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 ABSTRACT

This work considers the conjugate convective heat
transfer between a sphere containing.heat sources and a
concentric envelope maintained at a specified constant
temperature. The space between the two is filled with an
essentially incompressible fluid. Steady, laminar and
rotationally symmetrical free convection is assumed to take
place over the gap width and conduction is the sole transport
mechanism considered inside the core. Two limiting cases, of
an inner sphere of infinitely large relative heat conductivity,
leading to an isothermal core to fluid interface; and of the
converse case of small conductivity leading to a constant
flux interface are considered separately.

The analysis of heat transport leads to the éolution'
of the governing equations through regular perturbation
expansions with the Grashof number as main parameter. The
ratio of conductivities, radius ratio and Prandtl number
appear as secondary parameters.

Streamlines, isovorticity curves and isotherms
are obtained for various combinations of the parameters. The
velocity distribution is determined and both local and overall
values of the Nusselt number are obtained.

A flow visualization test was undertaken and the
core surface temperature distribution was determined experi-
mentally. Reasonable qualitative agreement with the analysis

is found.
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A(R,6,9)

B(R')

Nu.
i

Nu

Ra

ref

NOMENCLATURE

dimensionless heat source function (eq. 2.2.3)
heat source function per unit volume (eqg. B-1)

specific heat of the fluid at constant
pressure

. o . v
viscous dissipation number, 5 M

1
R KfATref

operators

3, .2
Grashof number, gyATrefR' VAR,

acceleration of gravity
thermal conductivity

local Nusselt number for the inner sphere,

B-1 , _ 80
- (== ) x |
B R po1

local Nusselt number for the outer sphere,

B~1 20 2
- (== x l x B
B 3R g
reference rate of heat flux
; .

1 ]
Rayleigh number, gyATrefRi / (va)
radial coordinate
temperature
reference temperature, Q x (B-1)

47rBKfR'i

dimensionless velocity



xi

o thermal diffusivity

B radius ratio, R} /’Ri

Y expansivity at constant pressure

£ ratio of viscous dissipation term to conduction
term

z dimensionless vorticity vector, [V x §]¢

n cos ©

V2 . Laplace operatof, spherical coordinates

0 angular coordinate

o dimensionless temperature

A ratio of viscous dissipation term to convection
term

u aynamic viscosity

v kinematic viscosity

P . density of fluid

o | Prandtl number, v/o

o circumferential coordinate (longitude)

?, dissipation function

y o dimenéionless stream function, W'/vRi

w ~ thermal conductivity ratio, ks/kf

Superscripts, -subscripts

! refers to dimensional quantities

- ‘ refers to average

£ iy:re’fers to fluid

i, ~ refers to inner sphere

o refers to outer sphere

ref ‘refers to reference values

s refers to solid material



1. INTRODUCTION

The study of thermally induéed fluid motion in en-
closed spaces has been receiving increasing attention over
recent years. The reason for this seems to be that such flows
play a role in a wide area of technological application,
ranging from convection in the annular space between a nuclear
reactor core and its pressure vessel to advection in lakes
and to thermal insulation of doubly-glazed windows. Further-
more, the mathematical description of such a problem leads to
a set of non~linear coupled partial differentiai equations
which is of interest in itself.

Batchelor [1], originally motivated by the problem of
thermal ‘insulation of buildingsb(particularly doubly-glazed
windows) investigated analyticélly ﬁhe flow rééimes in.a |
rectangular cavity. The model he considered had two vertical
walls of a cévity at different températures, with a narrowﬁ'
aif—space bef@een them. The cavity is closed at the top and.
bottom and iﬁfinite in the third direction (the breadth).
Fluid motion is generated by buoyanéy and it is assumed to be
essentially.two—dimensionai. Batchélor estimated the heat
flux for vatious flow régimes in the cavity. He also
- postulated that at a sufficiently High value of the Rayleigh
number the fiow would consist of a.core of constant vortiéity

and temperatﬁre surrounded by a continuous boundary layer.
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Poots [2], using a doubly orthogonal expansion for the stream
function and the temperature, computed Batchelor's model for
several values of Rayleigh number and to some extent verified
the conclusions previously arrived at.

Subsequentiinvestigators are Wilkes and Churchill
[3], Elder [4 ] and de Vahl Davis [5 ]. They all employed
various finite difference schemes to obtain numerical results.
In both [3] and [4 ] instability of the numerical scheme was
a problem. Wilkes' difficulties arose apparently from the
retention of the vorticity as an explicit unknown in the
boundary conditions. Elder, in order to achieve numerical
stability of his scheme, had to:approximate by setting the B
normal gradieﬁt of the vorticity at the horizontal boundariee
to zero. The-gustification for thisAassumptienvis not immed-
iately obvioue. On the other hand de Vahl Davis, in an
approach similar to that of Wilkes, overcame the instability
problem by caiculating the vorticity from the stream function
at the'boundafy. At sufficiently large values of the Rayleigh
number, he foﬁnd [5 ] that there was indeed a core of approx-
imately constant vorticity; but not one of constant temperature
too as previouSly postulated by Batchelor.

The papers reviewed above do not consider the presence
of a solid core inside the enclosed space. Recently Mack
et al. (6,7,8,9,10] investigated the cases of steady 1aminaf_
natural convection of fluid in a gap between concentric

cylinders and concentric spheres, both experimentally and
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analytically. The cylinders'or SPheres are kept at constant
temperature with the inner cylinder or sphere being the hotter.
Flow visualization for both configurations and heat transfer
data for the two concentric sphéres Were obtained; The authors
reported thét the flow régime in the gap between the two
concentric spheres depended upon the diameter ratio of the
spheres. Similar results.were found for the case of concentric
cylinders. Three types of flow-régimes were observed; ,(é) a
'kidney-shaped eddy' type (b) a 'crescent~-eddy' type
(c) 'falling vortices'; these correspond respectively to
diameter ratios of 3.14, 1.72, and 1.19. Mack and Bishop [9 1,
Mack and Hardée [10] obtainéd analytical solutions in the fbrmﬁ
of series expansions in powers of the Rayleigh number for
concentric cylinderé and spheres., In their expansions the
coefficients éf higher-order terms also depend upoh the Prandtl
number., A prdof of convergence of their perturbation ekpaﬁsions
Qas not given. Their analYtical'solutiohs for concentric spheres
seem‘to_yieldﬁconvergent results up.to a maximum value of-the
Rayleigh number of 1600 (based on gap width), while in their
experimentél éﬁudies the range of Rayleigh numbérs used is.
rather highefethan 1600. Thus diredt comparison between
experimental énd analytical results is perhaps not meaningful.

It ié customary in heat transfer work to specify .
idealized boﬂndary conditions for both the temperature and
flowbvelocity in order to arrive at a well—se£ problem.

That 1is the boundary,,conditionsﬁ,are usually constant.
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temperature, constant flux or a combination of these. How—
ever, in‘actual practice thevboundary conditions at the
conducting enciosing surfaces are rarely known beforehand.

They depend upon the coupled mechaniehs of conduction in the
solid boundary and convection of the fluid over the boundary.
In technologicallybinteresting geometries the heat transfer
('£ilm') coefficient at the surface is virtually never uniform.
This variation leads to a redistribution of heat flux in the
solid, in some balance with the convective motion which takes
place in the fluid. The effect of the coupled conduction/
convection mechanisn.is most_pronounCed in free convective:
heatltransfert not only are the momentum and energy fields
of the flnid coupled bnt in addition the energy fields of the
fluid and the solid are coupled as well. Due to that o
complication éroblems of this type have only received scant
attention. The following is a review of published work, |
Pereiman 0L considered two examples of two dimensional
flow around g:body with line and plane heat sources and used
the term 'conjugate' for this type of probiem. In his
analysis the Veiocity profiles were assumed to.be either linear
or of the slip—flow.type, uninfluenced by convection. In
view of this assumption, the momentum field in the fluid is
nncoupled from the energy field. Hence the solution to the
momentum equ%tion is known separately of the convection of
heat. Some time'later Rotem [12] developed an approximatei

method for the evaluation of interface temperature profiles



and the transfer coefficient for heat transfer to'a‘forced
'laminér boundary layer with wall conduction. Again the method
vappliés to the case of uncoupled equations only.

‘Kelleher and Yang [13] employed a Goertler series
"for the conjugate probiem for the free convection 6f fluid
over a two-dimensional conducting body with internal heat
sdurées. Here the velociﬁy can indeed not be specified in
advanceﬁ it is coupled to the teﬁpéfature'distribution on the
surface of the solid, which in turn depends upon both the heat
source distribution and convedﬁion. The region>of interest
~of their anal;;is”was placed near the leading. edge.

Lock and Gunn [14] édnsideréd the laminar free con-
vection from é downward,éréjecting fin, but solved the coh&ec—
'tion and Condﬁction parts of the problem separatély. The
solution was Eompleted by matching'the interfacial temperature
and heat flux. |

The'%tudy of a conjugate heat transfer problem in a
confined space is apparently not available ih the literature.*
Also, previous investigators of conjﬁgate heat transfer
problems, both‘in external and in internal fldws<[15], have
considered tﬁévconjugaﬁe effects in;bne or two dimensions bnly.

The present study cdnsiders steady conjugate laminar three-

dimensional natural convection (with rotational symmetry) in

* : '
An exception to this is the recent analysis of Rotem

[16] of the conjugate convectlon for the case of horizontal
concentric cyllnders. :



a fiuid between two‘concentric spheres. The solutions to

the quasi-linear coupled goverhing equétions of energy and
vorticity transport are obtained‘in the form of an asymptotic
expansion of the variables stream function and tempefature

in terms of ascending poweré of the Grashof number. The
other parameters which are of importance in this problem

are the Prandtl nﬁmber, the radius ratio, and the therﬁal
condﬁctivity ratio. The fange of each parameter over which
the expaﬁsion scheme is valid is evaluated in detail. The
cases of a consﬁant flux or an‘isothermal'inner sphere with an
isothermal outer envelope are aléo éénsidered in the present
work: these éré_limiting cases of'the conjugate problem.

An experiment Qas'designed for the visualization of
the flow pattern in the gap between two conjugate concentric
'spheres. The.experimental results_provide further insight
‘into the naturé of the conVective'flbw and supplement the
analytical fesults.

An.épblication which this analysis would model is
geophysical circulatipns. For gZobai geophysical circulat;ons
the vector a?éeleration of gravity is everywhere normal toi
the boundarylénd cqnvection occurs oniy when a certain Rajiéigh
number exceeds a critical value.  However, insight to the
local convection régime may be gained by considering the
gravitationaf fieldvto be oriented everywhere parallel to the
vertical axis as shown in Figure 2.1.1, in this thesis. For

in some geophysical models, smallér_regions of closed circu-
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lation are shown to exist [7], in which the donditions would
not be dissimilar to those considered here.

