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ABSTRACT

An algorithm is developed for performing parameter esti-
mation on a small-size digital computer. First principles of
matrix algebra are used to derive a sequential estimator which
computes an estimate of a general parameter array é'ftom én
array of measurements Z=HA +V where V is a matrix of zero-
mean noise terms. At every stage a new row is adjoined to each
of ._Z_,:ﬂ. and V and a new estimate of ﬂ is calculated recursive-
ly, with any one of three well~known filtering processes avail-
able from the same basic set of recursive equations: a least-
squares filter to minimize J = %— trace (Z - g_é) (Z—H;é_)'—, a
maximum-likelihood filter to maximize ﬁ2|A(glé) or a maximum-—
a-posteriori filter to maximize pA'Z(élg)T Provision is made
for starting the filter either wizh—a-priori means and vari-
ances of the parameters orwitherdeterministic'mdnimum—norm"
composition based on the first s measurement rows, s being the
~ number 6f rows in the parameter arraye.

The algorithm is applied to thg‘problem of identifying
theparametersofeadiécrete model for a linear time-invariant
control system'directly from sequential observations of the
inputs and outputs. Results from computer tests are used to
demonstrate properties of the algoriﬁhm and the important
computer programs are included, along with suggestions for

further applications.
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T. Introduction

When it is necessary to estimate important parameters of
a system from measurements of system variables, thechoice of.
an optimal mathematical procedure depends on the amount of
statisticai information available concerning the system and
‘measurement process. Unfortunately, hot enough information is
available in many practical situations to permit using well-
khown estimators like the Kalman filter, nor is it obvious how
these procedures cén be adapted for simpler problems. Kishi
[8], Sage [13], Young [17] and other authors have indicated
how classical least=-squares filtering can be useful Dbecause
of its validity in the absence of statistical information and
-its .similarities with .more sophisticated'methodsvwbut‘Mery
little has been written in the way of a unified and complete
theory of practical least-squares filtering. Greville [3]
presentsa derivation of least-squares curve fitting which is
mathematically rigorous but unnecessarily complicated by the
use of generalized-inverse theory and not directly applicable
to the problem of parameter estimation. Iﬁeuléttemptix>apply
it to the estimatith probiem,_ Kishi [8] loses some of the
mathematicalvrigour and neglects some important practical
considerations. Young [17] and Sinha and Pille [lS]'have con-
tributed accurate but very simplified descriptions of the
method.
There is considerable advantagé to be gained by using a
classical 1least—squares estimator aé the basis for on-line

- filtering algorithms because it is straightforward to imple-



‘ment, valid under most conditions and easily modified for
a-priori statistical information. It is the purpose of this
thesis to develop a complete theory forléastmsquaresfilter-
ing, leading to an algorithm that can be programmed on a small
digital computer and to considerations of how the algorithm
can be extended for a number of practical situations. The
mathematicaiapproach1dsequrGrevillew[2;3] was chosen as the
most suitable on which to base the derivations for general
least-squares filtering equations, although his use of Pen-
rose's pseudo-inverse theory [11, 12] has been abandoned in
favour of a more straightforward apprcach which employs only
first principles of matrix algebra. To include the statistical
maximum—likelihood and Bayesian filters, some simple modifi-
cations of the equations are considered.

In this thesis all symbols representing vectors and ma-
trices are underscored, with upper-case letters denoting ma-
trices and lowermcaselettersdenotingcolumn—vectorswhefever
possibles A symbol followed by a prime indicates the transpose
of the corresponding matrix or column=-vector ( example: é' Yo
Where dimensions‘of a matrix or vector are given; they are
enclosed in parentheses following the symbol (example: B(mxn)).

The identity matrix is represented by the symbol‘"£" and matrix

. 1" "
inverses are denoted by the supersecript -1 . The symbol for

_ "
the statistical expected-value operator is 's".



II. Least=Squares Filtering

An arbitrary but very general representation of the re-
lation between acollectioncﬁ?measurementscﬁ?Systenvariables

and the basic parameters of the éystem is

g:l_f_\_»i-_\z. (l)

where Z i1s an array containing all the measured data, A is the
arfay of unknown fixed pérameters, 'E is the matrix representing
the defined relationship between the quantities measured and
‘the parameters, and V is an array of measurement noise termse.
In a simple example_of a body moving with a constant velocity
v, it 1s desired to estimate the velocity and initial position
<so~of»@he'body~fr®m~measurememts~of~it5"p®sition s -at -known

times t. The parameters 5, and v are defined by the equation

If the position is measured at times t t2 and t, and values

1? 3
52 and 53 are obtained, then a representation corresponding

El,
to equation (1) would be

s1 1 tl | nl
S, = 1 t2 + | n,
- v

s3 ' 1l t3_ n3

where ny, N, and n, are measurement noise termse.

The classical method of least squares assumes that for

zero-mean noise the estimate A of the parameter array A should



result in a minimum of the sum of the squares of the elements
of the matrix (Z=-HA). This corresponds to minimizing the cost

function

1)

J = %- trace (Z=HA)(Z-HA) @

S ¢ 9 ¢
If the rows of Z are labelled :‘successively;zfl,,‘3,_:29 Zgs000, and

3
cost function can be written -

‘the rows of H are similarly labelled hy,h,, hgjece, then the

i [} [ B L] [ SR .

For a minimum the derivative with respect to A must be zero:

HzZ=HHA (4)

If the number of rows in _H_ is greater th‘an‘ or equal to
the nuinber of columns and the columns are linearly independent
then ﬁhe column vectox“ Hu, which is a linear combination of
the columns of H, is non-zero for all non=zero go Therefore
et_xjgv_lgy_ is positive for all non-zero u which means that ﬁ_'g :
is positive definite and hence non-singular. (4) then gives

the unique solution



¢ .,,l )
= (HH) "Hz (5)

B

If the number of rows in H i1s less than or equal to the
number of columns and the rows are linearly independent then
the row vector Evﬁé which is a linear combination of the rows
_vof H, is non-zero for all non-zero ue. Thus y_gﬁﬁug is positive
fforfﬂjunanvzemo-gwandnﬁif is positive-definite .and therefore

nonsinguiaro Pre-multiplying both sides of (4) by H gives

¢ 9 o
HH Z = HH HA

- et Ao g

(6)

N
'l> »

- H

Except for the case where H is square, this equation does not
have a unigue solution, but although noc unigue solution can
'be defined on the basis of the least-squares criterion alone
it will nevertheless be desirable to define some arbitrary
solution. Thé most logical choice is that least-squares solu=~
tion which has a minimum "norm" and is found by minimizing the

cost function

QO'

1 .
qn = 5 trace (_A_.é__) | ; - (7)

subject to equation (6). Using Lagrange's method of undeter-

mined multipliers, an éugmented cost fuhction is defined:

J - trace ) (8)

~ "
a -A-é + 2.‘..(..%.-.};[.

rofi=
.i:p,,

where A is the array of undetermined multipliers. Now



03, A e

—2 =A-HA =0

04

A ¢ _ 0

A=HA (9)

Using (9) in (6),

N
o
o)
fes
j>

Lo

A= a7tz | (10)
Using (10) in (9),

A=H(E) Tz (11)

“This -equation ~will ~define ~the -least-squares ~estimate of A
bwhenever,the number of rows of H 1s less than or equal to its
number of columns and the rows are linearly independent.

For the many applications where the observations are not
available all at once but are received sequentially in time,
it is desirable to have a recursive relation which will provide
. parameter estimates at every stage Hy updating prior estimates -
as each new set or block of .data arriveso The addition of more
data to the ©Z matrix will require that elements be added to
the H matrix and since the dimensions of H will be changing
at every stage it is important to establish which of equations
(5) and (11) should be used to determine the estimate at each
stage. | |

If the parameter matrix A 1is to have fixed dimensions,



labelled (s xr), then equation- (1) shows that H must always
have s columns and Z must always have r columns. Thus in this
scheme, elements adjoined to the H and Z matrices at sequential
stages must take the form of additional rows. If g is the
number of rows adjoined to each of Z and H at every estimation
stage; then. the total number of rows in eachmatrix is kg where
k is the number of the current estimation stageaik>summarize

the dimension labels, (1) can be re-written
Z(kqxr) = H(kgxs) Alsxr) + V(kgxr) 12)

Now, using (5) and (11), the least-squares estimate for A at

stage k is defined by

N -0 P -
A = Ek(.lik}ik) Zy s kqZs (13)

~

A (H B )"t u
£y = (HH T H

Z,, kqZs (14)
where H, -and 2, are the matrices H and Z at stage k. If gZs
then (14) will apply for all values of k, but if g«s then
(13) will apply until k exceeds % and (14) will apply for all
further stages. In designing a general recursive relation for
(13) and (14), advantage can be taken of the fact that both
solutions woﬁld apply for a stage k where kq = s, provided the
rows of H are linearly :i.nciepenc:lent'.‘.,.g:l_k would be square and
nonsingular and (13) and (14) would :edﬁce to

' -1
A = H T2, kq=s (15)



Thus if the number of rows adjoined to H. at each stage (q)
is a factor of its number of columns (s) then there will be a
stage where kg = s such that both (13) and (14) are valid and
the final solution from the recursive form of (13) canbe used
as the starting value for the recursive form of (14).

~To obtain the fecursive forms for equations (13) and (14)

it is convenient to introduce new symbols G, and J, defined

X Ty
by
G, = H. (. H )T kq=<s (16)
b <8 '—k "'"k""k ? - = '
3. = (H )ty kq=s (17)
g = G T H, ki

“In -the -theory 'of -generalized "inverses -q-k ~would “be ~called the

right generalized inverse or right pseudo-inverse of E-}c

gk would be called the left generalized inverse or left pseudo-

and

inverse of Hyee The matrices 25 By G and J, are partitloned

as follows:

- -
_ Zy_y (-1 axe) ,
Z (kqxr) = 0.000900»009900 (18)
k . _Z_]f(q‘xr)
r ' .
H ¢ fk-1] gxs) |
E (kqxs)= 9 90 0 60 0o e O OOOOCO (19)
K . _P_{}i((qxs) :
oy . s
G (sxkq) = [|F, (sx[k-1]q) s E (sxq) | (20)



g, (sxkq) = _Qk(sx[k--l] q) ¢ B, (sxq)
Equation (13) can now be written
n - = T = o
A = GZy = ByZyg + EpZ s KaSs

“Iousolveiﬂorvgkwand,gk,“define the matrix

¢ ] c_l
Qe = Gy = B (H ) EpH

Post=multiplying by §£ gives

1 ¢ 4 ]

. %
Be = Bl + BB
.Using (19), this can be written as two eguations:

¢ ]

Beoy = BxgBe g + BJHSH
0 %!
Be = B8 + B H

From (25)
-1 -1
By = -k-— (ﬁk—l-k 1) Ej Hy k 1(?-1(-1 k 1)

Substituting this into (22) gives

= - E, H*A 3 =<
B = By - B A, + B2, kaSs

R T Byt E k(Z - -3»-1-—1) kq=s

- *
He = EH + By

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)


http://can.be

and into (23) gives

10

N J—" %
Qe = ey = EHQ 5 * EH
5 . |
Qe = Qg * E (X Qkul) v (29)
and into (26) gives
*i' %' w( %v ¥* *4'
By = Qe by = EH Qe He + EH B

_ - x? oo
By = (I-9y ;)8 [ﬂk(-l- Qeq MHy

LEquations {

28), (25) and {

X! (30)

B

30) consiitute fhe recursive. . .relation

'which corresponds to equation_(l3)° It may be verified from

~

these equations that the correct starting values for A and Q

are zero,

which are consistent with the definitionsof A

and (23).

for then

L]

E%K

H

1

Hﬂ(

=1

"(
l.‘H

(H1 ")

-1

% y')-l *

HyHy ) %

=1 .%
(”1 1) By

A and Q in (13) .

Using (18) and (21), equation (14) can be written
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A _ _ *e - .
Ay =02 =D 2 + B Z 5, kaz=s (31)

—k=k=1 =k=

To solve for p_}, and E«k’ begin by forming the product -Hkg-)c using

(17), (19) and (21):

(-]
S B R o2
, ' ~k <k o =k-=k
v »
Pre~-multiplying by Ek gives
R o b e
B = B u¥p. S g¥p (33)
' %k =k + =k=k '

Using (19) -this -can -be ‘written as-the -two ~equations

v ' #V %
Been = BeeqBieen2e + B BBy - B
*' oy pX'pX (35)
He = Hpoq BBy + He BBy |
From (34)
0¥ . -1 ¢
Dy = (-Iik 11+ H B TH - (36
and from (35)
_ 2w =1 k"
By = —k-—l—H-k— + B BOTUHS (37)

If a new matrix is defined by



$
By = ed

0
= (H

then (36) and (37) can be written as

~¢

Dy = Byl
,3\(‘
By = EHy
From (38)
-1 ! 21 %
By = He gBey + He By
=1 ¥ ¢
= Bpay + By Hy

Byt

_ ] ml 9 1] “"1 ¢ .,.l
= (E) THE ER) T = ()

o ow. =1
+ He HY)

12

(38)

(39)

(40)

(41)

Pre-multiplying by Ek and post-multiplying by Bknl gives

#¥ %
Pr-1 = Bt BB BBy

S

Pr-1 = B + BB By 4
- - -4

Pp = By = B By

and using this result in (39) gives

(42)

(43).
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' * v
D 4

D = Exentior 7 BBk BBk (44)
and in (40) gives
B, =P, .HY «p u¥p .pX
2 T Akelmk T SkSk Sk-1-k
~ .%.0 3 ,.,*(? -s,l ) .
B = Bpay (L + Hp By jHp ) (45)
Using (44) in (31)
A P H. .2 - B H¥p, .H .z B, Z kg =
A = Brabyea8ie-1 7 B Beoafiaa%ic-n By o q=5
’ -1
Since By , = (H _4H _4) 7, the last equation becomes
A i a 3 _ % ~ -
By = By ¢ Bl - Heh ), ka=s  (46)

Equations (43), (45) and (46) provide the recursive relation
corresponding to equation (14) andvcan be started by applying
(14) and (38) directly to the first stage k 'such that kq = s,
which will require inversion of at least an s x s matrix. Since
matrix inversion requires fairly complex programming ona small
computer, it is perhaps better to arrange that the starting
.value for (46) be taken from the last solution of (28) at a
stage k whérebkq;=s, as described earlier. Similarly a recur-
sive relation can be found which will provide a starting value

for By, in (43) when kq=s. From (38) the definition of p, is

t

Py = ddy



and from equations (16) and (17)

TR ! _
S =) =H ", kg=s
Therefore
’ ? ]
- E-k = -‘-J-kg-k = -G-%kgk ’ kq=s (47)

Thus at a stage k where qunsv it is possible to obtain the

starting value for P, from a recursive relation for

= G, G, Y B )" (BT
Ry = G = H (B H) ~ (B H

Ry Hy (48)
Using (20) this can be written
Ry = BBy + BB ‘ (49)
From (27)
Foo= (I - EHOH (B )7L C (s0)
Substituting this into (49) gives
B = (I BHOD B qBey) l(Hk e B

(1-g 19" '
x (L-EH) + EE.

