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ABSTRACT

The new formulation of the load-flow problem presented in
this thesis yields a set of egquations each of which has only one
nonlinear term. The equations are derived from the corrections
required to make the final values equal to the initial estimated
values, The resultant set of equations can be wused when the
initial estimated values are adjusted to their final values.
However, derivation of the equations for this 1latter case
results in a set of eguations with (n-1) nonlinear terms in each
equation forvan n-bus power system, TFive algorithms based upon
the new formulation are described. HNumerical tests on several

sample power systems show that some of the new algorithnms

hetter
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onvergence and speed characteristics than the

{

commonly used Ward-Hale and Newton algorithns.
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1« INTRODUCTION.

Load-flow studies are required in‘the design of any power
system, Such studies are also required to optimally dispatch
power in the system and to find the initial conditions of the
system for transient stability studies. Numerous 1load-flow
studies of various system configurations have to be made in

planning new systems and extending present systems.

‘The load~-flow problem is to find the voltages of the
various buses (nodes) of a power system such that certain
constraints are satisfied. These constfaints may.require.that a
desired prescribed or scheduled value of voltage magnitude exist
at some of the buses, or tﬁat prescribed or scheduled values of
active, otT real, and reacti?e powers exist at some of the other
buses., Additional constraints in the form of én acceptable flow
of reactive power in the syétem or an acceptable loading of the
transmission 1lines may also be. imposed. To satisfy these
additional constraints repeated use of the basic 1load-flow
computer progranm is necessary and - different system

configurations may have to be studied [1].

A load-flow program consists of three parts as follows:

1) The input part which assembles all the input "data and
forms the necessary matrices.

2) The procedure or the main part of a load-flow program
which finds the bus voltages in some iterative process.

3) The output part which calculates the individual line

power flows and prints out the results of the load-flow study.

“



In the input part, each bus of the powver system is defined
as one of the following types:

a) A "(P-Q) type bus" or *"load bus" at which the feal and
reactive powers are scheduled.

by A W (P-V) type bus", "generator bus"™ or ‘"voltage
confrolled bus® at which the real power and the voltage
magnitude are scheduled.

c) A “slack bus%“, "swing bus", *%floating bus" or "teferenée
bus® at which the voltage is scheduled both in magnitude and
phase angle., Real and reactive powers are not specified for
these buses, These buses compensate for the unknown
transmission losses in the system. Each system has at least one
slack bus but some systems have more than one. In this thesis
we will assume that there is onliy one slack bus in the system.
However, all the conclusions and results are valid even if there
is more than one slack bus in the system since these buses do
not 1increase the number of unknowns and the number of equations

used in the computation.

Additional constraints, such as upper and lower bounds for
the (P-Q) type bus voltage magnitudes and (P-V) type bus
reactive powers, may also be'given as part of the .bus input
data. Transmission lines are normally. represented by their

nominal 1T circuits, as shown in Appendix A.

The procedure part of a load-flow program includes somne
kind of iterative numerical process. Algorithms differ in
procedure but, in general, a set of initial values for the bus

voltages 1is estimated and corrected in successive steps until



the final solution is achieved.

A favorable initial value is necessary for a successful
solution. Normally the flat-start is wused with all véliage
magnitudes set to their scheduled values or, if not scheduled,
-to the magnitude of the slack bus and all angles set equal to
zero., Sonmetimes tﬂe solution of a previous study may be used as
the initial values for the study of a system configuration which

is similar to the previous systen,

The iterative part of an algorithm uses some stop criterion
to determine if the solution is complete. Any of the following
stop criteria or any combination of them  may be used for this

purpose:

1) The greatest voltage correction made in an iﬁe:ation
cycle should be less than a desired tolerance.

2) The magnitude of voltages and the power flows should be
within a desired tolerance of their écheduled values.

3) The sum of the residuals of real and reactive powers of
all the buses, which 1is called the slack.bus power mismatch,

should be less than a desired prescribed value.

The third stop criterion is wused in all the algorithns

described in this thesis.

Although some of the earlier load-flow programs used mesh
equations,vrecent methods use nodal equations [ 1] because ncdal
equations are easier to form and modify and need less computer
lstorage. Laughton and Humphrey Davies [1] divide existing

load-flow  algorithns into two categories, . the "iterative



nethods" and tbe "direct methods%., The direct meihods are those
that solve a set of linear equations at each step of their
iterative proceadure. These mnethods require inversion of a
matrix in one way or another. The iterative methods make use of
the nodal admittance matrix in an iterative process and correct
the bus voltages one by one. VNo matrix inversion is necessary.
The iterative methods do not have the huge computer ‘storage

requirements of the direct methods.

In 1956 J.B.Ward and H.W.,Hale [2] presented an algorithm
based upon the Gauss-Seidel iterative procedure. . Because of its
simplicity and ability to converge for most problems this
algorithm was commonly used until very. recentlye. Use of
different acceleration techniques with this algorithm were
implemented by others [2,4,5]. The aigorithm benefits mést from
the use of ‘linear acceleration factors [3] and relaxation
techniques {43]. In 1959, a new formulation of the load-flow
problem was presented by Van Ness [6]. This formulation related
small changes in real and feactive powers to the small changes
in voltage magnitudes and phase angles bhy meéns 6f first order
derivatives. Van Ness tried several iterative aigorithms based
upon the new formulation., These algorithms were essentially the
Ward-Hale method used with polar co-ordinates. Later in 1961,
Van Ness and Griffin [7] used the elimination method to solve
the set of linear»equations which related the small changes in
power to the small changes in voltages. UNowadays this method is
called ﬁewton's method. Although use of the elimination process
reduced, to a «certain degree, the computer storage prolblenm

involved in inverting the matrix of coefficients,' called the



Jacobian matrix, the method was not yet capable of handling
large power systems and, therefore, was not practically useful.
In 1967 Tinney and ‘Walker [8] suggested several schemes for
ordering the nodes of a network such that when the elimination
process 1is used the number of non-zero terms accumulated in the
upper triangular matrix will tend to be minimum and Tinney and
Hart [9] suggested an algorithm that used the elimination
process along with sub-optimal ordering of the bﬁses. This nade
~ Newton's method applicable to largye power systems and because of
its‘faster and bette; convergence, this method soon replaced the
Ward-Hale method. other contributions have been made to
-Newton's me thod to nake it more general and more

efficient [10,11,12,13,14,15].