Another application is to the design of a spherical
insulating flask to minimize the heat loss: for large‘spherical
containers it is often not feasible to have a vacuum between
the concentric shells, as this would introduce buckling problems
and bending stress, instead of membrane stresses, particularly
near the supports. Thus a spherical gap filled with gas is
retained between the spherical envelope and a configuration

is obtained for which the present analysis is applicable.



2, ANALYSIS

2.1 Formulation of Conjugate Problem

The analysis considers steady conjugate laminar
three-dimensional natural convection in a fluid contained
between two concentric spheres. The physical configuration is
that shown in Figure 2.1.1. A solid inner sphere is heated
either by a constant source at its centre or by distributed:
sources. It is cooled by laminar natural‘conVection of the
fluid inside the gap betwéen the concentric spheres. The
outer sphere is kept at a constant temperature. Thus heat
transfer at thg interface between the solid innér sphare andv
the fluid depends upon the coupled:méghanisms of conduction
inside the inner sphere and conveCtibn in the fluid. By
definition the transfer of heat is therefore of the conjugate
type. Some pf;vious investigators [IO] have considered the
natural convective problem fbr the spherical configuration
without the additional complication.df conductive effects |
along the boundaries and this work will be discussed later.
The temperaturé and heat flux distributions on tﬁe surface of
the inner sphere are of great importance in the numerous
applications for which the problem treated here is a model;

The 6£jectives of the present investigation are as

follows: (i) determination of the temperature and heat flux
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variations on the inner sphere; (ii) of the heat flux vari-
ation on the surface of the outer sphere; (iii) and lastly

of the temperature, velocity and vorticity distributions of
the fluid in the gap between the concentric spheres.

It will be shown thatvthe parameters of importance
in the analysis are (a) G , the Grashof humber; (b) o, thel
Prandtl number of the fluid; (c¢) w, the ratio of the thermal
conductivity of the solid inner sphere tb that of the fluid;
(d).B, the ratio of the radius of the outer sphere to that of
the inner sphere. Spherical coordinates are used, the
angular coordinate 6 being measured‘clockwise from the apex
as shown in Figure 2.1.1. All physical properties are assumed
- constant, exéépt the density of the fluid in as far as its‘
dependence on the temperature is concerned. This assumption
and its implications were first intfbduced by Boussinesq. :It
is assumed that the compression work and viscous dissipatidn
are also negligible. Hence the corresponding terms will be
deleted from the'energy equation. The latter assumption is
checked in Aééendix I of this thesié. An axisymmetrical
convective flow pattern is assumed i;e. there is no azimuthal
swirl. Henceiall quantities are taken to be independent of

the longitude; ¢ .
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CONSTANT TEMPERATURE
OUTER ENVELOPE

SOLID INNER.
SPHERE

CENTRAL HEAT
SOURCE

MATCHING OF TEMPERATURE AN
FLUX AT SOLID/FLUID INTERFACE

Figure 2.1.1 ' Physical Configuration

2.2 Governing Equations

All dimensional quantities used (except for property
values) are primed in what follows and all dimensionless
quantities are unprimed. Let Ri be the radius of the inner

sphere. R = R'/Ri and B = Ré/Ri are the dimensionless
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radial coordinate and dimensionless radius of the outer sphere
respectively. '% and T are the temperatures of the inner and
outer spheres respectively; g, the acceleration of gravity;
Y, the volumetric coefficient of thermal expansion at constant
pressure; v, the kinematic viscosity; and a, the thermal
diffusivity.

A reference temperature and température difference

are introduced: Tref = ATref and

DT ep = @ % (B=1)/(4TERIKS)

where Q is rate of heat flux, assumed constant.

Let

%

- : 3
= '
Ra | gyATrefRi /vao

denote the Rayleigh number;

o = v/a

the Prandtl number;

‘ 3,2
— ]
the Grashof number;
© = (T—Tref)/ATref

the dimensionless fluid temperature;
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o = (T-Tref)/ATref

the dimensionless inner sphere temperature.

The equations of continuity;.motion and energy for a
Newtonian, incompressible constant property fluid will not
be stated here; they may be found in many textbooks. Stokes
stream function ¥ will be introdﬁced, so that the equation of
continuity is fulfilled identically. Then in the dimensionless
guantities introduced above the steady state governing equa-

tions reduce to the following,

2 .
E4\1/=-]-'——la(l¥'E ¥) +»2E2\y ( n §.‘¥.+£§.‘i)
g2 9(RyM) R2 (l-n2) R~ R 93n
5 3 (Rxn,0)
+ (1-n°) 6 ————
3 (R,yn) (2.2.1)
3(v¥,0)
R” -9 (Ryn)
9~ v
V0 = A(R,6,9) . - (2.2.3)

The boundary .conditions subject to which (2.2.1) to (2.2.3)

have to be solved will be
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Y = = = 0 at R = 1, R (2.2.4)

3R
v o= 2= o0 at 6 = 0, = (2.2.5)

or, alternatively stated

oY

1
¥ = -(1-n9)2 I 0 at n = =+ 1 (2.2.5a)
O = 0 at R = 1 , (2.2.6) -
30 236 I | -
o = -1 at R = § .  (2.2.8)
Here n = cos 6 and the operators.Ez, E4 and V2 are defined
as follows:-
2 2
E2 _ 9 - (1 nz) 3 -
oR an
e? = g% (%
ot 4?3 3 4(1-n2) 52
= T2 3 ® 3+ )T =g 2
oR R an dRon R an
g2y a4 2 4
4+ 2(1-n7) 3 + 1-n7) 3
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g2 - 85 .23 . (1-n%) 3% _ 2na
SR2 R OR ) 8n2 ;7 on

= st 2ds am e Loovm B

The left-hand side of the equation‘(2.2.l) represents
the diffusion of vorticity. The first two terms on the right—‘
hand side of the equation (2.2.1) give the convection of
vorticity while the third term represénts_the buoyanéy effect.

The left-hand side of the équation (2.2.2) represents
the conduction effects, the right—hand side the convective
effects. The effects of viscous dissipation and compression
work were neglected in the energy equation (2.2.2). 1In
Appendix I it will be shown that for closed spaces this is
always a permissible assumption.

Lastly, equation (2.2.3) is the conduction equatiohv
for the solid inner sphere. A(R,6,0) is the source function:
For the case of a single heat source at the centre of the inner
sphere, the saﬁrce function may be sét to zero everywhere
éxcept at the;center pole.*

The boundary conditions (2.2.4) state that there will

be no flow along and through the surfaces of the two spheres.

Conditions (2;2.5) ensure that the flow is axisymmetrical

The case of the inner sphere contalnlng uniformly
distributed heat sources is considered in Appendix II,
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about the vertical axis 6 =0, 7 (i.e. at n = ¢ 1).
Boundary cbnditions (2.2.6) and (2.2.7) state the enerqgy
conservation principle, i.e. the equality ofvtemperature and
flux on both sides ofvthe interface éolid/fluid. The fact
that both temperature and flux are specified will be seen to
lead to a problem of the conjugate type. (2.2.8) is a

normalization condition for the temperature.

2.3 Method of Solution

In the present analysis it is assumed that the inner
sphere has a central heat source only'i.e. A(R,08,¢) is zero
in equation (2;2.3). In spherical gebmetry the fluid cannot
be in eqﬁilibrium when there is a non-zero temperature
difference beéween the inner sphere and the bulk of the fluid,
no matter how small that difference may be  as the vector
acceleration of gravity is everywhere inclined to the solid
to fluid»intefface. This is due to the tangential component
of the buoyanéy forces in the fluid. Initially the fluid may
be at rest, but buoyancy forces will cause convective motion
which after séme time will become quési—steady. The governing
time-independént equétions will theﬁ apply to this steady
motion. . It should be noted that the convective flow is the
only source oﬁ'vorticity available. As mentioned above, the
energy equatiéns (2.2.2) and (2.2.3) for the fluid énd the
solid inner sphere respectively are coupled through the

boundary conditions (2.2.6) and (2.2.7). On the other hand
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the vorticity transport egquation and the energy equation for
the fluid are also coupled through the buoyancy term in
(2.2.1). As the motion of the fiuid is set-up by buoyancy
forces only, it will be natural to seek solutions to equations
(2.2.1), (2.2.2) and (2.2.3) for the dependent variables ¥,
e, 6 in terms of perturbation expansions in the Grashof number.
This is an ad hoc assumption in the sense that any suitable
parameter characteiizing the ratio of buoyancy to viscous
forces.might have been usedv with suitable scaling of the
variables, e.g. Ra. That is, an expansion of the present
type is notnecessarilyunique [181.Moreovef,-the'prdblem dealt
with here is a‘multi-parameter one involving some other
parameters, o; B and w .

The pérturbation solutions are obtained for a range
of Grashof numbers. For each value of G, combinations of wvarious
values of theTother parameters ¢, w and B are considered. fhere
is a limitation on the range of radius ratio admissible:
obviously B#l; as B tends to infinity the inner sphere
becomes a sinéievsphere in an unboundéd expanse of fluid. To
this latter caée the regular perturbation theory to be out-
lined will not apply [19,20]. |

On the otherihand, if w tends to zero or infinity
the inner sphére has either a constant flux or an,isothermal
envelope respébtively. The former of these cases leads to
singularity and must be solved separétely. The case of

heat transfer between two concentric isothermal spheres has
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been solved analytically by Mack and Hardee [10]. In section

2.5 the case of the constant flux inner sphere.surface with
an isothermal outer envelope (the solution for which had not
been available) will be considered.

The influence of ¢ is as follows: small values
- present no particular difficulties., However, as o =+ « the
energy.equation tends to become singular and not all boundary
conditions for the temperature profile may be fﬁlfilled.
Theréfore a different parameter perturbation starting with
‘T'/a rather than ¥'/v as the dimensionless stream function,:'
hésito be uséd: |

It is proposed here to solve equations (2.2.1),
(2.2.2) and (2.2.3)'fbr conjuéate natural—convéctive heat
transfer between concentric spheres with neithér éf-the
parameters-G, o, B and w infinitely small or very large. The’
regular perturbation'expansions“for the variables ¥,0 and 6

are assumed to be

oo

8

Y = ¢l K vk (), m (2.3.1)
=0 %= J ..