= (I- Eka)Rk l(I E, HY - E E,
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R .u¥'E - g m¥
Ry = Byoy = BygHp Ep = EH Ry

14
E (51)

3¢ [
+ E H R E E.

EyHi ReogBi By + By
which is in a convenient form to be calculated in conjunction
with (28), (29) and (30),

»Thefﬂjmﬂ.general algorithm for least-squares estimation
of the parameter matrix A would therefore use equations (28),
(29), (30) and (51) for all estimation stages k such that
kq =s and for all subsequent stages would useequations<43),
(45) and (46) beginning with the values of ékand gkgiven by
(28) and (51) at a stage k where kq = s

The calculations involved in these equations are easily

performed on a small computer, apart from the following in-

verses which appear in (30) and (45) respectively:

-1

—.l :
¥ Al # %
[ﬂk‘-l-" Q18 ] ' Q* He By g8 )

As shown in (19) the dimension of ﬂz is g x s which indicates
that both of the matrices being inverted above have dimension
qxqy; q being the number of rows adjoined to Z and H at each
estimation stage. Thus by choosing g=1, both inverses will
involve scalars and the necessary computer programming will
be vastly simplified. The number of rows adjoined at each
estimation stage need have no effect on the number of rows

adjoined at each measurement stage because the measured rows

can be stored and adjoined in the estimation algorifhmcnmaat
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a time. Selecting g =1 also has the advantage that q will
always be a divisor of s, the number of columns in H, which
is the requiremen{: for proper linking of the two sets of equa-
tions as previously explained.

When g =1, the matrices Zﬁ and ﬂi degenerate to row vec-
tors and E, and B, degenerate to column vectors. For this

reason‘it‘is‘desirable‘toICHange"the‘notation“and replace

X '

2 bY 2y Ex bY g
VN
B by by B by by
Equation (30) now becomes
. . ""‘1
e © ‘.].:.“ng_i Yy [hk(l“gkgl)ﬂk] (52)

If the column vector (I-Q _,)h, in this equation is given the

symbol ¢, .,

g = @-g by | - (53)

then from the definition of Q in equation (23), which was

' -1
Q = Gy = B (B H) "H
it can be seen that
¢ 1] ? % .
S = h (;-—gk_l) = Bk(l"'gkwl) (54)

and
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1)
SS = B (Z-9

¢
By (Z= Qg = Qg * Qg Gemy M1y

9

= (T = Qe g~ Qg * Qg 'y
’ | (55)
= By (2= Qe By 55

so that eguation (52) can now be written

v

g = S lge) (56)

and equation (29) now becomes

¢ [3 .
Qe = Gy + DT~ g) = Qg &S (57

Following is a summary of the major equations and their

starting values for the simplified algorithm where q=1:

4

¢ = (T-2 _4)hy . A : (53)

)—l

- |
k=s{ & = S lge (56)

. | M X ] ‘
Q = Qg * &5 » Q=03atk=0 (_57)




k=Zs ¢

k:us<

L]
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[ 14 L) L] ]
Ry = Ryihily ~ &y By + oIy Ry yhye +ee
R =0 at k=0 (58)
A ] [ B -
A telz - A )y A =0atk=0 (59)
P. _h( h, )"l' - (60)
BoaBye (1 + DBy 3By |
) (61)
By = BcByBey s Ee=R atks=s 1
F'S ( v h' ~
Aeor Bl b Ay )
-é-k:&k from (59) at k=s (62)‘

It has already been shown that when the rows of the matrix

H,_ are linearly independent, the product H

k

¢
k-lik is nonsingular

and the matrix

is a left identity for the matrix _lg' because

K
¢ '( ] -l 1 1]
ety = BB T BH, = B

—k

Similarly _Q_k is a left identity for any other matrix whose

k

columns lie in the Eransposéd row space of H, » Thus if a new
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row g;c is adjoined to the H matrix and is a linear combination
of the previous k-1 rows, then the vector h. will lie in the

transposed row space of H__, and equation (53) will give
g = (T=Q )b =0 | (63)

Since the recursive least-squares procedure requires that H
have maximum rank at every stage and ih particular that’the
rows be linearly independent for the first s stacjes, Sy being
the first calculation involving a newrowof H, is an extremely
useful indicator of this condition. Depending on the process
involved, a measurement which would make the rows of H linearly
depéndent can be rejected in favour of a new measurementbor
the entire process can be re~started with a minimum of wasted
time. _

Although at this point all the essential equations for a
least-squares filtering algorithm have been developed, a pre-
liminary comparison with statistical methods will lead to minor
improvements which make the algorithm much more usefﬁl., In the
next chapter will be presented aderivation of the statistical
maximum—-likelihood filter which parallels that of the least-
squéres filter in this chaptér; Chapter IV will'thenwdescribe
the complete mechanics. of the fihal computational algorithm

which was used in the research project outlined in Chapter V.
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IIT, Maximum-Likelihood Filtering

}Lmaximum—likelihood.procedure gives the optimum minimum-—
variance parameter estimate when no a-priori stafistical in-
'formatioﬁ is available concerning the parameters and the noise
tefms affecting the ineasurements are zero-mean independent
. white~Gaussian random variables of .known variances

The development of the maximum-~likelihood filtering equa-
vtions in this chapter follows closely that of the least-squares
filter in the previous chapter in order that Similarifies
between the two methods will be apparent. This should facili-
tate explanation of the general-purpose computational algorithm
to be presented in Chapter IV.

As in Chapter II, equation (1) will be the arbitrary
the matrix H is assumed to have maximum rank. The optimum
estimate é of the parameters é is chosen so that the probabil-
ity density of each measured quantity conditional on é;:é has
a maximum at the observed value of the measured quantity. The
probability density function involved is often given the name
"likelihood function" and since the noise terms are statisti-
cally independent the likelihood function fbrszlrow i of mea-
Surements is ﬁhe product of their individuallikelihpod:func~

tions, which are Gaussian:

l 1 1 . B 1 ?
p = ~ exp |- 5= (z; -h.A)(z. =h.A) - (64)
z; 1A (271:)1./2 sir/2 2si i i i i :

where r is the number of measurements in a row or the number
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of columns in the measurement array and it has beén assumed
that the noise on each measurement of a row has the same vari-
ance s, o This 1atter.assumpti0n results in a great simplifi-
cation to the derivation which follows and does not seriously
limit the usefulness of the equations,; because measurements
having different noise»variances_can_always be 1located in
separate rows. A product of the likelihood functions of all k
rows gives the likelihood function for the entire measurement

set at stage k:

: LY 57 (z) - nja) (2 - hia) | (65)
p = exXp | =% S Z:—n.A)\Z = n.A
ZIA (Zn)kr/z(deté)r/e 2771 A = i =i
r ~
Sl 0 O © ° °
0 s, 0 & o
0 0 53 e - o© ° )
where S = e e o . s @ positive-definite matrix.
B (1] e o ° © ] |

Maximizing this likelihood function is equivalent to maximizing

its logarithm:

. 31 -] v ¢ v kr
109 Pzya = ~34817 (23 -1y (z; -bA) - 5 log (2m)

- =

N

log (det S) (66)

and a maximum results when the derivative with respect to A

is zero:
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P L - '
B'slz=n'sT HA (67)
L
When H has fewer rows than columns, (HH ) 1 exists and the

last equation reduces to

(68)

P>

z=H

This is identical to the least-squares result of equation (6)
and the minimum~norn1_estimates for the two methods are the

sSame?

=1 (ua )z (69)

1>

. L]
When H has more rows than columns, H H 1is positive definite

1

. .
and so is H S ~ He Thus the maximum=-likelihood estimate from

equation (67) is

A= ( "gmlyy~l gt

z - (70)

which 1is the least-squares solution of (5) weighted by the
inverse of the noise variance matrix S.

A recursive relation>for\equation(?ﬁ), unliketjuimethod
of least squares, cannot theoretically be started using the
minimum-norm result of (69)‘at stage k =s because (69) does
not contain the information regarding the noise variance for
stages k=s that is required by (70). This problem will be

discussed later. It is first necessary to obtain a recursive
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form for (70).
Following a procedure similar to that used for the re-
cursive form of (5), the maximum=~likelihood estimate at a stage

k is written as

~

where J, is now defined by

PP DI, IS, AL |
I = ST H) T ES, (72)

To make the eguations compatible with the algorithm derived
near the end of Chapter II, one row only will be adjoined to

eachcﬁi;ﬁcandwéksn:evepy stage, and the following partitiocn-

ings are valid:

Zyeeq ([x=1] x2)
ék(er)z 0000:00000000 ' (73)
, z), (1xr)

: .

e

. ([k=1]xs)]

Ek(kxs)z 00‘00'05000000 . (74)
. h, (1xs) '
Iy (sxk) = [&c(sx[k-'l] ) e l_nyk(sx 1‘)] -~ (75)
-1
-l :S‘}ec:%ogoo?oe ' |
5. = sl (76)
: e 'k -

Now
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‘ S R AL
Hedy = B (B85, "H) " HS,

HBeonBye o DB
- -3 : e 00O §~ﬂ -] a0 0 . (77)
Bl o by

oo
¢

Pre—multlplylng by Hk-kl’

- RS R L
H'S aI—IS © 60 00000300006 OO (78)
Befie = B | e e
—k=k o =k=k

-3

Using (74) and (76) this can be written as the two equations

¢ -1 -1 -1 v
Hee18-1 = ﬁk-l—k—l-—k-—l-—»}' + sy Dy (79)
hosot = ST H b o+ hosthb,
Byspt = B Selatheaa®ye + Byesc yby (80)
From (79)
T R | B S S R | \
Dy = (B gSpgthenn + Iysi ) “H S (81)
From (80)
- ¢l 1, v -1, -1
D = (o3 SogBeay *+ s ) Thys s (82)
Defining
P | -1 1 -1, °,-1
B = (S B) 7 o= (ﬁk-l-ak—l-k-l * hesy” hy) (83)

(81) and (82) become :
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' -1 : |
Dy = E M 45, : ‘ (84)
b, = P, h, s, | (85)
By = EBielyesi
From (83)
-1 -1 -1
B w o= Bean ot BSie T By (86)

Pre-multiplying by P} and post-multiplying by Py 19

] -1,
Br-1 = B+ Behyesi T hyBry (87)
Using (85) this becomes
’ (88)
Bie = By~ ByeyByg 88
and using this result in (84) gives
D =P . H .S~ %L b np st (89)
—k = =K=l=k-l=k-l =RK—k—k~1 k—l—k 1
and in (85),
b =P, - hs"t b h'P, -hs !
=k —k=1-k"k =k=f~=k=1-~k "k
b, =P _h(s_+hp h)t (90)
=k “k-12% Sk * 2pik- 1—k
Usingv(73), (75) and (89), equation (77) can be written
}ék = A 4% Qk(g «-r: Ak 1) (91)
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Comparing equations (90), (88) and (91) with (60), (61)
and (62) respectively, it is seen that the maximum-likelihood
fi.].tering equations are identical to the least-squares filter-
ing equations except that tﬁe "i" in equation (60) has been
replaced by the variance term Sy in equation (90)s In other
words.' the maximum=likelihood filter degenerates to a least=

squares filter if s, = 1.

k
The starting wvalues for Ek and ék can be obtained by a
direct application of (70) and (83) to the first s meésﬁrement
stages, which would require inversion of an s xs matrix. How=-
ever, since starting values constitute awpriorilﬁunﬂ1statis-
tics of the parameters it is instructive instead to compare
the recursive maximum—~likelihood filter with a similar filter
that is based on such statistics. In the maximum-a-~posteriori
(MAP) filter, A has a normal or Gaussian probability distrib-
ution, éo is its expected value and gk)is a diagonal matrix
such that the ith element on its main diagonal is the variance
of every parameter in the ith row of A. To obtain this filter
it is necessary to maximize the so-called a-posteriori density

Priz which is related to the likelihbod density pZIA by the

Bayes rule:

Parz = (92)

This is equivalent to finding a maximum of its logarithm: .

log payy = 109 Py, + log p, = log p, (93)
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Differentiating with respect to A results in

o

d : d :
g5 109 Ppyz = H S T (Z2-HA) + T log p, (94,)

where aq-];‘-log p, is zero because p,is not a function of A. The

a=priori density p, can be written

4 A -1 a o
p, = exp --z P7Y (A, . -a_ 2| (95)
A (21“rs/2(det P )r/2 2_ s O34 i3 ~oij
o ' 1,3

and then

£ log p, = B Y (A-A) (96)
The maximum a-posteriori density occurs when ;f% log Payz is
Zero:

[ "'l A ‘“’l n ~
HS "(z-HA) =B " (A=-A)) =0

A=p(Hs 7 z+p A (97)

where ' -7
-1 -1,-1 |
P=(HS  H+ Eo ) (98)

Comparison with equation (86v) shows that the MAP estimate will
in fact be generated by the recursive maximum~likelihood equa-
tions when éo and Eo are the expected value and variance,
-réspectively, of the parameters. The resulting filter is ac-~

tually a special case of the well-known discrete Kalman filter
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but: has limited applidation possibilities because of the need
fbraccuratearpriorisfatisticsof the parameters and because
of the restriction that parameters in the same roQ of A must
have the same variance. However, the fact that the maximum-
likelihood estimate of (70) and (83) is generated byiﬁmzsame
recursive relations as the MAP estimate of (97) and (98) and
that the MAP estimate degenerates to the maximum=-likelihood
estimate as Eo becomes infinite, indicates that the maximum-
likelihood filter can be started with éo equal to zero and go
a diagonal matrix with largé elements on the main diagonale
In tﬁis way the recursive maximum-~likelihocd filter would
presuppose A to have zero expected value and very large vari-
ance, which is consistent with a total lack of a-priori sta-

. tisticse
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IV. General Computational Algorithm

It is now apparent that with very minor alterations the
basic least—-squares recursive equations’of Chapterit[(53~62)
can perform either maximum~likelihood or Bayesian (maximum-a-
posteriori) filtering. By substituting the noise variance Sy
inplace of the "1" in eguation (60) and replacihg the minimum-
norm equations (53-59) with initial values,é%)zero and B, very
large, a maximum=-likelihood filter results. A Bayesian filter
is produced by using the expected value and variance of A fof

éo and Eo respectively in the maximum=likelihood filter. The

following table summarizes the differences:

1

TABLE I = -Essential Differences of Least=Sguares, Maximum-—

Likelihood and Bayesian MAP Filters

Filter S)c Initial Values
ini - iti
Least-squares 1 . minimum-norm composition

using equations (53~59)

Maximum~likelihood noilse variance A, zero, B very large

expected value of A
Bayesian MAP noise variance

74

variance of A

On the next page 1is presented a general computational
algorithm which allows for any of the combinations in the
above tablgo It also allows for unclassified combinations
such as one in which the noise variance term is "1" and the

~

initial values are éb zero and Eo large., This is effectively
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FIGURE 1 - General Computational Algorithm for Estimation
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a_ieast—squareS»filter which is begun in the same way as the
maximum—likelihoodfilter,eliminéting the need fof the "min-
imum-norm" equations (53) and (56=59). Tests of this filter
are described in exémple 1 of Chapter VI.

