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ABSTRACT 

In radio-astronomy, spectra of noisy signals are often computed 

using d i g i t a l auto-correlation techniques. To simplify the design of the 

many high-speed multipliers and averagers, coarse quantization is employed, 

using only a few d i g i t a l levels. 

This thesis is a theoretical study of the penalty paid for such 

coarse quantization in the form of increased output noise. A degradation 

factor is defined and is calculated for a variety of logic schemes which 

have been used or proposed. 

For each scheme, results are given as a function of sampling 

rate and i t is demonstrated that there is often significant improvement 

in sampling at rates faster than the Nyquist rate. . 

A computer simulation technique was developed for verifying 

the computed results, and for extending the. results to complicated schemes 

where analysis is very d i f f i c u l t . 
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I. INTRODUCTION 

In radio-astronomy, as in other fi e l d s , i t i s often necessary 

to measure the amount of correlation between two signals. The signals 

usually are adequately modelled as white Gaussian noise, and the amount 

of correlation between the signals i s typically very small. Hence, 

correlation coefficients must be measured by taking long-time averages 

using instruments free from d r i f t . Such instruments tend to use analog 

to d i g i t a l conversion followed by d i g i t a l techniques for multiplication 

and averaging. 

One particular application of correlators is in the determination 

of spectra of noisy signals. This can be done by f i r s t determining 

the autocorrelation function of the signals, multiplying s(t) by s(t-T n) 

for many different values of T . A Fourier transform is then used to 

.calculate .a .power spectrum. -Similar techniques can be used to find the 

spectrum of a correlation signal coming from two antennas. 

In a correlation spectrometer, two A/D converters feed a large 

number (over 100) of multipliers and averagers, a l l processing samples 

at high rates. It thus becomes important to simplify the design of 

these many repetitive units. Early instruments did this by using 2-level 

(1-bit) A/D converters"'""'". Of late, more complicated logic schemes have 

been used and some thought has been given to reducing the penalty paid for 

coarse quantization. This penalty can be expressed as the degradation 

of the output S/N ratio, when compared with analog instrumention. 

I.1 Literature Survey 

Polarity-coincidence correlators have been studied by F. Bowers"*, 

Burns and Yao^, Cheng'7, Ekre^, and Yerbury^"*. Burns and Yao mention the 
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fact that the output signal-to-noise ratio does not change when the out

put of an analog correlator is oversampled beyond the Nyquist-rate. They 

claim that the actual shape of the in p u t - f i l t e r (which is usually assumed 

to be rectangular) is important. Cheng found the Degradation factor 

for a polarity-coincidence correlator at an i n f i n i t e sampling-rate for 

arbitrary signals and signal power. Ekre found the output signal-to-noise 

ratio vs. sampling-rate of a polarity-coincidence correlator. Yerbury 

investigated the effect of amplitude limiting the analog correlator to 

increase i t s s t a b i l i t y . His special case of i n f i n i t e limiting ( i n f i n i t e 

stability) is identical to the polarity-coincidence correlator. Watts^ 

gives a mathematical description of a quantizer with an i n f i n i t e number 

of levels. Cooper treats the 2 b i t correlator sampled at Nyquist-rate 

and investigates "incomplete multiplication" where the least significant 

products are neglected. 

1.2 Contribution of This Thesis 

This work is a continuation of studies by F. Bowers"*. He found 

the Degradation factor of different combinations of quantizers for 

Nyquist-rate-sampling. Here the Degradation factor of a correlator can 

be calculated as the product of two single channel Degradation-factors. 

He mentions that a Gaussian signal can be replaced by a DC-signal for 

small input signal-to-noise ratios and that the decision levels and 

stepwidths can be optimized. 

The present work investigates the dependence of S/N ratio of 

quantized multL-rlevel correlators on the sampling-rate. General formulae 

are presented. Numerical evaluations give the actual values of the 



degradation factor for five different correlators. Procedures are 

presented which optimize decision levels for four different correlators 

and variable sampling-rates. Two special problems are also discussed: 

(a) The degradation factor for a 3*5 level correlator where the 
two channels are sampled at a different rate (one channel at 
Nyquist-rate, the other channel oversampled) and; 

(b) The effect of "overquantization". Here the product of two 
signals is limited to a small number of levels, but the 
signal before multiplication can have many more levels. 

Finally, a simulation program to determine the degradation 

factor of quantized correlators was developed. This i s useful for 

higher level correlators where theoretical analysis becomes too d i f f i c u l t . 

The simulation results confirm the findings from theoretical calculations 

for the five different correlators considered. 
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II. THEORETICAL MODEL OF A CORRELATION RECEIVER 

Figure II.1 shows the model of a correlation receiver whose 

properties are to be investigated, 
noise 

0 

x(t) = n (t) + s (t) 
X X 

signals 

R = s s x y 
x-signal 
processor 

multiplier 

q = q q 
7 v y 

^ </l-()T Z 

noise 

y(t) = n y(t) + s y ( t ) 

y-signal 
processor 

Averager 

output vw n 
Fig. II.1 Model of a correlation receiver 

Each of the waveforms, x(t) and y(t) is made up of two components: 

a relatively large amount of "noise" and a relatively small amount of 

"signal". The two noise sources are completely uncorrelated, while the 

signal sources may have a f i n i t e cross-correlation factor, R = s x • s y . 

The task of the instrument i s to determine R as accurately as possible. 

The two signal processors can take a variety of forms: 

(a) There could be no processing at a l l , in which case we have an 
"analog correlator"; 

(b) the waveforms could be sampled (usually at rates higher than 
twice the bandwidth); 

(c) the waveforms could be quantized into several discrete levels, 
with subsequent d i g i t a l handling of the multiplication and 
averaging, or; 



(d) the waveforms could be both sampled and quantized. This is 
the common situation and is also the most general case. A l l 
other treatments can be regarded as limiting cases of this one. 

Often the two signal processors are alike, but this is not 

necessary, and several instances of unequal processing w i l l be investigated. 

The processors w i l l normally have a transfer function symmetrical around 

zero volts, and this is assumed for simplicity in the calculations. 

The analog correlator (a) above i s normally d i f f i c u l t to 

instrument due to problems of d r i f t . Theoretically i t has the best 

output signal-to-noise ratio, and i t s performance i s the standard by 

which a l l other instruments w i l l be judged. 

II.1 General Assumptions 

In calculations using the model shown in Figure II.1, the 

following assumptions are made: • 

(1) The signals, s and s , and the noise sources, n and n , are 
x y' x y 

a l l limited to the frequency band (0 to B). 

(In practice, observations are usually made at higher frequencies. 
The waveforms x(t) and y(t) are then band-limited at that 
frequency and are translated down in frequency by heterodyning.) 

(2) The noise sources, n and n , are both white Gaussian signals 
' x y 

with zero mean values. 

(Usually such noise i s a mixture of "antenna noise" from sky 
background and of "receiver noise". The assumption of uniform 
spectral power density is true only because in practice the 
bandwidth observed i s small compared with i t s centre frequency. 
The assumption of Gaussian s t a t i s t i c s i s an idealization, but 
i s valid for Johnson noise and for many other noise sources). 

(3) The two noise sources have the same average power, a , and the 



6 

two signals have the same average power, a . 

(This i s true for most examples of interest and simplifies 
the calculations, but the results can easily be generalized 
to the case of unequal powers.) 

(4) The noise sources are s t a t i s t i c a l l y independent of each other. 

(This i s obviously true when the noise is generated in two 
different receivers. For some other sources of noise there 
may be some correlation, but i f this is so, then the correlated 
components are separated out and are treated as part of the 
signal to be measured.) 

(5) The signal powers are small compared with the average noise 

powers. 

(This assumption simplifies the calculations considerably. It 
is not valid for a l l applications of correlators; but the 
greatest interest in optimizing signal-to-noise ratios arises 
when the signals are small.) 

(6) The signals, and s^, are ergodic and they are not correlated 

with the noise sources, n and n . 
x y 

(It i s not necessary to make any other assumptions about the 
spectra or the st a t i s t i c s of the signals. It is shown in 
Appendix A2 that the degradation in signal-to-noise factor is 
independent of the character of the signals, and can be 
computed using a very special d-c case where s (t) = s (t) = 
s = constant.) o 

x y 

II.2 Definitions 

2 
Let a • be the average power (the variance) of the noise sources 

n and n , and R be the cross-correlation factor of the signals s and x y' b x 
s . 
y 

We then define the input signal-to-noise ratio of a correlator as 
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(S/N) ± = R/a* 

In the d-c case, where R = s , this becomes 
o 

(II.2.1) 

(S/N) . - B
2yn (II.2.2) 

If, further, w is the expected value of the output, w, and o"w is 

the variance of w, then we define the output signal-to-noise ratio as 

(S/N) = w/o (II.2.3) o w 

In general we w i l l find that the average correlator output, 

w, w i l l be some monotonically increasing function of R, as shown in 

Figure II.2.1. 
Expected 

TTZ . C o r r e l a t o r O u t p u t 

A R 

C r o s s - Correlah'on facior 

Fig. II.2.1 Typical variation of expected correlator output 
with cross-correlation factor 

A particular value of w, obtained by averaging over one time-

interval, w i l l show deviations from this expected value, w, with standard 

deviation a as shown, w 

If now R changes by AR, this w i l l result in a change in the 

expected output by an amount Aw. Whether such a change is detectable 

by a single observation of w depends on the relative size of o"w and Aw. 

Quite arb i t r a r i l y , we define the change as "detectable" i f Aw 

exceeds c , and not detectable otherwise. This leads to the concept of 
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the minimum detectable signal, MDS. It i s defined as that change i n 

R which w i l l result in an expected output change exactly equal to the 

standard deviation. 

Hence 

MDS = a / ( ^ ) (11.2.4)" 
W flK 

The MDS w i l l depend on the noise power, the bandwidth, the 

integration time, and (for large signals) on the cross-correlation factor. 

When a l l these are held constant, one can compare minimum detectable 

signals for various correlators. 

The best instrument, with least MDS, w i l l be the analog 

correlator. A l l other instruments pay some penalty in terms of higher 

values of MDS. This f i n a l l y leads to the definition of the degradation 

factor, D, of a particular correlator as 

D = MDS/(MDS) , (II.2.5) analog 

The calculation of this degradation factor for a variety of 

correlators i s the subject of this thesis. 

II.3 Degradation Factor for Small Signals 

When the signals are small compared with the noise (as i s 

assumed in most of the calculations), the degradation factor can also 

be expressed in terms of the output signal-to-noise ratios. 

Using Equation (II.2.4), each MDS can be expressed in terms of 

a and (4^) • However when the signals are small R w i l l be small, and w dR 
Figure II.2.1 can be linearized near the origin. 

We then have 

MDS - o w/(f) = R/Of) = R/(|)o. (II.3.1) 
w 



so that D can be expressed as 

(S/N). for analog correlator 
D = TFT^S — 7 ( I I . 3 . 2 ) 

(S/N) o for system 

The degradation factor i s therefore a measure of the deteriora

tion in output signal-to-noise ratio as a result of the insertion of 

the signal processors into the correlator. 
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III. RESULTS OF PRACTICAL INTEREST 

III.1 Degradation Factor vs. Sampling Rate 

2 In the following we assume the signal power a s to be far below 
2 

the noise power a . Therefore equation (II.3.2) i s applicable and we 

have to find the output signal-to-noise ratio of a correlator in order 

to compute the correlator degradation factor. We defined the output 

signal-to-noise ratio in equation (II.2.3). 

For small signals i t can be shown that o"w does not depend on 
a and can be calculated assuming a =0. The two inputs are then white, s s 

Q _ 

independent Gaussian noise sources . i n this case w = 0 and 

a 2 = w2 (III.1.1) w 

The output signal-to-noise ratio then becomes: 

S [*'a«» 
' G n — - (III. 1.2) 

H o - / f 
[/wZ] s=0 

III.1.1 Replacement of Small Gaussian Signals by d-c 

For small signals ( a
s
< < c r

n) i t i s shown in Appendix A2, that for the 

purpose of calculating the degradation factors, the Gaussian zero-mean 

signals can be replaced by a d-c signal 

s (t) = s (t) = s = const. (III.1.1.1) x y o 

Then both input signals 

x(t) = s + n.(t) (III.1.1.2) o 1 and 
y(t) = s + n„(t) (III.1.1.3) 

o I 

are independent, Gaussian signals with mean value x = y = Sq and with variance 

a 2 = a
2 = a 2 (III.1.1.4) x y n 



The signals x and y are independent Gaussian random variables. Replacing 

the signals by a d-c signal, the probability-density functions of x 

and y become those of the noise signals n^(t) and ^ ( t ) , displaced by 

an offset equal to the d-c value, s : 
o 

- (x-s ) 2 

0 I o 

P Y( X) = — Z T ~ e (III.1.1.5) 
TTO 

1 t ^2 

2 ( y _ S o ) 

p (y) = — - — e 2°n (III.1.1.6) 
y / 2 7 a 

Since both channels are s t a t i s t i c a l l y independent, the joint probability 

density, p x y(x,y) is given by the product of the probability-density 

functions of the two signals x and y: 

P x y(x,y) = p x(x) * p y(y). (III.1.1.7) 

It can be shown (see Chapter III.1.2 and III.1.6) that the degradation 

factor D depends only on the input signal-to-noise ratio defined in 
2 

I I . 2 . 2 . Therefore the variance of the signals x and y, , can be 

arbitrarily set equal to 1 in a l l further calculations. 

I I I . 1 . 2 Output S/N-Ratio for a Quantized, Sampled Correlator 

The block diagram of a quantized, sampled correlatoris , 

shown in Fig. III.1.2.1. Assuming f as the sampling frequency, 

T = -|— denotes the sampling-period ( I I I . 1 . 2 . 1 ) 
s 

and 
f 

K = — the normalized sampling-rate ( I I I . 1 . 2 . 2 ) 
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noise noise 

x-signal 

quantizer 

Averager 

w 

Figure III.1.2.1 Sampled quantized correlator 



According to the sampling-theorem, the lowest sampling frequency that 

allows recovery of a signal from i t s samples is f = 2B. In this case 

the normalized sampling-rate K becomes equal to 2. This lowest 

possible sampling-rate is called the Nyquist-rate. The value of the 

time function x(t) in Fig. III.1.2.1 taken at t = i T g is denoted by 

x ( i ) . The same is valid for the signals y, q^, q y and q^. 

The output signal-to-noise ratio of a correlator with small 

input signals i s defined in (ill.1.2.) Therefore we have to find (a) the 

expected value of the correlator output w when the signal S q is present 

and (b) the standard deviation of w when we omit the signal S o . 

(a) Since the two signals x and y are considered to be s t a t i s t i c a l l y 

independent, the expected value of w is equal to the product of the 

expected value of q and q , i.e. 
x ny 

w = q • q 
^x ny 

(III.1.2.3) 

Fig. III. 1.2.2 shows a symmetric n-level quantizer. Pr(P_^ $ x < P̂ _j_̂ ) 

denotes the probability of x being between the two decision levels P^ 

and P, i+1* 

•p» -a -p, 
o, 

-o. 

Fig. III.1.2.2 n-level quantizer 



The expected value of x becomes 
n-1 n-1 
2 2 

q = E a.Pr(P. £ x < P._,_.,) - E a. Pr(-P. ( 1 $ x < -P.) nx . . x 1 l+l . _ x 1 + 1 x i=l 1 = 1 

where (III.1.2.4) 

Pr(P. <: x < P. + 1) = 
P.,, P.,, 1, , 2 
f 1 + 1 i r . 1 + 1 " 2^X~Sc> 

p (x)dx = e dx 
P. P. 

l l 

and 
= erfc(P.-s ) - erfc ( P . ^ - s ) (III.1.2.5) 

l o 1+1 o 

-P. 
' 1 

P r ( - P i + 1 $ x < -Pi) = | p x(x)dx 

- P i + 1 

= erfc(P. + s )-erfc(P. 1 1 + s ) (III.1.2.6) 
1 o 1 + 1 o 

The complement error-function erfc (x) i s defined as 

r » 1 2 

erfc(x) = . e~ 2 X dx. (III.1.2.7) 

x 

Since S q < < 1 , we can expand each of the terms in eq. ( i l l . 1.2.5) and(III.1.2. 

around 0 using a Taylor series. 
2 

Therefore P. 
So - — 

erfc(P. - s ) Z erfc(P.) + -4- e 2 (III. 1.2.8) 
and P. 