] = ];) ‘ G [e) @l (R, n) ’ . (2.3.2)
=0 m= . ‘
[oe] [oe] v

0 = Z Z 6t o™ 6, (R, n) . (2.3.3)

T
o
=1
Il
o
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It may‘be shown that for the case cénsidered here, terms
transcendental in the expansion parameter G do. not occur:
they invariably give rise to homogeneous equations with homo-
geneous boundary conditions which’wiil yield only a trivial
éolution. Thus such terms would at most be associated with
‘complex eigenmotions which are nq£ considered here any further.

Substituting equations (2.3.1), (2.3.2) and (2.3.3)
into the governing equations the fdllowing expansions for v,

-~

© and © are obtained.

Vo= 6 ¥, (R,n) +‘G29;lkR;n) +_G2o@§ &, )

ot eeaeea, ’ - (2.3.4)
o = o (R) +‘GoOi“(3,n) + 6200 (R,n)

E 625202 (&, n) ..;.... . (2.3.5j
o =" 6. (R) + 60Ol (R,n) + G200l (R, )

+ 6%5%6% (r,n) e (2.3.6)

Equating coefficients 6f-equal powers of Gjok, the governing
equations reduce to an infinite set of uncoupled linear

differential equations,



0
0
‘ 5 3 (Rxn,0,)
(1-n°) —————
3 (R,n)
0
o [o]
R 3 (R,n)

[+ (o] .
LA e My
=2 ‘3R %w T am R B U1
R 2E\yl ( n L + _:!'_ L) \yo.

-R2 l_n2. n R 9n ;
2 5 s . 1
(1-n7) (ngﬁ - Rgﬁ) @l
0

[] o
R 3 (R,n)

0
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1 20y, o) .1 3 (Y5, 0,)
R2 3(R,n) E7

3 (R,n)
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119
(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)
(2.3.13)
(2.3.14)
(2.3.15)

(2.3.16)

(2.3.17)
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The above set of equations is solved in sequence subject to

the following boundary conditions:

NON]
o o

4

~ 3

2

-]

Q] Q@
o]
=

.

o

=

2

o :
= O, = 0 ’ at R = 1 (2.3.18)
= -1 " at R = B  (2.3.19)
must not have a singularity at the centre of the

inner sphere greater than the zeroeth term, namely

1/R, for 1, m > 1 | (2.3.20)

= 0 at R = 1;

1, m > 1 (2.3.21)

= .0 _ ' at R = B;

1, m > 1 (2.3.22)

207 _
= T | at R = 1;
1, m>1 (2.3.23)
avk
_._.laR = 0 at R = 1, B;
i, k > 1 (2.3.24)
o, 1 auk -
- (1-n°)2 gﬁl = 0 at n = % 1;

j, k > 1 (2.3.25)
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2.4 Solution

The equations (2.3.7) and (2.3.8) are solved first.
They are the conduction equations for the fluid assumed immobile,
and for the solid inner sphere. The solutions are the temper-
ature distribution for pure conduction subject to boundary

conditions (2.3.18) and (2.3.19).

~° _ 1,1 _ B
0, = (% 1) x (EgT) . ‘ (2.4.2)
Upon substitution of (2.4.2) into (2.3.9),
4 o U _ _ 2 B .
CEY, = (A0 /R x (gZy) 4 | (2.4.3)

This is a 'creeping flow' equation. A solution is stream

function,

Al 2 3

wo = (l~n2)(§— + B.R + C.R® - B, D R4)x(—§—)

1 1 1 8 1 g-1
(2.4.4)
which has to satisfy the boundary conditions (2.3.25). The
constants of integratiop Al; B, , Cl and Dl are determinéd

by applying conditions (2.3.24) and are given here in closed

form,
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a = (87 - 48% + 687 - 48% + g%)/84
B, = (-38° + 88% - 587 - 58> + gg* —A383)/8A
c, = (28° - 1287 + 108% + 1208° - 1284 + 282%) /84
D, = (287 - 6 8% + 48> + 48* - 68> +.232)/8A
wbere
8 7 2

p =488 - 087 + 1087 - 983+ 48?2
The next two equations (2.3.10), (2.3.11) are solved
simultaneously after substituting (2.4.2) and (2.4.4) into

(2.3.11). They are

vZel = o - (2.4.5)
1 : ‘
A B C : 2
vl = -~an(+ — + — - -+ Dx(E),  (2.4.6)
R R R 8R B-1
the solutions of which are
- ~ F 2 o
ol = n(ERr+ Dx(E9 C(2.4.7)
R g~-1
and
A F B D, R? 2
2R R R ‘ 2 12 B~-1

(2.4.8)
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The boundary conditions (2.3.20) to (2.3.23) are used to

determine the constants of integration; El' El’ Fl and F, .
They are no longer given explicitly here but were calculated
directly from the boundary conditions by computer.

The next equation to be solved is obtained by

- substituting (2.4.4) into (2.3.12),

: 2
. ', 12A.B, (12B° + A.) 12B.C
ety = nanfH—E2s 2L o

R5 R3’ R2

B " | C 2
-1 ' ¢, - B e D R x(sE) '

’ )
The solution fqr'Wz is

a

o ‘ J A.B

Wz = n(l—n2)( 5 SN e Ig +?%Z (lzBi + Al) R
' ~ R 2R

B.C

171 .2 a .3 1 4
+ > R + H2 R™ - 57 (l2BlDl + Cl) R
s .
5 DlR B 5

- .a R
&= - . (2.4.10)

which satisfies boundary conditions (2.3.25). The constants

28, 12 and 72 are determined by applying

. . a -
of 1ntegratlo?s G2, H2, 2 5

conditions (2.3.24).
The next higher-order term in'the expansion of ¥ can

now be determined upon substituting equation (2.4.8) into

“
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(2.3.13):

2 2 )
0 R e SUlr W | 1= _ R B
E¥y = nUmmi) oyt ==+ =+ O+ 35— - xEm) -
R R _
(2.4.11)
The solution is,
b ‘ 2 4
J . A F.R C,R
W; = n(l—nz)(—% + Ig - R + 1 + Hg R3 - L
. R 12 8 | 24
L 5 D1R6 BlR3 R
+'G2R + - In R = — 1ln R)
288 15 840
g .2 | _ |
x (oo (2.4.12)

which satisfies boundary conditiqns_(2.3.25). The»consfants
of integration Gg, Hg, Ig and Jg are determined by applying
conditions (2.3.24).

It is now possible to determine the higher-order
temperature terms. - The next two equations (2.3.14) and
(2.3.15) are solved simultaneously upon substituting (2.4.2)

and (2.4.10) into (2.3.15).: The equations are

vzeé = 0 | - | (2.4.13)
: D R2 (12B,D. + C.)
vl = (nP-1) (%5 - G2 R+ 14 4
2 | 117 ~ ©2 54
g 2 a ‘ a
;_Eg ) Blcl _ (12Bl + Al) —-I2 .\ AlBl _ ig
R 2R2 24R3 R4 2R5 R6
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B
R 1 B 3
+ E60 In R O} 1n R)X('é"'_—i-) . (2.4.14)
The solutions are
. Ta v
~ ~ L 3 _
ol = @n? - 1) 2R+ Zx(En)”  (2.4.15)
2 2 R3 g-1
and
a 4 a
L D.R G
1 _ 2 _ a .2 2 _ "1 _ 2 1 .3
°2 = Gn" - 1) { K2 B * 37 16 - % * 2880 R
a ' 2 a
H B. ' C+ I
+ (_3 + —l—) R + Blcl + (1251 Al) + 2
4 320 12 144R 4 2
R
g2 B (12B.D, + C.)
2 1 171 1 2
- + - R 1In R + R” 1n R
GRZ 240 120
03 A.B | 3 -
+ 5—%-6—6- In R 1 é In R } X (E'E—i'-) o (2.4.16)
10R ,
. . ~a a .a a .
The constants of integration are K2, K2, L2 and L2 e« In view
of the higher-order singularity which ig would give rise to
at the centre of the inner sphere, L; will be set to zero

following condition (2.3.20). The remaining unknown constants
are determined using boundary'conditions (2.3.21) to (2.3.23).

The last terms of the temperature expansions
~2 2

calculated are 92 and 62 . The equatidns are (2.3.16)

and (2.3.17).
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vzeg = 0,
and ) (2.4.17)
o
2.2 2 Ay (3, - &) Fy)  3A.B,
v @2 = (3n° - 1) - = = z + =
2R R 2R
(1° + B.F. - 2a 1Cy) 5A.
2 151 1 1 2 1
- 7 - (—=-"AE; + B] + 2C,F,)=
R 48 R
. 3A.D, F 3B
- (3B,C 11_..1 lf - (Hg -1y BJE, * 2ci
2 4 " R .8
o
+ 4D1Fl) R
7B.D 5C, 3E
- (—2 - - v aep, - Zh w
2 12 8
55 2 1 Ay
- (7§§ Dl + 4D1El) R® - TOR In R + 3 In R
12r3
| D 3
109 1 .2 | 8
2 .
y .2 { 4a]  6AF) 2B (2BF) + AC))
=7 =6 5 4
A F B
1 1, 1 | 1
+ —% + (4B.C, - 2 A.D, - &) 14 (4p.E. - %
3 1¢1 117 7 2 151 7 3
2 1
+ 4Cl + 4DlFl)'R"
: 7C,
+ (3B1Dl - -)+(4chl - E; - Z—)R'+ ( Dy
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B 5D -
1 _ R 1, .2 B |3
*+—InR=-35InR+ (—=) R 1In R x (ETT)
3R 6
C C
~ opn2 o3 1 B_y3
+ 2C B, 2D] R” + g~ ln R g» x (B-l) .
(2.4.18)
' The solutions are
02 = (302 - 1) I P R2 4 Ng x (B34 (B2 + Ez)x( )
2 T n 2 . E? - VB=T 2 R !
and
b 2 b
2 .2 b 2 Ny °Ay  Jy 4+ AF)
62 = (3n° - 1) M, R® + -5 + = - ( ) =T
R 84R 6 R
' b
(31, + 5B;F; - 5A,C,) Ay 2
+ 5 + (= - AE; + B] + 2C, l)6R
12R le
(10B,C; - 5A;D; -F,) R p  241B4
+ +‘i‘2' (3H2 - - BlEl
’ 36 240
3
R E
2 b 1 107
+ 2c] +v8DlFl) - I; (3G2 + 5C,D; - g‘ * —Zg80)
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4 73D A.B
+%( l-DlEl) l3llnR-——-l—lnR
448 6R>. 72R
17B ~ B.D, 2C
- (—3) R 1n (=% - —1) B In R+ (g5pEs) B In R
720 2. 45 | |
Dy 4 B .3 Al aF; ApB
- (/) R 1nR x (E:T) + i ni =
252 . 15R>  6R 9R
(2B.F, + A.C.) 5B
1F1 246 1 2 R
- = + (4B.E, - —= + 4c? + 4p.F,) B
) | 1%1 7 ¢ 1 171 &
2 c 3
+ B, - £+ 2008 + X (acpg - B+ )
6 E | 36 36
2.5
4 D D°R> F.
+ B (——l~ + DlEl) - -+ (4B1Cl - 2AlDl - —i) in R
6 24 15 4 3
| 3
B C R D
(S R1nR+ (3 RPInR-— Imr+ (-5 ' 1nr
s 36 432 72
By b . 9 B\
- —= 1n R + (P2 + —=) X (E'—'T) . , (2.4.20)
18R R |

Ng is set to zero since a singularity of third order is not

permissible at the centre of the inner sphere (2.3.20). With-

N
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~

out loss of generality Pg is also set to zero since from the

temperature matching conditions at the interface only one

of the constants, Pg or Pg need be retained. The other

remaining constants, Mg, Mg, Ng, Pg; Qg and Qg are determined

by the application of boundary conditions (2.3.21) to
(2.3.23).