In the general algorithm,; linear dependence of the rows
of H in the first s stages of the least-squares filter results
ineavélueof €y Which isnear zero, re-initlalizing the entire
process. How close to zero ¢, must comé in’ordef for this to
occur i1s a difficult matter to define and depends among other
thingscnltheprecisioncﬂ?thecalculationsa While exact linear

dependenceewould theoretically make exactly zero, the value

_ , Sx
determined by the computer will normally contain errors due
to.truncation and thus be slightly different from zero. In any
event, cases of near linear dependence can produce inaccurate
estimates; so 1t is probably best to require that [ remain
reasonably large. This can be done by defining a threshold
value and causing re-initialization if the magnitude of Sy
gglls less than this threshold during the first s stages.

In choosing thch of the various filtering procedures to
use it is important to know how the errors of the estimates
are expected to compare.A.ﬁseful matrix which gives an esti-

mate of the error is the error covariance matrix, hereby de-

fined as

cov (A) = (A - A)(A = A) (99)
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The trace of this matrix is equivalent to the expectéd value
of the sum of the squares of the error matrix (A-2)
Using equations (5) and (1) it can be seen that the error

covariance of the least~squares filter after s stages is given

by

cov (éL,

U R v 1 =1 '
g = HA) TR e (VY )-HH H) (1009

s(y_f) can readily be shown to be a diagonal matrix such that
the ith element on its main diagonal is the sum of the vari-
ances of the measurements in the ith row of Z.

The least-squares estimate is always unbiased. That is,

»

e(A=-A_.) =0 ‘ (101)

2Ls

The maximum~likelihood estimate (70) has an error covari-

ance given by

) = ('S HS  e(yv)s Hu's™ m

- ewme - —

1 (102)

cov ({_\_ML

Because the maximum-likelihood filter requires that measure-—
ments in the same row offqg'have the same variance and since

there are r measurements in each row, it is apparent that -

E(YY') =rxs (103)

where S is the measurement-noise variance matrix as defined

in (65). Therefore, when all measurements in the same row of



Z have the same variance, the error covariances of the least-

squares and maximum-—likelihood estimates become

) = r x (H'H 'suu T (104)

S CL T

[Jes

cov (Aj

H) © (105)

The definition of the P-matrix for ~the maximum-likelihood
filter as given in equation (83) shows that the error covar-

iance of the maximum-likelihood filter is given simply by

-~

cov (A, ) =r xP (106)

Using the matrix inequality

VRN VORIV IR GV VP (107)

iy

(see Sage and Melsa [14], po 246) where M and N are any two
k x s matrices with kZs and N of rank s, and making the sub=-

stitutions

1
M=5 *ummt (108)
1
5 ,
N=3S"H (109)
it is easily shown that
c ~
cov (A, ) = cov (A, ) | . (110)

LS
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That is, the maximum—likelihoéd filter, when applicable, gives.
an estimate which 1is as éood as or better than that of_the
least-squares filtero

Like the least~squares estimate, the maximum-likelihood

estimate is unbiased:

~

L

The error covariance of the Bayesian MAP estimate, as

defined by equation (97), is

cov (A ) =P (s tewv sty + p"'la(AA')go"l)

t

Since all measurements in the same row of Z must have the same
noise variance and the probability distributions of all pa-

rameters in the same row of A must have the same variance,

g(

<
i<
1

xS | (113)

J

) = rx P

>

£(A (114)

where r is the number of elements in each row of Z and A,

The error covariance therefore becomes

) =rxP(HSTH+R TR =rxp (115

cov (A o0 S

which can be readily determined from the P-matrix. Comparing
the values of P for the maximum-likelihood and MAP estimates,

it is obvious that the MAP estimate,@here applicable, has an
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error covariance which is less than or equal to that of either
the maximum=likelihood or least-squares estimates. In fact,
the MAP estimate, when valid, is known to have the least error
‘covariance of any known estimate. Even when the restriction
is removed that the noise and parameters be Gaussian the MAP
filter étill provides the best estimateof all linear filters.
The noise must still be random'wifh zero~meah and known vari-
ance and the expected value and variance of the parameters
must still be known. The filter 1s then usually called a lin-
ear-minimum-variance filtere.

In addition to the facﬁ that all parameters in the same
row of A must have the same variance, the MAP estimate has
another major disadvantage. If incorrect prior expected values
and variances are used the estimates will be biased, with the

bias at a stage k given by

e(A, =A) = gk(gkgk HE(A) + PLTA - P " e(A))
_ -17 _ -1
- =1 =10
= (I + H. 5, gkgo) (A e(A))
, k 1 el
= (I + P i}’;jl_rlisi hy)7T (A -e(a) (116)

The bias is most noticeable for smaller values of k and de-
creases as k increases. It is also smaller for higher values

of the initial variance Eo and approaches zero aS'go becomes
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infiniﬁeg the estimate then becoming a nmximum—likelihood
estimate.

In conclusion it may be said that among the three filters,
least-squares, maximum-likelihood and Bayesian MAP, the more
extensive the a-priori statistical knowledge of the parameters
and measurement noise, the lower is the covariance'of estima-

tion error.
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V. Identification of A Linear Stationary Process

The computational algorithm of the previous chapter can
be used to estimate the parameters of a discrete model for a
linear time-~invariant process. If measurementé of the system
variables are available atuniformly-spaced intervals of time,

At is .possible to‘de#elop a .model of the form

where x,_ 1is an n-dimensional vector composed of the system

4
outputs at stage k, u, is an m-dimensional vector composed of

the system inputs at stage k and g and A are matrices‘composed

of the constant parameters describing the process. x, is called

k

the state of the system at stage k, u,_ the control and ¢ and

k
A the state-transition and state~driving matrices respectively.

Transposing both sides of the last equation results in

$ ] 1] ) \J . . .
B = Bt b (118)

‘Because of measurement noise, therewill bedifferences between
the observed values of the variables and their true values.
Therefore it is convenient to distinguish the observed values

with a superscribed bar as follows:

X = X+ W _ (119)
»Ek =4 +le : (120)
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~where 1, and W, are vectors comprised of the noise terms.
Combining these ﬁwo equations with (118) yields the relation

hetween the parameters and the observed values:

-t oy | ¢ ] ]

B = Begf 4T gl vyt e -9l
or
¢
) 4
__q"- ¥ ° — ceoa ' - ! "— ! A' (121)
Ee = | Exe1r 2 Y-l ' Pl " B 2 Sk-12

If the measured vectors gk,k:=l,2,3,ooobecomeiﬂuasuccessive

rows of the Z matrix in the computational algorithm:

¥

- % (m) B N (122)

N

and the corresponding prior measurements become the successive

rows of the H matrix:

¢ | -
he = | X 2 4y | (h+m) | (123)

oe090

then in accordance with the representation of equation (1) the

‘unknown parameter will be

A= |3 | (124)

and the sequential noise vectors will be
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§ ! . ) ? ¢ ot

B "By @ -9 48 (125)

? 1]

In other words, use of the 2z -and k&: vectors as defined by

(122) and (123) in the general computational algorithm of
Chapter IV will produce an estimate of the matrix defined by

(124).

If the components of the noise sequences ﬁqcand Wy have

zero means and are Gaussian, white and independent,; then the
least—squaresfiltefcﬁ?Chapter~II applies because the overall
observationnoise Yy definedlnf(lZS)haszero—meancomponentso
The maximum—-likelihood and Bayesian filters, however, are not
strictly valid as they have been derived ih Chapter III, be-
cause the components of Vi

or white. None the less it would seem logical that the hier-

are not likely to be independent

archy among the three filters should still exist Dbecause of
the differing degrees of a-priori information utilized. Thus;
although methods exist by which the maximum~likelihood and
Bayesian filters can be made optimal (see, for éxample, Sage
and Melsa [14], Chapter 8), they involve such extensive com-
plication of the algorithm that it is convenient in this ap-
plication td merely ignore thevfact that thenoisecomponénts
may be non-white or statistically dependent.

The computational algorithm as‘apbiied to the system-
identification problem 1is represented in the flow-chart on the
following page. All Qf the experimentaltests«describedix1the

next chapter were made using this algorithm on either the
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FIGURE 2 = System Identification Algorithm
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IeBoM. 360~67 or the Data General Corporation "Nova" digital
éomputero In the appeﬁdix are included the coméleterprograms
for the Nova version of the algorithm. Comparison with the
flow-chart of Chapter IV_will show that the identification
algorithm is basically the same except for the addition of
certain specialized subroutines for handling the input and
output data. These data subroutines can be changed to suit any
particular application. There is a preliminary' measurement
subroutine which is provided in case there are any tasks as-
sociated with the measurement process which must be performed
before entering the identification cycle. For example, should
it be necessary to take samples of the systanatearatefaster
than the computation cycle would allow,; the measurements may
all be made in advance and stored by this subroutine. Then on
each cycle is a subroutine to get thé state measupement from
the-appropriate'source and another to butput the calculated
estimate, |

The algorithm was pfogrammed‘on the system~360 to allow
for more sophisticated analysis using artificial models of
kndwn statisticse.

In the Nova programs, all the initializing_procedurés
are controlled by the operator ‘using the teletypekeyboardixl
a conversational manner. The syétem dimensions can be set to
estimate any matrix 5 up to a dimension of 8 x8 and the cal-
dulations are performed in floating-point arithmetic.that is
based on a 24-bit mantissa with sign and 7-bit exponent uSing

the standard basic floating-point software provided with the
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computere.

Although in the flow-chart the k-counters are separate
from the subroutines, in the Nova programs the job of counting
stages has been left to the user—supplied»su}~3rolutines° This
allows for counting either at the point where data comes in
or at the point of outputting the estimate, whichever is more
suitable to the particular application. Also left to the user
subroutines is the task of determining the sampling éimes,
which, in the case where datajj;obtainedfromemuactualsystem'
using an analogue—to~digital converter, could reéuire an ex-
ternal real—-time clock'connected.to the input/output bus of
the computer.

| The programs are thﬁs'very versatile, with the permanent
softwareperformingidentificationpnly,and the user-supplied

subroutines having full control over the rest of the process.
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VI. Examples

All the examples described in this chapter were used to
test the compﬁter programs for the system—identificaﬁion al-
gorithm énd to study various properties of the algorithm.
Sequential values of the state were generated for the algorithm

.in .each case .using known values .of .g and A .and the estimates

were then compared with these known values.

Example 1:

"The model parameters were

0.995 0.5 0.0 0.0
g = 0.0 1.0 005 é = 0.0
loco ~1.13 0.9 | 1525

with initial state and control

0,0
x, = 1.5 . u
3,95

1]
[

The control was left constant throughout the process,
resulting in an open-loop reséonse corresponding to the three
curves of Figure 3. The curves ai:e shown to be continuous
because it has been assumed that in practice the measurements
would pesult from uniform sampling of this continuous systeme

The simulation was performed using the Nova programs and

there was no measurement noise added to the model. Table II
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Figure 3 - Time response of continuous system corresponding to Example 1.



TABLE II -~ Stage~wise Errors of Least~-Sguares Pilter (Example 1)

Figures in each column represent errors at successive stages.

