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Abstract

This was a study to determine the effects of two instructional
procedures for a multiplicationgéigorithm on the ability of elementary
school children to extend thié algorithm to the solving of computational
tasks involving the use of a higher-order algorithm.

Each of two groups was given preliminary instruction in
solving multiplication problems via the application of the distributive
law. After this readiness phase was completed, students were randomly
assigned to either a Tl or T2 treatment group. The T1 subjects
were taught a rote-type standard multiplication algorithm for determining
the solution of 2 x 1 and 3 x 1 products. No explicit instruction
was given to indicate the relationships between the two learning
tasks, viz. the acquisition of the distributive law and the standard
multiplication algorithm. Unlike the T1 instructional sequence, the
T2 instructional sequence was designed to promote the learning of
the relationships between the series of learning tasks. That is,
the T2 subjects were taught a standard multiplication algorithm
that required the explicit use of the distributive law and other
acquired algebraic skills. It was hypothesised that this continual
integration of learning tasks would enable the T2.Subjects to exhibit
superiorify over the Tl subjects in extending their standard
multiplication algorithm to computational tasks requiring the use of
an untaught higher-order algorithm. A total of 238 subjects and

8 teachers were used in all phases of the experiment.



A mixed model:éf-analysis of variance was used to validate
the performance hypothesis. It was found that thé Tl subjects were
significantly better than the T2 subjects in the performance of the
standard multiplication algorithm. An analysis of covariance was
performed to determine the wvalidity of the transfer hypothesis. A
subject's score on the performance test was used as a covariate in
order to equate the disparate computational abilities of the Tl and
T2 subjects. Although the mean score of the T2 subjects was
higher than that of the Tl subjects on the transfer test, this difference

was not statistically significant.
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CHAPTER I

OUTLINE OF THE PROBLEM

‘firoUetion.

Most modern arithmetic programs are in agreement that the
field postulates for the system of arithmetic should form an integral
part of arithmetic content. Both méthematicians and psychologists
have advised that the understanding of many of.these postulates be
included as elementary school objectives. Participating mathematicians
at the Cambridge Conference on Schoql Mathematics stressed that students
be familiar with part of -the "'global structure' of mathematics.l They
felt that a very solid mathematical superstructure can be erected
which will help pupils in more advanced mathematical fields. Although
the idea of."global structure" was never clearly defined there is little
doubt, after examining their recommendations for curriculum content,
thatbthe field postulates formed part of it.3

Jeromg Bruner;:again avoiding the knotty problem of definition,
statéd “"there are at least four general claims that can be made for

teaching the fundamental structure of a subject, claims in need of

lGoals for School Mathematics, (New York: Houghton Mifflin,
1963), p. 8. .

2Ibid,,-p. 8.

3bid., p. 36.



detailed study'. He listed the following as supportive claims:

1. Understanding fundamentals makes a subject more com-
prehensible. |

2. Unless detail is placed into a structured pattern it is
rapidly forgotten.

3. Understanding of fundamental principles and ideas leads
to transfer of training.

4. By constantly reexamining material taught in elementary
and secondary schools for its fundamental character, one is able to
narrow the gap between '"advanced" knowledge and "elementary" knowledge.4

David Ausubel claims that '"precise and integrated understandings
are, presumably, more likely to develop i@ the central, unifying ideas
of discipline are learned before more peripheral concepts and information
are introduced”.5 In his opinion, fthe most significant advances that
have occurred in recent years in the teaching of such subjects as
mathematics, chemistry, physics and biology are predicated on the
assumption that efficient learning énd functional retention of ideas
and information are largely dependent upon the adequacy of cogritive
structure, i.e. upon.the adequacy of an individual's existing organization,

stability .and clarity of knowledge in a particular subject-matter field”.6

4Jerome S. Bruner, The Process of Education, (New York:
Vintage Books, 1963), p. 23-26. :

5David P. Ausubel; The Psychology of Meaningful Verbal
Learning, (New York: Grune and Stratton, 1963), p. 21.

6Ibid., p. 26.



In this writer's opinion Ausubel supports the early_understanding of
the field postulates when he claims that? "the acquisition of adequate
cognitive structure, in turn, has been shown to depend upon both
substantive and programmatic factors using for organizational and
integrative purposes those substantive concepts and principles in a
given discipline that have the widest explanatory power, inclusiveness,
generalizability, and relatability to the subject-matter content of
that discipline'. |

Although much has been hypothesised about the pedagogical
benefits of subject-matter structure, little validation haé been
attempted. Moreover, those studies.that have been concerned with such
issues have rarely attempted to offer suitable psychological explanations
of the role of subject-matter struéture in arithmetic understanding.
Assuming that the field postulates form part of mathematical structure,
the intent of this study is to provide both plausible  psychological
explanations and empirical data related to the role of the understanding

of these field postulates in promoting arithmetic understandings.

GENERAL _STATEMENT OF THE PROBLEM:

Since computational algorithms are commonly given logical
justification by using the field postulates, it is hypothesised that the
learning of the field postulates will facilitate understanding, .and
through understanding, the learning Qf such algorithms. More specifically,

this study will attempt to determine under what instructional conditions

" bid., p. 26.



the understanding of the field poétulates promotes ease of extension
to untaught computational algorithms. Moreover, an attempt will be
made to provide a psychological rationale for the inclusion of these

postulates in a contemporary arithmetic program.
- DEFINLTION OF TERMS
In order to avoid an ambiguous and lengthy statement of

hypotheses it was felt necessary to define the following terms:

Algebraic principles. These are also referred to as field

axioms, field principlés, and field postulates. In this study the
subset of field postulates with which we are concerned is the set of
postulates that apply to the whole numbers.

Algorithm. Any rule or ordered set of procedures that can
be used to produce a correct solution to a computational task
independent of the individual using .that algorithm; for exémple, the
usual column addition. algorithm. |

Internal algorithm. Any algorithm whose primary function is

that it is used in the generation of other algorithms. It is internal

in the sense that it is considered a means to an end rather than an

end in itself. That is, its prime instructional purpose is to serve

as an algebraic prerequisite for more complex computational algorithms.

The writér@will use the term for mainly referential purposes and will

not attribute any special psychological properties to internal

algorithms. The interﬁal élgorithm used in this study is the annexation
algorithm; the readef should examine the T2 Instructional Sequence on page 9

for an explanation of this algorithm. Appendix A describes another



internal algorithm.

Standard multiplication algorithm. For the purposes of this

study the standard multiplication algorithm will refer to those procedures
used to. compute produc;s such as axb where either a or b has a one

-digit numeral and the other has a two or three digit numeral. For.
example:

12 132 7 6
x 9 x 9 xil8, x 132

Hereafter such products will be referred to as 2xl and 3xl products.

Higher—-order algorithm. For the purposes of this study a

“higher-order algorithm'" will refer to an algorithm used to compute
products such as axb where.neither é nor b haééaa one digit numeral
and where either a or b may have more than two digits in the numeral.
For example: -

1001 132 12
x#7 x 111 x 1002

oo

These algorithms are "higher" in the sense that the standard multiplication
algorithm must be conceptually modifiéd in order to compute novel
products. Further elaboration is given later in the chapter.

Performance tasks. This refers to those tasks requiring the

application of the standard multiplication algorithm. Level of per-
formance was measured by a written test described in Chapter III.

Transfer tasks. A-solution of a transfer task required the

successful extension of the previously taught standard multiplication

algorithm. Level of transfer was measured by a written test described

f

in Chapter III.



Tl group. Those students who completed the Tl Instructional
Sequence. The reader is referred té page 9 for details of this
sequence. 1

T2 group. Those students who completed the T2 Instructional

Sequence. The reader is referred to page 9 for details of the

sequence.

Rimsiand ac Gt pmdtd nar ce ~c the b, om0
-DESEUSBLON AND-STERLFEEANCE -0 HHE- PRoBLEN -

29@ role of algorithms in arithmetic programs has changed
considerably over the past twenty years. Previously, considerable
instructional time was devoted to iﬁcreasing a student's proficiency
with an algorithm rather than his understanding of that algpritbmj
Arithmetic content was treated as if it were a series of.logically
unrelated algorithmic tasks rather than an integrated set of relation-
ships between relatively simple concepts. With advances in tecﬁnélogy
less stress has been placed on mere performance of computational algorithﬁs,
although computational algorithms.still form the main substance of
most modern arithmetic programs. Thus, the modern cﬁrriéuluﬁ developer
has been primarily concerned . that children understand the rationale
of an algorithm; i.e. concerned about the ability of.children to
explain the relationships between the algorithm and other previbusly
acquired algebraic principles. .
Since computational algorithms are logically reléted'to the

properties of place value systems and the field principles, it has

frequently been claimed by some mathematics educators that these logical



relationships enhance the understanding of computational algorithms.
Eric MacPherson expresses this view when he states, ''the child who
uriderstands arithmetic is the child:who sees how each algorithm
follows from these'iprinciples".8 It would be erroneous to conclude
from such statements that children who understand the field principles
are able to derive spontaneously the usual standardized computational
algorithms. Rather such views imply that when a child understands
the role of the principle in an algorithm, (e.g. recognizes an
. instance of the principle in an algorithm,?demonstrates that a 'step'
in an algorithm is another application of some previously learned
principle, etc.) he is more likely to understand the rétionale
of other related algorithms. However, what seems to be lacking in
the arguments of "structure advocates" is a reasonable psychological
interpretation of the role of subject—mattér structure in effecting
understanding. More specifically, in what sense does understanding
of the role of the field postulates in specific algorithms promote
ease of extension to.untaught related algorithms? For the purposes
of this study, it would seem that of the many learning psychologists,
David P. Ausubel and Robert M. Gagngyare two whose views seem
partiéularly relevant.