It is seen that the functions of n appearing in

~

the expressions for OT or @T are the set of spherical

harmonics, while‘in W? Gegenbauer polynomials appear.
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2.5 Solution of Constant Flux Problem

In this section, the case of free convective heat
transfer between two concentric spheres with a prescribed
constant flux on the surface. of the solid inner sphere and

an isothermal outer sphere is considered. The heat flux,

S oT )2
Q= ke Eme |, *ATH
1

on the surfaée of the inner sphere is specified in advance to
be constant. Thus the conjugate effect at the interface
between the solid inner sphere and the fluid is lost.

The éoverning equations, (2.2.1) and (2.2.2) as given
in section 2.2 are épplicable for this constant flux case.
The energy fields of the fluid and the'éolid inner sphere are
no longer coupled. Thus the temperaﬁure equation (2.2.3) for
the inner sphefe is not considered here.. This case is still
a multi-parameter one involving pafameters of G, o0 .and B. It
has one parameter, namely w, less than the conjugate case.
However, the\limitations on the ranges of o and B outlined
in section 2.3 still hold.

The non-linear coupled éoverhing equations (2.2.1)
and (2;2.2) gor this constant flux case are‘solved by a |
perturbation scheme in the similar manher as for the con-
jugate case. The expansions for Y énd © are those of (ij.4)
and (2.3.5) féspectively. The simplified boundary conditions
subject to which the governing equations havé to be solvedv

will be
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50,
- = 1 : at R = 1 (2.5.1)
dR
ae‘;‘ |
R -
o .
m .
o] = 0 at R=8; 1, m> 1 (2.5.4)
k .
BWi = 0 at R=1, B; 3, k > 1 (2.5.5)
ly = e———t .
J 3R
K , 1 vt .
\yj = ~(1-n“)2 —d = 0 atn =+ 1; j, k > 1. (2.5.6)
an -

The boundary condition (2.5.1) stipulates that the flux on

the surface of the inner sphere remains constant i.e. unity
after normalization. The constant flux condition is fulfilled
by the zeroeth order term of the temperature, 0, expanSion;
Therefore nofhigher order terms in O should give a contribution
to the flux on the surface of tﬁe inner sphere i.e. boundary
condition (2.5.2). The boundary condition (2.5.3) is a normal-
ization condition of the temperature at the outer sphere.
(2.5.4) states that the higher order terms in the 0 expansion
‘are zero at the outer envelope.. The boundary conditions (2.5.5)

and (2.5.6) have the same meaning as previously.
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The set of uncoupled linear differential equations
given in section 2.3 (with the exception that the equations

for 0 are not considered here) are solved subject to the

. [}
boundary conditions given above. The solution for 0, is-

(B+1)

which fulfilled the boundary conditions (2.5.1) and (2.5.3).
The solutions for all the higher order terms in the

© and Y expansions are those givén in section 2.4 except the
B_y3
g-1

the solutions. The constants of integrations in the solutions

2
constant factors (BEI)' (BEl) and ( will not appear in

are determined directly using the boundary conditions (2.5.1)

to (2.5.6) in the computer.
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3. EVALUATION OF ANALYTICAL RESULTS

In the previous chaptér, the analytical solutions
for the conjugate heat transfer between concentric spheres
has been considered. Subjeét to the limitations outlined
before, these solutions may bé assumed to be wvalid for various
combinations of the four characteristic parameters G, o, w,
and B . It is anticipated that there will be limiting values
for each of the parameters beyond which the perturbation
expansions wili no longer converge. Other factors which may
’limit the range of applicability of the solutions are as
follows: the stéady laminar axisymmetrical flow assumed in
section 2.l-ﬁay become unstable leading to a flow of more
complicated nétﬁre and to turbulence.

The criterion used here in determining approximately
the radius of éonvergence‘of the peiturbatioh expansions is
outlined in section 3.1. The limitations on the applicability
of the solutions as mentioned above will also be discussed.
Contours of streamlines, vorticity lines and isotherms plotted
with the aid of the computer were obtained. The radial and
tangential vélocity components of fhe fluid in the gap
between the:two concentric spheresiwere calculated by
differentiating the stream functioh analytically and computing
the results;A. Finally, the temperature distributioné and the

heat transfer rates (Nusselt Numbers) are given.
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3.1 Range of Validity of Solutions

The perturbation expansions for the variables of

~

¥, © and © ére obtained up to the second order terms. The
series expansions for ¥, © and é are equations (2.3.4)
through (2.3.6). The error made by truncating such
asymptotic expansions is of the order of the first term
neglected. This term will tend to zero rapidly as the
parameter G is reduced to zero. In the numerical evaluations
for finite, non.zero G , all the terms for ¥, © and 6 derived
were retained for actual computation. Due to the complexity
of higher order terms no extra term was derived to check
convergence fof each of the expansions. Thus the numerical
convergence Qf the expansions cannot4be guaranteed.
Anjéiternative criterion ié proposed here to
determine thehpractical upper bound of the convergence of the
series expansions as follows: For given values of G, o, w
énd B and at-a 'typical' location the value of any higher-
order terms fbr Y, 0 and 5 considered must not be greater
than the previous term, In addition the sum of any two or
more higher—order terms must not have a value greater than

. o [ o
the previous term or the fundamental terms, i.e. Y., 6, and

~° -

Oo
The criterion of convergence defined here is differ-
ent from that?used by Mack et al. [9, 10]. These workers

considered that as long as the maximum magnitude of any
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higher order terﬁ in either series for ¥ and 0 did not exceed
the maximum value of the appropriate lowest order term at a
'typical' location, convergence could be assumed. On this
basis, they found from their analytiéal solutions at low o
that it was possible to have double cells in the flow field.
Their series for Y and © were obtained by expanding in
ascending powers of Rayleigh number rather than in the

Grashof number., Thus the coefficient expressions for the
various terms in the series are dependent on o : they include

constants with o—l.

Dougie cells cannot occur dn the basis on which £ﬁé
radius of convérgence is defined in this thesis. Now, the
existence of a‘secondary cell in addition to the primary cell
had been obsef%ed experimentally by Bishop et al. [7] for a
Rayleigh numbér (as defined in this thesis) of approxi-
mately 45 x lOI3 at a value of B pf 1.19. However, the range
of Rayleigh numbers (for which the series will 'converge')
considered both by Mack et al. and in the present thesis is
below that quoted by Bishop for the‘occurrence of a secondafy
cell. If the. radius of convefgence pfoposed by Mack had
been adopted hére a secondary cell would indeed exist for a
value of Ra large enough (but not necessariiy at low 0 or
B). An examp;e of this is illustfaﬁed,in section 3.2. There-
fore it can be concluded that a numerical 'demonstration df

double cells is related to the fact that the series is no

longer convergent in the work cited.
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For both the conjugate and constant‘flux cases.con-r
sidered, numerical investigations show that the upper bound
on G or Ra: decreases monotonically with 6 increasing from
0.01 to 100 and/or B increasing from 1.15 to 2.5. This is
shown in Figure 3.1.1. The upper bound on G is lower in the
constant flux case than in the conjugate case for fixed
values of o and'B. The lowest value of w (applicable only for
the conjugate case) for which the upper bound of G is suffic-
iently high to be of interest is 3. If the ratio of thermal
conductivity w should vanish then the boundary conditions in
the temperaturé field (i.e. 2.3.21 and 2.3.23) can no
longer be fulfilled simultaneously. This in effec£ corres-~
ponds to the é;nstant flux case and the 'conjugateness' of
the problem is lost.

The other possible 1imitatioﬁs to the range of
applicability:of the solutions are the non-consideration of
compressive wérk and viscous dissipative effects; more over,
the flow may not be steady laminar ahd axisymmetrical. In‘
Appendix I, Tables V and VI show the ratios of the magnitude
of the viscous dissipation term to éither the conduction térm
(e) or the cbﬁvection term (A) in the energy equation (2.2.2)
of the fluidiin the gap between the two concentric spheres
at both radial and angular positions. It is seen from the
tables that the ratio of the viscous dissipation term to
either term iﬁ the energy equation'is at least of the order

of 10_8. Hence neglecting viscous heating as assumed in
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section 2.2 is justified. It will be shown later through
the experimental investigation that the flow in the gap |
between the two concentric spheres is steady laminar and

axisymmetrical about the vertical axis.

