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ABSTRACT

In radio-astronomy, spectra of noisy signals are often computed
using digital auto-correlation techniques. To simplify the design of the
many high-speed multipliers and averagers, coarse quantization is employed,
using only a few digitai levels.,

This theéis is a theoretical study of the ﬁenalty paid for such
coarsé quantization in the form of increased output ndise. A degradation
factor is defined and is calculated for a variety of logic schemes which
have been used or proposed. |

For each scheme, results are given as a function of sampiing
rate and it is demonstrated that there is often significant improvement
in samfling at rates faster than the Nyquist rate.

A computer simulation techhique was developed for.verifying
the computed results, and for extending the results to complicated\schemes

where analysis is very difficult.
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I. INTRODUCTION

In radio-astronomy, as in other fields, itbis often necessary
to measure the amount of correlation between two signals. The signals
usually are adequately modelled as white Gaussian noise, and the amount
of correlation between the signals is typically very small. Hence,
correlation coefficients must be measured by taking long—time’averages
uéing instruments free from drift. Such instruments tend Fo use analog
to digital conversion followed by digital techniques for multiplication
and averaging.

One. particular application of correlators is in the determination
of spectra of noisy signals. This can be done by first determining
the autocorrelation function of the signals, multiplying s(t) by s(t—Tn)
for many different values of Tn' A Fourier transform is then used to
.calculate a .power spectrum. .Similar techniques can be used to find the
spectrum of a correlation signal coming from éwo antennas.,

in a cérrelation spectrometer, two A/D converters feed a large
number (over 100) of multipliers and éveragers, all processing samples
at high rates. It thus becomes important to simplify the design of
these many repetitive units. ‘Early instruments did this by using 2-level
(1-bit) A/D convertersll. of late, more complicated logic schemes have
been used and some tiwught has beén gi&en to reducing the penalty paid for
coarse quantization. This penalty can be expressed as the degradation

of the output S/N ratio, when compared with analog instrumention.

I.1 Literature Survey

] L . 5
Polarity~coincidence correlators have been studied by F. Bowers™,

Burns and Yao6, Cheng7, Ekreg, and.Yerburyl3.‘ Burns and Yao mention the



fact that the output signal-to-noise ratio does not change when the out-
put of an analog corfelator is éversampled beyond the Nyquist-rate. They
claim that the actual shape of the input-filter (which is usually aésumed
to be rectangular) is important. Cheng'found the Degradation factor

for a polarity-coincidence correlator at an infinite sampling-rate for
arbitrafy signals and signal power. Ekre found the output signal-to-noise
ratio vs. sampling-rate of a polarity-coincidence correlator. Yerbury

. investigated the effect of amplitude limiting the analog correlator to
increase its stability. His special case of infinite limiting (infinite
stability) is identical to the polarity-coincidence correlator. Watts10
gives a mathematical description of a quantizer with an infinite number
of levels. Cooper treats the 2 bit correlator sampled at Nyquist-rate

and investigates "incomplete multiplication" where the least significant

products are neglected.

I.2 Contribution of This Thesis

This work is a continuation of studies by F. BowersS. He found
the Degradation factor of different combinations of quantizers for
Nyquist-rate-sampling. Here the Degradation factof of a correlator can
be calculated as the product of two single channel Degradation-factors.
He mentions that a Gaussian signal can be replaéed by a DC-signal for
small input signal-to-noise ratios and that the decision levels and
stepwidths can be optimized.

The present work investigates the dependence of S/N ratio of
quantized multi-level correlators on the sampling-rate. General formulae

are presented. Numerical evaluations give the actual values of the



degradation factor for five different correlators. Procedures are
presented which optimize decision levels for four different correlators
and variable sampling-rates. Two special problems are also discussed:

(a) The degradation factor for a 3*%5 level correlator where the
two channels are sampled at a different rate (one channel at
Nyquist-rate, the other channel oversampled) and;

(b) The effect of "overquantization'". Here the product of two
signals is limited to a small number of levels, but the
signal before multiplication can have many more levels.
Finally, a simulation program to determine the degradation

factor of quantized correlators was developed. This is useful for
higher level correlators where theoretical analysis becomes too difficult.

The simulation results confirm the findings from theoretical calculations

for the five different correlators considered.



II. THEORETICAL MODEL OF A CORRELATION RECEIVER

Figure II.1 shows the model of a correlation receiver whose

properties are to be investigated.

noise noise mﬂ
= : = : = t) + t
x(t) nx(t) + sx(t) R 5. sy y(t) ny( ) Sy( )
x-signal y-signal
processor processor
multiplier
qX£ [ 1 :qV
Lo I
{4, = 9.4
nT
1 f q_dt | Averager
TU'!-')'r

output *wn

Fig. II1.1 Model of a correlation receiver

Each of the waveforms, x(t) énd y(t) is made up of two components:
a relatively large amount of "noise" and a relatively small amount of
"signal'. The two noise sources are completely uncorrelated, while the
signal sources may have a finite cross-correlation factor, R = E%:fr—g;.
The task of the instrument is to determine R as accurately as possible.

The two signal processors can take a variety of forms:

(a)  There could be no processing at all, in which case we have an
"analog correlator';

(b) the waveforms could be sampled (usually at rates higher than
_twice the bandwidth);

(¢c) the waveforms could be quantized into several discrete levels,
' with subsequent digital handling of the multiplication and
averaging, or;



(d) the waveforms could be both sampled and quantized. This is
: the common situation and is also the most general case. All
~other treatments can be regarded as limiting cases of this one.

Often the two signal processors are alike, but this is not

{

necessary, and several instances of unequal processing will be investigatedf
The processors will normally have a transfer function symmetrical around
zero.volts, and this is assumed for simpiicity in thevcalculations.

The analog correlator (a) above is normally difficult to
instrument dﬁe to problems of drift. Theoretically it has the best
output signal-to-noise rafio, and its performance is the standard by

which all other instruments will be judged.

II.1 General Assumptions

In calculations using the model shown in Figure II.1, the
following assumptions are made:
(1) The signals, Sy and sy, and the noise sources, n_ and-ny, are
all limited to the frequency band (0 to B).
(In practice, observations are usually made at higher frequencies.

The waveforms x(t) and y(t) are then band-limited at that
frequency and are translated down in frequency by heterodyning.)

(2) The noise sources, n_ and ny, are both white Gaussian signals

with zero mean values.

(Usually such noise is a mixture of "antenna noise' from sky
background and of "receiver noise'. The assumption of uniform
spectral power density is true only because in practice the
bandwidth observed is small compared with its centre frequency.
The assumption of Gaussian statistics is an idealization, but
is valid for Johnson noise and for many other noise sources).

2
(3) The two noise sources have the same average power, S and the



. 2
two signals have the same average power, Og*

(This is true for most examples of interest and simplifies
the calculations, but the results can easily be generalized
to the case of unequal powers.)

(4) The noise sources are statistically independent of each other.

(This is obviously true when the noise is generated in two
different receivers. For some other sources of noise there

may be some correlation, but if this is so, then the correlated
components are separated out and are treated as part of the
signal to be measured.)

(5) The signal powers are small compared with the average noise
powers,
(This assumption simplifies the calculations comsiderably. It
is not valid for all applications of correlators; but the
greatest interest in optimizing signal-to-noise ratios arises
when the signals are small.)

(6) The signals, s, and Sy’ are ergodic and they are not correlated
with the noise sources, n_ and ny.
(It is not necessary to make any other assumptions about the
spectra or the statistics of the signals. It is shown in
Appendix A2 that the degradation in signal-to-noise factor is
independent of the character of the signals, and can be

computed using a very special d-c case where sx(t) =s (t) =
s, = constant.) y

11.2 Definitions

2 . .
Let cn-be the average power (the variance) of the noise sources
n# and ny, and R be the cross-correlation factor of the signals S, and

s_.
y

We then define the input signal-to-noise ratio of a correlator as




(S/N)i = R/ci | | (I1.2.1)

: ) ‘
In the d-c case, where R = S, this becomes

(S/N)i = si/oi | ’(11.2.2)

\

If,further,ﬁ is the expected value of the output, w, and cé is

the variance of w, then we define the output signal-to-noise ratio as

(S/N)o = G/ow (1I1.2.3)

In general we will find that the average correlator output,
'ﬁ, will be some monotonically increasing function of R, as shown in

Figure II.2.1.

Expected
"—A correiator Output

} 6

aw

Cross - Correlation factor

> R

AR

Fig. I1I.2.1 Typical variation of expected éorrelator output
with cross-correlation factor

A particular value of w, obtained by averaging over one time-
dinterval, will show deviations from this expected vélue, w, with standard
deviation o, as shown.

If now R .changes by AR, this will result in a change in the
expected output by an amount Aw. Whether such a change is detectable
by a single observation of w depends on the relativg size of 9, and Aw.

Quite arbitrarily, we define the change as "detecfable" if Aw

exceeds P and not detectable otherwise. This leads to the concept of



the minimum detectable signal, MDS. It is defined as that change in

R which will result in an expected output change exactly equal to the
standard deviation.
Hence

MDS = o /(X (I1.2.4)

The MDS will depend on the noise power, the bandwidth, the
integration time, and (for large signalé) on the cross-correlation factor.
When all these are held constant, one can compare minimum detectable
sigﬁals for various correlators.

The-best instrument, with least MDS, will be the analog
correlator. All other instruments pay some penalty in terms of higher
values of MDS, This finally leads to the definition of fhe degradation
factor, D, of a particular correlator as

D = MDS/(MDS)

analog (II'sz)

The calculation of this degradation factor for a variety of

correlators is the subject of this thesis.

II.3 Degradation Factor for Small Signals

When the signals are small compared with the noise (as is
assumed in most of the calculations), the degradation factor canm also
be expressed in terms of the output signal-to-noise ratios.

Using Equation (II.2.4), each MDS can be expressed in terms of

o, andF(%% . However when the signals are small R will be small, and
Figure I1I.2.1 can be linearized near the origin.

We then have -

MDS = owk(%) = R/(%) = R/(%)o. | (II1.3.1)



so that D can be expressed as

,(S/N)o,for.analog,correlator
D =

(8/N) | for system (11.3.2)

{
1

The degradation factor is therefore a measure of the deteriora-
tion in output signal-to-noise ratio as a result of the insertion of

the signal processors into the correlator.
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III. RESULTS OF PRACTICAL INTEREST

IIT.1 Degradation Factor vs. Sampling Rate

In the following we assume the signal power 63 to be far below
the noise power oi. Therefore equation (II.3.2) is applicable and we
have to find the output signal-to-noise ratio of a correlator in order
to compute the correlator degradation factor. We defined the output
signal-to-noise ratio in equation (II.2.3).

For small signals it can be shown that o, does not depend on
Og and can be calculated assuming oy = 0. The two inputs are then white,
independent Gaussian noise sourcesg, In this case w = 0 and

o =W (III.1.1)
The output signal-to-noise ratio then becomes:

[wlo ‘ :
;(%90 s | (III1.1.2)

{j;§3 s=0

IIT.1.1 Replacement of Small Gaussian Signals by d-c

For small signals (os<<on) it is shown in Appendix A2, that for the
purpose of calculating the degradation factors, the Gaussian zero-mean

signals can be replaced by a d-c signal

= = = § Io c. -
Sx(t) sy(t) s, = const. (I11.1 ; 1)
Then both input signals
x(t) = s + n. (t) (II1.1.1.2)
o 1
and
y(t) = so.+ nz(t) (111.1.1.3)

are independent, Gaussian signals with mean value x =y = S, and with variance

R - | (III.1:1.4)
X y n .



The signals x and y are independent Gaussian random variables. Replacing
the signals by a d-c signal, the probability~density functions of x
and y become those of the noise éignals nl(t) and n2(t), displaced by

an offset equal to the d-c value, so:

- —lg (x—so)2
1 20, ‘ _
p () = e (1T1.1.1.5)
2nq}
2
- —5 (y-s)
p (Y = —=—e (IT1.1.1.6)
V2o,

Since both channels are statistically independent, the joint probability
density, pxy(x,y) is given by the product of the probability~density
functions of the two signals x and y:

ny(x,y) = p (x) * py(y). '(111.1.1.7)

It can be shown (see Chapter IIIL.1.2 and III.1.6) that the degradation
factor D depends only on the input signal-to-noise ratio defined in
II.2,.2, Therefore the variance of the signals x and vy, q?, can be

arbitrarily set equal to 1 in all further calculations.

III.1.2 Output S/N-Ratio for a Quantized; Sampled Correlator

The block diagram of a quantized,'sémpled correlatoris

* shown in Fig. III.1.2.1. Assuming'fS as the sampling frequencY;_.

TS"= %— denotes the sampling-period (I11.1.2.1)
s : .

and
fs
K = &= the normalized sampling-rate  (I11.1.2.2)

11
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noise B noise
signals
+ i
x(t) y (t)
sampler
£ fo o SEREY
s
x(1) : ' y(1)
x-signal ' o y-signal
quantizer quantizer
q, (1) | qy(i)
P > -
e, (1)
N .
1 .
N E qz(l) Averager .
Nnsy
w

Figure III.1.2.1 Sampled quantized correlator
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" According to the sampling-theorem, the lowest sampling frequency»thaf
allowsrecovery of a signal from its samples is fs = 2B. In this case
the normalized sampling-rate K becomes equal to 2. This lowest
possible sampling-rate is called the Nyquist-rate. The value of the
time function x(t) in Fig. II1.1.2.1 taken at t = iTS is denoﬁed by
x(i). The same is valid for the signals vy, qx; qy and q,-

The .output éignal—to—noise ratio of a correlator with small
input signals is defined in(III.l.ZJ ‘Therefore we have to find (a) the
expected value of the correlator output w when the signal s, is present
and (b) the standard deviation of w when we omit the signal’so.

(a) Since the two signals x and y are considered to be statistically
independent, the expected value of w is equal to the product of the
_expected value of 1, and qy, i.e.

w=gq* qy _ (I1I.1.2.3)

Fig. III.1.2.2 shows a symmetric n-level quantizer. Pr(Pi £ x< Pi+1)
denotes the probability of x being between the two decision levels Pi

and P .
i+l
4 9.

Qs

a,

20
o
0 S

’
o
1
|70
1]
.~ J

Fig. III.1.2.2 n-level quantizer



The expected value of x becomes

n-1 n-1
2 , 2
q. = .E aiPr(Pi < X < Pi+l) - ‘Z a, Pr(—Pi+l < X < _Pi>
i=1 =1
(III.1.2.4)
where
Pi+1 . i ?i+L - %(x—s )2
Pr(P, ¢ x <P, ) = p. (x)dx = — , e : ° ax
i i+l X Jgg
P, P,
i i
= - - - I1I.1.2.5
erfc(Pi So) erfc(Pi_{_l so) ( )
and
-P.
. i
Pr(—Pi+1 < X < wPi) = J px(x)dx
Pl
= - 111.1.2.6
erfc(Pi + so) erfc:(Pi_*_l + so) ( )

The complement error-function erfc (x) is defined as

: © 1 2
erfc(x) = f e” 2 ¥ ax. (111.1.2.7)

: . X
Since so<<l, we can expand each of the terms in eq. @II.l.2.5)and(III.l.2.6)

around 0 using a Taylor series.