In order to demonstrate the relevance of these psychological
views to this study, it is necessary to refer constantly to specific
instructionél sequences used in this'study. Hence it seems appropriate,

first, to explain the nature of these 'instructional sequences. The

8Erig D. MacPherson, "The Foundations of Elementary School
Mathematics!, Modern Instructor, Volume 33 (October 1964), p. 70.




reader is referred to Figure 1. on page 9 for a diagrammatic explanation

of these sequences.

A. The Tl Instructional Sequence

This sequence is typical of many that occur in modern
textbooks. The first skill taught in this sequence is use of the
distributive law. A child is assumed to understand the distributive
law when he can:

a) use the distributive law to éolve such algebraic

expressions as

9 x5 @ x3)+ O@x1 + @ x0)

8 x 6

L]

(2 x 6) + (2 x 6) /& (AX 6)

L

9 x 7

(6 +3) x (5+2).= (6 x5)+ (6 x&) + (3 xA) + (3x2)

(2 x6) + (2 x6)+ (Ax 6) 8 x 6

'8 x:ca ‘

(8 x3)+ (8x5)+ (8x1)
b) compute products such as 9 x 8 by épplication of the

distributive law:

9x8=9x (2%6) = 18 + 54 = 72
9 x 8 =9 x (ZUW5541)y= 18 + 45 + 9 = 72
9x 8= (4+5) x (2+6)=8+24+10+ 30 =72

The next objective iIn the sequence is the acquisition of a
rofe—type.standard multip1ication@algorithm, the algorithm is being
considered to be rote-type in the sense that no attempt is made
explicitly to indicate the.relationsﬁips between the previously

mastered skill and this algorithm.



FIGURE 1. THE INSTRUCTIONAL SEQUENCES
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B. The T2 Instructional Sequence

As with the Tl sequence, the T2 instructionalssequence
incorporates the understanding of the distributive law as an initial
learning objective. However, additional algebraic skills are also
considered necessary. These skills involve the use of the associative
law and an internal algorithm, in this case the annexation algorithm.
The child is taught to compute products in which 10 is a factor
by "annexing the zeros". For example the product of 7 x 200 is
initially computed by using the associative law in the following
manner: |

7 x200=7x (2 x100) = (7 x 2) x 100 = 14 x 100 = 1400

or 7 x 2 hundreds = (7 x 2) hundreds = 14 hundreds = 1400

Later cemputation simply invqlves direct annexation. For

example, |
71 x200-= lﬁ;OO

The standard multiplicaticn algorithm utilized in this sequence

"steps' by explicitly pointing out instances

validates procedural
of the prior learned skills.

This writer is primarily fnferested in the effects of eech
instructional sequences on the amount of<tranéfer to computational-
teske that involve an untaught higher-order algorithm. As mentioned
earlier in this chapter, the views df Gagné‘and Ausubel would seem.
to provide possible explanations of these transfer differences.

Gagné has developed what he considers a hierarchy-of-learning

model.9 Before a specified learning task can be mastered, Gagne would

9Robert M. Gagné, The Conditions of Learning, (New York:
Holt, Rinehart and Winston, 1970).
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claim that .a numbercof subordinate concepts must also be mastered.
These concepts in turn depend upon other subordinate concepts so that
it can be argued that Gagné€'s model ultimately resembles that of S=>R
learning. As Gagné explains, "u:

when such ansanalysis (selecting appropriate prerequisite

tasks) is continued progressively to the point of delineating

angentire set of capabilities having an order relation to each’

other (in the sense that in each case prerequisite capabilities

are represented as subordinate in position, indicating they

need to be previously learned), one has a learning hierarchy.

The analytic process may be carried out if desired, until

the simplest kinds of learnings (Ss-—» R' s, chalns, dis-

criminations) are reached and identified.l
‘Thus. once the terminal task is clearly specified, the problem is to
select hypothesised prerequisites and arrange these in a hierarchical
manner. Although initially these prerequisites are selected logically
on an a priori basis, a hypothesised prerequisite is concluded to be

. rd

pedagogically necessary only after empirical investigation. As Gagne
explains: "'a subordinate skill is determined to be pedagogically
necessary if it facilitates the learning of the higher-level skill
to which it is related. 1In contrast, if the subordinate skill has not
been previously mastered, there will be no facilitation of the higher-
level skill. This latter condition does not mean that the higher~
level skill cannot be learned -- only that, on the average, in the
group of students for whom a topic sequence has been designed, learning

. L , 11
will not be accomplished readily". Thus if transfer differences

between the Tl and T2 groups were observed, Gagng, rather. than trying

loqagne, op. cit., p. Zﬁg.

Mipid., p. 239-240.
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to explain the differences in terms of any particular learning theory,
would probably attribute these differences to the selections and
arrangement of prerequisites, since he seems to be more concerned with
the development of empirically validate@Thierarchies than the validation
of contemporary psychological theories. Hence this study could prove

to be valuable for the curriculum designer if it produced a more
effective instructional sequence for teaching initial multiplication
skills.

Ausubel would view the potential efficiency of each instructional
sequence for promoting transfer in quite a different sense than would
Gagné: For Ausubel, the amount of transfer brought to a learning
task depends on an individual's cognitive étructure; where '"cognitive
structure" means an individual's orggnization,'stability, and ¢larity
of knowledge in a particular Subjectlmatter field at any given time.12
That is existing cognitive structure is regarded as the major factor
influencing the learning and.retention of potentially meaningful new
material in the same field. According to AusuBei, a major criterion
determining whether learning material is potentially meaningful is
its relatability to the particular cognitive structure of a particular
learner. As Ausubel states:

for meaningful learning to occur in fact, it is not sufficient

that the new material simply be relatable to relevant ideas .

in the abstract sense of the term. The cognitive structure

‘of the particular learner must include a requisite intellectual
capacities, ideational content and experi@ﬁtiﬁi}background.l3
S T

N N
PN {

leusubel, op. cit., p. 26.

131pid., p. 23.
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The key concern of this study is the effect of these
instructional sequences on cognitive structure. That is, -which of the
Tl and T2 sequences might be best integrated by the learner and in
what sense this act of integration promotes greater transfer to
tasks requiring the use of an .untaught higher-order algorithm.

Accordingyto Ausubel,'new‘learning is sometimes incorporated
into cognitive sfructure by correlative subsumption.14 This psychological
phenomenon occurs when a leérner’somehow determines that new learning
material is related to relevant cognitive subsumers via some general
principle. Thus new learning material may be best incorporated into
aﬁ individual's cognitive structure if those principles which require
the least extension act as subsumers. In Ausubel's terms one might
suppose that the learning of the algebraic principles of arithmetic
may affect the learning of logically related computational algorithms
in the same sense as ‘'advance organizers'. Thus it is hypothesised that
the T2 instructional tasks might form relatively stronger subsumers
than the T1 tasks, for future transfer tasks requiring the use of a
higher-order algorithm.-

For example; consider the possible differing complexity
of extension from.the standard multiplication algorithm to the higher-
order algorithm that each treatment group must make for successful

solution of such a ﬁransfer task . as 107 x 11.

14Ausubel,.op. cit., p. 77.



A typical solution that might be exhibited by the T2 group

could be as follows:
1 partitioning both factors into
7 binary sums involving powers of ten

10 + 1
— 100 + 7 application of distributive
7 {}aw and annexation algorithm
70
100
1000

It is assumed that no 'new''‘concept or skill is required forbsuccessful
extension from the standard multiplication algorithm to the higher~-
order algorithm. (The skiil of partitioning both factors, rather
than just one factor, before application of the distributive principle
was included in both instructional sequences.)