3.2 Streamlines

In view of the qualitative similarity for all combin-
ations of G, g, w and B for which the expansions are convergent,
contour plots of streamlines, isovorticity lines and isothérms
are given for a fixed value of Ra=720 for both conjugate
and the constant flux cases. The streamlines as given by V¥
equation (2,.,3.4) for o=.72, G=1000, B=2.0 and w=10 ére pre-
sented in Figure 3.2.1. A single cell of the 'crescent-
eddy' type (observed previously [1l0] for the case of an iso-
thermal inner‘sphere) is obtained. The fluid flows upward in
the immediate vicinity of the inner sphere and downward along
the outer sphéfe. The flow in the fluid space is 'toroidal’
with rotational symmetry. Thére is a jet'like flow polariz-
ation above the top of the innervsphere. The lower region'M
of the fluid Space acts like a reservoir with fluid withdréwn
from it in the vicinity of the inner sphere and fluid flowing
into it from the boundary of the outer sphere. The center.
of the circulatory motion, where ¥ has a maximum value, 1is
in the upper half of the flow region at 6 = 82° and slightly

past the mid point of the annular space.
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Similar streamline configurations are obtained with
values of Ra=720, B=2.0 for w=1015 (approximately isothermal
inner sphere) and the constant flux case as shown in
Figures 3.2.2, 3.2.3 respectively. Figure 3.2.4 shows the
streamlines for ¢=.72, 6G=1000, w=10 and B=1.15 with the
annular space between the two concentric spheres plotted here
stretched into a rectangular form for clarity. It is seen
that the center of the streamlines is at 6=90°. As B tends
to unity, the flow is essentially 'creeping flow' in a narrow
gap. The creeping. flow solution (i.e. W;) places the cénter
of the streamiines at 6=90°, Increasing the v&lue of o to
10 with the values of Ra=720, R=2.0 fixed, for the conjugate
case (with w=10, 1015) and for the constant flux case, the
streamline configurations remain essehtially unchanged.’ The
values of the streamline contours are lower than the previous
values as the buoyancy effects are relatively reduced (G
decreases whén Ra is maintained constant while ¢ is increased),
Figure 3.2.5,. Thé center of the eddy cross section remains
approximately'in the same position as before for all cases;
The upward and outward displacements of the center depends on’
the value osza when B is larger than 1.15 (i.e. higher order
terms in ¥ then become important). Also the angular position
of the center of the streamlines depepds on the value of
w i.e. w=107 6 = 82°; and for the constant flux case

8 = 75°.
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As stated previously in section 3.1, for convergence

of the asymptotic expansion in Y (with all the terms actually

o

1
must always be the predominant term. If multiple cells should

derived used in the computations) the fundamental term V¥

occur in the annular space, the adjacent cells would have
values of the stream function of opposite algebraic sign
However, the fundamental term is always positive throughout
the flow field. Thus in order to have multiple cells the
higher order terms would have to become larger than the
fuhdamental term. Figure 3.2.6 shows the presence of a
secohdary cellﬁat the lower region of the gap for the conjugate
case with w=10; o=.72, G=2100'and B=2.0. The secondary cell
does. not extend across the gap and is.much weaker than the
primary cell. K It may be concluded, as explained above, that
here the expansion for Y is no longer convergent. Moreover,
Bishop et al. t7] observed,experimentélly that the first

1

secondary cell was formed near the top of the inner sphere.
Hence, in the present analysis the occurrence of a secondary

cell cannot be a genuine feature.
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180°
I R=1

Figure 3.2.1

Streamlines for Contugate Case, w=10, B=2.0, ¢=.72, G=103
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R=2

_Figure 3.2.2

Streamlines for Conjugate Case, w=1015, B=2.0, o=.72, G=103



R=2

Figure 3.2.3

Streamlines for Constant Flux Case, B=2.0, o=.72, G=103

43



0001

180°

R=10 - ~ Reus

Figure 3.2.4
Streamlines for Conjugate Case, w=10, B=1,15, o0=.72, G=103
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Streamlines

- Figure 3.2.5

for Conjugate Case, w=10,
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Figure 3.2.6

Streamlines for Conjugate Case, w=lO, B=2.0, 0=72, G=2100
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3.3 Velocity Distributions
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It was assumed previously that the convective flow

pattern is axisymmetrical. Thus there is no latitudinal

velocity, V¢. The radial and tangential velocity components

of the fluid in the R- and 6~ directions respectively are

obtained analytically by differentiating the stream function,

¥, equation (2.3.4):

v, = L ¥ _ _ 1 23¥
R R%sin® 30 RZ 3n

o
w

=le2n{ —-?3—'—+_.}.+c

x
w
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Rr3 2

B
+ —— (1 + 5 1n R) pe (ﬁ) . (3.3.2a)
840 -

The radial and tangential velocities were evaluated numérically
using the expressions (3.3.la) and (3.3.2a).

For w=10, B8=2.0, G=1000, 0=.72; the radial velocity
VR is plotted against radius R for various angular positions

8 as shown in Figure 3.3.1. At a given radial position the
magnitude of the radial velocity increases with decreasigg 6.
Each profile has either a maximum or a minimum value occuring

at an approximate radial position bétween 1.4 < R< 1.55. For
0°<6<60°, the fluid has a radial outflow and a radial inflow when
90° < 6 < 180°, If is seen that the radial outflow at 6=0°

is about twice that of the radial inflow at 6=180°. Finaliy,.
the radial véiocity_gradient near the inner sphere's.surface
(i.e. R=1.0) is higher than that near the outer sphere's

surface (i.e. R=2.0).

For lhe same values of w, B, G and 6 as before, tﬁé
profiles of the tangential velocity, Ve, against the radial
position, R,:for various & are shown in Figure 3.3.2. Each
profile shows a maximum value for uéward flow and a minimum
value of downward flow. The upward flow speed near the inner
sphere is higher than the downward flow speed near the

outer spheré. For 9=90°, the tangential velocity, Vg is

zero at R=1.5 indicating that the upward and the downward. flow
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are approximately equal. However, the upward velocity is
still greater then the aownward velocity. The crossover point
from upward flow to downward flow occurs in the region
1.4 < R < 1.55. This crossover poinﬁ moves towards'the inner
sphere as 6 increases.

The general features of the radial and tangential
velocity profiles are similar for other combinations of w,

B, G and o.

3.4 Vorticity Contours

As mentioned in section 2.3, the convective motion of
the fluid due to buoyancy forces is the only source of
vorticity available in the gap between the concentric spheres.
With rotational symmetry, the vorticity vector in the positive

¢ -direction is given by:

>
= v \V;
C [ X ]¢
Ve Vg o (1- 2)% Wy
= -+ =+ N
oR R R on
1 2B
_ 2, = 1 1 B
= (l"'n )2 G I: -1;2—— - lODlR + —2—- ] X (B_l)
. 612 2A.B
+ G x n [:— 14 G; R2 + 32 - 141
R R
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R
+ Z (]_2B1Dl + Cl)

B, R 2
+ — + — (9 + 14 1n R)) x (-@.—.) (3.4.1)
3 840 -

The overall features of the vorticity contours shown
in Figures 3.4.1 :through 3.4.4 are similar. The vorticity
field may be conveniently divided into three regions which
may vary in radial extent. The meriaional length of ﬁhe
isovorticity lines and their radial position depend upon the
four parameters G, o, w and B. These three regions are
defined as: éhe immediate vicinity of the inner sphere where
~ the vorticity is generated; the central vortex region Where
the vorticity from the inner sphere is transferred by diffusion
and convection; the boundary at the outer sphere where
vorticity of the fluid is dissipated. Note that this arrange-

ment into three regions resembles qualitatively that described
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by Batchelor for free convection between parallel plane
boundaries.

In the immediate vicinity of the inner sphere the
vorticity of thé fluid is generated by the convective motion
set up by the heated inner sphere.' Thus the isovorticity
lines have the highest magnitude and in angular extent here
in comparison to those in the other two regions. The fluid
particles are rotating in the clockwise direction. The
vorticity vector defined by equation (3.4.1) is at right
angles and into the plane of the paper in each of the figufeé
for this region.

The central vortex region is separated from the other
two regions by the two isovorticity lines of value zero.

The most notable feature in this region is the 'toroidal-
shaped' surfaées of the vorticity sheets. With rotational
symmetry, each of these tori extends.around the whole
annular space between the concentric épheres. They can be
considered as 'vortex tubes' and the whole of the central
fegion as a 'vortex ring'. The centre line of the vortex is
in the upper éegion of the flow field and guite near to the
mid-point of the gap. This position is different from that
of the centre of the streamlines (section 3.2), for each |
of the corresponding cases. Near the centre of the vortex
is a region of nearly constant vorticity e.g. Figure 3.4.3.
The magnitudé of the vorticity is the highest in this region.

The sense of rotation of the fluid is opposite (i.e. counter-
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180°
| R=1

R=2

Figure 3.4.1

Vorticity Contours, Conjugate Case, w=10, 8=2,0, 0=.72, 6=103
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R=2

Figure 3.4.2

Vorticity'Contours, Conjugate Case, w=1015, B=2.0, 0=.72, G=103



R=2

Figure 3.4.3

Vorticity Contours, Constant Flux Case, B=2.0, 0=.72, G=103
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R=2

| Figure‘3.4.4

Vorticity Céntours, Conjugate Case, w=10, BR=2.0, o0=10, G=72
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clockwise) to that in the region at the inner sphere surface
as the vorticity is transferred from there.

The vorticity is transferred to and dissipated at the
boundary region of the outer sphere.' Hence the vorticity
vector is in the same direction as that in the immediate
vicinity of the inner sphere. The features of the vorticity
contours are there qualitatively similar to those in the
region near the inner sphere. But for each corresponding
magnitude of the vorticity the individual contour does not
have the same angular extent in this region,at the outer
sphere,

As in %he streamline configuration, the features of
the vorticity contoufs change little with a change of o,
provided Ra, B and w be kept constant. While the position
of the centre 6f the vortex does not change with o, it is

affected by Ra, B and w.

3.5 Temperature Distribution and Contours

The temperature distribution of the fluid in the
annular space between the concentric'spheres is given by
equation (2.3.5). For the conjugate case; equation (2.3.6)
yields the temperature distribution in the solid inner
sphere wifh a single heat source at the centre. Calculation
of the temperature inside the inner sphere is irrelevant

for both the constant flux case and when w is very large
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15(i.e. an isothermal inner sphere) even in the

e.g. w=10
conjugate case. It is seen from the Figures 3.5.1 and 3.5.3
that for .72 < o < 10 and with Ra, B and w fixed, a change

in ¢ does not alter the tehperature profiles or the contours,
Figures 3.5.6 and 3.5.7. This indicétes that the temperature
distribution and the heat transfer rates are quite independent
of o, at least in that range. Alternatively expressed, the
influence of 0 is a higher order effect on both the temperature
distribution and heat transfer rates. A proof of this is

given later in section 3.6.

The general features of the temperature profiles are
similar for the conjugate and.constant flux cases, Figures
3.5.1 to 3.5.5. The temperature distribution due to pure
conduction (i.e. OZ)-is given by the dashed line for comparison.
For the conjugéte case, at any particﬁlar radial position
1 <R < B, thé temperature (as seen from the figures) incréaées
with decreasiﬁg 8. The profiles for 6=0° and 60° lie below
the curve for pure conduction while the profiles for 90° and
150° lie abové this curve. The profiles for 120° and 150° are
relatively close together compared to any two profiies.

