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ABSTRACT

In part 1 a linearized cavity potential flow théory is dev-
eloped to solve both the steady state airfoil spoiler problem and
the transient 1oads on an airfoill during and aftgr spoiler actuation.
The theory is also applicable to the éase of an airfoil with a spoi-
ler and a flap. The theory uses conformal tranéformations to map that
part of the airfoll exposed to the flow onto the upper half of a unit
circle, The complete flow field about the airfoil maps into the upper
half plane exterior to this unit circle. | . |

Although no limitations sre imposed in the paper upon the spoi-
ler height, angle, or location, good agreement with experiment would
not be expected in such a linearized theory for very large spoilers.
Spoiler heights up to 10% of the airfoil chord are considered, and
the theory shows good agreement with experiment.

A theory for the steady state airfoil spoiler problem for a
solid airfoil, and an airfoil with a slotted flap is developed in
pért II. An exact potenﬁial free streamline theory using the surface
singularity technique i1s used in this work. The wake is contained
between two free streamlines. Following Jandali's technique (1),
the wake flow is created by positioning sources on the airfoil sur-
face in that region exposed to the wake. The actual flow in the wake
region is 1lgnored, and the base pressure is taken to be constant at

the experimental value. The theory agrees well with the results ob-

tained by Jandali.
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SECTION 1

INTRODUCTION

Theoretical investigation of ailrfoil spoiler aerodynamics is
an area of continuing importance. The transient loads of spoiler act-
uation and the spoliler plus flap combination have practicai apprlica-
tion in the recent interest in high 1lift devices. Spoilers are used
for roll control af low speeds when actuated asymmetrically, or for
lift and drag cbntrol if actuated symmetrically.

Experimental investigation shows that the flow in the region
between a spoiler and the trailing.edge is separated. Since no sat-
isfactory method existsvﬁo predict the base pressure theoretically,

a theoretical model will require at least one empirical parameter,

Some progress has been made in the attempt to solve the air-
foil spoiler problem. Jandall (1) used an exact free streamline pot-
ential flow theory to solve for 1lift and pressure on a solid airfoll
with a fixed normal spoiler. Both Jandalit's 1- and 2-source models
are calculated similarly, and since they depend on conformal mappings
of the Theodorsen type, they cannot be used to solve the spoiler
plus flap case. The 2-source model which gives good agreement with
experiment requires both base pressure and zero 1lift angle input,

A linearized free streamline potential flow theory has been
developed by Woods (2), who gave expressions to calculate incremental
- pressures, lift, dfag and incremental pitching moment as a function
of airfoil incidence, spoiler height, engle to the airfoil surface
and chordwise position. Woods considers the airfoil thickness only in
determining the spoiler angle, and drops it from the theory as a sec-
ond order term. Barnes (3) used the results of wind tunnel experiments

on two airfoils to devise an empirical modification tb Woods?
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for normal spoilers. Barnes used the boundary layer thickness on the
basic airfoll to determine an effective spoliler height that gave him
good agreement with experiment for normél spoilers. From this he was
able to develop an empirical relationship that he states is applic-

able to most airfoils,

The theories presented so far have been free streamline separ-
ated potential flow theories., The linearized cavity potential flow
. theory presented in part I of the current wofk was developed by
Parkin (4), who considered the hydrofolil case of éeparatlon frdm the
leading edge. Fabula (5) extended this work to the general case of
separation from a point on the upper surface, this case being applic-
able to a hydrofoil with blowing or a step on the upper surface. The
current theory, presented in part I, extends this result to the air-
foil problem, and relates the separation to a spoiler height and angle.
The spoiler plus flap solution is also obtained. A new type of func-
tion with a'singularity at the point corresponding'to the 1eading
edge has been used to solve for the thickness solution. This theory
is developed in part I and applied to a 14% thick Clark Y airfoil.
The theory for the airfoil speiler problem is then exténded to solve
for the transient loads on an alrfoil during and after spoiler act-
uation. The linearized theory of part I is mainly useful for the pre-
diction of total forces and moments on the airfoil,

In part IT of the current work the steady state spoiler problem
is once again treated, this time using an entirely different tech-
niqué. The exact surface singularity potential flow theory developed
by Smith (6) is combined with the principles inherent in Jandali's
theory(1). This type of theory is mainly useful for the prediction of
surface pressure distribution. The solid airfoil with a spoiler, and

the case of a spoiler plus a slotted flap, are treated., For the solid
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alrfoil case the theory is applied to a 14% thick Clark Y airfoil.
For the spoiler plus slotted flap case the theory is applied to an
NACA 23012 airfoil with a 25.66% slotted flaps -

For the theories developed in both parts of the current work
the spoiler helght, location and angle are unrestricted. The linear-
ized theory developed in part I is bounded in its agreement with ex-

periment by the usual restrictions for perturbation theories,



PART I

A LINEARIZED CAVITY POTENTIAL FLOW THEORY FOR THE
STEADY STATE AND TRANSIENT AIRFOIL

SPOILER PROBLEM
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SECTION 2

THE ACCELERATION POTENTIAL

Consider an irrotational flow of an incompressible inviscid
fluid in which an airfoil of chord c¢ is immersed. At points far
from the airfoil the velocity field consists of é constant free st-
"ream velocity U in the positive x direction. Consider the airfoil
to be positioned in the x-y coordinate system such that the leading
. edge is fixed at the 6rigin. Suppose that there is a fully developed
closed cavity of length £, springing from an airfoil spoiler on the
upper surface and from the tréiling edge., If the undisturbed free
sﬁream static pressure is denoted by E, and the constant pressure
inside the cavity by E , a cavitation number for the flow, designated

by K, is defined by the relationship:

K=FB-R
eu

?

e

where ¢ is the density of the flow. This type of flow model, origin-
ally developed for cavity flows in liquids, 1s also useful for se-
parated ailr flows, where the base pressure is constant in the wake
just behind the generating body, and the base pressure coefficient,

as usually defined, is

U

CP:

[

-B._K.
ul

|

M-
~

In the special case of steady flow the cavity surface velocity mag-
nitude is a constant g,. The steady-state Bernoulli equation can be

used to relate g, to the cavitation number, with the result that



e=UJITK .

