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Abstract 

This was a study to determine the e f f e c t s of two i n s t r u c t i o n a l 

procedures f o r a m u l t i p l i c a t i o n p a l g o r i t h m on the a b i l i t y of elementary 

school c h i l d r e n to extend t h i s a l g o r i t h m to the s o l v i n g of computational 

tasks i n v o l v i n g the use of a higher-order algorithm. 

Each of two groups was given p r e l i m i n a r y i n s t r u c t i o n i n 

s o l v i n g m u l t i p l i c a t i o n problems v i a the a p p l i c a t i o n of the d i s t r i b u t i v e 

law. A f t e r t h i s readiness phase was completed, students were randomly 

assigned to e i t h e r a T l or T2 treatment group. The T l subjects 

were taught a rote-type standard m u l t i p l i c a t i o n a l g o r i t h m f o r determining 

the s o l u t i o n of 2 x 1 and 3 x 1 products. No e x p l i c i t i n s t r u c t i o n 

was given to i n d i c a t e the r e l a t i o n s h i p s between the two l e a r n i n g 

t a s k s , v i z . the a c q u i s i t i o n of the d i s t r i b u t i v e law and the standard 

m u l t i p l i c a t i o n a l gorithm. U n l i k e the T l i n s t r u c t i o n a l sequence, the 

T2 i n s t r u c t i o n a l sequence was designed to promote the l e a r n i n g of 

the r e l a t i o n s h i p s between the s e r i e s of l e a r n i n g t a s k s . That i s , 

the T2 subjects were taught a standard m u l t i p l i c a t i o n a l g o r i t h m 

that required the e x p l i c i t use of the d i s t r i b u t i v e law and other 

acquired a l g e b r a i c s k i l l s . I t was hypothesised that t h i s c o n t i n u a l 

i n t e g r a t i o n of l e a r n i n g tasks would enable the T2 subjects to e x h i b i t 

s u p e r i o r i t y over the T l subjects i n extending t h e i r standard 

m u l t i p l i c a t i o n a l g o r i t h m to computational tasks r e q u i r i n g the use of 

an untaught higher-order algorithm. A t o t a l of 238 subjects and 

8 teachers were used i n a l l phases of the experiment. 



A mixed model :-6f.analysis of variance was used to validate 

the performance hypothesis. It was found that the Tl subjects were 

significantly better than the T2 subjects in the performance of the 

standard multiplication algorithm. An analysis of covariance was 

performed to determine the validity of the transfer hypothesis. A 

subject's score on the performance test was used as a covariate in 

order to equate the disparate computational a b i l i t i e s of the Tl and 

T2 subjects. Although the mean score of the T2 subjects was 

higher than that of the T l subjects on the transfer test, this difference 

was not s t a t i s t i c a l l y significant. 
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CHAPTER I 

OUTLINE OF THE PROBLEM 

IN:T-R0D%:GTION> 

Most modern a r i t h m e t i c programs are i n agreement that the 

f i e l d p o s t u l a t e s f o r the system of a r i t h m e t i c should form an i n t e g r a l 

part of a r i t h m e t i c content. Both mathematicians and p s y c h o l o g i s t s 

have advised that the understanding of many of these p o s t u l a t e s be 

included as elementary school o b j e c t i v e s . P a r t i c i p a t i n g mathematicians 

at the Cambridge Conference on School Mathematics s t r e s s e d that students 

be f a m i l i a r w i t h part of the " g l o b a l s t r u c t u r e " of mathematics."'' They 

f e l t that a very s o l i d mathematical super s t r u c t u r e can be erected 

which w i l l help p u p i l s i n more advanced mathematical f i e l d s . Although 

the idea o f . " g l o b a l s t r u c t u r e " was never c l e a r l y defined there i s l i t t l e 

doubt, a f t e r examining t h e i r recommendations f o r c u r r i c u l u m content, 
3 

that the f i e l d p o s t u l a t e s formed part of i t . 

Jerome Bruner, again a v o i d i n g the knotty problem of d e f i n i t i o n , 

s t a t e d "there are at l e a s t four general claims that can be made f o r 

teaching the fundamental s t r u c t u r e of a su b j e c t , claims i n need of 

Goals f o r School Mathematics, (New York: Houghton M i f f l i n , 
1963), p. 8. 

2 
I b i d . , p. 8. 

3 
I b i d . , p. 36. 
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d e t a i l e d study". He l i s t e d the f o l l o w i n g as supportive c l a i m s ; 

1. Understanding fundamentals makes a subject more com

prehe n s i b l e . 

2. Unless d e t a i l i s placed i n t o a s t r u c t u r e d p a t t e r n i t i s 

r a p i d l y f o r g o t t e n . 

3. Understanding of fundamental p r i n c i p l e s and ideas leads 

to t r a n s f e r of t r a i n i n g . 

4. By c o n s t a n t l y reexamining m a t e r i a l taught i n elementary 

and secondary schools f o r i t s fundamental c h a r a c t e r , one i s able to 
4 

narrow the gap between "advanced" knowledge and "elementary" knowledge. 

David Ausubel,claims that " p r e c i s e and i n t e g r a t e d understandings 

are, presumably, more l i k e l y to develop i f the c e n t r a l , u n i f y i n g ideas 

of d i s c i p l i n e are learned before more p e r i p h e r a l concepts and in f o r m a t i o n 

are introduced".^ In h i s o p i n i o n , "the most s i g n i f i c a n t advances that 

have occurred i n recent years i n the teaching of such subjects as 

mathematics, chemistry, physics and b i o l o g y are pr e d i c a t e d on the 

assumption that e f f i c i e n t l e a r n i n g and f u n c t i o n a l r e t e n t i o n of ideas 

and i n f o r m a t i o n are l a r g e l y dependent upon the adequacy of c o g n i t i v e 

s t r u c t u r e , i . e . upon the adequacy of an i n d i v i d u a l ' s e x i s t i n g o r g a n i z a t i o n , 

s t a b i l i t y and c l a r i t y of knowledge i n a p a r t i c u l a r subject-matter f i e l d " . 

Jerome S. Bruner, The Process of Education, (New York: 
Vintage Books, 1963), p. 23-26. 

^David P. Ausubel, The Psychology of Meaningful Verbal  
Learning, (New York: Grune and S t r a t t o n , 1963), p. 21. 

I b i d . , p. 26. 
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In this writer's opinion Ausubel supports the early understanding of 

the f i e l d postulates when he claims that:'' "the acquisition of adequate 

cognitive structure, in turn, has been shown to depend upon both 

substantive and programmatic factors using for organizational and 

integrative purposes those substantive concepts and principles in a 

given discipline that have the widest explanatory power, inclusiveness, 

generalizability, and rela t a b i l i t y to the subject-matter content of 

that discipline".^ 

Although much has been hypothesised about the pedagogical 

benefits of subject-matter structure, l i t t l e validation has been 

attempted. Moreover, those studies that have been concerned with such 

issues have rarely attempted to offer suitable psychological explanations 

of the role of subject-matter structure in arithmetic understanding. 

Assuming that the f i e l d postulates form part of mathematical structure, 

the intent of this study is to provide both plausible psychological 

explanations and empirical data related to the role of the understanding 

of these f i e l d postulates in promoting arithmetic understandings. 

GENERAL STATEMENT OF THE PROBLEM; 1 

Since computational algorithms are commonly given logical 

justification by using the f i e l d postulates, i t is hypothesised that the 

learning of the f i e l d postulates w i l l f a c i l i t a t e understanding, and 

through understanding, the learning of such algorithms. More specifically, 

this study w i l l attempt to determine under what instructional conditions 

Ibid., p. 26. 
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the understanding of the f i e l d p o s t u l a t e s promotes ease of extension 

to untaught computational algorithms. Moreover, an attempt w i l l be 

made to provide a p s y c h o l o g i c a l r a t i o n a l e f o r the i n c l u s i o n of these 

p o s t u l a t e s i n a contemporary a r i t h m e t i c program. 

'DEFINITION OF TERMS 

In order to avoid an ambiguous and lengthy statement of 

hypotheses i t was f e l t necessary to d e f i n e the f o l l o w i n g terms: 

A l g e b r a i c p r i n c i p l e s . These are a l s o r e f e r r e d to as f i e l d 

axioms, f i e l d p r i n c i p l e s , and f i e l d p o s t u l a t e s . In t h i s study the 

subset of f i e l d p o s t u l a t e s w i t h which we are concerned i s the set of 

p o s t u l a t e s that apply to the whole numbers. 

Algorithm. Any r u l e or ordered set of procedures that can 

be used to produce a c o r r e c t s o l u t i o n to a computational task 

independent of the i n d i v i d u a l using that a l g o r i t h m ; f o r example, the 

usual column a d d i t i o n a l g o r i t h m . 

I n t e r n a l algorithm. Any a l g o r i t h m whose primary f u n c t i o n i s 

that i t i s used i n the generation of other algorithms. I t i s i n t e r n a l 

i n the sense that i t i s considered a means to an end r a t h e r than an 

end i n i t s e l f . That i s , i t s prime i n s t r u c t i o n a l purpose i s to serve 

as an a l g e b r a i c p r e r e q u i s i t e f o r more complex computational algorithms. 

The writer«will use the term f o r mainly r e f e r e n t i a l purposes and w i l l 

not a t t r i b u t e any s p e c i a l p s y c h o l o g i c a l p r o p e r t i e s to i n t e r n a l 

algorithms. The i n t e r n a l a l g o r i t h m used i n t h i s study i s the annexation 

a l g o r i t h m ; the reader should examine the T2 I n s t r u c t i o n a l Sequence on page 9 

f o r an e x p lanation of t h i s algorithm. Appendix A describes another 
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i n t e r n a l a l g orithm. 

Standard m u l t i p l i c a t i o n a l g o r i t h m . For the purposes of t h i s 

study the standard m u l t i p l i c a t i o n a l g o r i t h m w i l l r e f e r to those procedures 

used to. compute products such as axb where e i t h e r a or b has a one 

d i g i t numeral and the other has a two or three d i g i t numeral. For 

example: 

12 132 7 6 
x 9 x 9 x 18 x 132 

Hereafter such products w i l l be r e f e r r e d to as 2x1 and 3x1 products. 

Higher-order a l g o r i t h m . For the purposes of t h i s study a 

"higher-order a l g o r i t h m " w i l l r e f e r to an a l g o r i t h m used to compute 

products such as axb where.neither a nor b hase> a one d i g i t numeral 

and where e i t h e r a or b may have more than two d i g i t s i n the numeral. 