The extension of.the rote-type standard multiplication
algorithm to the standardized higher order algorithm by the T1

procedure seems a very remote possibility:

11 11 {”move over one space to the left
x 107 ~> x 107 when multiplying by a factor of ten"
: 107
107

Suppose a Tl group member  attempts to compute such products as
107 x 11 by considering the 11 as 'one digit' and proceeds:as with the

standard multiplication algorithm:

l 107 x 1 = 107’ as with standard multiplication
x algorithm, place 'seven' and 'carry
7 : ten'
lo 1 1] 1 |
(107 x 1) + 10 = 117 place 'seven' and 'carry 11!
x ]

1177
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Although such partial products as 7 x 11 could be computed by using
the Tl standard multiplication algorithm, this extended procedure,
seems much'more difficult than the ﬂypothesised T2 procedure.
Transfer to tasks involving 3 x 3 and 4 x 3 products would seem
even morevunlikély considering the complexity of extending the T1

standard algorithm.
EXPOTHESEQ,

‘Most textbooks andppractifioners are being ﬁrged by

- curricﬁium speeialists to promote the understanding of algebraic
principles. The arguments for the inclusion of such principles are

" based on the beiief that much of ari;hmetic, and especially com=
putational algorithms, may be better understood through the learning

of algebraic principles. Hence from both a practical and(éhthéoreﬁiéal
" point of view, it seems worthwhile to investigate the validity of the
Vfollowing hypotheses: .

’ Hypothesis One -- The Tl group will score significantly

. higher than the T2 group in the performance of the standard

multiplication algorithm, as measured by the performance test.

Hypothesis Two —-- The T2. group will score significantly
higher than the T1 group on the test of transfer from the standard

multiplication algorithm to a higher-order algorithm.



CHAPTER II

SURVEY OF THE LITERATURE

In. reviewing the literature, one soon realizes that very
few studies have been concerned with children's acquisition or use
of the field of postulates to generate algorithms.

Children's understanding of thé field postulates without
formal instruction was studied by Cfawford in 1964.15 Using a
multiple choice test of 45 items, he tested each of the eleven
field ax?oms once at each level of Bloom's taxonomy. He found that
the mean’ scores 'increased significantly, from one even numbered grade
to the next, .in a linear manner. Students exposed to 'modern
mathematics' content in grades 9 and 10 had scores significantly
superior to tnose of students in all other programs at the same
level. This study seems important in that it proviaes data on
developmental processes which. were occuring without explicit. teaching.

A study by Hall attempted to determine whether the rote
learning of certain multiplication combinations could be accomplished
‘more effectively through teaching procedures emphasising the commutative
and ordered pair "approach in conjunetion with practice on related

. . 16 " L .
combinations. This procedure was compared to teaching procedures

.lquuglas Crawford, "An Investigation of Age-Grade Trends in
Understanding. the Field Axioms," Dissertation Abstracts, Syracuse University,
1964.

16Kenneth D. Hall, "An Expérimental Study of Two Methods of
Instruction. for Mastering Multiplication Facts at the Third-Grade Level,"
Doctoral Dissertation, Duke University, 1967.
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employing the traditional approach with practice on'commuted combinations.
He‘found no significant difference between the groups on both

arithmetic computation and achievement in multiplication. This

result lends support to the notioﬁ that there is no advantage in the

mere acquisition of a field postulate.

Gréy, in 1964, tried to deterﬁine how-a method of teaching
introductory multiplication which stressed development of an under-
standing of the distributive law would relate to pupil development
as measured in terms of achievement, transfer, retention and progress
toward maturity of undefstanding of multiplication.17 He used two
treatment groups. <One group, Tl was taught according to what was
judged to:Be:theqbest of current .methods. The other group, TZ,,was
provided with :introductory multipliéation using an understanding of
the disﬁributive;principle. Pre—-experimental -achievement and I.Q.
were covaried. - He constructed written pre-test, post-test, retention,
and transfer'tests. Individual interviews of 110 random subjects
measured maturity of understanding. His results warranted the follow-
ing conclusions:

1. A program of arithmetic instruction which introduces
multiplication by a method which stressed understanding of the dis-~
tributive property produced results superior to those of current
methods.

2. Understanding of. the distributive property enables

children to proceed independently. to the finding of producté:of

;17Rolahd”F. Gray, "An Experimental Study of Introductory
Multiplication,V“Doctoral.Dissertation, University of California,

Berkeley; 1964. ..
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novel multiplication combinations, to a greater extent than those
children not introduced to the distributive principle.
3. These children appeared not to develop an understanding

of the distributive property unless it was specifically taught.

Ihere have been relativelyg§ew stgdies which have been
congerned with the relationship between understanding of the field
postulates and learning of computational algorithms. In most studies
the algorithms were illustrated using physical devices. Héwever,'
Schrankler tried to evaluate the effectiveness of two pre-algorithm
treatments.in: combination with two algorithms for teaching the
multiplication of whole numbers at three intelligence levels.18
Effectiveness was evaluated in terms of computational skills, speed
in computation, .understanding of the multiplication process, problem
solving and retention of the four previous criteria. The readiness
phasé placed emphasis:on the 100 multiplication facts for group Bl'
Emphasis was placed on the commutative, associative and distributive

properties for group B,. Following'this period, these groups

2

were subdivided inte algorithmic groups. Group A1 subjects were
taught the indent unit-skills algorithm:

57
x 28
456
114
1596

lSWilliam.Schrankler, YA Study of the Effectiveness of

Four Methods of Teaching Multiplication of.Whole Numbers in Grade
Four,'" Dissertation Abstracts, University of Minnesota, 1966.
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Group A, subjects were taught the partial products algorithm:

2
57

x 28

56

400

140

1000

1596

No mention was made of the use of the annexation algorithm in the
partial products algorithm. Students in each of the treatment groups,

A Bl, A

1 AZBZ’ were identified -at one of three levels of

281> A48y
intelligence. Schrankler found that. the A2B2 group tested higher on
the test of understanding than the other groups. This same group

also tested higher on the retention test of understanding. The

fact that'the:A B, group was found to be superior to the AlB

2B, group

2
on the test of understanding of the multiplication algorithm is of
particular interest. This result suggests that the understanding
of computational algorithms is best promoted by the explicit
application of.previously acqaired algebraic principles. Studies
such as Schrankler's have been restricted to examining the use of
algebraic principles in promoting understanding of already acquired
computational algorithms. No. studies were found which examined

the use of algebraic principles in promoting transfer to untaught

higher—-order algorithms.



CHAPTER III

DESIGN OF THE EXPERIMENT

THE SAMPLE

The experimenter decided to use grade three students as
subjects in .the study ;ince they had had some experience with
multiplication but had not as yet been taught thé standard multiplication
algorithm. Eight grade three classes were selected from six British
Columbia schools. All eight of the teachers involved in the study
were volunteers.

After the readiness phase, which will be .described in the
next section, students in each classroom were randomly assigned to
either the Tl.or T2 group. A student's test‘scores were omitted
from the study if more than one treatment lesson was missed. A
total of 238 subjects were used. to obtain the final set of data; 44
subjects were .used for test analysié, and the rémaining 194 subjects

for testing the hypotheses.

THE INSTRUCTIONAL SEQUENCES

A. The Readiness Phase. -
During this phase, all .the subjects were taught the skills

which were considered to be prerequisites for the treatment phase.
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A set of lesson plans was provided for each teacher involved in the
study; Briefly, these lessons stressed:
- the relationship between multiplication and arrays.
For example, |
3 x 4 means a "3 by 4" array
— the distributive law; both the right hand and the left
hand. This was to be accomplished by breaking arrays into

the "sums" of smaller arrays. For example:

4 x 5 4 x (2 4 3) (4 x2) + (4x3)
X X X X X XX X XX X X X X X
X X X X X XX X XX X X X X X
X X X XX XX XXX X X X X X
X X X X X XX XXX X X X X X

- the application of the distributive law to multiplication
problems.
Only the techniqueseéf breakinga product into the sums éf smaller
products was stressed and no attempt was made to have children

provide a final numerical answer. For example,

28 20 + 8 : 20+ 8

x 19 x 19 x 19
19 x 8

+ 19 x 20

For a full description of these lessons, the reader is referred to
Appendix B.

In order to parallel typical teaching practices and thus
increase the generalizability of this study, the writer'did not demand
a fixed cri;erion of mastery of the distributive law. Rather, all
teachers were instructed to terminate this phase when, in their

judgement, the students indicated a mastery of the distributive law.
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The teachers reported that this phase generally took about five

hours of classroom instruction.

B. The Treatment Phase.

Every teacher was provided with a set of written lesson plans
suitable for each treatment lesson.' The lessons contained the general
dialogue, examples and seatwork to be used. The teachers met with
the writer twice during this phase to ensure that they understood
the lesson materials. To minimize éhe effect of teacher differences
each teacher taught both groups within her class. To minimize pupil
interaction, it was arranged to have the groups separated during a
treatment-lessoﬁ. All pupils were told by their teacher they they
were involved in an experiment. To minimize outside influences,
teachers wefe instructed to give no homework during this phase. Both
the Tl and T2 groups had approximately four hours of treatment time.

A brief description of béth treatments is provided in the following
section but the reader is referred to Appendix C for the lesson

plans used.