This quantity is sometimes used as the fundamental reference speed

O‘C
in placevof the nmore commonly used free stream velocity U, When the
acceleration potential is used to solve the thin airfoil problem pro-
posed, both systems reduce to the same linearized equations. In the
usual linearized airfoil problem without cavity, U.is the only char-
acteristic velocity, and it is convenlent to retain it here as the
réference velocity. Thus at ahy point (x,y) in the nonsteady flow

around the airfoil the velocity vector § can be expressed in terms

of its x and y-components as
Gy )= UiCrw) vl |

The dimensionless quantities u(x,y,t) and v(x,y,t) are components of
the small disturbance velocity in the x and y directions respectively.
Both components u and v dlsappear at upstream infinity. Correspond-
ing to these veloclty perturbations, a small disturbance in the field

of static pressure P(x,y,t) can be defined by putting

Plx,y,)= B, + Px,y,4).

This disturbance pressure also disappears at infinity.
To first order terms in the small perturbations, Euler's equat-

lons of motion may be written as

ﬁ%*éﬁ =q,‘

X
and | (1)
Ldv . v _
Ut 5x =%



The acceleration components a, and a,of the acCeleration vector

'g(x,y,t) can be expressed as the gradient of a scalar:

a(x,y,t) = {ax,a,} = Veoplx,yt).

The scalarq?(x.y.t) is the acceleration potential and its relation-

ship with the perturbation pressure is
) ks
P” 'QU“P*Q'E“ ’

where P has been defined to be zero on the cavity. In terms of the

static pressure this becomes

kN
Ps—QU(Pi-PC_
In an incompressible fluid the equation of continuity,

dwb‘f:o

will also hold. If this equation is combined with equations (1), the

divergence of a gradient being zero gives
V"‘F-_-.O

at every instant. Hence ¢ is a harmonic functions, and a harmonic
conjugate‘y can be defined by means of the Cauchy-Riemann equations

as follows:

Q.SB "'.aizax
ax  Jdy



and

Introducing the complex variable,

Z= X+iy,

the complex acceleration potential which is an analytic function of

4 at'every instant can bhe wriltten as

\

F@) = by, )+ ivlx,y,t) .

The conjugate functionry(x.y,t) 1s the acceleration stream function.

The analyticity of F guarantees that the complex accelefation,

com— = ax-ipay

o
Nim

will also be an analytic function of z.

The pressure coefficient takes its customary definition:

Introducing the acceleration potential this becomes

Co =-20-K . (2)
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Using the Euler and Cauchy-Riemann equations the x and y-com-
ponents of perturbation velocity can be expressed by the linear first-

order differential equations,

d du _ 1
3%*”3: U'5x

and

v _ .y
+Uss usz)\(k

11 4

For the special case of steady flow these equations reduce to:

u = \P-d-%: (3)

and

v .-, | : ()

where the conditions at infinity have been used to determine the
constants of integration. Applicatlon of Bernoulli's equation bet-
ween infinity and a point on the airfoil gives the linearized pres-

sure coefflcient on the airfoil as
Cp = —-2U

Substituting equation (3) into this result shows consistency with
equation (2). Equations (3) and (4) are both consistent with the
result obtained using the cavity velocity magnitude g as the fund-
amental reference velocity. It should be recognized however, that
the velqcity v in equation (4) has been nondimensionslized by ref-

erence velocity U rather than q..
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SECTION 3
STEADY THEORY

3.1 Formulation of the Problem

The fully developed closed cavity flow model proposed for the
solution to the airfoil spoiler problem has many features in common
with the usual théory for thin airfoils. In fact, one can use the
same techniqueé here that have proven so useful in solving the thin
airfoil theory. In the present theory the cavity-foil system must be
regarded as being a thin body, snd for this reason the cavity term-
ination 1s sccompanied by a singularity. In practice the flow down-
stream of the airfoil is not a potential flow but a highly dissipat-
ive flow, and the presence of the singularity is an attempt to approx-
imate this very complicated wake flow in the simplest analytical way.
The important result of such a procedure is that in the neighbourhooa

of the airfoil, the flow appears to be well represented.

3,2 Transformations

The airfoll of chord ¢ is located in the z-plane with the lead-
ing edge positioned at the origin. The undisturbed flow is in the pos-
itive x direction and the airfoll is inclined at a small angle o to

this flow. The airfoil spoiler of height h is positioned at

The spoiler engle to the chord line is denoted by S. The airfoll con-
figuration is shown in figure (1). The airfoil can also have a flap
of chord cq at an anglé'n'to the chord line of the airfoil, not shown
in figure (1). The physical representation of the airfoil in the z-

plane is shown in figure (2). In order to apply the methods of thin
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airfoli theory 1t.1s helpful to transform the z-plane into a more
useful plane.