So " — 
erfc(P. + s ) * erfc(P.) - — — e 2 . (III.1.2.9) 

1 ° 1 / 2 T 

Using (III.1.2B) in f i l l . 1 . 2 . 5 ) and ( i l l . 1 . 2 . 9 ) in ( i l l . 1 . 2.6) we obtain 
2 2 PT P.., -I l+l 

Pr(P. $ x < P..-) Z erfc(P.) - erfc(P. + 1 ) + — s (e 2 - e 2 ) 
1 1 + 1 1 1 / 2 7 ° 

and (III.1.2.10) 

2 2 P P _ _ i + 1 

Pr(-P. • $ x < -P.) «s erfc(P.. 1) - — s' (e 2 -e 2 ) (III.1.2.II) 
1 + 1 1 1 + 1 pr— O 



Using III.1.2.4 we find f i n a l l y 

We define 

2 2 n-1 . P. . P.,/ 
~T~ — _ 1 + l 

A v c~ 2 2 \ c 
qx V ¥ . , a i ( e " 6 )- s° 

i=l 
2 2 n-1 PT P 

(III.1.2.12) 

_ _ i i+1 
f (a., P.) = Z a.(e 2 - e 2 ). (III.1.2.13) x i l . , 1 

1=1 

Since is of the same form as q x > the general form of w is therefore 

w = - s 2 f (a., P.)-f (a., P.) (III.1.2.14) 
i r o x i i y i i 

where f (a., P.) and f (a.. P.) describe the actual quantizers, x l l y l l 

2 
(b) To compute the variance a we can neglect the signal s and as 

w 

an approximation consider only two independent noise sources as inputs 

to the correlator, i.e. 

x(t) .= n (t) (III.1.2.15) 

and 

y(t) = n y(t) (III.1.2.16) 
Therefore 

and 

N N N 
w2 * (rjr E q ( i ) ) 2 = 4 ^ I q (i)q (j) (III.1.2.17) 

N i=l Z IT i=l j=l Z Z 

- N N . N N 
w ft -4- T. I q (i)q (j) = -± I 1 R (i-j)(III.l,2.18) 

N i=l j=l z z N Z i=l j=l q z 

Using the relation 
N N N-1 
Z I f(k + n-m) = Z (N-n)(f(k+n) + f(k-n)) + Nf(k) 

n=l m=l n=l 
(III. 1.2.19) 

and recognizing that 

R (k) = R (-k), (III.1.2.20) 
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i t follows that 

,~2 l N"1 i 
w = | ( 2 E ( i ) + R (0)) (III.1.2.21) 

i=l q z q z 
and 

1 N-1 
v2 I VJ. , „ w . „ 

w K7 • -i N q q /N 1=1 ^z 4< 
/7 1 1 i 2 g = /w = ^(2 I (1 - i ) R (i) + R (0)T (III.1.2.22) 

The autocorrelation function of q z(t) is 

R (T) = q-(t) q (t + x) = q (t) q (t + T) q (t) q (t + x) (III.1.2.23) 
q^ z z x x y y 

= R (T) R (X) (III.1.2.24) 

x qy 

since ci x(t) and cjy(t) are s t a t i s t i c a l l y independent random processes. 

Note that 

R̂  (IT ) = R (i) = R (i) R ( i ) . (III.1.2.25) 
q s q q q n z n z nx ^y 

The autocorrelation function of q (t) is given by 

R (x) = q (t) q (t + x). (III.1.2.26) q x x x 
Let the normalized autocorrelation function of x(t) be denoted by 

R X(T) R (X) y?s <f)} 
p x(x) = p(x) = = —joy = T̂J— = Sa(2TTBx) (III.1.2.27) 

where n 

Sa(-) = S ( " )
( ' ) (III.1.2.28) 

Let 
v(t) = x(t + x). (III.1.2.29) 

Then x and v are jointly normal random variables with the joint probability-

density function 

1 , 2 . . . . 2. (III.1.2.30) — (x -2p(x)xv + v ) 
P (x,v) = 
XV 2iT/l-p2(x) 

2(l-p 2(x)) 



17 

Considering again the symmetric n-level correlator (Fig. III.1.2.1) 

we see that 

q q = a.a. with probability Pr(P.£x<P.,,, P.$v<P.,,)+Pr(-P.,£x<-Pi, x nv 1 j r J
 1 1+1' j j+1 l+l ' 

-P.,1$v<-P.) (III.1.2.31) 
J+1 J 

and 

q q = -a.a. with probability Pr(-P.,.£x<-P., P.$v<P.,.,)+Pr(P.£x<P.,,, x nv l j v „ 1 + 1 1 J j+l 1 i+1 

-P..,*v<-P.) (III.1.2.32) 
J+1 J ' 

where 
• 'i- i 9 n-1 iij - J- > • • • 2 

Therefore, 

n-1 n_l 
q q = T I a.a.[Pr(P.$x$P..1>P.$v<P..1)+Pr(-P..1$x<-P., -P _$v<-P.] x nv ^ 1 J 1 1+1 j j+1 i+l i J+l J 

n^l n^l ' (III.1.2.33) 
2 2 

- Z Z a.a. Pr(-P.,,Sx<-P., P.$v<P.,1) + Pr(P . £x<P . , 1 -P.,,£v<-P.) 
i = 1 j = 1 i J i+l i J J+1 i J+ 1 J 

Since p (x,v) i s symmetric in x and v and p (x,v) = p (-x,-v), 
XV XV XV 

Pr(P.Sx<P i + 1, P j $v<P j + 1) = Pr(-P.+1$x<-P., -Pj+^v<-P.) 
P P 
, i+l. j+1 ,P , 1 2 

J p (x,v)dxdv = — J [erfc(-* * — ) - e r f c ( - ^ — ) ]e dx P. P. X V /2TT P. / 2 / 2 i j l /1-p (T) /1-p (T) 
(III.1.2.34) 

and 
•Pr(P.$x<P.- P...$v<-P.) = Pr(-P. ,1^x<-P. , P.^P.,.) l " i + l' j+1 2 1 + 1 J J J+ 1 

Pi+1 CVi . f P i + l - \ x 2 P.+ptfx P +P(T)X 
p (x,v)dxdv = J e (erfc(-^ )-erfc( * )dx 

P. • -P, + 1 ^ / 2 l T P. A^fa A-p\r) 
(III.1.2.35) 
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and f i n a l l y 

n-1 n-1 
2 2 

R (x) = 2 e t a a [Pr(P^x<? , P $v<P. + 1) - Pr(+P±«x<P r -P.+1*v<-P >], 
qx i=l j=l J J . J J J 

.n-1. (III.1.2.36) 
— ^ 2 ' 

R (0) = q 2 = 2 I a 2Pr(P. $ x <P..,) (III.1.2.37) 
Mx i=l 

The same calculations hold for the y-channel i f x is replaced by y in the 

above formulas. 

The output (S/N) - ratio i s therefore 

c - - /N s 2 f (a.,P.) f (a., P.) 
(f) =J*- = 1 0 X 1 1 y 1 1 (III.1.2.38) 

o a w N _ x . - \ 
(2 I (1- |)R (i)R (i) + R (0)R (0)) 2 

i=l x Hy Mx H y 

where f (a., P.) and f (a., P.) are given by equation (III.1.2.13) x i ' I y i ' I ° J 

R ( i ) , R (i) (III.1.2.36 ) for i = IT , q q s' 
x ny 

and R (0), R (0) (III.1.2.37 ). q q x ^y 

The total number of samples during the observation time T i s 

N = f = K B T (HI.1.2.39) 
s 

III. 1.3 (j^) for Sampling at Nyquist-Rate 

For the calculations in this chapter, the Nyquist sampling 

rate f = 2B i s assumed, i.e. K = 2. s 
The autocorrelation function of the bandlimited noise i s : 

p n(x) = Sa(2irBx). (III.1.3.1) 

Therefore, 
1, i f i =0 

p (iT ) = Sa(TTi) = { , (III.1.3.2) 
n 0, i f i 4 0 
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i.e. the noise-samples taken = apart are uncorrelated, and since 

they are Gaussian, they are also s t a t i s t i c a l l y independent. It i s easy 

to see that 

R (iT ) = R (IT ) = 0 for K = 2, (III.1.3.3) 
q s q s x y 

since the quantizers are memoryless devices. 

Replacing N by 2BT in (ill.1.2.38)yields the output signal-to-

noise ratio 

f (a , P )-f (a P ) 
Q = - s 2 / 2 B T X 1 1 2—1 L_ (III.1.3.4) 

TT o /R (0)-Rfl (0) 
qx q y 

S 
It i s remarkable that (jj) c ^ n be expressed as a product of two functions 

f (a., P.) f (a., P.) x l i , y x l - and 17 — — 
/R (0) /R (0) 

x y 

which depend only on one channel of-the correlator. Therefore, for 

sampling at Nyquist-rate, the dual channel correlator can be decomposed 

into single channel correlators. This result is due to F. Bowers^ and 

is treated in more detail in Chapter V.2. It can be seen (III.1.2.38) 

that we improve (jjj) by sampling faster than at Nyquist-rate and that 
sampling at rate i n f i n i t y gives us the asymptotic value or the maximum 
g 

(jj) °f a quantized correlator. 

S III.1.4. 0=) for an Infinite Sampling-Rate No c  

It can be seen that the limiting case, when K goes to i n f i n i t y , 

corresponds to an unsampled but quantized correlator. Thus signal-to-

noise ratio i s maximized for this limiting case. 

From III.1.2.13 and III.1.2.14 we see that w does depend on K. 
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Substituting N = KBT in ( i l l . 1. 2.22) we get 

~2 1 K B T _ 1 i 
W = KBT ( 2 \ ( 1 " KBT ) Rq <*> + \ ( 0 ) (HI.1.4.1) i=l z z 

Taking the limit we obtain 

— KBT^ 
lim wZ = -£=• lim i (2 E ( 1 - ^ ) R (i) + R„ (0)] 
K*» K-*x> i=l q z q z 

T 
4 2 / d " | ) R

n (t). d t- (III.1.4.2) 
I o 1 q 

z 
~2 

This result can also be found by computing w for an unsampled correlator, 

where 
1 N 1 T 

— E q (i) is replaced by — ^ q (t)dt. 
1 = 1 

Finally 
f (a P ) f (a P ) 

lim Q = - a /T - 2 — 1 - y — - i - . ( I I I . 1 . 4 . 3 ) 
v N̂'o 7T S 1 

(2 / A ( l - |)R ( t ) d t ) 2 

z 
S 

It was found in II. 3 . 6 that the degradation factor i s the ratio of (̂ ) 

of the quantized correlator to (JJ) of the analog correlator. The value 

of (jj) for the analog correlator is calculated in the following chapter. 

I I I . 1.5 (JJ) of an Analog Correlator 

We can omit the quantizers in the x- and y-channel or, equivalently, 

set 

q = x (III.1.5.1) 

and 

q y = y. (III.1.5.2) 

Then 
w = x.y (III.1.5.3) 
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and 1, N 2 1 oo ~ 2" " s ) 
x = y = — / xe dx = s (III.1.5.4) 

/ 2IT -«> 
Therefore 

w = s 2. (III.1.5.5) 
o 

The variance of w is given by ( i l l . 1 . 2. 21) as 

where 

— KBT-1 
W KBT ( 2 E ( 1 ~ KBT ) Rx ( i ) + R x ( 0 ) ) ' (III.1.5.6) i=l 

R (i) = p (i) = S a ( ^ ) . (III.1.5.7) 
x n K 

For long integration time 

— 0 0 

w2 = ^ I (2 E sf C 2^) + 1) = . (III.1.5.8) 
i=l 

™ , • . , . for any K >, 2 
The relationship 

CO 
I i si(^) = I (III.1.5.9) 

i=—00 

for any K £ 2 

is proved in Appendix Al. Therefore, 

(|) =-^=s2/2BT (HI.1.5.10) 
N o y=j o 

/w 
and this i s independent of the sampling-rate K as long as K >, 2 

III.1.6 General Formula for the Degradation Factor 

Let n be the number of quantizer-levels in the x-channel and 

let m be the number of quantizer-levels in the y-channel. Then D 
^ J nxm 

the degradation factor of an nxm level correlator sampled at rate KxB. 

D „ w i l l be a function of K. n*m 
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(f) . s 2 /2BT 
D (K) » g o,analog = _g (III.1.6.1) 
nxm ,b_-. .b̂V 

No,nxm No,nxm 

Substituting f . 1.2.10 inHf.1.6.1 and letting N = KBT gives: 
, KBT-1 . \ 
.2 2: (1- -i-)R (i)R (i) + R (0)R (0)] 2 

TT /2 ^ i=l K B T qx q v qx q v 
» OO-Ui — * ,„ Z ^ Y (III.1.6.2) nxm 2/ K f (a., P.)-f (a., P.) 

x x' x v x i 
At the Nyquist-rate, since R (i) and R (i) = 0 for i =f 0, we have 

qx q y 
/ R ( 0 ) - R ( 0 ) 

W 2 ) = f f (a., P.)f (a.,P.) (HI.1.6.3) 

x i x y i ' x 

For K-*>°, (ill.1.4. 3) substituted in ( i l l . 1. 6. l) yields 

T 1 
(B 1 ( l - f)R (r)R n (r)dr} 2 

I o T q q ' D ., M = TT T-f X w / (III.1.6.4) nxm f ( a . , P . ) f ( a . , P . ) x i x y x x For long integration time 
1 
.2 (B / R (T)R (x)dr)' 

lim D (°°) = /JT- x y ,TT-r r r\ 

T-~> n X m " f (a,, P.) f (a., P.) (III.1.6.5) 
x i ' • i ' y I i 

where R (T) and R (T) are functions of only p (x) = Sa(2irBx). Substituting 
qx q y 

x = Bx , D (°°) becomes independent of the bandwidth B. The degradation nxm r 6 

factor D is independent of the input signals, the bandwidth, and the 

integration time and i s only a function of the quantizers, the multi

plication scheme, and the sampling-rate. The definition of D allows 

us to compare different correlators. In the following chapter the 

degradation-factor D i s calculated for four different quantized correlators. 
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I I I . 2 Degradation Factor of the 2 x 2 , 3 x 3 , 2 x 3 , 3x5 and 4x4 Level Correlators 

I I I . 2 . 1 2x2 Level Correlator 

Both the x and the y-channel have quantizers shown in figure 

( I I I . 2 . 1 . 1 ) 

1 1 

-1 -1 

Fig. I I I . 2 . 1 . 1 2-ievel quantizer 

The quantized signals <lx(t) and q y(t) are given by 

q x(t) = sign(x(t)) 

and 
q y(t) = sign(y(t)), 

(III.2.1.1) 

(III.2.1.2) 

Since x(t) and y(t) are s t a t i s t i c a l l y independent signals 5, the expected 

value of w is given by the product of the expected values of q (t) 

and q y ( t ) . Therefore 
1, .2 1, N2 i - -r(x-s ) 1 -^-(x-s ) 1 r°° 2 o , 1 ro 2 " j i o c / \ q = q = J e dx f e dx=l-2erfc(s ) 

x y v/27 ° /2T- r o 

( I I I .2.1 . 3 ) 

Taking the f i r s t two terms of a Taylor series expansion of the complement 

error-function around s = 0 we obtain 
o 

a =/ — 

therefore 

q = q =v — s x y tr o 

- 2 2 w = — s 
IT O 

and the functions defined in ( i l l . 1 . 2 . 1 3 ) b ecome then 

f (a.,P.) = 1 
x l ' 1 

( I I I . 2 . 1 . 4 ) 

( I I I . 2 . 1 . 5 ) 

( I I I . 2 . 1 . 6 ) 
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and Ciir.2.1.7) 

The autocorrelation functions R (T) and R (x) can easily be found with q q x Jy 
the van Vleck relation (or arcsin law, see pg. 483) to be 

R (x) = R ( T) = — arcsin(p (T)), q q TT n ' nx y 
where 

(III.2.1.8) 

p (T) = Sa(2TTBx) n (III.2.1.9) 

and 

R (0) = 1. 
x 

Equations ( i l l . 2.1.6) to ( i l l . 2.1.10) used in ( i l l . 1.6. 2) yield 

(III.2.1.10) 

/

T« n KBT-1 . 9 • 9 T 

| (~ I (1- ̂ T) ( a r c s i n ( S a ( ^ ) ) T + 1) (III.2.1.11) 
TT 1-1 

KBT' K 

At the-Nyquist-rate we have 

D 2 x 2
( 2 ) = 2 (III.2.1.12) 

For K-*» using (III. 1. 6.5) i t follows that 

D2x2 ( 0 0 ) * ( £°° t o c s i n (Sa(x))) 2dx) 2 (III.2.1.13) 

The integral / (arcsin(Sa(x))) dx cannot be solved analytically. 