This indicates that the local heat transfer rates for both
the inner sphere and the outer sphere is quite independent
of 6 for 120° < 8 < 180°,

In their experimental work, Scanlan et gl. [21]
postulated that for the occurrence of multicellular fiow,

a reversal of>the ordering of the temperature profiles would

occur (see their Fiqures 8 to 10). Direct comparison of
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their results with those given here is perhaps not meaningful
since their range of Ra used in their experiments was consider-
ably higher and with a smaller B than that considered here,
However, it is seen that the temperature profiles illustrated
here, there is no reversal of their order. Hence the

existence of multicellular flow does not occur here in accord
with the aiscussion in section 3.2 above.

The temperature on the surface of the inner sphere
varies with angular position except in the conjugate case
where w=1015 (i.e. an isothermal inner Sphefe). The temperature
variation on tﬁe.inner sphere's surface is most pronouncedAfor
the constant fiux case., For it is in this case that it is
assumed the héat flux on.the surface of the inner sphere is
uniform even £hough convection is taking place in the fluid.
On the other hand for thé conjugate case, there is a redistri-
bution of heaé.flux inside the inner sphere when there is
convection in the fluid. Also the temperature of the fluid
at the interface must be matched with inner sphere temberature
i.e. at R=1, Figures 3.5.1, 3.5.2 and 3.5.6.

The temperature contours wili be essentially those.
of concentricicircles for pure conduétion of heat from the |
single source;at the centre of the concentric spheres. The
resulting con§ective motion of the fluid displaces the
isotherms upwards, Figures 3.5.6 to 3.5.9. This is due to
the relatively.cold fluid from the bottom being heated up b§

both conduction and convection as it rises to the top of the
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/ Figure 3.5.6

isotherms, Conjugate Case, w=10, B=2.0, 0=.72, 6=103 A
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Figure 3.5.7

Conjugate Case, w=10, B=2,0, o0=10, G=72
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Isotherms, Conjugate Case, w=1015, g=2.0,
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R=2

 Figure 3.5.9

Isotherms, Constant Flux Case, B8=2.0, 0=.,72, G=103
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gap. The shape of the isotherms is still similar to circles
since pure conduction is predominant. In section 2.2, it
is shown that at the beginning of the solution of the energy
equation the inner sphere's surface is isothermal and/or of
constant flux thus for pure>conduction alone, the zero
iéotherm coincides with the surface of the inner sphere. When
convective motion takes place, the portion of the zero iso-
therm approximately in the upper half region is diSplacéd
upwards into the annular space. The lower portion is displaced
into the solid sphere where there is a redistribution of flux,
Figure 3.5.6;y'When w is very large the surface of the inner
sphere can bé‘considered to be isothermal even though there
-is a redistribution of heat flux.

The temperatufe contours are 'distorted' from that of
conéentric circles around the region for 6=120° approximately
e.g. Figure 3;5.9. This éhows that‘in this region vigorous
convection is taking place in the iﬁmediate vicinity of thé

inner sphere.

3.6 Heat Transfer Rates

The local Nusselt numbers

(B=1) 30

B oR

Nui(e) = -
R=1

HER
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and
Nu_(6) = - ABZ1) ., g2, 20
8 9R

are defined for the inner sphere and outer sphere respectively.
The Nusselt numbers defined here have the radius of the

inner sphere as the common length scale. The overall heat
transfer rate is then obtained by integrating the local
Nusselt numbers over the entire surface of the inner sphere

or the outer sphere. The overall Nusselt numbers for the

inner sphere and outer sphere are given respectively by:

T
No; = - {8-1) r 39 sin 6 4o (3.6.1)
28 J  oR |,

R m )
oo o= - (B-1) J[ g2 239 sin 6 do (3.6.2)
28 0R |gpeg

It is seen that Nui must be equal to Nuo . Evaluating

separately both Nu, ./ will serve as a check on the value of
’

the overall Nusselt number.

The Nusselt numbers, Nui o are dependent upon o, Ra,
. 14

w and B and as shown in Figures 3.6.1 to 3.6.4. The curves

of Nui o show that in comparison to the pure conduction value
14
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(shown as a dashed line in the figures) the heat transfer rate
has been increased for about the lower two-thirds of the
inner sphere and nearly half of the upper outer sphere and
reduced elsewhere. The greatest deviation of the heat transfer
rate from the pure conduction value is at 6=0° in each case.
There is an angular positionvin the upper half of the spheres
where the heat transfer rate from both the inner and outer
spheres is fhe same. This angular position moves towards the
top of the spheres i.e. 6=0° as w decreases and as Ra increases,
Figures 3.6.1, 3.6.3 and 3.6.4. For 120° < 6 < 180° and
Ra=720, Nui'§ do not vary much with.é ;s inferred in section
3.5 from the temperature profiles for 120° and 150°. However,
in this regién there exiéts a maximum value for Nu, and a
minimum value for Nuo. The locations of these turning poiﬁts
depend on the values of Ra, ¢ and the conjugateness of the
inner sphere i.e. w. Figure 3.6.5 shows the turning pointé
at 0=130° ana 125° for.Nui and NuO réspectively with Ra=1000,
w=10. As_ihferred»in section 3.5 from the temperature con-
tours in this>region near the inner sphere, there is vigorous
convective mbtion taking place in the fluid. Thus this is
the location where the heat transfer rate (or flux) from the
inner spherefis a maximum. As mentioned before in section>3.3,
the bottom of the annular space bétween the concentric spheres
acts as if it were a reservoir. The hot fluid is cooled aé
it flows dowhwards along the outervSphere. Hence, the heat

transfer rate decreases as the fluid flows into the reservoir.
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In the region around ,6~130° there is vigorous convection of
the fluid near thg inner sphere. So some of the 'cold' fluid
near the outer sphere will be entrained by the relatively
hotter rising fluid near the inner sphere. The remaining
cold fluid will flow into the 'reservoir'. This will reduce
the heat transfer rate to a value Iower than that of pure
conduction. Nu will be a minimum near 6=125° since most of
the heat flux is convected away by the fluid near the inner
sphere. This results in the distortion of the isotherms,‘see
section 3.5.

The influence of 0 on Nui'ozis not very significah£
for the ranéé of Ra considered in this thesis. For a fixed
w, low Ra coffesponds to low convection thus conduction plays
the predominant role. Hence for a fixed value of w and
Ra=720, a change of o does not alter Nui,o significantly,‘
Figures 3.6;1 and 3.6.2. .For a value of o=,72, NuO is greater
than that for o=10. It is usual to consider a fluid to be
more conducfive as o decreases, THus for a fixed low Ra,
as o decreasés, G (buoyancy effects) increases. This will.
displace the isotherms further upwards in this case. There-
fore NuO will increase near the top of the outer sphere aé
o] decreases:

It Will now be shown that the influence of o is a

higher order effect for the overall Nusselt numbers.
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Let
38 - . B + TN1 x cos 6 + (TN2 + TN3)x(3 cosze-l)
oR (B-1)
+ TN4
200
where TNl x cos 6 = (Go) x R
' 26
N2 x (3 cos® 6 - 1) = (6%0) x 2
2 2 2 395
TN3 x (3 cos 6 - 1) + TN4 = (GO)XW
[o] [e]
30 30, 0, ae% , 5 902
i.e. —_— = + 60 —— + G0 —= + G“c° —=%
oR R oR R oR
Hence Nui = - l-@:-u- 39 sin 6 d6
28 oR
0 R=1
= 1 - TN4 l (3.6.3)

=1
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Similarly
Nu = 1 - 87 x TN4
o
R=R8

Equations (3.6.3) and (3.6.4) show that the values of the
overall Nusselt numbers are altered from that of pure
conduction alone by TN4. The term TN4 comes from Og and is
independent of 6 1i.e. the zéroeth spherical harmonic. There-
fore ﬁai,o are functions of Ra only since thé coefficient of

2

62 is Ra”™.

Nu increases with increase of B and Ra, and as

i,o
w decreases, Figure 3.6.5 and Table I. For fixed values of
B and Ra, and as w tends to unity, Ehis implies that the fluid
in the gap of the concentric spheres becomes as conductive as
the solid inner sphere. Therefore £he heat transfer rate
increases. If B is small i.e. 1 < B <£1.25, the overall
heat transfer rate is esséntially tﬁat of pure conduction as
there is reléﬁively no convective motion in the fluid.

The éame value of 1.12 for the overall Nusselt number
as that given by Mack and Hardee for B=2.0, Ra=1000 is

obtained here for computing the conjugate case when w=1015.
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TABLE I

OVERALL NUSSELT NUMBERS FOR CONJUGATE CASE, B = 1.15, 2.0, and 3.0

OVERALL

NUSSELT

NUMBER

Ra = Ra x (z=7)
g=1.15 B=2.0 g=3.0

Ra" G o w=10 w=5 w=1012 | w=10 w=5 w=10 | w=5

10 10 0.01 1.000 1.000 1.00 1.00 1.00 1.00 1.00
100 10 0.10 1.000 1.000 1.00 1.00 1.00 1.06 1.08
500 10 0.50 1.000 1.000 1.01 1.01 1.01

720 10 0.72 1.000 1.000 1.02 1.02 1.03
1000 10 0.10 1.000 1.000 1.02 1.04 1.06
1000 10 10 1.000 1.000 1.03 1.04 1.06
2000 200 | 10 1.001 1.002 1.12 1.17 1.26
2000 2800 0.72 1.001 1.002 1.12 1.17 1.26
3000 300 10 1.001 1.004 1.26 1.36 1.57
3000 4000 0.72 1.001 1.004 - 1.26 1.36 1.57
5000 1000 5 1.004 1.008 1.74

c8
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4. EXPERIMENT

The purpose of the experimental investigation was a
flow visualization study of the conjugate natural convection
pattern between two concentric spheres. The experimental
equipment was designed so that it resembled as closely as
possible the analytical model outlined in the previous chapters.
The experimental results were expected to give a better
understanding of the flow patterns and temperature distri-
butions on the surface of the inner sphere. They were to
confirm as well that the flow in the gap between the concentric
spheres was steady, laminar and axisymmetrical.
| Experiments of this type had been performed by Bishop
et al. [6,7] dn the convection patterns between concentric.

isothermal spheres.

4,1 Experimeﬁtal Apparatus

The experimental apparatus, -shown in Figure 4.1.1,
consisted of.two concentric spheres. The inner sphere was
made out of two 6" diameter plexiglasihemispheres. Each of
the hemispheres had a 3" diameter hemispherical cavity.
Figure 4.1.2 shows the arrangement of the cylindrical heating
element with the four thermocouples inside the spherical
cavity and the eight thermocouples on the surface of the

inner sphere} The positions of the thermocouples are shown



Figure 4.1.1

Experimental

Apparatus
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Figure 4.1.2

Plexiglas Inner Sphere
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in Figure 4.1.3. The inner sphere was supported by a plexi—
glas stem, a central hole was drilled through the support stem
for the passing of two .066" diameter polyethylene tubes
(used for the introduction of silicone o0il into the spherical
cavity). The silicone o0il was required to transfer heat
from the heating element evenly to the envelope of the cavity.
The heating element had an output of up to 50 watts.