First consider the conformal transformation

' x
2=z

which maps the z-plane into the z'-plane. In the z'!'-plane the airfoil
chord becomes equal tol%a and the cavity termination point has been
mapped to z'=oo, The point at infinity has been mapped to the point

zt=-1, The conformal transformation

v = GE‘ ’ A = _:_C_
<
maps the entire z'=-plane into the upper half of the Y-plane. The foil
occupies the slit -1<V<bon the real axis of the VY-plane, The point
at infinity has been mapped to +ia. The ca_vity extends along "V>b

and Y<-1 on the real axis. The value of the constant b is

b:qSSﬂ-\
Z-s-h

The foll is then mapped from the \)-plaﬁe on to the upper half of the
unit circle in the €-plane by means of the Joukowski transformation,
_ b+ -
V=2(sr¥) - 130
The leading edge of the alrfoll corresponds to the point g=e"°.° the
spoiler base to the point S=e"9‘, the flap hinge point to the point

€=e*® the trailing edge to the point»§=-1 and the spoiler tip to

the point €=1. The cavity extends along the real axis €71 and €<-1.
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Using the mapping functions. the angular locations of the critical

points in the §-plane can be determined as

-b
9 = COS (‘_'_b ,

o = cos"{.’%‘ﬁ[ﬂ = * L;‘.b]}

and

-b _ -c
8, = cos” “'b 2 l"c-rn ]}

where the inverse cosines are taken between 0 and w. The point at

infinity in the $-plane is the field point §; given by

= Agfia v 58] + )@ Lo~ ':,-_b]‘ér . (5)

The complex transform planes are shown in figure (2). The complex
acceleration potentials in the various transform planes are invariant
at corresponding points and so the accelerations differ only by the

derivative of the mapping functions, and thus

g—F ﬂé——F-iE
d€ oz dS

3.3 Boundary Conditions

The steady state boundary conditions on the airfoil are as fol-

lows:

(1) paRIF=0 on the cavity, 8zxz(s+h), y=0"and €»x»c, y=0".
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(11) Kutta conditions, ¢ continuous, at the spoiler tip
x=(s+h), y=0"and at the tralling edge of the airfoil
x=c, y=0".
(1i1) Normal boundary condition of no flow through the air-
- foll surface. Hence if the airfoll surface is denoted

by [x,y(x)], the condition becomes, using equation (4)

- d
= '1/5;%

(iv) The condition F=—§ for the point at infinity.

(v) The body cavity system must be equivalent to a closed

body. Hence for a closed wake
Im$w(dz=o.

In the above boundary conditions y=0+ refers to the upper surface of
the slit and y¥0' refers to the lower surface of the slit. In cond-
ition (v), w(z) is the complex velocity and equations (3) and (4)

combine to give

wz) = F(Z) + l;._

Boundary condition (v) can then be rewritten

Im$ Fddz=o0.

3.4 Mathematical Flow Model

Following the methods of thin airfoil theory.we determine a

set of functions in the €-plane that satisfy the boundary conditions
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(1) through (v). The problem can be split into the determination of
incidence, camber, thickness, spoller and flap solutions and thenb
superposed as in standard linearized theories. The next sections are
then concerned with determining mathematical functions with the de-

sired characteristics for these individual cases,

3.4.1 Incidence Case

Consider the complex function

F(8) = iC.[ge * g2&,] |

F, is purely imaginary on the cavi’ty‘ where 8 1s real and 18121} , This

satisfies condition (i). On the unit circle Suefa,
rx- SO .
F(e™) = Cc[cose,- cose ~+1 .

At the spoiler tip and tralling edge eapqn'respectively and F, 1is

clearly continuous, hence satisfying condition (ii). A constant term

£(8) =<0,

does not violate conditions (i) or (ii) and is an acceptable function.
It was previously decided that the cavity termination must be a sing-
ular point to account for the branching of the free streamlines at
this point. In the §-plane this point 1s located at infinity so that
the pole there.is simply given by «§. For the unit circle to remain

a streamline a simple pole of opposite sign must be added to the in-
verse point of the unit circle. A complex function term giving the

net contribution of the singularity at the cavity termination can
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then be written as
52 =i B,(5-%) .

F, is purely imaginary on the cavity where § is real and hence sat-

isfies condition (1). On the unit circle S=e‘®,
E,(ei'e) = -ZB.snﬂa .

The functiqn clearly satisfies the Kutta condition. It is to be re-
membered that boundary conditions (iii) through (v) are yet to be

satisfied. Thé functionslincludéd in the incidence case are then,
. ! . )

Fin(8) = +C.[Ee78 * gsm, | + 4D + +B,(s-3). (6)
On the foil the acceleration potential becomes

SO
—_— e . :
= C,: 59,-C056 2B°51ne . (7)

g

3.4.2 Camber Case

Consider the complex function

. 2 M, ,
B()=-+2 &7 | o (8)

where the M, are real constants. This function is purely imaginary
on the cavity where € is real and so satisfies condition (i). On

the unit circle‘
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. oo . o0
F;(e."e) = - X M,simne -+ > M,cosne ,
' ]

Once again the function clearly satisfies the Kutta conditions. Bound-
ary condition (iii) can now be used to solve for the unknown M,. For
the camber case 9¥% as a function of @ is a continuous curve that

dx _
can be represented by its known Fourier cosine series as follows:

d _ Mo .S M, cosne, (9)
dx — 2 v

where

: x
M. =%L d—,Y(‘cosnede .