For example: 

1001 132 12 
x :7 x 111 x 1002 

These algorithms are "higher" i n the sense that the standard m u l t i p l i c a t i o n 

a l g o r i t h m must be conc e p t u a l l y modified i n order to compute nov e l 

products. Further e l a b o r a t i o n i s given l a t e r i n the chapter. 

Performance tasks. This r e f e r s to those tasks r e q u i r i n g the 

a p p l i c a t i o n of the standard m u l t i p l i c a t i o n a l g o r i t h m . L e v e l of per

formance was measured by a w r i t t e n t e s t described i n Chapter I I I . . 

Transfer t a s k s . A s o l u t i o n of a t r a n s f e r task r e q u i r e d the 

s u c c e s s f u l extension of the p r e v i o u s l y taught standard m u l t i p l i c a t i o n 

a l g o r i t h m . L e v e l of t r a n s f e r was measured by a w r i t t e n t e s t described 

i n Chapter I I I . 
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Tl group. Those students who completed the Tl Instructional 

Sequence. The reader is referred to page 9 for details of this 

sequence. 

T2 group. Those students who completed the T2 Instructional 

Sequence. The reader is referred to page 9 for details of the 

sequence. 

The role of algorithms in arithmetic programs has changed 

considerably over the past twenty years. Previously, considerable 

instructional time was devoted to increasing a student's proficiency 

with an algorithm rather than his understanding of that algorithm; 

Arithmetic content was treated as i f i t were a series of logically 

unrelated algorithmic tasks rather than an integrated set of relation

ships between relatively simple concepts. With advances in technology 

less stress has been placed on mere performance of computational algorithms, 

although computational algorithms, s t i l l form the main substance of 

most modern arithmetic programs. Thus,the modern curriculum developer 

has been primarily concerned that children understand the rationale 

of an algorithm; i.e. concerned about the a b i l i t y of.children to 

explain the relationships between the algorithm and other previously 

acquired algebraic principles. 
t • 

Since computational algorithms are logically related to the 

properties of place value systems and the f i e l d principles, i t has 

frequently been claimed by some mathematics educators that these logical 
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r e l a t i o n s h i p s enhance the understanding of computational algorithms. 

E r i c MacPherson expresses t h i s view when he s t a t e s , "the c h i l d who 

understands a r i t h m e t i c i s the c h i l d who sees how each a l g o r i t h m 
g 

f o l l o w s from t h e s e ^ p r i n c i p l e s " . I t would be erroneous to conclude 

from such statements that c h i l d r e n who understand the f i e l d p r i n c i p l e s 

are able to d e r i v e spontaneously the usual standardized computational 

algorithms. Rather such views imply that when a c h i l d understands 

the r o l e of the p r i n c i p l e i n an a l g o r i t h m , (e.g. recognizes an 

instance of the p r i n c i p l e i n an algorithm,^demonstrates that a 'step' 

i n an a l g o r i t h m i s another a p p l i c a t i o n of some p r e v i o u s l y learned 

p r i n c i p l e , etc.) he i s more l i k e l y to understand the r a t i o n a l e 

of other r e l a t e d algorithms. However, what seems to be l a c k i n g i n 

the arguments of " s t r u c t u r e advocates" i s a reasonable p s y c h o l o g i c a l 

i n t e r p r e t a t i o n of the r o l e of subject-matter s t r u c t u r e i n e f f e c t i n g 

understanding. More s p e c i f i c a l l y , i n what sense does understanding 

of the r o l e of the f i e l d p o s t u l a t e s i n s p e c i f i c algorithms promote 

ease of extension to.untaught r e l a t e d algorithms? For the purposes 

of t h i s study, i t would seem that of the many l e a r n i n g p s y c h o l o g i s t s , 

David P. Ausubel and Robert M. Gagne1 are two whose views seem 

p a r t i c u l a r l y r e l e v a n t . 

In order to demonstrate the relevance of these p s y c h o l o g i c a l 

views to t h i s study, i t i s necessary to r e f e r c o n s t a n t l y to s p e c i f i c 

i n s t r u c t i o n a l sequences used i n t h i s 1 s t u d y . Hence i t seems a p p r o p r i a t e , 

f i r s t , to e x p l a i n the nature of these i n s t r u c t i o n a l sequences. The 

E r i c D. MacPherson, "The Foundations of Elementary School 
Mathematics", Modern I n s t r u c t o r , Volume 33 (October 1964), p. 70. 
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reader is referred to Figure 1. on page 9 for a diagrammatic explanation 

of these sequences. 

A. The Tl Instructional Sequence 

This sequence is typical of many that occur in modern 

textbooks. The f i r s t s k i l l taught in this sequence i s use of the 

distributive law. A child is assumed to understand the distributive 

law when he can: 

a) use the distributive law to solve such algebraic 

expressions as 

9 x 5 = (9 x 3) + (9 x 1) + (9 xQ) 

8 x 6 = (2 x 6) + (2 x 6) .<+"' (&x 6) 

9 x 7 = (6 + 3) x (5 +2) = (6 x 5) + (6 x A) + (3 xD) + ( 3 x 2 ) 

(2 x 6) + (2 x 6) + (Qx 6) = 8 x 6 

(8 x 3) + (8 x 5) + (8 x 1) = 8 x C_ 

b) compute products such as 9 x 8 by application of the 

distributive law: 

9 x 8 = 9 x (2 + 6) = 18 + 54 = 72 

9 x 8 = 9 x |2r+::5;^l)= 18 + 45 + 9 = 72 

9 x 8 = (4 + 5) x (2 + 6) = 8 + 24 +10 + 30 = 72 

The next objective i n the sequence is the acquisition of a 

rote-type standard multiplication-,;algorithm, the algorithm i s being 

considered to be rote-type in the sense that no attempt is made 

explic i t l y to indicate the relationships between the previously 

mastered s k i l l and this algorithm. 



FIGURE 1. THE INSTRUCTIONAL SEQUENCES 
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B. The T2 Instructional Sequence 

As with the T l sequence, the T2 instructionalfeseqaience 

incorporates the understanding of the distributive law as an i n i t i a l 

learning objective. However, additional algebraic s k i l l s are also 

considered necessary. These s k i l l s involve the use of the associative 

law and an internal algorithm, in this case the annexation algorithm. 

The child is taught to compute products in which 10 is a factor 

by "annexing the zeros". For example the product of 7 x 200 is 

i n i t i a l l y computed by using the associative law in the following 

manner: 

7 x 200 = 7 x (2 x 100) = (7 x 2) x 100 = 14 x 100 = 1400 

or 7 x 2 hundreds = ( 7 x 2 ) hundreds = 14 hundreds = 1400 

Later computation simply involves direct annexation. For 

example, 

7_ x 2 00 = 14 00 

The standard multiplication algorithm utilized in this sequence 

validates procedural "steps" by expli c i t l y pointing out instances 

of the prior learned s k i l l s . 

This writer is primarily interested in the effects of each 

instructional sequences on the amount of transfer to computational 

tasks that involve an untaught higher-order algorithm. As mentioned 

earlier in this chapter, the views of Gagne and Ausubel would seem 

to provide possible explanations of these transfer differences. 

Gagne has developed what he considers a hierarchy-of-learning 
9 • model. Before a specified learning task can be mastered, Gagne would 

Robert M. Gagne, The Conditions of Learning, (New York: 
Holt, Rinehart and Winston, 1970). 
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claim that a numbernof subordinate concepts must also be mastered. 

These concepts in turn depend upon other subordinate concepts so that 

i t can be argued that Gagne*'s model ultimately resembles that of S— R 

learning. As Gagne explains, 

when such an4'.analysis (selecting appropriate prerequisite 
tasks) is continued progressively to the point of delineating 
am .entire set of capabilities having an order relation to each 
other (in the sense that in each case prerequisite capabilities 
are represented as subordinate in position, indicating they 
need to be previously learned), one has a learning hierarchy. 
The analytic process may be carried out i f desired, u n t i l 
the simplest kinds of learnings (Ss-^R's, chains, dis
criminations) are reached and i d e n t i f i e d . ^ 

Thus:, once the terminal task is clearly specified, the problem is to 

select hypothesised prerequisites and arrange these in a hierarchical 

manner. Although i n i t i a l l y these prerequisites are selected logically 

on an a p r i o r i basis, a hypothesised prerequisite is concluded to be 

pedagogically necessary only after empirical investigation. As Gagne 

explains: "a subordinate s k i l l is determined to be pedagogically 

necessary i f i t facilitates the learning of the higher-level s k i l l 

to which i t is related. In contrast, i f the subordinate s k i l l has not 

been previously mastered, there w i l l be no f a c i l i t a t i o n of the higher-

level s k i l l . This latter condition does not mean that the higher-

level skill^cannot be learned — only that, on the average, in the 

group of students for whom a topic sequence has been designed, learning 

w i l l not be accomplished readily"."'"''" Thus i f transfer differences 

between the T l and T2 groups were observed, Gagne, rather than trying 

10Gagne, op. c i t . , p. 2̂ 8'-

1 : LIbid. , p. 239-240. 
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to explain the differences in terms of any particular learning theory, 

would probably attribute these differences to the selections and 

arrangement of prerequisites, since he seems to be more concerned with 

the development of empirically validated,-hierarchies than the validation 

of contemporary psychological theories. Hence this study could prove 

to be valuable for the curriculum designer i f i t produced a more 

effective instructional sequence for teaching i n i t i a l multiplication 

s k i l l s . 

Ausubel would view the potential efficiency of each instructional 

sequence for promoting transfer in quite a different sense than would 

Gagne. For Ausubel, the amount of transfer brought to a learning 

task depends on an individual's cognitive structure, where "cognitive 

structure" means an individual's organization, s t a b i l i t y , and clarity 
' 12 of knowledge in a particular subject-matter f i e l d at any given time. 

That is existing cognitive structure is regarded as the major factor 

influencing the learning and retention of potentially meaningful new 

material in the same f i e l d . According to Ausubel, a major criterion 

determining whether learning material is potentially meaningful is 

i t s relatability to the particular cognitive structure of a particular 

learner. As Ausubel states: 

for meaningful learning to occur in fact, i t is not sufficient 
that the new material simply be relatable to relevant ideas . 
in the abstract sense of the term. The cognitive structure 
of the particular learner must include a requisite intellectual . 
capacities, ideational content and experientfa^, background. 

Ausubel, pp. c i t . , p. 26. 