Stage

"minimum norm™

W O N O n A w N

e e
w N e O

14
15
16
17
13
19

++49560C9E+01
+.21933562+01
+.7292265E+02
4331558 4E-063
+.9723287E-08
++1147506E-07
+.1032932E- 08
#.63313245j28

+.11742662-07

+.123737CE-07

+ﬁlll3?49E'@7
¢:asvszxvs-és
+.5319554E- 08
0145883615'03
0145193575-93
;,43247saa~za
+.4286413E-28

++4066631E-08

++3959783E~03

B, = 10x1

49560445401
++2197610E+01
+.1245663E+91
+.87631828+20
+.8960244E+00
+.8040013E+00
+.5403006E+00
+.2660201E+00
+.1069880E+00
+.4123187E-31
+,1vséazas-e1
+.91436158-02

++5936951E-02

' +.45749328-02

+f33879125f02
+.3433026E~92

+f3®337898f@2

+.2629245E-02

+.2224612E-02

B, = 10%x 1

++4956209E+01
+.2193400E+01

+.74763905+00

+f723646lE+00

+.4370673E+00 -

++1357909E+00
+43114328€-01
++7173627E-02
++1860306E-02
++5695862E-03
+.2159944E-83
+.1858297£-03
+.6645877E-04
++5836433E-04
+.4249783E-04
+.37379258-04

+43298429E-04

+.2855783E-04 |

++2403305E-04

B =10%x1

+.4956009E+01

++2193356E+01

+e729 4483 TE+C2

++27208355E+20

+.2733907E-01

+42873371E-02
+-4229341Ej03

++.8230054E-C4

++1993976E-04

++5937541E~05

P +e2214477E-05

++1067259E-@5

44655569 4E-06

+e49248T1E-86
*ﬂ4%936295f56
+.3787415E-06
++3446833E-06
+530907465-06

++2663924E-06

\
P = 10s x I
20 Y

+.4956011E+01
+ﬂ2193354E+0l

++7292240E+00

+52375113Ej63

++8037871E-085

 ++8278537E~06

+.15215972-06
++409 6006E~07
+.1178686E-07
+.3443537E-08
++5614355E-09
+.2560367E-10
++9559106E-09
+.3036121E-63
++1098 628E-07
}51721376Eje9
+.3334956E~08
+ﬁ7399@28Ejﬂ8

+¢3632550E-07

P = 107x I
o =
+.4956039E+C1
+.2193356E+01
+.72922605+00

+6260436E~BS

+.3811357E-06

++6168898E-07
+i1694626€-97
*12481867Ej03
*leiléASE-D9
+.35271351E-09
+{6378630Ej89

++1017675E~03

+.1648657E~08

++22507C6E-28

+.1374427E-07

+.2004652E-08
++2594733E-08
+.3726839E-08

++1630333E-07

B, = 10%x 1
+e 49 56D09E+0L

++2193356E+21

+e7292259E+00

++8251297E-85
’+ﬁ2695410€-66
+.111065%E-87
+116322855j97

++3086397E-27

- +42235941E-€3

++2407231E-63
f‘40@72l65—88
+ﬁ2451578E~GB
+.2018661E-C3
+ilﬁ39153E-G3
+.1718590E-09
f149430472'@3
¢ﬁ29706825f06
+t5057llQEfGS

+.1906;40£{e7
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shows the actual estimation error as defined by
) .3 ’ ~ ' .
Error (A ) = trace (A=A )(A=-A ) - (126

computed on the Nova at sequential sampling times for the
identification algorithm when used as é least-squares filter
with a "minimum norm" composition at the start .and . .also when
started with éo==g and P equal to‘various scalar multiples
of the identity matrix I. Itcanbe seen thatwhen P is fairly’
large,; estimates can be obtained which are as good as, and at
some stages marginally better than those obtained. when the
"minimuﬁ norm" procedure is used. Here the filtering problem
is a deterministic one because there isno a priori information
and*the-estimatesAshould*be based solely on the noise-~free
bbservationsegk)must therefore be made large to give minimal

~

welghting of the initial estimates The resulting filter

A
-_—o
is then a good approximation to the purely deterministic least~
squares filter of Chapter II, with much less computational
requirements. However, the pure least-squares filter is subject
to minimum initial bias and with it a better estimate results
after fewer measurements. Specifically, the estimation error

at the fourth stage in this example was lowest with the pure

least-squares filter, the estimates being

09949869 5000086 =,0000036 | | .0000246
B, = | 00000224  ,9999967 .5000123| A -. 0000396
-.0000045 ~1.130009  .8999898 1.249999

n
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Example 2:

The model was

0,995 0.5 0.0 : 0.0

Q:-_- O«O loo 005 _A_= Ooo
0.0 -1,13 =0,9 ' 1,25

with initial state and initial control

0.0
250 = 1.5 u
“‘1045

it
o

and no simulated measurement noise.

In generating the remaining ;tates,‘ﬁhe control was left
equal to U, until stage 1, after which each state was deter-
mined using a control chosen to minimize the estimated simple

performance function

. . . \
k4l = Bpeer ¥y Fegn T B Hp Yy

where W, and W, are weighting matrices chosen for stability

purposes and Xerl is defined by the equation'

~ ~

Bee1 T BFe * A Y

In this example it is possible to have

Hl = I and EZ = 1
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Setting the derivative of Jk+1 with respect to Uy equal to

zero gilves

B Xpepp + Wy =0
~ 'A —1I~'Ah
W = =4 A+ 1) T4 B x

Figure 4 shows the variation of the resulting performance

function

t,. Et =t

I = k=F=typ

1 4
Zp X * Y1 s

for the open-loop case where the control was left equalt01ﬂ)
for all stages and for twu>_cases.where ukmwas,calculated,
beginning with Uy based on estimates from the least—-squares
filter using different starting procedures. All calculations
were performed on the Nova.’

This method might be useful for simple combined identi-
fication and control of an actuél'continuous system by calcu-

lating a sub-optimal control based on the discrete model.



i
J(t) :
10| |
r -
!
t
|
|, OPEN-LOOP CASE
. U, =1 FOR ALL k
gL ]
I
1
-
I
| :
6 :
! CONTROL BASED ON SUB-0PTIMAL
! LEAST-SQUARES IDENTIFICATION
(T STARTING WITH X _o AND P=10xI
, \ =0 = =
41 . I i |
L
gL
-
T
L -
| CONTROL BASED ON LEAST-
- SQUARES IDENTIFICATION STARTING
WITH EQUATIONS (53) AND (56 -59)
0 2 4 6 8 10 12 Z2NE

Figure 4 — Plot of performance functions for example 2._

2
IO =2 X o 5SSt
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Example 3:

The model was

0.0 0.0 0.9 °
g= 200 Ooo ° _.A_ = Ooo
0.0 0.7 0.0 0.0

with initial state and control

2.7
x_ = |10.0 u = 0.0
“o o
4,9

The simulatidn wasperformedcnlthesystem-360withrendom
~noise -of mormal -distribution -added-to~the-state ~and ~control
measurements. The standard deviation of thénoisevunaO.?,ﬁhe
variance 0.49.

The identification algorithm was used as a '"best case"
of the Bayesian MAP filter, with éo = @ and -éo = _L.\_.,' sy at every

stage was set equal to the noise variance, Oe49o While in
example 1 the initial estimate was inaccurate and the measure-
ments ‘were exact, in this example the initial estimates are
exact and.the measurements are noisy. Figure 5 shows the com-
puted estimation errors as'defined by (126) at eaéh stage. As
expected, the results are opposite to those of’éxample]q with
a lower go"now giving the better estimates because of increased
~weighting of A . 3

- The results of Figure 6 were obtained with this same

‘example and show the effect on the estimation erroriof using
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differeht multiples of the noise variance for Sy in the al-
gorithm. When Eo is large the effect is not noticeable but'
when gois small, increasingly higher multiples give.increas—
ingly better estimates in the stages following stage 4. A
higher wvalue of Sie provides decreased weighting of the néisy
measurements and increased weighting of the good initial es=-
timates, sk}mn;no ﬁoticeable effect on the estimates prior to
stage 4.

Figure 7 was obtained by the same procedure, except that
the minimum-norm composition was used at the‘starto'AsiJLthe
case when the filter is started with EO>1arge, there was neg-

ligible difference of the errors when values of s ranging

k
from 0.5 to 2 times the noise variance were used.
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> y 5 3 10 2
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Figure 7 -~ Plot of estimation errors for examp'le 3. Minimum-norm starte.



55

Example 4:

The model was

0,995 0.5 0.0 0.0

g = | 0.0 1.0 0.5 A= ]0.0
Ooo . "1.13 . 009. 1025

with initial state and control

0.0
= 1.5 u =1
3.95 '

X
=0

(see Figufe 3 for response curves). The simulation was done
-on ‘the system~360, “introducing Gaussian mnoise of standard
‘deviation 0.5 and variance 0.25 to the measurements. Sy in.fhe
algorithm was set equal'to the variance at each stage.
Figure 8 shows the computed -estimation errors as defined
by (126) at each stage for three different starting procedures:
é&): 2, éo =47, P_= l; for a "best-case" Bayesian MAP filter;
a "minimum-norm" Composition for a least-squares or maximum=—
likelihood filter; éo = 0, éo = Q,.Eo = 1O6><£ for an approx-
imate 1east~squares or maximum-likelihood filter. |
The results still support the hierarchy of filtefs de=-
veloped in Chapter IV despite the fact. that the'overall noise
terms defined by (125) are not expecﬁed to be statistically

independent or white as discussed in Chapter V.
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Figure 8 - Plot of errors for estimates in example 4.
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VIT, Further Applications.

What has been presented in this thesis is an algorithm
to estimate the parameter matrix A in the general measurement

process of equation (1):

While the accompanying computef'programs (see Appendix) have
been written for the particular system-identification problem

of Chapter V, it is a simple matter to.adapt them for any
measurement process defined by (1), Specifically, the identi-

)

fication problem of Chapter V requires that each row of Z (gé
should be taken from the statemeésuremedtwhichwillcomprise
the next row éf E'T§£+l),‘and'thqs‘fbr‘the cemputer programé
the vectors z and h can share the same storage locations. In:
other applications, separate sets of storage locations may be
required. Apart from this, the prdgram,when supplied sequen-
tially (via the user's measurement subroutine) with the rows
of Z and H arrays satisfying the relation of equation (1),
will generate a sequéntial estimate of the parameter array A,

subject to the follbwing conditions developed in the previous

chapters:

The'eleMentsﬁéf V. must have zero expected values.
If all elements of ﬁﬁéiéame row of ¥V (i;) have the same
probability distribution and the variénce of their dis-
tribution is known, it should be supplied for the value

of Sy corresponding to that row (maximum-likelihood
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filter). If all elements of the same row of z do not have
the same probability distribution or if the variances of
the distributions are not known, Sy should be set equal
to 1 at every stage (least-squares filter).

If expected values for the p.arameters are known then
they should be used as the elements of ébo If in addition
.the probability distributions‘of all parameters in the
same row of A have the same variance and the variances
of the distributions of all the parameters are known,
then B, should be a diagonal matrix with the ith element
on its main diagonal equal to the variance of the distri-
bution of every parameter in the ith rowof A. Otherwise
Eo'should be a diagonal matrix witﬁ each element on its
main diagonal set large enough to allow for any uncer-
tainty in the corresponding row of éoo

If expected values for the parameters are not known
then no initial values should be supplied for ékand Prs
but equations (53) and (56 - 59) should be used ét the
start. However, where the increased computational ﬁime
required by these equations would be prohibitive, a good
approximation can be achievéd by usiﬂg initial valueé

'éb = g_and Eo diagonal with large elements on Fhe main

diagonal,

VRapid idenfification
A major difficulty with the method of system-identifica-

tion developed'iﬁ Chapter V is that the estimated discrete
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model cannot be accurate unless the rate of sampling the state
is high in relation to the rate at which the state varies. At
the same time, such rapid sampling can lead to near‘linear-
dependence in the state measurements and consequent ill=-con-
ditioning of the H matrix, which makes adequate identification
impossible. Hanafy and Bohn E@]have suggested augmenting the
staté measurement at each sampling time with the measured
outputs of integrators cascaded to the inpqts and outputs of
the continuous system., It is claimed that this additional data
is effective in overcoming the problem of ill-conditioning.
However, the usual treatment becomes cumbersome because the
data and parameters‘must be structured into‘ lengthy 'vectors 
iﬁ order to fit the form of conventional estimators, which are

derived for a measurement process of the'type
z=Ha+y

z being the data vector, a the parameter vector, H the mea-
surement matrix and v a vector of noise terms. For the‘iden—
tification problem this results in a large g matrixcﬁ?bioﬁk-
diagonal form and containing many zeros.

The algorithm of this thesis can be used quite readily
for identification with augmented state measurements. At each
_sampling time, the inputs and outputs of the system are mea-
sured and stored, along with the outputs of the successive
integrators. A ‘state measuremeﬁt is processed as one row in
the estimation algorithm, followed by the integrator outputs

as subsequent rows. Suppose, for example, that each of the
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system inputs and outputs is passed through two integrators.

Evidently the integrals

t

e[t
f}_{_'(t)dt and f fgc_'(t)dt at
o |0

0

will satisfy the same linear differential equation as does
w :
x (t), souniform samples of their outputs should satisfy the

same difference equation:

St
eoo0
ic
~~
+

ko tr-1

5'(t)dt

\\
~
2
. (o}
e
il
o \

© © 0o @ o
Ic
o+
Q.
(-t‘
>

pomar N a—ay

t k=1 t 1 t

t, e | &
f f_}g'(t)dt at = f f}g'(ﬁ)dt'dt f fg'(t)dt atla
0 0 0

e o © o o

0 0 0
i

The beginning rows of data for the estimation algorithm would

therefore be.
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1N
N -
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o+
Q.
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N -
i
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¢t
Q.
r‘—
-] © [ o '3
jc
t
(o
d—

e[t tof € . ot |
_z_;=f f_}_{_'(t) dt|at h, = f f_}g'(t)dt at ° f fy_'(t)dt at
o Lo o |o .0 Lo
U v v t ] . U
Z, = X (L2) h, = x (£) s u (Ll)

where the superscribed bars indicate that these are the ob=-
served values of the variables concerned, With this procedure .
£he state measurement defining z at a given stage does not
immediately become the h vector for the following'stageas‘it
does in the simple identification‘problemuThereforeséparate
sets of memory locations are needed for the z and h vectors,

as mentioned at the beginning of this chapters.