The stream function condition then becomes

M o0 .
Y =-3°-2 M,cosne,
Ll

If the term —%a is included in the constant terms of the incidence
case it is apparent that the camber function of equatioh (8) sat=-
isfies conditions (i), (i1i) and (iii). Next it is to be demonstrated
that the constant terms of the stream function also satisfy condition

(1i1i). In the incidence case of a flat plate at angle of attack «,
o
o=

and condition (iii) gives

—\P=o(..
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Hence the constant parts of the stream function from the incidence

case and from the camber case are as follows:

Do"'Co=°"‘M'z°

or

D, = -Moc, | (10)

Hence the camber function is

X

n
”»

E(8)= -4

w

y

and on the foil the acceleration potential becomes

P, = —°§:M.,S|nne . (11) -

3.4.3 Thickhesé»Case

For the thickness solution consider the complex function

. oo
RS) = e oy 2 & - Ga2)

where the N,, are real constants. On the cavity where € is real and
|81>1, this function is purely imaginary and therefore satisfies
condition (i). On the unit circle

oo
: . _
R (e®)= - T(coso,- c050) Z N.(stn ne + +cosno) ,
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It can be seen that F, also clearly satisflies condition (ii). The
unknown N,, can be solved for identically as in the camber solution,
through boundary condition (iii). In the thickness solution 31:.: as
a function of @ is a curved function with a discontinuity at the
point corresponding to the leading edge of the aiffbil. For the thick-
ness function assumed to be applicable to the solution of this pro-

blem the following relation must be true:

o0
dye Z. Nncosne

olx 2(c0s9,~-C050")

i

It is apparent that this relation reduces to the solution of a Fou-
rier series as in the camber solution. The ﬁnknown N,, are then given

by

d .
Nn = :,-‘T’ oc-l-g‘(c,oso,- cose)cosnede , nxi

and

ar .
N, = %—I ‘H“(cose.—cose) de .
}, dx

The thickness complex function is then

L8 22 N,
(8- e oY (g-¢*®) 2 &

F(8) =

and on the foill the acceleration potential is

;thn ne

(1
2(coso -C0s0) ., (13)

Pe = =
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It was found necessary to use a thickness function that has a sing-
ularity at the point corresponding to the leading edge. An attempt
to use a function identical to the camber case was not successful,

It was found that the Fourlier coefficients would not converge.

3.4.4 Spoiler Case

The base of the spoiler maps into the point Sse‘.'e‘. in the € -
plane. At points on the circle when 8 passes through e;'q. there is
a step change in v, and therefore through equation (4), a step change
in y. The logarithmic function is an analytic function which will
provide such a jump. It is also requlred that the imaginary part of
the function be constant over appropriate portions of the circle.

Consider the function

In.{5- e
s- e""b'}

The imaginary part of this function in the required range of wze=O0

is
g_eie.} {e, for T>ex>e,
-
(]

argl =——
S-e+® (®,-) for ©,>0 >0

If this function is combined with one of the same type as F, from

the incidence case, the resulting function is

_ sin§ <9, ie, g-e;'é'
F;(s?- —F[ge"ee.l T gees, * In. ‘g—:e—:;,‘q}] (14)

On the circle where €= e‘e, this becom.es
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_ i 106, o for wrex>o
E(E‘G) - s:‘:.\s [coes.Sth . ‘H{ n'2= . . \
©,-C0s® 3 8+, ~4smb for 6>8%0.

Bouridary condition (iii) then becomes

o on the foil (Tr>e>0)
V= {.smS on the spoiler (6,>8>0) .

The spoiler angle § has not been restricted to a small angle and it
is realised that this contravenes one of the basic assumptions of |
linearized theory. In most practical confiéurations the spoiller heil-
ght 1s only a small percentage of the chord. It is therefore opti-
mistically assumed that the linearized flow has not been too severe-
ly disturbed. Both Woods (2) and Barnes (3) have had some success
with normal spoilers using lineariz=d theories.

It now remains to demonstrate that the spoiler function @
satisfies condition (i) and (ii). The first part of this function,
having been drawn from the incidence case, has already been shown
to satisfy the conditions. On the cavity in the €-plane where §
is real and |8l>1, the logarithm term is purely imaginary and hence
satisfies condition (i). In the equation for F;(eie), it can be seen

that ¢+0 as ®+o0,m and hence the function satisfies the Kutta condi-

tions. The spoiler function is then

. . 4-6
o g i®, g-e™™
R(s)=22 [.Se°°°-l T gErey * ‘"'{g-e’“‘}_] ’

and the acceleration potential on the foil is
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10-0,|
S\ns osme . {’""‘P_'
g = €0SQ,-COSO tsmoro, }) . )
D=

3.4.5 Flap Case
The flap hinge point in the 8-plane corresponds to the point

9‘ It can easily be recognized that this case is 1ldentical to

S=¢"
the spoiler case, except that the flap is restricted to small angles.,

The velocity conditions (iii) on the surface for this case are

0 on the foil (8,>©>0)
Y =
{-q on the flap (T>e>0,)

The complex function for the flap case is then

£(8) = < ge~°o| * Geoe % e"e} (1)

and on the foil the acceleration potential is

_m [ (e,-T)sine g|n‘e A
‘P-F = w osgo_cose— + ‘H {"n Saa: }} . (17)
. ) 2

It has been shown in the spoller case that these functions making

up F, satisfy the boundary conditions (1) and (1i1).