'ibid. , p . 23. 
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The key concern of this study i s the effect of these 

instructional sequences on cognitive structure. That i s , which of the 

Tl and T2 sequences might be best integrated by the learner and in 

what sense this act of integration promotes greater transfer to 

tasks requiring the use of an untaught higher-order algorithm. 

According*to Ausubel, new learning is sometimes incorporated 
14 

into cognitive structure by correlative subsumption. This psychological 

phenomenon occurs when a learner somehow determines that new learning 

material i s related to relevant cognitive subsumers via some general 

principle. Thus new learning material may be best incorporated into 

an individual's cognitive structure i f those principles which require 

the least extension act as subsumers. In Ausubel's terms one might 

suppose that the learning of the algebraic principles of arithmetic 

may affect the learning of logically related computational algorithms 

in the same sense as 'advance organizers'. Thus i t i s hypothesised that 

the T2 instructional tasks might form relatively stronger subsumers 

than the Tl tasks, for future transfer tasks requiring the use of a 

higher-order algorithm. 

For example, consider the possible differing complexity 

of extension from.the standard multiplication algorithm to the higher-

order algorithm that each treatment group must make for successful 

solution of such a transfer task as 107 x 11. 

Ausubel, op. c i t . , p. 77. 
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A typical solution that might be exhibited by the T2 group 

could be as follows: 

11 1 0 + 1 (partitioning both factors into 
x 107 ^ 100 + .7 (binary sums involving powers of ten 

10 + 1 
100 + 7 (application of distributive 

7 /law and annexation algorithm 
70 

100 
1000 

It i s assumed that no 'new'1 concept or s k i l l is required for successful 

extension from the standard multiplication algorithm to the higher-

order algorithm. (The s k i l l of partitioning both factors, rather 

than just one factor, before application of the distributive principle 

was included in both instructional sequences.) 

The extension of the rote-type standard multiplication 

algorithm to the standardized higher order algorithm by the Tl 

procedure seems a very remote possibility: 

11 11 f"move over one space to the le f t 
x 107 " ^ x 107 ^when multiplying by a factor of ten" 

107 
107 

Suppose a Tl group member attempts to compute such products as 

107 x 11 by considering the 11 as 'one di g i t ' and proceeds^as with the 

standard multiplication algorithm: 

107 x 1 = 107 as with standard multiplication 
x d-0 7J algorithm, place 'seven'.and 'carry 

7 ten' 
I 

1 Q l l (107 x 1) + 10 = 117 place 'seven' and 'carry 11' 
x (L0_7J 
1177 
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Although such partial products as 7 x 11 could be computed by using 

the Tl standard multiplication algorithm,this extended procedure.' 

seems much more d i f f i c u l t than the hypothesised T2 procedure. 

Transfer to tasks involving 3 x 3 and 4 x 3 products would seem 

even more unlikely considering the complexity of extending the Tl 

standard algorithm. 

HYPOTHESES 

Most textbooks andypractitioners are being urged by 

curriculum specialists to promote the understanding of algebraic 

principles. The arguments for the inclusion of such principles are 

based on the belief that much of arithmetic, and especially com

putational algorithms, may be better understood through the learning 

of algebraic principles. Hence from both a practical and'ahtheoretical 

point of view, i t seems worthwhile to investigate the validity of the 

following hypotheses: 

• Hypothesis One — T h e T l group w i l l score significantly 

higher than the T2 group in the performance of the standard 

multiplication algorithm, as measured by the performance test. 

Hypothesis Two — The T2.group w i l l score significantly 

higher than the T l group on the test of transfer from the standard 

multiplication algorithm to a higher-order algorithm. 



CHAPTER II 

SURVEY OF THE LITERATURE 

In reviewing the literature, one soon realizes that very 

few studies have been concerned with children's acquisition or use 

of the f i e l d of postulates to generate algorithms. 

Children's understanding of the f i e l d postulates without 

formal instruction was studied by Crawford in 1964.^ Using a 

multiple choice test of 45 items, he tested each of the eleven 

f i e l d axioms once at each level of Bloom's taxonomy. He found that 

the mean'scores increased significantly, from one even numbered grade 

to the next, ..in. a linear manner. Students exposed to 'modern 

mathematics' content in grades 9 and 10 had scores significantly 

superior to those of students in a l l other programs at the same 

level. This study seems important in that i t provides data on 

developmental processes which were occuring without explicit teaching. 

A study by Hall attempted to determine whether the rote 

learning of certain multiplication combinations could be accomplished 

more effectively through teaching procedures emphasising the commutative 

and ordered pair :approach in conjunction with practice on related 
16' 

combinations. This procedure was compared to teaching procedures 

."^Douglas Crawford, "An Investigation of Age-Grade Trends in 
Understanding.the Field Axioms," Dissertation Abstracts, Syracuse University, 
1964. 

"^Kenneth D. Hall, "An Experimental Study of Two Methods of 
Instruction.for Mastering Multiplication Facts at the Third-Grade Level," 
Doctoral Dissertation, Duke University, 1967. 
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employing the traditional approach with practice on commuted combinations. 

He found no significant difference between the groups on both 

arithmetic computation and achievement in multiplication. This 

result lends support to the notion that there is no advantage in the 

mere acquisition of a f i e l d postulate. 

Gray.,, in 1964, tried to determine how a method of teaching 

introductory multiplication which stressed development of an under

standing of the distributive law would relate to pupil development 

as measured in terms of achievement, transfer, retention and progress 

toward maturity of understanding of multiplication."*"^ He used two 

treatment groups. cOne group, Tl was taught according to what was 

judged to be. the ..best of current .methods. The other group, T2,.was 

provided with introductory multiplication using an understanding of 

the distributive principle. Pre-experimental achievement and I.Q. 

were covaried. He constructed written pre-test, post-test, retention, 

and transfer.tests. Individual interviews of 110 random subjects 

measured maturity of understanding. His results warranted the follow

ing conclusions: 

1. A program of arithmetic instruction which introduces 

multiplication by a method which stressed understanding of the dis

tributive property produced results superior to those of current 

methods. 

2. Understanding of. the distributive property enables 

children to proceed independently to the finding of products of 

Roland.F. Gray, "An Experimental Study of Introductory 
Multiplication,"Doctoral Dissertation, University of California, 
Berkeleyi 1964. - • 
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novel m u l t i p l i c a t i o n combinations, to a greater extent than those 

c h i l d r e n not introduced to the d i s t r i b u t i v e p r i n c i p l e . 

3. These c h i l d r e n appeared not to develop an understanding 

of the d i s t r i b u t i v e property unless i t was s p e c i f i c a l l y taught. 

There have been r e l a t i v e l y Jf;ew s t u d i e s which have been 

concerned w i t h the r e l a t i o n s h i p between understanding of the f i e l d 

p o s t u l a t e s and l e a r n i n g of computational algorithms. In most s t u d i e s 

the algorithms were i l l u s t r a t e d using p h y s i c a l devices. However, 

Schrankler t r i e d to evaluate the e f f e c t i v e n e s s of two p r e - a l g o r i t h m 

treatments.in. combination w i t h two algorithms f o r teaching the 
18 

m u l t i p l i c a t i o n of whole numbers at three i n t e l l i g e n c e l e v e l s . 

E f f e c t i v e n e s s was evaluated i n terms of computational s k i l l s , speed 

i n computation, understanding of the m u l t i p l i c a t i o n process, problem 

s o l v i n g and r e t e n t i o n of the four previous c r i t e r i a . The readiness 

phase placed emphasis on the 100 m u l t i p l i c a t i o n f a c t s f o r group B^. 

Emphasis was placed on the commutative, a s s o c i a t i v e and d i s t r i b u t i v e 

p r o p e r t i e s f o r group H^. F o l l o w i n g t h i s p e r i o d , these groups 

were subdivided i n t o a l g o r i t h m i c groups. Group subjects were 

taught the indent u n i t - s k i l l s a l g orithm: 
57 

x 28 . 
456 

114 
1596 

• W i l l i a m .Schrankler, "A Study of the E f f e c t i v e n e s s of 
Four Methods of Teaching M u l t i p l i c a t i o n of-.Whole Numbers i n Grade 
Four," D i s s e r t a t i o n A b s t r a c t s , U n i v e r s i t y of Minnesota, 1966. 
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Group subjects were taught the partial products algorithm: 

57 
x 28 

56 
400 
140 

1000  
1596 

No mention was made of the use of the annexation algorithm in the 

parti a l products algorithm. Students in each of the treatment groups, 

A1 B1' A2 B1' A1 B2' A2 B2' w e r e identified at one of three levels of 

intelligence. Schrankler found that the A^B^ group tested higher on 

the test of understanding than the other groups. This same group 

also tested higher on the retention test of understanding. The 

fact that theiA^B^ group was found to be superior to the A^B^ group 

on the test of understanding of the multiplication algorithm is of 

particular.interest. This result suggests that the understanding 

of computational algorithms is best promoted by the explicit 

application of.previously acquired algebraic principles. Studies 

such as Schrankler's have b een restricted to examining the use of 

algebraic principles in promoting understanding of already acquired 

computational algorithms. No:studies were found which examined 

the use of algebraic principles in promoting transfer to untaught 

higher-order algorithms. 



CHAPTER I I I 

DESIGN OF THE EXPERIMENT 

THE SAMPLE 

The experimenter decided to use grade three students as 

subjects i n the study s i n c e they had.had some experience w i t h 

m u l t i p l i c a t i o n but had not as yet been taught the standard m u l t i p l i c a t i o n 

a l g o r i t h m . Eight grade three c l a s s e s were s e l e c t e d from s i x B r i t i s h 

Columbia schools. A l l e i g h t of the teachers i n v o l v e d i n the study 

were v o l u n t e e r s . 

A f t e r the readiness phase, which w i l l be described i n the 

next s e c t i o n , students i n each classroom were randomly assigned to 

e i t h e r the Tl.'or T2 group. A student's t e s t scores were omitted 

from the study i f more than one treatment lesson was missed. A 

t o t a l of 238 su b j e c t s were used, to obt a i n the f i n a l s e t of data; 44 

subjects were used f o r t e s t a n a l y s i s , and the remaining 194 subjects 

f o r t e s t i n g the hypotheses. 

THE INSTRUCTIONAL SEQUENCES 

A. The Readiness Phase.• 

During t h i s phase, a l l the subjects were taught the s k i l l s 

which were considered to be p r e r e q u i s i t e s f o r the treatment phase. 
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A set of lesson plans was provided for each teacher involved in the 

study. Briefly, these lessons stressed: 

- the relationship between multiplication and arrays. 