Use of the Hessian matrix instead of the Jacobian nmatrix
has also been investigated [16] but so far it has not shown any

significant improvement over the Newton's method.

In Chapter 2 of this thesis the Ward-Hale method and
Newton's method are reviewed. In Chapter 3 a new set of
load-flow equations is derived and several algorithms based upon
this formulation are described. These new algorithms are
compared with the previous methods for a number of sawmple powver

systems and the results are presented in Chapter 4.



2. PREVIOUS METHODS

2.1 The Ward-Hale Method

- e A e i S 4o o gt it e e s e A Sl s s s it

This method of solving the load-flow problem was first
suggested by J.B.Ward and H.W.Hale in 1956 [2]. Further
contributions to the original paper [3,4,5] made the algorithm
faster and more efficient. This method was widely wused ‘until

very recently.

The mnethod makes use of the Gauss-Seidel iterative
procedure which wusually converges to a satisfactory final
solution after 'a certain number of iterations. However, the
ndmher of iterations depends upon the size, configuratibn and
parameters of the powvwer systen. It also depends upon the
closeness of the initial estimate to the final solution. There
are some 'cases where this method is unable to converge tc the

‘'solutions which are known to exist.

The algorithm is simple and easy to progranm. It is also
capable of handling very large power systems by using imprcved
progranming techniques and taking advantage of sparsity of the

admittance matrix.

P e e St . e e e st e et

Nodal equations are used to express the relationship

between currents and voltages:



[1} = [v] [v] | o (2-1)
where [Y] is the nodal admittance matrix. This matrix is
formed easily 1f transmission lines and transformers are

~represented by their T equivalents. Appendix A shows how the
I eqguivalent <circuits of transmission lines and transformers

are found and how [Y] is forned.

The iterative procedure starts once J[Y¥Y] 1is formed. With
primed symbols referring to the present values at each iteration
step and unprimed symbols to the final or scheduled values, the

procedure is as followus:

Step 1) An initial estimate for the voltages 1is made. A

-
4

favorable starting approximation is necessary for a successful
solution. If the initial estimate is too farA fron fhe final
solution the method may diverge or the number of iterations will
be prohibitive. Normally, the flat-start is sufficient.

Step 2) Using equation (2-1), the current entering any bus k

can be calculated:
n -
L' =Yy Y.V (2-2)

where n is the number of buses.

The power entering bus k can then be calculated:

S! =Vl I'* 2
k 'k "k . : (2-3)

Obviously 4if [V'] is not equal to [V], then SL will not be
equal to the scheduled value for power, Sk.

Step 3)'The correction to the voltage of bus k, AV is

k'



determined from the differences between calculated and scheduled
povwers. It is assumed that the voltages of all the other buses
remain constant when this correction is calculated. A%{ .should
~satisfy the following condition: ’ |

S. = (V! + AV )(I' + AT )* ‘ (2-4)
k k k k k

Because V¥ 1is the only voltage that changes we can write:

AL = Y AV | ‘ (2-5)

So (2-U4) can be written as:

L
S

. % %
AS, = AV, I'T 4y v, Y5 Ay
K kol T Ve Yae AN T AV Yo v (2-6)

Assuming that A“{ is small, the last term on the right_ hand

side of (2-6) can be neglected:

AS, = 107

A AR S

k k “kk k - - (2=7)

Equating real and imaginary parts in (2-~7) we will have:

AP m -

]

2-8
AQk . m m . B ( ‘

wvhere AVk = o +]Bk and m]! mz, m3 and mé are functions of the
real and imaginary parts of the known values, IL, Ykk' Vg as

follows:



Let:
i} .
e = G T3 By
' =
e =t bk
A .
and vy = e * 3 f
‘then:

1 %7 % ke T B

il
P
1
h
=~}
[
o]
o]

My,

For a (P-Q) type bus, (2-8) is sufficient for calculating
corréctions o and Bk . On the other hand, at a (P-V) type
bus, the value of %ﬁ is not scheduled so that;AQk is not
specified, but the magnitude of %{ is to be held constant.. This

constraint is formulated as:

* 12
(v + Avk)(v'k +av) = |V (2-9)
"ok * 12 2 2
or: v, AV, + vi_ &V, + |av [ = v, | -lvy ] (2-10)

Neglecting the second order term |Avkx2 and using Avk = ak+j8k

yields:
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. ,
Zey o +2 £ B = A(lel ) - (2-11)

thus in the case of (P-V) type buses we have:

AP m m

k 1 2 “k ,
) = - (2-12)
A(lvk[ ) 2e 2f B

Step 4) Step 3 1is repeated -for all buses except the slack
bus. Corrections are applied to the voltages as- soon as they
are calculated.

Step 5) Various stop ériteria may be used at each iteration
cycle., In the original Ward-Hale  method, the stop <criterion
méde use of successive calculated values of voltages. If the
stgp criterion is satisfied, then the process 1is terminated.

Otherwise, the process will be repeated starting from step 2.

Acceleration

The algorithm described above can be made more efficient by
inmplementing certain changes such as the use of acceleration
factors., The idea is to multiply the correction voltage values
by factors before adding them to the present values of voltages.
These féctors can be found experimentally so that using them
will speed up the algorithm. Usually the values that show the
most satisfactory results lie in the range of 1.5 to 1.8.