The Tl Instructional Sequence

The Tl group was taught the rote-type algorithm described
in Chapter I. The algorithm was restricted to 2 x l and 3 x 1
products. To convince the students of the.legitimacy of this,;
algorithm, all answers were initially checked.using the distributive

law. For exémple’the check might be made as follows:
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2 242 +24 3% 18 + 18 + 18 + 27 + 27 =
1 ] 343 1 7 7 = 108

x 9 > 7 x 9

In contrast to the T2 Instructional Sequénce, no explicit application
of the distributive principle was stressed. Once fhe students were
convinced that this rote-type algorithm yielded correct products, the
objective of the succeeding lessons was merely to provide further

practice.

The T2 Instruction Sequence

The T2 subjects were firsévtaught the annexation algorithm.
A1l computation of 2 x 1 and 3 x 1 products were accomplished by
using the distributive principle.in conjunction wiﬁh the annexation
algorithm. The.teachers were instructed to use the same examples and

seatwork with both groups.

THE - MEASURING INSTRUMENTS

Both the performance .and transfer tests were written tests
constructed by the experimenter. The teachers knew the general
nature of each test prior to the'tréatment phase but did not see the
actual test items until the tegt ‘administration date. Teachers were
instructed to give students ample time to complete both . tests. ' Any
solution by repeated addition was disregarded for both tests. The

reader is referred to Appendix D for the actual tests-used.
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A. Performance Test.

This test consisted of twenty items that required the use
of the standard multiplication glgofithm. The total numBer of correct
responses was considered a measure o6f an individual's performance. In
order to delete items that were either excessively difficult or easy,
a point biserial correlation was calculated for every item. It was
»decided to reject an item if the point biserial r was less than .20
in magnitude.19 As a result of this analysis, all items of the original
test were retained. Since this test was designed to measure a very.
specific trait, (viz. the ability to use the standard multiplication
algorithm), it was felt that a measure of item homogeneity should be
determined. Thus a KR20 was calculated for the twenty item test and
was found to be .93. This value indicated that the performance test
was high in item homogeneity. The results of the items analysis can

be found in Table I.

B. Transfer Test.

This test consisted of fourteen itemé which were intended
to measure the ability to compute novel prdducts requiring the use of
a higher-order algorithm. Neither tﬁe Tl group -nor the T2 group had
been previously exposed to any of these items. The total number of
correct responses was considered a measure of the ability to extend

the standard multiplication algorithm. As with the performance test,

19Nunnally, J.C., Psychometric Theory, (New York: McGraw-
Hill Book Company, 1967), p. 242,
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a KR20 was calculated’to evaluate item homogeneity. The KR20 of the
final fourteen item test was found to be .78. It is possible that the
KR20 might have been increased in magnitude by including additional
test items. However, this lengthening procedure was felt to be
inappropriate since a very lengthy test might have had the undesirable
effect of iﬁcreasing test anxiety of such young and 'test immature'

students. The results of the item analysis can be found in Table II.
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TABLE I

ANALYSIS OF THE PERFORMANCE TEST

Item Point Item Point
Number Biserial : Number. Biserial
1 .45 : 11 .53
2 .61 12 .73
3 .50 13 74
4 .77 ‘ 14 : .72
5 .64 15 .49
6 .75 16 .67
7 .74 17 . .72
8 .70 18 .64
9 .54 19 .74
10 .64 20 .67

TABLE II

ANALYSIS OF THE TRANSFER TEST

Item Point Item Point
Number Biserial ‘ Number Biserial
1 .50 13 0.0 *
2 .59 ‘ 14 0.0 *
3 .43 : 15 0.0 *
4 .59 : - 16 0.0 *
5 .65 17 0.0 *
6 .65 18 0.0 #
7 0.0 * 19 0.0 *
8 .56 20 .24
9 <46 21 .47
10 .43 22 0.0 #*
11 .65 23 .69

12 .51

*
Deleted items.



CHAPTER 1V

ANALYSIS OF THE DATA

EXPERIMENTAL RUN

A, The Performance Hypothesis.

The statistical hypotheséas to be tested'were;-

H,: There will be no significant diffefénces between the means
of the Tl and T2 groups as measured by the performance
test.

That is: M T, AT,

H.: The mean of the Tl group will be significantly greater
thén the mean of the T2 group as measured by the
performance test. |
That 1s: M T, > M T,

Each classroom teacher taught both the Tl and T2 groups in

her classroom. Thus a subject in a classroom was given either the
Tl or T2 instruction by his or her usual classroom teacher. The
experimenter qgnsidered the differences in teacher performance to be
‘a random effecﬁ; while difference in treatment were considered

to be a fixed effect. In other words, a mixed analysis of variance
model was felt to be the most appropriate statistical model to test
the hypothesis. The linear model chosen was:

Yi-j,k =M -I-‘i +Tj + W)ij +e»ijk ; where

O(i indicates the ith teacher (random effect) and

jrj represents the jth treatment level (fixed effect).
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The experimenter made the usual assumptions underlying an ANOVA but
did not test for these as the F test is reasonably robust to violations
of these assutﬁptions.20 The assumptions made were:
a) the teachers, used in the experiment, were randomly
selected from a normal population. i.e.
& i are NID (0,‘6;2) and
m)ij are NID (o,(é),
b) theeijk are normally distributed, i.e.
£ ;4 ave NID o, {Ez),

¢) the treatment variances are homogeneous, i.e.

2 2
6'131 - 6Tz

The reader is reminded that the denominator in the test for
treatment (fixed) effects in a mixed model is the interaction term
and not thé usual error term.21 The null hypothesis was considered
to be rejected if the proEability of obtaining an F value, under
the null hypothesis, was less than ér equal tC)a( = .05. A1l
calculations were done at the University of British Columbia Computer
Centre using the BMD-X64 program. This program allows for differing
numbers of .subjects in a cell by using the least squares estimate

technique. The results of this analysis are summarized in Table III.

Lindquist, E.F., Design and Analysis of Experiments
in Psychology and Education (Boston: Houghton, Mifflin Company, 1953),
pp. 78-90.

21 .. .. . . g
and Winston," 198357 bp."8%3:4,ftariatics (New York: Hole, Rinehart
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TABLE III

ANATYSIS OF VARIANCE: PERFORMANCE HYPOTHESIS

Source of Sum of Mean

Variation df Squares Squares F P
Teacher 7 812.197 116.028 5.258

Treatment 1 1775.630 1775.630 215.491 .0000083
Interaction 7 57.679 8.240 0.373-

Error 178 3927.752 22.066

Mean for Tl group was 14.418
Mean for T2 group was 8.330

Since the probability of obtaining an F-value of 215.491 was
calculated to be far lesswthan .05, the null hypothesis H, was rejected

and the alternate hypothesis H, was accepted.

1

B., The Transfer Hypothesis.

The statistical hypotheses to be tested were:
Ho: There will be no significant differences between the
means of the Tl and T2 group as measured by the

transfer test.
That is: AT1= b

H.: The mean of the T2 group will be greater than the mean

of the Tl group as measured by the transfer test.
That is: AL 1, > M

Originally the experimenter had hoped to terminate the
treatment phase only when both groups had reached a specified per-
formance criterion. That is, until there were no significant differences

between the two groups on the performance of the standard multiplication



algorithm. Thus, if any degree of.correlatipn_existed between the -
performance and transfer tasks, this preliminary equating would
minimize any differences between the groups on the transfer test
that might be a result of differences between the means on the
performance tasks. However, to bring about the equality of the
groups on the performance test, performance scores were covaried
with transfer scores. Thus the linear model used to test the
transfer hypothesis was:
v

Tisk =/’(~T"(-i +’Tj MR A T @w Keee = X5 +Eijk.
where

9(1' Tj' m)ij and @ ik vere previously defined;

{? ' is an estimate of the common population regression

w
coefficient;
Xijk is a subject's performance score and
X... is the grand mean of the total sample on the perférmance

test.
In addition to the necessary assumptions underlying an ANOVA that were
discussed in the previous section, the use of this model necessitates
the following additional assumptions:
a) the population within-cell regression coefficients
are homogeneous, i.e.
] 1
6 =@ for all ij.
w W, .
1],
Because little is known about the F test with respect to
violation of the foregoing assumption, it was decided to test this
assumption at a level of significance equal to .10. Using the BMD-X82

computer program, which adjusts for differing numbers of subjects
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in a cell, an F of 1.06, with a numerator and denominator of 15
and 162 degrees of freedom respectively, was obtained. Since the
probability of obtaining such an F, under the null hypothesis is .398,

homogeneity of the regression coefficients was assumed.

b) the pooled estimate‘? ' is not zero.
w

In testing this assumption at the..05 level of significance,
an F of 99.14, with a numerator and denominator of 1 and 177 degrees
of freedom respectively, was obtained. Since the probability of obtaining
such én f, under the null hypothesis, is less than 10—8 the hypothesis
of zero slope was eésily rejected.
The results of the statistical analysis of the transfer

hypothesis are summarized in Table IV.