3.5 Method of Solution

The functions developed in the previous paragraphs to solve
the individual cases of incidence, camber, thickness, spoiler and
flap solutions were shown to satisfy boundary conditions (i) through

(111). It remains then that boundary conditions (iv) and (v) be
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satisfied. Condition (iv), the condition at infinity can be express-

ed as

Fa(8) + E(8) + R(SD+ (8« F(S) =-K (18)

where §;, the point at infinity in the $-plane, is given by equat-
ion (5). The last four terms on the left hand side of equation (18)
are known functions; the unknown constants are contained in En(ﬁk).

The equation can then be written as

F.(8)=-E-% (19)
where
E = -F(8)- R(8)-F(8)-F(s),

" and using equations (10) and (6), .Fn( 8.) can be written as
]
Fn(8)= 4 C, [,Sie‘°.°.| * gj’euﬁg‘ + l] + 4 (x- M,—_’) + ‘i-B,(g;“'é}) .

In this equation put

e L
A\ = ~[%,;e‘°s; * 3@“75;:1 * ']

Ay= L(g;'%ﬁ).

Equation (19) can then be expressed as



25,

Co>‘| + B,)x,_ == E.- .{,(o(_b_:e)__‘;(: )

The real and imaginary parts of this equation furnish two equations

in the two unknowns C, and B, . The values of these constants are

B, = Rl.)\.[Im.E.-@("tgf)- IM.X. QIE +-§:Im). (20)
RINImAL =T N REN,

and

C.= RLE-B.RIL)-K (21)
RN,

All the function constants have been determined. The remaining
unknowns are the cavit& number K and the cavity length £. There is
not currently a theory that will correctly predict the base pressure,
and at least this parameter will be an empirical input. It turns out
however, that this is the only empirical input heeded since the cav-
ity length £ can be rélated to K through boundary condition (v).
Condition (v) physically means that, i1f the body cavity systenm is
to be a closed body, then the sum of the sources inside a contour
including the body-cavity system must be zero. Mathematically it waé'

found that condition (v) could be expressed as
Im,§ F(z)dz =0 .

From the mapping functions, points in the 8-plane are related to the

z-plane by

N

s-2glal + 0]+ V@ lalEE 2150 . o)
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Since any contour of integration is suitable, one can be chosen such
that |z|>£ . The integral can then be solved using a Laurent expan-

sion. For |zI»£ equation (22) becomes

where

a. = l"b -+ zq, y['-b-..%ba

o= el H’b + 1+ " 1+b -'
and

The coefficients of ¥ in the following terms are given:

(8-8) : la(i +a":)

40, ..1.9,
fee=z, *e l] ‘e"-[(oe 2 ) ¥ (@, e"“'e D]
Q-e"ﬂ . i
e} + talgram — arimey]

8- . —_—
In 3~é"'° } ' aa'[("'o" e®) " (a,- e."" 9:)]

—gLi . _nQa.

a:’l '
«Q -4iO
2 L ____t._o...]
a, a, “a.e*®e.l ~ a,e %o |

gﬂ(s_eoeoxg_ e“beo) . n-l(ao 16, 3)(0 -A.e, ‘)
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Although the solution appears straight forward, such lis not the case
and an iterative solution 1s necessary. The angles in the §-plane,
e,:6, and @,, the points corresponding to the leading edge, the spo-
iler base and the flap hinge point on the unit circle respectively,

are complex functions of €. The coefficient of -1z- can be written as

X -)

) . wE e ° e~
iB,La(rdy) - i[C, » A0F, M) o[ ary + ]

+ 228 ea [ rey - ey * o[ ~am )]

;4.9.
+~Q02"M" v«.ﬁa,ZN [ "a —a__e:ré__)]
n-t (a°e~e. ‘)(Qo -A.G._.‘)

From equation (20) and (21) B, and C, can be written as

B,= RLA[Tm E-(x-8]_ Im.xjt.e . K Tm. ),
RLAImM Ay = T )\, RLA, RIM I A~ Tr A RLA,
and
Com RALEME-&-E)] -ImARE K____Tmdhs
RLAImA, =~ T )\, RN, RLALTmA ~Im), Rl N
Now

Im,§ F(2)dz = 27 Rl.{coefficient of é},
and hence the closure condition becomes

R’.{coe-ﬂ’-uen"’ of "'i} =0 .

Putting the values of Bj and C, in the above expression for the coe-

fficient of L = 8lves
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. ] R'ka LIM.E—@“Q")J— Im.X. R‘.E
K = 2. R‘.{‘ean(&(l -t--a;‘)[ Rl.A.IMk,_- I"‘.A. Q‘.)\,_ 1

. [ e‘e° e“teo
e\ —
=4 CaeCy) * (@, a)‘]

L £ BT RIE | 025, 0o
Rl X;_I.m.x, -—IM.X;\, R‘.X| -".

'"g[(a, e*9) " (a.-e "e“)] *—[ga.- ‘&) " (- ‘*99]

_ie,
+i S oMn ' l'_a° ga.e""e..\) - GeTmy ) )}
v )t "(a, 0, IXO. ~4.0p_ 2D
RI. __TmA, S e
/ {la tr:x. Tm. A RN, [(,, e%y T A.e. .)]