Ordinarily different factors are applied to the real and



11

imaginary parts of AV, .

hnother method of speeding up the algorithm is through the
use of "relaxation techniques®" [4]. In this method, the order
in which the unknowns are calculated may be varied in each
iteration cycle., The residuals are calculated and the next bus
to be <corrected is the one having the largest residual.
Sometimes the corrections are based upon the values greater or
smallerA than the actual residuals. These are called
"over-relaxation® and "under-relaxation® techniques,

respectively.

Computer storage is needed mainly for the nbdal admitﬁance
matrix [Y). _Howevér, if all the zero and non-zero elements of
[Y] are stored, this imposes a serious restriction on the size
of the power system that can be handled. For example, a 400-bus
sy$tem cannot be solved on a computer that has 1000k bytes of

nemory.

Fortunately, [Y] is a very sparse matrix. Taking advantage
of its sparsity by storing only non-zero elements, programs can
be written to handle power systems of much larger size on the
same computer. Appendix B describes the storage scheme used in
writing this program. This is a new scheme that makes it
possible to access any element of the matrix with little
scanning effort. Also it stores the elements and the pointers

such that, in a time-sharing conmputer system' with virtual
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memory, the number of READ/WRITE operations on ‘a secondary

storage device is less than that used in conventional schemes,

2.2 Newton's Method

. . e = s e S i . o e . et U Ao T —

Newton's method [7,9] falls into the cateqgory of so-called
direct methods and has largely superseded the Ward-Hale nmethod
in 1load-flow studies of power systens. It consists of the
direct solution of a set of linear wequations in an iterative
process. These linear equations relate'the small changes in
real and reactive powers to £he small changes in voltage
magﬁitudes and phase angles. When the changes are not small,
these equations will be approximations to the actual expressions
and using them in anm iterative process will result ia the final
answers., If changes are too large, then the equations wiil not
be able to converge to the final solution. The method might
diverge or converge to a wrong answer, . Thus, the closeness of
initial estimates to the final solution is a very important
factor in determining the convergence of Newton's method.
Usually the range of initial estimates for which Newton's method
converges to the right solution is smaller than that for the

Ward-Hale method.

-Storage 1is the main problem in this method if sparsity of
the matrices is not taken 1into account through sub-optimal
ordering of buses [8,9]. This is explained later. Even then
the storage requirements are larger than in the HWard-Hale

method. If storage is not critical , this method is preferable
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to the Ward-Hale method because it can solve some problems that

the Ward-Hale method cannot. Also for problems that toth

methods can solve, Newton's method converges faster.

The Algorithnm

Newton's method can be formulated using either polar or
rectangular co-ordinates. Polar co-ordinates are commonly used
because it has proven to be more advantageous [17]. Formulation
of Newton's method using polar co-ordinates can be briefly

explained as followvs:

6

Let v, 4 v | e & A et 5, (2-13)
and Y5 A lijl ej‘skj 4 ij + 3 By (2-14)
chen B3 g = DIl gl Iy ST T
Plso let 8 T Iby T (e + I E0G v 5B (2-16)

From (2-15) the first order sensitivities can be found [6] :
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oP 3P
55 ot [v,]=x
99 j v, 3 g
—— = J
v L
BGJ. kj alyjl l J, K
where for k#j
= T, = f -
Kkj ki % Tk bJ “k
(2-18)
Nkj = -—Jk = a, ek + bj fk
and for k=j
- _ X 2
B = =@ = By I 7
—n 2
Le = Q% ™ Bge IVl
(2-19)

2
N = B + G 1V

J

kk = T

2
K~ G 1V

Thus the Jacobian wmatrix, which relates small changes in

voltages to small changes in power flows, has the following

form:
AP H N A®
= . vl (2-20)
: Alv
AQ J 1, 21
‘ [ V]

For any (P-Q) type bﬁs, equation (2-20) can be written. But for
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a (P-V) type bus only the first equatidn of (2-20) can be
written hecause Q is not scheduled for such a bus and,
therefore, AQ 1s unknown, Also at these buses only A8 is
unknown. This makes the number of equatibns and unknowns equal.
In a system with n1 (P-Q) type and n, ({P-V) type buses this
number will be:
m=2nl+n2

The corrections +to the magnitudes and phase angles of bus
voltages can then be found by solving the sét of linear
equations (2-20). Applying these corrections to the vocltages
will result in a new set of voltages which are not necessarily
the final solution since the corrections may not be very small.
These voltages are used as initial values for the next iteration
and corrections are calculated in the same way. This process is

repeated as many times as necessary until the final solution is

achieved.

Dy (2-21)

_is considered as one element, then the Jacobian matrix will have
the same format as the [Y] matrix except that it is not
necessarily symmetric. Thus the Jacobian matrix is a sparse

matrix. However, in order to solve the set of linear equations
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(2-20) , the inverse of the Jacobian matrix hag‘to be determined
and the 1inverse 1s not necessarily spafse. In fact, it is
usually a full matrix. For large power systems, the amount of
storage needed to store a full mwatrix, such as the inverse of
the Jacobian matrix, 1is prohibitive. This puts a seriocus
restriction oh the application of this method. The same protlen
occurs in any of the so-called direct methods where a set of

linear sparse equations has to be solved.

When the Gauss elimination method 1is used, it may be
possible to order the egquations such that the number of non-zero

terms appearing in the upper triangular matrix that results will

be minimal. However, no method has yet been found for finding
such an absolute optimal ordering of the egquations, Sonme
sub-optimal ordering schemes are discussed- in the next

section [9]. Any of these schemes will make HNewton's method

practical for large power systems.

Ordering Of The Eguations

Any one of.the following schemes can be used to order the
egquations ih a sub-optimal manner. They are listed in
increasing order of efficacy and execution tine:

1) Order the rows starting with the one having thevleast
non-zero elements, prior to the elimination process, and ending
"with the one having the nmost.

2) Order the rows such that at each étep of the elimination

process the row to be processed next is the one having the least
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non-zero terms.

3) oOrder the rows such that at each step of the elimination
process the row to be processed next is the one that will
produce the least number of new non-zero terms in the matrix

after eliminating this row.