TABLE IV

ANALYSIS OF COVARIANCE: TRANSFER HYPOTHESIS

Source of Adjusted Mean

A df F P
Variation Sum Square Square

) I

Teacher : 7 179.984 25.712 3.961
Treatment 1 24.363 24.363 2.725 141
Interaction 7 62.570 8.939 1.377
Error 177 1149.077 6.492

Adjusted mean for Tl group was 3.776
Adjusted mean for T2 group was 4.544

Since the probability of obtaining an F of 2.725 is .1l41, the null
hypothesis was accepted. That is, the mean of the T2 group was higher,

but not significantly highef, than the mean of the Tl group.



CHAPTER V

CONCLUSIONS AND IMPLICATIONS FOR FURTHER STUDY

DISCUSSION OF CONCLUSIONS

~A.s Performance Hypothesis.

With respect to the performance hypothesis, it was found
that sﬁbjects taught a rote-type algorithm did significantly better
on taéks requiring the use of a standard multiplication algorithm than
did the subjects taught a standard multiplication algorithm using
previously learned algebraic principles. 1In fact, the performance
le;el-of the T2 group was so inferior to that of the Tl group that
this researcher suspected thagi§§eébfé£hé%ﬁ%%§ﬁers(hadlhotefdlldwed the °

recommended treatment procedures. It was quite possible that, since
most teachers had never used an instructional sequence iike the

T2 sequence, they mazihave héd an experimental bias towards the

rote il sequence. Péfhaps more frequent observations of teacher

performance would have ¢liminated such a bias towards treatment.

B, Transfer Hypothesis.

With respect to the transfer hypothesis, it was found that
subjects taught a standard multiplication algorithm using algebraic
principles appeared to exhibit superior positive transfer to tasks

requiring the use of a higher-order algorithm. However, this difference
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in the amount of transfer was not statistically significant at the
o( = .05 level of significance. |
Because of the nature of the treatments, a T2 subject needed

more time fo format correctly a computational problém than did a

Tl subject. Thus, teachers were instructed to give students

at least one hour to attempt all fourteen items of the transfer test.
However, after a brief discussion with the teachers, it was noted
that some had allowed students about thirty minptes to complete this
test. In fact, one teacher who obviously misunderstood the intent of
the transfer test, stated that she gave children about fifteen minutes
on this test because ''the students weren't taught to compute such
large products'. Thisfsituation could not be remedied by another
test admin#stration because school holidays immediately followed the

test administration date.

PROBLEMS FOR FURTHER STUDY

Since the results of. this study must remain inconclusive

because of important uncontrolled factors, a replicate study

employing controls to minimize teédher misundefstandings should be conducted.
This writer also suggests that a study be conducted to examine

the»effect of instructional sequences that use algebraic principles ;o

teach computational algorithms on a student's attitude toward

arithmetic. It.is postulated that instructional sequeﬁces that

maximize the use of previously learned algebraic principles may enable

a student to view arithmetic as a series of integrated tasks. This inte-

grated view of arithmetic, might, in turn, have a positive effect on a

student's attitude towards arithmetic.
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APPENDIX A

THE IDENTIFICATION OF ANOTHER INTERNAL ALGORITHM



THE DIVISION OF FRACTIONS ALGORITHM

AND THE EQUAL FACTORS ALGORITHM

In addition to the mere rote:performance of an algorithm,

most modern programs attempt to provide some rationale of that

algofithm. Perhaps the most difficult algorithm to explain

reasonably to the average elementary
of fractions algorithm.

2
a typical approach is as follows: 2

Step 1 5% ?m% =W
Step 2 l%
3
%
Step 3 11
i*3
11 _ 4
Step 4 5 X 3
34
4 7 3
14
273
4
273
11 4 _ 44 _ 1
Step 5 X3 T ¢ T ?3
1:3_ 5L
S

school child is the division

In an attempt to provide this rationale,

The work below shows how to

divide 5l-by éu Use-ll as another
2 4 2 i
name for S%u

Express the-ﬂivisidﬂu: in this way.

First you need to get 1 for the
divisor, you multiply Z—x-% to get 1.

%-has been multiplied by %u

x 2
3

So you

must also multiply l%

You do not need to write the

divisor when it is 1.

So now you can write the computation

in this way-

11

You found 7% by multiplying %—by 5

22Maurice L. Hartung, et al.,

ggeing Through Arithmetic 6,

§¢ott, Foresman and Co., Chicago, P+ i9



One apparent assumption that has been made is that the
procedures taken in Steps 3 and 4 can be followed by the elementary
school child. However, the validity of these two &teps must be
blindly accepted by the.child since no preliminary-work has been
done that could be used to justify these steps. One wonders what
advantages this modern treatment has over the rote "invert and
multiply" algorithm because apparently we have merely substitutéd a
long rote algorithm for a short rote algorithm.

What is needed to validate steps 3 and 4 is an internal
algorithm; the equal factors algorithm. This algorithm states that
if the divisor and dividend are multiplied or divided by any non-
zero rational number, the quotient remains unchanged. For example:

8+4)=(2x8)+ (2x4
If this internal algorithm is mastefe&, the division of fractions

becomes much more reasonable to the elementary school child.

Step 1. 1.3 _ Al 4 . 3 4
5 TG ¢ > x‘3) : (4 X 3) equal factors
algorithm
11 4y . 3 4 11 4 . e
Step 2 5 X 3) : (4 x3) = ( 5 X 3) + 1 multiplication
of reciprocals
11 4y .0 11 4
Step 3 5 X 31" 1 =7 X3 property of
Step 4 1l .33 11 4
273 2°3

37

one



APPENDIX B

READINESS PHASE LESSON PLANS



THE READINESS PHASE

These three lessons should;enable most students to aéquire
the necessary prerequisite skills before the actual experimental
treatment begins. The teacher will find that all lesson plans-are
quite detailed including examples to. use, questions to ask, answers
one can expect, and seatwork problems to be used after each lesson.
In order to minimize any misunderstaﬁding that méy result, will ;he
teachers please observe closely the following instructions:

1. Carefully read the lesson plans at least a day

before the presentation. If ybu have any questions
or suggestions, please don't hesitate to contact
me. The phone number is 736-0595.

2. Try to give the answers to all seatwork questions
before the students leéve school for that day. Give
NO HOMEWORK as outside influences must be discouraged.

3. Record any absenteeisms on the list provided.

4. 1If more examples are needéd to illustrate any concept
before the seatwork is attempted, please feel free to
do more.

5. If you feel that another period may be necessary, then

extend this phase for another period.
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LESSON 1: MULTIPLICATION AND ARRAYS

The basic objectiveslof the lesson are:

A. To introduce the concepts of an array and its relationship
to multiplication.

B. To illustrate the comﬁutative principle for multiplication;
axb=5bxa (in this case, an a x b array, though
drawn differently, has. the same number of elements as
ab x aarray).

1. Introduction of an Array

"Today we will see how we can multiply using an array."
(Write the word array on the board).
"Here is an example of an array."

X X X

X X X
"This array is called a 2 x 3 array sdnce it has 2 rows of
3 crosses."

2 % 3 XXX rowl

X-X X row 2
"We usually write the words '2 by 3' as '2 x 3'."
Draw a 4 x 3 array on the boafd; ask children to give reasons

for their responses.

"This is a 4 x 3 array because it has 4 rows of 3."
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X X X row 1
4 x 3 X X X row 2
array X X X row 3
X XX row 4

Draw the following examples on the board (6fie at a time) and
ask the children to name each. Ask children to give reasons for thedr

responses.

X X X
X X X
X X X
X X X XX X X X X
X X X X X X X X X. X X X X X X
5 x 3 array 2 x 6 array 1 x 6 array.
(5 rows of 3) (2 rows of 6) (1 row of 6)
"Here is the name of an array." (Put 3 x 6 on the board).

"This time, try to draw what this array would look like."

(Give children a few moments and then check individual pupil's work).

Answer: X XX X XX row 1
3x6 ‘ .

XXX XXX row 2
array. : .

4 XX X XXX row 3

Ask the children to draw the following arrays:

1 x4
2 x5
3x 7

Check pupils' work and ask;reasons for their responses.

2. The Commutative Principle for Multiplication; a x b-=b x a

"Canianyone come up to the board and draw a 2 x 4 array?"

(Have a pupil come to the board and draw the array; ask the

child how many crosses are in this array).
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"Can¥ anyone come up to the board and draw us a 4 x 2

array?"

Draw attention to the fact that a 2 x 4 array and a 4 x 2°
array have -the same number of elemeﬁts but are drawn differently.

Repeat the same procedure using the 5 x 4 array and a 4 x 5
array.