The plexiglas sphere was sprayed with a flat black
paint to reduce the reflection of light from it and thus
facilitate the photographic work.‘

Thenouter sphere consisted ef two 10" diameter Corning
'pyrex glass‘%emispheres with a .281" wall thickness. The lower
half of the outer sphere had a 2" diameter hole. Through this
hole a 2" diameter collar of 1/8" high, machined on the 3"
oﬁter suppo}t stem, was fitted, glued and sealed with
silicone compound.- As‘shbwn in Figure 4.1.4, part of the
polystyrene‘sﬁpport stem extended into the gap between the
concentricjspheres. This part wae'l 3/4" long, 1" in diameter
and threaded internally with a l/2“'diameter hole drilled
along the whole length of the support stem. Ther
thermocoupie wires and the connectingvleads to the heatiﬂg
element were.passed through the central hole of both support
stems. The inner stem with a 1" diameter, 1/4" high collar
was then aetewed onto the outer stem. This arrangement.

ensured the concentricity of the two spheres.
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Pigure 4.1.3 Locations of Thermocouples on Surface of Inner Sphere




Figure 4.1.4

Support Stem

with Glass Hemisphere
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re 4.1.5

Top

View of Support Stem and Glass

Hemisphere
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Smoke could be introduced to the gap between the
concentric spheres through one of the two 5/8" diameter holes
running through the whole length of the outer sphere support
stem, Figure 4.1.5. The Pyrex hemispheres were sealed to-
gether with silicéne glue. The surface temperature of the
outer sphere was measured by four thermocouples at positions
of 0°, 30°, 90° and 120°.

The outer sphere4support stem was méunted onto a
plexiglass base. The base was held in pdsition by two brass
bolts to the. frame of a water tank (30" x 28" x 30") as éhown
in Figure 4.1.1. The water tank was used to provide a constant
temperature bath. A temperature coﬁtroller designed by the
Geophysic# Débartment,* University 6f British Columbia, was
used to contfbl the water temperature in the tank. The
?latinum wiré'temperature sensing prbbe of the temperature
controller wéé taped to the side ofvthe outer sphere suppdft
stem. A"Brisket' heating tape (output capacity 60 watts)
connected to the temperature controiler was placed around
the plexiglaé'base, Figure 4.1.1. fhe water in the tank was
circulated fgom the top to the bottom of it by a 'Randolph'
pump which was connected to the outlet and inlet pipes at the
aluminium bgck—plate of the tank. |

Theifhermocouple wires used were of 36 gauge Chromel-
Alumel type; Figure 4.1.6 shows a typical caiibration curve

for the thermocouples. As the calibration data followed1the

* :
The help of Dr. Russel and Mr. B. Goldberg in design-
ing this item is gratefully acknowledged.
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Figure 4.1.8

Layout of Experimental Apparatus
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‘manufacturers' data very closely,.only three of the thermo-
‘couples were calibrated. The platinum wire sensing probe
was also calibrated, Figure 4.1.8. |

The sides of the tank were either painted black or
lined with black construction paper so that the whole
enclosure was dark to facilitate photographic work. A
central harrow slit of 1/8" width was cut into the blaék paper
lining at one side of the tank for collimating the.
illuminatiﬁg light. Two 500-watts 35 mm slide projectors
were positioned in front of the slit so that a vertical plane
of light traversed the centre plane of the concentric spheres.
On the adjacent side of the tank a rectangular opening was
cut into the black paper lining to allow visual and photo-
graphic obser&ation of the flow pattern in the illuminated
vertical plaﬁe between the concentric spheres. Figure 4.1.8

shows the_whble experimental apparatus assembled.

4.2 Experimental Procedure

Owing to the low thermal conductivity of plexiglas
the inner sphere was heated up slowly in small increments of
heating-rates until the desired value was achieved. Sufficient
time was allowed to elapse before the heating rate was | |
increased. ‘A L-C filter unit was used to smooth out the
heating current (supplied by a Heathkit regulated low voltage

D.C. power Source). At the same time, the water temperature
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in the tank was kept constant. Before each experimental run,
a period of approximately two days was allowed to achieve
steady-state, such that the thermocouples' readings were
constant over this period.

Cigar smoke was gently introdﬁced into the gap between
the concentric spheres through either one of the two tubings
(Figure 4.1.1) which connected the two 1/8" holes in the outer
sphere support stem to the two openings at the back plate of
the tank. Sufficient time was allowed for the stabilization
of the flow pattern before. photographs were taken. A 35 mm
camera and Kodak TRI-X film with a speed of 400 ASA were
used for photography. The light source from fhe two pro-
jectors was Sﬁitched on only when photographs were taken.

This évoided supplementary heating of the inner sphere surface
through absorption of radiation from the light source.
-'Focuéing the camera. directly on the illuminating
plane was difficult and unsuccessfui. So an indirect method
was used whefeby the camera was focused onto a finely printed
surface placed adjacent to the outer‘sphere, in the plane éf
the path of Eﬁe illuminating light. A polarizing filter Was
attached to the camera lens to eliminate most of the reflec-
tions from the inner sphere. Expoéure times were either
1/2 secénd or 1 second with lens apertures setting at F5.6
and F8 respectively. The exposed film was developed using
Kodak D-19 déveloper for 10 minutes so as to raise the film
speed to 800 ASA. The photographs were printed on high

contrast paper for better contrast of the smoke patterns.
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4,4 Experimental Results

Figures 4.4.1 to 4.4.3 are photographs of the flow
pattern in the gap between the concentric spheres obtained
under three operating conditions. Due to the thickness of
the outer glass sphere, its inner surface acted as a reflec-
tor. This caused the bright and dark regions over the surface
of the outer sphere. There are two dark lines across the
gap in the photographs. These are the shadows of the
horizontal seal between the two halves of the outer sphere..
There are some dust particles'on the surface of the outer
sphere which appear as bright scatter spots in the photographs.
Similarly, the white line starting f}om the top of gap is
the reflection of the outer sphere surface thermocouples.

The reflection of light by the outef'sphere support stem
appears as a White region in the bottom of the gap.

Fromwboth visual end photographic observations it is
seen that the flow pattern in the gap between the concentric
spheres is sﬁeady and axisymmetricai about the vertical
axis. At the diameter ratio used (B=1.67) and for all three
temperature differences, the flow pattern is of the 'crescent-
eddy' type as predicted in the analysis. The flow patterns
can essentially be divided into two regions as follow:

(a) the region in the immediate'vieinity of each sphere
where there is a thin-layer of high velocity flow;
(b) the central eddy region where £he fluid is moving

relatively slowly. The fluid velocity near the inner sphere



Figure 4.4.1

Smoke Pattern at G=1.32 x 104, AT

.024°C

-
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Figure 4.4.2

Smoke Pattern at G6=3.72 x 10

5

’

AT

T1+21°C



Figure 4.4.3 Smoke Pattern at G = 5.78 x 105, AT = 10.3°C
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is higher than that near the outer sphere. At the top of the

inner sphere there is a jet-like flow polarization, The
fluid separates from the inner sphere near the top and flows
downward along the outer sphere into the bottom of the gap.
This region is relatively stagnant and acts as if it were

a reservoir. The centre of the eddy is in the upper half of
the gap between the concentric spheres. Its position remains
relatively stationary for all three temperature differences
tested.

‘Bishop et al. [7] had reported that in their experi-
ment on natural convention between c¢oncentric isothermal |
spheres, as tﬁe high speed flow sepafated from the top of the
inner sphere;vé corner eddy was observed in the 'corner'
formed by thejintersection of the surface of the inner sphere
with the vertical axis of symmetry. However, this phenomenon
is not observéd here for natural conjugate convection. |

Table; II, IIT and IV show the temperature distribﬁtions
on the surface of the inner sphere, the temperature of the
oil in various positions (Figure 4.1.2) in the cavity inside
the inner sphere and the surface temperature of the outer
sphere. 1In each case, the temperature on the surface of the
inner sphere decreases as § increases, as predicted theoretically.

The following Tables (II to IV) show the temperature
distribution on the surfaces of the concentric spheres at

the positions: indicated in Figure 4.1.2.
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TABLE II
Q= 1.4 watts AT = .024°C , 6 = 1.32 x 10%
Position Temperature Position Temperature
(1) 0° 28.3 (9) A 33°C
(2) 30° 28°C (10) B 34.2°C
(3) 45° 28°C (11) c -
(4) 60° 27.5°C (12) D 36.6°C
(5) 90° 26.5°C (13) 0" 24.5°C
(6) 120° - (14) 30°" 24.5°C
() 150° 25.5°C (15) 90°” 24.5°C
(8) 165° 25.3°C (16) 120° " 24.5°C
*Outer Sphere.
TABLE ITII
Q = 4.29 watts AT = 7.21°C , G = 3.72 x 10° -
Position Temperature ‘Position Temperature
(1) 0° 35.5°C (9) A 48.5°C
(2) 30° 35.4°C (10) B 49.5°C
(3) 45° 35.1°C (11) C 36.2°C
(4) 60° 32.5°C (12) D 54°C
(5) 90° 31°C (13) 0°* 25.3°C
(6) 120° - (14) 30°" 25.3°C
(7) 150° 28.8°C (15) 90°" 25, 3°C
(8) . 165° 28.3°C (16) 120°" 25.3°C

* :
- Outer Sphere.
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TABLE IV

Q = 6.14 watts AT = 10.3°C , G = 5.78 x 10°
Position Temperature Position Temperature

(1) 0° 37.5°C (9) A 61°C

(2) 300 37.0°C (10) B 68.5°C

(3) 45° 37.0°C (11) C -

(4) 60° 36.8°C (12) D 72.5°C

(5) 90° 36.5°C (13) 0" 24.5°C

(6) 120° - (14) 30°" 24.5°C

(7) 150° 31.4°C (15) 90°" 24.5°C

(8) 165° 31.2°C (16) 120°" 24.5°C

*
Outer sphere.

Although the experimental results obtained here are
for the values of w=15, B=1.67, 0=0.72 and appreciably
higher G numbers than those for which the perturbation
expansions will be valid, the flow pattern and the temperature
distributions on the surface of the inner sphere are qualitatively
similar to those predicted by the analysis.' Moreovér, the
experimental results confirm that the flow in the gap between

the concentric spheres is steady, laminar and axisymmetrical,

assumptions used in the analysis.
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5. CONCLUSIONS

The present investigation has led to the following
results:

1. Theoretical solutions for the governing equations
for steady laminar axisymmetrical conjugate natural
convection between two concentric spheres were
obtained. The case of a constant flux innerxr
sphere with an isothermal outer sphere was solved
separately.