Therefore P?
s 1
erfc(P, - s ) 3 erfc(P) + ——e > (111.1.2.8)
and /zn p?
' s o
. o
erfc(P, + s ) * erfe(P) - —e 2 (1II.1.2.9)
: V2m -
Using (I11.1.28) in(I11.1.2.5) and (IIT.1.2.9) in (I11.1.2.6)we obtain
- ‘ : p2 p 2
_ i _o_itl
, N 1 T T2 T T2
Pr(Pi;s X < Pi+l) 2 erfc(Pi) - erfc(Pi + 1) + — so(e - e )
_ Vom < :
and ' : (1II.1.2.10)
, , )
Pl Pi+l

Pr(—Pi+' <X < —Pi) =~ erfc(P

I S -2 2 I1I.1.2.11)
1 < s (e e ‘) |

TY

i+l)
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Using III.1.2.4 we find finally

L 2 2
- Eél R
G,=/2 1 ale -e P
Y% =/« o1 ajte e So (I11I.1.2.12) .
We define: ‘
2 2
9%l B P
fx(ai’ Pi) = 3 ai(e 2 _ e 2 Y. (I11.1.2.13)
i=1

Since E; is.of the same form as E;; the general form of w is therefore

- 2 2
W= Sofx(ai’ Pi) fy(ai’ Pi) (I11.1.2.14)

where f (a,, P,) and £ (a., P,) describe the actual quantizers.
x Ti’ i yroi’? Ui

. 2 ' .
(b) To compute the variance o, We can neglect the signal s and as
 an approximation consider only two indeperdent noise sources as inputs

to the correlator, i.e.

x(t) = nx(t) o (I11.1.2.15)
and
y(t) = ny(t) (I11.1.2.16)
Therefore
N N N
iy 2 , .
W2 s (%‘ L q (i) = ~%~ T T q (1)q () - (I11.1.2.17)
. z . . z Z
i=1 - N7 i=1 j=1
and |
- 4 N N ; NN ,
wa — I T qz(i)qz(j) == ¥ T R (i-j)(III.1.2.18)
N i=1 j=1 N i=1 j=1 92
Using the relation
N N N-1
z I f(k + n-m) = I  (N-n)(f(k+n) + £f(k-n)) + Nf(k)
n=1 m=1 n=1 ) :
(I11.1.2.19)
and recognizing that :
R (k) =R (-k), - o (I11I1.1.2.20)
4z 4, ' ’



it follows that

Zn/l—PZ(T)

71 N-1 . i
w =2 (21 (1-3 R (i) + R (0)) (I11.1.2.
N 7, N" q q
i=1 z z
and
| 1 1
& = /?: lor a-dHr @ +r (0? (I11.1.2.
W i=1 N qz qz
The autocorrelation function of qz(t) is
qu(r) =q,(t) q (c+ 1) =4q.(t) q(t+1) qy(t) qy(t + 1) (II1.1.2.
=R (1) R (1) (I11.1.2.
q, q
since qx(t) and qy(t) are statistically independent random processes.
Note that
R (iT ) =R (i) = R (i) R (i). (1II.1.2.
a, s° Tq, a4, 1
The autocorrelation function of qx(t) is given by
Rq (v) = qx(t) qx(t + 1), (I1I.1.2.
X
Let the normalized autocorrelation function of x(t) be denoted by
A
R (D R (D Fs ()}
px(T) = p(1) = R (0 RO - 7 = Sa(27B71) (111.1.2.
x n o :
. n
where
sa(+) = SinC) (III.1.2.
()
Let
v(t) = x(t + 1) (II1.1.2.
Then X and v are jointly normal random variables with the joint probability-
density function . N
‘ - ————jir———f (x2—2p(r)xv + V2) (I11.1.2
P (x,v) = — 1 o 2(1—8 ()
Xv

16
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Considering again the symmetric n-level correlator (Fig. III.1.2.1)

we see that

q.d, = aiaj with probability Pr(Pisx<Pi+l, Pjsv<P )+Pr( -P IR -Pi,
+l5v< P ) (1I11.1.2.31)
and
9,4, = --aiaj with probab%}lty Pr(-Pi+lsx<-Pi, Pjsv<Pj+1)+Pr(Pisx<Pi+1,
-Pj+1sv<-Pj), (I11.1.2.32)
where
n-1
J= 1, 2 . —'2— B
Therefore,
n-1 1’1:1 ' .
9,4, = iE— .Z aiaj[Pr(Pisx<P +1’P <v<P 1)+Pr(—Pi+lsx<—Pi, —Pj+l$v<-Pj]
i=1 j=1
n-1 n-1 ' . (IXI.1.2.33)
2 2 . - . :
- izl jil a;a. Pr(—Pi+lsx<—Pi, Pjsv<Pj+l) + Pr(Pi5x<Pi+l’ —Pj+15v<—Pj)

Since va(x,v) is symmetric in x and v and va(x,v) = va(—x,—v),

Pr(Pisx<Pi+l, Pjsv<Pj+l) = Pr(—Pi+lsx<—Pi,-—Pj+lsv<—Pj)
P, .P,
A+l g+l P. 1.2
N 1 i+l P, ~pfx +1 p@x -5 X
= p.. (x,v)dxdv = — [erfc(—i;——r—ﬁ erfc(—} —) J]e dx. -
XV o
P, P, Y2r P, : /
i 3 i 1—p(r) 1—p ﬁ)
and (III.1.2,34)
.Pr(Pisx<Pi+l +1sv< P ) = Pr( P j4SE< PJ, Pjsv<Pj+l)
P, - .
i+l P} ‘ 1 .Pi+l - %-xz P Holgx .4pr@x
= J | (x,v)drdv = — e (erfc(—j;————) erfc(—};——————)dx
. _ . . 2,n. _ ~
Pi P}fl » Pi _ 1 eq) 1 p%ﬂ

(1I1.1.2.35)
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and finally

n-1 n-1
2 2 . '
= v < p - q - -
Rq'('a 2.2 .z aiaj[Pr(Pf;x<.i+l, Pjgngj+l) Pr(+Pisx<Pi+l, Pj+lgv< Pj)],
X i=1 j=1 , A
n-1 : (II1.1.2.36)
- )
_ 2 2

qu(O) =q_ = 2»;11 aiPr(Pi < X <Pi+l). (I11.1.2.37)

The same calculations hold for the y-chamnel if x is replaced by y in the

above formulas.

The output (S/N) - ratio is therefore

2 = 2 '
;-/N Sofx(ai?Pi) fy(ai’ Pi)

S.. w
,ﬁ)():;,_ = T y : e T (I1I1.1.2.38)
v N-1 i , , 2
2z (1- ﬁ)Rq (1),Rq 1) + Rq (0),Rq (0))

i=1 X y X y

where fx(ai’ Pi) and fy(ai’ Pi) are given by eéeguation (II1I.1.2.13)

qu(i), qu(i) . (I11.1.2.36 ) for i = iTsf

and R (0), R (0) - (I11.1.2.37°).
q.’ 1 .

The total number of samples during the observation time T is

N = _T_T_ = KBT. (III.1.2.39)
S

IT11.1.3 (§)o for Sampling at Nyquist-Rate

For the calculations in this chapter, the Nyquist sampling
rate fS = 2B is assumed. i.e. K= 2.
The autocorrelation function of the bandlimited noise is:

pn(TS = Sa(2nBt). (I11.1.3.1)

Therefore,
o . 1, if 1 =.0
pn(iTs) = Sa(wi) = { , (I11.1.3.2)
. 0, ifi 40
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i.e. the noise-samples taken TS = é%- apart. are uncorrelated, and since

they are Gaussian, they are also statistically independent. It is easy

to see that

qu<lTS) = qu(lTs) =0 for K=2, (I11.1.3.3)

since the quantizers are memoryless devices.
Replacing N by 2BT in(III.1.2.38)yields the output signal-to-

noise ratio -

S -2, 2y xC B HG P
N’o ™ 0 /R0 R (0)
q, qy

(I11.1.3.4)

It is remarkable that (§) can be expressed as a product of two functions
N7o

f (a., P.) f (a., P.)

xi i Ty Til

YR (0) VR (0)
a, 1y

which depend only on one channel of..the correiator. Therefore, for
sampling at Nyquist-rate, the dual channel correlator can be decomposed
into single channel correlators. This result is due to F. Bowers5 and
is treated in more detail in Chapter V.2. It can be seen (III.1.2.38)
that we improve (%)O by sampling faster than at Nyquist-rate and that
sampling at rate infinity gives us the asymptotic value or the maximum

(%)o of a quantized correlator.

II11.1.4. (%)0 for an Infinite Sampling-Rate

It can be seen that the limiting case, when K goes to infinity,
corresponds to an unsampled but quantized correlator. Thus signal-to-
noise ratio is maximized for this limiting case.

From II1.1.2.13 and III.1.2.14 we see that w does depend on K.
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Substituting N = KBT in (IIL.1.2.22)we get

-5- KBT-1
W KBT (2 r (- iﬁT)R 1) + Rq (Q) (II1.1.4.1)
: i=1 1 z
Taking the limit we obtain
—E 1 1 KBT-1
lim w~ = == 1lim = (2 % a - )R (i) + R (0)]
Koveo Bl o K 4m1 _KBT 9z
1 fT t ’
= T.2 A a - -,I—,)qu(t).dt. ‘ ‘ (I11.1.4.2)
This result can also be found by computing w2 for an unsampled correlator,
where
1 N 1 T
X 9, (i) is replaced by / q_(t)dt
i=1
Finally
f (a,, P.)Y £ (a )
lim Sy =252, x4 17y 1 10 (I1T.1.4.3)
N’o m S

1
ST b 2
(2 o (l T)Rq (t)de)

z
It was found in II.3.6>that the degradation factor is the ratio of (%)o

of the quantized correlator to'(%)o of the analog correlator. The value

“of (%)0 for the analog correlator is calculated in the fbllowing chapter.

I11.1.5 (%)o of an Analog Correlator

We can omit .the quantizers in the x- and y-channel or, equivalently,

set
q._ = x (I11.1.5.1)
X .

and .
q, = V. " . (I11.1.5.2)
y : o

Then

7= Ry R (ITI1.1.5.3)
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and ' 1 2
- = 1w T 7xs)
x=y= — [ xe dx = 5, (II1.1.5.4)
V2r o
Therefore
w = s‘?;. (I11.1.5.5)

The variance of w is given by (ITI.1.2.21) as

— KBT-1

2 -1 o1 .2, 2
woo= EET—(Z iil 1 igf)Rx(l) + RX(O)), | (111.1.5.6)
where
N L N 2mi
Rx(l) = pn(l) = Sa(—E—). (111.1.5.7)
For long integration time
21 1,5 202w ! |
whosaE % (Zii1 S§( " ) 4+ 1) = T (111.1.5.8)
The relétionship for any K 3 2
17 2.2miy _ 1
m iE-m Sa X ) = > (I11.1.5.9)
for any K . 2
is proved in Appendix Al. Therefore,
(%) v =52\/EE'.—[‘- (I11.1.5.10)
o} -2‘ (o) . ‘
Vel

and this is independent of the sampling-rate K as long as K 2 2

II1.1.6 General Formula for the Degradation Factor

Let n be the number of quantizer-levels in the x-channel and
let m be the number of quantizer-levels in the y-channel. Then anm
the degradation factor of an nxm level correlator sampled at rate KxB.

D will be a function of K.
n>m



' (§) analo. Si 2BT
(K) = E - (111.1.6.1)
& &) |
0,N%Xm N0 ,nxm
Substituting [.1.2.10 in I{.1.6.1 and letting N = KBT gives:
KBT-1 s %.
2T - R x(l)ggy(l) + RqX(O)qu(oﬂ
D (K) = —/ (111.1.6.2)
nxm fx(ai, Pi) fy(ai’ Pi) .

At the Nyquist-rate, since R (i) and R (i) = 0 for i # 0, we have
q, 1
YR (0)-R_ (O
q (0) q (0)

y = T X y
m(2) T (e PE (P (I11.1.6.3)
X i 17y 17 1

For Ksw, (II1.1.4.3) substituted in (I1I.1.6.1) yields

T ' 1
{B{J (1- -,%)Rq (TR (tyar)?
= X y
Do @ = £ (a;, PIE_(a, 7)) (THL.1.6.4)
xi TifTy i i
For long integration time
1
(B équ (R (x)dr)?
lim D (w) = T pis y
Tow DXM [ f . P f (2. ) (I1I.1.6.5)
x i i’ Tyti i

where Rq (t) and Rq (r) are functions of only p(r) = Sa(2%Br). Substituting
X y
Xx = Br, D m(m) becomes independent of the bandwidth B. The degradation

nx
" factor D is independent of the input signals, the bandwidth, and the
integration time and is only a function of the quantizers, the multi-
plication scheme, and the sampling-rate. The definition of D allows

us to compare different correlators. In the following chapter the

" degradation-factor D is calculated for four different quantized correlators.

22



II1.2 Degradation Factor of the 2x2, 3x3, 2x3, 3x5 and 4x4 Level Correlators

IIT.2.1 2x2 Level Correlator

Both the x and the y-channel have quantizers shown in figure

(111.2.1.1) § A

=X, Y

Fig. III.2.1.1 2-]evel quantizer

The quantized signals q_(t) and q_(t) are given by
v % y

q, (t) = sign(x(t)) (II1.2.1.1)

and

qy(t)

sign(y(t)). | (II1I.2.1.2)

Since x(t) and y(t) are statistically indepeqdent signals, the expected
value of w is given by the product of the expected values of qx(t)
and qy(t). Therefore
1 2
1 e "3 (xm8)

qa =4qg = / - —
q q o © dx /e

I dx=l—2erfc(é )
=Y g /o 0

(I11.2.1.3)

Taking the first two terms of a Taylor series expansion of the complement

error-function around sO = 0 we obtain

(T11.2.1.4)

N}
o

Q' = qy =

therefore

w=

ENEN

and the functions defined in(III.l.Z.lﬁ become then

£ (a;,B;) =1 o (II1.2.1.6)

s (I1I1.2.1.5)

23
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and £ (a., P.) =1 (I11.2.1.7)
A S §

The autocorrelation functions Rq (1) and Rq (1) can easily be found with

X 2y
the van Vleck relation (or arcsin law, see1 pg. 483) to be

R, () = qu('r) = 2 aresin(o_(1)), (I11.2.1.8) )
where »
p_(r) = Sa(2nBr) | (I11.2.1.9)
and | | |
Rq (0) = 1. | (I11.2.1.10)

X

Equations (I11.2.1.6) to{III.2.1.10) used in (III1.1.6.2)yield

1

. x [z g KBIAL i 2, (2 2 '
D2x2(K) = En/; f;z 1:1 (1- EEE)(arc51n(Sa67(0)) + 1).- (I11.2.1.11)
At the Nyquist-rate we have
. o ]
~ D2x2(2) =3 (I11.2.1.12)

For K+~ using (II1.1.6.5)it follows that

» 1
szxz(w) =/ﬂz ( (f)w(arcsin(Sa(T)))sz>z (111.2.1.13)

The integral ém (arcsin(Sa(T)))2 dt cannot be solved analytically.

However, an upper bound can be found to be (see Figure III.2.1.2):.