Identification of Non-Linear Systems

Both the idenfification methods discussed thus far have
assumed a linear model for the system being measured. However,:
it is equally possible, within the allowable forms of measure~
ment processes, to assume certainnon-linear models. Netravali
and de Figueiredo[9]vhave discussed methods of obtaining re-
gression functions for classes of discrete non~linear systems in

which the evolution operators can be represented by algebraic
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or trigonometric polynomialse. Although noise considerations:
afe more invdlved, the computational requireﬁents are not
unlike those of the linear identification problem and are
adaptable to the computer programs contained in this thesis.
As a very simple example, suppose it is desired to estimate
a third-order non-linear algebraic model of the form

2
+ a,x

X = 8t agXy 2%k 3%k

k+1

from measurements of the scalar variable x

) k =O,l,2,ooc « The

estimation algorithm would begin with the following data:

v - v - =2 =3
Zp = X By = |t % % %o
v = v [ - =2 ._3-

Zp = % oy = |1 % x %

-

where again the superscribed bar is used to denote meaéured
valuesoe

It is'useful to assume non—linear’models in some cases
involving linear éystems where not all of the state variables
are‘measured° For example, although Figure 3 in the previous
chapter describes a linear systemof 3 outputs and 1 input, a
model for any one of the outputs, obtained from measurements
of that output alone, would have to be non-=linear. Of coufse,
non-linear models are not always.neceSsaryix>reducetﬁmzorder
of a linear system, becausemany linear systems canbe realized
in terms of reduced linear models. A further sophistication

of the identification algorithm for linear systems could pro-
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vide for appropriate selection of the measured variables to

effect such a reductiqna

Time-Varying Parameters

Time-varying parametérs can be accomodated by modifying
the algorithm so that prior estimates are updated at each
~stage ‘to allow for expected time-variations during the mea-
surement interval. That is, if the parameter array A is known

to vary according to the difference eqguation

ék+l = 9(k+l, k) ék

~

then ék-l in the algorithm is replaced by its a priori update:

~

Ayik-1

>

=84 4

This is a much-used procedure and forms the basis of the Kalman
filter for state estimation. Othér methods are available if
no model for the parameter variations is known (see, for ex-

ample, Young [17] )o
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APPENDIX

Program~Equivalentg of Symbols Appearing in the Text

Programé' » 2232
R A,
B ék’ ék
C Sy
CSQU ' gggk
CTHR - threshold for gggk
H ' | Ek’ 23 |
I i
J J
K kMAX
P Py By
Q Q
R r, n
»RS - rs, n(m+n)
S s, m+4n
ss s2, (m+n)?
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Memory=-Allocation for Identification Programs

Labels apply to main-program assembly only. Locations avail-

able for user-written programs are marked by asterisks.

Locations

Label:Content

Jufgoyeufifubl

pBgg2

20883

Popa-gas7

PELE~BB37

goag-pda3

ggaa—-g277

4309 KEEP

#3381 SAVE

gag2 AMAT

#8333 AMATY

g3ga BMAT

B385 BMAT@

#3906

B387 ZERC -

#3198 )
@311 ONE 1
#312 'R

@313 S

2314 RS

#315 SS

2316 I

g317 J

g32¢

7321 Kg

@322 L

@323 LY

#324 M

#325 N

#326 Ng

#327

#3308 A 5849
g331 P 798
#332 Q: : 1194
7333 TEMPl: 130¢
g334- TEMP2: 15¢¢
#335. TEMP3: 1789
#336 H : 21¢4
#337 c 2124

Use

¥
starting address of main program
¥

required by floating-pt. interpreter
X

required by floating-pt. interpreter
%

»pointers, indicators

Ly

¥
}floating—point ZEero

one : '

no. of columns in parameter array (r)
number of rows in parameter array (s)
product rs

product ss

indicator .

counter

> indicators and counters

>indirect matrix addresses




@349
g341
@342
3343
@344
#345
@346
@347

#3598
#351
#3352
#353
#354
#355
#356
g357

#3640
#3611
#362
7363
7364
2365
7366

#3749
g371
7372
#373
#374
3375
@376
#3717

gag@-ga17
@5g@-2161
2162-2167
217@=2227
223@~-2431
2432-2437
244(F-2666
2667

2703~3493
34@4~5577
560@~6577

B: 2148
CcsQUu : 216¢
CTHR :04842%
4]
2709
, 3754
v 1 g4aga2g
: il
MXADD: 223¢g
MXSUB: 2251
MXMPY: 2272
MXDIV: 2355
MXTR 2374
DATRD: 2444%
DATPN: 2473
DATRC: 2533
DIGIT: 2572
DATWR: 26d8
WRITE: 2646
INIT
MEAS
DATIN
DTOUT
STR1 2179
STR2 2174
STR3 : 22¢¢
STR4 : 2284
STR5 2218
STR6 2214
STR7 2228
STR8 2224
BEGIN

£

X

¥
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indirect matrix addresses

1
threshold for €1 Ey s

contains starting adr. of main proge.
contains starting adr. of calc'ns
}measurement variance, initially

initially 1

loaded as floating-point "1"

[N

Sindirect subroutine addresses

N\,

indirect addresses for user's
subroutines

>indirect addresses for
teleprinter message strings

/
floating-pt. interpreter work area
-matrix storage area (see 33¢-341)

*

teleprinter message strings
matrix arith. subr. (see 35@-354)

I/0 subroutines (see 355-362)
main program ’

basic floating~-pt. interpreter
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Instructions for Using the Identification Program-Package

First load the program tapes in the following order:

1. Nova Basic Floating-~Point Interpreter
2. Data-supply subroutines (INIT, MEAS, DATIN, DTOUT)
3. Identification program-package
-The program is self-starting and will_begin by printing
certain questions which are to be answered by typing numbers
into the teletypewritér° Each number will be required in ei-
ther fixed- or floating-point format. In the case of fixed-
point only one decimal digit will be accepted, while floating=-
point format can be any string of characters in the following
order:
.dle A +.0or —.sign (optional) ,
2. A string of decimal digits (optional)
3. A decimal point (optional)
4, A string of decimal digits
5. The letter E, if there is to be an exponent
6. A + or -~ sign (optional)
7. One or two decimal digits denoting exponent
(optional)
8. A '"space"
A character typed in error can be deleted with a "rubout'.
Examples of allowed strings are: 58@ , +50 , +5.E2_, =2.f5E~-g4_,
- +03@54E~-22_, ~2E@3_, where _ denotes a "space".

The questions printed and explanations of the required

responses are as follows:

l. "R = " : A fixed-point integer from 1to 8 equal-
ling r, the number of columns in the parameter array, or n,
the number of system outputs.

2. "S = " : A fixed-point integer from 1 to 8 equal-
ling s, the number of rows in the parameter array, Or m+in,

where m is the number of system inputs and n is the number of



system outputse.

3. "SAMPLES?"™ : A number in floating-point format equal

to>the number of staté-Samples to be taken.

4o "COPY? " : A fixed-point integer corresponding to
one of the following instructions regarding starting values:

g: No starting values are available for A and P.

1l: The starting values now in memory are to be used.

Copy the starting values from memory onto paper
tape. .

3: Copy the starting values from memory onto the
teleprinter.

4: Read the starting values from the tape in the
high-speed reader and enter them into memory (tape must be
one which has been produced by response 2).

5: Accept the starting wvalues from the teletype
keyboard. (Note that following this response the program will
print YPARAMS " after which the é&lements of the parameter
matrix should be typed in floating—pbint format.rdwlnrrow. A
carriage-return and line-feed will occur automaticélly after
each element has been typed and an extra line-feed will occur
at the end of each row. When all rows are finished, the pro-
gram will print "P-MATRIX" and the starting values of the
Efmatrix elements should then be typed rowby rowin floating-
point format.) ‘

6:vExecute the user-written subroutine whose start-
ing address is found in location INIT;=363.

7: Acceptnew initial values for CTHR and V from the
teletype keyboard. (The programwill respond by printing "CTHR,
V:" after which the values of CTHR and V should be typediin

floating-point format one after the other.)

5. "READY? " : A'fixed-point integer corresponding to: -

g: Return for another pass at question 4. |

- _ 1: Proceed to execute the identification programs.
IMPORTANT:TThe last response to question 4 must be "g"or "1
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Instructions for Writing I/0 Subroutines

INIT: This subroutine is called if a "6" is typed in response
to the question "COPY?2" and allows the user to supply starting
values with his own subroutine., Starting address should be

stored in location 363,

MEAS: This gsubroutine is called Jjust before the recursive
identification process 1s started and can be used for such
tasks as rapid pre-measuring and storing of data. Its start-—

ing address should be entered into location 364.

DATIN: Called each time a new sample of the system outputs is

required. Starting address should be loaded into location 365,

DTOUT: Called just after a new estimate of the parameters has
been calculated and useful for outputting the parameter matrixe
The starting address should be loaded into location 366.

The model estimated by the programwill be (see Chapter . V)

£ () = glnxn) x_; () +Alnxn) w_; (m) = A’ (nx(n+m)) by (n4m)

where

X1 g'
h - .°.° e 9 A = ° ...
% ‘ = '
Yy AN

Thehser'sdata—supply subroufines should store_measured val-
ues of'g_c_k and u, in the h-~vector locations, whichbeginat the
address found in locatiop H= 336. Xy is stéred first and then
Yo each element to be writtenjjl32-bithexadecima1floafing-
point format occupying 2 consécutive locations as provided by

the Nova instruction FFLO. The maximum number of elements in
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h is 8. The estimated parameter array A will be left row by
row starting at theaddresscoﬂtainedijllocation A = 33¢, each
element in floating-point format and occupying 2 consecutive
locations,. Output via the teleprinter or paper-tape punch .can
'be achieved using the subroutines which are addressed indi=-
rectly through locations DATWR = 361 and DATPN = 356,

| Values of the variance term S for a maximum—likelihood
filter can be entered in floating-point format inteo ‘locations
V=346 and V+ 1 = 347,

The total number of state samples measured or estimation
cycles performed iscontrolledtnrthe1aser'ssubroutines,'using

location K= 32@ as a counters The initial count, which is typed

in response to the question "SAMPLES?", is found in location-

Kg = 3210
Dimension parameters typed in response to "R = " and
"s = v and the locations where they are stored are:
R =312 r, n
S =313 Sy, Mm+n
RS = 314 rs, n(m+n)
| SS ==315 : s2, (m+n)2
Example:

The following set of programs are examples of the sub-~
routines, MEAS, DATIN and DTOUT, required to make and store
a 'rapid set of state-samples of a continuous system via an
A/D converﬁer with multiplexed inputs, and-under-control of
an external real-time clock. Thé stored data is to be proc-
essed one row at a time by the identification program, after

which the parameter estimate is to be printed, along with..a
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warning in the case of a minimum-norm composition if an. in-

sufficient number of linearly independent measurements weré'

available for the parameters to be observable.

; DATA-SUPPLY SUBROUTINES FOR A/D CONVERTER

- MAX:
STORE:
MEAS:

SMPL:

I

R
S

J
K

Kg
N

A

H
EEGIN
START
MXTR
DATWR
WRITE
STRS

I T T R (Y T { O { | O 1 S { 1|

MEAS
DATIN
DTQUT

«LOC 341¢
111116
123049
115185
171123

g4y

3537

LDA 3, R
STA 3, N
LDA 3, K@
STA 3, K
SUB 2, 2
ADD 3, 2
DSZ N

JMP o =2
LDA 3, MAX

SUBZ# 2, 3, SNC

JMP @BEGIN

312
313

316

317
324
321
325
330
336
344
345
354
361
362
374

LDA 3, STORE

STA 3, 21
SUBO 2, 2
LDA 3, R
STA 3, N

e e o

e oo

e Do s w0

e ae

.

STRING 11: "INS MEAS"

MAX NO OF STOR LOC AVAILABLE

IND ADR FOR 1ST STOR LOC
N = R

PRESET SAMPLE COUNTER
CLEAR ACZ2 '

AC3 = MAX
SKIP IF KR NOT EXCEED MAX
RESTART '

PRESET LOC POINTER

CAC2 = #

RESET MEASUREMENT COUNTER



CRRNT:

DATIN:

CMPNT:

RETURN:

STR11:
OouT:

 DOAC 2, 44

NIOS 63
SKPDN 63
JMP -1
NIOC 51
NIOS 51
SKPDN 51
JMP. -1
DIA g, 51
STA ¢, @21
NIOP 44

DSZ.N

JMP CRRNT
DSZ K

JMP SMPL
LDA 3, K¢
STA 3, K
ISZ K
LDA 3
STA 3
JMP @

s STORE
, 21
START

STA 3, RETURN
DSZ K
JMP e +2
JMP QUT
LDA 2,
LDA 3,
STA 3,
SUB #,
LDA 1,
MOVL# 1,
coM @, @
STA @, @, 2
STA 1, 1, 2
FETR

FFLO #, 2
FIC2

FEXT

DSZ N

JMP CMPNT
JMP @RETURN
g . .
3418

LDA 3, I :
MOV 3, 3, SZR
JMP PRINT

LDA 3, J

SUBZL 1, 1
ADCZ# 1, 3, SNC
JMP o+3

LDA 2, STR11l
JSR @QWRITE

Ew=zxm

21
1, szC

(T TR YRV T TV P 1)

s ws B we e e we Ve e vo

e

-0

-»e

.o we

-

-

[V 1Y

w0 \as W

-

SET MUX CHANNEL TO @
ENABLE HARDWARE CLOCK

WAIT FOR CLOCK
CLEAR A/D
START A/D

WAIT FOR A/D

GET RESULT

STORE RESULT

INC MUX CHANNEL i
SKIP IF DONE CURRENT .SAMPLE

SKIP IF DONE ALL SAMPLES

PRESET SAMPLE COUNTER

STORE RETURN ADR
SKIP IF NO MORE DATA

PRESET LOC POINTER

AC3 = R
PRESET MEAS COUNTER
ACH =

GET DATA WORD

SKIP IF NON-NEGATIVE
AC# = 177777

STORE DATUM IN H

CONVERT TO FP
INC LOC POINTER

SKIP IF HAVE ALL COMPS

RETURN

SKIP IF I = §

AC3 J
ACl 1 :
SKIP IF J GREATER THAN 1

o

TYPE "INS MEAS"



PRINT:

DTOUT:

INTERFACE FOR REAL-TIME

DSl
DS2

DS3
DsS4

DS6

—r-

LDA 2, STRS
JSR @WRITE
LbA g, S
LDA 1, R
LDA 2, A
JSR @DATWR
JMP @BEGIN

JMP. g, 3

o« END

STRT

e

TYPE "PARAMS ®

PRINT PARAMETERS
RESTART MAIN PROG

“we oo

RETURN

ws

CLOCK

CLOCK

77

SELD
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Tdentification Programs for Nova Computer

On the following pages are found the assembler listings

of the basic identification programs for the Nova computer.



o307
Be310

pE356
Qe 351
pe352
2@353
0B354

92230
g2231
92232
2233
02234
02235
p22364
02237
P22 43
g2241
R2242
p2243
Baz44
02245
g2246
2247
ga22s59

- B0O300

0BG301
08302
0ee3063
000304
@80305
eee32e
@00323
8CB324
POB325

Bae 326

vewL 361
PLEEouo
DRLLGY

0veN3o50 .

pe2239
pue251
pu2eie
BB2355
bwB231T4

©ve2230

BG4aR3p2
G4430 4
854301
BR6UR 4
p223v2
Ueesu 4
123000
Batwpe
1046060
100060
?1a302
010362
1304
219304
©14325
BOBT6 4
262301

3 MATRIX AKITHMETIC SUBKROUTINES

3 REQUIRE BASIC

KEEP

SAVLE

AMAT

AMATO

BMAT

BMATO

L

Lo
M

N

NG

oLOC 307
“ERO: 5]
1Y

«L.OC 350
MXADD
MaSURB
MAMPY
MADIV
MXTR

-LOC 223

e

ENTER WITH:

3
3
3
3

MXADD: STA 0, A
STA 1, B
STA 3» S
XADD: FETR
FLDA 0»
FLLDA 1,
FADD 1.
~ FSTA DBa
‘FIlce
FEXT
IS# AMAT
- 182 AMAT
I8¢ BMAT
I1SZ BMAT
DS# N
S JMP XADD
JMP @SAv

79

FLOATING POINT INTERPRETER

300
301

303
304
365
322
323
324
325

oo u W n g9 nn

U]

LOC N

- ACO

AC)

AC2

MAT
MAT
AVE

GAMAT
BBMAT
5

vV, 2

£

3ve

326

Ve We Yo We Be Ve

SUBR TO ADD TuQ MATRICE

anonou

e Vo we e

oo

T e %e WBe e

‘N‘l“bﬂh

THESE-ARE THE PAGE-0
ADDRESSES IN WHICH THE
STARTING ADDKESSES OF
THE SUBKOUTINES CAN BE
FOUND. :

(C = A + B)

NO« OF ELTS IN EACH MATRIX
ADR OF A :

ADR OF B

ADR OF C

PRESET A-MATRIX POINTER
PRESET B-MATRIX POINTER
STORE RETURN ADR
ENTER FP MODE.