Draw an 8 x 4 érray on the board.

b
™
™

]
™
i
]

X X X X
X X X X

Ask the children if they can find another array which would
have the same number of crosses, but would be drawn differently.
Note: several answers are possible, but draw attention to

the fact that if we rotate the array we end up with a 4 x 8 array.

X X X X
X X XX
X XX X
X X X X
X X XX XXX XX XXX
X X X X XX XXX XXX
X X X X XX XXX XXX
X X X X XX XXX XXX
8 x 4 array 4 x 8 array

HHere is a very large array (13 x 8). Canyanyone tell me
another array that would be drawn differently but would have the same

number of crosses?" (Answer: 8 x 13).
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If needed, do other examples to emphasize the point that an

a x b array has the same number of elements as a b x a array.

3. Seatwork

These séries of questions are to provide additional practice
with the concepts covered in Lesson 1. Please allow enough time for
marking the seatwork as this will enéble you to determine if most of
your class will be ready for Lesson 2.

A. Name the following arrays.

1. X X X

X X X

X X X

X X X

X X X (Answer: 5 x 3)
2. X XXX XXX (Answer: 1 x 7)
3. X X X X X

X X XXX

X X X XX (Answer: 3 x 5)

]

X o

(Answer: 7 x 1)

B. Draw the following af¥rays.

1. 2 x6
2 8 x 2
3. 10 x 4
4. 1 x11

5 11 x 1
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C. Name or draw another array which would have the same number of

x's but would look different.

1. 2 x6
2. X X X
X X X
X X X
X X X
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LESSON 2: THE DISTRIBUTIVE LAW

The basic objective of this lesson is:
To introduce both the left hand and the right hand distributive
law. The left hand law states that a x (b + ¢c) = (a xb) + (a x c).

For example: 4 x 7-= 4 x (4 + 3)

(4 x 4) + (4 x 3).
The right hand law states that (b + ¢c) xa= (b xa) + (c x a).

For example: 8 x 6 = (3 + 5) x6

(3x6) + (5x6).

The teaching of both principles will be accomplished by
dividing‘an array into smaller arrays.

Please do not use the Egzﬁg right hand and left hand distri-

butive laws with the children as this only leads to confusion.

1. Review
a) Draw a 6 x 7 array on the board and ask the children
the name of this array. Children should give reasons
for their answers.
Example: there are six rows of seven x's.
b) Have a child come to the board and draw a 4 x-2 array.
2. "Let us look at the following array."

XX XX XXX
KeX X X X X X
X XXX X XX
XXX X XX X
X X X XX X>X

"What is the name of this array?" (5 x 7)
"How could we find out how many cresses there are in that

array?"
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(Children will probably offer suggestions such as counting

the individual elements, adding 5 seven's etc.).

Step 1,

"A1l of these methods are fine, but here is another

]

VR VI

interesting way. Let's break up the 5 x 7 array into
smaller arrays like this."”

Step 2 ‘ Step 3

5x (4 + 3) ‘ G x4)+ (B x 3)
X X XX XX XXX X XXX X X-X
X X XKXXX XXX X XXX XXX
X X X XXX XXX XX XX XXX
X X XX X X %X X X X XXX XXX
X X XX XX XXX | XXX X XXX

"Notice that the 5 x 7 array equals-a 5 x4 array plus a

5 x.3 array. Can any of you think of other ways of breaking
up this array?"

(Let children suggest other possibilities).

For example:

Step 2 Step 3
5x (2+ 2+ 3) Gx2)+ B x2)+ G x3
X X XX XX XXX X X X X X X X
X X XX XX XXX X X X X X X X
X X XX XX XXX X X X X X X X
X X- X X XX XXX X X X X X X X
X X XX XX XXX X X X X X X X

Allow thildren to break up a 7 x 8 array. Try to emphasize
and 3.

For example: 7 x 8 = 7 X 3+5)=(7x3)+ (7 x5).
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3. The Right Hand Distributive Law

"Here is another array."

X X X X
XX XX
X X X X 5x 4
X X X X
X XX X

'""We have been breaking these arrays up by renaming the.
second number."

For example: 5 x4 =5x%x'(5x2) + (5 x 2)

"We can aléézbreak an array into smaller arrays by renaming
the giEEE.number.".

For example:

Step 1 Step 2 ‘ Step 3
X x‘x X X.X XX X X
X X X % 3 X X X X 3 x4 X X X X
X X X X X X X X X X X
X X X X 2 {X xx X 2 x4 {: X xXx
. X X X X X X X
X XX X »
5 % 4 B+2)x4 B x4)+ (2 x4b)

Ask children for fﬁrther ways of breaking up this array
by rénaming'the first number. |
| For example:

Sxhe (QH142+ 1) xh= Qxd) + Lxk)+ @xh) + (Lx ).
"Now we should be able to break up any.array into smaller
arrays be rénaming the secénd number or ?enaming the first
number." |
Note: Several more examples.will.probably be neededlat this

stage. The teacher .should emphasize the tediques or rénaming both

the first number and the second number.



4. Seatwork

A.

48

Break up each of these arrays by renaming the' second number.

1

2)

6

x 7

3 x 8 =

Break :upzeach of the following arrays by renaming the first

number.
1l 6 x7
2) 8 x.4

Provide the
1) 6 x7
2) 4 x 8
3) 3x 8
4) 7 x5
5) 7x9

numeral which makes the sentence true.

6x (4+3)=(6x7?)+ (6 x3)

(4 x2) + (2 x6)

3x2)y+3x2)+ 3x7

4+ 17 x5=C(lzx5 + (2 x5)

(7 x8)+ (7 x17)



APPENDIX C

TREATMENT PHASE LESSON PLANS



TREATMENT - ONE

®

LESSON 1: MULTIPLICATION ,0OF TWO BY ONE PRODUCTS

The-objective of this lesson is to teach the rote multiplication
algorithm for 2. by 1 products; both with and without carrying.

A. Without Carrying

"Let us look at-the following multiplication problem"

11
X 6

"Can anyone suggest a way of solving this:problem by renaming
the top number?"

(One possible answer might be): .

11 5+5+.1 54+ 5 +.1
X_é.:-?- . x 6 x 6
A 6 x 1 =:6

+ 6 x 5 =30
+ 6 x 5 =30
6

The teacher should leave the work for 11 x 6 on the board
and .write down 11 x 6 somewhere else.

"Today we will learn another way that is probably faster

than breaking up a multipiication problem. We merely have

to work in the following way."

11
X 6

"We first ask ourselves what is 6 x 1? Then we place the
6 ones in the ones position."
11

x 6
6
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"Then we ask ourselves again what is 6 x 1? This time
we have 6 tens and must place the 6 tens in the tens
position." |

11

x 6
- 66

To confirm the answer, the teacher should refer to the
problem 11 x. 6. done by the distributive pfinciple (first example).

At this point the teacher should ask one part of the Tl
group to try the problem,

11
% 77

by renaming the top number. The other half .should .try the newvalgorithm.
When both groups have finished, the answers should be compared.

If needed, .try the problem of 11 x 9 in the same suggested manner.

B. With Carrying .

Write the problem . %ﬂlz

6 on .the board.

Ask for suggestions as to how to: solve this. problem by

renaming. the top number. One suggestion might be:

12 - 6 + 6 6+ 6

X 6 Xx. 6 X 6
6 x 6 36
+ 6 x 6 =436
72

"We can solve this problem using our new way."

12-
x 6

"What is 6 x 2? This time ‘we have 12 ones. Let's break
this up into 1 ten and 2 ones. Now we can'place the 2 in

the one's place as before."
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12

2
"We should place the 1 ten in the ten's place."
l‘_:’lr

17
x 6

2
"Now we ask ou@sélves——what is 6 x 1? This time we get
6 tens. But since we have another group of ten under-
neath, we‘ﬁust add it to the 6. Then we place the 7 tens

in the ten's place."

1
1

ON NN

X

72

The teacher should then try a problem like 6 x 22 which
invdiﬁes theyplacement of -a 1 in the hundreds place. Use the same

)

steps as before.
Using the new algorithm, the pupils should attempt the
following:

21 11 14
x 6 'x 9 x 5

During this time help can be given to individuals as needed.

C. One by Two'Products
This involves the handling of a problem such as:

6
X 23

Since in the readiness phase the commutative law for

multiplication was taught, it should be easy to convince the child that
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with this type of problem we merely "turn it upside down."

6 23
x 23 x 6

Now the child should be able to solve this type of problem.

D. Seatwork
It must be emphasized again that only these listed problems
should be attempted. It is also important that the answers be

given to the children before they leave school for that day.

Multiply:

1. 65 2. 7 3. 89 4. 15 5. 49 6. 99
x 3 x 13 X 5 x 8 x 4 x 2

7.