Scheme 1 1is very simple but it does not take into acccunt
any chaﬁges that occur during the elimination process. Scheme 2
requires the simulation of the elimination process and scheme 3
requires the simulation of every feasible alternative at each

step of the elimination process.

In this thesis scheme 2 is chosen and the elimination
process is simulated in thé following way:

A connection matrix  that represents the topology of the
system is formed. This matrix has a one in posiiion (i, j) if
and only if Yijfo; otherwise it has a zero in that position.
Since the pattern of non-zero elements in the admittance and
Jacobian matrices are the same, this connection matrix can be
used to order the rows in the Jacobian matrix. Because the
value of each element in this matrix is either 1 of 0, only one
bit of memory need be used to represent each element. Thus, the
connection matrix for a 1000 node system will take only 125k

bytes. Therefore, large power systems can be handled without

requiring large computer menory.

The elimination process is simulated by using logical AND,
OR and EXCLUSIVE OR operations. After eliminating one bus the
non-zero elements of all the other rows are counted and the next

bus to be eliminated is chosen.
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When the simulation process is finished and tﬁe order of
buses has been specified, the rows of the Jacobian matrix are
eliminated in that order. Each row in the Jacobian matrix is
either a single row (for (P-V) type buses) or a double row (for

(P-Q) type buses).

The ordering of the equations need be determined only once,
prior to elimination, and is used for each and every iteration

that the problem might take,

Progranmming_technigues

The scheme for storing the [Y] matrix is the same as that
used in the Ward~Hale method. The dgta structure and the 1lcgic
for forming and storing the Jacobian matrix is explained in.
Appendix C. Except for some changes in the working-row schene,
it 1is essentially the same as that suggested by Tihney and Hart
[9). It is obvious that the computer storage required by this
method 1is more than that required in the Ward-Hale method
because storage is needed for both the Jacobian and the {[Y]
matrices, and the Jacobian:matrix requires about twice as much
storage as tY]. Conseguently, for very large power systems, or
whenever computer storage is very critical, the Ward-Hale method

is preferred.

If rectangular co-ordinates are used 1instead, then the
Jacobian matrix will need even more conmputer storage space

because two equations describe every bus. However, the logic
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for storing the Jacobian matrix and for  performing the
elimination process will be somewhat simpler. Also the need for
using sine and cosine functions at each iteration is removed.
Overall, both formulations take about thé same time to execute,
Any difference 1in convergence characteristics is in favor of

polar co-ordinates [9].
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A new approach to the solution of the 1load-flow problem

will he described in this chapter. The proposed
upon a different formulation of the load-flow

resultant equations have only one nonlinear tern

more nonlinear terms as in previously reported,

nonlinear term can be linearly approximated, and

method is based
equations, The
each iﬁstead of
methods. The

the solution of

the 1linearized equations can be used in an iterative procedure

to determine the answers to the load-flow problen. Thus the

proposed method is a direct method [1].

e e o o S —— s - e o

Let the final values of voltages, currents and powers be

represented, respectively, by:

]

[v] ’{vl, \Y

gs wees Vo
[1] = {Il, Tys eees I }

[s] =‘{sl, 8,5 +vvs S}

(3-1)

and the present assumed or calculated values of these guantities

‘be represented by the corresponding primed symbols:
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wy, vy,

[v'] ces VO)

]

[r'] = {1}, 1‘2, . es I;} (3-2)

[5'] = {S]» Sy ++vs s.}

2,
wvhere n is the numnber of buses in the power systemn.

The usual formulation of the load-flow equations is derived
by,ﬁorking from the present assumed or calculated values of
(3-2) and correcting them until the final values of (3-1) are
reached. The proposed method, on the other hand, is based upon
equations that are derived by assuming that the power system is
in the final state defined by the values of (3-1) and finding
the changes that will bring it to the present state defined by

the values of (3-2).

Initially assume all bus voltages are held constant at
their final values except for the voltage of bus i which is

changed to :

Vi=V, v, (3-3)

This will cause a change in the power at bus i itself as well
as all the other buses interconnected to this bus. The change

in the power at bus k can be calculated as follows:

AS S! -8

k kT %k
. *
el ~ el
- * % ‘
(vk + Avk)(Ik + AIk) - Vka (3-4)



22

or * * *
AS, =V, AL, + A :
k- Kk TOAVT oAV AL (3-5)

but AV =0 for k#i

k
hence A = * * ' *
Si ViAIi + AviIi + AViAIi (3-—6)
AS"-V A * i
Also | I, =% 'Y, . | |
T2 My Yy | (3-8)

therefore for any k

A = Y OV (3-9)
and substituting in (3-6) and (3-7), we get:.
_ * % * * *
AS; = VY., AV, + AV.I. 4 AV, Y. AV, (3-10)
S, =V * \ k i -
AS, kYk A # i (3-11)
Equation (3-10) may also be written as:
AS. =y * * *
17V Yy AV FOVT (3-12)
Similarly all the final (unprimed) vvalues' of the

bus
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voltages are each changed in turn to their present {primed)
values. At the end of this process [S] will be changed to [S'].
It is obvious that this can be done in any ofder. For
convenience thé bus voltages will be cﬁanged in the order that

the buses are numbered and assume that bus 1 is the slack bus

. '
vhere v, =V (3~13)

and 1

For any bus i in the system, the total change in power may

be defined as the sum of three changes as follows:

+
]

i) Asi -which is the change of power at bus 1 éue
changes in the vdltages of buses 1 to (i-1):
'ii) As:i[I which is the change of power at bus i due to the
change in the voltage of bus i and;.
I

Se s I . . .
1i1) ASi which 1is the change of power at bus i due to

changes in the voltages of buses (i+1) to n.