-4 LT\, L
RN Ty Ty m.x,('*"?))} . | (23)

Hence with K given from experiment the correct value of the cavity
length € can be determined by plotting a graph of K v's 2, or by
iteratively changing the value of ¢ in equation (23). The required
real parts of thls equation could be expressed by algebraically spl-
itting each term into its real and imaginary parts. However it is
desirable to retain the concise form of equation (23). |
This completes the problem formulation for the steady_theory.
it remains to determine the pressure and lift coefficients. Using
equétion (2) a2and collecting the values of acceleration potential
from equations (7), (11), (13), (15) and (17), the pressure coe-
fficient, as a function of angular position on the unit circle in

the §-plane, can be written as

CP.—_-—?.(P—K’
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where
P = [C, +"7-¢:rr'“')... 9.%:'\5]‘_':52’?‘.056 - 18°s|no (24)
sn§ {sml__§‘ X Y", '9_;9.]
il L |,
mw S Y- '\T s Q_"_;_e_,,}

oo oo
~>M,smne - = Nnsmne
' 2(cose,~- COSO)

Consideration of the transformations leads to the result that on the
alrfoil angular points on the unlit circle in the €-plane, and points

on the airfoil in the z-plane are related by

b -b
x = £ [ cose- 7] (25)

It follows immediately that equations (2), (24) and (25) are used to
relate the pressure coefficient to points on the airfoil.
The 1ift coefficient can be determined by the use of the Blas-

ius equation,
D-il = igu'p wimrdz (26)
¥

where the contour ¥ encloses the body and cavity system. To the first

order in the dimensionliess perturbation velocities
wr(@) = 1 + 2(u=4iv)

and equation (26) can be written as

poil = iQUP(u-ividz. (27)
§

Using equations (3) and (4) and nondimensionalizing the 1lift and drag,

equation (27) can be expressed as



30.
co_a.c,_-‘—c"-'f F(z)dz. (28)
¥

F(z) can be expanded in a Laurent series for a contour ¥ such that

izl»>£. Equation (28) then allows the 1lift coefficient to be written

as

C.= ‘%’Im.icoef-ﬁc.\eni' of %} , (29)

and the total drag coefficient on the ‘body cavity system as

C,-—‘—‘g—r Rifcoefficient of “i} . - (30)

The R1fcoeff(%)} was shown to be zero in the consideration of the
closure condition and the drag coefficient is zero as expected in
such a potential theory. The drag on the airfoil can still be'worked
out theoretically. The drag on the airfoll is balanced equally by
the force on the singularity at the cavity termination point. In
determining the drag on the airfoil this cavity termination point
only need be considered. The drag predicted is unrealistically high
due to the theory being unable to model the separation.bubble in-
front of the spoiler evident in the real flow, The drag theory there-
fore will not be pursued further.

Using the results just determlnéd for the cavity closure con-
dition the 1ift coefficient can be written as

. \ e;e‘, > -;9.
C. = 4F Ton {48,000 +%) - L [Cov 2308 COumt T ha [remenyy + oy ]

Yo, - ! - {
+ 222 oG re™) "] + 3 el o) "G e
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“'eﬂ -A.O,
oo e -
T R P R cafe-»e._.)l} (31)
e, '@.e*?2 1 )(a,e . \)

The Blasius equation for the pitching moment could equally be applied

to determine the pitching moment coefficient of the airfoil.
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SECTION A4

NONSTEADY THEORY

4.1 Formulation of the Problem

The nonsteady problem to be considered is the case of spoilep
actuation on a fixed airfoil in 1nitiélly steady flow. Nonsteady air-
foil motions with fixed spoiler angles have not been considered.

Such cases are a much simpler application of this theory and they
have many features in common with existing results as given by Par-
kin (4). | |

The following theory is developed for the case of zero cavita-
tion number. The.reasons,behind this merit careful consideration.
First consider an alirfoil without a spoiler in steady flow. If a
spoiler is actuated on the upper surface, the flow is going to be
disturbed. Even a detailed experimental tabulation of how the cavity
number varies with the variables of time and spoiler angle will not
enable a solution to be formulated. It must be remembered that the
cavity length 1s related to the cavity number due to the fact that
there can be no drag on the body-cavity system. It will be recalled
that this was expressed by boundary condition (v) of the steady state.
Hence, knowing the cavity number as a function of time, the cavity
length can be calculated. Since the transformations of section (3.2)
depend upon cavity length, the mapping function will change as cav-
ity number changes with time. Modification to the current theory
would be necessary to effect a 551ution in such a situation. ?he only
solutions would appear to be, to assume that as soon as the spoiler
starts to move the cavify number assumes its final steady state
value, or assume that the cavity number is at all times zero. The

first solution has obvious limitations and the second solution al-
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though not physically attainable does have merit. The average pres-

sure on the rear part of the upper surface of an airfoll in most
configurations is very close to éero. Hence during the initial part
of the spoiler actuation the cavitation number is close to zero. The
zero cavitation number solution 1s comparatively simpler mathemati-
cally and its complete linearity permits easy comparisons to exist-
ing nonsteady thin airfoil theory probiems such as change of angle of
attack. At zero cavitation number the flow resembles a Helmholtz flow-
with the cavity behind the body extending to infinity. In this case
the cavity pressure is equal to the undisturbed free siream static
pressure. The foil 1s positioned as described in section (3.2). The
airfoil configuration is shown in figure (3).