54

LESSON 2: MULTIPLICATION OF THREE BY ONE PRODUCTS

The objective of this lesson is to teach the rote
multiplication algorithm for 3 x 1 products; hoth with and without
carrying. Since the procedures for 3 x 1 products are very simple
extensions of those for 2 by 1 products, a detailed lesson would
be redundant. However, the teacher is urged to restrict all

computation to only the examples given.

A. Review
Examples to use:

3 11 78
x 37 x 8 x 3

Emphasize the steps taken to get the final answer.

B. Without Carrying

Ask for suggestions to solve the problem

132
X 3

Most children will probably suggest extending the pro-

cedures used to solve 2 x 1 products.

A typical explanation of the procedures to use might go

as follows:

132
X 3

"Multiply the 3 x 2; we get 6 ones and have to place this

6 in the one's position."

132
x 3
6



"Multiply the 3 x 3; we get 9 tems and place this 9

in the ten's position."

132
x 3

6
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"Finally, multiply the 3 x 1; we get 3 hundreds and place

the 3 in the hundred's position."

Children should attempt: 102

After sufficient time, ask the children to explain the

132
x 3
396

x 3

procedure in addition to the final answer.

C. With Carrying

Example to use:

213
x 7

412
x 2

210
x 4.

Again .children will probably extend procedures for 2 x 1

products. . Go through steps as in problem.without carrying, but

stress breaking up 7 x 3 = 21 ones

Children should attempt:

D. Solution of 6

x 142

= 2 tens + 1 one.

120
X 7/

108
X 5

223-
x 6

Again, as in 2 x 1 products, children should be urged to

turn problem

'upside down' and then solve.

6
x 142

142
x 6



E.

Seatwork

222
x 7

636
x 5

107
x 7

101
X 4

3.

24
x 101

x 191

56

4. 27
x 550
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LESSON 3: A REVIEW OF THE ROTE TYPE ALGORITHM

FOR 3 x 1 AND 2 x 1 PRODUCTS

This lesson is needed to allow the T2 group to finish their
treatment. Since most of the students in the Tl group will have
mastered the rote-type algorithm, this lesson is probably unnecessary

for this group. However, it is essential for the purposes of this

.

study and can be used as merely a practicé lesson. The teacher should
use only the problems given in this lesson. Please do not give extra
proBlems to those who finish early. The teacher should have ample.
time to give individual help during this period. 1In addition to

giving answers to the problems, the teacher should explain the pro-

cedures used to get the final answer in 3 or 4 problems.

Multiply:
1. 62 2. 1 3. 23 4, 40 5. 425
x 6 x 49 X 6 X 2 X 5
6. 8 7. 3. 8. 108 9. 39 10. 4
x 280 x 949 X 2 x 3 x 49
11. 57 12. 523 13. 730" 14. 9 15. 61
x 7 X 4 X 5 ©oox 424 X 5
16. 99 17. 45 18, 9 19. 253 20. 208
X 4 x 9 x 30 x 4 x 8

|
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TREATMENT TWO

LESSON 1: THE BEGINNINGS OF THE ANNEXATION ALGORITHM

The objective of this lesson is to teach children a

technique for multiplying any number by 10, 100, or 1000.

T ey
cTenveas aiFactor

1

The teacher should first quickly review multiplication as
repeated addition.
e.g. 3x8=8+8+ 8 =.24

List the following series of questions somewhere on the

board.
2 x10 = ? 6 x 10 = ?
3x 10 =27 7 x lOv= ?
b x 10 = ? 8 x 10 = ?
5%x10 =7 9 x10 = ?

Starting with 2.x 10 ='? ask children how to solve by adding
(10 + 10). Solve each problem by adding.
It should be@p¢inted out to the students that in each problem

the one digit number has changed places.

For example 2 x 10 = 20
"The 2 was originally in the one's place but after multiplication

by ten it shifted to the ten's place and a zero was placed to

the right."
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The children should quickly realize that to multiply by 10
we merely place a zero to the right of the other multiplier.

The following series of questions should then be placed on

the board.
10 x 11 = ? 10 x 21 = 2
12 x 10 = ? .18 x 10 = 7
13 x 10 =.?

Solve at least 2 or 3 proBlemslby adding. Again have the
students note that when multiplying by 10 the digits of the other

multiplier all shift to the left and a zero is placed to the right.

2. i?@ﬁeﬁﬁﬂﬁﬁ?é&ﬁés\a'Factori

Again the teacher should list a series of questions such as:

2 x 100

2 4 x 100 = 7

3 x 100

It
-

5 x 100

I
-~

Solve each by adding. This time it should be notéd that
studenFs should recognize that the digits have shifted two places
(fromvkhe one's place to the hundred's place) and two zero's are
then placed to the right.

The following series of questions should then be placed
on the board.

11 x 100

1
)

13 x 100

]
-

12 x 100

1]
-~

26 x 100

It
-

After~solving the first problem or so by adding, the children
should be able to quickly generalize that 26 x 100 = ? can be solved

by Yplacing two zeros to the right of the 26."



(26 x 100 = 2600)

60

It is'probably advisable to show the pupils how the 2

digit and 6 digit of 26 have shifted two places to the left.

Fmrars o f. 006
3 . v?mo"{l?S:an&Lfas-_Qa'_(;Factor

By now the students should

problems such as:

6 x 1000

12 x 1000

To convince some

I
-

?

-= = 6000

- - - 12000

be able to generalize to

pupils of the legitimacy of this

technique it may be necessary to solve a problem or two by édding.

Again the pupils.should realize that the digits

three places to the left and three zeros have been placed

4. Seatwork

1.

3.

11.

13.

15.

8 x

10

15 x 100

10 x 1000

1000
x 8

10
x 12

72 x

100
x 13

28
x 10

10

H

Il

? 2.
? 4.
? 6.
10.
? 12.
14.

12 x
100 x

12
x 100

100
X 9

98 x

1000 :
x 3

10 x  +

12

100

9

100

have shifted

to the right.

When marking the teacher should have students explain how

- they determined their final answers.
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"LESSON 2: THE ANNEXATION ALGORITHM

The objectives of this léésonjafe:

1) to complete the annexation élgdrithmléfx>§p = 240

2) to bégin applying the annexétion algorithﬁ and dis-
tributive priﬁciple to solve 2 x‘i prodﬁcts.

1. Review

a) ask' -children to multiply the following:

.3 x .10 ? 100 x 11 ?

il
If

18 x 100 ? 1000 x 19 = ?

Explain the procedures used té get final answer.

Example: (multiply by 100; we place EEQ'Zeros,to the right
of the othe; ﬁéﬁgéigleiﬂ étc.). .

b) review breaking up a productsinto the sum of smaller

products by renaming the top or bottom number. Final

answer not important.

12 10 + 2 ‘ 7 7
x 7 x 7 ~and x 13 x 10 + 3
7 x2 3 x7

x 7

+ 7 x10 _ + 10

2. Put the following series of questions on the board.

3 x 20 =.? 110 x ' 3 = ? 300 x 4 = ?
70x 5=2° 20x 3 =7 110 x 2 = ?
3'x 200 = ?

Show the children how to-solve any of the above in the
following manner.

For example: 3 x 20 = ?



b)

c)

d)
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"How many tens are there in 20? (Ans. 2)

"we can rewrite 20 as 2 x 10

3x20=3x2x10

Now the order in which we multiply in a question does

‘not matter, so; 3 x 20 = 3 x 2 x 10 = 6 x 10.

We have alread? learned how to multiply a problem such

as this" (place a zero to the right).
3x20=3x2x10=26x10 =60

To have the childrenlsee the emerging pattern for the

series of questions, the teacher should underline

the following:

'

3x 20 = 60

If the teacher does a few more examples in the above manner

it is hoped that the.child will see how to multiply 3 x 200 = ?

(Simply multiply 3 x 2 and place 2 zeros to the right 3 x 200 = 600).

Note: 1In solving 70 x 5 = ? the teacher should re-

write 70 as 10 x 7 rather than 7 x 10 since:

70 x 5 =.7 x 10 x 5 (have to commute 7 and 10 to solve)

70 x 5

10 x 7 x 5 =10 x 35 = 350

The next series of questions should be assigned to the

pupils. This will enable the teacher to quickly determine whether

or not the class is ready to continue. If not, more example should

be used to increase the competency with the annexation algorithm.

30x 6

110 x 3

9 x 20

? 200 x 8 ?

]
-~

100 x 10

[
-

Il
-~
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3. Multiplication<of:,2 by 1 products

"Now we are ready to do some difficult multiplication problems

12
6

like

a) rename 'top' number as

12 - 10 + 2
x 6 X 6

b) we know how to multiply this type;

12 10 + 2

X 6 x. 6
6 x 2

x10

+ 6

c) Now it becomes easy since 6 x 2 = 12 and we know that

6 x 10 = 60
12 10 + 2
x 6 x- 6
72 6 x 2= 12
+ 6 x10 = +60
72
The teacher should demonstrate:
21 - 20+ 1
X 6 x. 6
6x 1= 6
+6 x 20 = 120
126
Allow children to try 13 28
: x b x 3

If class appears to be acquiring some mastery and if time

. still permits, continue to the next section.