For example, 

3 x 4 means a "3 by 4" array 

- the distributive law; both the right hand and the l e f t 

hand. This was to be accomplished by breaking arrays into 

the "sums" of smaller arrays. For example: 

4 x 5 4 x (2 + 3) (4 x 2) + (4 x 3) 

X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X 

the application of the distributive law to multiplication 

problems. 

Only the techniques of breaking a product into the sums of smaller 

products was stressed and no attempt was made to have children 

provide a f i n a l numerical answer. For example, 

28 2 0 + 8 2 0 + 8 
x 19 x 19 x 19 

19 x 8 
+ 19 x 20 

For a f u l l description of these lessons, the reader i s referred to 

Appendix B. 

In order to parallel typical teaching practices and thus 

increase the generalizability of this study, the writer did not demand 

a fixed criterion of mastery of the distributive law. Rather, a l l 

teachers were instructed to terminate this phase when, in their 

judgement, the students indicated a mastery of the distributive law. 
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The teachers reported t h a t t h i s phase g e n e r a l l y took about f i v e 

hours of classroom i n s t r u c t i o n . 

B. The Treatment Phase. 

Every teacher was provided w i t h a set of w r i t t e n lesson plans 

s u i t a b l e f o r each treatment lesson. The lessons contained the general, 

dialogue, examples and seatwork to be used. The teachers met w i t h 

the w r i t e r twice during t h i s phase to ensure that they understood 

the lesson m a t e r i a l s . To minimize the e f f e c t of teacher d i f f e r e n c e s 

each teacher taught both groups w i t h i n her c l a s s . To minimize p u p i l 

i n t e r a c t i o n , i t was arranged to have the groups separated during a 

treatment l e s s o n . A l l p u p i l s were t o l d by t h e i r teacher they they 

were i n v o l v e d i n an experiment. To minimize outside influences,, 

teachers were i n s t r u c t e d to give no;;homework during t h i s phase. Both 

the T l and T2 groups had approximately four hours of treatment time. 

A b r i e f d e s c r i p t i o n of both treatments i s provided i n the f o l l o w i n g 

s e c t i o n but the reader i s r e f e r r e d to Appendix C f o r the lesson 

plans used. 

The T l I n s t r u c t i o n a l Sequence 

The T l group was taught the rote-type a l g o r i t h m described 

i n Chapter I. The a l g o r i t h m was r e s t r i c t e d to 2 x 1 and 3 x 1 

products. To convince the students of t h e - l e g i t i m a c y of t h i s . - , 

a l g o r i t h m , a l l answers were i n i t i a l l y checked .using the d i s t r i b u t i v e 

law. For example^ the check might be made as f o l l o w s : 
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12 C 2 + 2 + 2 + 3 + 3 18 + 18 + 18 + 27 + 27 = 108 
x 9 * x 9 * 

In contrast to the T2 Instructional Sequence, no explicit application 

of the distributive principle was stressed. Once the students were 

convinced that this rote-type algorithm yielded correct products, the 

objective of the succeeding lessons was merely to provide further 

practice. 

The T2 Instruction Sequence 

The T2 subjects were f i r s t taught the annexation algorithm. 

A l l computation of 2 x 1 and 3 x 1 products were accomplished by 

using the distributive principle.in conjunction with the annexation 

algorithm. The teachers were instructed to use the same examples and 

seatwork with both groups. 

THE MEASURING INSTRUMENTS 

Both the performance and transfer tests were written tests 

constructed by the experimenter. The teachers knew the general 

nature of each test prior to the treatment phase but did not see the 

actual test items un t i l the test administration date. Teachers were 

instructed to give students ample time to complete both tests. Any 

solution by repeated addition was disregarded for both tests. The 

reader is referred to Appendix D for the actual tests used. 
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A. .Performance Test. 

This test consisted of twenty items that required the use 

of the standard multiplication algorithm. The total number of correct 

responses was considered a measure of an individual's performance. In 

order to delete items that were either excessively d i f f i c u l t or easy, 

a point b i s e r i a l correlation was calculated for every item. It was 

decided to reject an item i f the point b i s e r i a l r was less than .20 
19 

in magnitude. As a result of this analysis, a l l items of the original 

test were retained. Since this test was designed to measure a very 

specific t r a i t , (viz. the a b i l i t y to use the standard multiplication 

algorithm), i t was f e l t that a measure of item homogeneity should be 

determined. Thus a KR20 was calculated for the twenty item test and 

was found to be .93. This value indicated that the performance test 

was high in item homogeneity. The results of the items analysis can 

be found in Table I. 

B> Transfer Test. 

This test consisted of fourteen items which were intended 

to measure the abi l i t y to compute novel products requiring the use of 

a higher-order algorithm. Neither the Tl group nor the T2 group had 

been previously exposed to any of these items. The total number of 

correct responses was considered a measure of the abi l i t y to extend 

the standard multiplication algorithm. As with the performance test, 

Nunnally, J.C., Psychometric Theory, (New York: McGraw-
H i l l Book Company, 1967), p. 242. 
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a KR20 was c a l c u l a t e d ' t o evaluate item homogeneity. The KR20 of the 

f i n a l fourteen item t e s t was found to be .78. I t i s p o s s i b l e that the 

KR20 might have been increased i n magnitude by i n c l u d i n g a d d i t i o n a l 

t e s t items. However, t h i s lengthening procedure was f e l t to be 

in a p p r o p r i a t e s i n c e a very lengthy t e s t might have had the undesirable 

e f f e c t of i n c r e a s i n g t e s t anxiety of such young and 't e s t immature' 

students. The r e s u l t s of the item a n a l y s i s can be found i n Table I I . 
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TABLE I 

ANALYSIS OF THE PERFORMANCE TEST 

Item Point Item Point 
Number Biserial Number. Biserial 

1 .45 11 .53 
2 .61 12 .73 
3 .50 13 .74 
4 .77 14 .72 
5 .64 15 .49 
6 .75 16 .67 
7 .74 17 .72 
8 .70 18 .64 
9 .54 19 .74 
10 .64 20 .67 

TABLE II 

ANALYSIS OF THE TRANSFER TEST 

Item Point Item Point 
Number Biserial Number Biserial 

1 .50 13 0.0 * 
2 .59 14 0.0 * 
3 .43 15 0.0 * 
4 - .59 16 0.0 * 
5 .65 17 0.0 * 
6 .65 18 0.0 * 
7 0.0 * ' 19 0.0 * 
8 .56 20 .24^ 
9 .46 21 .47 
10 .43 22 0.0 * 
11 .65 23 .69 
12 .51 

Deleted items. 



CHAPTER IV 

ANALYSIS OF THE DATA 

EXPERIMENTAL RUN 

A;. The Performance Hypothesis. 

The s t a t i s t i c a l , h y p o t h e s e s to be t e s t e d were: 

H c: There w i l l be no s i g n i f i c a n t d i f f e r e n c e s between the means 

of the T l and T2 groups as measured by the performance 

t e s t . 

That i s : ̂  T = / ( T 2 

H^: The mean of the T l group w i l l be s i g n i f i c a n t l y greater 

than the mean of the 1^ group as measured by the 

performance t e s t . 

That i s : T± >̂ J4^ T 2 

Each classroom teacher taught both the T l and T2 groups i n 

her classroom. Thus a subject i n a classroom was given e i t h e r the 

T l or T2 i n s t r u c t i o n by h i s or her usual classroom teacher. The 

experimenter considered the d i f f e r e n c e s i n teacher performance to be 

a random e f f e c t , w h i l e d i f f e r e n c e i n treatment were considered 

to be a f i x e d e f f e c t . In other words, a mixed a n a l y s i s of vari a n c e 

model was f e l t to be the most appropriate s t a t i s t i c a l model to t e s t 

the hypothesis. The l i n e a r model chosen was: 

i n d i c a t e s the i t h teacher (random e f f e c t ) and 

represents the j t h treatment l e v e l ( f i x e d e f f e c t ) . 
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The experimenter made the usual assumptions underlying an ANOVA but 

did not test for these as the F test is reasonably robust to violations 
20 

of these assumptions. The assumptions made were: 

a) the teachers, used in the experiment, were randomly 

selected from a normal population, i.e. 

± are NID (0, ̂ 2 ) and 
W i j a r e N I D C ° ' ^ > 

b) the£"^_.^ are normally distributed, i.e. 

£ i j k
 a r e N I D Co, 6£), 

c) the treatment variances are homogeneous, i.e. 

C f T 1 = G , n 

The reader is reminded that the denominator in the test for 

treatment (fixed) effects in a mixed model is the interaction term 
21 

and not the usual error term. The null hypothesis was considered 

to be rejected i f the probability of obtaining an F value, under 

the null hypothesis, was less than or equal to ̂  = .05. A l l 

calculations were done at the University of British Columbia Computer 

Centre using the BMD-X64 program. This program allows for differing 

numbers of subjects in a c e l l by using the least squares estimate 

technique. The results of this analysis are summarized in Table III. 

20 
Lindquist, E.F., Design and Analysis of Experiments  

in Psychology and Education (Boston: Houghton, M i f f l i n Company, 1953), 
pp. 78-90. 

and Winston^ o i f ? S ^ 3 - 4 4 t B t * B t * n p ( N e W Y ° r k : H o l t ' R i n e h a r t 
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TABLE I I I 

ANALYSIS OF VARIANCE: PERFORMANCE HYPOTHESIS 

Source of 
V a r i a t i o n df Sum of 

Squares 
Mean 

Squares 

Teacher 7 
Treatment 1 
I n t e r a c t i o n 7 
E r r o r 178 

812.197 
1775.630 

57.679 
3927.752 

116.028 
1775.630 

8.240 
22.066 

5.258 
215.491 

0.373 
.0000083 

Mean f o r T l group was 14.418 
Mean f o r T2 group was 8.330 

Since the p r o b a b i l i t y of o b t a i n i n g an F-value of 215.491 was 

c a l c u l a t e d to be f a r le s s * t h a n .05, the n u l l hypothesis H c was r e j e c t e d 

and the a l t e r n a t e hypothesis H^ was accepted. 

Bu, The Transfer Hypothesis. 

The s t a t i s t i c a l hypotheses to be teste d were: 

H Q: There w i l l be no s i g n i f i c a n t d i f f e r e n c e s between the 

means of the T l and T2 group as measured by the 

t r a n s f e r t e s t . 