GET ELT OF A

GET ELT OF B

ADD ELTS

STORE RESULT IN C

INC C-MATRIX POINTER
EXIT FP MODE -

INC A-MATRIX POINTEK

INC B-MATRIX POINTER
SKIP IF ALL ELTS ADDED
ADD NEXT PAIR OF ELTS
RETURN

_ 3 SUBR TO SUBTRACT CONE MATRIX FROM ANOTHER (C = A - B)

5 ENTER WITH:

LOC N

‘NO. OF ELTS IN EACH MATRIX



3 o ACD ADR OF A

3 ACl = ADR OF B 5
s ace = ADR OF C | 0
P2251 Q4@302 MXSUB: STA ¢, AMAT 3 PRESET A~-MATRIX POINTER
02252 044304 STA 1, BMAT 3 PRESET B=-MATRIX POINTER
@2253. ¥54301 . STA 35 SAVE 3 STOKE RETURN ADR
gR254 BO6BR4 XSUB: - FETR 3 ENTER FP MODE
B2255 022302 FLDA ©s GAMAT 3 GET ELT OF A
2256 ¥26304 FLLDA 1 eBMAT 3} GET ELT OF B
02257 122400 FSUB 1, @ 3 SUBTRACT ELT OF B FROM ELT OFA
02260 BALEGY ‘ FSTA D- 0, 2 3 STORE RESULT IN C
02261 104000 Fice : INC C~MATRIX POINTER
BL262 100080 FEXT 3 EXIT FP MODE
P2263 010302 . 1S8# AMAT
Ge264 01pa02 1Sz AMAT 3 INC A-MATRIX POINTER
G2265 G1E304 I1S% BMAT : : ,
0ee66 G1U304 I1S# BUMAT .3 INC B=MATRIX POINTER
02267 ¥14325 " DSE N 3 SKIP IF DONE .
Pe270 PBBT64 : JMP XSUB 5 DO ANOTHER SUBTRACTION
p2271 @B23061 7 JMP @SAVE } RETURN

3 SUBR TGO MULTIPLY TWO MATRICES (C = AB)

NO« OF COLUMNS IN A/ROWS IN B

3 ENTER WITH: LOC L =
3 _  LOC M. = NOe. OF KOWS IN A
5 ' LOC N = NO. OF COLUMNS IN B
3 : - ACO = ADR OF A
3 AC1 = ADR OF B
3 AC2 . = ADR OF -C
Be272 G4G302 MXMPYs STA B, AMAT : .
02273 B4U393 STA Bs AMATO 3 PRESET A-MATKIX POINTERS
geeT4 B4a4ldp4a STA 1» BMAT o o
B2275 8443035 STA 1, BMATO 3 PRESET B-MATRIX POINTERS
62276 054301 STA 3+ SAVE 3 STORE RETURN ADR
. 822717 834322 "LDA 3» L. , o
. B2300 054323 STA 3. LO : 3 LOC LB = NOe OF COLUNMNS IN A
P2301 G24325 © LDA 1. N :
P2302 B44326 STA t1» N© 3 LOC N = NO. OF COLUMNS IN B
02303 1276060 ADD 1. 1 T8 ACY = TRICE NOe COLS IN B
G304 GLEEC CJNE XEPY+2 ' S -
G2305 (34302 MRET: LDA 3s AWAT ' :
32346 354303 STA 3» AMAT® 3 BEGIN NEXT ROW OF A
@2367 0R4365 LDbA 3, BMATG
02310 ©6543¢4 STA 3s RMAT 3 GO TO FIRST COLUMN OF B
62311 034326 , LDA 35 NO . : .
Pe312 B§54325 - STA 35 N : 3 RESET COLUMN=-COUNTER
02313 0004B7 JMP  XMPY
02314 B3430@3. NRET: LDA 3s KEEP
02315 854304 STA 3, BMAT
p2316 916304 ISZ BMAT
02317 10304 1S BMAT 3 BEGIN NEXT COLUMN OF B
@2320 034303 - LDA 35 AMATO o
P2321 ¥5430Q2 STA 3» AMAT 3 REPEAT SAME ROW OF A
32322 034323 XMPY: Lba 3s L@ -
G2323 B54322 ‘ STA 35 L .. 3 RESET PRODUCT-COUNTER
2324 034304 LDA 3, BMAT

02325 054300 " STA 3» KEEP 3 STORE COLUMN-POINTER



02326
pe327
v2339
62331
92332
. B2333
82334
p2335
82336
02337
02349
22341

2342,

02343
B2344
02345
22346
P34l
©2350
P2351
©2352
02353
02354

BB6004
P30307
222392
626304
120100
113000
1000800
616302
010302

V34304

137000
054304
0O6664
014322
BROT64
851000
104000
106600
314325
GOOT 43
014324
PP0732
6023061

FETR

FLDA &

FLDA
FL.DA
FMPY
FADD
FEXT
IS%
IS¢
L DA
ADD

. STA

FETR
FDS#
FJmp
FSTA
F1ce
FERT
DS#
JMP
DSE
JMP
JMpP

We % e %o e e be

‘oo

e be We e %o e e Yo

oo

e

ENTFR FP MODE

£ERQ CUMULATIVE SuUM
GET ELT OF A

GET ELT OF B

MULTIPLY ELTS

ADD PROD TO CUMULATIVE SUM
EXIT FP MODE :

MOVE ALONG ROW OF A

MOVE DOWN COLUMN QF B
ENTEK FP MODE

SKIP IF ALL PRODUCTS DONE
FORM NEXT PRODUCT

STORE RESULT IN C

MOVE ALONG kOw OF C
EXIT FP -MOBE

SKIP 'IF DONE ALL COLS OF B

SKIP IF DONE ALL KROWS OF A

RETURN



Tt

02355
02356
- 82357

82360
02361
02362
02363
02364
82365
02366
02367
62370
02371
p2372
02373

pe374
P2375
p2376
2377
B2 400

B2401-

g2 4p2
02403
B2404
02405
02466
@ge 487
p2410
pe41t
ga2ale
$2413
g24a14
02415
B2416
P24t
B2420
pe421
pe2 422

62423

D242 4
2425
2426
02427
02430

240362
044304
54301

PO6NV4
p2e3e2
B26304
1202060
0416808
10402600
106660
B1o362
18382
©14325
GEBT66
gpe2301

B44324
P14324
RO 482
0Bo1460
054301
127600
121400
101400
GeB403
@30303
113800
@56303
0560302
034324
054325
P34382

1378

P54302
CR600A4
104600
P26362
B31600
R4SORO
052302
106600
B14325
PeBT65
W14324
PVBTS55

3

3
3
3
3

SUBR TO DIVIDE A MATRIX

82

BY A SCALAR (C = "A/B)

ENTER WITH: LOC N = NQO. OF ELTS IN A
ACO = ADR OF A
ACI = ADR OF B
AC2 = ADk OF C
MXDIV: STA 8, AMAT 3 PRESET A-MATRIX POINTER
STA 15 BMAT 3} PRESET B=MATRIX POINTER
STA 3», SAVE -3 STORE KETURN ADR
XDIV{ FETR : 3 ENTER FP MODE
FLDA (. BAMAT 5 GET ELT OF A
FLDA 1», @BMAT 3 GET ELT OF B
CFDIV 1 © ' 3 DIVIDE ELT OF A
FSTA G2 (s 2 3 STORE RESULT IN C
Fice - ' 3 INC C-MATRIX POINTER
FEXT 3 EXIT FP MUDE
1S2 AMAT ,
I1SZ AMAT 3 INC A-MATKIX POINTER
DSZ N 3 SKIP IF ALL ELTS DIVIDED
- JMP XDIV :
JMP 8SAVE 3} RETURN
3 SUBR TO TRANSPOSE A SQUARE MATRIX (A = A')
3} ENTER -WITH: AC1 = NOo .0F ROWKS OR COLUMNS .OF A
3 AC2 = ADR OF A
MXTRe STA 1, M :
: DSZ2 M . 3 LOC M = 1 LESS THAN NO. ROWS
JMP 42 ’
JMP @. 3
STA 3, SAVE 3 STORE RETURN ADR
ADD 1, 1 ACl = TWICE NQ. OF ROWS
INC 1s O
INC 0, O 3 ACO = TWICE NO. ROWS + 2
JMP ++3 . o
TRRET: LDA 2, AMATO .
ADD 09, 2 3 MOVE DOWN DIAGONAL
STA 25 AMATO 3 STORE ELT POINTER .
STA 2, AMAT 3 PRESET FIRST ELT POINTER
LDA 3. M . : _
. " STA 35 N. 3} PRESET COUNTEK
XTR: LDA 3, AMAT -
‘ ADD 1, 3 _ o o
STA 3, AMAT . 3 SET FIRST ELT-POINTER
FETR 3. ENTER FP MODE
FIce . 3 SET SECOND ELT~-POINTER
FLDA 1> @AMAT :
FLDA 25 @ 2 3 GET ELTS
FSTA 1s 05 2 S
FSTA 2, eAMAT . .3 SwAP ELTS
FEXT 3 EXIT FP MODE
DSE N : 3 SKIP IF DONE ROW
JMP XTR : . . :
DSE ™ : 3 SKIP IF DONE MATRIX
JMP TRRET ' '



»

JMP @ SAVE

<END 7777

3 KRETURN -

83



-

AMAT
AMATO
BMAT
BMATO
KEEP
L

Lo
LRET
M
MRET
MXADD
MXDIV
MXMPY
. MXSUR
MXTR
N

ND
NRET
- SAVE
CTRRET
XADD
XDIV
XWPY
XSUB
XTR
ZERO

peasge .

0BeE303
BeO304
Beesas
BpG30¢
Beosee
pee3e3

Be2330

0OVY324
6e2305
602230

BE2355 .

peeaie

BeLesl

02374
BEE325
prE3e6
pE2314
pees3ul
PB24p5
362233
bE236y
©e2322
Q@225 4
©e2413
peelB?

84



BEE 40
Q0e 41

BB355
GB356
20357
o360
BB361
ep3e6e

P2 440
B2 441
02442
P2443
62444
02445
p2446
Pe4a4i
B2450
B2451
p2452
02453
02454
#2455
P2456
B2457
B2 460
B2 461

02 462
P2463
P2464
P2 465
P2 466
B2467
82470
02471
02412

(ACNR Y]
e2569
6e2637

BoY3BY

BOO301
BeL324
PDUGH325
BeB326

BPO3I55
U440
BE2473
222533
puRs572
Lr260s

0B2646

BO2449

127060
644325
B56620
0140620
054301
ped112

63612 -
pneeTTT
peesi2

663612
0777
101085
pBBITT4
G04405
042020

214325

pea7TIS
202301

P64512
B63612
©eRT7117
125300
p6psStI2
663612
COBTT17
1230069
001400

3 INPUT-OUTPUT SUBKROUTINES FOR TTY AND PTP

85

3 REQUIRE BASIC FLOATING=-POINT INTEKPRETER

«LOC 48
RECV
TYPE

KEEP
SAVE
M

N,
N©

300
301
324

326

«LQC 355

DATRD
DATPN

- DATRC

DIGIT
DATUWEK
WRITE

«LOC 2440

325

e we e %o ea

3 SUBR TO STORE DATA FROM

3 ENTER
3

DATRD:3

READ:

WITH:  ACH
AC2

ADD 1, 1
STA 15 N
STA 25, 20
DS 20 .
STA 3» SAVE
NIOS PTR
SKPDN PTR
JMP o=}
DIAS 0, PIR
SKPDN PTR
JMP e-=1

MOV 0, B, SNR
JMP -4

JSR READ

STA 0. €20

DSZ N
JMP "'3

~ JMP eSAVE

DIAS 1s» PTR
SKPDN PTR .
JMP 0"1

MOVS 1. 1
DIAS 6s PTR
SKPDN PTR
JMP e

ADD 1, O

“JMP @, 3

wr ‘oo

Ve we e

THESE ARE THE SUBROUTINES

'TO BE USED BY FP INSTRUCTIONS

FDFC AND FFDCs, RESPECTIVELY

THESE -ARE THE .RPAGE~Q

ADDKESSES IN WRICH THE
STARTING ADDRESSES OF
THE SUBKOUTINES CAN BE
FOUNDo .