4. Renaming bottom numbers

Problems such as x 22 should be attacked in the following

‘manner.



[~
O Wi

Other examples to use might be:

5. Seatwork

4
x 31

8
x 51

Multiply the following:

1.

3.

2 x 120
2 x 600

11 x 300

W~

x 1

1
p:d

o WU

?

110.

MM+

O VW O

18
= 120
138

3x 70

100 x 100

x 41

The next series of questions should be assigned

students appear to have mastered the 2 x 1 products.

11.

_ 6
x 102

12,

100 + 10 + 1
>

13.

140

if some

64
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LESSON 3: SOLUTION OF 3 BY 1 PRODUCTS

Hopefully, this should be the last period of treatment for
the T2 group. The objective of this lesson is to teach the techniques

for solving several types‘of 3 by 1 products.

1. Review
~ Pupils should be assigned the following:

8 x 20 = ? 34 9
X 6 x 23

In addition to final answers,:the procedures used to solve

each should be re reviewed.

For example: 8 x 20 = 160
34 30 +.4
X 6 x 6
6 x 4= 24
+ 6 x30u= +180
9 9
x 23 20 + 3
3x9= 27
+ 20 x 9 = +180

2. Renaming the Top Number

Put the problem 102 on the board. Ask for suggestions for
x 3
possible solution. Rename the top number in the followingwway. The

rationale for each step should be explained in detail.

102 100 + 2 100 + 2
x3 x 3 . x3
3x2 = 6 multiplication fact
+ 3 x.100 = +300 multiplication by 100
306

Other examples that should be demonstrated by the teacher

are:
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a) 134 100 + 20 + 4 100 + 30 + -4
x3 x 3 x 3
o 3x 4= 12
+ 3 x 30 = +190
+ 3 x 100 = +300
402
b) 240 240 + 40
x4 x4
4 x 40= 160
+ 4 x 200 = +800
| 960

3. Renaming the Bottom Number

The pupils should realize that sometimes it is advantageous
to rename the bottom number. These examples should illustrate the
techniques to be used.

a) “8

8
x 101 x 100 + 1
1x8-= 8
+ 100 x 8 = 800
808
b) 3 3 3
x 246 x 200 + 40 x 6 x 200 + 40 + 6
. ‘ 6 x 3= 718"
+ 40 x 3 = +120
+ 200 x 3 = +600
738
c) 7 7 7
x 120 100 + 20 100 + 20
20x 7 = 140
+£100 x 7 = +700
840

The preceding examples should -be enough to enable most
students to acquire some proficiency for solving 3 x 1 products.
The seatwork to be assigned will be good practice for all students

and is lengthy enough to allow the teacher to give individual help.



4.

Seatwork

Multiply :

1.

3
x 280

61
5

730
X 5

208
X 5

3.

201

10.

67

xib24

= 00




APPENDIX D

THE MEASURING INSTRUMENTS



Performance Test

Name - School

69

First Last

Part A - Multiply the following

Please show all work

1. 87 2. 53 3. 60 4. 93
X 5 X 6 X 2 x 2
6 3 7. 4 8 7 9 4
x741 x 15 X 23 x 68

11. 732 12. 623 13. 201 14. 840

X 6 X 2 x4 X 2
16. 4 17. 4 18 6 19 5
x 606 X 433 x:218 x+330

10.

15.

20.

604
x 8

7.
X111



Transfer Test

Name

First Last

Part B — Multiply the following

Please show all work

1. 1001 2.
X 6

4, ' 3461 5.
x 3

7 13 8
x 64

10. 12 11.

x 2010

School

1234

12
x 11

25
x 12

1111
x 15

70

12.

4x.:.1100

1001
x 11

16
x 1100



13.

16.

19.

22.

111
x 101

113
x 201

101

x 1111

16
x 211

14,

17.

20.

23.

203
x 122

1001
x 101

122
x 12

11
xx103

15. 120
x 102
18. 1200
x 110
21. 101
x 18

71
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APPENDIX E

THE EXPERIMENTAL DATA



TABLE V

EXPERIMENTAL DATA

TREATMENT
Tl T2
Sub—-  Perfor- ‘Trans— Sub- Perfor- Trans-
jeet mance fer ject mance fer
1 15 4 1 8 2
2 16 3 2 8 5
3 18 2. 3 9 0
4 11 1 4 14 8
5 11 . 8 5 8 0
6 16 4‘ 6 14 0
TEACHER 7 16 b 7 6 Y
1 8 16 4 7 1 0
9 15 3 9 4 ' 0
10 11 2 10 9 2
11 5 2 11 1 0
12 6 1 12 0 0
13 12 3 i 13 7 3

14 19 4 14 0 0




TEACHER

2
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TABLE V .

EXPERIMENTAL DATA

TREATMENT
Tl : T2
Sub- - Perfor- Trans— Sub- Perfor- Trans—
jeét  mance fer ject mance fer
1 20 | 11 1 5 0
2 10 1 2 14 0
3 18 8 3 14 0
4 10 4% 4 10 3
5 3 2 5 14 9
6 13 3 6 0 0
7 3 1 7 0 0
8 13 3 8 7 0
9 9 2 9 0 1
10 5 1 10 0 0
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TABLE V

EXPERIMENTAL DATA

TREATMENT
T1 ‘ T2
Sub-  Perfor- Trans-— Sub- Perfor- Trans—
ject mance fer ject mance fer
1 18 4 1 17 4
2 15 9 2 15 7
3 14 12 3 7 5
TEACHER
4 11 ot 4 8 5
3
5 18 4 5 2 2
6 15 6 6 0 1
7 12 5 7 0 0
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TABLE V

EXPERIMENTAL DATA

TREATMENT
T1 : | T2
Sub-  Perfor- Trans- Sub- Perfor- Trans—
ject mance fer ject mance fer
1 19 5 1 17 8
2 17 7 2 17 8
3 19 ~ 10 3 15 9
4 20 4 | 4 16 3
5 12 5 | 5 14 6.
TEACHER 6 16 3 6 11 12
4 | 7 17 4 7 6 3
8 19 12 8 9 1
9 19 4 9 6 3
10 15 4 10 iO 3
11 14 3 | 11 2 3

12 14 57 12 , 8 4
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TABLE V

EXPERIMENTAL DATA

TREATMENT

Sub- Perfor- Trans- | Sub- Perfor- Trans—
ject  mance fer . ject mance - fer
oL 20 12 1 19 12
2 19 14 2 12 11
3 18 8 3 19 10
4 18 7 4 17 12
5 17 12 5 14 8
6 16 9 6 6 5
7 19 12 7 13 7
8 ‘19 10 | 8 15 6

TEACHER
9 19 9 9 14 7
5

10 © 18 12 10 13 5
11 19 8 11 20 6
12 16 11 12 10 4
13 12 6 13 8 2
14 17 11 14 6 | 1
15 16 4 15 4 1
16 12 1 16 : 4 0

17 16 1 17 1 0
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TABLE V

EXPERIMENTAL DATA

TREATMENT
T1 . T2
Sub- Perfor- Trans- Sub- Perfor- - Trans-
ject mance fer ject mance fer
1 15 6 . 1 8 4
2 19 14 2 12 7
3 19 9 3 15 9
4 11 4 4 7 2
5 18 17 5 9 3
6 14 4 6 9 1
TEACHER ,
7 4 3 7 11 5
6 N
8 16 7 8 6 0
9 16 3 9 13 4
10 9 4 10 3 0
11 16 3 11 0 0
12 17 3 12 3 0
13 9 2 © 13 0 0

14 0 0 14 0 0
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TABLE V

EXPERIMENTAL DATA

TREATMENT
Tl T2
Sub- Perfor- Trans- Sub- Perfor- Trans-
ject  mance fer ject mance fer
1 18 5 1 5 2
2 19 8 2 5 6
‘ 3 12 3 3 11 5
TEACHER
’ 4 17 2 4 14- 7
7 .
5 18 4 5 - 0 0
6 12 4 6 . 0 0
7 8 2 7 9 2
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TABLE V

EXPERIMENTAL DATA

TREATMENT
Tl | | T2
Sub-  Perfor- Trans- Sub- Perfor- Trans-
ject mance fer ject mance fer
1 18 13 1 15 10
2 15 4 12‘ 12+ 7
3 19 - 4 3 16 - 8
4 13 4 4 3 0
5 17 4 5 7 7
TEACHER 6 12 3 6 7 2
| 8 7 15 1 7 11 0
8 17 3 8 15 1
9 19 4 | 9 9 3
10 18 | 2 10 9 7
11 12 3 11 11 . 0
12 12 -3 12 7 0
13 14 4 13 4 0

14 11 2 . 14 7 0