However, an upper bound can be found to be (see Figure III,2.1.2) 

•7T' 
A • a 

J 
-Orcc'trnxj 

-l 

"z 

Fig. III.2.1.2 arcsin(x) vs. x 
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arcsin (x)| S | |x| (III.2.1.14) 

|Sa'(T)| = | ^ - | *£| (III.2.1.15) 

Letting x = Sa(x), we obtain 

| arcsin (Sa(x)) | <: y |Sa(x)| £ j | — ^ - j - (III.2.1.16) 

Therefore, 
? 2 

(arcsin(Sa(T)))£ -̂ TT (III.2.1.17) 4T2 

There exists an R such that 

o 2 i 2 

/OO / TT i* CO I TT 

D (arcsin(Sa(x))) dx ̂  V f "4" d^ = (III.2.1.18) R 4 R ̂-2 4R 
The integral 

R 2 / (arcsin(Sa(x))) dx can be evaluated numerically. 

The error of the remainder can be bounded with any desired accuracy 

using (III.2.1.18). 
R 2 Evaluating / (arcsin(Sa(x)) dx numerically for R = 1000 yields 

1.2515 i 0.00013. 

^ e t mnn 9 
I = / (arcsin (Sa(x)rdx (III.2.1.19) 

and 
2 

e = • I T (III.2.1.20) 4'R'I 

Then 

D 2 x 2(°°) vT+T (i + I e) (III.2.1.21) 

A lower bound i s given by the accuracy of the numerical integration of I. 

Therefore, 

1.2515 - 0.00013 $ D 2 x 2(°°) $ / — (1 + |e) (III.2.1.22) 
/ IT 

and 

1.25137 $ D
2x2 ( o o : ) $ l- 2528 (III.2.1.23) 
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13 -'Tr Yerbury found D , (•») by an approximation as — = 1.28. 
1 x 1 / -6 

He states that his value is 2-3% too highj which agrees with our result. 

D 2 x 2(K) is plotted in Fig. III.2.1. on page 34. 

It i s remarkable that we can achieve up to a 20% lower degradation 

factor for the 2x2 level correlator by sampling faster than at Nyquist-

rate. At 4 times the Nyquist-rate the degradation factor i s 18% lower 

and at twice the Nyquist-rate i t i s 14% lower. 

III.2.2 3x3 Level Correlator 

Both the x- and the y-channel have quantizers of the form 

illustrated in Fig. III.2.2.1: 
9,. °lu. . 

-i 

Fig. III.2.2.1 3-level quantizer 

P i s the decision level and should be optimized to yield a minimum 

degradation factor. The expected value of w is found by let t i n g I >
2" > 0 0 

in ( i l l . 1.2.13). Then we get 

and 

f (a., P.) = f (a., P.) = e x x x y i ' x 

2 2 -P w = — s e 
TT O 

(III.2.2.1) 

(III.2.2.2) 

To calculate the standard deviation o" , the autocorrelation functions 
w 

R (T) and R (x) can be obtained from ( i l l . 1.2. 36) and ( i l l . 1.2. 37) as 



2 
x 

R Or) - ft- ( / ~ e 2 ( e r f c ( P ; p ( T ) x )-erfc( P + P ( T ) x ) ) d x ) (III.2.2.3) 
• 1-p (x) 

and 

R (0) = 2 erfc (P) (III.2.2.4) 

Above results in (III.1.6.2) substituted yield 

* II f o K B v _ 1 n _ _L_M, 2,,, M _^2^,12.P 2 (III.2.2.5) 
D 3 , 3 ( K ) " I/I {2 ( 1 " KBT ) R

q
 + 4 e r f c^ P )} V i=l nx 

For sampling at Nyquist-rate, D^^(2) becomes 

,2 
D 3 > < 3(2) = TreP erfc(P) (III.2.2.6) 

and for K-*» the degradation factor takes on the limit 

2 I 
D,.(«) = ^e P (B /°°R 2(x)dx) 2 (III.2.2.7) 3X J o q 

nx 

The decision level P can be optimized as shown in Chapter V . l . l . The 

optimum value of P, which depends on the sampling-rate, is 0.612 at 

Nyquist-rate and about 16% higher at i n f i n i t e sampling rate. 

III.2.3 2*3 Level Correlator 

In this case the x-channel has a 2-level quantizer (Fig. III.2.2.1), 

The functions f (a., P.) have already been found in (III.2.2.1.6) and 
x 1 l J 

(tll.2.2.1) respectively for the 2x2 and the 2x3 level correlators. 

Therefore, p2 
w = - s 2 e 2 (III.2.3.1) 

•no 
The autocorrelation functions R (T) and R (x) have been found in q q x y 
(III.2.1.8) and (III.2.1.10) for the 2x2 and in (III.2.2.3) and (III.2.2.4) 

for the 3x3 level correlator. 
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Using (III.1.6.2) we obtain therefore, 

,2 
P l 
_ KBT—1 —-• 

Do.o(K) = I II e 2 \l 1 (1- (i)R (i) + 2erfc ( P ) } 2 

i=l qx q y 
2x3 2 / K 

Sampled at Nyquist-rate, D „(2) becomes 
ZX j 

(III.2.3.2) 

D 2 x 3(2) = | /2erfc(P) e 

and as K-*» ̂ 2x3^°°^ t a ^ e s o n fc^e l i m i t 

P_ 1 9 co 9 
D , X J » ) = ̂ e ' (B. / R (T)R (r)dT) Z 

2 x j o q q 
x My 

(III.2.3.3) 

(III.2.3.4) 

Again P can be optimized as shown in Chapter V.l.2 and is 0.612 at Nyquist-

rate and slightly higher than P for the 3*3 level correlator at higher 

sampling-rates. 

III.2.4 3x5 Level Correlator 

The x-channel has 3 levels; i t s quantizer i s shown in Fig. 

III.2.2.1. The y-channel has a 5-level quantizer as shown in Fig. III.2.4.1. 

Fig. III.2.4.1 5-level quantizer 

The functions f (a., P.) and f (a., P.) are given by (III.1.2.13). x x ' i y i ' x 6 J 

The function f (a., P.) was calculated in (III.2.2.1) and 



29 

y2 

Therefore, 

f (a., P.) = e 2 + Gc - De 2 

y l I 

2 2 2 P P _ i l y l _ y2 
w = — s 2 e 2 (e 2 + (K - l)e 2 ) 

IT O 

(III.2.4.1) 

(III.2.4.2) 

The autocorrelation function R (T) i s given by (III.2.2.3) and III.2.2.4) 

and 

Py2 - \ P v 1"P(Ox 
e ^ e r f c Q - ^ )- erfc( ^ ) 

"yi A-P 2(T) 

P +P(T)X > 
A-P 2(T ) 

P 2+p(x)x 
+ e r f c ( - ^ 

/ l - p 2 ( t ) 
2 

P 2-P(T)X 
) - erfc( y ))dx 

+2K 
Py2 - x 

2 /,„ J, /
Py2"P ( t ) x 

e (erfc(-
y i 7 I- P

2 (T) 

P"(T) 

P +p(r)x 
) - erfc( y ))dx 

X-p 2(x ) 

/•CO X 
+ 

P v 2-p(x)x 
( e r f c ( - ^ — ) - erfc( 

y2 /I-P2(T) / 

P.o+P (x)x 

2 
J Z 2 Z ))dx] 

(x) 

and 

Rq (0) = 2(erfc(P y l) + ( K - l ) e r f c ( P y 2 ) ) 

(III.2.4.3) 

(III.2.4.4) 

Substituting the above results into equation ( I I I . 1.6.2)., we get 

KBT-1 

D 3 x 5
( 2 ) 'I 

/ | ( 2 z [ ( l - f | ^ ) R
a a)>4erfc(P).(erfc(P 1)+(K/-^erfc(P ))! 

IT i=l x qy y y 

2 2 2 P P 

e 2 (e 2 + (K - l)e 2 ) 
(III.2.4.5) 



30 

Sampled at Nyquist-rate, D^^(2) becomes 

D 3 x 5(2) = // 
(erfc(P) ( e r f c ( P p + (K -l)erfc(P 2>) 

o 2 «2 P , P\ 
_ i _ _yJL y_2 

e 2 (e 2 + (K - l)e 2 ) (III.2.4.6) 

and as K goes to i n f i n i t y D„ _(K) takes on the limit 

A B / R (T)R (x)dr o qx qy _ 
2 P 2 

_ 1 1 1 1 1 

e 2 (e 2 +( K-l)e 2 ) 
'il 

(III.2.4.7) 

P, P y^ and P^ can be optimized as shown in Chapter V.l.4. At Nyquist-
rate P = 0.612, P . = 0.422 and P „ = 1.266. 

opt yl,opt y2<Jopt 

III.2.5 4x4 Level Correlator 

Fig. III. 2.5.1 shows the quantizer used in the x- and in the 

y-channel. ' 

-P 

-K 

*,1 

Fig. III.2.5.1 4-level quantizer 

The formulae (III.1.2.13), (III.1.2.36) and (III.1.2.37) are 

easily applied to quantizers with an even number of levels by letting 

P^ = 0, since a n-level quantizer (n even) i s equal to a n+1 level 
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quantizer with the f i r s t decision level set to zero. 

For a 4 level quantizer we set n=5 and take the .a^'s and P^'s 

as shown below: 

n=5 

p r ° a i = 1 

P 2 = P a 2 = K 

P 3 = * > 

Using III.1.2.12 we obtain 

P 2 

fv ( a-!' P i > = f„(a-i> P,) = 1 + (K - De 2 (III.2.5.1) 

and therefore 

w = - s 2 (1 + ( K - l)e 2 ) 2 (III.2.5.2) 
IT O 

The autocorrelation functions R (T) and R (T) are the same and given by 
qy 

(III.1.2. 36) and (III.1.2. 37) .: 

2 
r P - — 

R ( T) - R ( T) = / ! [ / e 2 ( e r f c ( p ( T ) x -) - e r f c ( p ( T ) x ) 
x y 17 Z 2~rr z 277 

vl-p (T ) /1-p (x) 

+ e r f c ( P ^ ^ L . ) - e r f c ( Z z L ^ » d x 

p - x 
2 
c 

+ 2K /* e 2 ( e r f c ( P - p ( T ) x ) - erf c ( ? + p ( t ) x-) )dx 
/l-p 2(x) A-p 2(x) 

2 
o o" P-p(x)x v .P+P(T)X NVJ T 

. 2 .°° 2, _ , — — ) - e r f c ( . ))dx] 
p < e r f c t e ^ 

(III.2.5.3) 
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Note that . erf(«) = l-erfc(«) (III.2.5.4) 

and 

R (0) = R (0) = 1 + 2(K 2-l)erfc(P) (III.2.5.5) 
qx q y 

above results used in (III.1,6.2) yield' 

KBT-1 | 
, (2 E (1- =|=-)R Z(i)+(1+2(K -l)erfc(P))V 

TT I? i=l ^ qx 
D 4 x 4

( K ) = lyfc — ^ - J 2 (IH.2.5.6) 

(1 + (K - l ) e 2 ) 2 

Sampled at Nyquist-rate^ ^ • then becomes 

D A x 4(2) = \ 1 +2(K 2-Derfc(P) (III.2.5.7) 

(l+(K-l)e 2 ) 2 

and as K goes to infinity. D. , takes on the limit 

(B r R
 2 ( T ) d x ) 2 

o q 
D4x4 ( 0 0 ) , = 71 ~ 2 (III.2.5.8) 

(l+(K-l)e 2 ) 2 

The optimized values of P vs. sampling-rate are calculated in Chapter 

V.1.3. At Nyquist-rate, P ^ = 0.995 and increases about 17.5% at an J opt 
i n f i n i t e sampling-rate. 

III.2.6 Conclusions 

For long integration times, D is a function of the quantizers 

and the sampling-rate only. Two functions characterize a quantizer, 

f (a.,P.) and R (T). X X I Q x 
Referring to (il l . 1 . 2 . 1 2 ) , the normalized, averaged output of one quantizer is 
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VV V " If/! (III.2.6.1) 

The autocorrelation function of the quantizer output, R (T), 
qx 

was obtained in (III.1.2.36) and (III.1.2.37). These two functions 

are valid for any symmetric quantizer. Knowing f (a., P.) (f (a., P.)) 
x i i y i i 

and R (T) (R (T)) for the x- and the y-channels, we are able to q q x y 
compute D^ x m(K) for any combination of two quantizers. For sampling 

at the -Nyquist-rate, the dual-channel degradation factor i s simply the 

product of two single-channel degradation factors. It w i l l be shown in 

Chapter V.2. that the single-channel degradation factor i s the D obtained 

for a correlator with only one quantizer in one channel, the other 

channel l e f t unquantized, i.e. 

D (2) = D (2) D. (2) (III.2.6.2) 
nxm nxoo ' mxoo ̂  

D (<») is the limiting value for D as K-*», and is the minimum achievable nxm ° ' 
degradation factor for a correlator receiver with nxm level quantization. 

For an unquantized correlator receiver, sampling faster than 

at the Nyquist-rate does not change the degradation factor. For a 

quantized correlator, however, we obtain a lower degradation by "over-

sampling" (K > 2). 

Figure III.2.1, i s a graph of the degradation factor vs. 

sampling rate K for the five combinations of quantizers considered in 

this chapter. As an example, i t can be seen from that figure that a 

4x4 level correlator sampled at Nyquist-rate has approximately the same 

degradation factor as a 3x3 level correlator at twice the Nyquist-rate. 

Decision levels as well as stepwidths, a^, can be optimized to 

minimize the degradation factor. Choosing the optimum quantization 

levels for minimization of the degradation results in impractical logic 
12 

complications . Choosing the quantization levels as integral multiples 
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decision levels: optimized values 
at K = 2 taken 

2x2 

2x3 

3*3 

3*5 

1.2S2 

7.755 — • 

1.075 ' 

^1.03i 

1 2 3 4 5 6 7 8 9 W U 12 13 14 15 16 17 

Figure III.2 
. i Degradation factor,D versus sampling rate K 
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of one another, preferably powers of two, yields a near optimum per

formance in terms of the degradation factor. As the decision levels 

can be set continuously on the analog-digital converters, non-integral 

size of P. creates no additional d i f f i c u l t i e s . A method to optimize 
1 

the P^'s is given in Chapter V . l . 

In a l l previous calculations the x- and the y-channel were 

sampled at the same rate. The next section investigates the degradation 

in one case where the two channels are sampled at different rates. 

III.3 3x5 Level Correlator at Unequal Sampling-Rate 

A hardware construction of a 3x5 level correlator for Nyquist-
12 

sampling has demonstrated that under certain circumstances the 5-level 

channel can be sampled at a faster rate with l i t t l e increase in 

complexity. This chapter investigates whether there is anything to be 

gained by "oversampling" the 5-level channel. 

A general model of the scheme under consideration is given in 

Fig. III.3. 1. 

Assume that every sample of the 3-level x-channel is multiplied 

with n samples of the 5-level y-channel. If the sampling rate of the 

x-channel is the Nyquist rate, 2B, then that of the y-channel w i l l be 

f = 2n«B (III.3.1) 
sy 

If the averaging is done over N x-samples, i t w i l l include Nn products. 

The multiplication of a given x-samples.with y-samples at a 

variety of time-intervals w i l l attenuate any high-frequency components 

in the correlated signal. Hence, for the purposes of this calculation, 

i t i s no longer legitimate to calculate degradation factors by replacing 
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-B 

sn (f) 
x 

x(t) 

-/-- f sx 

x-quantizer 
(3 levels) 

w 

V') 

-B 

s n (f) 
y 

"y(t) 

' — f sy 

y-quantizer 
(5 levels) 

Fig. III.3.1 Model of correlator with, unequal sampling rates 

both signals with a d-c value. We can s t i l l simplify the calculations 

by assuming that 

s x ( t ) = s (t) = s(t) (III.3.2) 

but we need to make some assumption about the spectral characteristics 

of s ( t ) , by specifying i t s power density spectrum S g ( f ) . 

Signals of interest in radio-astronomy w i l l , in general, not 

have a fl a t spectrum, but may contain spectral lines within the bandwidth B. 

If after translation to baseband, such spectral lines occur near the 

origin, the attenuation of the signal due to the time-displacement of the 

samples w i l l be negligible, and we would find a rather small amount of 

degradation. If, on the other hand, there i s much spectral power near 
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the upper end of the band, the degradation w i l l be severe. 

To obtain typical and r e a l i s t i c values of the degradation 

factor, we assume that the power density spectrum is not concentrated 

at either end. In fact, the calculations are carried out assuming 

white Gaussian noise for s ( t ) . It must be remembered that the results 

so obtained are merely a representative value of the degradation factor, 

and that in a practical case the degradation could be better or worse, 

depending on the nature of the signal to be correlated. 