PAPEK TAPE

NOe OF FLOATING~POINT DATA
STARTING ADR OF STORAGE LOC

DOUBLE ACt
N =-NO« OF DATA WORDS

SET LOC POINTER

STORE RETURN ADR
READ A LINE FROM TAPE

GET RESULT» READ AGAIN
SKIP IF RESULT NON=-ZERO

GET DATA WORD
STORE DATA WORD

SKIP IF ALL WORDS READ

RETURN

GET RESULT» READ AGAIN

LEFT-JUSTIFY IN ACl-
GET RESULT» READ AGAIN

'COMBINE HALVES

RETURN



02473
Q2474
g2 415
2416
024717
225609
82501
g2502
©625e3

Q2504

22565
02586

. 02507
Q2510

pas51i
ges12
%2513
2514
pesys
pesié
p25117
725206
gesh2i

pase2

82523
p2524
p2s525
P2526
pes27
p25306

92531

p2532

g2533
02534
$es535
02536
02537
02540
0254)
02542
62543
P2544
02545
pes4a6
62547

127600
44325
0500620

B14020

B54361
162460

152420

Boa421
151103

-BBBIT6

1080060
61113
63613
AN NN
p22020
0B4a411
G14325
eEaTITs
102250
152420
Blaad4
151103
BOBTT6
82301

135300

065113
V63613
L7717
261113
663613
ROBT771
081460

DAB324

B 44326

54301
834326
B54325
820503
ERaqT6
peBsv2
PBA4T 4
o20477
PY4a472
peeCRA4
124000

3 SUBR TO PUNCH DATA ON

5 ENTER WITH:

3

DATPN:

PUNCH

NP -

DOAS @
T SKPDN PTP

AC1
AC2

ADD 1, 1
STa 1, N
STA 2, 20
DSZ 20

STA 3» SAVE
SUB 0, 0
SUBZ 25 2
JSR PUNCH
MOVL 2, 2
- P

CoM B, ©
DOAS G» PTP
SKPDN PTP
JMP =1 .
LDA 0, @20
JSR PUNCH
DS# N

JMP =3
SUB 0, @
SUBZ 25 2
JSR PUNCH
MOVL. 2, 2
JHMP =2

SNC

SNC

JMP @SAVE

MOVS @, 1
poasS 1, PTP
SKPDN PTP
JMP o=

PTP

JMP -1}
JMP B, 3

86

PAPER TAPE
= NO» OF FLOATING-POINT DATA
= STARTING ADR OF STORAGE LOC
3 DOUBLE ACI |
3 N = NOo OF DATA LORDS
$ SET LOC POINTER
5 STORE KETURN ADR
3. 2ERO ACU
3 ZERO AC2» SET CARRY
3 PUNCH A ZERO
3 COUNT OF 17
3 SET ACO
3 PUNCH A 377
3 GET DATA WORD
3 PUNCH DATA WORD
3 SKIP IF ALL WORDS PUNCHED
ZERQ ACO
ZERO AC2» SET CARRY
PUNCH A ZERO
COUNT OF 17

3} SUBR TO STORE DATA FROM

o

3
3

DATRC ¢

NATRW

NXTEL?

ENTER WITH®

ACO
-AC1
“AC2

Os M
NB

STA
STA 1.
STA 3» SAVE
LDA 35 N@
STA 32 N
LDA 85 LF
JSR TYPE -
LDbA 0Gs» CR -
JSKR TYPE
LDA @©» LF
JSR TYPE
FETR

FDFC 1

nonu

e e

e e

RETUKN

RIGHT-JUSTIFY FIRST HALF
PUNCH FIKST HALF

PUNCH SECOND HALF

RETURN

KEYBOARD

NO. OF ROWS OF FP DATA
NO. OF COLUMNS
STARTING ADR OF STORAGE LOC'

M = NOe OF ROWS
N@ = NO. OF COLUMNS
STORE RETURN ADKR

N = NQOo OF COLUMNS
LINE-FEED

CARRIAGE~RETURN

LINE~FEED :
ENTER FLOATING-POINT MODE
ACCEPT DEC NOo» CONVERT



L3

P2559 045000 FSTA 1s B85 2 STORE HEXADECIMAL NO-.

3
02551 104000 Fice 3 INC STORAGE=LOC POINTER -
P2552 1000060 FEXT 3 EXIT FP MODE :
P25S53 014325 DSZ N 3 SKIP IF HAVE ALL ELTS OF ROW
02554 PBOT66 _ S JMP NXTEL . .

@2555 014324 DS# M 3 SKIP IF HAVE ALL ROWS

B2556 OPOT60 JMP NXTRW )

22557 202301 JMP @SAVE 3 RETURN

P2560 ©54308 RECV: ° STA 3s KEEP 3 STORE RETURN ADR

P2561 V60LI1D NIOS TTI 3 ENABLE KEYBOARD

P2562 063610 SKPDN TTI. ' _

02563 POBTT1 O JMP e-1 3 WAIT FOR CHARACTER

02564 6410 DIA Q. TTI 3 GET CHARACTER

02565 024404 LDA 1s MASK "3 ACY = 177

02566 123400, AND 15 © 3 MASK TO 7-BITS

02567 GO4450 JSR TYPE 3 ECHO CHARACTER

P2570 COR2300 JMP EGKEEP 3 RETURN

@2571 0BB1ITT  MASK: 177

3 SUBR TO ACCEPT A DIGIT FROM KEYBOARD
3 BINARY VALUE OF DIGIT IS LEFT IN ACO

STORE RETURN ADR

22572 054381 DIGIT: STA 35 SAVE o3
B2573 BBG4765 , JS5R RECV } RETURN DIGIT IN ACO
02574 224403 LbA 1» DTMSK 3 aCt = 17

QRSTS 1234008 -AND 1, -0 -3 MASK TO .4 ..BITLS
22576 @B2301 JMP eSAVE 3 RETURN

2577 EVA1IT DTHMSK: 17



C - e

¢t

02608
82601
02602
02663
02604
P2605
G2606
02607
02610
62611
p2612
02613
02614
02615
P2616
02617
- p2620
02621
62622
62623
62624
82625
02626
02627
026306
02631
02632
02633
02634
62635
02636

2637
@2640
P26 41
p2642
62643
g2644
62645

B2646
02647
62650
02651
02652
2653
@2654
P2655

04022 4
044326
B3543a1
125112
G049 3
RZE436
RR4431
24427
G3432°6
354328
(Pea432
GH442 4
D427
VB 4422
B2p427
0084420
o441 7
QULsBE 4
B21060
1486060
1040006

. NGNCGR010]

814325
OB 4B 4

014324

CEY752
AR2361
12549 4
GEOT62
BROTS5
177774

261111
63611

BoeT7T

POt 460
Pgeur12

BBOG1S
BUO0 4B

B54301
320775
004767
p2pii2
BUAaAT6S

RO4T64

pB2a762

021606

3} SUBR TO TYPE DATA ON TELEPRINTER

ENTER

Yo

DATWR®

ROW: -

LINE:

ELTs

COLS:

TYPE:

LFe
CR:
SP:

3 ENTER WITH ACQ = STARTING ADK OF STKING

"WRITES

R ]

CHAK ¢

WITH?

STA
STA
STA

MOVL# 1, 1o

JMP
LDA
JSR
LDA

LDA

STA
L DA
JSR
L.DA
JSR
Lpa
JSR
JSR

ACO
AC1t
AC2

Bs M

1, N
3s SAVE
SZC
o+ 3

Ps LF
TYPE

1. COLS
32 NG
35 N

Qs CR
TYPE

s LI
TYPE

@» SP
TYPE
TYPE

FETR ,
FLDA G, Gs 2

FFDC ©

FIC2

FEXT

DSZ N
JMP et 4

We Br W e Ve Be e e

. DSZ
_JHMP

JMP
INC
JHP

- JMP

=4

DOAS Q.

M.
ROW

@ SAVE
f1s 1
ELT
LINE

SZER -

TTO

SKPEN TTO

JMP
JMP
|
15
40

STA
LDA
JSR
L DA
JSK
JSR
LDA
L.DA

o1
Bs 3

3s SAVE
1» CR
TYRE
s LF
TYPE
TYPE
t» COLS
B 0 2

Honon

e

e

3

3

..

LOC M =

W e e s W

88

NJe. OF ROWS OF FP DATA

NOo

NO e

NG = NO. QF

OF COLUMNS
FIRST ADR WHERE DATA STORED

OF ROWS
COLUMNS
STORKE RETUKRN ADR

SKIP IF 2 LINES TYPED

NO LINE-FEED

LINE-FEED
ACl = =4
N = NOe OF COLUMNS

CARRIAGE~-RETURN

LINE-FEED

SPACE
SPACE

ENTER FP
LOAD HEX
TYPE NQo

MODE
FFP NOo
IN DEC FP

IN FACO

INC STORAGE~LOC POINTER

JEXIT FP MODE
SKIP IF DONE ALL ELTS OF ROW

SKIP IF DONE ALL ROWS

RETURN

SKIP IF FINISHED LINE

TYPE CHARACTER

RETURN

3 SUBR TO TYPE A STRING OF & CHARACTERS

STORE RETURN .ADR

CARRIAGE RETURN "

DOUBLE-SPACE
ACl = =4
GET WORD



P2656
82657
P2660
Be661
peece
92663

02664

- B2665
02666

101360

101200
Qo475
821000
BGai1s55
151400
125484
peeT1e
62301

eer1t1

*

MOVS @, @

MOVR @s ©
JSR TYPE
LDA 0s 0o
JSR TYPE’
INC 25 2
INC 15 1»
JMP CHAR
JMP @SAVE

cEND 7777

2

SZR

e o We e We e e

SWAP HALVES

SHIFT RIGHT

PRINT 1ST CHARACTER
GET WORD AGAIN
PRINT 2ND CHARACTER
INC LOC POINTEK
SKIP IF DONE

RETURN

89



CHAR
COLS
CK
DATPN
DATRC
DATRD
DATKR
DIGIT
DTMSK
ELT
KEEP
LF
LINE
M
MASK
N

Na
NXTEL
NXTRW
PUNCH
READ
RECV
ROW
SAVE
SP
TYPE

WRITE

pB2655
Ge2636
pY2644
pe2473
Be2533
PO2 440
Be26L0G
pgasie
Pe2571
BE2616
EY309
pre2643

pea612

pEe324
@e2571
BG325

CATIC6

Be2542
6B2536
purse3
BpBR4a6?
PUB2560
pe2603
vBB3u1
B0O2645
PB2637
PB2646

50



(r (30 ’ M/&T.\! . . '
| ZRORY) NS I8 1 ¥ N .
e JMATH, _ 9]

+ RECURSIVE LEAST-SOUARES IDEMTIFICATION
s REOUTRES SASIC FP INTERPRETER
: MATRIX ARITHMETIC SUDPROUTINES
: 1/0 SURROUTINES FaR TTY, TAPE
: DATA-SUPPLY PROGRAMMES
. THIS PROSENMME USES THE ¥AXTYUY
i HO. OF SY:3OLS SLLOWED 2Y THE ,
s AELOCATA3LE ASSEMZLER. DC NOT 420 ANY MORE.

Gra312 2 = 312

BE0313 g = 313

BRGS 4 RS = 314

GOT3 LS 55 = 315

Brr3le 1 - 316

800317 J 317

SIS K7 = 321

200302 L = 329

AIREY. v - 324

235325 g = 325

GRRB50 MYADY oz 350

CLezsl MYSUS = 351

(67352 MYMDPY oz 357

500353 - MYD1V 353

pr35A MY TR 354

208355 DATRY = 355

CLY3SS CDATPY z 356

PREREY DATRC = 357

pEE362 . DIGIT = 350

ﬂ?ﬂﬁﬁ , ““T”” = 381

Lro36e MRITS = 342

anoJaJ CIMIT = 363

BAB354 ME AS = 354
GRE385 DATIM = 365
BOR366 . DTIOUT = 366
Lpean? A L0C 2
DRRE2 EE2344 %P G344
AEHEET , LLOC 7 . : :
PRREN| b“fZS 498 3 WORK AREA FOX FP INTEIRP2ETER
23031 .L0C 311
HE3LL 2eA0E1 ONE: I
REEIAS LOC 330
BE3ZY IEN504 At 500 s MATRIX ADDRESSES
B0331 22700 P 760
e33R oolpn N 11ea

GE333 0o 1Anr ToWPLr 1300
AE33A 521500 TENP2: 1523

27335 01700 TEMP3s - 1700 .
B33 AN AC My - T ot
00337 £U2120 C 2124

o347 ““91‘V Do 21408

paAl BNO1S0 CSNUe 216

2 LLOC 342

J‘\ _/

N
X

oY
Conde



0o
AR A

A2
AURER

o344
rg345
SERYAS
pe3sd

2370 7
ee37
21370
66373
2e3Ta
¢E375
66376

BHITT

G210
22171
07170

w211t
7369()’\’;1

2

.CA()I)r ()

YRV

A )
.(\I)()I\/
(2265
!'-19() S
C”°L7
|,2,’31 ¢

7221

~y

(o221

62213
(2214
29215

L2218

£2217

s

(JOQO(

SRS

\

22221

£2222
12223
nR22 4
¢ 2
12226
27

8
v

= 7
¢
N
3]

'

[AV]

o

(AN RG]
AV

02760
L2270
(2702
02723
2270

SMATH
QAC LD

101NN
PORRAL
LU0
aA23C54
BALADG

r«yrxrﬂc‘;fﬂ.

r}n? 17;",
122042

CIHINLE

DLUTLY
HAGRLY
123047
SN B IRG
CLALTLY
SALTAl
1?3181
115

I
-

<3

(N - 3 T2
—-<~4u1~

YUY i e g e
53 b e

N AN S
~3 Y NN D

> > L
N
N

W e b e T
NN
(S

N rme e DT

I = 7O
]
D o e

>IN

-~
~

IO T2

~a

—-C}»—-p—.-—-.——.—.——-.——.
NN W
T3 DO e N

— . (D e DU
[N
R

N T D e (N = (O
I T) b e s b e [N

5272

(27“"

Co6es

23a370
026362
Cos3en
£42312

CTHR:

LI

RN ST

1 =1

] e

e

rm
[4p]

jey]

U
G111 —

1
o
I

AL

Ey)

AvIVIN

) 1Oy W

T8 A0 e® L8 20 w8 o

RaD4A2:

fod

LCC
BEGIN
STAaR
RLg L2
3 '
L0C 372

244

- 2178

LOC 2177
122040
075040
papnat
?’A [ Cau
]23(}[!2
ATSH AR
AACTAC
(ApzAG
123101
115125
ll/.)](J)
123¢77
(#3117
123131
AT AR
CAGT AL
120101
122141
115123
{‘_!l,hf',/,rl
126255
115121
124122
111138
1221095
161164
131277
CHRRLT
1751024
112122
54040
190- 79

~L.LCC 272¢

FINT -
LD4 2, 3TR1
JSR EWRITE
JSR @nIgIT
5TA 5, R

oo we

- »e -'e -e -e -e

we

-t we

S

ST

P

MGS TN

"S - . » ".