.Lnﬁ

aresinx)

-1

1

L 5 I

Fig. I11.2.1.2 arcsin(x) vs. x
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|arcsin(x)] < %—Ix] (I1I.2.1.14)
. 3 '-' ‘
|sa(r)] = lf%¥EZL] s|§1 (II1.2.1.15)
Letting x = Sa(r), we obtain
larcsin(Sé(T))!‘< T lsa()| ¢ T |2 | (I11.2.1.16)
\2 \2-]?']" slole
Therefore,
2
(arcsini(Sa(r)))? < —1%5 (I1I.2.1.17)
4t
There exists an R such that
[ 2 ﬂz o1 - ﬁz
R (axcsin(Sa(t))) " dr < " R_—E-dT = 7R (I11.2.1.18)
The'integral
éR (arcsin(Sa(T)))sz can be evaluated numerically.
The error of the remainder can be bounded with any desired accuracy
using (ITI1.2.1.18).
Evaluating éR (arcsin(Sa(T))sz numerically for R = 1000 yields
1.2515 £ 0.00013.
Let )
' I= élOOO (arcsin(Sa(T))sz , (IT1.2.1.19)
and
1T2
€ = IR (1I11.2.1.20)
Then _ .
o </ /L1
Dyn(®) s/ Y1+ e < G 1+ 5e) (I11.2.1.21)
A lower bound is given by the accuracy of the numerical integration of I.
Therefore,
21 1
1.2515 - 0.00013 ¢ D2x2(w) < /= (1 + Eﬁ) (I11.2.1.22)
. -
and
1.25137 < szz(m) < 1.2528 (111.2.1.23)



Yerbury13 found D, . (») by an approximation as - = 1.28.
2 - /%
He states that his value is 2-37 too high, which agrees with our result.

D2x2(K) is plotted in Fig. III.2.1. on page 34,

It is remarkable that we can achievwe up to a 20% lower degradation

factor for the 2x2 level correlator by sampling faster than at Nyquist-
rate. At 4 times the Nyquist-rate the degradation factor is 187 lower

and at twice the Nyquist-rate it is 14Z lower.

I11.2.2 3x3 Level Correlator

Both the x- and the y-channel have quantizers of the form-

illustrated in Fig. II1I.2.2.1:
Q)HQ(‘,

]

Fig. III.2.2.1 3-level quantizer
P is the decision level and should be optimized to yield a minimum
degradation factor. The expected value of w is found by letting P2+w

in.ﬁlI.l.Z.lBl Then we get

p?

fx(ai’ Pi)

and

- 2 2 -p?
w==—s8 e

T O

To calculate the standard deviation O, the autocorrelation functions

Rq (f) and Rq (t) can be obtained from(III.l.2.3@ and(iII.l.Z.Bﬁ as
X y

fy(ai’ Pi) = e (111.2.2.1)

(I11.2.2.2)
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2
X
_ /2 w0 2 P-p (1)x P +p (1)x
R (1) =/=() e (erfc (=Ea=tE=)~erfe ( —E—22Y)4x) (111.2.2.3)
i //; P Y102 (1) 2
o 1-p7 (1)
and '
Rq (0) = 2 erfec (P) (I11.2.2.4)

. X
Above results in {III.1.6.2)substituted yield

1
KBT-1 : . - 52
2 4 2. 2, 32.p (I111.2.2.5)
D, 4 (K) = 2/; {2 iil (1 —KBT)qu (i) + &4 erfc (P)} &

For sampling at Nyquist-rate, D2x2(2) becomes
P2
D3x3(2)v= e erfc(P) (I11.2.2.6)
and for K>« the degradation factor takes on the limit
2 . 3 3
D3X3(w) = r1e (B é qu (t)dr) (111.2.2.7)

X
The -decision level P .can be optimized as shown in Chapter V.1.1. The
optimum value of P, which depends on the sampling-rate, is 0.612 at

Nyquist-rate and about 167% higher at infinite sampling rate..

ITT.2.3 2x%3 Level Correlator

In this case the x-channel has a 2-level quantizer. (Fig. I11I1.2.2.1).
The functions fX(ai, Pi) have already been found in (I1I.2.2.1.6) and
¢II.2.2.1).respective1y for the 2x2 and the 2x3 level correlators.
Therefore, o 2

i
2

w = si e (I11.2.3.1)

ENIN

The autocorrelation functions R (t) and R (1) havé been found in
| . q, B
(I11.2.1.8) and (III.2.1.10) for the 2x2 and in (III1.2.2.3) and (I11.2.2.4)

for the 3x3 level correlator.
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Using (I11.1.6.2) we obtain therefore,

> —Pz— KBT-1 %—
D, () = —f «{2 I a- KTT)R SINCE zerfe(P)} (I11.2.3.2)
Sampled at Nyquist-rate, D2x3(2) becomes
2?
2x3(2) = — V2erfc(P) e . (111.2.3.3)
and as K+w'D2x3(w) tgkes on the limit
» 1
D, (=) =we? (B[° R ()R (r)dr)> (IT1.2.3.4)
2x3 °o q . ° qy

Again P can be optimized as shown in Chapter V.1l.2 and is 0.612 at Nyquist-
rate and élightly higher than P for the 3x3 level correlator at higher

sampling-rates.

I1I1.2.4 3x5 Level Correlator

The x-channel has 3 levels; its quantizer is shown in Fig.

IT1I1.2.2.1. The y-channel has a 5-level quantizer as shown in Fig. III.2.4.1.
a

Fig. III.2.4.1 5-level quantizer

The functions fx(ai’ Pi) and fy(ai’ Pi) are given by (III.1.2.13).

The function fx(ai, Pi) was calculated in (III.2.2.1) and
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2 2
P .
i _ly2
£ (a, P = e 2 4 -1e 2 (IT1.2.4.1)
Therefore,
2 2
S S _lya
w =ﬂ£s(2) e 2 ? +@-1e %) (I11.2.4.2)

The autocorrelation function R (r) is given by (III.2.2.3) and III.2.2.4)

qX
and
P B (o P4 p(1)x
R () = /WZ[ J e % (erfe)- erfe(X—)
Y Fy1 1-02 () 1-02 ()
P 4o (r)x P —p(t)x |
+ erchJﬁLf—I——O - erchJéL——~——0)dx
1—p2(T) l—pz(r)
Py2 —-53 P_,-p(t)x P +p(r)x
42 J e (erfc(—zg——————) - erfe( ))dx
Fy1 V%o A-p? )
” x> | (x) )
- P .- X. P 4o (1t)x
+ K2 J e 2(erfc(—zg—f-—z——) - erfc(—zg—g—z——ﬁ)dx]
‘ Pyz , Vl‘pz(T) l—pz(T)
and | S (111.2.4.3)
R, (0) = 2(erfe(P ;) + (Kz-.l)effc@ﬂ)) (I11.2.4.4)

y

Substituting'the above results into équation'(IIIil.6.2),n we get

KBT-1 ; ' ’ L
/2%22.2 [(}“E%T)Rq (iqu (iﬂ+4erfc(P)Kerfc(Py1)+(K2—Derfc(Py2))32
Dyys () = §—— — , 2
S22 I 7
e z(e 2y k - e 2 )

(I1I1.2.4.5)
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Sampled at Nyquist-rate, D3x5(2) becomes

1
(erfc(P)(erfc(Pyl) + (Kz—l)grfc(Pyz))2
D3x5(2) =’ﬁ*

- 2 )
2l Ul
e 2(e z2 4 k = 1Le 2 ) - (I11.2.4.6)
and as K goes to infinity D3X5(K) takes on the limit
/é éwR X(T)R (t)dr ,
D, .(2) =7 4 4 (I11.2.4.7)
3x5 9 p? p 2
AN 2 3 _ 2
e 2(e 2 +(K—1)e 2 )
P, Pyl and Py2 can be optimized as shown in Chapter V.1l.4. At Nyquist-
rate P = 0.612, Pyl,opt = 0.422 and Pyz)opt = 1.266.

I11.2.5 &4x4 Level Correlator

Fig. III.2.5.1 shows the quantizer used in the x- and in the

y-channel. ‘meg

%Y

.
--4=
R -

Fig. III.2.5.1 4-level quantizer

The formulae  (I11.1.2.13), (III.1.2.36) and (III.1.2.37) are

easily applied to quantizers with an even number of levels by letting

Pl = 0, since a n-level quantizer (n even) is equal to a nt+l level
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quantizer with the first decision level Pl set to zero.

For a 4 level quantizer we set n=5 and take the.ai's and Pi's

as shown below:

n=5
Pl=0 al =1
P2=P 32 =K
'P3=w
Using III.1.2.12 we obtain
P
_ - _ 2 ‘
fx(ai’vPi) = fy(ai’ Pi) =1+ ( e (I11.2.5.1)
and therefore
P2
7 = “3 si (L+ - e 2)? (I11.2.5.2)

The autocorrelation functions Rq (r) and Rq (r) are the same and given by
o < y
(111.1.2.36) and (II1.1.2.37): '

2

Rq () = Rq () = /%ié e 2(erfc(—'lgz—)—}i—-——) - erfc@lﬁll§_*_)
* Y 1-02 (¢) Simo? (o)
’ P_,". (T)X
+ erfc(Eiﬁlllﬁ_) - erfc(—iljg_‘—))dx
BRI 7 (0)
2

_ p _ X
+ 2% e z(erfc(giﬂﬁllﬁ_) - erfcégﬂlilli_))dx

(o]
VERTRES VAT
K (1) o (1)
2 w7 Pp ()% y_rpeEdolU)x yyg
+ k é‘e (erfc( l—pz(T)) er C(m)) X]

(I11.2.5.3)
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Note that . A o erf(s) = l-erfc(+) (111.2.5.4)
and

R (0) =R (0) = 1+ 2(>~1)erfc(P) (111.2.5.5)
q, q
y
above results used in (III1.1.6.2) yield-

KBI-1 3 . 2 2 23
(2 (l—.iiT)Rq (D)+A+2 (" =Derfc(P))™)
Dy () = 5 ; 1 — ' (111.2.5.6)
P
1+ (« -le 2)?
Sampled at Nyquist—rate}D4x4 * then becomes
T l+2(K2—l)erfc(P)
D4x4<2) = 5 2 (111.2.5.7)
P
Q+-1e )2
and as K goes to infinity.'D4X4 "~ takes on the limit
' 1
® "R 2 (ydn)?
. X '
D4x4( )= P2 (111.2.5.8)

(1+(c-1e  2)?

The optimized values of P vs. sampling-rate are calculated in Chapter

V.1.3. At Nyquist-rate, P = 0.995 and increases about 17.5% at an

opt

infinite sampling—rate,

© TIII.2.6 Conclusions

For long integration times, D is a function of the quantizers
and the sampling-rate only. Two functions characterize a quantizer,

fx(ai’Pi) and qu(T).

Referring to{III;l.Z.lZ} the normalized, éveraged output of one quantizer is
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q
- X 1
£ (a,, P,) = J(; (111.2.6.1)

The aufocorrelation function of the quantizer output, Rq (),
was obtained in (IiI.l.2.36) and (IIT.1.2.37). Thesé two functidn:
are valid for any symmetric quantizer. Kngwing fx(ai’ Pi) (fy(ai’ Pi))
and R (t) (R v(T)) for the x- and the y-channels, we are able to
comput:_anm(K) for any combination of two quantizers. For sampliné
at -the Nyquist-rate, the -dual-channel degradation factor is simply the
product of two single-channel degradation factors. It will be shown in
Chapter V.2. that the single-channel degradation facfor is the D obtained
for a correlator with only one quantizer in one channel, the other

channel left unquantized, i.e.

anm(Z) = anm(Z) Dmxm(Z) ' (1I11.2.6.2)

anm(w) is the limiting value for D as K#m, and is the minimum achievable
degradation factor for a correlator receiver with nxm level quantization.

For an unquantized correlator receiver, sampling faster than
at the Nyquist-rate does not change the degradation factor. For a
quantized correlator, however, we obtain a lower degradation by "over-
sampling" (K > 2).

Figure III.2;1, is a graph of the degradation factor vs.
sampling rate K_for the five combinations of quantiiers considered in
this chapter. As an ekample, it can be seen from that figure that a
4x4 level correlator sampled at Nyquist-rate has approximately the same
degradation factor as a éX3 level correlator at fwice the Nyquist-rate.

Decision levels as well as stepwidths, ai,_can be optimized to
minimize the degradation factor. Chooéing the optimum quantizétion

levels for minimization of the degradation results in impractical logic

complicationslz. Choosing the Quantization lévels as integral multiples



161

1.5 1

decision levels: optimized values
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Figure 111.2.1 Degradation factor1D/versus sampling rate K.



of one gnother, preferably powers of two, yields a near optimum pér—
formance in terms of the degradation factor. Aé the decision levels
- . , .
can be set continuously on the analog-digital converters, non-integral
size of Pi creates no additional difficultiés. A method to optimize
the ?i's is given in Chapter V.1.
In ail previous calculations the x- and the;y—channel were

sampled at the same rate. The next section investigates the degradation

in one case where the two channels are sampled at different rates.

I1I.3 3x5 Level Correlator at Unequal Sampling-Rate

A hardware construction of a 3x5 level correlator for Nyquist-
samplingl2 has demonstrated that under certain circumstances the S;level
. channel can be sampled at a faster rate wiﬁh little increase in
complexity. This chapter investigates whether there is anything to be
gained by "oversampling" the 5—1evel channel.,

A genefal model of the scheme under consideration is given in
Fig. ITI.3.-1.

»Assume that every sample of the 3-level x-channel is multiplied
with n samples of the 5-level y-channel. If the sampling rate of the

x-channel is the Nyquist rate, 2B, then that of the y-channel will be

35

f = 2neB : (III.3.1)

sy

If the averaging is done over N x-samples, it will include Nn pfoducts.
The’multiplicafion of a given %fsamples,with y-samples at a

variety of time-intervals will attenuate any high-~frequency components

in the correlated signal. Hence, for the purposes éf this calculation, -

it is no longer legitimate to calculate degradation factors by replacing



x(t)

_{___ ;
SX

x-quantizer

(3 levels)

qx(i)

y—-quantizer

(5 levels)

Fig. III.3.1 Model of correlator with unequal sampling rates

v

f?[ qz'(”

}q7us

nN

1 .y
nN — qz(l)
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both»signals‘with a . d-c value. We can still simplify the calculations

by assuming that

sx(t) = sy(t) = s(t)

(I11.3.2)

but we need to make some assumption about the spectral characteristics

of s(t), by specifying its power density spectrum Sé(f).

Signals of interest in radio—-astronomy will, in general, not

have a flat spectrum, but may contain spectral lines within the bandwidth B.

If after translation to baseband, such spectral lines occur near the

origin, the attenuation of the signal due to the time-displacement of the

samples will be negligible, and we would find a rather small amount of

degradation. If, on the other hand, there is much spectral power near
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the upper end of the band, the degradation will be severe.

To obtain typical and realiétic values of the degradation
factor, we assume that the power density spectrum is not concentrated
at either end. In fact, the calculations are carried out assuming
white Gaussian noise for s(t). It must be remembered that the results
so obtained are merely a representative value of the degradation factor,
and that in a practical case the degradation could be better or worse,

depending on the nature of the signal to be correlated.

ITII.3.1 Asymmetric Sampling

Each x~-channel sample is taken to be synchronized with the first

of a group of y-channel samples, as shown in Figure III.3.3.1.1.

X(£)

o
rﬁ‘"
=
-
!
qT“'-.