III.3.1 Asymmetric Sampling 

Each x-channel sample is taken to be synchronized with the f i r s t 

of a group of y-channel samples, as shown in Figure III.3.3.1.1. 

t 

Fig. III.3.1.1 Signals x(t) and y ( t ) , asymmetrically sampled 

The output w of the correlator is then found to be 

^ n N 
w = ~rr E E q ((k-l)n+l)q ((k-l)n + i ) (III. 3.1.1) 

i=l k=l x 7 

Therefore the expected value of w is given by equation (III.3.1.2). 
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n N 
w = -^r Z Z q ((k-l)n+l)q ((k-l)n+i) 

. 1=1 k=l X y 

- n N . n-1 
= Z Z R (1-1) = ± Z Rn (i) (III.3.1.2) nN ...... q q n . q q i=l k=l x i=o x y 

where R (i) i s defined as the expected value of the product of the 
q x q y 

two ergodic random processes <lx(t) and q (t + l T g ) 

Rn n (i) = q v ( t ) q v ( t + IT ) (III.3.1.3) 
q x q y x y s 

where T g is the sampling interval 

T = A (III.3.1.4) 

s -̂ nB 

Since the joint probability-density function of the signals x and y is 

given by 
n ~ y - \ (x 2-2r(x)xy + y 2) 

P w(x,y) = r=~T— e l - r (T) (III.3.1.5) 
x y 27r/l-r (x) 

and 

r(x) = P (T)« O2 « 1 (III.3.1.6) 

where 
R (T) 

p s ( T ) = R70T (III.3.1.7 

we find R Xy( T) a s t n e expected value of the signals x(t) and y(t + T) or, 

equivalently as the cross-correlation-function of x(t) and y(t). Therefore, 

R (x) = x(t) y(t +T) 

0 0 CO . . 

L L x y Pxy ( x' y ) d x d y 

= r(x) 

= p (x)a 2 (III.3.1.8) 
s s 
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R (T ) is a linear function of R (T ) i f a <<1 and depends only on q q xy s r J 

x y J 

the quantizers and R (x ) . 
xy 

In equation III.1.2.13 we used a d-c signal with the normalized 

autocorrelation function 
p (T) = 1 =const. (III.3.1.9) 

and therefore 

R (T) = const. = R (0) = q q . (III.3.U0) q q„ q q ^x ny 
x y M x H y J 

Since R (x ) is proportional to p (x) i t follows that 
q x q y s 

R (T) = - f (a., P.) f (a., P.) p (x)o 2 (III.3.1.11) q q IT x i I y i ' l K s v s Mx ny J 

and for the 3x5 level correlator i t follows from III.2.4.2 that 
2 2 2 P P 

_ El _ y i _ y2 
R (x) = - a 2 e 2 (e 2 + (ic-l.)e 2 )p (x) (III.3.1.12) q q ir s s x y 

Letting T = iT and denoting iT shortly by " i " we obtain > s s 
after substituting (III.3.1.12) into (III.3.1.2), 

2 2 2 P P 

w = i - 2 - G
2 e 2 ( e 2 +(K-l)e 2 ) Z p (i) (III.3.1.13) n n s . _ s 

i=0 

1 ~2 
Since D is proportional to -zr and w i s independent of s for small signals, 

i t can be seen that the lowest degradation factor i s obtained for a d-c 

signal where P s ( i ) = !• The more high-frequency components s(t) contains, 

the higher the expected degradation factor. If s(t) = cos 2-rrBt, then 

p (i) = cos — and H s n 
1 N _ 1 ITT w is proportional to — 1 cos(—) 
n i=0 n 
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In the limiting case as m<», w is proportional to — ^ cos(x)dx = 0 and 
TT O 

therefore the degradation factor goes to i n f i n i t y . A low degradation 

factor can be expected for an unequal sampling-rate i f the signal s(t) 

has most of i t s spectral power at low frequencies. To compute the 
2 

variance a we assume x(t) ~ n (t) and y(t) ~ n (t), i.e. w x J y 

—2 -, n n N N 
•w = - A " Z Z Z E q ((k-l)n+l)q ((X-l)n+l) q ((k-l)n+i)q ((X-l)n+j) 

n NT 1=1 j=l k=l A=l x x y y 

2„2 1=1 j=l k=l A=l Hx Hy n N J J 

Using the identity 

N-1 N N 
Z (N-i) (f(k+i) + f(k-i)) + Nf(k) = Z Z f(k+i-j) 
1=1 1=1 j=l 

(III.3.1.15) 
we obtain 

- j . N N n-1 
w = — ^ Z Z R ((k-X)n){ Z (l-^-)(R ((k-X)n+i) + R ((k-X )n-i) )+R (.(k-l)rijr 

nN2 k=l A =1 qx 1=1 N qy q y q y 

(III.3.1.16) 

After using equation (III.3.1.15) again, we find 

—x 9 N-1 n-1 
v = ~ { Z (1- (nk)Rr] (nk)+ E (1- i)R (0)Rn (i) 

n N k=l n qx q y 1=1 n qx qy. 
n-1 N-1 , . 

+ E Z (1--)(1-£)R (nk)(R (nk+i)+R ( n k - D H ^ R (0)R (0)} (III.3.1.17) 
• T i i n N q q q 2 q q 1=1 k=l x ny ny x ^y 

We assume in what follows that the x-channel is sampled at Nyquist-rate. 

Since R (nk)=R (nk) = 0, ([II. 3.1.16) becomes 
qx qy 

w2 = {2 Z (1- i)R (i) + R (0)} R (0) (III.3.1.18) nN . , n q q q i=l y y nx 
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and as for u-*» (equivalent to x-channel sampled at Nyquist-rate, 

y-channel unsampled), 

— T 
w 2 = N^f~ Ro ( 0 ) o 5 ( 1 " ( T ) d T (III.3.1.19) s x s y 

where T g = is the sampling-interval R (T) i s given by (III.2.4.4) 
q y 

and R (0) by III.2.2.4. 

The asymmetric degradation factor Da 3x5 (w) is therefore found 

n _ 1 i 2 . (R q (0)[2 E (1- ̂ ) R q (i) + R q (0)J) Z 

Da (n)=2-/F x 2 2 (III.3.1.20) 
1 2 1 2 1 2 - — P - — P _ i p z

 n _ i 
2 / 2 y l .v 2 y2 " e - (e J + ( K-l)e ' ) -E p d ) 

i=0 S 

For n 
1_ 1_ 

( R (0)B / 2 B(1-2BT-)R ( T ) d T ) 2 

Da,v, •(«) = 2- - y = = (III. 3.1. 21) 
j x i 1 2 1 2 1 Z — 

- -=- P „ ,2B e 2 (e 2 y l +(,c-l)e 2 Y 2 ) B 7 p ( x ) d T o s 

Since R (T) and p (x) are fu n c t i o n s of 2irBx, Da,vC- (°°) becomes q s J x j -

y 

independent of B . The stepwidths P, P ^ and P 2
 c& n be optimized. 

Since the x-channel i s sampled at N y q u i s t - r a t e , Da.jxc;(K) can be 

expressed as the product of an x and a y-part. P f o r the x-channel 
J opt 

( 3 - l e v e l - s i d e ) i s equal to p
0 p t f o r a 3 - l e v e l q u a n t i z e r at Ny q u i s t -

r a t e . (=0.612). The values of P , ^ and P „ are s l i g h t l y higher 
y l j o p t y2 < )opt 6 

thanP i ^ and P 0 ^ at N y q u i s t - r a t e . In Figure III.3.3.1 and III.3.3.2 however y l j O p t .y2jOpt J 6 

the N y q u i s t - r a t e values P .. ^ = 0.422 and P „ - 1.266 are used, J H y l opt y2 opt ' 
(see Chapter V.1.4) s i n c e the e r r o r of D i s s m a l l enough to be neglected. 
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III.3.2 Symmetric Sampling 

The x-samples are taken to be synchronized with the y-channel 

samples. Further we consider the center of a group of y-channel samples 

to be coincident with an x-channel sample (see Fig. III.3.2.1). 

Fig. III.3.2.1 Signals x(t) and y(t), symmetrically sampled 

The output w of the correlator is found to be 

_1_ E Z q ( < 2 k - ^ n + 1 ) q (( k _ ! ) n + i ) (HI. 3.2.1) 
W nN i=l k=l X 1 y 

Therefore the expected value of w is given by equation (III.3.2.2) 

n N 
w = — Z Z q x nN . . . . ^x 2 i=l k=l 

( ( 2 k - l ) n + 1 ) q y ( ( k _ + ± ) 

— I R ( i n . - q q 1=1 ^x ny 
n+1, (III.3.2.2) 

The cross-correlation function of the signals and q y ( t ) , 

R (T) was obtained in (III.3.1.11) 
x^y 

2 0 Therefore, 2 P P 
- 1 2 2 - — - - -2?- n

 n + l w = - - a e 2 ( e 2 + (ff-l)e 2 ) Z p ( i - (III.3.2.3) n TT s . , s 2 
i=l 



2 The variance is again calculated for noise-inputs only. 

Therefore, 

w2 = a 2 (III.3.2.4) 
w 

2 1 * » ,2. N ,((2k-l)n+l), ,((2^-l)n+l), 
w = "V 2. ? 2, I qx( 2 ) q x (

 2 ) 

n N i=l j=l k=l ^=1 
q y((k-l)n+;) q y((A-l)n+j) 

1 n n N N 
= = 2 2 E S S Z R ((k-A)n) • R ((k-A)n + i - j) (III.3.2.5) 

i=l j=l k=l X=l qx q y 

The expression (III.3.2.5) is the same as (III.2.1.13) for asymmetric 
sampling. Therefore w is given by (III.3.1.17) and the symmetric degrada
tion factor Ds„ (n) becomes then 

3x5 

n-1 -
W ( 0 ) - [ 2 S (1- i ) R n (i) + R ( 0 ) ] j 2 

I q " n q q J 
Ds (n) = y /n" — 1 1 (III.3.2.6) 

p2 _ 1 p 2 _ 1 p 2 
e - - [ e " 2 y l + ( K - l ) e " 2 y 2 ) £ o ( i - ^ ) 

1=1 

Using (III.3.1.18) and taking the limit of (III.3.2.2) as n-x*> we find for 

an i n f i n i t e sampling-rate on the y-channel 

1 
f 2B 1 

2 JR ( O ) - B J ( 1 - 2 BT) R (T) dx) 
I qx 0

 qy I Ds, •(») = £ *• " X (III.3.2.7) 
3 5 1 2 1 2 1 2 f — 

e 2 [e 2 Y L + ( K - l ) e 2 Y 2 JB p (x) dx 
_ 11 S 

4B 

Again R (x) and p (x) are functions of 2TTBX, i.e. DSjx^ (ro) is independent 
q y s 

of B . A high degradation factor can be expected where the signal s has 
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most of i t s spectral power near the bandlimit B. For symmetric sampling 

Ds „ .(n) is proportional to 

r1 ^ ,. n+1. ,-1 
[n J P S

( 1 - T ) ] 

i=l 

and, since PG(T) = Pg( - T) 1 S a monotonically decreasing function between 0 

and -~ for any power density spectrum S g ( f ) , i t can be seen that symmetric 

sampling always results in a lower degradation than asymmetric sampling. 

The largest degradation factor i s obtained where S g(f) has only one 

spectral line at f = B, i.e. P g( T) = c o s 2TTBT. 

As n-*30 Ds .-x̂  (°°) becomes proportional to 

I cos x dx] 1 = — 

2 

and does not go to i n f i n i t y as i n the asSymmetric case. 

It i s of interest to note, however, that the optimum values of 

P, P ^ and P^ a r e the same for the as$ymmetric and the symmetric case. 

Comparison of asymmetric/symmetric sampling for a white signal s ( t ) : 

Under the assumption of s(t) having a f l a t power density spectrum over 

the bandwidth B, its autocorrelation function p (T) becomes 
s 

p (x) = Sa(27rB-r) (III.3.2.8) s 

r2B" 
For asymmetric sampling J p (x)dx is the integral over 

CT s 

the sampling-function from the origin to the f i r s t zero-crossing, (see 

Figure (III.3.2.2). 
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Fig. III.3.2.2 Autocorrelation function of s(t) 

For symmetric sampling the integral is the shaded area illustrated in 

Figure (III.3.2.3). 

fsCT) 

2 6 4B 

Fig. III.3.2.3 Autocorrelation function of s(t) 

It is easy to see that 

4B 

_1_ J _ 
4B f 2B 

p (x)dT > . P ( T) dt s I s 

0 
(III.3.2.9) 

From (III.3.1.20) and (III.3.2.7) i t follows that the symmetric case w i l l 

result in a lower degradation factor than in the asymmetric case. 

III.3.3 Conclusions 

Da 3 x^(n) and Ds 3 x^(n) have been computed and plotted in Figures 
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III.3.3.1 and III.3.3.2 respectively, for a f l a t and for a triangular 

spectrum which we arb i t r a r i l y assumed. As expected, asymmetric sampling 

results in a higher degradation factor than symmetric sampling for both 

shapes of S g ( f ) . For the two shapes considered, asymmetric sampling is not 

a good method to use in determining the autocorrelation function of s ( t ) . 

Considering F,̂. HL3.3,2 » we see that for the triangular shape the degradation 

factor D is smaller than the D at Nyquist-rate at only one particular 

rate, namely twice the Nyquist-rate (n=2). 

Symmetric sampling results in about a 2% smaller degradation factor 

beyond n=4 for the f l a t spectrum, and about an 8.5% reduction for the 

triangular spectrum. 

Generally speaking, unequal, symmetric sampling is advantageous 

only i f S g(f) has most of i t s spectral power at lower frequencies. But i t 

•may be preferable, in this case, to neglect the high frequency components 

and operate with a smaller bandwidth, considering only the relevant 

spectral lines of S g ( f ) . 

III.4 Degradation for Overquantized Correlators 

We have, seen in Chapter III. 2 that, at a given sampling-rate, 

the degradation factor D becomes smaller as the number of levels in the 

quantizers increases. The lower bound (D=l) corresponds to an i n f i n i t e l y 

fine quantization or no quantization at a l l . However, more levels means 

a greater variety of products, q^, to be handled by the averager, and 

this results in a greater complexity of the radiometer. In practice, 

therefore, there is a limit to the number of different products one is 

willing to handle. Given this limit, the question arises whether i t 

might be advantageous to quantize each signal to many more levels, but to 
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merge some of the resulting "products" to obtain only the desired number 

of different outputs. 

for a 4x4 level correlator where the least significant products were 

neglected. The present chapter is based on Cooper's technique and extends 

this technique to the 5x5 level correlator. Later, allowing only three 

different products, q^, we consider, in section I I I .4 . 2 , a 5x5 level correlator 

with the number of products reduced to 3 and, in section I I I .4 . 3 , an 

analog correlator, where the quantization to three levels i s done after 

the multiplication. This last case is interesting, as i t represents a 

limiting case and t e l l s us what we could gain for a given number of pro

ducts by "overquantization". 

III.4 . 1 Multiplication Using Four Possible "Products" 

One case of 'incomplete multiplication" was investigated by Cooper , 

(a) Cooper's Scheme , 4x4 levels 

The function f(a., P.) for a 4-level quantizer has been found in 

III.2 . 5 . 1 : 
Pj 

£(.a±* P ±) = 1 + (K-D e ~ 2 

Therefore w for a 4x4 level quantizer is given by 

or, multiplied out, 

w = — 2 s o 
2 

2 (III.4 . 1 . 2 ) 

The following 6 different products have to be handled by the averager: 

± 1 , ±K and ±K 2 
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2 
Therefore the expression (III.4.1.2) has terms in 1, K and K where: 

2 2 only the products ±K contribute to the terms in K , 

only the products ±K contribute to the terms in K and 

only the products ±1 contribute to the terms in 1. 