That i s : J^T± = J L ( T 2 

H^: The mean of the T2 group w i l l be greater than the mean 

of the T l group as measured by the t r a n s f e r t e s t . 

That i s : y 6 ^ T 2 > / < T 1 

O r i g i n a l l y the experimenter had hoped to terminate the 

treatment phase only when both groups had reached a s p e c i f i e d per

formance c r i t e r i o n . That i s , u n t i l there were no s i g n i f i c a n t d i f f e r e n c e s 

between the two groups on the performance of the standard m u l t i p l i c a t i o n 



algorithm. Thus, i f any degree o f . c o r r e l a t i o n e x i s t e d between the -

performance and t r a n s f e r t a s k s , t h i s p r e l i m i n a r y equating would 

minimize any d i f f e r e n c e s between the groups on the t r a n s f e r t e s t 

that might be a r e s u l t of d i f f e r e n c e s between the means on the 

performance tasks. However, to b r i n g about the e q u a l i t y of the 

groups on the performance t e s t , performance scores were covaried 

w i t h t r a n s f e r scores. Thus the l i n e a r model used to t e s t the 

t r a n s f e r hypothesis was: 

Y i j k + T 3 + <xv±i a... - x..k) +e..k 

where 

T'j 1 a n d £ „ k were p r e v i o u s l y d e f i n e d ; 

€ ' i s an estimate of the common population r e g r e s s i o n 
w 

c o e f f i c i e n t ; 

X... i s a subject's performance score and 

X... i s the grand mean of the t o t a l sample on the performance 

t e s t . 

In a d d i t i o n to the necessary assumptions un d e r l y i n g an ANOVA that were 

discussed i n the previous s e c t i o n , the use of t h i s model n e c e s s i t a t e s 

the f o l l o w i n g a d d i t i o n a l assumptions: 

a) the population w i t h i n - c e l l r e g r e s s i o n c o e f f i c i e n t s 

are homogeneous, i . e . 

8 w = £ w . . f 0 r 3 1 1 

Because l i t t l e i s known about the F t e s t w i t h respect to 

v i o l a t i o n of the foregoing assumption, i t was decided to t e s t t h i s 

assumption at a l e v e l of s i g n i f i c a n c e equal to .10. Using the BMD-X82 

computer program, which adjusts f o r d i f f e r i n g numbers of subjects 
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i n a c e l l , an F of 1.06, w i t h a numerator and denominator of 15 

and 162 degrees of freedom r e s p e c t i v e l y , was obtained. Since the 

p r o b a b i l i t y of o b t a i n i n g such an F, under the n u l l hypothesis i s .398, 

homogeneity of the re g r e s s i o n c o e f f i c i e n t s was assumed. 

b) the pooled e s t i m a t e ^ ' i s not zero. 
w 

In t e s t i n g t h i s assumption at t h e . 0 5 l e v e l of s i g n i f i c a n c e , 

an F of 99.14, w i t h a numerator and denominator of 1 and 177 degrees 

of freedom r e s p e c t i v e l y , was obtained. Since the p r o b a b i l i t y of o b t a i n i n g 
— 8 

such an F, under the n u l l hypothesis, i s l e s s than 10 the hypothesis 

of zero slope was e a s i l y r e j e c t e d . 

The r e s u l t s of the s t a t i s t i c a l a n a l y s i s of the t r a n s f e r 

hypothesis are summarized i n Table IV. 
TABLE IV 

ANALYSIS OF COVARIANCE: TRANSFER HYPOTHESIS 

Source of ^ Adjusted 
V a r i a t i o n Sum Square 

Teacher 7 179.984 25.712 3.961 
Treatment 1 24.363 24.363 2.725 .141 
I n t e r a c t i o n 7 62.570 8.939 1.377 
E r r o r 177 1149.077 6.492 

Adjusted mean f o r T l group was 3.776 
Adjusted mean f o r T2 group was 4.544 

Since the p r o b a b i l i t y of o b t a i n i n g an F of 2.725 i s .141, the n u l l 

hypothesis was accepted. That i s , the: mean of the T2 group was hi g h e r , 

but not s i g n i f i c a n t l y h i g h e r , than the mean of the T l group. 

Mean 
Square 
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CHAPTER V 

CONCLUSIONS AND IMPLICATIONS FOR FURTHER STUDY 

DISCUSSION OF CONCLUSIONS 

A./ Performance Hypothesis. 

With respect to the performance hypothesis, i t was found 

that subjects taught a rote-type algorithm did significantly better 

on tasks requiring the use of a standard multiplication algorithm than 

did the subjects taught a standard multiplication algorithm using 

previously learned algebraic principles. In fact, the performance 

level of the T2 group was so inferior to that of the Tl group that 

this researcher suspected thafc.t^ei'dfaihep'teacliers hadlnot-followed the " 

recommended treatment procedures. It was quite possible that, since 

most teachers had never used an instructional sequence like the 

T2 sequence, they may have had an experimental bias towards the 

rote Tl sequence. Perhaps more frequent observations of teacher 

performance would have eliminated such a bias towards treatment. 

B, Transfer Hypothesis. 

With respect to the transfer hypothesis, i t was found that 

subjects taught a standard multiplication algorithm using algebraic 

principles appeared to exhibit superior positive transfer to tasks 

requiring the use of a higher-order algorithm. However, this difference 
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in the amount of transfer was not statistically significant at the 

oC = level of significance. 

Because of the nature of the treatments, a T2 subject needed 

more time fo format correctly a computational problem than did a 

Tl subject. Thus, teachers were instructed to give students 

at least one hour to attempt a l l fourteen items of the transfer test. 

However, after a brief discussion with the teachers, i t was noted 

that some had allowed students about thirty minutes to complete this 

test. In fact, one teacher who obviously misunderstood the intent of 

the transfer test, stated that she gave children about fifteen minutes 

on this test because "the students weren't taught to compute such 

large products". This^situation could not be remedied by another 

test administration because school holidays immediately followed the 

test administration date. 

PROBLEMS FOR FURTHER STUDY 

Since the results of this study must remain inconclusive 

because of important uncontrolled factors, a replicate study 

employing controls to minimize teacher misunderstandings should be conducted. 

This writer also suggests that a study be conducted to examine 

the effect of instructional sequences that use algebraic principles to 

teach computational algorithms on a student's attitude toward 

arithmetic. It is postulated that instructional sequences that 

maximize the use of previously learned algebraic principles may enable 

a student to view arithmetic as a series of integrated tasks. This inte

grated view of arithmetic, might, in turn, have a positive effect on a 

student's attitude towards arithmetic. 
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APPENDIX A 

THE IDENTIFICATION OF ANOTHER INTERNAL ALGORITHM 



THE DIVISION OF FRACTIONS ALGORITHM 

AND THE EQUAL FACTORS ALGORITHM 

In addition to the mere rote, performance of an algorithm, 

most modern programs attempt to provide some rationale of that 

algorithm. Perhaps the most d i f f i c u l t algorithm to explain 

reasonably to the average elementary school child is the division 

of fractions algbarithm. In an attempt to provide this rationale, 
22 

a typical approach is as follows: 
1 - 3 

Step 1 5 y T--^ = W The work below shows how to 
1 3 11 divide 5TT by —. Use — as another 2 4 2 
a 

name for oy. 

Step 2 ^ Express the "divisiori-vr. in this way. 
3. 

.'4 
Step 3 11 First you need to get 1 for the 

9 3 4 _J 4_ divisor, you multiply — x — to get 1. 
4 X 3 ' 4 J 

11 4 3 4 Step 4 — x — has been multiplied by —. So you 

x — must also multiply — x — • 

11 4 

—— x — You do not need to write the 

divisor when i t i s 1. 

11 4 

— x - So now you can write the computation 

in this way 

7j You found 7̂- by multiplying -j by 

2 2Maurice L. Hartung, et al.„ Seeing Through Arithmetic 6, 
Scott, Foresman and Co., Chxcago-7-p-r-198^ 

Step 5 11 
'' 2 

4 
X 3 = 

44 
6 

S I i 3 7^ 
5 2 * 4 •73 
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One apparent assumption that has been made i s that the 

procedures taken i n Steps 3 and 4 can be followed by the elementary 

school c h i l d . However, the v a l i d i t y of these two steps must be 

b l i n d l y accepted by the c h i l d s i n c e no p r e l i m i n a r y work has been 

done that could be used to j u s t i f y these steps. One wonders what 

advantages t h i s modern treatment has over the rote " i n v e r t and 

m u l t i p l y " a l g o r i t h m because apparently we have merely s u b s t i t u t e d a 

long r o t e a l g o r i t h m f o r a short r o t e algorithm. 

What i s needed to v a l i d a t e steps 3 and 4 i s an i n t e r n a l 

a l g o r i t h m ; the equal f a c t o r s algorithm. This a l g o r i t h m s t a t e s that 

i f the d i v i s o r and dividend are m u l t i p l i e d or d i v i d e d by any non

zero r a t i o n a l number, the quotient remains unchanged. For example: 

(8 4- 4) = (2 x 8) 4- (2 x 4) 

I f t h i s i n t e r n a l algorithm i s mastered, the d i v i s i o n of f r a c t i o n s 

becomes much more reasonable to the elementary school c h i l d . 

Step 1 11 . 3 ,11 4N . ,3 4N 

~2 T ~k =' ~2~ X "J 4" X 3" equal f a c t o r s 

a l g o r i t h m 

Step 2 (— x —; T (•£• x —) = (— x —) T 1 m u l t i p l i c a t i o n 

of r e c i p r o c a l s 

Step 3 (— x —; T 1 = — x — property of one 

Step 4 11 3 2 11 _ 
2 ' 3 ~~ 2 X 3 -



APPENDIX B 

READINESS PHASE LESSON PLANS 



THE READINESS PHASE 

These three lessons should; enable most students to acquire 

the necessary prerequisite s k i l l s before the actual experimental 

treatment begins. The teacher w i l l find that a l l lesson plans are 

quite detailed including examples to, use, questions to ask, answers 

one can expect, and seatwork problems to be used after each lesson. 

In order to minimize any misunderstanding that may result, w i l l the 

teachers please observe closely the following instructions: 

1. Carefully read the lesson plans at least a day 

before the presentation. If you have any questions 

or suggestions, please don't hesitate to contact 

me. The phone number is 736-0595. 

2. Try to give the answers to a l l seatwork questions 

before the students leave school for that day. Give 

NO HOMEWORK as outside influences must be discouraged. 