In solving this problem once again linear airfoll techniques
are'employed. The first problem for which a solution is required is
the unit step spoiler actuation., To achieve this.solution e case
that is not physically attainable must be considered. The step bound-
ary condition on the spoiler is a step in the y-component of velocity
given byhv=sin$ over that portion of the x-axis that corresponds to
the spoiler. Such a step change in velocity can be achieved by sol-
ving for the case of v=-v.,e."wt over this region and then integrating
over all frequencies., Looking more closely at this problem of a sin-
usoldal velocity however it can be seen that it is not physiéally
possible. Over the negative portion of the velocity cycle when phy-
gically the portion of the x-axis corresponding to the spoiler has
a suction on it, the airfoll could not possibly support a cavity.
There are however, no mathematical limitations and the cavity is
Just considered to exist. This point is easier to understand if the
sinusoidal veloclty is considered to be a disturbance on the exist-

ing steady state solution for some spoiler angle. In such a case the
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cavity does already exist. This case of a sinusoldal velocity over

the spoiler region henceforth will be referred to as blowing theory.

L,2 Blowineg Theory

In considering this problem only the flat plate solution of
zero incidence is éonsidered. This section is the eéuivalent of the
spoiler‘case in the steady solution. The remaining existing steady
state solutions of incidence, camber, thickness, and f:ap for K=0

are fully additive to this nonsteady solution.

Lb,2.,1 Boundary Condition

The boundary conditions for this nonsteady blowing problem are
as follows:
(1) ¢¢=0 on the ca&ity, x»(s+h), y=0" and xzc, y=0".

(11) Kutta conditions,¢ continuous, at the spoiler tip
x=(s+h), y=0" and at the trailing edge 6f the airfoil
x=c, y=0".

(111) v_{O on the foil O<x<s, y=0" and Osx<c, y=0.

- voe!“® on the spoiler s<x<(s+h), y=0v.

(iv) F=0 for the point at infinity, z=-o9,

(v) =0 on the foil Osx<s, y=0" and Osxsc, y=0".
T df
dz 8(‘}". . -+
==f MY, € on the spoller se«x<(s+h), y=0 .

In the above boundary conditions
«w

mal

b,2.2 Transformations

The physical plane for this case is the z-plane of figure (2)
with €=00, The transformations are obtained from the steady state
transformations given in section (3.2), with the z'-plane omitted.

The transformations are
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vV =ayz ' Q.SE
and

"*'(g -&)--—-— , b'= a'ys+h .

These transformations are shown in figure (2). Points on the airfoil
in the z-plane are related to the corresponding points on the §-plane

by the relation:
2. (8 [cose-cose,T". (32)

4.2.3 Method of Solution

Using boundary condition (v) and the definition of the accel-
eration stream function from section (1), the stream function can

be written as

Sy on -Hne foul
IxX = = 3V, e’ on the spoiler,

Integration of this equation glves

yuot
= C,eaw on the -&:d
M = ~3M.Voedwtx +é.eaw on ‘Hve'spoder-,

where the 'constantst! of integration have been assumed to be harmon-
ize function of t. Substitution of x from equation (32) into these

relations enables 4 to be expressed as
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t
b { - G ed” on the foil (33)

= -J,u.v,e"wt [,(b”)-!-cosze (— )c.ose]+ C. 33 on the spoiler

where C, —C-Jlb%(b”) (3+cos*@,). The solution to the problem closely
follows the techniques of the steady state problem. Complex funct-
ions must be determined to satisfy the boundary conditions developed.,
The constant terms of equation (33) can be satisfied by functions

given in the spoliler case solution as follows:
L9, s
4.3. . ©, .____—-'e 6“’
"'""'[Se.“’- v Y ge sy l"‘{g—e“'e'}]e

-,..e}] et

(34)
. C (e-m) i(0,-)
Tlee®: * ey *

The part of equation (33) that is a function of @ is similar to a
camber type problem and once agaln a Fourier serles complex function
is required. Suppose thefunction of ® in equations (33) 1s express-

- ed as

(] -, L)
= (Ef"')"ic"s’-e"(%‘)wse ezezo0
fco) {

= O T2,

A Fourier cosine series can be determined as follows:

oo
Z.. J.cosne =f(O) ,

where

T
J, =% f(e)QOSne de .
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Since this Fourier cosine series has to be the imaginary part of any
function determined, it follows that the required complex function

can be written as

0o

t n
et S

Hence combining expression (34) with this function allows the total

nonsteady complex function to be written as

t
R(8) = - juv e84 ozo‘:s[?'

5”t sadn v e - 3 e““’}]

NPy et S }] (35)
It remains to demonstrate that these functions satisfy all the bound-
ary conditions. Conditions (i) and (ii) are identical conditions to
the steady state solution and since the functions are of the steady
state tyee these conditions are fully satisfied. Through the mapping
functions it can be shown that (8| epproaches infinity as lzl approach-
es infinity. Hence the complex functions in equation (35) disappear
at infinity and condition (iv) is satisfied. Boundary condition (v)
was used to determine the nonsteady complex functions and is inher-
ently satisfied. The velocity boundary condition (iii) now must be
satisfied.