Fig. III.3.1.1 Signals x(t) and y(t), asymmetrically sampled
The output w of the correlator is then found to be

n N
D) qx((k—l)n+1)qy((k—l)n + i) (I1I1.3.1.1)

1
w=—-‘
oN i=1 k=1

-

Therefore the expected value of w is given by equation (III.3.1.2).



a 1 n N
w=—= ¢ I q{(k-1)ntl)q ((k-1)nt+i)
o o1 k=1 ¥ y
.y D "N 1 n-1 :
= N z I R (i-1) = o x R 1) (I1I.
i=1 k=1 9xx © i=o0 qqu
where R (i) is defined as the expected value of the product of the
Xy

two ergodic random processes qx(t) and qy(t + iTS)

R (i) = qx(t)_qy(t + iTS) . (1I11.

qqu

where Ts is the sampling interval
1
Ts " 2nB

Since the joint probability-density function of the signals x and y is

given by
1 1 ) 2
( ) 1 I R R (x2—2r(r)xy +y7)
p. (x,y) = —F===— e I-r" (1) (I1II.
x5y ZﬁVl—rZ(T) v _
and
' 2
r(t) = pS(T)' g << 1 v (I1I.
" where
R (t)
p (1) =3 ) (I11.

S

we find ny(T) as the expected value of the signals x(t) and y(t + 1) or,

equivalently as the cross-correlation-function of x(t) and y(t). Therefore,

‘ny(T) = x(t) y(t +f~)

T

oo

= [~ [ xy ny(x,Y) dxdy

—c0 —00

= r({)

(I11.

38

.1.2)

.1.3)

L1.4)

.1.5)

.1.6)

1.7

. N2
= os(r)os | , (I11.3.1.8)
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R (t) is a linear function of R_ (r) if ¢  <<1 and depends only on
a4y xy s T
the quantizers and ng(r).

In equation ITI.1.2.13 we used a d-c signal with the normalized
autocorrelation function
ps(r) = ] =const. o (1I11.3.1.9)

and therefore

q.4 y

R (t) = const. = R (0) = q_q_. (I11.311D)
X'y qqu X -

Since Rq q (t) is proportional to pS(T) it follows that
X'y '

2 2
-quqy(’f> = fx(ai, Pi) fy(ai, Pi) p (T)og ~ (II1.3.1.11)

and for the 3x5 level correlator it follows from ITII.2.4.2 that

: 2 2
Pt _Iya . L
' 2 2 2 2 3 . -
R (t) ==o0_ e (e + (k-L)e Yo _ () (I11.3.1.12)
q.4 T S s A
xy
Letting 1t = iTS and denoting_iTS shortly by "i" we obtain,

after substituting (III.3.1.12) into (III.3.1.2),
L2 2
P2 Pyl PzZ
2 T3, T T -y o\t
< +(k-1)e )T e (i) (I11.3.1.13)

g e . (e
i=0

€1
Il
B

2
T

Since D is proportional to %-and ;E is independent of s for small signals,
it can.be seen that the lowest degradation factor is obtained for a d-c
signal where ps(i) = 1. The more high—frequengy components s(t) contains,
the higher the expected degradation factor. If s(t) = cos 2rBt, then

SN in
ps(l) = cos _— and
~ .- . 1 n_l im
w is proportional to = % cos(—)
A LI n
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In the limiting case as m», w is proportional to %‘ ﬂﬂ cos(x)dx = 0 and
therefore the degradation factor goes to infinity. A low degradation
factor can be e%peéted for an unequal sampling-rate if the signal s(t)
" has most of its spectral power at low frequencies. To compute the
variance 05 we assume x(t) = nx{t) and y(t) = ny(t), i.e.

2 1 n n N N

W= o ¥ I q ((k-Dntl)q ((A-1)n+l) q_((k-1)n+i)q ((A-1)n+j)
n’N? 1=1 j=1 k=1 A=1 ¥~ ' x y y

1 n n N N
=—=— § I % ¢ R ((k-\)n) R ((k-)nt+i~j) - (I11.3.1.14)
1202 1=l 3=1 k=1 A=1 Iy dy

Using the identity

N-1 N N
T (N-1i) (f(k+i) + £(k-i)) + Nf(k) = I T f(k+i-j)
i=1 i=1 j=1
(II1.3.1.15)
we obtain
—2- 1 N N - n-1 . )
wi=—0> I I R (k=)o) © (1~ %)(R (k-M)n+i) + R ((k-2)n-1i))+R_ ((k-1)n}
nN” k=12=1 %% i=1 Yy . dy dy
(I11.3.1.16)
After using equation (III.3.1.15) again, we find
—é‘ 2. N-1 K . n~-1 i
w == {T (- 3DR @mk)R @k)+ & (A- 3R (O (G
nN k=1 o4y qy i=1 Ay qu
n-1 N-1 i ke - 1 :
+z I (1-\;)(1— ﬁ)R (nk) (R (nk+i)+R  (nk-1i))+ 7 R ()R (0)} (I11.3.1.17)
i=1 k=1 9y dy 1y c 9% Yy

We assume in what follows that - -the x-channel is sampled at Nyquist-rate.

Since R (nk)=R (nk) = 0, EII.3.1.16)becomes
q q
y
= 1.0 1 | o
we=—=1{23 (1- DR (1) +R_ (0)} R (0) (I1I.3.1.18)
nN . n’ q q q .
i=1 y vy X
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and as for ww (equivalent to x-channel sampled at Nyquist-rate,

y-channel unsampled),

. o S
2 2 rs T
= < S -t
w T Rq.(O) A (1 T )Rq (t)dr (I11.3.1.19)
s X s 'y
where TS ¥.§%H is the sampling-interval Rq (r) is given by (I111.2.4.4)
Yy
and R (0) by IIT1.2.2.4.
9y

The asymmetric degradation factor Da 3x5 (w) is therefore found

-l %
(Rq iz z (1- H)Rq (i) + Rq on
Da. _(n) =% /A X =1 b 7 (IT1.3.1.20)
3x%5 2
1.2 1 2 1 2
._«—Z_P —-é—Pyl —-2—Py2 n-1
e- (e + k-Le )z e (1)
l=0
For n-w '
1 1
x, ©38 *Pa-280R ()an)?
. _ T X y ;
Ikgxs (=) = 5 > 1 (I11.3.1.21)
12 1, 2 1 =
' - ?Z.P - Elyl Y Py2 f2B
e (e 777 +(-1)e )B p (1)dT
S

Since Rq (r) and ps(r) are functions of 2nBr, D?ng,'(“) becomes

y

independent of B. The stepwidths P, Pvl and Py2 can be optimized.

Since the x-channel is sampled at Nyquist-rate, Da ><5(K) can be

3

expressed as the product of an x and a y-part. Popt for the x-channel

(3-level-side) is equal to PO for a 3-level quantizer at Nyquist-

pt

rate, (=0.612). The values of Pyljopt and Pyz)opt are slightly higher
ist- . i IT1I.3.3. II11.3.3.2
thanPleopt and ?y2)opt at Nyquist-rate | In Figure 3.3.1 and 3.3.2 however
i - P = R = R
the Nyquist-rate values vl opt 0.422 and Py2 opt 1.266 are used,

(see Chapter V.1.4) since the error of D is small enough to be neglected.
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I11.3.2 Symmetric Sampling

The x-samples are taken to be synchronized with the y-channel
samples. Further we consider the center of a group of y—chanhel samples
to be coincident with an x-channel sample (see Fig. III1.3.2.1).

xeg

f

—
=
e
—
-
—
-
)
- =
=
= —
— =
i ¥
-2
wil

n
l
3¢ /// \ /

£
12 rdon 2nes Iney ¥ Aney 3
2 .7 2 Z

Fig. III.3.2.1 Signals x(t) and y(t), symmetrically sampled

The output w of the correlator is found to be

n N
1 I g (ﬁzki%lﬂiﬂo q (k - Dn +i) (III.3.2.1)
VELN i=1 k=l y ‘

Therefore the expected value of w is given by equation (III.3.2.2)

n N -
v=k oz oz q AEERMh (- Dot g
™ois1 k=1 A
n
=.% s R (i - E%l) . (I11.3.2.2)
1 9y

The cross-correlation function of the signals qx(t) and qy(t),

Rq q (Tz was obtained in (III.3.1.11)

Xy :
Therefore, ' 2 P P
9 o B _ ¥l _y2 n ntl
= 2 (e 2 +E&-1De 2 ) ¥ p(i-—7") (1I11.3.2.3)
T S j=1 S 2.

W= g_ e

B
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. 2 ... . .
The variance g, is again calculated for noise~inputs only.

Therefore,

-2 2 :

v o= o (I11.3.2.4)
=2 1 &2 a2 3 N O ((2x-1)n+1)
Vo= 2% 2 3l g ( 5 )| -

n“N° i=1 j=1 k=1 A=1

qy«k—l)n+i)q§(x—l)n+j)

. ) _
5 R ({(k-M)n) « R (k-)n + 1 - j) (I11.3.2.5)
=1 Y% qy

The expression (III.3.2.5) is the same as (II1.2.1.13) for asymmetric

sampling. Therefore w2 is given by (III.3.1.17) and the symmetric degrada-

tion factor DSBX5 (n)  becomes then
n-1 %
R, @23 (1- DR () +R_(O)] |
Ds, . (n) =< va x i=1 b Y (I11.3.2.6)
3x5 2
P2 -4 P 2 - L 2 n
e 2 [e 2yl + (k-1)e .2 1 E: Pq (i- Ei!ﬁ
. i=1

Using (IIT.3.1.18) and taking the limit of (III.3.2.2) as n»e we find for
an infinite sampling-rate on the y-channel

L

fZB |
{Rq (0) B (1-2BT) R (1) dT}

N

(o) = L X Iy
Ds g5 (=) =7 _ : T (I11.3.2.7)
1 2 1 2 1 2 -—
BRI ~ 3 Py 4B
e _ [e + (k~1)e lB , pS(T) dt
1
T 4B

Again Rq (t) and pS(T) are functions of 27BT, i.e.'D33x5 () is independent

of B. A high degradation factor can be expected where the signal s has
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most of its spectral power near the bandlimit B. For symmetric sampling

Ds 3x5(n) is proportlpnal to

n

23 pa-shy

“and, since pS(T) = ps(—T) is a monotonicélly decreasing function between 0
and Z%- for any power density spectrum Ss(f), it can be seen that symmetric
sampling always results in a lower degradation than asymmetrié sampling.
The largest degradation factor is obtained where Ss(f) has only one

spectral line at f = B, i.e. ps(T) = cos 27BT.

As n>o Ds 3x5 (©) becomes proportional to
L
, 5 {
'[l- cos x dx]_1 =2
T 2
s :
2

and does not go to infinity as in the’asgymmetric case.

It is of interest to note, however,‘that the optimum values of
P, Pyl and Py2 are the same for the as$ymm¢tric and the symmetrig case.
Comparison of asymmetric/symmetric sampling for a white signal s(t):
nder the assumption of s(t) having a flat power density spectrum over

the bandwidth B, its autocorrelation function ps(T) becomes

pS(T) = Sa(27mBT) ‘ (III.3.2.8)
1
2B _
For asymmetric sampling pS(T)dT is the integral over
0 B

the sampling-function from the origin to the first zero-crossing. (see

Figure (I11.3.2.2).
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8 §5 (T)

Fig. III.3.2.2 Autocorrelation function of s(t)

For symmetrié sampling the integral is the shaded area illustrated in

Figure (III1.3.2.3).

et

Fig. I1I.3.2.3 Autocorrelation function of s(t)

It is easy to see that
1 1 »
4B 2B v
ps(T)dT > .pS(T)dT (I11.3.2.9)
1
T 4B 0
From (III.3.1.20) and (III.3.2.7) it follows that the symmetric case will

result in a lower degradation factor than in the asymmetric case.

I11.3.3; Conclusidns

_DanS

(n) and Ds3x5(n)'have been éomputed and plotted in Figures
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I11.3.3.1 and III.3.3.2 respectively, for a flat and for a triangulér
spectrum which we arbitrarily assumed, As expected, asymmetric sampling
results in a higher degradation factor than symmetric sampling for both
shapes of Ss(f). For the two shapes considgred, asymmetric sampling is not
a good method to use in determining the autocorrelation function of s(t).
Considerinquqnsag, we see that for the triangular shape thé degradation
factor D is smaller than the D at Nyquist-rate at only one particular

rate, namely twice the Nyquist-rate (n=2),

Symmetric sampling results in about a 2% smaller degradation factor
beyond n=4 for the flat spectrum, and about an 8.5% reduction for the
trdangular spectrum,

Generally speaking, unequal, symmetric sampling is advantageous
only if Ss(f) has most of its spectral power at lower frequencies. But it
may be preferable, in this case, to neglect the high frequency components
and operate with a smaller bandwidth, considering only the relevant

spectral lines of Ss(f).

I11.4 Degradation for Overquantized Correlators

We have seen in Cﬁapter III.2 that, at a given sampling-rate,
the degradation factor D becomes smaller as‘the nﬁmber of levels in ‘the
quanfizers increases. The lower bound (Dél) corresponds to an infinitely
fine quantizaﬁion or no quantization at all. However, more levels means
a greater variety of products, 9, to be hahdled by the averager, and
this results in a greater complexity of the radiometer. In practice,
therefore, there is a limit to the number of different ﬁroducts one is
willing to handle. Given this limit, the question arises whether it

might be advantageous to quantize each signal to many more levels, but to
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triangular spectrum .
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merge some of the resulting "products" to obtain only the desired number
of different outputs.

| One case of "incomplete multiplication" was investigated by C00per8,
for a 4x4 level correlator where the least significant products were
neglected. The present chapter is based on Cooper's techniqﬁe and extends
this technique to the 5x5 level correlator. Later, allbwing only three
different products, q, we consider, in section II1.4.2, a 5x5 level correlator
with the number of products reduced to 3 and, in section III.4.3, an
analog correlator, where the‘quantizétion to three levels is done after
the multiplicatién. This last case is interesting, as it represents a
limiting case and tells us what we could gain for a given number of pro-

 ducts by "overquantization'.

IIT.4.1 Multiplication Using Four Possible "Products"

(a) Cooper's Scheme8, 4x4 levels

The function f(ai, Pi) for a 4-level quantizer has been found in

I11.2.5.1:
| | _e
| f(ai, Pi)'= 1+ (k-1) e 2
Therefore w for a 4x4 level quantizer is given by
- 2 2 -332
w==— s (14 (k=e 2 ) (I11.4.1.1)
L o _
or, multiplied out,
- P’ ISR
W= s [(l—e 2" + 2ke 2 (l-e 2 )
. 2 i
+ K2 o~ P | (I1I.4.1.2)

" The following 6 different products have to be handled by the.averager;

1, *x and ik,
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Therefore the expression (III.4.1.2) has terms in 1, « and K2 wherg:

only the products th contribute to the terms in Kz,

oniy the products *xk contribute to the terms in k and

only the products *1 contribgte to the terms in 1.

Deleting a product.pair éancels the corresponding term in equation (111.4.1.2)..