3. Record any absenteeisms on the l i s t provided. 

4. If more examples are needed to i l l u s t r a t e any concept 

before the seatwork is attempted, please feel free to 

do more. 

5. If you feel that another period may be necessary, then 

extend this phase for another period. 
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LESSON 1: MULTIPLICATION AND ARRAYS 

The basic objectives of the lesson are:. 

A. To introduce the concepts of an array and i t s relationship 

to multiplication. 

B. To ill u s t r a t e the commutative principle for multiplication; 

a x b = b x a (in this case, an a x b array, though 

drawn differently, has the same number of elements as 

a b x a array). 

1. Introduction of an Array 

"Today we w i l l see how we can multiply using an array." 

(Write the word array on the board). 

"Here i s an example of an array." 

x x x 
x x x 

"This array i s called a 2 x 3 array since i t has 2 rows of 

3 crosses." 

„ 0 x x x row 1 2 x 3 
x x x row 2 

"We usually write the words '2 by 3' as '2 x 3'." 

Draw a 4 x 3 array on the board; ask children to give reasons 

for their responses. 

X X X 

x x x 
x x x 
X X X 

"This is a 4 x 3 array because i t has 4 rows of 3." 



41 

4 x 3 
array 

x x x 
x x x 
x x x 
x x x 

row 1 
row 2 
row 3 
row 4 

Draw the following examples on the board (one at a time) and 

ask the children to name each. Ask children to give reasons for their 

responses. 

x x x 
x x x 
x x x 
x x x 
x x x 

5 x 3 array 
(5 rows of 3) 

x x x x x x 
x x x x x x. 
2 x 6 array 
(2 rows of 6) 

x x x x x x 
1 x 6 array 
(1 row of 6) 

"Here i s the name of an array." (Put 3 x 6 on the board). 

"This time, try to draw what this array would look l i k e . " 

(Give children a few moments and then check individual pupil's work) 

Answer: 
3 x 6 
array 

x x x x x x row 1 
x x x x x x row 2 
x x x x x x row 3 

Ask the children to draw the following arrays: 

1 x 4 
2 x 5 
3 x 7 

Check pupils' work and ask reasons for their responses. 

2. The Commutative Principle for Multiplication; a x b = b x a 

"Can^anyone come up to the'board and draw a 2 x 4 array?" 

(Have a pupil come to the board and draw the array; ask the 

child how many crosses are in this array). 
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"Can̂ y anyone come up to the board and draw us a 4 x 2 
o n 

array? 

Draw attention to the fact that a 2 x 4 array and a 4 x 2'-

array have the same number of elements but are drawn differently. 

Repeat the same procedure using the 5 x 4 array and a 4 x 5 
array. 

Draw an 8 x 4 array on the board. 

x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x 
X X X . x 

Ask the children i f they can find another array which would 

have the same number of crosses, but would be drawn differently. 

Note: several answers are possible, but draw attention to 

the fact that i f we rotate the array we end up with a 4 x 8 array. 
x x x x 
x x x x 
x x x x 
x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 

8 x 4 array 4 x 8 array 

"Here is a very large array (13 x 8). Can*'anyone t e l l me 

another array that would be drawn differently but would have the same 

number of crosses?" (Answer: 8 x 13). 
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If needed, do other examples to emphasize the point that an 

a x b array has the same number of elements as a b x a array. 

3. Seatwork 

These series of questions are to provide additional practice 

with the concepts covered in Lesson 1. Please allow enough time for 

marking the seatwork as this w i l l enable you to determine i f most of 

your class w i l l be ready for Lesson 2. 

A. Name the following arrays. 

1. 

2. 

3. 

X X X 

X X X 

X X X 

X X X 

X X X 

: x x x x 

X X X X X 

X X X X X 

X X X X X 

B. Draw the following a-rrays. 

1. 

2. 

3. 

4. 

5 

x 
X 

X 

X 

X 

X 

X 

2 x 6 

8 x 2 

10 x 4 

1 x 11 

11 x 1 

(Answer: 5 x 3 ) 

(Answer: 1 x 7 ) 

(Answer: 3 x 5 ) 

(Answer: 7 x 1 ) 
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C. Name or draw another array which would have the same number of 

x's but would look different. 

1. 2 x 6 

2. x x x 

x x x 

x x x 

x x x 

x x x 
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LESSON 2: THE DISTRIBUTIVE LAW 

The basic objective of this lesson i s : 

To introduce both the l e f t hand and the right hand distributive 

law. The l e f t hand law states that a x (b + c) = (a x b) + (a x c). 

For example: 4 x 7-= 4 x (4 + 3) = (4 x 4) + (4 x 3). 

The right hand law states that (b + c) x a = (b x a) + (c x a). 

For example: 8 x 6 = (3+5) x 6 = (3 x 6) + (5 x 6). 

The teaching of both principles w i l l be accomplished by-

dividing an array into smaller arrays. 

Please do not use the terms right hand and lef t hand d i s t r i 

butive laws with the children as this only leads to confusion. 

1. Review 

a) Draw a 6 x 7 array on the board and ask the children 

the name of this array.. Children should give reasons 

for their answers. 

Example: there are six rows of seven x's. 

b) Have a child come to the board and draw a 4 x-2 array. 

2. "Let us look at the following array." 

x x x x x x x 
K't - X X X X X X 

X X X X - X X X 

X X X X X X X 

X X X X X X X 

"What is the name of this array?" ( 5 x 7 ) 

"How could we find out how many crosses there are in that 

array?" 
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(Children w i l l probably offer suggestions such as counting 

the individual elements, adding 5 seven's etc.). 

" A l l of these methods are fine, but here is another 

interesting way. Let's break up the 5 x 7 array into 

smaller arrays like this." 

Step 1 Step 2 Step 3 

5 X 7 5 x (4 + 3) (5 X 4) + (5 x 3 

X X X X X X X X X X X X X X X X X X X X X 

X X X X X X X x x x X X X X X X X X x x x 
X X X X X X X x x x X X X X X X X X x x x 
X X X X X X X x x x X v.X X X X X X X x x x 
X X X X X X X X X X X X X X X X X X x x x 

"Notice that the 5 X 7 array equals a 5 X 4 array 

5 x 3 array. Can any of you think of other ways of breaking 

up this array?" 

(Let children suggest other p o s s i b i l i t i e s ) . 

For example: 

Step 1 Step 2 Step 3 

5 x 7 5 x. (2 + 2 + 3) (5 x 2) + (5 x 2) + (5 x 3) 

X X X X X X X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X X X X X X X 

X X X X X X X X X X X X X X X X X X X X X 

Allow children to break up a 7 x 8 array. Try to emphasize 

Step 1, 2 and 3. 

For example: 7 x 8 = 7 x (3 + 5) = (7 x 3) + (7 x 5). 
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3. The Right Hand Distributive Law 

"Here is another array." 

x x x x 
x x x x 
x x x x 5 x 4 
x x x x 
x x x x 

"We have been breaking these arrays up by renaming the 

second number." 

For example: 5 x 4 = 5 x (5. x 2) + (5 x 2) 

"We can also/break an array into smaller arrays by renaming 
t^ i e ^ i r s t number." 

For example: 

Step 1 Step 2 Step 3 

3 x 4 
x x x x 

3 
x x x x 
x x x x 
x x x x 2 ^ ̂  ^ 2 x 4 
x x x x 
5 x 4 

Ask children for further ways of breaking up this array 

by renaming the f i r s t number. 

For example: 

5 x 4 = (1 + 1 + 2 + 1) x 4 = (1 x 4) + (1 x 4) + (2 x 4) + (1 x 4) . 

"Now we should be able to break up any>array into smaller 

arrays be renaming the second number or renaming the f i r s t 

number." 

Note: Several more examples w i l l probably be needed at this 

stage. The teacher .should emphasize the techh^iques or renaming both 

the f i r s t number and the second number. 



48 

4. Seatwork 

A. Break up each of these arrays by renaming the' second number. 

1) . 6 x 7 = 

2) 3 x 8 = 

B. Break mpseach of the following arrays by renaming the f i r s t 

number. 

1) :6 x 7 = 

2) 8 x.4 = 

C. Provide the numeral which makes the sentence true. 

1) 6 X 7 = 6 x (4 + 3) = = (6 x ?) + (6 x 3) 

2) 4 X 8 = • : (4 x 2) + 0? x 6). 

3) 3 X . 8 = ( 3 x 2 ) + (3 x 2) + (3 x ?: ) 

4) 7 X 5 = (4 + ?) x 5 = = (4 x 5) + (? x 5) 

5) 7 X 9 = (7 x 8) + (7 x ? ) 
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TREATMENT PHASE LESSON PLANS 



TREATMENT ONE 

LESSON 1: MULTIPLICATION ,;OF TWO BY ONE PRODUCTS 

The objective of this less.on i s to teach the rote multiplication 

algorithm for 2 by 1 products; both with and without carrying. 

A. Without Carrying 

"Let us look at the following multiplication problem" 

11 

x 6 , 

"Can anyone suggest a way of solving this problem by renaming 

the top number?" 

(One possible answer might be): 
11 5 + 5 + 1 5 + 5 + 1 

x 6 -: x 6 x 6 
6 x 1 = 6 

+ 6 x 5 =30 
+ 6 x 5 =30 

66 

The teacher should leave the work for 11 x 6 on the board 

and write down 11 x 6 somewhere else. 

"Today we w i l l learn another way that is probably faster 

than breaking up a multiplication problem. We merely have 

to work in the following way." 

11 

x 6 ; 

"We f i r s t ask ourselves what i s 6 x 1? Then we place the 

6 ones in (the ones position." 
11 

x 6 
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"Then we ask ourselves again what is 6 x 1? This time 

we have 6 tens and must place the 6 tens in the tens 

position." 

11 
x 6 

66 

To confirm the answer, the teacher should refer to the 

problem 11 x. 6. done by the distributive principle ( f i r s t example) . 

At this point the teacher should ask one part of the T l 

group to try the problem, 

11 

x n 

by renaming the top number. The other half should try the new algorithm. 

When both groups have finished, the answers should be compared. 

If needed, try the problem of 11 x 9 in the same suggested manner. 
B. With Carrying 

12 
Write the problem. , on the board. 

x 6_ 
Ask,for suggestions as to how to solve this, problem by 

renaming the top number. One suggestion might be: 

12 6 + 6 6 + 6 
x 6_ x 6 x 6 

6 x 6 = 36 
+ 6 x 6 =+36 

72 

"We can solve this problem using our new way." 