Using the above definitions and equations (3-11) and (3-12)

Wve get:
i-1

I - * %
S, =

A i él Vi Yik AVk (3-14)
i1 * * *

S.” =v! -

AS; v: Yiiavi + AViIi (3-15)
III o * *

AS.TT = !
; Y Vi Yo oV (3-16)

k=i+1



but
i-il n
I, = Y V'+ VY v
1 kel ik 'k ke ik "k
1531 n :
= Y., AV, + Y., V -
Koy ik Tk kzl ik 'k (3-17)
Substituting for ]’.i in (3-15) and adding (3-14) through (3-16)
together to find the total power change we therefore have:
t _ I IT III
S, =
A i ASi + ASi + Asi
R P
= Y, + AV, { Y., AV, +
o i“ik "'k Y.,V
k"'l 1 k=l lk k k"—};l 1k k}
n
%* *
+ 1
kZi Vi Yip AV (3-18)
n
* P n &
or As® = VIY, AV, 4+ av, 5 Yy '
Zl 1R T My kzl Y1k (3-19)
Now Si =V, rzx Y* V*
k=1 kK (3-20)
n % % Si
therefore ) Y % = v
k=1 i (3-21)
and (3-19) Dbecomes
n
t % % S,
AS; = ) V! Y. AV 4 ay. L
i k=1 i "ikTk i Vl (3__22)
Note that wonly the Jlast term on the right hand side of
(3-22) 1is nonlinear and can be linearized by wusing some
approximate value for V, . For the complete system, (n-1)

i

24
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equations, of the form of (3-22), would be obtained.

Equation (3-22) was derived by using the set of [V'] as
“final¥ values and the set of {V] as "injitial" values. But
equation (3-22) is still valid when the [V] values are "final"
and the [V'] values are "initial® as defined by (3-1) and (3-2),
respectively, because Asz and Avi will both change sign, Ncte,
however, that equation (3-22) 1is not derivable by using the
latter approach and, in fact, each of +the equations obtained

would have one linear term and (n-1) nonlinear terms.

As expected, equation (3-22) does hot depend-upon the order
in which the bus voltages are changed to their final values,
' Therefbre, we can make use of this fact and for any bus 1 ve
can assume that it is the first bus to be changed to its final
value with all the other bus voltages set at their present

values. Equation (3-22) would result.

e - e —————— — — s — " . T o e s

The manipulation of equation (3-22) in conjunction with
different assumptions yields various algorithms to solve the
load-flow problen. Some of the many possible algorithms will

now be described.



Rewriting (3-22) as

AV, n
S, =8l ~-—=%s =) V'Y
i Vl i kel ik )
V! n
i * *
7S, -S!= Y. v!y, av
ve get Vi i 1.8 1 ik 7'k )
If we assume that Vi =V,
i.e., Vi
v, 51
1
then v * *
AS, =. !
i kzl Vi Yo bV,

Equation (3-25) can be used as a linear approximation to

26

(3-23)

(3-24)

(3-25)

(3-22)

with the nonlinear term set to zZero. This seems reaschable

since the coefficient of Avi in the nonlinear term 1is in the

order of 1.0 P.U. and, therefore, much smaller than the
* *

coefficient of v, which is V'iYii° Equating real and

imaginary parts of equation (3-25) will result in
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AP, = E At LB B (3-26)
K
AQ; = g B = L Ajby (3-27)
K
where V! Y* A A+
| itk At I By
and k - a’k + JBk

For a (P-Q) type bus both equa.tior‘ls (3-26) and (3-27) can
be written. However, for a (P-V) type bus, Qi is not scheduled
and, therefore, (3-27) cannot be written, but the magnitude of
voltage is to be kept constant at such a bus. Thisg ‘cons.traint

can be written as:

V! ' *
(Vi + V) (V) + av )™ = 12

. (3-28)
or lV!Iz + V! AV* + AV V'* + * 2
i i M T ATy F AV AV, = U (3-29)
V., + V!
i.e, oRp L1 _ 2
’ (== vy =y - vy (3-30)

. Equation (3-30) is exact but nonlinear. By using V' instead of
1

v, we find the linear approximation:
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v - Iyl
vt Ao 45t
vwhere i i J i

Writing (3-26) and (3-27) for any (P-Q) type bus and (3-26)

and (3-31) for any (P-V) type bus, and solving the resultant set

of equations, the approximate voltage corrections can be found.

If Vi. is used instead of %_ in the nonlinear term of

(3-22) then
. * &% S,
AS. = VT V! Y. AV + AV, L
A A (3-32)
. av. & 4 : .
Let k- % T I8 (3-33)
*
vy, &
i “ik ik * JBik (3-34)
S
4, +3ib
[ .
and Vi i i (3~35)
then equating real and imaginary parts of (3-32) we obtain:
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AP, - |
i 239 = byby | (3-36)

T

B

~o~—1 o~

i
% " E Aty + byog +ap, (3-37)
For a (P~Q) type bus both equations (3-36) and (3-37) <can be
written. However, for a (P-V) type bus Qi is not scheduled and,
therefore, (3-37) cannot be written and ai and gi cannot be
calculated. In algorithm B, eguations (3-36) and (3-37) are
used in the case of (P-Q) type buses and equations (3-26) and

(3—31) in the case of (P-V) type buses.

Algorithm C

This algorithm is essentially the same as algcrithm B
except that for - (P-V) type buses Q{ is used instead of Q in
(3-35) to calculate a and bi'

P, + jQ!
1 1 . ’
V7 =a; +3jby ‘ (3-38)
1
Thus for (P-V) type buses, equations (3-36) and (3-31) apply
while for (P-Q) type buses, equations (3-36) and (3-37) again

apply.

Voltage acceleration factors may be used in this algorithnm

as in the Ward-Hale method.
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This algorithm is also essentially based upon algorithnm B,

By assuming that U, =

equations.

This results in a

|2;| ih equation {(3-35) and rearranging, we

get:

£,

= -
% e, Bi (3-39)

i

where Vi Se,+3jf »
A ,

and AVi =cxi+JBi
Equation (3-39) is wused to replace oy in all other

the

set of linear egquations

only one éguation and one unknown for each (P-V) type bus.