Omitting the terms in ii, which are the least significant terms,

(I11.4.1.2) becomes
. 2 2 P2

) +ke 2) (IT1.4.1.3)

P P
2 e 2

_— 2 —— -
v, =T S, ge 2 (2(1- e

e

where the subscript e refers to a correlator with the least significant
products eliminated. The variance of w for the least significant products
deleted is dgnotéd as (Gé)e and calcﬁlated for sampling at Nyquist-rate.
Using equation (III.1.2.21), letting N = 2BT and recognizing that Rq (i) = 0

. z
for i # 0 we find

2 1

(GW()‘: = BT RqZ(O) (III.4.1.4)
The autocorrelétion function Rq (0) is given.by
Z .
R (0) = [R 2(0)] | (I11.4.1.5)
q, Ay e

where [Rq 2 (0)]e is found multiplying out equation (III.2.5.5)
X

IR, 201, = (1-2erfe(®)? + 4” (1-2erfe(P))erfe(p) + 4c” erfe’(P)

X
(III.4.1.6)
and deleting the least significant term yields
2 2 2 2, . |
[Rq (0)]e = 4" [(1-2erfc(P))erfc(P) + kerfc™(P)], (111.4.1.7)

X
Equation (III.4.1.8) is obtained after substitution of (III.4.1.7) into

(III.4.1.4) as
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(cé)e = i%f- 6K%@erfc(P)(l—2erfc(P)) + KZ erfcz(P)} - (I1I.4.1.8)

. o .
The output signal-to-noise ratio, (ﬁ)o is then found using
R v

(II.2.3L as

— . EE - Ei - 23
S, =t =IBI __e 2 QUre Z)ve 2) 2 (I11.4.1.9)
v,e Jerfe(P)(1-2 erfe (P))+clerfel(P)

(§0 for the analog correlator isvs2 v2BT. The degradation factor, with
N7o o ‘

the lowest order term deleted, becomes then:

1
2

2 2 .
_ {erfc(P)(l—Zerfc(P))+K erfc (P)}
[D,, (2], =7 5 = 5 (II1.4.1.10)

_F k. _P
e 2 (2(1l-e 2)4ke

Deleting the least significant products leaves only those in *k and
iKz, i.e., the averager has to handle only four different products instead
of 6 for the usual 4x4 -level correlator.

F%gure (II .4.1.1) shows [D4X4(2)]e versus the deqision level,
P, for different values of the stepwidth, k, as parameter. TFor comparison,
D4x4(2) for the fegular 4x4 level correlatof is plotted in the same
'figure._ [D4x4(2)]e ét the optimum decision_level is about 6.97% Higher
than D4x4(2), which is a small price to pay for the advantage of having

four instead of 6 different products of q, to be entered into the averager.

(b) 5x5 level correlator yielding 4 '"products"

The function f(ai, Pi) for a 5-level quantizer was found in

equation (III1.2.4.1) as

N 2

_ P2
2

2
1
f(ai, Pi) =e 2

+ (k - De (111.4.1.11)
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and the expected value of w is given by (III.1.2.14)

. P2 p2 p? p? p 2
- 92 o _-1 -2, .2 _ 1 _2
W= s (e 2 -e 2) 4+ 2ke 2 (e 2 -e¢ 2)
) 2"1?2
+ ke "2 ) (I11.4.1.12)
after deleting terms in *1 we obtéin
p, 2 p.2 p 2 p, 2
O B B B I
v, =2 s ke 2 (2”2 -2 ) +xe 2 ] (III.4.1.13)

Assuming sampling at Nyquist-rate, the variance (cwz)e for the least
significant terms deleted can be obtained using (I11.4.1.4) and (III.4.1.5)

where [R.q (O)]e is found by multiplying out equation (II1.2.2.4) as:
x

sz(m = 41t egfcz(Pz) + 2K2erfc(P2)(erfc(Pl) - erfe(p,)) + (erfe(p,)

- erfc(Pz))z] (111.4.1.14)

and deleting the least significant term.

. 2 .
The variance, O, o » 18 then obtained as

?

2
Ow,ez = /%%f (Kzerfcz(?z) + 2 erfc(Pz)(erfc(Pl) - erfc(Pz)))

(I11.4.1.15)
Therefore, the degradation factor [D5>-<5(2)]e is given using (II.2.3) and

(II1.1.6.1)

1

szerfcz(Pz) + 2 erfc(Pz)(erfc(Pl) - erfc(Pz))g2

[D5X5(2)]e =T (111-4.1.16)

2 2 2 2
S N S 3
e 2 [2(e 2 ~-e 2)+xe 2]

The 5%5 level correlator with the least'significant term deleted has also

4 different products (#x and th) to handle.
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From Figure (III1.4.1.2) we see that D5x5

(2) at optimized decision levels, but, compared with the 4x4 level

(2)e is 2.767% higher than
correlator, still 2.467% lower than [D4x4(2)]e’ which alsoc has 4 different
values of the quantizer-products, q,- The pfices we pay for this lower

degradation are an increase in complexity of both the quantizers and the

"multiplier".

I1T1.4.2. Overquantized 3-Product-Correlator

Under the general assumption stated in Chapter II we consider a
sampled correlator with two 5-level quantizers as shown in Figure III.2.4.1.

Seven producfs qqu are excited from the multiplier:

2
-, ek, =1, 0, 1, k, 4D
yx(1) oy y(@)
5-level 5-level
quant. | quant.
!
Product-
merger
I
1< .
2q_ (1)
‘Lw

Fig., I1II.4.2.1 Correlator with product-merger
Using the product-mergetr shown in Figure III.4.2.1.
The logic scheme of this product merger is shown in Fig. IIT.4.2.2 and
probability chart as in Figure III.4.2.3, the signal qz(i) retains only

the three products -1, 0 and +1.
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Fig. I1I.4.2.2 Logic Scheme of Product merger
y

|

A
Pr(4) G ;;2// Pr (1)
%7
Z LI Gl /e
LA
Gt |
Pr(3) LA Pr(2)
g

~

Fig. III1.4.2.3 Probability chart of product merger

The signal q, equals O if the signal-pair (x,y) is in the shaded area,
equals +1 if (x,y) are in the area (1) or (3) and equals -1 if (x,y) are
in (2) or (4). '

Therefore the expected value of the output, w, is

w=gq_ = Pr(l) +Pr(3) - Pr(2) - Pr(4) (I11.4.2.1)

According to the assumptions made in Chapter III.1.1, the Gaussian input-

signal s(t) can be replaced by a d-c signal s(t) = S, and since the

56
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signals x and y are statistically independent, their probability density -

function is

pxy(x,y) - pX(X? ) py(y) (I11.4.2.2)
where
1 - 2
p.(x) = e 2 (x-s.) : (I111.4.2.3)
* ra © - | :

and similarlyfor py(y) using the probability chart of Figure III.4.2.3,

the probabilities of finding (x,y) in area (1) is

zoore [P B |
Pr(1) =J' l p, (x) p_(y) dx dy —f f p, (x) p_(y)dx dy
— _ y _ _p X y
A PP YT
P
- [fn p (0 axl® - 72 s
Pl | | Pl ‘
= [erfe(P, - s )]2 - [erfc(P - s ) - erfe(P, - s )]2
1 o : 1 o] 2 o
= erfc(P2 - ?o) [2erfc(Pl f so) - erfc(P2 - so)] (I11.4.2.4)
Similarly

Pr(3) = erfc(P2 + so)[2 erfc(Pl + so) - erfc(Pl + so)]

(II1.4.2.5)

For area (2) we have _
P - P.

1 2 ! ,
Pr(2) =j: p, (%) dx j p;),(y)dy - Pf p, (x)dx -i! 'Py(y)dy_'
1 B 1 . 2

= erfc(Pl—so)erfc(P2+so)+erfc(P2~so)erfc(Pl+so)—erfc(P2+so)
grfc(Pz—so) (I11.4.2.6)
and exactly the same result is obtained for Pr(4)

Pr(4) = Pr(2) (111.4.2.7)
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Since so<<l, the error-functions can be linearized using the first two

terms of their Taylor-series around s, = 0

2 2 2
S R S
Pr(l) + Pr(3) = 2 erfc(Pz)(Z,erfc(Pl) - erfc(PZ)) + }2 e 2 (2 2 -e 2 )
(111.4.2.8)
2 2 2
o2 _fr R h
Pr(2) + Pr(4) = 2 erfe(P,) (2 erfe(r)) - erfc(P)) + ——e 2 (2e 2 _ 2y
(I11.4,2.9)
Therefore, PZ P 2 P 2
_ 9 9 .. 2 2 -
w=-s e 2 (2 e 2 -e 2 ) . (I11.4.2.10)

The variance Oé is obtained from the general equation (III.1.2.1). Con-

sidering sampling at Nyquist-~rate, the autocorrelation function R_ (i)

, 'z,
differs from zero only at (i=0), and, using N = 2BT, Gé is found as
R (0) _
2oz (II1.4.2.11)
w 2BT :
Since qz2 has only the values 0 or 1,
2
R (0).=g¢q
qz z
= Pr(qz = 1) + Pr(qz = =1) (I111.4.2.12)

Since we consider noise inputs only for the evaluatipn of oé, and since

the signals x and y are statistically independent. Pr(q, = 1) and Pr(qz = -1)
therefore can be obtained by putting (s0 = 0) in the equations (III.4.2.4)

to (11T.4.2.7). |

Therefore,

(I111.4.2.13)

Pr(qZ 1) = [Pr(l) + Pr(3)](So

]

Pr(qz -1) = [Pr(2) + Pr(4)](s -0) © (I11.4.2.14)
. . o



and:

2 2 ' ’
Pr(g,” = 1) = q," = [P, + P, + P, + P, ]

2 3 (so=0)

+ 4 erfc(Pz)(Z erfc(Pl) - erfc(Pz)) (I11.4.2.15)
Using equation (III.4,2.11), the variance ng is then found as

2 2 .
Loy = gf-erfc(Pz)\Z erfc(Pl) - erfcﬂPz)) (II1.4.2.16)

We denote by [D5X5(2)]3 the degradation factor for this correlator, where

q, values have been merged to reduce them to three different values.

1
BT s © (erfe(,)(2 erfe(P)) - erfe(p,)))’
D, (2] = —=——=1 5 5 5 (I11.4.2.17)
X w
G P P P
Ty 2 1 _2
: e 2(2e 2 -e 2)

Figure IIT.4.2.4 is a plot of this degradation factor versus Pl with the

decision level P2 optimized.

ITI.4.3 3-Level Quantization After Analog Multiplication

We now assume that in the correlator described in Chapter II
the signals x(t) and y(t) are sampled but not otherwise processed before
multiplication, but that the resulting products z(i) are then quantized

into three levels as shown in Figure IT1I1.4.3.1

Tx(t) IY(t)

3-level °
quant.

1 9ati)
l N
3gg:q2m
{

Fig. 1IT.4.3.1 Quantization after multiplication

w
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This arrangement is not very practical, but is considered as a limiting
case of the process described in proceeding subsections, where we have
“overquantization”vwith subsequent "merging' of products.
The expected value of w is easily found.as

w=1gq_ =Pr(z3z?P) - Pr(z s -P) © (IIL.4.3.1)
Signals x and y have normal distribution, variance equal to unity, and
normalized correlation coefficient

r=-=s (I11.4.3.2)

Their joint probability-density is given by

- ———j;—z-(xz—Z s 2 xy + yz)
1 2(1-s ) ©
e (o)

2nv1—304 ' (I1I.4.3.3)

Pyy (55¥) =
Then

o< [*¢] ..P_
o -
Pr(z 3 P) ‘=f J P, (x,y) dx dy +j jx P, (x,y) dx dy
or ¥ o ) Y
X .

0
= Z-I Jm pxy(x,y) dx dy
s
x

2 (o3 —?2'(—— ;{—_SO X E .
a\/% e erfc(—~—ffz¢i;9‘dx _ .‘:f (I11.4.3.4)

Using the first two terms of a Taylor—series around (s0 = 0), we obtain

‘ o x 2 » 1,2 P2
7 ) P So -7 G0 ‘
Pr{z = p) Q\/: e erfe(=)dx + — _j~xe dx (II1I.4.3.5)
L x T

and - P
X

o —
Pr(z < -P) = ‘uf .J; pxy(x,y)dx dy + _f ‘j- pxy(x,y)dx dy
. -0 e 0 ~00
X .
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o [es)
2 f j PXY(X,Y) dx dy
2 JF
X

0 2 P 2 ,
5 X " + sO X
;\[%‘ e 2 erfe(——) dx . (I1IL.4.3.6)
0 ’ Vl—-so4 ‘ '
2 2 ’
© _x s _1
z /zf e 2 erfc(ﬁ)dx - fxe 2 (x2+(£)2)dx
T X b X
0
0]
(I11.4.3.7)
Therefore, -
_ 28t 0 -t B
W= Jf xe dx (II1.4.3.8)
T
0
The variance sz is found using (II1.1.2.24)
9 1 KBT~1 i
o e 122 (U-gp R (1) +R (O]
i=1 z z
The autocorrelation function
qu(T) = qz(t)qz(t-h;) (ITI.4.3.9)
can be found as follows:
Let u(t) = z(t+7) _ : (I11.4.3.10)
Then
qz(t) qz(t+T) = 1 if wuwz 2 P
= -1 if wuz g -P.
= 0 4if &P < uz < P ‘ (I11.4.3.11)
Therefore,
Rq (t) = Pr(uz > P) - Pr(uz g -

P) (I11.4.3.12)
Z .

Considering sampling at Nyquist—raté, we find that
Y2 - 1, 2

(III.4.3.13)



The squared signal, qzz, has the values

+ 1 with Prob Pr(|xy| > P)
0 with Prob Pr(|xy| < P),
Therefore,

Pr(

x7| 2 P) = Pr(xy > P) + Pr(xy < -P) (I11.4.3.14)
The probabilities Pr(xy 2 P) and Pr(xy < -P) can be found by putting s, = 0

in (III.4.3.4) and (IIL.4.3.6) as

2
X
2 2 P ’
Pr(xy = P) = [= e erfe(=) dx (III.4.3.15)
L x
and
Zi_
2 P
Pr(xy < -P) “WJF-J( erfc (;) dx (I11.4.3.16)
Therefore, from (III.4.3.13),
oo Z;. :
2 P
R (0) = 2\/: JFe erfc(;) dx (I11.4.3.17)

and using (IIT.1,2.22) for N = 2BT - 2

X 1
2

L [T el
% = 7BT §%J§'O e erfc(x) dx}

Let [Da(l)]3 be the degradation factor of the analog correlator with three

(III.4.3.18)

level quantization after multiplication of the signals x and y. Then, for

sampling at Nyquist rate,

2 1
3 e 2erfc(-—)dx)
[Da(z)], = /563)4 0 | (III.4.3.19)
- 3G+
xe dx
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[Da(Z)]3 is plotted in Figure (I11.4.3.2) as a function of the decision level

7

P.
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Sampling rate K = 2
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Figure III.4.3.2 Degradation factor versus decision level P
"~ 3-level quantizer after "multiplier"
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I1T. 4.4 Conclusions

Figure (III.4.4.1) combines the results on correlators using three
values of the products, q, which are to be averaged. It shows degradation
factors, D, plotted against decision level, P, in three cases

(1) for the regular 3x3 level correlator, employing no
overquantizing" of the signals.

(2) for the 5%5 level correlator where products are merged
to three values as described in section (III.4.2),

and '

(3) for the correlator studied in section (III1.4.3), which uses an

infinite number of levels before quantization and reduces
the possible number of products to three afterwards.