12-
x 6 

"What is 6 x 2? This time we have 12 ones. Let's break 

this up into 1 ten and 2 ones. Now we can place the 2 in 

the one's place as before." 
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12 
x 6 

'We should place the 1 ten in the ten's place." 

i : 
12 

x 6 
_2 

"Now we ask ourselves—what is 6 x 1? This time we get 

6 tens. But since we have another group of ten under

neath, we must add i t to the 6. Then we place the 7 tens 

in the ten's place." 

12 
x 6 
I2 

The teacher should then try a problem like 6 x 22 which 

invoices thegplacement of a 1 in the hundreds place. Use the same 

steps as before. 

Using the new algorithm, the pupils should attempt the 

following: 

21 11 14 
x 6 x 9 x 5 

During this time help can be given to individuals as needed. 

C. One by Two Products 

This involves the handling of a problem such as: 

6 

x 23 

Since in the readiness phase the commutative law for 

multiplication was taught, i t should be easy to convince the child that 
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w i t h t h i s type of problem we merely "turn i t upside down." 

6 23 
x 23 x 6 

Now the c h i l d should be able to solve t h i s type of problem. 

D. Seatwork 

I t must be emphasized again that only these l i s t e d problems 

should be attempted. I t i s a l s o important that the answers be 

given to the c h i l d r e n before they leave school f o r that day. 

M u l t i p l y : 

1. 65 2. 7 3. 89 4. 15 5. 49 6. 99 
x 3 x 13 x 5 x 8 x 4 x 2 

7. 6 
x 41 
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LESSON 2: MULTIPLICATION OF THREE BY ONE PRODUCTS 

The objective of this lesson is to teach the rote 

multiplication algorithm for 3 x 1 products; both with and without 

carrying. Since the procedures for 3 x 1 products are very simple 

extensions of those for 2 by 1 products, a detailed lesson would 

be redundant. However, the teacher is urged to restrict a l l 

computation to only the examples given. 

A. Review 

Examples to use: 

3 11 78 
x 37 x 8 x 3 

Emphasize the steps taken to get the f i n a l answer. 

B. Without Carrying 

Ask for suggestions to solve the problem 

132 
x 3 

Most children w i l l probably suggest extending the pro

cedures used to solve 2 x 1 products. 

A typical explanation of the procedures to use might go 

as follows: 

132 
x 3 

"Multiply the 3 x 2; we get 6 ones and have to place this 

6 in the one's position." 

132 
x 3 
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"Multiply the 3 x 3; we get 9 tens and place this 9 

in the ten's position." 

132 
x 3 
96 

"Finally, multiply the 3 x 1; we get 3 hundreds and place 

the 3 in the hundred's position." 

132 
x 3 
396 

Children should attempt: 1Q2 412 210 
x 3 x 2 x 4. 

After sufficient time, ask the children to explain the 

procedure in addition to the fi n a l answer. 

C. With Carrying 

Example to use: 213 

x 7 

Again children w i l l probably extend procedures for 2 x 1 

products. Go through steps as in problem.without carrying, but 

stress breaking up 7 x 3 = 21 ones = 2 tens + 1 one. 

Children should attempt: 120 108 223 
x 7 x 5 x 6 

D. Solution of 6 
x 142 

Again, as in 2 x 1 products, children should be urged to 

turn problem "upside down" and then solve. 

6 142 
x 142 x 6 
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E. Seatwork 

222 
x 7 

2. 107 
x 7 

3. 24 
x 101 

27 
x 550 

5. 636 6. 101 7. 2 
x 5 x 4 x 191 
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LESSON 3:. A REVIEW OF THE ROTE TYPE ALGORITHM 

FOR 3 x 1 AND 2 x 1 PRODUCTS 

This l e s s o n i s needed to a l l o w the T2 group to f i n i s h t h e i r 

treatment. Since most of the students i n the T l group w i l l have 

mastered the rote-type a l g o r i t h m , t h i s l e s s o n i s probably unnecessary 

f o r t h i s group. However, i t i s e s s e n t i a l f o r the purposes of t h i s 

study and can be used as merely a p r a c t i c e l e s s o n . The teacher should 

use only the problems given i n t h i s l e s s o n . Please do not give e x t r a 

problems to those who f i n i s h e a r l y . The teacher should have ample 

time to give i n d i v i d u a l help during t h i s p e r i o d . In a d d i t i o n to 

g i v i n g answers to the problems, the teacher should e x p l a i n the pro

cedures used to get the f i n a l answer i n 3 or 4 problems. 

M u l t i p l y : 

62 
6 

1 
x 49 

23 
x 6 

40 
x 2 

425 
x 5 

8 
x 280 

3 
x 949 

108 
x 2 

39 
x 3 

10. 4 
x 49 

11. 57 
x 7 

12. 523 
x 4 

13. 730' 
x 5 

14. 9 
x 424 

15. 61 
x 5 

16. 99 
x 4 

17. 45 
x 9 

18. 9 
x 30 

19. 253 
x 4 

20. 208 
x 8 
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TREATMENT TWO 

LESSON 1: THE BEGINNINGS OF THE ANNEXATION ALGORITHM 

The o b j e c t i v e of t h i s l e s s o n i s to teach c h i l d r e n a 

technique f o r m u l t i p l y i n g any number by 10, 100, or 1000. 

The teacher should f i r s t q u i c k l y review m u l t i p l i c a t i o n as 

repeated a d d i t i o n . 

e.g. 3 x 8 = 8 + 8 + 8 = 24 

L i s t the f o l l o w i n g s e r i e s of questions somewhere on the 

board. 

2 x 10 = ? 6 x.10 = ? 

3 x 10 = ? 7 x 10 = ? 

4 x 10 = ? 8 x 10 = ? 

5 x 10 = ? 9 x 10 = ? 

S t a r t i n g w i t h 2 x 10 ='? ask c h i l d r e n how to solve by adding 

(10 + 10). Solve each problem by adding. 

I t should befpfflinted out to the students that i n each problem 

the one d i g i t number has changed p l a c e s . 

For example 2_ x 10 = 20 

"The 2 was o r i g i n a l l y i n the one's place but a f t e r m u l t i p l i c a t i o n 

by ten i t s h i f t e d to the ten's place and a zero was placed to 

the r i g h t . " 
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The children should quickly realize that to multiply by 10 

we merely place a zero to the right of the other multiplier. 

The following series of questions should then be placed on 

the board. 

10 x 11 = ? 10 x 21 = ? 

12 x 10 = ? , 18 x 10 = ? 

13 x 10 = ? 

Solve at least 2 or 3 problems by adding. Again have the 

students note that when multiplying by 10 the digits of the other 

multiplier a l l shift to the l e f t and a zero is placed to the right. 

2. ClQtoeuMh'dVê dVCas a Factor 

Again the teacher should l i s t a series of questions such as: 

2 x 100 = ? 4 x 100 = ? 

3 x 100 = ? 5 x 100 = ? 

Solve each by adding. This time i t should be noted that 

students should recognize that the digits have shifted two places 

(from the one's place to the hundred's place) and two zero's are 

then placed to the right. 

The following series of questions should then be placed 

on the board. 

11 x 100 = ? 13 x 100 = ? 

12 x 100 = ? 26 x 100 = ? 

After ..solving the f i r s t problem or so by adding, the children 

should be able to quickly generalize that 26 x 100 = ? can be solved 

by ''placing two zeros to the right of the 26." 
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(26 x 100 = 2600) 

I t i s probably a d v i s a b l e to show the p u p i l s how the 2 

d i g i t and 6 d i g i t of 26 have s h i f t e d two places to the l e f t . 

3- ^oWIriSlas^Fact or 
By now the students should be able to g e n e r a l i z e to 

problems such as: 

6 x 1000 = ? - - - 6000 

12 x 1000 = ? 12000 

To convince some p u p i l s of the l e g i t i m a c y of t h i s 

technique i t may be necessary to solve a problem or two by adding. 

Again the p u p i l s . s h o u l d r e a l i z e that the d i g i t s have s h i f t e d 

three places to the l e f t and three zeros have been placed to the r i g h t . 

Seatwork 

1. 8 x 10 = ? 

3. 15 x 100 = ? 

5. 10 x 1000 = ? 

7. 1000 
x 8 

9. 10 
x 12 

11. 72 x 10 = ? 

13. 100 
x 13 

15. 28 
x 10 

2. 10 x ' 12 = ? 

4. 12 x 100 = ? 

6. 100 x 9 = ? 

8. 12 
x 100 

10, 

14. 

100 
x 9 

12. 98 x .100 = ? 

1000 
x 3 

When marking the teacher should have students e x p l a i n how 

they determined t h e i r f i n a l answers. 
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LESSON 2: THE ANNEXATION ALGORITHM 

The objectives of this lesson are: 

1) to complete the annexation algorithm 5.x 80 = 240 

2) to begin applying the annexation algorithm and dis

tributive principle to solve 2 x 1 products. 

1. Review 

a) ask children to multiply the following: 

3 x 10 = ? 100 x 11 = ? 

18 x 100 = ? 1000 x 19 = ? 

Explain the procedures used to get f i n a l answer. 

Example: (multiply by 100; we place two zeros to the right 

of the other >fae.t.6.r.';ier';' etc.). 

b) review breaking up a productxinto the sum of smaller 

products by renaming the top or bottom number. Final 

answer not important. 
12 10 + 2 7 7 
x 7 x 7 and x 13 x 10 + 3 

7 x 2 3 x 7 
+ 7 xlO + 10 x 7 

2. Put the following series of questions on the board. 

3 x 20 = • ? 110 x ' 3 = ? 300 x 4 = ? 

70 x 5 = ? 20 x 3 = ? 110 x 2 = ? 

3 x 200 = ? 

Show the children how to solve any of the above in the 

following manner. 

For example: 3 x 20 = ? 
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a) "How many tens are there in 20? (Ans. 2) 

"we can rewrite 20 as 2 x 10 

3 x 20 = 3 x 2 x 10 

b) Now the order in which we multiply in a question does 

not matter, so; 3 x 20 = 3 x 2 x 10 = 6_ x 10. 

c) We have already learned how to multiply a problem such 

as this" (place a zero to the right). 

3 x 20 = 3 x 2 x 10 = 6 x 10 = 60 

d) To have the children see the emerging pattern for the 

series of questions, the teacher should underline 

the following: 

3 x 20 = 60 

If the teacher does a few more examples in the above manner 

i t i s hoped that the.child w i l l see.how to multiply 3 x 200 = ? 