Deleting a product pair cancels the corresponding term in equation (III.4.1.2) 

Omitting the terms in ±1, which are the least significant terms, 

(III.4.1.2) becomes 
2 2 2 P P P_ 

w~ = - s 2
 Ke~ T (2(1- e~ T) + K e~ T) (III.4.1.3) 

e IT o 
where the subscript e refers to a correlator with the least significant 

products eliminated. The variance of w for the least significant products 
2 deleted is denoted as (a )e and calculated for sampling at Nyquist-rate. w 

Using equation (III.1.2.21), letting N = 2BT and recognizing that R (i) = 0 
q z 

for i 4 0 we find 

(°w> 2BT R q ( 0 ) (IH.4.1.4) e ^z 
The autocorrelation function R (0) is given by 

z 
R (0) = [R 2(0)] (III.4.1.5) q q e z x 

2 
where [R (0)]e is found multiplying out equation (III.2.5.5) 

qx 

[R 2(0)] = (l-2erfc(P)) 2 + 4K 2(l-2erfc(P))erfc(P) + 4K2 erfc 2(P) q e nx 
(III.4.1.6) 

and deleting the least significant term yields 

[R 2(0)] = 4K 2[(l-2erfc(P))erfc(P) + K 2erfc 2(P)] (III.4.1.7) q e • x 

Equation (III.4.1.8) is obtained after substitution of (III.4.1.7) into 

(III.4.1.4) as 



( aw }e = 2BT 4K 2{(erfc(P)(l-2erfc(P)) + K
2 erfc 2(P)} (III.4.1.8) 

The output signal-to-noise ratio, (—) i s then found using 
N o,e 

(II.2.3), as 

2 2 2 P P P 
_ W e _ /2BT e" 2 (2(l-e" 2 )+Ke" 2) 2 ,_ T T 

(TT) = — = s (III. 4.1.9) 
N o.e a TT j » » 1 o 

W , e / e r f c ( P ) ( l - 2 erfc (P))+K erfc ( P ) 
(—) q for the analog correlator i s SQ /2BT. The degradation factor, with 

the lowest order term deleted, becomes then: 

1 

( 2 ) ] = ^ {erfc(P)(l-2erfc(P)) +K 2erfc 2(P)} 2 (m.4.1.10) 

e" T (2(l-e~ T")+<e~ 

Deleting the least significant products leaves only those in ±K and 
2 

±K , i.e. the averager has to handle only four different products instead 

of 6 for the usual 4x4 -level correlator. 

Figure (ID. .4.1.1) shows [ D ^ x ^ ( 2 ) l e versus the decision l e v e l , 

P, for different values of the stepwidth, K, as parameter. For comparison, 

D x̂̂ ,(2) for the regular 4x4 level correlator i s plotted in the same 

figure. [ ^ 4 x 4 ( 2 ) ^ a t the optimum decision level i s about 0.97% higher 

than D^ x^(2), which i s a small price to pay for the advantage of having 

four instead of 6 different products of q to be entered into the averager. z 

(b) 5x5 level correlator yielding 4 "products" 

The function f(a_^, P^) for a 5-level quantizer was found in 

equation (III.2.4.1) as 
2 2 P P 1 2 

f(a j., P ) = e 2 + (K - l)e 2 (III.4.1.11) 
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and the expected value of w is given by (III.1.2.14) 

p 2 p ̂  p2 p2 2 
9 9 11 _ 1 1 9 l i . _ _ i _1_ 

w = - s ((e~ 2 - e 2 ) + 2tce~ 2 (e 2 - e 2 ) 
TT O 

P 2 
+ Ke *2 ) (III.4.1.12) 

after deleting terms in ±1 we obtain 
2 9 2 2 P P 1 P P • 2 1 2 2 

w~ = - s 2 K e" ~~T [ 2(e~ ~2~ - e~~2~ ) + Ke~~2~] (III.4.1.13) 
e TT o 

2 
Assuming sampling at Nyquist-rate, the variance (o^ ) for the least 
significant terms deleted can be obtained using (III.4.1.4) and (III.4.1.5) 

where [R (0)] is found by multiplying out equation (III.2.2.4) as: 
qx 6 

R2 (0) = 4[K4 erfc 2(P 0) + 2 K
2erfc(P 0)(erfc(P.) - erfc(P„)) + (erfc(P.) a z / ± z i -x 

- erfc(P 2)) ] (III.4.1.14) 

and deleting the least significant term. 
2 The variance, a , is then obtained as w,e 

2 
o"w e

2 = (K 2erfc 2(P 2) + 2 erf c(P 2) (erf c(P 1) - erfc(P 2))) 
(III.4.1.15) 

Therefore, the degradation factor [D (2)] is given using (II.2.3) and 
J ^ J e 

(III.1.6.1) 
1 

(K 2erfc 2(P 0) + 2 erfc'(Pj(erfc(P.) - e r f c ( P 0 ) ) ^ 2 

l»5x5(2)le-v - j ? - j i - j 2 ( I I I . 4 . 1 . 1 6 ) 

_2 _ _1 _ _2_ _ _1_ 
e" 2 [2(e 2 - e 2 ) + <e 2 ] 

The 5x5 level correlator with the least significant term deleted has also 
2 

4 different products (±K and ±K ) to handle. 



From Figure (III.4.1.2) we see that D 5 x 5 ( 2 ) e is 2.76% higher than 

Dj. ,-(2) at optimized decision levels, but, compared with the 4x4 level 
j X j 

correlator, s t i l l 2.46% lower than [D. ,(2)1 , which also has 4 different ' 4x4 e 

values of the quantizer-products, q^. The prices we pay for this lower 

degradation are an increase in complexity of both the quantizers and the 

"multiplier". 

III.4.2. Overquantized 3-Product-Correlator 

Under the general assumption stated in Chapter II we consider a 

sampled correlator with two 5-level quantizers as shown in Figure III.2.4.1 

Seven products qx<3y are excited from the multiplier: 

— K —K, -1, 0, +1, +K, +K f 

Yx(i) f y(i) 
5-level 
quant. 

5-level 
quant. 

Product-
merger 

N I., Z 

w 

Fig. III.4.2.1 Correlator with product-merger 

using the product-merger shown in Figure III.4.2.1. 

The logic scheme of this product merger is shown in Fig. III.4.2.2 and 

probability chart as in Figure III.4.2.3, the signal q z ( i ) retains only 
the three products -1, 0 and +1. 
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k 1 0 -1 

k i 1 0 -1 -1 

i i 0 0 0 -1 

0 0 0 0 0 0 

- r - i 0 0 0 1 

- k - i -1 0 1 1 

Fig. III.4.2.2 Logic Scheme of Product merger 

f 

Fig. III.4.2.3 Probability chart of product merger 

The signal equals 0 i f the signal-pair (x,y) is in the shaded area, 

equals +1 i f (x,y) are in the area (1) or (3) and equals -1 i f (x,y) are 

in (2) or (4). 

Therefore the expected value of the output, w, i s 

w = q^ = Pr(l) + Pr(3) - Pr(2) - Pr(4) (III.4.2.1) 

According to the assumptions made in Chapter III.1.1, the Gaussian input-

signal s(t) can be replaced by a d-c signal s(t) = s and since the 



signals x and y are s t a t i s t i c a l l y independent, their probability density 

function i s 

P x y ( x > y ) = P x ( x ) * P y ( y ) (III.4 . 2 . 2 ) 

where 
I 9 

p (x) = _L e~ 2 (x - s n r (III.4 . 2 . 3 ) 

/27 

and similarly for P y(y) using the probability chart of Figure I I I . 4 . 2 . 3 , 

the probabilities of finding (x,y) in area (1) is 
V** f0* f P 2 f P 2 

Pr(l) = p (x) p (y) dx dy - p (x) p (y)dx dy 
JX=P 4=P x y A=P 1 Jy=P 1

 X y 

rP 
= [ I p (x) dx] 2 - [ J 2 p(x)dx] 2 

j p l _ p l 

= [erfc(P, - s ) ] 2 - [erfc('Pn - s ) - erfc(P 0 - s ) ] 2 

1 o 1 o 2 o 

= erfc(P 0 - s ) [2erfc(P, - s ) - erfc(P^ - s )] (III.4 . 2 . 4 ) 
2 o 1 o Z o 

Similarly 

Pr (3) = erfc(P 0 + s ) [ 2 erfc(P 1 + s ) - erfc(P, + s )] Z o 1 o 1 o 

(III.4 . 2 . 5 ) 

For area (2) we have 
P l P 2 P l 

Pr(2) = f p (x)dx f p v(y)dy - ( p(x)dx J p(y)dy 
*1 ~°° 1 2 

= erfc(P n-s )erfc(P 9+s )+erfc(P„-s )erfc(P,+s )-erfc(P„+s ) l o ^ o 2 o l o Z o 

erfc(P„-s ) (III.4 . 2 . 6 ) Z o 
and exactly the same result is obtained for Pr (4) 

Pr (4) = Pr(2) (III.4 . 2 . 7 ) 



Since Sq<<1, the error-functions can be linearized using the f i r s t two 

terms of their Taylor-series around s^ = 0 

2 2 2 2 P P P s 2 ^1 _2_ 

Pr(l) + Pr(3) = 2 erf c(P„) (2 erf c^P,) - erfc(P„)) + — e 2 (2e" 2 - e 2 
2 1 2 TT 

(III.4.2.8) 2 2 2 P P P 2 _ 2 _ _1_ _2_ 

Pr(2) + Pr(4) = 2 e r f c ( P j ( 2 e r f c ( P j - e r f c ( P j ) + — e 2 (2e - e ) 
2 1 2 TT 

(III.4.2.9) 

Therefore, p2 2 2 
2 1 2 

w = - s 2 e~ ~2 (2 e 2~ - e 2~ ) (III.4.2.10) 
TT O 

2 
The variance a is obtained from the general equation (III.1.2.1). Con-

w 
sidering sampling at Nyquist-rate, the autocorrelation function R (i) 

2 q z 

differs from zero only at (i=0), and, using N = 2BT, a i s found as w 
Rq (0) 

°w = -2BY- (III.4.2.11) 

2 
Since q^ has only the values 0 or 1, 

R (0) = q 2 

q z z 
= Pr(q z = 1) + Pr(q z = -1) (III.4.2.12) 

2 

Since we consider noise inputs only for the evaluation of o^, and since 

the signals x and y are s t a t i s t i c a l l y independent. ~Pr(qz = 1) and Yriq^ = -

therefore can be obtained by putting (Sq = 0) in the equations (III.4.2.4) to (III.4.2.7). 

Therefore, 

Pr(q z = 1) = [Pr(l) + P r ( 3 ) ] ( g = Q ) , (111,4.2.13) 
o 

Pr(q z = -1) = [Pr(2) + P r ( 4 ) ] ( g = Q ) (III.4.2.14) 
o 
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and 

P r ( q z
2 = l ) = q z

2 = [ P 1 + P 2 + P 3 + P 4 1 ( S = 0 ) 

o 

+ 4 erfc(P 2)(2 e r f c ^ ) - erfc(P 2)) (III.4.2.15) 

Using equation (III.4.2.11), the variance a is then found as 
w 

°l = BY e r f c ( p
2

) ( 2 erfc(P 1) - erfc(P 2>) (III.4.2.16) 

We denote by [D^ ^(.2)]^ the degradation factor for this correlator, where 

q z values have been merged to reduce them to three different values. 

[ D 5 x 5 ( 2 ) ] 3 = 
/2BT s 

(̂ -) 
aw 

- TT 

(erfc(P 2)(2 erfc(P 1) - erfc(P 2))) 

P P P 
_ 1 1 _ _ i - 1 1 

e 2 ( 2 e 2 - e 2) 

(III.4.2.17) 

Figure III.4.2.4 is a plot of this degradation factor versus P^ with the 

decision level P 2 optimized. 

III.4.3 3-Level Quantization After Analog Multiplication 

We now assume that in the correlator described in Chapter II 

the signals x(t) and y(t) are sampled but not otherwise processed before 

multiplication, but that the resulting products z ( i ) are then quantized 

into three levels as shown in Figure III.4.3.1 
Yx(t) yy(t) 

x(i) e— 

3-level 
quant. 

(0 
1 N 

n 2 4a" 

w 
Fig. III.4.3.1 Quantization after multiplication 



Figure III.4.2.4 Degradation factor versus decision level F for merged product correlator 



This arrangement is not very practical, but is considered as a limiting 

case of the process described in proceeding subsections, where we have 

"overquantization" with subsequent "merging" of products. 

The expected value of w is easily found as 

w = = Pr(z * P) - Pr(z <; -P) (III.4.3.1) 

Signals x and y have normal distribution, variance equal to unity, and 

normalized correlation coefficient 

r = s 2 (III.4.3.2) 
o 

Their joint probability-density i s given by 

( 2 0 2 4 . 2 \ 

(x -2 s xy + y ) 
( \ i 2 ( i - s

 4; ° 
P x v(x,y) = = = ; e o 

y 2TT/1-S 4 (III.4.3.3) 
Then 

P 
Pr(z >, P) = f / Pvv<x,y) dx dy + f° f X P (x,y) dx dy 

J0 P Y J J Y 

— O O — C O 

X 

= 2 J j° P^U.y) dx dy 
O P 

x 
2 x P 2 r » - y s x 

- f e e r f c ( X S = T ) dx (III.4.3.4) 
ir 'o >7 4 

Using the f i r s t two terms of a Taylor-series around ( S Q = 0), we obtain 

r
 x ? 2 » 1 , 2 .P.2. 

Pr(z ^ p) J e erfc( £)dx + — xe dx (III.4.3.5) 
0 x 77 0 

and „ 
CO CO p 

Pr(z $ -P) •= / Jp p (x,y)dx dy + / J" p (x,y)dx dy 
— C O — — * 0 —00 

X 



2 J J P— ^ x' y^ d x d y 

—oo — 
X 

2 P . 2 x — + S X 
e 2 e r f c ( X ) dx (III.4.3.6) 

S O 
x 2 s 2 1 

- f e~ T e r f c ^ d x - — J xe~ I (x 2+(-) 2)dx 
TT J x 11 "n x 

0 u 

Therefore, 

2 The variance a is found using (III.1.2.24) w 
9 ' KBT-1 

°w " K i f [ 2 ^ R
q ™ + \ x=l H z ^z 

The autocorrelation function 

(III.4.3.7) 

2 s r - j ( x + (-) ) 
w = — j xe X dx (III.4.3.8) 

R (T) = q (t)q (t+r> (III.4.3.9) 
z 

can be found as follows: 

Let u(t) = z(t+ T) (III.4.3.10) 

Then 
q (t) q (t+ T) = 1 i f uz :> P z z 

= -1 i f uz $ -p 

= 0 i f -P < uz < P (III.4.3.11) 

Therefore, 

R (x) = Pr(uz >,P) - Pr(uz <c -P) (III.4.3.12) 
q z 

Considering sampling at Nyquist-rate, we find that 

R (i) } 0 i f i t 0 and R (0) = q 2 (III.4.3.13) 
y z q z Z 
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2 The squared signal, q^ , has the values 

+ 1 with Prob Pr(|xy| >, P) 

0 with Prob Pr(|xy| < P), 

Therefore, 

Pr(|xy| * P) = Pr(xy :> P) + Pr(xy $ -P) (III.4.3.14) 

The probabilities Pr(xy 5 P) and Pr(xy £ -P) can be found by putting SQ = 0 

in (III.4.3.4) and (III.4.3.6) as 

Pr(xy Z P) f & 2 erfc(^) dx (III.4.3.15) 

and 2 
o> _ x_ 

Pr(xy <: -P) =-/- J e 2 erfc (-) dx (III.4.3.16) 

V 7T Q X 
Therefore, from (III.4.3.13), 

2 
.00 X 

q 2 = R (0) •= 2-P J e 2 erfc(-) dx (III.4.3.17) 

and using (III.1.2.22) for N = 2BT 2 
°°_ x 1 

% " 2BT >" 2 « f c £ d * } 2 (IH.4.3.18) 

Let [Da(2)] be the degradation factor of the analog correlator with three 

level quantization after multiplication of the signals x and y. Then, for 
sampling at Nyquist rate, „ 

_ x_ I 
2 P 2 _3 e erfc(—)dx) 

[Da(2)]„ = J 2 ( j ) U — (III.4.3.19) 

' 2 ( x + ( x } > xe dx 

[Da(2)]_ is plotted in Figure (III.4.3.2) as a function of the decision level 

P. 
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Figure III.4.3.2 Degradation f a c t o r versus de c i s i o n l e v e l P 
3-l e v e l quantizer a f t e r " m u l t i p l i e r " 



III. 4.4 Conclusions 65 

Figure (III.4.4.1) combines the results on correlators using three 

values of the products, q^ which are to be averaged. It shows degradation 

factors, D, plotted against decision level, P, in three cases 

(1) for the regular 3X3 level correlator, employing no 
overquantizing" of the signals. 

(2) for the 5x5 level correlator where products are merged 
to three values as described in section (III.4.2), 

and 
(3) for the correlator studied in section (III.4.3), which uses an 

i n f i n i t e number of levels before quantization and reduces 
the possible number of products to three afterwards. 