Let kl and k2 represent the set of all (P-Q) type buses and

the set of all (P-V) type buses, respectively. Then for any
(P-Q) type bus we have: £
o k
0Py = L Aoy F By ) By - Ay o )8y
k k k
1 2
+ ajoy = bisl (3-40)
3
AQy 12{ G ~ Aucbi) ~ E i ¥ By K8
1 2 k
+ b,a, + a,B, (3-41)
where .
' 4
Vi Yik = Alk + j Bik

and
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Pi + JQi

Vl

=a, + j b,
H i i

and for any (P-V) type bus we have:

£

AP, = ' - k
1 E Bpeop * Babd + 1 By =~ Ay o8,
1 k, k

. £, '
- (b + a g;) B (3-42)

where ‘

P, + jQ!

I

thus, - for each (P-Q) type bus we will have two equations, (3-40)
and (3-41) and two unknowns,<ﬁ_and Bi’ But for each (P-V) type

bus there is only one equation (3-42) and one unknown Bi' '

——— e e i At e e e et e

Rearranging equation (3-31) of algorithm B, we have :

2 2
£ v - vil™

@ =%, Byt T | (3-43)

and, as in the case of algorithm D, (3-43) can be substituted in

(3-36) and (3-37). Then for (P-Q) type buses we have:

2 2
U, - |v']
bR, -V A, (X k -
ok, 1K Zey ) El (Ao + ByyBy)
£
k
+ B,, - A, — -
Ez ( ik " Ak ek)Bk toajoy by8s (3-44)
2 2
U - v
aQ; - J B, (KoK B}
1
")l o+ —f—li) + _
ky ik T Pii e Bt byey +oagsy (3-45)



32

wvhereas for (P-V) type buses:

oy -y ay Gz
. - A, (——Kk 5y _, 2 i
i ik i
k2 | Zek i Zei
) i
- L Aty ¥ BB + 1 By -4, = VB
1 k, k
. £, ,
- (b, +a . )8, (3-46)

e e > s ke s e o e s B . e o T e S s i

As in the case of Newtonts method, the solution of a set of
linear simultaneous equations poses a computer storage problenm
but this can be overcome by the use_of sub—oppimal ordering of
the_buses and sparsity programming. Storage rTequirements £or
algorithms A, B and C are slightly more than that for Newton's
" method. For algorithms D and E the storage requirements are the
same as for Newton's method. The sparsity of the matrix of
coefficients in these algorithms is the same as that for the
Jacobilan matrix. So by using a scheme to order thé buses in a
sub-optimal fashion, the amount of storage required by
algorithms D and E will be the same as Newton's method in polan

co-ordinates.,

For algorithms D and E, the storage scheme for the matrix
of coefficients is identical to that uéed for the Jacokbian
matrix in the polar form of Newton's method, as described in
Appendix C. For algorithms A, B and C the logic for storing the

elements is simpler but storage requirements are greater.
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4. HNUMERICAL RESULTS

4.1 Introduction

The algorithms described in Chapters 2 and 3 were
programmed and compared with each other using several test
systems. The test systems were of different sizes and
configurations, as shown 1in Table (4-1). The data given [22]
for system 3 is erroneous and incomplete: the leakage reactance
of one transformer that should be 0,034 P;U. is not specified
and the reactance of one transmission 1line 1is recorded as a
'negative value when it should be positive. However, the systenm
as described [22]'with negligible transformer leakage (zero) and
negative line reactance 1is used as test system 3* and the

corrected systen as test systenm 3.

In addifion- to the original systems mentioned in Table
(u—i), new test systemé were created by changing the buses in
the original system system to be all of either (P-Q) type or
(P-V) type. To differentiate between test systems with the same
confiquration the addition of the letters a, b and ¢ were used
for the original systen, tﬁe all (P-Q) type systenm and the all
(P-V) type system, respectively. For examrle, systen 1.a is the
original system, system 1.b is system 1 with 511' its Dbuses of
(P-Q) type and system 1.c is the same system with all its buses

of (P-V) type.

The notation used to represent the different algorithms are

summarized in Table (4-2). Note that the Ward-Hale method was
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programmed using no acceleration technique. ngorithms A, B, C,

D and E are the proposed algorithms described in Chapter 3,

Two sets of ipitial values are used for each case, the
"flat-start" and the so-called "final-start". For the
flat-start all the voltage magnitudes are set to their scheduled
values or, if not scheduled, to the magnitude of the slack bus
and all the angles are set equal to zero. The final-start is
the set of initial values close to the final answers, and may be
-either the rounded final values, the £final solution of the
system obtained with a bigger tolerance or fhe final solution of
a similar system. Comparison of the results obtained by using
the flat-start and the final-start giil indicate the dependence

of the convergence of an algorithm upon the initial values.

The stop criterion for all the algorithms is the slack bus
pover mismatch. ‘"The tolerance of the power misrmatch 1is

different for the various systems as follows:

7 0.0005 p.u. for systems 1.a, 1.b and 1.c;
2) Q.OOOOS p. u. for systems 2.a, 2.b and 2.c;
3) 0.005 p.u. for systems 3 and 3';

4y 0.0005 p.u. for systems 4.a, 4.b and U.c;

5) 0.5 p.u. for systenm 5.