(Simply multiply 3 x 2 and place 2 zeros to the right 3_ x 200 = 600). 

Note: In solving 70 x 5 = ? the teacher should re

write 70 as 10 x 7 rather than 7 x 10 since: 

70 x 5 = 7 x 10 x 5 (have to commute 7 and 10 to solve) 

70 x 5 = 10 x 7 x 5 = 10 x 35 = 350 

The next series of questions should be assigned to the 

pupils. This w i l l enable the teacher to quickly determine whether 

or not the class is ready to continue. If not, more example should 

be used to increase the competency with the annexation algorithm. 

30 x 6 = ? 200 x 8 = ? 

9 x 20 = ? 100 x 10 = ? 

110 x 3 = ? 
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Multiplication <bf>, 2 by 1 products 

"Now we are ready to do some d i f f i c u l t multiplication problems 

like , x 6 

a) rename "top" number as 

12 10+2 
x 6 x 6 

b) we know how to multiply this type; 

12 10+2 
x 6 x 6 

6 x 2 
+ 6 xlO 

c) Now i t becomes easy since 6 x 2 = 12 and we know that 

6. x 10 = 60 

12 10+2 
x 6_ x 6 

72 6 x 2 = 12 
+ 6 xlO = +60 

72 

The teacher should demonstrate: 

21 2 0 + 1 
x 6 x 6 

6 x 1 = 6 
+ 6 x 20 = 120_ 

126 

Allow children to try 13 28 

x :„A x 3 

If class appears to be acquiring some mastery and i f time 

s t i l l permits, continue to the next section. 

4. Renaming bottom numbers 

Problems such as ^ ̂  should be attacked in the following 

manner. 
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6 6 
x 23 20+3 

3 x 6 = 18 
+ 20 x 6 = 120 

138 

Other examples to use might be: 

4 8 
x 31 x 51 

5. Seatwork 

Multiply the following: 

1. 2 x 120 = ? 2. 3 x 70 = ? 

3. 2 x 600 = ? 4. 100 x 100 = ? 

5. 11 x 300 = ? 6. 65 
x 3 

7. 7 8. 89 
x 13 _x 5 

9. 15 .10. 6 

x 8 x 41 

The next series of questions should be assigned i f some 

students appear to have mastered the 2 x 1 products. 
11. 6 .12. 100 + 1 0 + J 13. 140 

x 102 x 7 x 2 
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LESSON 3: SOLUTION OF 3 BY 1 PRODUCTS 

Hopefully, this should be the last period of treatment for 

the T2 group. The objective of this lesson is to teach the techniques 

for solving several types of 3 by 1 products. 

1. Review 

Pupils should be assigned the following: 

8 x 20 = ? 34 9 
x 6_ x 23 

In addition to fin a l answers,ftthe procedures used to solve 

each should be re reviewed. 

For example: 8 x 20 = 160 

34 30 +4 
x 6 x 6 

6 x 4 = 24 
+ 6 x30 = +180 

9 9 
x 23 20+3 

3 x 9 = 27 
+20 x 9 = +180 

2. Renaming the Top Number 

Put the problem 102 on the board. Ask for suggestions for 
x 3 

possible solution. Rename the top number in the followingsway. The 

rationale for each step should be explained in detail. 

102 100 +2 100+2 
x 3 x 3 '•• x 3 

3 x 2 = 6 multiplication fact 
+ 3 x.100 = +300 multiplication by 100 

306 
Other examples that should be demonstrated by the • teacher 

are: 
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a) 134 100 + 20 + 4 100 + 30 + '-4 
x 3 x 3 x 3 

3 x 4 = 12 
+ 3 x 30 = +190 
+ 3 x 100 = +300 

402 

b) 240 240 + 40 
x 4 x 4 

4. x 40 -= 160 
+ 4 x 200 = +800 

960 

3. Renaming the Bottom Number 

The pupils should realize that sometimes i t i s advantageous 

to rename the bottom number. These examples should i l l u s t r a t e the 

techniques to be used. 

a) 8 8 
x 101 x 100 + 1 

1 x 8 = 8 
+ 100 x 8 = 800 

808 

b) 3 3 3 
x 246 x 200 + 40 x 6 x 200 + 40+6 

6 x 3 = 18 
+ 40 x 3 = +120 
+ 200 x 3 = +600 

738 

c) 7 7 7 
x 120 100 + 20 100 + 20 

20 x 7 = 140 
+&100 x 7 = +.700 

840 

The preceding examples should be enough to enable most 

students to acquire some proficiency for solving 3 x 1 products. 

The seatwork to be assigned w i l l be good practice for a l l students 

and is lengthy enough to allow the teacher to give individual help. 
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Seatwork 

Multiply : 

3 2. 730 3. 201 4. 485 5. 9 
x 280 x 5 x 6 x 5 x.424 

6. 61 7. 208 8. 9 9. 45 10. 8 
x 5 x 5 x 14 x 3 x 101 



APPENDIX D 

THE MEASURING INSTRUMENTS 



Performance Test 

Name School 
First Last 

Part A - Multiply the following 

Please show a l l work 

1. 87 2. 53 3. 60 4. 93 
x 5 x 6 x 2 , x 2 

6. 3 7. .4 8. 7 9. 4 
x;:41 x 15 x 23 x 68 

11. 732 12. 623 13. 201 14. 840 
x 6 x 2 x 4 x 2 

16. 4 17. 4 18. 6 19. 5 
x 606 x 433 x 218 x*330 



70 

Transfer Test 

Name 
F i r s t Last 

School 

Part B - M u l t i p l y the f o l l o w i n g 

Please show a l l work 

1001 
x 6 

3 
x 1234 

6 
:x. 1100 

3461 
x 3 

12 
x 11 

11 
x 26 

13 
x 64 

25 
x 12 

1001 
x 11 

10. 12 
x 2010 

11. 1111 
x 15 

12. 16 
x 1100 



13. I l l 14. 203 15. 120 
x 101 x 122 x 102 

16. 113 17. 1001 18. 1200 
x 201 x 101 x 110 

19. 101 20. 122 21. 101 
x 1111 x 12 x 18 

22. 16 
x 211 

23. 11 
xyl03 



APPENDIX E 

THE EXPERIMENTAL DATA 
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TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

1 

Tl T2 

Sub Perfor Trans Sub Perfor Trans
ject mance fer ject mance fer 

1 15 4 1 8 2 

2 16 3 2 8 5 

3 18 2 . 3 9 0 

4 11 1 4 14 8 

5 11 8 5 8 0 

6 16 4 6 14 0 

7 16 4 7 6 0 

8 16 4 7 1 0 

9 15 3 9 4 0 

10 11 2 10 9 2 

11 5 2 11 1 0 

12 6 1 12 0 0 

13 12 3 13 7 3 

14 19 4 14 0 0 
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TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

2 

Tl T2 

Sub Perfor Trans Sub Perfor Trans
ject mance fer ject mance fer 

1 20 11 1 5 0 

2 10 1 2 14 0 

3 18 8 3 14 0 

4 10 AH 4 10 3 

5 3 2 5 14 9 

6 13 3 6 0 0 

7 3 1 7 0 0 

8 13 3 8 7 0 

9 9 2 9 0 1 

10 5 1 10 0 0 
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TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

3 

T l T2 

Sub P e r f o r  Trans Sub P e r f o r  Trans
j e c t mance f e r j e c t mance f e r 

1 18 4 1 17 4 

2 15 9 2 15 7 

3 14 12 3 7 5 

4 11 Of 4 8 5 

5 18 4 5 2 2 

6 15 6 6 0 1 

7 12 5 7 0 0 

8 13 2 8 7 0 
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TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

4 

Tl T2 
Sub Perfor Trans Sub Perfor Trans
ject mance fer ject mance fer 

1 19 5 1 17 8 

2 17 7 2 17 8 

3 19 10 3 15 9 

4 20 4 4 16 3 

5 12 5 5 14 6. 

6 16 3 6 11 12 

7 17 4 7 6 3 

8 19 12 8 9 1 

9 19 4 9 6 3 

10 15 4 10 10 3 

11 14 3 11 2 3 

12 14 5 ' 12 8 4 



77 

TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

5 

Sub P e r f o r  Trans Sub P e r f o r  Trans
j e c t mance f e r . j e c t mance f e r 

;i, l 20 12 1 19 12 

2 19 14 2 12 11 

3 18 8 3 19 10 

4 18 7 4 17 12 

5 17 12 5 14 8 

6 16 9 6 6 5 

7 19 12 7 13 7 

8 19 10 8 15 6 

9 19 9 9 14 7 

10 18 12 10 13 5 

11 19 8 11 20 6 

12 16 11 12 10 4 

13 12 6 13 8 2 

14 17 11 14 6 1 

15 16 4 15 4 1 

16 12 1 16 4 0 

17 16 1 17 1 0 
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TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

6 

T l T2 

Sub Perfor Trans Sub Perfor Trans
ject mance fer ; ject mance fer 

1 15 6 1 8 4 

2 19 14 2 12 7 

3 19 9 3 15 9 

4 11 4 4 7 2 

5 18 17 5 9 3 

6 14 4 6 9 1 

7 4 3 7 11 5 

8 16 7 8 6 0 

9 16 3 9 13 4 

10 9 4 10 3 0 

11 16 3 11 0 0 

12 17 3 12 3 0 

13 9 2 13 0 0 

14 0 0 14 0 0 



79 

TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

7 

Tl T2 

Sub Perfor Trans Sub Perfor Trans
ject mance fer ject mance fer 

1 18 5 1 5 2 

2 19 8 2 5 6 

3 12 3 3 11 5 

4 17 2 4 14 7 

5 18 4 5 0 0 

6 12 4 6 0 0 

7 8 2 7 9 2 

8 6 0 8 0 1 
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TABLE V 

EXPERIMENTAL DATA 

TREATMENT 

TEACHER 

8 

Tl T2 

Sub Perfor Trans Sub Perfor Trans
ject mance fer ject mance fer 

1 18 13 1 15 10 

2 15 4 -2 12 7 

3 19 4 3 16 8 

4 13 4 4 3 0 

5 17 4 5 7 7 

6 12 3 6 7 2 

7 15 1 7 11 0 

8 17 3 8 15 1 

9 19 4 9 9 3 

10 18 2 10 9 7 

11 12 3 11 11 . 0 

12 12 3 12 7 0 

13 14 4 13 4 0 

14 11 2 14 7 0 