It is seen that some improvement of degradation factor can result
from "overquantization', but that this is limited to about 4%. At
optimum decision levels, the degradation for case (2) is 47 less than that of

the regular 3x3 level correlator, (l).
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IV. SIMULATION WITH RANDOM NUMBERS

The simulation is a software model of the actual correlator oper-—
ating under the assumptions stated in II.l. and has two main purposes:
(a) - To verify the theoretical results found in III.2.

(b) To evaluate the degradation factor for complicated quantizers
where a theoretical computation of D would be too difficult.

The assumption s, << 1 would make it necessary, as for a real radiometer,
to correlate over extremely long intervals of time. A direct simulation of
the whole system is therefore impractical. - Since the expected value of w
is relatively easy to compute and does not depend on the sampling-rate, we
restrict ourselves to a simulation to determine the variance,_<?W2. Accor-
ding to our original theoretical assumptions we neglect again the signal
s(t) and consider only the two independent Gaussian white noise sources as
inputs.

Our noise-samples are generated by a subroutine which produces
random numbers with normal distribution, &hich is available on the IBM—360.

14 '

It was found that 27 = (16384) samples are needed in order to determine

Gw with sufficient accuracy.

IV. 1. Creation of Correlated . Samples

The random numbers generated by the computer program can repre-
sent samples of band-limited Gaussian noise taken at the Nyquist rate 2B.

For some calculations, we need to simulate samples taken at a

higher rate, KB, where K > 2. " Such numbers will show some auto-correlatiom.

They were generated as illustrated in Figure IV.1.1.
Part (a) of that figure shows the situation to be simulated; a

noise source of bandwidth B is to be sampled at rate KB, where K > 2,
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' | £ = KB
s 3

Variance = 1

AS;(f)

b) LP-Filter
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_ s | % d
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Fast—-Fourier-Transform

N / . \\

Random~-

z =1, £<B

number- N N > > o~
e) Q/: 7 FFT TRo, 08 | TR R

generator L =

' Variance = 3
Variance = 1 '

Figure IV,1.1 Generation of correlated noise samples
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Part (b) shows an equivalent situation, whefe the noise source
is thought of as having initially a wider bandwidth B' = %-B, and the sig?
nal is then reduced to bandwidth B by an ideél low-pass filter. Note that
the average power of the hypothetical source x'(t), should be (B'/B) times
that of the real source, x(t).

Part (c) is equivalent to (b). Here a sampling switch at rate
2B' is inserted, with thevsamples passed through an ideal filter of band-
width B', which allows the signal to be recovered complétely.

Of course, a filter of bandwidth B' preceding one of lesser
bandwidth, B, is redundant and can be removed, as is shown in part (4).

Finally, part (e) shows how the situation shown‘in (d) is simu-
lated. Random numbers with Qaussian distribution are generated to repre-
sent samples of the hypothetical signal, x'(t) at intervals (E%TD. They
are multipiied byﬂJE?glto give them the required variance. Band-limiting
is achieved by taking a Fast Fourier transform of a sequence of N = KBT
such samples, rejecting components above frequency B, and performing an

inverse Fourier transform on the remainder to recover the required time-

samples.

IV. 2. Simulation of the Variance

Two independent sets of noise samples n(i) are used as inputs
on the x-and y-channel, as shown in Figure IV.2.1. The samples in one set
are‘correiated to represent samplesvof a bandlimited, white noisevas dis-
cussed in IV.1. “The samples for the x~-channel are called x{(1) «....x(NM)

and for the y~-channel y(1) ....y(NM).
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Xi1} ... X(NM) Y. Yinm
fx() | 1y(5)
qx(l) = a; if Piéx(1)<Pi+1 qy(i) = a; if PiSY(i)<Pi+1.
= -a, if —Pi+l,<x(i)<—Pi = —ai’if -Pi+15y(i)<-Pi
| q, @) . . q, (1)
fx\
\(qz 1)
N
1
w(k)quz(:)
v wik)
2_1
W=y

M
)

W k)
k=xt
¥ 2
Figure IV.2.1 Simulation model of a quantiied; sampled correlator

The expected value of w is zero since x and y are statistically

independent, zero-mean samples and the quantizers are symmetric. Therefore

2
the variance is equal to the expected value of w2 and, denoting W as the

average over M values of wz, the expected value of Wz,‘is found as
W = w. = @G v (1v.2.1)

We are interested in qhy, the standard deviation of Wz,.

' 4 2.2 | |
G w2) Woo- (W) (IV.2.2)

. . 2 : : . X
in order to estimate the accuracy of<§§ ‘as found by the simulation method.

The products (i), are zero-mean random numbers with a non-Gaussian pro-
> g

bability-density distribution. In fact, pq((z) is a set of Dirac delta
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functions symmetrical about q, = 0. However, the central limit theorem
states that the probability-density function of the sum of a large number
of random variables with arbitrary probability-density functions tends to
become Gaussian in the central region. Applying this to our case, we see
that w(k) has a normal probability—deﬁsify function in the central region,
assuming that N is large enough.

The expected value of w4 is given by

whoe 2 2 : w2 (1) w2 (3). (1V.2.3)
M© i=1  j=1
For 1 = j we get
vEE) wh(g) = . 3gw4 (see L, pg. 148) (IV.2.4)
and for i # j we get
@) i) = v i) = @2 (1V.2.5)

where the values of w2 are assumed to be independent.

Therefore,

— M — M M — 2
w4 = ~%‘ hX w4 + *%-2 )} z (w‘)
M i=1 M i=1 j=i+l -
S (:?)2 C(1V.2.6)
v v 2.
_ 2 2 _ 1 4 M1 4 4
=q (W7 =y36, *t s, ~sy
=24 : ‘ |
=4S, - | (1v.2.7)

Therefore the standard deviation of w2 is obtained as

»
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T2 | -
& w?y '\ng (1V.2.8)

IV.3 Results of Simulation Runs

In chapter III it was seen that the degradation factor, D, is
proportional tq the standard deviation,»ow, of the output of the quantized
correlator.

Specifically it follows from equations III.1.2, III.1.2.14 and

'ITI.1.6.1 that

D=

v2BT
JZL_ WY x o (IV.3.1)
£ 185005

A series of M simulation runs, each using N = KBT samples in each channel,

. 2 2 2
gives a result W whose expected value, W, equals O, Hence we can re-

write equation (IV.3.1) in terms of N and 2 as

2 ' —
2 1N -2 2
DT =7 [fx(ai,Pi). fy(ai’Pi)] W (Iv.3.2)

' 2
For any given correlator, all terms on ‘the right hand side except W can

? .
be easily calculated. The quantity W™ is found from the M simulation runs
with an uncertainty given by equation (IV.2.8) as

G(WZ)
w2

(Iv.3.3)

=N

. . , 2 . :
Hence the simulation runs can give us a value of D" with the same relative

uncertainty

Il

N
l
=N

(Iv.3.4)

or a value of D with uncertainty -



e= 2 =% (IV.3.5)

To get an accurate value of D then requiries a very large number,
M, of simulétion runs. Each run also requires a large number, N, of sam-
ples if it is to represent a practical application where BT >> 1. It was
found that N = 180 is a reasonable number for this purpose. The combina-
tion requires NM samples in each channel and this can soon produce exorbi-
tant computing times. For the actual computer runs, 214 = 16,384 samples
were used in each channel. 1If these are ﬁband—limited" samples, it requires
about 32 sec of CPU time in the IBM 360 computer to generate the 2 x 214
samples and a furfher 8 seconds to execute the simulation program, for a
total of 40 seconds.

If the samples are then regarded as batches of N = 180 samples

‘each, the number of batches will be

16,384

180 = 91 (Iv.3.6)

resulting in an uncertainty in the value of D given by equation (IV.3.5)

as

£ = —— = 7.4% - (1V.3.7)

v2x91

This is too large an error for practical purposes. Reducing it by a fac-
tor of four requires an increase by a factor of 16 in the number of samples

and hence in the computing timé, which would increase to about 649 seconds.

Another more efficient way, which has proved very useful, is des- .

cribed here:

The samples x; and Xj are correlated; with normalized auto correlation co-

efficient, f(i—j), given by Xlxj = x2 SJ(i—j) = x2 sa(zﬂéi:ll-) (Iv.3.8)
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Therefore |f(i—j)ls 557%:53-_ (1v.3.9)

Therefore, taking two samples X and Xj far enough apart, their correlation
coefficient is so small that the samples can be considered uncorrelated
(and independent, since they‘are Gaussian). We now rotate the samples on
one channel k steps and repeat the process, obtaining again 91 independent
reéults of w2. We can repeat this rotation 16384:k times énd.get there-
fore 91(16384:k) results, wf which can be considered to be independent, as-
suming that k is large enough.

For our program, k = 1000 was used which results in a correlation

coefficient for Xin

. K '
|C(i-3) | < 30607 (IV.3.10)

The highest sampling rate used was W = 16, and even in this case, the cor-
relation coefficient is less than 2.5 x 10—3, which is small enough to be
neglected. With this method we obtain M = 1456 independent values of w2

and from equation (IV.3.5),

£ -t - 1.84% (Iv.3.11)

V2x1456
Therefore the error of D is 1.84%, which is more tolerable.
This second way results in the same error & as that taking 16

times more samples, but only the execution part of the program runs longer:

Production of 2*214 bandlimited samples: 32 sec
Execution of the simulation program: » 120 sec

Total: . ~ 152 sec CPU-time
The total CPU-time needed is 152 sec, amounting to about $23, at a charge

of $560/hr. We see therefore that this second scheme is roughly four times

7.4



less expensive than taking 16 times more samples.

Figure (IV.3.1) shows a comparison of calculated and simulated
results for the degradation factor, D, for various normalized sampling
rates, K..

The s6lid lines are the calculated results for five different
quantized correlators.

The shaded areas show theidomain of D within 1.84% of the calcu-
lated values for the 2x2 and 2x3 and 3x3 level correlators. The error
domains for the other two correlators are not drawn to avoid confusion;

Tﬁe dots are the results obtained from simulation.

It is seen that the simulation runs verify the calcuiated results
to the anticipated accuracy. The same simulation technique could therefore
be relied on to provide approximate degradation factors for other schemes

where calculations are impractical.
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V. RESULTS OF MORE THEORETICAL INTEREST

V.1l Optimization of Decision-Levels

~ In chapter III.1 we have stated that the decision levels Pi of

a quantized correlator can be optimized. If in a-3x3 level correlator P is
allowed to go to zero, we get a 2%X2 level correlato? with a higher degra-
dation factor than for 3%3 levels for any K as shown in Figure (III.Z.l);
As P goes to infinity, q% and qy tend to zero for all values of x and y gnd
the correlator gives no information about the signal s(t). Therefore D goes
to infinity. It follows that POpt must exist. Plotting D versus P as in
Figure V.1.1 , we see that in every case D(P) has gnly one Popt.

The 2x3, 3%3 and 4%4 level correlator have only oﬁe parameter,
P, to optimize. For higher level correlators several parameters Pi have
to be simultaneously optimized, which leads to a nonlinear optimization.

problem of multiple parameters. One method of solving this problem was

found for the 3x5 level correlator and is discussed in section V.1.4.

V.1.1 Optimum Decision. Level for the 3%3 Level Correlator

The degradation factor D (P) is a concave function for P in

3x3

(0 < P < ») or equivalently,

>0 (v.1.1.1)

Therefore a minimum degradation factor for an optimum value of Pi, denoted

by Popt gccurs for

dp

@/ Po = 0. (v.1.1.2)

pt
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Figure V. 1.1 Degradation factor versus decision level P for a 3x3 level
correlator with sampling rate as a parameter

78



79

Using (II1.1.2) in (III.1.6.1) we find

= |
D = V28T 502 i (V.1.1.3)
w
where only w2 and w are functions of P.
‘We define the characteristic function f(P) as
a Vi
£1®) = 5 G ) (V.1.1.4)
where »
f(P)IP = 0 T (v.1.1.5)
opt
or, equivalently,
b |
dpP =3 dp (v.1.1.6)
v Popt w2 Popt

The expected value of w of a 3X3—leVel correlator was found in (I11.2.2.2).

Therefore,

P = -2p | (V.1.1.7)

w

The variance sz was found in (I1I1.1.2.21), where the autocorrelation func-
tion

R (i) = R 2@), | (V.1.1.8)

4z Ix

since both quantizers are equal. Rq (i) was found in (II1.2.2.3) and
X

(III.2.2.4). Taking the derivative of w2,
-5 aR- fi dR o
5 L @ MORE

N-1
dw _ 2 _i . X X
T {2 551 (1 N) qu(l) —5 + qu(o) — (v.1.1u9)



and using Leibniz' rule

[e

4 A Af(R,x) o | o
fPf(P,x) dx—.fP S« £(P,P) (v.1.1.10)

to calculate the derivative of Rq (1),

dr (1) o2 X )
X = - g. - Ty % 1-§, _ l+)’a‘)‘
= 2{;1 [e” 2 erfe (B[feD) -erfe (2 /T:Eﬁz)] (V.1.1.11)
and
drR (o) p2
X - g- -
ar - e 2 (v.1.1.12)

The characteristic function £(P), defined in (V.1.1.4), is then found as

a2
dp
=7

w

£(P) 4+ 4P, (v.1.1.13)

Equations (I1I.1.2.21), (V.1.1.3) and (V.1.1.9) substituted into (V.1.1.13)

yields

G- R @ %% +R () _*x
4y dap 9y dp

- i 2 2
(- 3 R_“(1) + R “(o0)
=1 N Tay 9y (V.1.1.14)

1 dR (i) dR (o) }

N
SN

N-
z
i

=

£T(®) = + 4P

=
2z

i
This nonlinear equation was solved numerically using the subroutine RIWI
is *SSP (IBM 360).

Figure (V.1.1.1) shows Popt versus the sampling-rate K for the

3x3 level correlator. Popt increases about 16% as K grows from 2 to 12.
The fastest increase in POpt Ecéurs between K = 3 and K = 5. The variation
of optimum decision level with sampling rate is an interesting and unex-

pected phenomenon, and there seems to be no obvious qualitative explanation

for it.
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V.1.2 Optimum Decision Level for the 2x3 Level Correlator

The expected value of w was found in (III.2.3.1).

Therefore, _
dw
— (v.1.2.1)
w
The variance(;% was found in (III.1.2.21) where
R (i) =R (i) -R_ (i V.1.2.2
q() q() q() ( )

z X y

Rq (i) is the autocorrelation function of the 3-level quantized signal and
x

given in (I11.2.2.3) and (I1I.2.2.4) for 1 = iTS, where the derivative of

R (i) with respect to P was found in (V.1.1.11) and (V.1.1.12).

X
The autocorrelation function for the 2 — level quantized signal,

Rq (i), was found in (II1I.2.1.8) to (III.2.1.10).
Since only R (i) is a function of P, the derivative of w with

y
X
respect to P becomes
d;z N N-1 . | dRqX(l) dqu(o)
P - N 2 Z.I_ (1- E\]-) Rq (i) T + Rq (o) - (v.1.2.3)
i=1 y y
The function f(P) was defined in (V.1.1.4).
Therefore, ' d;E
ap
£f(P) = + 2P _ - (v.1.2.48)
;FT
and using (111.1.2.21), (V.1.2.2) and (V.1.2.3) in (V.1.2.4) we obtain
-1 o dRqX(i) dRqX(o)
2 Zi=l (1- ’I\—I) Rq (i) -——('ﬁ')— + Rq (o) —_d_P_—
£(P) = <5 J. J +2 P
i . -~
(1 N) Rq (i) Rq €. A'-'.hqu(O) Rq (o)
' y (V.1:2.5)

2
X Y

e ™M=
jn
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Again the solution £(P) = 0 was found for different values of the sampling

rate K and plotted in Figure V.1.2.1.