1 2 ! . |
] # OF # OF TOTAL# OF # OF % OF {
{NOTATION P-V P-Q BUS LINES TX. BR. SOURCE OF DATA |
|8 4 <4 'y 3 1 3 1 d
Iy v ¥ 1 1 T T ¥ R
| | | ] ] | | 1 ]
JSystem 1§ 1} 31t 51 641 0} 6 | Ref [21] |
| | | | ! | | | |
}System 2 { 14 41V o6} 7T 2| 7 | Ref [2] {
| | ] | | | | | |
}jSyster 3 |} 2 | 18 | 21}t 29 1 3} 32 { Ref [22] ]
] | | | | | | | {
|System 4 | 4 | 28 { 33 | 23 1 11 | 34 | Ref [18)] i
l | | 1 | ] | | |
|System S |} 22 | 70 | 93 | 899 | 57 | 156 | Ref [19] |
{ | | | | | ] | : !
L 4 1 i 1 1 Y 1 3

TABLE (U4-1)

Test Systemnms.

|

be v e wme A e od e e e ade e @

) R)
| W 1 Ward-Hale method
¢ + -
| N | Newton's method (polar form)
L 4
) T
] A} Algcrithm A
t t
{ B | Algorithm B
t +
! C | Algorithm C
t +
| D { Algerithm D
s +
| E | Algorithm E
L X1 .
TABLE (4-2) Algorithms.
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4.2__Results

Tables (U-3) and (4-4) shecw the execution time and the
number of iterations taken by each algorithm when the flat-start
is wused; and Tables (4-5) and (4-6) when the final-start is

used,

—— — -

AS éan be seen from Tables (uéu) and (4-6), all the
algorithms based vupon the proposed method, except algorithm A,
converge for all the Eases with both the' flat-start and the
final-start. Algorithm A did not converge for system 5, even
vhen the final-start was used. The.reason for this was found
after a careful study of the data of system 5. For several
buses of this system the net injected pbwer is about 40 P.U.,
and the braﬁches connected to these buses have either small

admittance or negative resistance. Thus, the value of Ei is

V.

*
comparable to nyri and therefore (3-25) 1is not a good

approximation to (3-22).

Algorithm B converges for all the cases bnt its weakness
regardirg (P-V) type buses is noticeable., As a matter of fact
. if all the buses in a system were (P-V) type, then this
algofithm would be exactly the same as algorithm A. Therefbre,
algorithm B is weak for systems with too many (P-v) type buses,

such as system 5,
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Algorithms C, D and E have alnmost identical convergence
characteristics., They converged for all the test systens in a
few iterations. Howe%er, for system 4.c algorithm E converged
faster than the other two. This should be true for any systen
with too many (P-V) type buses since the exact edquaticn (3-43)
is used instead of the approximate equation (3-39) in algorithm

E.

The Ward-Hale method converged for all the test systens,
excépt system 3'. It can be seen that it takes a 1large number

of jterations to converge for large systems.

Newton's method failed to converge for system U4.b when the
flat-start was used but cohverged when the final-start was used.
This method also did not converge for system 3% - even when the
final-start was used, the final-start being the solution of
system 3. These two cases indicate that Newtont's method is more
dependent upon the initial values than any of +the algorithms
based upon the proposed method. Dependency of ... Newton's
method to a favorable iﬁitial value has also been discussed by

others [20].
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Comparison Of Computing Speed

The execution times mentioned in Tables (4-3). and (4-5) are
not very accurate, since a time-sharing computer system was used
to compare the algorithms., Some cases were run more tﬁan cnce
and the average'éxecution time is recorded in Tables (4-3) and-
{(4-5) . Experience has shown that the figures given in these

tables have a deviation of, at most, 6%.

Algorithm A is the slowest among the algorithms of the
proposed method. In the case of system 3', however, we can see
that it converges faster than any of the other aigorithms. This

is only fortuitous because of the tolerance used,

Algorithm B is better than algorithm A. It converges for
all the test systems and 1is faét@r 'than'élgorithm A, For
sysfem 3, this algorithm convefged faster tﬁan any of the other
algorithnms, but this again is fortuitous because of the

tolerance used.

Algorithm C is faster than algorithm B but it is still weak
as far as (P-V) type buses are concerned, the reason being that
it has two equations and two unknowns for a (P-V) type bus while
the polar form of the Hewton'!s method has only one equation and
oné unknown for such a bus. Therefore, algorithm C solves a
system of linear equations with a rank greater fhan the rank of
equations in Newton's method and this results in a greater

execution time per iteration,

Algorithms D and E combine the two equations of a (P-V)

type bus into one equation and, therefore, use a system of
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linear equations with the same number of equations and unknowns
as in the polar form of Newtont's method. Tables.(u-B) and (4-5)
shou that these two algorithms are faster than Newton's method.
Algorithm E uses the exact form of (3-43) and is better when all
the buses of a 1large system are of (P-V) type. This kind of
systen is unusual and, therefore, we can assume that algorithm T
can always be considered as the best algorithm from the point of

view of speed.

Algorithms D and E require the same storage as the polar'
forn of Newton's method because the matrix of coefficients has
exactly the same form as the Jécobian matrix. The data
structure and the logic for storing the matrix of coefficients
is identical to that described in Appendix C€ for storing the

Jacobian matrix.

The storage requirements of algorithms A, B and C is
slightly higher, but these algorithms need less storage than the

Newton's method in rectangular forn.

The storage requirements for the Ward-Hale method is about
half of the Storage needed for any'of the other algorithms.
This is the main advantage of the methcd and is used when

storage is a problen.
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When thé WHard-Hale method is used with acceleration factors
it 1is mofe efficient. For example,'in the case of system 1l.a
using the acceleration factor of 1.2 will reduce the number of
iterations by half. The problem is that the best acceleration
factors must be determined for each system individually and this
requires several runs of the program in order to find the test
factors. Use of acceleration factors was also tried with
‘algOtithm C but showed no advantage. All the results previously

discussed in this chapter use no acceleration factors.

Overall, we can see that algorithms D and E are faster and
have better convergence characteristics thah either Newton's
method or the Ward-Hale method. Also their storage requirements
is about the same as the polar form of Newton's method and atout
twice as much as the Ward-Hale method, If storage is not a
problem, these algorithms are preferable to both the Ward-Hale

nethod and Newton'®s method.
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Se CONCLUSIONS:

A new formulation of the load-flow problem has been
presented in this thesis. Some of the many possible algorithnms
that can be derived based upon  this new formulation were
programmed and compared with the Ward-Hale method and Newtcn's
method. Several test systems of different sizes and
configqurations were used to <compare the algorithms. It was

shown that:

1) Algorithms based upon the new formu;atioh Convetgé over
a wider rTange of initial values and therefore have better
convergencé' characteristics' than Newton's nmethod and the
Ward-Hale method.