It i s seen that some improvement of degradation factor can result 

from "overquantization", but that this is limited to about 4%. At 

optimum decision levels, the degradation for case (3) is 4% less than that of 

the regular 3x3 level correlator, (1). 
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Figure III.4.4.1 Degradation factor for 
versus decision level P 

3-product correlators 



IV. SIMULATION WITH RANDOM NUMBERS 

The simulation is a software model of the actual correlator oper

ating under the assumptions stated in II.1. and has two main purposes: 

(a) To verify the theoretical results found in III.2. 

(b) To evaluate the degradation factor for complicated quantizers 
where a theoretical computation of D would be too d i f f i c u l t . 

The assumption s^ << 1 would make i t necessary, as for a real radiometer, 

to correlate over extremely long intervals of time. A direct simulation of 

the whole system is therefore impractical. Since the expected value of w 

is relatively easy to compute and does not depend on the sampling-rate, we 
2 

restrict ourselves to a simulation to determine the variance. <S" . Accor-
w 

ding to our original theoretical assumptions we neglect again the signal 

s(t) and consider only the two independent Gaussian white noise sources as 

inputs. 

Our noise-samples are generated by a subroutine which produces 

random numbers with normal distribution, which is available on the IBM-360. 
14 

It was found that 2 = (16384) samples are needed in order to determine 
6" with sufficient accuracy, w 

IV. 1. Creation of Correlated . Samples 

The random numbers generated by the computer program can repre

sent samples of band-limited Gaussian noise taken at the Nyquist rate 2B. 

For some calculations, we need to simulate samples taken at a 

higher rate, KB, where K > 2. Such numbers w i l l show some auto-correlation. 

They were generated as illustrated in Figure IV.1.1. 

Part (a) of that figure shows the situation to be simulated; a 

noise source of bandwidth B is to be sampled at rate KB, where K > 2. 



a) S x(£) 

Variance = 1 

f = KB 
J - 4 £fc> 

b) 
s;(f) 

• 

Variance = K 
2 

LP-Fil t e r 
s s 

0-B 0-B x(t) x(i) 

c) 'x'U)! 

f = 2B' 
s 

CH-B' (KB CH-B' x'(t) (KB x(t) x(i) 

d) x'(i) 

e) 

Random-
numb er-

Fas t-Fo uri er-Transfo rm 
/ \ 

generator 

Variance = 1 

FFT ) K.  1  

X 
FFT 

Variance = K 

Figure IV.1.1 Generation of correlated noise samples 



Part (b) shows an equivalent situation, where the noise source 

is thought of as having i n i t i a l l y a wider bandwidth B' = — B, and the sig 

nal is then reduced to bandwidth B by an ideal low-pass f i l t e r . Note that 

the average power of the hypothetical source x'(t), should be (B'/B) times 

that of the real source, x(t). 

Part (c) is equivalent to (b). Here a sampling switch at rate 

2B* is inserted, with the samples passed through an ideal f i l t e r of band

width B', which allows the signal to be recovered completely. 

Of course, a f i l t e r of bandwidth B' preceding one of lesser 

bandwidth, B, is redundant and can be removed, as is shown in part (d). 

Finally, part (e) shows how the situation shown in (d) is simu

lated. Random numbers with Gaussian distribution are generated to repre-
1 

sent samples of the hypothetical signal, x'(t) at intervals , ) . They 
/ 1 

are multiplied by-yK/2 to give them the required variance. Band-limiting 

is achieved by taking a Fast Fourier transform of a sequence of N = KBT 

such samples, rejecting components above frequency B, and performing an 

inverse Fourier transform on the remainder to recover the required time-

samples. 

IV. 2. Simulation of the Variance 

Two independent sets of noise samples n(i) are used as inputs 

on the x-and y-channel, as shown in Figure IV.2.1. The samples in one set 

are correlated to represent samples of a bandlimited, white noise as dis

cussed in IV.1. The samples for the x-channel are called x(l) x(NM) 

and for the y-channel y(l) ....y(NM). 
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XII)... XlWM) 4(d).. 4 CUM) 

x(i) y d ) 

q x ( D - a. i f P.<;x(i)<P. , , 
1 X 1+1 

q y ( i ) = a . i f P.<cy(i)<P. l l ^ l + l 

= -a. 
1 

i f • - p i + l ̂ x(i)<-P. l 
= -a. 

I 
i f -• W y ( 1 ) < - p l 

q x ( i ) 

Figure IV.2.1 Simulation model of a quantized, sampled correlator 

The expected value of w i s zero since x and y are s t a t i s t i c a l l y 

independent, zero-mean samples and the quantizers are symmetric. Therefore 
2 . 2 

the variance is equal to the expected value of w and, denoting W as the 
2 2 average over M values of w , the expected value of W , is found as 

W w = 6", w 
(IV.2.1) 

We are interested in (Sfaiy the standard deviation of W , 

4 2 2 <V) = w - (w > (IV.2.2) 

in order to estimate the accuracy of ^ a s found by the simulation method. 

The products, q (i) , are zero-mean random numbers with a non-Gaussian pro

bability-density distribution. In fact, p (z) is a set of Dirac delta 
q z 



functions symmetrical about = 0. However, the central limit theorem 

states that the probability-density function of the sum of a large number 

of random variables with arbitrary probability-density functions tends to 

become Gaussian in the central region. Applying this to our case, we see 

that w(k) has a normal probability-density function in the central region, 

assuming that N is large enough. 
4 

The expected value of W is given by 

M M W4 = -\ E E w 2(i) w 2(j). (IV.2.3) 
M i=l j=l 

For i = j we get 

w 2(i) w 2(j) = w4 = 3£ 4 (see 1 , pg. 148) (IV.2.4) 
w 

and for i 4 3 we get 

w 2(i) w 2(j) = w 2(i) w 2(j) = (w 2) 2 (IV.2.5) 

2 
where the values of W are assumed to be independent 
Therefore, 

M M M 2 4 1 4 1 2 W = ~y E w + -y 2 Z E (w ) 
M i=l M i=l j=i+l 

= | w4 + ^ (w 2) 2 (IV.2.6) 

q 

V 4 

M^w 

t .2 1 _ 4 , M-l 4 4 
(q) = — 3 <g H — s" _ 6 

M w M w °w 
(IV.2.7) 

Therefore the standard deviation of W is obtained as 



FT 2 
^(W2) "VM ^W (IV.2.8) 

IV.3 Results of Simulation Runs 

In chapter III i t was seen that the degradation factor, D, i s 

proportional to the standard deviation, a , of the output of the quantized 
w 

correlator. 

Specifically i t follows from equations III.1.2, III.1.2.14 and 

III.1.6.1 that 

^ TT Y2BT ,r.. „ 1 N D = -r- — 7 ^ -. r - r - x a (IV.3.1) 2 f;(a.,P.)- f (a.,P.) A w 
L x 1 1 ^y 1 1 

A series of M simulation runs, each using N = KBT samples in each channel, 
2 ~2 2 gives a result W whose expected value, W , equals a . Hence we can re-w 

write equation (IV.3.1) in terms of N and as 

2 ' — 
D 2=-~| tf x(a.,P.). fy(a±,V±)}-2 W* (IV.3.2) 

~2 

For any given correlator, a l l terms on the right hand side except W can 

be easily calculated. The quantity W" is found from the M simulation runs 

with an uncertainty given by equation (IV.2.8) as 

r̂1 S c i v - 3 - 3 ) 

w 
2 

Hence the simulation runs can give us a value of D with the same relative 

uncertainty 
• - ^ - f OV.3.4) 

H2 ^ 

or a value of D with uncertainty " 



e = = I V) = JL ( I V 3 5 ) 

To get an accurate value of D then requiries a very large number, 

M, of simulation runs. Each run also requires a large number, N, of sam

ples i f i t i s to represent a practical application where BT >> 1. It was 

found that N = 180 is a reasonable number for this purpose. The combina

tion requires NM samples in each channel and this can soon produce exorbi-
14 

tant computing times. For the actual computer runs, 2 = 16,384 samples 
were used in each channel. If these are "band-limited" samples, i t requires 

14 

about 32 sec of CPU time in the IBM 360 computer to generate the 2 x 2 

samples and a further 8 seconds to execute the simulation program, for a 

total of 40 seconds. 

If the samples are then regarded as batches of N = 180 samples 

each, the number of batches w i l l be 

M = -̂ flf4- = 91 (IV. 3.6) 
resulting in an uncertainty in the value of D given by equation (IV.3.5) 

as 

t = = 7.4% (IV.3.7) 
•2x91 

This is too large an error for practical purposes. Reducing i t by a fac

tor of four requires an increase by a factor of 16 i n the number of samples 

and hence in the computing time, which would increase to about 649 seconds. 

Another more efficient way, which has proved very useful, i s des

cribed here: 

The samples x. and x. are correlated; with normalized auto correlation co-
1 J 

effi c i e n t , f ( i - j ) , given by ̂ x T = x 2 f ( i - j ) = x 2 s ^ 2 ^ 1 " ^ ) (IV.3.8) 



Therefore | f ( i - j ) | * ^ f l j ^ - (IV. 3.9) 

Therefore, taking two samples x^ and x_. far enough apart, their correlation 

coefficient is so small that the samples can be considered uncorrelated 

(and independent, since they are Gaussian). We now rotate the samples on 

one channel k steps and repeat the process, obtaining again 91 independent 
2 

results of w . We can repeat this rotation 16384:k times and get there-
2 

fore 91(16384:k) results, w, which can be considered to be independent, as

suming that k is large enough. 

For our program, k = 1000 was used which results in a correlation 
coefficient for x.x. 

i J 

205U7- ( I V ' 3 ' 1 0 ) 

The highest sampling rate used was Y = 16, and even in this case, the cor-
-3 

relation coefficient i s less than 2.5 x 10 , which is small enough to be 
2 

neglected. With this method we obtain M = 1456 independent values of w 

and from equation (IV.3.5), 

2 = = 1.84% (IV.3.11) 
/2xl456 

Therefore the error of D is 1.84%, which is more tolerable. 

This second way results in the same error s as that taking 16 

times more samples, but only the execution part of the program runs longer: 
14 

Production of 2*2 bandlimited samples: 32 sec 

Execution of the simulation program: 120 sec 

Total: 152 sec CPU-time 

The total CPU-time needed is 152 sec, amounting to about $23, at a charge 

of $560/hr. We see therefore that this second scheme i s roughly four times 



less expensive than taking 16 times more samples. 

Figure (IV.3.1) shows a comparison of calculated and simulated 

results for the degradation factor, D, for various normalized sampling 

rates, K.• 

The solid lines are the calculated results for five different 

quantized correlators. 

The shaded areas show the domain of D within 1.84% of the calcu

lated values for the 2x2 and 2x3 and 3x3 level correlators. The error 

domains for the other two correlators are not drawn to avoid confusion. 

The dots are the results obtained from simulation. 

It is seen that the simulation runs verify the calculated results 

to the anticipated accuracy. The same simulation technique could therefore 

be relied on to provide approximate degradation factors for other schemes 

where calculations are impractical. 
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V. RESULTS OF MORE THEORETICAL INTEREST 

V.l Optimization of Decision-Levels 

In chapter I I I . l x̂ e have stated that the decision levels P_̂  of 

a quantized correlator can be optimized. If in a 3X3 level correlator P i s 

allowed to go to zero, we get a 2X2 level correlator with a higher degra

dation factor than for 3X3 levels for any K as shown in Figure (III.2.1). 

As P goes to i n f i n i t y , q and q tend to zero for a l l values of x and y and 
x y 

the correlator gives no information about the signal s ( t ) . Therefore D goes 

to i n f i n i t y . It follows that P must exist. Plotting D versus P as i n J opt 
Figure V . l . l , we see that in every case D(P) has only one P Qp t 

The 2x3, 3x3 and 4X4 level correlator have only one parameter, 

P, to optimize. For higher level correlators several parameters P^ have 

to be simultaneously optimized, which leads to a nonlinear optimization 

problem of multiple parameters. One method of solving this problem was 

found for the 3*5 level correlator and is discussed in section V.l.4. 

V . l . l Optimum Decision. Level for the 3X3 Level Correlator 

The degradation factor D _(P) is a concave function for P in 
3X j 

(0 $ P < 00) or equivalently, 

2 
^ > 0 (V.l.1.1) 
dP 

Therefore a minimum degradation factor for an optimum value of P^, denoted 

by P ^ occurs for J opt 

§ / P - 0. (V.l.1.2) 
opt 



Figure V. 1.1 Degradation f a c t o r versus de c i s i o n l e v e l P for a 3x3 l e v e l 
c o r r e l a t o r with sampling rate as a parameter 



Using (III.1.2) in (III.1.6.1) we find 

D = v̂ 2BT s o — w 

where only w and w are functions of P. 

We define the characteristic function f(P) as 

1 
f ( P ) = -A Xw_ ) 

K } dP ^ w } 

(V.l.1.3) 

(V.l.1.4) 

where 
f(P) 

' opt 
(V.l.l.5) 

or, equivalently, 

dw 
dP 
w 

1 
2 

' opt 

dw 
dP 

w opt 

(V.l.1.6) 

The expected value of w of a 3*3-level correlator was found in (III.2.2.2) 

Therefore, 

dw  
dP 
w 

-2P (V.l.1.7) 

The variance a was found in (III.1.2.21), where the autocorrelation func-w 
tion 

R (i) = R 2 ( i ) , 
z nx 

(V.l.1.8) 

since both quantizers are equal. R (i) was found in (III.2.2.3) and 
x 

(III.2.2.4). Taking the derivative of w , 

dR (o) 72 _ r N-1 . d Rq. ( i ) 

ft" = I 2 2 ^ R q ( ± ) + \ ( 0 ) ~ o F - j ^ - 1 - 1 " 9 ) 
l x J. x x 



and using Leibniz 1 rule 

OO 0 0 

J f(P,x) dx = J d £ ^ , x ) dx - f{P,P) (V.1.1.10) 

to calculate the derivative of R ( i ) , 

X = -2 dP 

and 
d R q ( 0 ) P 2 

- d f — = 6 " 2 (V.l.1.12) 

The characteristic function f(P), defined in (V.1.1.4), i s then found as 

dw2 

f(P) = + 4P. (V.1.1.13) 
w 

Equations (III.1.2.21), (V.l.1.3) and (V.l.1.9) substituted into (V.1.1.13) 

y ± e l d S f N-1 . dR (i) dR (o) "\ 
2̂ 2 E Rn (i) qx + Rn (o) qx 
L i=l N qx ~~dP qx ~~dP J 

f(P) = 1 _ • — ; + 4P 
2 E (1- §) R 2 ( i ) + R 2(o) 
1=1 N qx qx (V.1.1.14) 

This nonlinear equation was solved numerically using the subroutine RTWI 

is *SSP (IBM 360). 

Figure (V.1.1.1) shows P versus the sampling-rate K for the 
opt 

3x3 level correlator. P increases about 16% as K grows from 2 to 12. 
opt 

The fastest increase in P occurs between K = 3 and K = 5. The variation 
opt 

of optimum decision level with sampling rate is an interesting and unex

pected phenomenon, and there seems to be no obvious qualitative explanation 

for i t . 
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V.1.2 Optimum Decision Level for the 2*3 Level Correlator 

The expected value of w was found in (III.2.3.1). 

Therefore, _ 
dw 
dP - P (V.l.2.1) 
w 

The variance r^- was found in (III.1.2.21) where ŵ 

R (i) = R (i) • R (i) (V.l.2.2) 
z qx y 

R (i) is the autocorrelation function of the 3-level quantized signal and 
qx 

given in (III.2.2.3) and (III.2.2.4) for T = i T g , where the derivative of 

R (i) with respect to P was found in (V.l.1.11) and (V.l.1.12). 
qx 

The autocorrelation function for the 2 — level quantized signal, 

R ( i ) , was found in (III.2.1.8) to (III.2 .1.10). 

Since only R (i) is a function of P, the derivative of w with 
qx 

respect to P becomes 

r i ( N-i . d E
q
 ( 1 ) d R , < o ) 

§ • H 2 1 , ( 1 ~ « ' * « • ( i ) + % ( o ) < v - 1 - 2 - 3 ) 

v i=l y y J 

The function f(P) was defined in (V.1.1.4). 

Therefore, , 2 
dw 

f(P) = -JL- + 2 P (V.l.2.4) 
w 

and using (III.1.2.21), (V.l.2.2) and (V.1.2.3) in (V.l.2.4) we obtain 
• M I ' " dR (i) dR (o) 

N-I . q q 
2 l (1- h R (i) X - — + R (o) X N q dP q v ' dP 

f (p) - y i + 2 p 

2 E ( 1 _ N> Rq ( 1 ) R a ( 1 ) + Rq ( o ) Ra ( o ) 

1 = 1 X T X y (V.l-2.5) 



Again the solution f(P) = 0 was found for different values of the sampling 

rate K and plotted in Figure V.1.2.1. 