2. The limits of the applicability of the solutions
were defined.

3. The streamline configuration was found to be of
the crescent-eddy type. The existence of secondary
celis was found not to be é genuine feature of
either the conjugate or. the non-conjugate cases

considered here,

4, Contours of isovorticity iines, isotherms and
distributions of Velocity.and temperature of the
flﬁid in the gap between the concentric spheres
were obtained and discussed.

5. Loéal heat transfer rates from both inner and outer
spheres were determined.

6. The influence of Prandtl number on the overall Heat

transfer rate was found to be a higher-order effect.
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" The flow pattern obtained experimentally is

steady, laminar, axisymmetrical and of the
crescent-eddy type.
The experimentai results support the analysis at

the very least qualitatively.
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APPENDIX I

CALCULATION OF. VISCOUS DISSIPATION EFFECT

The energy equation of the fluid including the viscous
dissipation terms (with rotational symmetry) expressed in
spherical coordinates is

Vl
I I S

oOR! R' 36

2 '
Kf-V T pCp (VR

I
o

(a-1)

where u@v is the dissipation term of mechanical energy by

viscous effects per unit volume. The dissipation function,

(—2 + B+ 8 v By Lot e
oR R' - R' 36 R R!

' |
. ' gt . U !
o { VL2 VL o, Wy 2 o VL V) 2 }

The dimensionless radial and tangential components of

velocity are introduced as follows,

! R!
R ' e
\ = Ve 6

w

R

Y

Rendering the energy equation (A-1l) dimensionless,
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v
v29 - ¢ (v, 29 4 839, , Do = 0 (A-2)

RArR R 36

where the viscous dissipation number is

b ov2
b R® K. AT )
i 7f ref
Let
Do
e _ v
: V2®

denote the dimensionless ratio of the viscous dissipation term

to the conduction term.

Let
D@v
A= 7
o (Vg3 , 8 30)
' oR R 3

denote the dimensionless ratio of the viscous dissipation term
to the convection term.
For air with 6=1000, 0=0.72, Ri=1 ft, B=2.0, w=10

10 the values of le| and |A] at both angular

and D=1,146 x 10~
and radial ﬁbsitions in the gap between the two concentric

spheres are given in Table V.
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RATIO OF VISCOUS DISSIPATION TERM TO CONDUCTION TERM: RATIO OF
VISCOUS DISSIPATION TERM TO CONVECTION TERM (AIR)

R 1.1 1.3 1.5 1.8 0
F=T€| 6.58x107 11 [ 3.56x10-11 | 3.16x10711 [ 3.27x1071Y | 150
Ix].| 2.72x107° | 9.25x107%0 | 1.84x107® | s5.00x10710 | 1s°
le| | 1.89x2072 | 9.10x10710 | 7.95x10710 | 8.15x10710 | eoe
Al | 5.42x10720 | 2.28x107%0 | 3.54x107% |1.80x20720 | g0°
le] | 3.23x2071% 1.64x107%0 | 1.45%107%0 | 1.49x107%0 | 1350
|2] | 8.00x1072% | 4.94x20710 | 1.43x107° | 4.10x10710 | 135°
For wé;er with G=62, o=ll.6,.Ri=l ft, B=2.0, w=1l0 and
D=4.42x10"12, the values of |e| and |A| at both angular and

radial positions in the gap between the two concentric spheres

are given in Table VI,

TABLE VI

RATIO OF VISCOUS DISSIPATION TERM TO CONDUCTION. TERM: RATID OF
VISCOUS DISSIPATION. TERM TO CONVECTION TERM (WATER)

R 1.1 1.3 1.5 1.8 8
le] | 6.33x107%3 | 6.78x107 % }4.21x107%% | 3.07x1071% 15°
{x] | 8.98x107%2 | 4.14x10712 [8.99x107%2 | 9.05x107 %2 15°
el | 4.65x10713 | 1.22x10712 [9.45x10713 | 1.17x10712 60°
In] | 2.10%x1071% | 6.63x10712 |1.33x107% | 2.80x10712 60°
le| | 5.12x107%3 | 2.57x10713 |1.81x10713 | 1.37x10713 | 1350
Ir] | 2.58x107 | 1.05x107H {7.60x107H | s.62x107M2 | 1350
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Tables V and VI show that the relative order of
magnitude of the viscous dissipation term to either the con-
duction term (le|) or the convection term (|\]|) is at least
of the order of 10-8. -Thus the assumption that the viscous

dissipation of energy in the fluid assumed in section 2.1

to be negligible is found to be valid.
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APPENDIX IT

CONJUGATE- PROBLEM WITH INNER SPHERE
" CONTAINING DISTRIBUTED SOURCES

Consider now the inner sphere of the conjugate problem
in section 2 with uniform distributed heat sources instead
of a single heat source at its centre. The energy equation

of the inner. sphere then becomes
K. x Vo T, =  B(R) (B-1)

where B(R) is the heat source function per unit volume assumed

constant. The reference temperature, ATref' defined in

4

section 2.2, with Q replaced here by 8 x &1 R.3
. ' 3 i

Bx 2R3 x (8-1)
AT - 3 i
ref 4 'R
m B8 Rj Kg

2
B R;™ (B-1)

- 38 Kf

Rendering the enefgy equation (B~1l) dimensionless, it becomes

2 . = ---——3_8._—-— (
v= 0 w (B-1) B-2)

= constant. for given values of w and B .

H
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Then the energy equation (2.2.3) given in section 2.2 for the
inner sphere is replaced here by equation (B-2). The boundary
conditions and the method of solution for this case are |
exactly the same as previously described in section 2. Also
the set of uncoupled linear differential equations given in

'section 2.3 remains essentially the same with the sole

exception that the equation (2.3.7) is replaced here by

v e, = 38 | o (B—3)‘»

w (B8-1)

Equation (B-3) is solved simultaneously with equation

(2.3.8) subject to the boundary conditions (2.3.18) and

(2.3.19). The solutions are
~ 0 . 2
o i (2o
w (B-1)
:eo = ._.__B___._(%—l)
: (B-1)

As the equations for y and the higher order terms of

~

the 0, and © expansions and the boundary conditions remain

unchanged; their solutions are those given in section 2.4 .
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Hence for the conjugate problem the stream function, V¥ and
the temperature distribution O of the fluid in the gap of the‘
two concentric spheres do not depend dn what form of heat
‘source distribution inside the inner sphere. However, the
inner sphere temperature distribution does depend on the heat

source distribution inside the inner sphere.
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APPENDIX III

A BRIEF REVIEW ON SMALL GRASHOF NUMBERS NATURAL
CONVECTION ABOUT. A. HEATED SPHERE

In the analysis of conjugate natural convection
betweén concentric spheres, it is seen that as the radius
ratio, B+« the problem reduces to a single heated sphere in
an unbounded expanse of fluid. The resulting flow field is
essentially confined to a vertical plume above the heat |
source. The temperature vanishes outside the plume and as R-w
“the velocity should vanish everywhere except in the narrow
wake region above the sphere, wherein it should be bounded.
The regular perturbation expansion scheme employed in this
thesis is inadequate except in the region near the sphere.

For it is in fhe solution for Wi (eq. 2.4.4), as R+x the O(R3)

[«
term of VY. corresponds to an O(R) behaviour in VR

1
(eq. 3.3.1a).

Thuéithe velocity boundary condition at infinity is
not sétisfieé; This is aﬁalogous to the Whitehead paradox
[22] for smail Reynolds number flow‘past'a finite size three-

"dimensional gody (i.e. the convective effect must be
considered at the distant region away from the Sphere,>

although diffusive effect is predominant near the sphere).

Therefore, there exists an outer région in which the con-
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vective, diffusive and bouyancy effects are of the same ordexr
of magnitude. An inner—and—oufer matched asymptotic
expansions will be required for the solution of the flow .
field. Note that at a large distance away from the sphere,
although there is conjugate effect at the surface of the
sphere, it will appear as a heat point source.

| In order to obtain the governing equations in the outer
region where the convective and diffusive effects are of the

same order, Mahoney [23] introduced an appropriate length

_ -1 B

scale (i.e. R=RiG 2) together with an asymptotic expansion
-] . :

in terms of G 2. He noted the complexity of obtaining exact

solutions for the outer region. Instead he obtained similar-

ity solutions to the equations by assuming the existence of
.a»vertical plume in this region. However, it is impossible
to match the oﬁter solution to the regular perturbation .
expansion in ﬁhe inner region.

Receﬁfly, Fendell [19] obtained an approximate solﬁtion)
first by seeking a similarity solution,'and then by lineariz—
ing the equations in the outer region in the manner of
~ Oseen's equation.. The magnitude of”the assumed uniform
stream is based upon the coordinate:perturbation solution in
the plume. Hence the velocity above the sphere is reduced
from unbounded growth with distance from the sphere to a.
constant maénitude. This proceduré can be expected to yield

qualitative”fesults only. In their conjectures, Hieber and

Gebhard [20] showed that it seems plausible to assume that
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velocity in the wake behave as a uniform stream only in the
matching region. This is based on their results on free and
forced convection from a sphere at low Reynolds and Grashof

numbers.

Hossain and Gebhart [24] employed a single parameter
perturbation scheme in their analysis to this problem. The

Grashof number is used as the expansion parameter in combin-
atioh with exponentially decaYing functions. These decaying
functions will ensure the velocity and temperature vanish as
R+w, . However, the disadvantages of this scheme are (a) it
‘is only valid for very small G, (b) the temperature boundary
condition at the surface of the inner sphere is not satisfied
completely.

- The difficulties in the analysis of small Grashof
_ numbers from a heated sphere.seém to be that the flow field is
divided into. regions where the predominance of particular
physical effects varies for each region i.e. A(a) in the
vicinity of the sphere. the diffusive effect is predominant,
(b) in the matching region of the inner and outer flow field
the convective, diffusive;énd bouyancy effects are of equal
importance, (c) at infinity the velocity should be zero.
The limits of these regions in the flow field are apparently
Very complicated. Hence not all scaling lengths or velocities
ére known. The techniques [20] which are employed success-
fully for thé_forced convection flows are not successful here
except qualitatively. This is due to the entirely differeht
flow field being encountered. Therefore a study of conjugate
natural convéction from a single heated sphere would be |

interesting and challenging.