2) Algorithms D and E of those based wupon the new
formulation are. faster than the ©Newton's method and the
- Ward-Hale method.

3) The storage requirements for ahy of the proposed
algorithms is about the same as the polar form of Newtcn's
method and, therefore, by use of sub-optimal ordering of the
equations and improved programming techniques storage will not
be a major problen.

4) Use of acceleration factors will not improve the

performance of the algorithms based upon the new formulation.
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Appendix A.

Assume that a transformer with turns-ratio n and leakage
admittance a is connected between buses i and j, as shown in
Fig. A.1.

i a n:1 j
— -
[ ) ——_"‘"‘l ﬂf’ a
| I— -4
Fig. A.1
This can be represented by the equivalent 7 circuit shown
in Fig. A.2 [2]
i ¥l=na )
Ty
.—-“—.—.-" F—.-——-..——-o
' | UG | i
| I
| |
rt i
I o
Y2=(v1-n)a| | } ~|Y3=n(n-1)a
(I P
Let bt
| 1
| |
| |
—_1 —_
Fig. A.2
For transmission lines the exact 1 equivalent «can be

found [21],

. long. Normally the
nominal g

A.3)

approximate

equivalent, is used and is sufficiently good.

but this is not necessary unless the lines are very

m equivalent, called the

(Fig.
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The nodal admittance matrix is formed using the equivalent

1 Y1=1/z i
| St 1
T e o “’A "' -------- o
l | SO | ]
| J
] |
i rtq
1| I
Y,=y/2] | i 113—y/2
I |
LTJ Lr.l
| |
| ]
| ]
—_— —_—
Fig. A.3

circuits of transmission lines and transformers as follows

Y., =Y..
ji  Tij 3
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Appendix B.

The storage scheme used to store the nodal admittance
matrix is described here. Only the non-zero elements, along

with the appropriate pointers are stored as shown in Fig. B.1

T 7T T T YT TrTT T Y T T -

It lclef It iclel | lclel

Ialb¥j+—1--o-lale—+~+aIbF-+—i ceene

| 1 tarf] N T < I T B Ko

[ SO R [ N i1 & 1.2 8 _3 |

Element 1 Element n

| <~——=Diagonals >« Off-Diagonals———-—
a= real part of admittance b= imaginary part of admittance
c= column indicator d= next-in-row pointer
e= row indicator f= next-in-column pointer

Fig. B.1

Diagonal elements occupy the first n locations of the
vector. The pointers are used to chain together the elements
that are 1in the same row or in the same column. The last
element in a row, or in a column, points to the first element
(fhe diagonal element) again. Inserting new elements is done by
breaking the <chain after the diagonal element and making a new
chain via the new inserted element. A garbage pointer is used
to indicate the first empty location in the vector. The empty
locations are chained together and the garbage ©pointer is
modified after any insertion or delefion. Note that the new
empty locations are always added to the top of the garbage chain

and are used first.
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The above scheme has the following advantages:

1) Because of the location of the diaqonal elements, no
scanning 1is necessary to find tbese. elements. Since the
diagonal elements are used_more often in any algorithnm, this
reduces the execution tine.

2) To find an off—diagonai element, the scanning effort can
be minimized through scanning either in the appropriate row or
.column whichever has less elenents.

3) Since the pointers are stored close to theHValue of the
elements, in a time—shariﬂg computer systen, the number of
READ/WRITE operations on a secondary storage device will be less
than that of conventional stﬁrage schenes,

4y The scheme can be easily programmed in FORTRAN thrcugh

the use of the EQUIVALENCE statement.



Appendix C.

The data structure and the logic for forming and storing
the triangularized Jacobian matrix is described here. Except
for some changes in the working-row this is the scheme suggested

by Tinney and Hart [9].

Each row of the Jacobian matrix is formed din the
vorking-row and is later stored in the talbkle of the Jacobian
elements when the eliminaticn process is performed upon that.
The table of the Jacobian elements is a vector thét contains all
the elements of the triangularized Jacobian matrix and their
pointers. The pointers are integer numbers which are positive
for (P-Q) type buses and negative for (P-V) type buses. Another
vector is used to store the'integers that point-to the starting
location of each row. These pointers also follow the same rule
for (P-Q) type apd {P-V) type Dbuses, The residuals and the
diagonal elements are stored at the first locations where a row
starts. For example, if the starting pointer of row i is a
negative 1integer, then 1 is a single row (bus i is (P-V)
type). In this case the first entry in the table of the
Jacobian e2lements is APi, followed by an integer number j. If
j is negative it represents a (P-V) type bus and it is followed
by Hij and another 1integer number representing another bus,
while if j is positive it represents a (P-Q) type bué' and 1is
followed by Hij ‘ Nij and another integer number. This notation
is used for all the pointers in'a single row, However, if row

i is a double row (bus i is (P-Q) type) then the first three

locations of this row will be Agi, AQ, and N, followed by the
. 1 11 :
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first integer pointer in that row. In the case of doukle rous

each negative pointer j in the row is followed by Hti' Ji_ and

: J
another pointer while each positive pointer is followed by %j v
Jd ., N,., L.. and another pointer. The end of each row is
ij 1] 1] .

implied by the start of the next row.

Each row is formed and triangularized in the working-row,
prior to being stored 1in the table of the Jacobian elements.
Each element of the working-row consists of four 1locations, 1in
which H, J, N and L are stored. It also has a column pointer;
Its leﬁgth is sufficient to store a full Jacobian row. Once the
row is formed, a linear combination of the previously stored
rows 1is added to it such that it will not have any elements 1in
the column range that has been processed bhefore. During this
process, new elements may be created and some of the eliements
may be deleted and modified. New elements are added to the end
of the working;row and deleted elements will have a zero
pointer. At the end of the process only the elements with
non-zero column pointers will be stored in the compact table of

the Jacobian elements.