=
A
-
o
N
*0

"SAMPLES?Y

"PARAMS "
€1 "P-MATRIV"
TRING

CUREATDY? T

TRING 3¢

Y

ROGRAMME "EGINS

“codvy

92

A5CT1



eres
(?7r\’
SISN RGN
Gga2T1aT

1O M
< AV]
-~ -~
o (€]

o
R}
~
D
J

9795
;9796
Y)’ 707

S27388
2731
72732
I')[47 7)\)
(oT3L
“a2735
P2735
B2737
G274
$2741
perre
L2743
B2744
PRT4LS
2745
(12747
NS
52751
£2752
2753
2754
g£2755
(2756
p2157
G267
ER2761
22762
021863
(2754
g2165
B2758

AR

w2772
22771
L7172
22773
BRT74
02775
ge17s
2777

S MATH

230371
nrG359
<w6§”"
SL4n313

L2325

125480
127¢69
014325
ca2sl7s

5 44315

”3/31°
2543 5
12540

l‘"‘m
212325
CEETTE
chhd 1A
”3“379

7
26582

1«9)9‘
126522
rA3n3533
(6357
530333
SR,
?75?73
l "rx’\1
Po4L321
AR IR K]
HRE362
CeRLGH
SFART K
121025
700476
Lau31T
o1a317
CRANEDD
SR )
c1a31T
frr /_1”7
u?,/J.) 14
RN
026356
(24315
37331
28358
$1a317
$AnL15
030374
$o6382
220313
024312

n

(

)

N

£30330
#5346

F31375
£06362
500313
024313

CCPY:

0PT 1.

OrT2.

OPT3+

LDa 3,

LD& 2, ST22
JS") f\!l"JITT
JSR GDIGIT
STA £, S
STA 9

SUZ |
ADD @
DS7 M
JMP -2
STA

y

s
s 1
g |

I, SS

CLDA 3, R

STA 3, H

su2 1, |

ADD o ]

DS7 Y

NP, -2

ST4 1, RS

LD 2, STR3

J62 QURITE

sus7L 2, @
sus7L 1, 1
LDA 2, TEMPI
JSR BNATRC
LA 2, TEnPl
FETR

FFIX &, 2
FEXT

STa 3, KO

LD4 2, S5TR4

JSR @N21TE
JS3 @NIGIT

STA 2, 1
MOV @, #, SHR
JMP READY
STA B
DS7 J
JiP 0PT2
JMP READY
D57
JMP 0
LDA 1
LDA 2
Jsr er
!
2
J

RY)
—3

Ow w
. A>
RS B B e I
w2

P
LDA 1, SS
LDA 2,
JS3 GDATPY
ns7

J¥P OPT 4

LDA
JSR
LDA
LDA

y 0
LDA 2, 4

- JSR CDATUWR
LDA 9 D [S)
S8R BWRITE

LDA
LDA

@ -

a0 w0

X

-e

-e

weo

>e

-e o0 @8 o oo

© -e

-ea

93

PRINT "S = 2"
£T S
SS = SRUARE OF S
LOC RS = PRODUCT OF 2 AND

K# = N0, OF RAPID 34%PLES
PRINT

GET 1

HC OPY? "

S¥12 1IF I = ¢
NO STA°T MG VALUES

SAME STARTING VALUES

PAPER-TAPE COPY

TELETYPE COPY



23816
SRIVR R
g3g12
43413
83214
(.K's(.‘.lS
SB3816
£3617
3L 24
’(]3!_ s
03622
g3523
23024
3025
23026
a3p2i
E3NAE
£33
23032
CB3533
KT
83935
i',\)r,s')
1INV N
B3040
ganel
©3paZ
d30es
P”‘/|/|
2345
23046
£r347
830546
panst
35”5'
3053

7
JJUS e

Qe8355
224315
032331
208355
214317
nTuals
230374
OU6382

20313

D

I
G
W\

[ BRI
LN (N
~N
N

f,

TR

>IN T
¢ NN (NN

o T
b N ]
T Iy Y e e YT e UV AN e = O ) Y O

Iy =y oy v

»

TRV T2 N
[ RS
NS N

M
S o ST e DX NN 0D TN NN

RN

Aﬁvy

-lﬂ/‘rnnu
[ Sy

3w378

T
v;n)\_)?

¢
e
R
< :
C'\ Oy =30

)

.o

LDA 2, P
JSR ADATHR
ns?
J%P

“J
—3
A

LDA 1, BS

LDA 2, A

JS2 @DATRD

LDA 53
>

LDa
JSR

D0 = B0 — O

e
>

3~
0

<

JSR EWR

Lha £

D57 J
JMP 0PTS
LDA 2, STRS
JSR QWRITE
LDA 8, S
LA 1, R
LDA 2, A
JSR @DATRC
LDA 2, STRS
ITE
, S
LA 1, S
LDA 2, P
JS2 GDATRE
DG7 J

L‘T’l‘)? o'{'?.. .
JER EIHIT
De7 J

JMP 2EADY

LA 2, STz
JSR EWRITE
FETH

FOFC &

FOFC |

TSTA £
FSTA
FEXT

~3
=
.4

< 2

—
- o

LA 2, STR7
JSR GWRITE
JSR @DIGIT
MoV 9, ¢, SHR
JMP COPY

JMP @MEAS

SEN2:

-e

P -e

an e W

o

“e w5 we o

.o

e

STARTING VALUES

~

STARTING VALUES

PRINT "PARAMS™

PRINT "P-MATRIY™

STARTIMG VALUES

CHAMGE CTHR AND V

-y
=0
-t
-3

N
-
o
%5

-~

-
—y
ooy
=

D0
— g 15 M)
OO~
SR

1< O

W
f‘.’
<'C
3
i
By

EC

PRINT "READY?™

ey
[
[T
=3
A>
X

B
"

USE P

<
Ld

SUPPLIED
3y LIGER SUNROUTIVE

Ve



T

LN RS
r’};!r; D

154
£3055
v3E58
$3657
BI2GE
23061
3882
93053
£3064
(‘5 CR
23468
c3L67
GanTo
£33
L3nT2
03973
03874
23075
23”7’

23077
a):’)l;jxn

63191

53162
031503
‘ Y4
4]
s
i)

1) ;
& !
o 2
LIRN L

3

B3121
63122
831253
63124
23125
(31246
£31217
B350
3131
23132
23133
23134
23135

‘63135

£3137
L3114
cilsl

23142

23143
£l
c3145
IREEAS

1L2ACB
37133
Cghsuu
nalals
15402
172414
2eaTls

000332

fONTTG
£40337
134313
f)ﬁ700
5)ﬁ39/

A’ll

r,ﬁ7t‘r)
\57."
337

C’

N
~3

L T2
[

TR T T LY T "J s

4L (D MY WLV (N \J J~
~
NN NN NG
b

H O 5
L6351
ALK
ENANY |
SIS Y|
228313
g51322
234311

54322

(: rnpn /7 A
SR AD

~svm

Ny
C3n3en
032313
054325
826353

[

Ty o

m\hon(NOJ
D~

[ B

4325

LOOP:

N

s

[

J5R

wn
— =
W
t

20AaTIY

DN N NN

N Lt NN N DD = T2 B N DD e T

>

v w W e W v -

W W e e o

‘ =
WD I WO O

wn
D

[

Ry

ZoOrrmaoaooaow

vy -

-t
<

D
=)

U

383

-~

3, 1
Sy 3y
BSTART
3,
s >
so g [
2, TEM
3, A
By €,
IR
)
eoon
o 9 B
2, T

, G

s L

:‘."
9 [
s LnL
N

g ¥
XN P
Gy, Y
1, C
o
2, C
3y 5
5, M
GrXSUD

{3

)

(e

4
-4

5

CTHR
HCsnrU
1, ¥SLE

9}

~

e

~e a0

-0

L]

1. OH

4, C TOO SHaLL?

5, 3 = C/C'C

6‘. L{B ',_

[6)}

95



AN

£23147
Ba15¢
(3151
53152
73152
83154
23155
23158
(43157
u%l\)\
5316
£3162
£3163
3164
£3165
PR R
#3167
r"’)l?’

~ Ey o
N
—
-
—

£3172
03173
73174
23175

Y,317\)
?3177

520
O??Ll
(23222
23285
L3254
ARYA M)
L3246
033067
83213
3211
“n3212
£3213
£3214
a3215%
a3als

[ SN

2321417
B3220
p3221
03222
63223
P3224
83225
53226
nsr)o']
pa23e
03231
23232
13233
53234
93235

(,\7’)7,{‘

63237

(3240
p3241

SATH
006352
331

£24333

S IANY.
34313
$5L309
o .) 4 3 2/2
(154305
6352
126331

224334

7206351
24313
SRR
PES8354
Y

SEEN

=<
~

C24333

[ S &4
Q00D

SRANE NG

1

oy
4
~

>~
N
"D
o

NS
NN L
J ML

M~

(U1
]

N = PO e (N
SN N e (N O

[

N~
~
p

PSS
I~

S22 Y Y 2 R RD
~ A

RN
>

B a N
N L

[N
RV

RN ENES R RGN AR RIVEIGHL IV RS R RCR

TR Ty Y W
3.IN

~

¢

C

NS
[ G RE )]
— P -

2l

Zae3>|
220331
24335
230331
g34315
854325
Cin835¢
£203531
(24333
2305331
(032315
254325

[SRON AR ASTS
Koooas D

02u54<
024331
230333

f3431 1

N54£3202
234313

. JSR

1.DA4
LDA
LDA
LA
STA
STA
5T4
JSR
1.DA
LDA
LDA
LDA
5T4a
JSR

LD4 -

LDA
JSR
LDA
LDA
LDA
LDA
5TA
STA
STA
JSR
LDA
LDA

LoA

L2A
STA
LDA
STA
STA
JSR
LDA
LD4
LDA
LLDA
STA
JSR
LDA
LDA

- LDA
L34

STA
JSR
LDA
LDA

“LDA

L34
STA

JSR

LDA
LD
LA
LA
5TA

LDA

EMYD

I
[ &

Xwo w w w w v =
=<

NN N - RN
B 00 B © NS B ¢ INOT Q5

3w ©w v e w
>

— 33
JUe LU

LXwe @ @ w e

-u
-.<

ray
>

X

o

r

s

99}

[
By}

2
;g
~U
)

e

- we e

Q

11.

4,

96

(°U'°)(”“')

3R
(P -

PHR'") - BH'P

(P=PHD"=BY"P)+BM "2

(P-PHB'-2H"2
+BHPHB )+



SEoRoN]

BAR242
£3243
c32484
23245
£3246
Y
23254
- 63251
3252
(3253
73254
’V7f§5>
73255
235257
a23264
©3261
TB3262
BH326A4
S N3254
1328 5
©328

ﬂ3267
03273
(3271
03212 |
GB3273
#3274
3275
YA
$3277

(' 7){)(‘

£330
03322
£3383
23364

PR

£3305

‘ ’ (.5J:_)(

g3307
£3310
23311

83312

#3313
63314
03315
63316
63317

rr7 7 i
(2% 09

23321
53322
£3323
$3324
023325
£332%
23327
03330
©3331
43332

£3333

03354

I8 TN

554324
154325
§352

Tro Q;

>

"~
5

DT

ROEY UL N D \)

-
>

RN el

~

52N
~
NN N N \N

O NP e NN

4]

(VARSI UL IR > BTN BV I

R
InS

VRS
214317
2a0814
$3431 1
256316

-\/7)J1
,2436C
230333
v34313
E5A%L22
254324
7234311
n54325
228352
e ’)’ 7%1‘

PRI

0/.5'%\7)
:SLSné
(J\II/J.\) 13)
£54322
734311
ncj/ 304

4525

(’339
CTERA
9283”6
R28334
167000
CLETR A

o

1 ,ngr‘n .

220333
pRa334
230300
234313
£54325
SA8353
0907333
224340
332335
232311
£54322
2343513
054324
854325
AL NSRS
328331
224335
&3033%1
N34315
54325
26351

(o)
w2

-
I

5TA
STA

[agm]
IR I

LDA
LDA3
LDA
LDA
STA
JSR
JSR
057
JMP
LDa
STA
LDA

Lo

LDAa
L2A
STA
STA
LDA
STA
JSR
LDA
1.D4
LDA
LDAa
STA

LDA

STA

(‘\I

JSR
FETR
FLDA
FLDA

FADD

FsTa
FEXT
LDA
LDa
LDA
LDA
STa
JS?2
LDA
LDA
LhA
LDA
STA
LDA
ST
STA
JSR
LDA
Loa
LDA
LDA
STA
JSR

3, M
3, N
ENXMPY

1y 0

1, TEMPI
2, A

3, SS
3, M

MY ann

J
LOOP
3, OHE
3, 1
5, P
1, u
2, TEMPI
3, S
3, L
3, M
3, ONE
3, 0N
EMYMPY
5, M
1, TEMPI
2, TENMP2
3, S
3, L
3, OHE
3, M
3,

2 ENMYMPY

2, V
I, GTEMP2
£y
[, @TENP?

¢, TEMPI

1, TE4P2

2, B

3, S

3,

cmxﬁlv
y) 9 TEr

2, TEWP3

3, OME
3, L
3, S
S

"
3, M
SNXMPY
£, P

I, TEMR3
2, P

3, SS

'I’\ , \'

?7°U“

PY)

-

-e

“e

-e

-

15,

16,

17,

1Q

AN

21,

v

4 'PH

Vv + H'PH

I3

(PH)HR

P =P

= N+

RC’

PH/(V+H 'PH)

?‘{ !:3 \

97



[F

panry
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03336
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P3322
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#3358
60351
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“3562

£3367
033715
3371
(3372
(32373
63374

©3375

w3378
£33717
£3400
paLel
A34%%2
P34L3
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”ﬁ722
Ry
7
2335
22330
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