the 

d i f f e r e n c e i n r e l a t i v e amounts of amorphous (AC) and membrane com

ponents (MC). 

x 13,500 

Fig u r e 49. F l a t t e n e d prothecal v e s i c l e s (PV) from a prothecal body 

i n which the amorphous component (AC) has s u b s t a n t i a l l y diminished. 

x 15,000 





PLATE XVI 4 6 . 

Figures 50 and 51. Progressive stages showing the accumulation of 

w a l l m a t e r i a l between the plasmalemma (PM) and the inner p l a t e 

membrane (IPM). 

x 47,500 

x 25,000 

Figure 52. Incorporation of prothecal v e s i c l e s (PV) i n t o the w a l l . 

The f i b r i l l a r m a t e r i a l i n the v e s i c l e s and the membrane of the 

v e s i c l e s account f o r the moderate s t a i n i n g c h a r a c t e r i s t i c s of 

the w a l l . 

x 15,600 

Fig u r e 53. Fibrous nature of the newly formed c e l l w a l l (W). Pro

t h e c a l v e s i c l e s (PV) can be seen entrapped within the w a l l . 

x 25,000 





PLATE XVII 47. 

Figure 54. Nomarski i n t e r f e r e n c e micrograph of a d i v i d i n g c e l l . 

Note the accumulation of w a l l m a t e r i a l (WM) across the cleavage 

furrow (arrow). 

x 1,500 

Figure 55. Phase contrast micrograph of a plasmolysed d i v i d i n g 

c e l l . Note the separation of the w a l l (W) from the o v e r l y i n g inner 

p l a t e membrane of the parent c e l l (IPMp). 

x 1,100 

Figure 56. E l e c t r o n micrograph of a d i v i d i n g c e l l s i m i l a r to that 

stage shown i n f i g u r e 54. The c e l l has a r e l a t i v e l y t h i c k w a l l 

(W). Note the prothecal v e s i c l e s (PV) l i n i n g the p r o t o p l a s t p e r i 

phery. 

x 5,600 





PLATE XVIII 48. 

Figure 57. Formation of prothecal v e s i c l e s (PV) from a p r o t h e c a l body 

(PB) at the isthmus of a d i v i d i n g c e l l . One of the v e s i c l e s i s being 

released (arrow). 

x 39,600 

Figure 58. Isthmus of a c e l l i n l a t e c e l l d i v i s i o n . The p r o t h e c a l 

v e s i c l e s have aligned i n two rows across the isthmus (arrows). 

These rows represent the s i t e s where the two new c e l l walls of the 

daughter c e l l s w i l l be formed p r i o r to complete separation. 

x 25,800 





PLATE XIX 49. 

F i g u r e 59. Small link, between daughter c e l l s . Note the d e f i n i t e 

l a y e r of w a l l m a t e r i a l present at t h i s s i t e (W). Below the 

l i g h t e r w a l l l a y e r (W) l i e s a denser layer (DL) which appears to be 

sandwiched between the w a l l and cytoplasm. 

x 57,000 

Figure 60. Presence of a new inner p l a t e membrane (IPM). The 

membrane appears to have a r i s e n within the dense l a y e r (DL) beneath 

the w a l l . Note membrane fragments (arrow) within the w a l l which 

may be involved i n membrane formation. The parent c e l l inner p l a t e 

membrane (IPMp) i s s t i l l present. 

x 104,500 





PLATE XX ' 50' 

F i g u r e 61. Two daughter c e l l s nearly separated. The w a l l m a t e r i a l 

appears to cover the e n t i r e p r o t o p l a s t without i n t e r r u p t i o n - that 

i s , there are no p l a t e s or sutures present at t h i s time. 

x 6,190 





PLATE XXI 51. 

Figure 62. An u n d i f f e r e n t i a t e d theca which lacks f u l l y delineated 

p l a t e s . The c e l l surface i s r e l a t i v e l y f r e e of p i t s . The f o l d s 

probably arose during c e n t r i f u g a t i o n of the c e l l s . Note the 

presence of the f u l l y developed pore (P) with i t s r i d g e . 

x 25,000 

Figure 63. I n i t i a l stages i n the d i f f e r e n t i a t i o n of the sutures. 

The sutures (S) are s t i l l not deeply scored i n t o the w a l l and are 

not continuous (arrows). 

x 15,000 
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APPENDIX 

CHIHARA MARINE MEDIUM 

To 1000 cc. f i l t e r e d * sea water add: 

materials quantity 

minor elements (see below) 
NaNOo 
NaHgPfy.lZHgO 

2 cc. 
0.200 g. 
0.025 g. 

Minor Elements Solution 

To 1000 cc. d i s t i l l e d water add: 

materials quantity 

EDTA - Mag 3.0000 g. 

FeCl3 . 61^0 0.0800 g. 

MnCLg . 4H 20 0.1200 g. 

ZnCl 2 0.0150 g. 

CoCl 2 . 211̂ 0 0.0030 g. 

CuCl 2 . 21-IgO 0.0012 g. 

NagMoÔ  . 2H 20 0.0500 g. 

H 3B0 3 0.6000 g. 

* millipore f i l t e r ; pore diameter 0.22^. 