V.1.3 4%x4 Level Correlator

The expected value of w was found in- (ITII.2.5.2). Therefore,

dw
@ - -p =i (Vi1.3.1)
; X
e2 + (¥-1)
Using (III.1.2.21) with R (i) = R (i)2 yields
q, q,
d;:_ 2 N1 i . dqu(l) dqu(O)
- 5 12 izzjl (1- ) qu(l) - qu(o) ——— 1 (V.1.3.2)

where the autocorrelation function Rq (i) is given by (III.2.5.3) and

X
(I11.2.5.5) for T=1i TS.
Taking derivatives, we obtain
dRqX(l) . EE. : '
—— =25 2 1-P(i) 1+9(1)
i - - ==L )y A7) L),
ap T e (k-1) {(K 1) [erfe (2. ,l+§’§(i)) erfe(P, /1_§,(i)
_ P
+ 1 - 2 erfe G*——~*~—0} _ (v.1.3.3)
| 1-§(1) -
and _
B, . 2
dRq (6) P
X _ 2 -2
e (- 1) /_7F e (V.1.3.4)
The function f(P), defined in (V.1.4.1), becomes then
N-1 5 dR (1) ~ dR  (0)
> (- ¥ R, @D b  + R, (0 9
£y = 2 = s X _ dp x dp v op —Xo1 -
2 S a-Hr %@ +r %0 K-l + e” 2
i=1 _ N Ay Ay
The equation f(P)/P = 0 was solved and plotted versus the sampling-rate

opt
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. Figure V.1.2.1 Optimized decision level Popt versus sampling rate K for a 2x3 level correlator
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K in Figure (V.1.3.1).

V.1l.4 3x5 Level Correlator

The quantizers for the x- and y-channel are shown in the figures

(V.1.4.1) and (V.1.4.2):

A :
d qy
K
1 - - 1 i
_p BBy |
X ! —y
P i P, P ’
-1 - -1 1 "2
~K
Figure V.1.4.1 3-level quantizer Figure V.1.4.2 5-level quantizer

In this case, the decision levels P, Pl and P2 have to be optimized sim-~

ultanously. It can be shown that D(P, P P2) is analytic for (0 P<w 3

l’

D .
0< 1l<oo ; Plg P2<oo ) and that

5 > 0 (v.1.4.1)

Defining P as an array of the wvariables P, P, and P,, it can be shown that

1 2
Popt = (Popt’ Pl opt? P2 Opt) | (v.1.4.2)
exists such that
dD =, B =0, 4D =0 (V.1.4.3)
dp P dPllP . dP2 P
opt ) opt opt
From V.l.4.1 it follows that there is only one min. at Popt' We define
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Figure V,13.1 Optimized decision level Popt versus sampling rate K for a 4x4 level correlator
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the partial derivatives of D with respect to P, P, and P, as

1 2

£ @ =f,(,p,P) = 2 (V.1.4.4)
1 1’71 2 dP e

£ =f.(,p,p) =3 (V.1.4.5)
2 2 71 T2 dPl T
e N . dp

where ?4 has to be found such that
opt
fl(Popt) = fZ(Popt) = f3(Popt) = 0. (v.1.4.7)

We consider the special case first, where we samble at Nyquist-
rate. This case can easily be calculated, since Popt does not change much

for higher sampling-rates. The solutipn.ﬁg at Nyquist-rate can be used

pt

as the initial vector for an iterative method, which is discussed later on

in this chapter. The degradation factor at Nyquist-rate (equation III.1.6.3)

can be expressed as a product of 2 functions which depends only on the x-

and y-channel respectively:

Rq (o) Rq (o)
T Y Px Ly
D3x5(2) 7 T (a. 7)) (V.1.4.8)
: x- 4i’71d fy(ai,Pi)

A

As Rq (o) is not a function of Pl and P2 and Rq (o) does not depend on P,

X y

we see that

g @, . (V.1.4.9)
£, = £,(P, P) : (V.1.4.10)
and £, = £,(0,, P,) . | (v.1.4.11)

and therefore that both channels can be optimized separately. The optimi-
zation with respect to P has already been done for the 3%3-level correlator
in chapter V.1.1 and Popt was found to be

Popt. = 0.612.

87



Evaluating (V.1.4.5) and (V.1.4.6) we obtain

, 9 dRq (o)
2 P
_x 2 ——
_ e 2 4+ xk-1)e 2 1
£,(P), B,) =P + 72 O] (V.1.4.12)
2oy I
and 9 p 2 dRq (o)
Py 9 . AN
- - = ap |
: - e 2 + (K-1) e 2 2
fB(Pl’ P2) P2 + ‘ . > _ Rq o) . (V.1.4.13)
2 (K=1) e y
2
From (II1.2.4.4) we obtain
R, () = 2 (exfe(®) + (< - 1) erfe(P)). (V.1.4.14)
Yy .
Therefore, .
dRq (o) P 2
.y - |z __L
Jap T e 2 (V.1.4.15)
1
and 9
dR (o) 1P
L = - .g. KZ 1 | —a— 2
dP? = = (X°-1) e (V.1.4.16)

A necessary condition that f2(Pl, P2) and f3(Pl’ P2) hold simultaneously is
found dividing (V.1.4.12) by (V.1.4.13) as

dRq (o)
1.2 2 S AS—
1 5 (P

) ap
5 = (}-1) e 2 1 1
2

W (V.1.4.17)

_

szﬂ

Using (V.1.4.15) and (V.1.4.16) in (V.1.4.17), we obtain

(V.1.4.18)
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This simple relationship allows us to reduce the joint equations f2 =0

and f3 = 0 to one equation of one variable only. Solving the remaining

equation, we finally obtain

Pl opt = 0.422 and P2 opt = 1.266.
In the general case, where K > 2, fl, f2 and f3~are functions of all three
variables P, Pl and PZ' All three equations fl = 0, f2 = 0 and f3 =0

have to be solved simultaneously. However, it has been found that ?:pt

—_——

does not change much (only a few %) for K > 2. Therefore we can use Popt

at Nyquist-rate as a first approximation for an iterative method to solve
f.=f,=£f,=0. i
A gradient method has proved to be useful to find Popt(K):

Given the degradation factor as a function of P, P. and P2, we have to find

1
o = (P s

pt opt )

Pl opt’ P2 opt

such that the partial derivatives defined in (V.1.4.4) to (V.1.4.6) disap-
— A
pear for P = P .

Defining ?; as the optimum decision vector at Nyquist-rate, the

degradation factor in the mneighborhood of ?; is then

4

D(P - AP) D(PO) - £, AP - £, AP, - f3 AP, (V.1.4.19)

We choose AP = AP, = AP

1 2 h, the stepwidth we want to move im: the direction

of the gradient. The best value of h has to be found by trial and error.

If h is too large, the sequence P(o)'P(l)/P(Z)!""' P(i) does not converge
to ﬁgpt' If h is too small, the convergence is slow.
We normalize A
s
h = (V.1.4.20)




and choose the desired accuracy

\

1

_ 2 2 2 -5
b3 _W/;l LR DA A < 10 (V.1.4.21)
A suitable stepwidth s was found as 0.65. For s = 1 no convergence occured

~and for s = 0.5 the convergence was too slow.

The iteration produces the sequence

— -— —— —

Fay ey for o Ta

where P can be close to P with any desired accuracy.
(n) opt

Starting from the initial array ?g, above sequence can be computed

using
Py = Pl-1y - fl(P(i—l)" Py Paeny) P (v.1.4..22)
i Pl(i_,l) ! fz(P(i—l)’ Pl Fagen) (V2429
2w T e T f3(P(i—l)m P1G-1)° .P2(1-1>) a (V2420
The results Popt’ P opt and P2 opt were computed and are plotted in Fig.

V.1.4.3 vs. the sampllng—rate K. All threg curves Popt )’ Pl opt (K)

and P2 opt (K) show the same characteristics, i.e. the PO ; increases by
1.65% to 1.8% between Nyquist-rate and rate K = 6. It can be seen that Po

found at Nyquist rate is a good approximation for any K >2.

V.2 Decompoéition into Single Channel Correlators

Under certain circumstances D can be expressed as the product of

two single-~channel factors, DX and Dy:

D= DX Dy . (v.2.1)

Dx and Dy'are the degradation factors of a correlator which has only one

quantizér in the x- and y-channel respectively, the other channel carrying



TNV

opt

12 4
Ll +

1.0 ¢

£ opt

_

} } 4 $ — t ¢ ' » K
2 4 6 8 10 12 14 y

Figure V.1.4.3 Optimized decision levels P, Pl and P2 versus

sampling rate K for a 3x5 level correlator
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analog signals.

We investigate in this section the circumstances under which such
decomposition is valid, and the errors that occur if the decomposition is
assumed to be always true.

It will be recalled that the degradation factor of a quantized

correlator depends on its output signal to noise ratio:

D = (V.2.2)

zl’so

Now it is shown in Appendix A2 that for small signals, W can always be

decomposed into an x-component and a y-component.

VS oq,=q.4, =4, 4, (V.2.3)

It remains to see whether it is possible to write o, in the same way.

1 . ) 2 2 ; .
For small signals and symmetrical quantizers, o, =W and, from equations

(I11.1.2.24) and (TI1I.1.2.21) , we can express this variance as

—3' i» N-1
W= Z (1-1i/N) R (i) « R (i) (V.2.4)
i=—(N-1) 4y qy
and since }im Rq (i) = lim Rq (i) = 0 (v.2.4)
i X 00 y

5 1 N-1

vt S R (i) R (i) - (V.2.5)
~(-1) Y% dy '

for large N can be expressed as a product of a function of Rq (i) and a
b
function R (i), only if
. q
y
. N-1 N-1
R (1Y R (3) =0 (V.2.6)
fe—(N-1) j=--1) . I 9y

i.e. if R (i) and R (i) are orthogonal.
: Q. a
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It can be seen that for any symmetric quantizer

sign (Rq ()= sign(f(r)) (v.2.7)
X

where 1 is the normalized autocorrelation function of the unpro-

cessed signal x(t).&,Rq (t) has the same zero~-crossings as f(r). Since
X
x(t) and y(t) have the same autocorrelation function,

N-1 . ) '

> -9 R @R (E) 20 (V.2.8)

i=1 qx qy

equality holds only if f(i) =0 for all 1 # 0, i.e. if the samples are

uncorrelated. For the bandlimited signal this is only the case if we sam-

ple of Nyquist-rate where

2

W= Rq (o) Rq (o) (v.2.9)

X y

2

Therefore D can be expressed as the product of 2 single channel degradation

factors only if we sample at Nyquist-rate.

V.2.1 Single Channel Correlation Factors and Decomposition Error

Define Dn*w(K) to be the "single-channel degradation factor', be-
ing the degradation factor to a correlator with an n-level quantizer in the
x—channel and no quantizer in the y-channel. The expected value of the

correlator output, w, is given by equations (IIT.1.2.3) and (III.1.5.4) as

w=s_ q (i) s (V.2.1.1)

and the expected value of w2 is obtained using equations (III.1.2.21),
(I11.1.2.36), (I1I1.1.2.37) and (III.1.5.7).

Using these equations in (II1.1.6.1) and (I1.2.3) we find
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Tl - i ﬁ . 271 }%
A= R Wrs (5D + R (@)

2 |
D (K) i/g 121 X = (V.2.1.2)

fx(ai’Pi)

For Nyquist-rate sampling we define

DX = anm (2). (v.2.1.3)

Using (V.2.1.2) for K = 2 we obtain
R o
1/q()

= _ X
b1 iy - v.2.1.4
X 1" 1

- Similarly, the single —-channel degradation factor for the y-channel con-
taining an m~level correlator, is

E./Rq (3)-

D, =D (D 3T FaE . (V.2.1.5)
vy oitTi

y

An  n m-level correlator, sampled at Nyquist-rate then has the degradation

R (o) R (o)
D (2)=DD=7\/qX %

L Xm X'y 2 fx(ai,Pi) fy(ai’Pi)

factor

(v.2.1.6)

"Equation (V.2.1.6) agrees with (III.1.6.3) forsampling at Nyquist-rate.

- We define a "decomposition error', gnm(K), as

D xy - DXD

__Xm vy IR L
Enm<1<) = D E (V.2.1.7)
) T Xm

This value measures the relative error made by decomposing the degradation
factor DnXm(K) into a product of two single channel degradation factors,
. . 1" . s 1" . . .
anM(K) Dqu£K). This "decomposition' error is plotted in Figure Vv .2.1.1
against the normalized sampling frequency, K.
There is no error at K=2. TFor higher values, the error soon

settles down to a constant value of={3%2. Decomposing the degradation

factor under these circumstances leBds to a small error, but is still
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useful as a first approximation.

V.3 Degradation for Strong Signals

In all previous calculations the signal power was assumed much
less thén the noise power. This is true for most cases of practical inter-
est. However, it seemed advisable to consider in at least one case how the
-degradation factor changes when the signal power is no longer small. This
is done for a 2 x 2 level correlator at infinite sampling rate, i.e. a
polarity cpincidence detector.

The following two assumptions, made for small signals, do not
hold for strong signals:

" (a) The Gaussian signal s(t) can be replaced by a d-c signal

(b) The variance o, can be computed in absence of the signal, s(t).

For arbitrary signals, s(t), the general definition of D, given
in equation (III.2.5) must be used. |

The degradation of a 2 x 2 level correlator for strong signals
has been treated by Cheng7, with the difference that he used on RC-network
for the integration. (His "degradation factor, r'", is the square
root of D‘defined in this work).

Fig. V.3.1 shows the blockvdiagram of a polarity-coincidence

correlator as used for strong signals.



97

snx(f) S, (D)
) i 48, (£) . g
¢
V() y (£
48 L
v — ———— y
t t
Ex( ) qy( )
Ix L -
Fane
1 Figure V.3.1
T 9, (t) dt ,
2x2 level correlator

¢

w for strong signals

We assume the signals s(t), p (t) and , (t) are bandlimited, statiscally
X v

v

independent, Gaussian, zero-mean signals, and have a flat power-density

spectrum within B.

Therefore, the normalized autocorrelation function f(r) is

given by

(0 By (D R ()
X S
f(T) = G 2 = ong = 082

V.3.1 Unquantized Correlator for Strong Signals

The expected value of w is found as

T

el e w - w
T x(t) y(t) Xy
o —
—_—— == — = 2
=n n +tn s+n s+ s
y y

Since Igét) andny (t) are assumed to be zero-mean,

N

(v.3.1)

(v.3.1.1)



The signals s(t), nx(t) and n (t) are assumed to be ergodic.
y

2 .
the expected value of w~ can be found as the time-average

T T
jf jf z(a) z(B)  do dB

(l—%) RZ(T) dt

7.
2

ar!