V.1.3 4x4 Level Correlator 

The expected value of w was found in-(III.2.5.2). Therefore, 

*£ v _ 1 
dP = -2P — £ (V.1.3.1) 
w 

e 2 + OC-1) 

2 
Using (III.1.2.21) with R (i) = R (i) yields 

q z qx 

- I 1 2 s , ( 1 " s> \ ( i ) -Sr— + \ < o ) -w— 1 (v-1-3-2) 

1=1 LX X 

where the autocorrelation function R (i) is given by (III.2.5.3) and 
qx 

(III.2.5.5) for T = i T . 
s 

Taking derivatives, we obtain 

dRq (i) p2 

" ~2ff p - 2 " A r - n { (V-U [.FIRF, /P. / E M ^ R r f n r p . / I ± 2 S 7 e"^ oc-i) U - l ) [erfc ( P ^ ^ ) - e r f c ( P ^ ^ - ) 

and 

+ 1 - 2 erfc ( \ ) 1 (V.1.3.3) 
1-f (i) J 

dR (6) pf 
— J = - ( / - 1 ) J | T e~ 2 (V.1.3.4) 

The function f(P), defined in (V.1.4.1), becomes then 
N-1 . dR (i) _ dR (o) 
Y. (1- R (1) qx + R (o) 

N q„ — « — O 
X 

, f m _ o i z i Hx dP Hx dP XT- 1 
f ( p ) _ 2 : + 2p 

2 S (1- f> R
q
 2 ( i ) + * 2(°) X" 1 + e ~ 2 

i=l 4 x Hx 

The equation f ( P ) / p = 0 was solved and plotted versus the sampling-rate 
opt 





K in Figure (V.l.3.1). 

V.1.4 3x5 Level Correlator 

The quantizers for the x- and y-channel are shown in the figures 

(V.l.4.1) and (V.l.4.2): 

-P 

-1 
-*»x 

-P -P 2 1 

-1 
P P 
1 2 

Figure V.1.4.1 3-level quantizer Figure V.1.4.2 5-level quantizer 

In this case, the decision levels P, P^ and have to be optimized sim-

ultanously. It can be shown that D(P, P^, P^) is analytic for ( 0 ̂  P <«? ; 

0 ? P 1 « » ; 'P1 P 2
< 0 ° ) a n d t h a t 

i n 
d p 2 

> 0 , 
d2D 
dP. 

2 > 0 , 

dp' 
> 0 (V.l.4.1) 

Defining P as an array of the variables P, P^ and F^, i t can be shown that 

opt 

exists such that 

opt 1 opt 2 opt' (V.l.4.2) 

dD 
dP 0 , 

dD 
dP, 

' opt 
0 , 

dD 
dP, 

opt 
= 0 (V.l.4.3) 

' opt 

From V.i 1.4.1 i t folloxjs that there i s only one min. at P .We define 
J opt 
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the par t i a l derivatives of D with respect to P , P ^ and P ^ as 

^ ( P ) . = f 1 ( P , P 1 , P 2) = | | (V.l.4.4) 

f 2 ( P ) = f 2 ( P , P 1 , P 2 ) = || (V.l.4.5) 

-* dD 
f 3 ( P ) = f 3 ( P , Vv P 2 ) = — (v.1.4.6) 

where P ^ has to be found such that opt 

fl<V> " f2<V> =
 f3(PTPt> = °- (V.l.4.7) 

We consider the special case f i r s t , where we sample at Nyquist-

rate. This case can easily be calculated, since P _ does not change much 
opt 

for higher sampling-rates. The solution.P q at Nyquist-rate can be used 

as the i n i t i a l vector for an iterative method, which is discussed later on 

in this chapter. The degradation factor at Nyquist-rate (equation III.1.6.3) 

can be expressed as a product of 2 functions which depends only on the x-

and y-channel respectively: 

x i i f (a.,P.) 
y l l 

As R (o) is not a function of P^ arid P 2 and R (o) does not depend on P, 
^x q y 

we see that 

f 1 = ^(P) , (V.l.4.9) 

£2 = £ 2 ( P 1 ' V (V.1.4.10) 

and f 3 = f 3 ( P 1 , P 2) • (V.1.4.11) 

and therefore that both channels can be optimized separately. The optimi

zation with respect to P has already been done for the 3 x3-level correlator 

in chapter V . l . l and P A was found to be 
opt 

P „ = 0.612. 
opt 
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Evaluating (V.1.4.5) and (V.1.4.6) we obtain 
2 q. 

dP 
£2<V V * P l + 6 6 2 r i f e (V»l.*.12) 

and . ' dR (o) 
P 2 P 2 q y 1 2 1  

— — dP 
f 3 ( P r P 2) = P 2 +

 6 2 + f" 1 } 6 2 -. R (
2 ) • (V.l.4.13) 

-P1 q 
2 ( K - l ) e — 7 

From (III.2.4.4) we obtain 

(o) = 2 (erfc(P 1) + (tf2 - 1) erfc(P 2>). (V.1.4.14) R 
q y 

Therefore, 

and 

dR (o) 2 
_ i IT 

H P V T e 2 (V.1.4.15) 
1 

dR (o) 1 P 2 

— ^ = 0< ~D e (V.1.4.16) 

A necessary condition that f 2(P^, P 2) and fg(P-j_» simultaneously i s 

found dividing (V.1.4.12) by (V.l.4.13) as 
dR (o) 

q 
1 2 2 2L 

P l - f ( P2 " P l > d P l 
P " = ^ « 6 dR (o) (V.l.4.17) 
l q 

IT 

d P2 

Using (V.1.4.15) and (V.1.4.16) in (V.1.4.17), we obtain 

\ = T T 7 (V.l.4.18) 
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This simple relationship allows us to reduce the joint equations = 0 

and f = 0 to one equation of one variable only. Solving the remaining 

equation, we f i n a l l y obtain 

P. ^ = 0.422 and P„ = 1.266. 

1 opt 2 opt 

In the general case, where K > 2, f^, and f are functions of a l l three 

variables P, P^ and P^. A l l three equations f^ = 0, f = 0 and f^ = 0 

have to be solved simultaneously. However, i t has been found that P 
opt 

does not change much (only a few %) for K > 2. Therefore we can use P D p t 

at Nyquist-rate as a f i r s t approximation for an iterative method to solve 

f, = f 2 = f 3 = 0. 

A gradient method has proved to be useful to find P (K): 
opt 

Given the degradation factor as a function of P, P^ and P^, we have to find 
P = CP P P opt ^ opt' 1 opt' 2 opt'' 

such that the partial derivatives defined in (V.l.4.4) to (V.l.4.6) disap

pear for P = P 
opt 

Defining P^ as the optimum decision vector at Nyquist-rate, the 

degradation factor in the neighborhood of P q is then 

D(P - AP) = D(P ) - f. AP - f_ AP. - f_ AP„ (V.1.4.19) 
o o 1 2 1 3 2 

We choose AP = AP^ = AP^ = h, the stepwidth we want to move i.n- the direction 

of the gradient. The best value of h has to be found by t r i a l and error. 

If h i s too large, the sequence P. . P...P,,, P,.\ does not converge 
(o)' (1)/ (2)i (i) 5 

to P . If h is too small, the convergence is slow, opt b 

We normalize 

h = T-2 2 2, (V.l.4.20) 
P + P 1 + P 2 



and choose the desired accuracy 

f±
2 + f 2

2 + f 3
2 $ 10 5 (V.1.4.21) 

A suitable stepwidth s was found as 0.65. For s = 1 no convergence occured 

and for s = 0.5 the convergence was too slow. 

The iteration produces the sequence 

P P P P CD' (2)' *(3) •••• (n) 

where P, s can be close to P with any desired accuracy, (n) opt 
Starting from the i n i t i a l array P , above sequence can be computed 

using 

= V n " f w p v p *\ Vi (V.l.4..22) 
( l ) 1 ( P ( i - l ) ' P l ( i - 1 ) ' P 2 ( i - 1 ) ) ' h 

P l ( i ) = F l f i - 1 ) " f 2 ( P P P ) ' H (V.l.4.23) 
l u ; . ( i - D ' l ( i - l ) ' 2 ( i - l ) ; 

P 0 , M = P0,. ,v - f , , p _ _ . • h (V.l.4.24) 
2(x) 2(i - l ) 3 ( p

( 1 _ i ) r a P i ( i - i ) ' P
2 ( i - l ) ) 

The results P , P and P^ were computed and are plotted in Fig. opt opt 2 opt 
V.l.4.3 vs. the sampling-rate K. A l l three curves P . , P N W . „ 

r 6 opt (K) 1 opt(K) 
and P„ , „ s show the same characteristics, i.e. the P ^ increases by 2 opt (K) opt 

1.65% to 1.8% between Nyquist-rate and rate K = 6. It can be seen that P Q 

found at Nyquist rate is a good approximation for any K >2. 

V.2 Decomposition into Single Channel Correlators 

Under certain circumstances D can be expressed as the product of 

two single-channel factors, D and D : to x y 

D = D D (V.2.1) 
x y 

D and D are the degradation factors of a correlator which has only one x y b 

quantizer in the x- and y-channel respectively, the other channel carrying 





analog signals. 

We investigate in this section the circumstances under which such 

decomposition i s valid, and the errors that occur i f the decomposition i s 

assumed to be always true. 

It w i l l be recalled that the degradation factor of a quantized 

correlator depends on i t s output signal to noise ratio: 

a 
D cc (V.2.2) 

w 

Now i t is shown in Appendix A2 that for small signals, w can always be 

decomposed into an x-component and a y-component. 

w = q = q q = q q (V.2.3) H z Hx^y nx y-

It remains to see whether i t is possible to write o in the same way. 
w 2 ~~2 For small signals and symmetrical quantizers., o = w and, from equations w 

(III.1.2.24) and (III.1.2.21) , we can express this variance as 

~2 1 N _ 1 

wZ = £ £ (1-i/N) R (i) • R (i) (V.2.4) 
N i=-(N-l) qx qy and since lim R (i) = lim R (i) = 0 (V.2.4) q . q 

i-*-°° x 1 - * 0 0 y 

w ~ ^ S B (i) Rn (i) (V.2.5) 
-(N-1) qx q y 

for large N can be expressed as a product of a function of R (i) and a 
qx 

function R ( i ) , only i f 
q y 

N-1 N-1 
2 E R a> R

a a ) - o (v.2.6) 
i=-(N-l) j=-(N-l) . qx q y 

x.e. i f R (i) and R (I) are orthogonal, q q ° nx y 



It can be seen that for any symmetric quantizer 

sign (R (r))= sign(f( T) ) (V.2.7) 
x 

where x is the normalized autocorrelation function of the unpro

cessed signal x(t).SoR (T) has the same zero-crossings as f ( x ) . Since 
qx 

x(t) and y(t) have the same autocorrelation function, 

N-1 . 
2 (1- |) R (i) R (i) >/0 ; (V.2.8) 
i=l x 4 y 

equality holds only i f j°(i) = 0 for a l l i 4 0, i. e . i f the samples are 

uncorrelated. For the bandlimited signal this i s only the case i f we sam

ple of Nyquist-rate where 

w2 = | R (o) R (o) (V.2.9) 

x y 

Therefore D can be expressed as the product of 2 single channel degradation 

factors only i f we sample at Nyquist-rate. 

V. 2.1 Single Channel Correlation Factors and Decomposition Error 

Define D^^CK) to be the "single-channel degradation factor", be

ing the degradation factor to a correlator with an n-level quantizer in the 

x-channel and no quantizer in the y-channel. The expected value of the 

correlator output, w, i s given by equations (III.1.2.3) and (III.1.5.4) as 

w = s q (i) (V.2.1.1) 
o Hx 

2 

and the expected value of w is obtained using equations (III.1.2.21), 

(III.1.2.36), (III.1.2.37) and (III.1.5.7). 

Using these equations in (III.1.6.1) and (11.2.3) we find 
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N-1 -

• D ( K) = | X *- (V.2.1.2) 
V K f (a.,P.) 

x 1 1 

For Nyquist-rate sampling we define 

D = D (2). (V.2.1.3) 
x nx°° 

Using (V.2.1.2) for K = 2 we obtain 

\ m { (a.,P.) • < V - 2 - 1 - « 
V X 1 1 

Similarly, the single-channel degradation factor for the y-channel con

taining an m-level correlator, is 
^R q (o)' 

D
y = \*~(2) /̂f Fu7xr- - (v-2-1-5) 

J V y v x' x 
An n. m-level correlator, sampled at Nyquist-rate then has the degradation 

factor r r — . T - T - . 
/R (o) R (o) 

D (2) = D D = — _ * _ , y-—; — - (V.2.1.6) nxm x y 2 f ( a . , P . ) f ( a . , P . ) v ' x x x y x x 

Equation (V.2.1.6) agrees with (III.1.6.3) for sampling at Nyquist-rate 

We define a "decomposition error", ? n m(K)> a s 

D (K) - D D 
£ ™ < » - c i r ^ — - - • ~'•' '• < v - 2 - 1 - 7 > 

n xm 

This value measures the relative error made by decomposing the degradation 

factor D (K) into a product of two single channel degradation factors, nxm 
D (K) • D (K). This "decomposition" error is plotted in Figure v .2.1.1 nxoo mxoo ' * 

against the normalized sampling frequency, K. 

There is no error at K=2. For higher values, the error soon 

settles down to a constant value ofsj.3%.. Decomposing the degradation 

factor under these circumstances leods to a small error, but is s t i l l 



1. 3 X3 levels 

2. 3*5 levels 

decision levels: optimized values for K = 2 

4 , f , 1 . h 1 • 1 . — — i . 1 . 1 - * 

2 2 ^ > 8 70 12 1C 16 
Figure V.2.1.1 Decomposition error £ ^ versus sampling rate K for 3x3 

and 3*5 level correlator 

0.7 

0.6 .. 

0.5 

OJr .. 

0.3 

0.2 .. 

0.1 



useful as a f i r s t approximation. 

V.3 Degradation for Strong Signals 

In a l l previous calculations the signal power was assumed much 

less than the noise power. This i s true for most cases of practical inter

est. However, i t seemed advisable to consider in at least one case how the 

degradation factor changes -when the signal power is no longer small. This 

is done for a 2 x 2 level correlator at i n f i n i t e sampling rate, i.e. a 

polarity coincidence detector. 

The following two assumptions, made for small signals, do not 

hold for strong signals: 

(a) The Gaussian signal s(t) can be replaced by a d-c signal 

s = a . 

o s 
(b) The variance a can be computed in absence of the signal, s ( t ) . 

For arbitrary signals, s (t), the general definition of D, given 

in equation (III.2.5) must be used. 

The degradation of a 2 x 2 level correlator for strong signals 

has been treated by Cheng'', with the difference that he used on RC-network 

for the integration. (His "degradation factor, r", is the square 

root of D defined in this work). 

Fig. V.3.1 shows the block diagram of a polarity-coincidence 

correlator as used for strong signals. 
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Figure V.3.1 

2x2 level correlator 
for strong signals 

We assume the signals s ( t ) , n (t) and n (t) are bandlimited, statiscally 
x y 

independent, Gaussian, zero-mean signals, and have a f l a t power-density 

spectrum within B. 
Therefore, the normalized autocorrelation function J°(T) i s 

given by 

Rn ( T ) R n ( T ) R (x) 
f ( - r ) = - ^ 2 — = — = -^r- (V.3.1) a 2 a 2 n s 

V.3.1 Unquantized Correlator for Strong Signals 

The expected value of w i s found as 

dt = xy - 1 w = — T I x(t) y(t) 
o 

= n n +n s + n s + ŝ  x y x y (V.3.1.1) 

Since n (t) andn (t) are assumed to be zero-mean, « y 



The signals s ( t ) , n (t) and n (t) are assumed to be ergodic. Therefore 
x y 

2 
the expected value of w can be found as the time-average 

w2 = — j f z(a) z(3) da d3 
T X o o 

2 
T I ( 1~Y ) R Z ( t ) d T (V.3.1.3) 

where the autocorrelation function of z(t), 

R (T) = z(t) z(t +x) z 
R (x) R (T) + R (T) R (T) + R (T) R (T) n. n n x n s x y x y 

+ s 2(t) s 2 ( t + T) - o g
4 (V.3.1.4) 

2 2 1 The expected value of s (t) s (t+x) was found in as 

s 2 ( t ) s 2(t+ T) = a s
4(l+2p 2(x))' (V.3.1.5) 

Therefore, 

R z ( T ) = p 2(x) ( a s
4 + ( a n

2 + a / ) 2 ) (V.3.1.6) 

2 
= a 4 p 2(x) (~~) (V.3.1.7) 

d 

where 
a 2 

d = — ~ j (V.3.1.8) 
a + a s n 

Using equation (V.3.1.7) in (V.3.1.3) we f i n a l l y obtain 

w2 = | a s
4 • j ( 1 - i ) P

2 ( x ) d x + a s
4 (V.3.1.9) 

d o 

assuming the power density spectra of s ( l ) , n (t) and n (t) as which 
x y 

bandlimited to B, we obtain 

P ( t ) = Sa (2TTBX) (V.3.1.10) 



The standard deviation of \<r is defined as 

o =̂ /w2 - (w)2 (V.3.1.11) w 

Therefore, 
1 

2 n / l + ? 
0 W A / T °s " d2 [ f d - f ) P 2(T) d t ] 2 (V.3.1.12) 

and using the definition (II.2.4) 

M D S . 0 w ( f d , . 0 w Wf [ / ( I - f) P2(X> dx]1 

(V.3.1.13) 

assuming a large integration time T, we obtain, using (V.3.1.10) 

lira (l-±) p Z(x) dx = J Sa (2^Bx) dx = (V.3.1.14) 

Therefore, 

(MDS) . = a 2 " ^ £ ± 2 ^ = = i ^ (V. 3.1.15) analog s d Aj/B.i 
5 

For large input signal-to-noise ratio, as (^)^ goes to i n f i n i t y 

( M D S ) a n a l o g = ^WF • (V.3.1.16) 

is independent of d. 

V.3.2 Application to a 2 x 2 Level Correlator 

The two signals x(t) and y(t) (see Figure V.3.1) have the joint 

probability density 

= , C - 4 2 e " 20 2 (1-r 2) ^ 2 - 2 - y + y 2 ) (V.3.2.1) 
' 2ir./l-r a n 

n 

where ? 

a " r 

r = d = — ^ 2 (V.3.2.2) 
a + a s n 
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The expected value, of w is given by 

w = q xq y = J J P x y(x,y) dxdy + [ J P x y ( x ' y ) d x d y 

o 0 - t » - c o 

~Xf/Pxy(x'y) d x d y (V.3.2.3) 
° - c o 

Evaluating these integrals, we find 

P x y(x,y) dxdy = | " ^ arctg V l z i _ (V.3.2.4) 

and 
j o . / ^ 

J J"p x y(x,y) dxdy = ~ arctg (V.3.2.5) 
© -1ST* 

Therefore, 
2 '\/ 1 d 2 w = 1 - — arctg — = — arcsin d.. (V.3.2.6) 
IT d TT 

2 
The expected value of w is given by the time average 

T T 

w 2^ (\ £ q z ( t ) d t ) 2 = f jf (I" \ (T) dx (V.3.2.7) 
and 

R (T) can be found as'' 

R (T) = ~ [(arcsin P(x)) - (arcsin p(x)d) ] (V.3.2.8) 

Therefore, 
T 1 

°w -^7 "(?) = \ ( f / (1-^) {(arcsinp(x)) 2 - (arcsin(p (x) d)) 2}dx) 2 

o . 
(V.3.2.9) 

— 2 The derivative of w with respect to O G is given by 

w = - ——=jL==~== (V.3.2.10) 
d(o ) . 0 / 1 + 2 (—) s s ^ a 

2 
Using equation (II.2.4) with R = a g we find 
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2 
MDS = + 2 ( — ) 2 (| J" ( i - i ) { (arc sinp(x)) 2 -

(arc sin (p(x) • d)) 2} dx) 2 (V.3.2.11) 

Using the definition of the degradation factor stated in equation 

(II.2.5), the degradation factor of the strong signal correlator, denoted 

by D (°°) is obtained as 
s s2x2 

T. / >. MDS 
D (°°) 

S S 2 X 2 V < M D S>analog 
rT

 T 2 ^ 
(l-7p) [(arcsinp(x) - (arcsinp (x) • d) ]dx |2 

1 + d T 
a-d)(i+d 2) J ( 1 _ T } P 2 ( T ) D T 

(V.3.2.12) 

For large T, using (V.3.1.5) and (V.3.2.11) in (II.2.5) we find 

f r 
D (o°) •= 2 I 1 + d B I [(arcsinp(x)) 2 -

2x2 |^(l-d)(l+d Z) i 

(arcsin p(x)d)]dx } 2 (V.3.2.13) 

Since p(x) = Sa (2nBx) (equation V. 3.1.10), D (°°) is independent of B. 
S S2x2 

Bounds for D (°°) were found by Cheng^: 
SS2.*2 

1+d , , , 2 9 T 
1 + ,2 * ss 9 x.(») ${ o (^T - (arcsin d ) Z ) } Z (V.3.2.14) 

(l-d)(l+d ) 4 

The lower bound shows D ̂  1 for any d in [0,°°), which i s a very loose bound. 

Using equation (V.3.2.13) for small input signal-to-noise ratios 

(d << 1), we obtain 

D (») = 2 »¥ [ J (arcsinp(x) 2dx] 2 

s s2x2 Jo 



1 
•00 

=^J^ I J (arcsin Sa(x)) 2 dx] 2 (V.3.2.15) 

Equation (V.3.2.15) agrees with the expression for D~ ,(°°) found in (III.2, 
ZXZ 

1.13) which was evaluated to. be 

D2x2 ( o o ) = 1 ' 2 5 3 -

In Figure V. 3.2.1 D (°°) is plotted versus the input signal-to-noise 
a • SS2><2 / s N 2 ratxo (—) . 
a n 

We notice that D goes to i n f i n i t y for high input signal-to-noise 

ratios, which can be explained as follows: 
a „ s 2 In the limit, where (—) goes to i n f i n i t y , we find 
n 

x(t) = s(t) 

and y(t) = s(t) 

so that x(t) and y(t) always have the same sign. Therefore q^E 1, so 

that q^ never changes and the output w has zero variance. In this limiting 

case, the correlator gives no information about the signal s(t) and ob

viously D (°°) goes to i n f i n i t y , as the input signal-to-noise ratio goes 
S S2x2 

to i n f i n i t y . 

This is not true, however, i f more than 2 quantizer levels are 

taken, because even in the absence of noise the multiplier-output is a 

function of the signal amplitude. The strong signal degradation factor 

for higher level correlators has not been investigated, because the power 

of signals investigated in radio astronomy is always far below the noise 

power. 
s 2 

D stays virtually constant up to (—) 0.25, i.e. that our as-2 2 n 

sumption a << a is valid for a < 1/4 a . This result was also found s n s n 
by Yerbury"'"2. 



Figure V.3.2.1 Strong signal degradation' factor versus input signal-to-noise ratio for a 2x2 level correlator 



104 

VI. OVERALL CONCLUSIONS 

In designing a d i g i t a l correlation spectrometer, various 

possible logic schemes can be considered. Those employing fine quantization 

with many d i g i t a l levels degrade the measurements very l i t t l e , but are costly 

and complicated to instrument. Simple schemes employing coarse quantization 

degrade the signal-to-noise ratio appreciably. A balance must be struck between 

excessive complexity and excessive degradation. 

The results in this thesis help the designer make such a choice 

by giving him the degradation factors for a variety of logic schemes, not 

only for the Nyquist sampling rate but also for higher sampling rates. 

In the course of the calculations, some interesting theoretical 

results were found, particularly concerning the variation of the optimum 

decision levels with sampling rate, and the possibility of decomposing the 

degradation factor into components. 

The numerical results are of practical interest. For example, 

i t i s shown that a 3-level x 3-level logic scheme sampling at 4 times 

the bandwidth has a slightly lower degradation than the 3-level x 5-level 
12 

scheme sampling at the Nyquist rate which is used by Whyte . Such a 

3x3 level scheme is probably also easier to build. 

The numerical results are expected to f i l l a l l foreseen needs. 

As integrated circuit technology advances, i t becomes progressively more 

practical to use many-level multiplication and averaging, and the degrada

tion due to sampling then becomes insignificant. 
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APPENDIX Al 

Proof that D '= 1 for a l l K v. 2 for the Uriquaritized Correlator 

Claim - An unquantized dual channel correlator which is sampled at Nyquist-

rate or faster has a constant degradation factor D = 1 for any sampling-

rate K. In particular we claim that 

2 Sa 2 (%4 = K (Al.l) 
l=-oo 

Proof - We pass white Gaussain noise n(t) through 2 ideal low-pass f i l t e r s , 
Iv 

The f i r s t f i l t e r has a bandwidth y B, the second f i l t e r has a bandwidth B. 

The output of the second f i l t e r n"(t), is sampled at a rate, KB, as shown 

in Figure A l . l 

nil) >-
r\\t) 

r ~1 , 

fsf KB 

> I \, r ~1 , > 
K8 

" % 
KB 
2 -B B 

^» n Co 

Figure A l . l White noise bandlimited in two lowpass f i l t e r s 

The function n'(t) can be completely reconstructed from i t s samples taken 

1/KB apart using the relation 
CO 

~ (A1.2) n'(t) = Y ai Sa(n(KBt-i)) 
i=-co 

a;' = n'(ix) 

1 
T - KB 

(A1.3) 

(A1.4) 

(for reference see 2 pg. 49) 

We assume the average power of the signal n'(t) to be 1, i.e. 
KB 

f 2 S (f)df = 1 (A1.5) 
J K B N 

" 2 

or 

for 

(A1.6) 

KB 
2 
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It follows that 

n ' ( t ) 2 = R.(0) = 1 (A1.7) n 
where the autocorrelation function of n 1(t) is given by the Fourier transform 

o f S'(f) n 
R ' ( T ) = 2 r l S'(f) = Sa(KBTrx) (A1.8) n T n / 

Since we sample at a rate KB the Nyquist-rate for the bandwidth KB/2, 

the a_̂ 's are independent. 

Now we process the signal n'(t) found in equation (A1.2) through the second 

lowpass-filter. The average signal power of n''(t) i s proportional to the 

bandwidth of the second f i l t e r , since n'(t) is white. 

Therefore, 

n " ( t ) 2 = J ^ df = | (A1.9) 

The signal n" (t) can be reconstructed from i t s samples taken 1/KB apart, 

because n"(t) is bandlimited to B and sampled at a rate K > 2. 

Therefore, 
OO 

n"(t) = Yl aiK S a < 2 i r B ( t * 1 iif>> 
i=-oo 

= ) ~ | a . ' SaTr(2Bt - — i) (ALIO) 
X=_oo 

and 

where 

n"(0) = | a* Sa(2Tri/K) ( A l . l l ) 
(=-oo 1 

CO 0 0 

K !=-«> J=-oo 
(A1.12) 

(A1.12) 

The samples a|,andaj are taken at Nyquist-rate for the f i r s t f i l t e r output 

and therefore are independent, i.e. 

a ' . a ' . = 0, i f i j j 
1 3 

1, i f i = j , (A1.13) 



since 

a.' 2 = R '(0) = 1 (A1.14) i n 
2 

Therefore, the expected value of n" (0) is given by 

K i=-°° 

and since n(t) is an ergodic process, 

n,,2(o) = \ YI S a 2 ( - i r > <A1-15> 

n , , 2(t) = n" 2(0) = n" 2 (A1.16) 
t 

Using the equation (A1.9) in (A1.15) we f i n a l l y get 

00 
2 4 
K 

K i=-oo 
or 

CO 

K 12 S a 2 ( ^ ) = \ (A1.18) 
l = - o o 

(A1.18) is equal to our claim ( A l . l ) , which completes the proof. The 

above relation, used in (III. 1.5.9} shows that the output signal-to-noise 

ratio of an analog correlator becomes independent of K, and therefore, 

the degradation factor becomes equal to unity for any K $ 2. 
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APPENDIX A2 

Replacement of General Signals by d-c in the Calculation of Degradation factors 

The general model of a correlator shown in Figure II.2.1 shows 
two signals s (t) and s (t) , with a cross-correlation factor, R = s • s x y x y 

No assumptions are made about the spectral or s t a t i s t i c a l nature 

of the signals, except that they are 

- ergodic 

-small compared with the noise 

-independent of the noise sources 

-limited in frequency to the range 0 to B 

Calculations of degradation factors using such general signals 

are clumsy, and i t is shown in this appendix that the degradation factors 

so found are identical with those obtained in a much simpler "d-c case", 

where i t is assumed that 

s (t) = s (t) = s = constant (A2.1) x y o 
so that 

R = s • s = s (A2.2) 

x y o 

It w i l l be recalled (Equations II.2.5 and II.2.4) that the 

degradation factor, D, is defined as the ratio of two minimum detectable 

signals 

D m S 
(MDS) 

analog 
and that the MDS for any given system can be written as 

«„/<§> 

Now, as long as the signal i s small, the standard deviation of 

the output, a , is determined entirely by the noise sources and is independent 
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of the nature of the signals. It is usually evaluated assuming s = s = 0. 
x y 

It remains then to show that for every correlator, the quantity 
dw 
(-75O is the same under these two assumptions 

(1) s (t) = s (t) = s = constant, - in the d-c case; and 
x y o 

(2) s (t) and s (t) have arbitrary spectra and s t a t i s t i c s , subject 
x y 

to the limitations set out above, - the general case. 

A2.1 Evaluation of for the d-c Case , ^ 

In the absence of the signal (when s = 0), the x-processor has 

at i t s input white Gaussian band-limited noise, with a mean value x = 0. 

We assume, for simplicity, that the transfer function of the processor 

is symmetrical about zero volts. In that case i t s output, q , w i l l 

also have mean value, q =0. 
"X 

If now a small d-c signal, s , i s present, the variance of x(t) 

w i l l not change but i t s mean value w i l l no longer be zero, 
x(t) = s (A2.1.1) o 

Hence the output of the x-processor w i l l no longer average exactly 

zero, but w i l l have a mean value 

dq~ 
q = s (—£) (A2.1.2) nx o .-dx 

where the derivative i s a function of the processor used and of the amount 

of noise at the input. Since the signals are small, i t can be evaluated 

at x = 0. 

Similarly 

^ = 8 o ^ > ( A 2 - 1 ' 3 ) 

Now the correlator output w i l l have a mean value given by 
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w = q = q • q (A2.1.4) 

But q^ and q^ are s t a t i s t i c a l l y independent, since their variations are 

due to s t a t i s t i c a l l y independent noise sources. Therefore 

2 d q v
 dq. 

w = q • q = s • ( — ) • ( — ( A 2 . 1 . 5 ) 
y dx dy 

2 and, since R = s , we have o 
dq dq 

§ - <-T> ' ("3 (A2.1.6) 

dx dy 

A2.2 Evaluation of ̂  for the General Case 

In the general case we consider f i r s t the situation when the signal 
s happens to l i e within interval ds of value s.., and simultaneously s x x 1' . J y 
li e s within interval ds^ of value s^. The joint probability of this 

happening we can write as 

joint probability = P g s ( si> S2^ * d s * d s (A2.2.1) 
x y x y 

Given these assigned values for s and for s , what . i s now 
x y' 

the expected value of w? We denote this as (w). „. It is given by 
1, 2. 

( W )1,2 = ^ 1 , 2 - ( % c * V l , 2 ( A 2 ' 2 - 2 ) 

again, for fixed values of s and s , the fluctuations in q and q 
x y' x y 

are independent, so that we can decompose the last expression into 

(^1,2 = Q l ' ( S } 2 
dq dq 

= s 1(- =^) • s 2(- T
7-) (A2.2.3) 

dx dy 

To find now the overall average value of w for a l l possible 

combinations of s x and s^, we multiply each expression like that above by 



the probability of i t s occurrence, and integrate over a l l values of s , 

s y. Thus 

* = J 1 ( ^ x , y ' P s s, (s ,s ) . ds .ds 
X y 

ff dq^ dq~ 

= J J ^ ^ F 0 ' S y ' ( ^ " p v ( S x ' S y ) ' d S x ' d S y 

d ^ dT; r r 
= ( ) (—JL) I s • s p (s ,s ) ds • ds ,- ,- x y *s s x' y x y dx dy J J J x y J J 

&• H 
dq dq 

" ^ ' ^ V y ( A 2 ' 2 - 4 ) 

dy 7 

But R = s s , so that 
x y 

,- dq dq 4|« <-*) • (A2.2.5) dR - -dx dy 

This i s the identical equation to (A2.1.6) above. 

This then proves that the degradation factor of a given system 

with arbitrary signals s x and s^ can be evaluated using the simpler d-c 

case where both signals are made equal to a small constant. 
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