H|o

where the autocorrelation function of z(t),

RZ(T) z(t) z(t +71)

p < y X y

+s2(t) s2(t + 1) - 084

‘The expected value of sz(t) s2(t+r) was found in 1 as

2(0) sf(tt) = o t(2p% ().
Therefore,
_ 2 4 2 2,2
Rz(r) = p (1) (o,  + (o~ + 0o )
2
4 2 1+d
=0, P (1) ¢ )
o d
where
082
d =
» o 2 o 2
S n

Using equation (V.3.1.7) in (V.3.1.3) we finally obtain

-
T 2 ' 4
]f (1- Eﬁ p“(t) dt + o

[+]

2 a2 (1+d2)
v T s d2

(V.3.1.2)

Therefore

(V.3.1.3)

Rnﬂ(T) R (7) + Rn‘(r) Rk(r) + R (1) RS(T)

(V.3.1.4)

(v.3.1.5)

(v.3.1.6)

(v.3.1.7)

(v.3.1.8)

(V;3.l.9)

assuming the power density spectra of s(l),-nx(t) and ny(t) as which

bandlimited to B, we obtain

Pr) T Sa (ZHBT)“

(V.3.i.10)
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The standard deviation of w is defined as

o, Nw' - )’ - (V.3.1.11)

Therefore,

l

W/%? 82-v1+d Jﬁ(l——) 0 201 ar]? (v.3.1.12)

and using the definition (II.2.4)

o_2
s = 6, (2 =0, =[50 . f(l- 5 o2 arl?

w
(V.3.1.13)

’_l

assuming a large integration time T, we obtain, using (V.3.1.10)

T 2 ® 2 1
lim uf (l—%Q p (1) dt = JrSa (21B1) dt = Y (V.3.1.14)
) o

T
Therefore,

2
2-~1+d 1
(MDS) = —_— .3.1.
‘MD"analog r"s d ZBT (V.3.1.15)

. . . . sy e
For large input signal-to-noise ratio, as (ﬁ)i goes to infinity

(MDS)analog S BT - , (v.3.1.16)

is dindependent of d.

V.3.2 Application to a 2 X 2 Level Correlator

The two signals x(t) and y{(t) (see Figure V.3.l) have the joint
probability density

1

< 1 - —— 2 2
P (x,y) = —F—%—7% e 2 20 (xT-2mxytyT) (V.3.2.1)
Xy onf1- rZ’ 2 Zon (1-r")
where 9
oéf
r=4d-= -§~;—“—2 : (v.3.2.2)
: o + 0 ’ ,



The expected value of w is given by

. Using equation (II1.2.4) with R =

100

W = qqu = prxy(x,y) dXdy + %off (X,Y) dXdy
. [+] o
0 o - _
-1ffpxy(x,y) dxdy (V.3.2.3)
® .o :
Evaluating these integrals, we find
e 1 1 1-a°
I[ Py () dxdy = F - 5L arctg Viy- (V.3.2.4)
and
“r ' 1 1-d
Jrf“pxy(x{y) dxdy = E;-arctg 4 (v.3.2.5)
C o
Therefore,
' 2
w=1- %-arctg l:%— =2 arcsin 4. (vV.3.2.6)
The expected value of w2 is given by the time average
2 1 (" 2 2
= £ _ X
W Ry (TL g, (t)ae)” = T[(l ) Rq (1) dr (V.3.2.7)
‘and
(1) can be found as7
z
_ 4 . 2 . 2
Rq (v) = " [(arcsin p(7))" -~ (arcsin p(7)d)"] (V.3.2.8)
. ' .
Therefore,
r _ 1
_ 2 2 Ty . 2 . . 2 2
Oy - Jw (W) = 5 G Z(l.T) {(arcsinp (1)) (arcsin(p(t)d))“}dT)
(v.3.2.9)
The derivative of w with respect to 052 is given by
d -2
— W o= = 5 —5=% (v.3.2.10)
d(o_ ) .o )1+2(~—)
s S o
n
we find



MDS %'is——q/l + 2'(?-3-)2 & fT(l -5 {(axe sinp (1))2 -
» d on T ) T
1
(arc sin (p(1)- d))2} de)% (v.3.2.11)

Using the definition of the degradation factor stated in equation

(I1.2.5), the degradation factor of the strong signal correlator, denoted

by D (») is obtained as
$S9%9 _
MDS
D () =
SSZXZ (MDS)analog
T . ) 1
: j}l—%ﬂ [(arcsinp (1) - (arcsinp(t)-d)“]dr 2
1+d 2 -
e S
(1-d) (14d7) I(l - o (1) dt
(o}

(v.3.2.12)

For large T, using (V.3.1.5) and (V.3.2.11) in (II1.2.5) we find

(14 [ 2
D () = 2 > B J [(aresinp (1))~ -
) (1-d) (1+d”) 2 -
1
(arcsin p(r)d)ldr b 2 . (V.3.2.13)

Since p(t) = Sa (2#Bt) (equation V.3.1.10), DSS () 4is independent of B.

2x2
Bounds for D (@) were found by Cheng7:
ss
2x2

. 1
1+d _ . 2. _ =
a2 S Posyp (@)« "4 o - (arcsin 99} (v.3.2.14)
1+d 2%2 2 4

, (1-d) (1+4d")

The lower bound shows D > 1 for any 4 in [0,®), which is a very loose bound.

Using equation. (V.3.2.13) for small input signal-to-noise ratios

(d << 1), we obtain

[

D (m)-: 2 VB [ (arcsinp(T)sz]2
S8, .0 v Lo
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1
o0 —
[ f (arcsin Sa(X))2 dlx}2 (v.3.2.15)
(7}

2
m

Equation (V.3.2.15) agrees with the expression for () found in (III.2.

Dox2
1.13) which was evaluated to be

D,,,(®) = 1.253.

In Figure V.3.2.1 Do (») is plotted versus the input signal-to-noise
o 2%2

ratio (~§)2
e
n

We notice that D goes to infinity for high input signal-to-noise

ratios, which can be explained as follows:
o} .
In the limit, where (EE)Z goes to infinity, we find
n .

x(t) s(t)

and y (t) s(t)
so that x(t) and y(t) always have the same sign. Therefore q,= 1, so
that q, never changes and the output w has zero variance. In this limiting
case, the correlator gives no information about the signal s(t) and ob-
viously D (») goes to infinity, as the input signal-to-noise ratio goes
2%2
to infinity.
This is not true, however, if more than 2 quantizer levels are
taken, because even in the absence of noise the multiplier-output is a
function of the signal amplitude. The strong signal degradation factor
for higher level correlators has not been investigated, because the power
of signals investigated in radio astronomy is always far below the noise
power.
. s, 2 .
D stays virtually constant up to (—) 0.25, i.e. that our as-
. . a

sumption o, << 0o is valid for osz < 1/4 onz. This result was also found

by Yerbury12
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V1. OVERALL CONCLUSIONS
v Iﬁ designing a digital correlation spectrometer, various

possible logic schemes can be considered. Those employing fine quantization
with many digital levels deérade the measurements very little, but are costly
and complicated to instrument. Simple schemes employing coarse quantization
gegrade the éignal—toénoise ratio appreciably. A balance must be struck beéween
excessive complexityvand excessive degradation.

The results in this thesis help the designer make such a choice
by giving him the degradation factors for a variety of logic schemes, not
only for the Nyquist sampling rate but also for higher sampling rates.

In-the course of the calculations, some interesting theoretical
results were found, particularly concerning the variation of the optimum
decision levels with sampling rate, and the possibility of decomposing the
degradation factor into components.

The numerical results are of practical interest. TFor example,
it is shown that a 3-level x 3-level logic scheme sampling at 4 times
the bandwidth has a slightly lower deéradation than the 3-level x 5-level
scheme sampling at the Nyquist rate which is used by Whytelz. "Such a
3x3 level séheme is probably also easier to build.

The numerical results are expected to fill all foreseen needs.
As integrated circuit techﬁology advanceé, it becomes progressively more
- practical to use many-level multiplication and averaging, and the degrada-

tion due to sampling then becomes insignificant.
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APPENDIX Al

Proof that D '='1 for all K z 2 for theé Urnquantizeéd Correlator

Claim - An unquantized dual channel correlator which is sampled at Nyquist-
rate or faster has a constant degradation factor D = 1 for any sampling-

rate K. In particular we claim that

1 < o.2,2mi, 1 -
= i=_w3a ) =5 (A1.1)

Proof - We pass white Gaussain noise n(t) through 2 ideal low-pass filters.
The first filter has a bandwidth %-B, the second filter has a bandwidth B.

The output of the second filter nl(t), is sampled at a rate, KB, as shown

in Figure Al.1

fsf K8
N N : = N
Ny >— [ = E:] ! -
v i) __é% sl
2 2

Figure Al.1 White noise bandlimited in two lowpass filters
The function n'(t) can be completely reconstructed from its samples taken

1/KB apart using the relation

(o]

n'(t) = > a! Sa(r(KBt-i)) (Al.2).
i==c0

a; = n'(it) (A1.3)

r= ks . (AL.4)

(for reference see 2 pg. 49).

We assume the average power of the signal n'(t) to be 1, i.e.

KB
j 2 S (f)df =1 (A1.5)"
Jxg " .
2
or S (£) = = (AL.6)
_ , n KB '
for | . HIz

2
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It follows that

n' (0% = R (0) = 1 | (AL.7)
where the autocorrelation function of n'(t) is given by the Fourier transform

of S'(f)
n

R (1) =ff"1 51(£) = Sa(KBrr) (A1.8)

!

Sincé wevsample at a rate KB the Nyquist-rate for the bgndwidth KB/2,

the ai's are independent.

Now we process the signal n'(t) found in equation (Al.2) through the second
lowpass-filter. Tﬁe average signal power of n''(t) is proportional to the
bandwidth of the second filter, since n'(t) is white.

Therefore, B

o= [ = df =2

(A1.9)
B .

The signal n" (t) can be reconstructed from its samples taken 1/KB apart,

because n''(t) is bandlimited to B and sampled'at a rate K > 2,

Therefore,
2 1
" = T £ I
n''(t) L al ¥ Sa(2mB(t - 1 KB))
= ?: Z o' San(2Bt - 2 1) (A1.10)
L KA X (AL
and
1] __gco [] .
n'"(0) = < iZ;mai Sa(27i/K) (A1.11) .
where

a?0) = % ) ) aral salghsadgh w112

(Al1.12)
Thg samples ai,ania! are taken at Nyquist-rate for the first filter output
and therefore are independent, i.e.
a'.a .= 0, if i43

1, if i=j, (A1.13)



since

12 _ 1 -
a; Rn (0) =1

Therefore, the expected value of n"Z(O) is given by

n" 7 (0) =—£2- Z Saz(—g%z—i)
K

i:-oo

and since n(t) is an ergodic process,

nllz(t) - n"2

Using the equation (Al1.9) in (Al.15) we finally get

2 4 TN 22w
K Z.Z Sa” ()

or

Rl

5 sadh . 1

—
=00

(AL.

(Al.

(Al.

(Al.

(Al.

(A1.18) is equal to our claim (Al.1), which completes the proof. The

above relation, used in(III.l.S.% shows that the output signal-to-noise
ratio of an analog correlator becomes independent of K, and therefore,

the degradation factor becomes equal to unity for any K 2 2.

14)

15)

16)

17)

18)
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APPENDIX A2

Replacement of General Signals by d-c in the Calculation of Degradation

108

factors

The general model of a correlator shown in Figure II.2.1 shows

two signals sx(t) and sy(t), with a cross-correlation factor, R=s_ * s

X

y

No assumptions are made about the spectral or statistical nature

of the signals, except that they are
- ergodic
-small compared with the noise
-independent of the noise sources
-limited in frequency to the range O to B

Calculations of degradation factors using such general signals

are clumsy, and it is shown in this appendix that the degradation factors

so found are identical with those obtained in a much simpler ''d-c case'’,
where it is assumed that
t) = s_(t) = s = constant A2.1
s, (®) y() o = constan v ( )
so that

R=s - s =‘s ' (A2.2)

It will be recalled (Equations II.2.5 and II.2.4) that the
degradation factor, D, is defined as the ratio of two minimum detectable

signals

MDS.
~ (MDS)

analog
and that the MDS for any given system can be written as

- dw
MDS ~v0w/(dR)

Now, as long as the signal is small, the standard deviation of

the output,_ow, is determined entirely by the noise sources and is independent



of the nature of the signals. It is usually evaluated assuming s, = 8, = 0.

It remains then to show that for every correlator, the quantity
dw, . .
(Eﬁ) is the same under these two assumptions
(D Sx(t) = sy(t) = s = constant, - in the d-c case; and
(2) sx(t) and sy(t) have arbitrary spectra and statistics, subject
to the limitations set out above, - the general case.

A2.1 Evaluation of %% for the d~c Case

In the absence of the signal (when s, = 0), the x-processor has
at its input white Gaussian band-limited noise, with a mean value x = 0.
We assume, for simplicity, that the transfer function of the processor
is symmetrical about zero volts. In that case its output, Qe will
also have mean value, E;-= 0.

If now a small d-c signal, S,» is present, the variance of x(t)

will not change but its mean value will no longer be zero,

<0 = s (A2.1.1)

Hence the output of the x-processor will no longer average exactly

zero, but will have a mean value

- dq
q = s (__.X,-) (A2.1.2)
X (o] -
dx )

where the derivative is a function of the processor used and of the amount
of noise at the input. Since the signals are small, it can be evaluated
Similarly

T = s (Y
Gy =55 (A2.1.3)

Now the correlator output will have a mean value given by



w = qz = qx . qy (A2.l.4)

But qy and qy are statistically independent, since their variations are

due to statistically independent noise sources. Therefore

dq_  dq_

- — 2 q | ‘
we=gq 94 =s" - G——?) -(——%5 (A2.1.5)
y dx dy
and, since R ='soz, we have
= dq_  dq
% - . (Y (A2.1.6)
dx dy

A2.2 Evaluation of %% for the General Case

110

In the general case we consider first the situation when the signal

Sy happens to lie within interval dsX of value Sqs and simultaneously s

- lies within interval dsy of value s,. The joint probability of this
happening we can write as
joint probability = psxsy(sl’SZ) . dsx,' dsy (A2.2.1)

Given these assigned values for S, and for Sy’ what : is now

the expected value of w? We denote this as (w) It is given by

1,2°
(W)l,z = (qz)l,z = (qx ¢ qy)l,z (A2°2'2)
again, for fixed values of s and Sy’ the fluctuations in 9 and q
are independent, so that we can decompose the last expression into
(W)l’2 = (g ), ° _(qy)2
- dq dq_ _
=5, (—) + 5, (—) (A2.2.3)
1 .- 28 = ¢
dx dy

To find now the overall average value of w for all possible

combinations of S, and sy, we multiply each expression like that above by



the probability of its occurrence, and integrate over all values

s . Thus
y

w

(w) . P .
,l; /ﬁ X,V sta(sx’sy) . dsx.dsy

)(‘Sy
d
= (—“—9 (-15 (s 'Sy ) ds_ - ds
dx y y
Sx Sli_
dq dq :
= (—= __ll
(& s,
But R = s_s , so that
Xy - —
dw qu dg
T D
dx dy

This is the identical equation to (A2.1.6) above.

ji]ﬂ s C———) * s °(——)5 (s ,s ) ¢« ds_ - ds
X y

of s_,
x

(A2.2.4)

(A2.2.5)

This then proves that the degradation factor of a given system

with arbitrary signals S, and sy can be evaluated using the simpler d-c

case where both signals are made equal to a small constant.
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