Using the definition of the stream fuﬁction from section (1),

equation (1) can be written as

"’i‘.':'+apv“-§.i° | (36)
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where the nonsteady flow quantities have been written as ;p‘q%edwt

apmp.e"wt and v;V,e“"t. In equation (35) these values enable the non-

steady complex function to be expressed as

Fo(8) = Lo (8) + & vo (8)] 2*F (37)

Since V,, the velocity amplitude about the x-axis of a given point
in the flow field, must vanish at infinity, the integral of equation

(36) can be written as

- - s
Vow - €7 35 e as (38)

where x refers to any point on the foil or spoiler region and ¢

is a dummy variable of integration. At points on the foil V=0 and

at points on thé spoiler region Vomy, . Consideration of the leading
edge and the spoiler base in equation (38) will result in two equ-

ations in thé two unknowns C; and C4. It should be noted that con-

sideration of any general points results in the same equations, but
mathematical simplicity makes the leading edge and the spoiler base

the desired choice. The equations are

o
Ibe o gms

and

S
Ve
V= - G-JMS joos% eaMs dS

Integrating these equations by parts and changing the variable of

integration gives
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. o co '
O= ~ e.d'us’\‘/, !'N - J,ujo. e-JMSA}J,("S‘) dS'

and (39)

S oo ¢ S
voedks- - eAMS'\{’o lw*dﬁj e.J»S o(-s') dSl + (),"J; ea‘bs’*. ds
-] .

where § has been replaced by - g'. Substituting the value of ~+» from
equation (37) into the first of equations (39) results in the equa-

tion

. [ -] ] . o0 t o0 . [
%”"[J»J; M3 T, d?‘{]'%)ﬁj;e"’“s"l g« /'Vo'[e")“s'r; df'=o,

Substituting s into the second of equations (39) gives

oo . '
%,—‘[_11- e +d'/~‘£e’¢)”s'l’3 ols'] - %‘-[_ve““’-o-y‘j;:‘d“sqols']
y’s 4

. o0 ' A ' 3
+/u"V°J e ST dg' T eb”s{i(%ﬁ)"ccs 20, - (":a'.&'” )cose.} -v, ec0 .
-]

In the above equations

oo JIn
T = R Z'[w“’_._ ﬁ.w + ig_ose,-o-'?"f{;y?}‘-\]

{ [Scose,a- ,+b.)_‘} -1 ‘]]4_0"3{:059 +”b.r ‘) cose+—-; -| -c }
Yy cose,+;—;—;. r J{cose ’_”sr“}s_‘ -€

and

= Ri {(0- )[oseo"’wb‘ =t _‘ﬁ}.g.arj {“’9"“%‘)—'*““50,* :L: 'r};‘; . }
el COE0.+ |+b'r’ C—ose*..b‘r‘ SR

i
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The solution to the two simultaneous equations for C, and C, is

C, = -v,C.

and

C,= V,C:_

The values of C!' and C} are

C - ikt 57 ag'- wllinfs( ¥ Yeosza - (5¥)coso}- ] - e S g
wi v jufedSy as']
and | (40)

C fo”JMSTdS +Jﬁ"cuf J»ST' das’
v - jpf ST ag y

where

Rl.[ ‘-°$9.+uh‘r}" 1

H»b'

It can be seen that C! and C} are very complicated expressions that
cannot be solved analyticallyo The numerical solution of C} and cJ
as a function of m involves large numbers of calculations and nec-
essitates the use of a computer. In solving the expressions for C/
and CJ}, f obviously cannot be extended to infinity. Fortunately this
does not 1limit the solution. A closer look at the integrands of the
expressions in equations (40) helps to demonstrate this point. These
integrands all approach zero as § approaches infinity. It 1s not

this fact however, that facilitates the solution of these integrals.
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It is found that when €' is greater than a few chords, the integrands
are very slowly varying functions of %'. The important aspect of the
integrals then becomes the fact that the integrand must be tfuncated
at the end of a complete cycle. This means that m§' has to be an ex-
act even multiple of W. Using this technique it is found that 10 ch-
ords gives a high degree of accuracy. The value will actually fluct-
nate around 10 chords as /5 is kept as an exact even multiple of T,
In the integrals 1nvolv1ng‘ Tay Ty and T4 the integrand is infinite
at the lower limit. Care must be taken in numerically determining the
Cauchy Principal value of these integrals.
From equation (37) the acceleration potential ¢ for points on
the foil can be written as |
= [ci+Cly, ‘n{i:;%} [cte-mr+Cloy, a——“-‘é'-'-%;e - )1, E_ smno. (41)
=
Using equation (2) and integrating the pressure, the 1lift coefficient .

can be written as

v

%L? de .

l‘ﬁ.
Oix

Substituting the expression for x from equation (32) gives

L L) <4
C.= z(h;“) I(p. sin 20 de - (i- U‘)fqa, smedo ,
[-] o

where C‘_‘, is the amplitude of the unsteady 1lift coefficient, and
ot
CL=C._.e“ . Putting the expression for ¢, in this equation and integrat-

ing gives
wLCiD, + €0, - juD;]
where.

D = v{(%ﬁ')tf_ze,cosze.-&n 20,] + (';H')[_sme‘-'e,coseo]}’



L3,

D= {(EEJ) [2(6-T)cosre, - sn 28] + (-8 )Lsne, -(o-m)cos e.']}

and

, b 4 R , N
DS > i(-;_—"') [e,-l'i'SlnAe:]-%(b;?)(l-b‘)[ﬁﬂ e,-rgsm 36,] +-k(|-— B‘)[e‘q—-'is.n;e‘] )

Suppose the quasi-steady 1lift coefficlilent Cbs i1s defined to be the

value of the unsteady 1lift coefficient for m=o, then,

it
, .

CLsachle
since

C:.—.'l‘ and C',:o for u—o.

The ratio of the nonsteady 1ift coefficlent to the quasi-steady 1lift

coefficient can be written as

S _ D
c,, = A i (42)

where

! ' D
- C+C 2
Quy= Ci+C 5

The 1ift coefficient is then expressed as

ywt .
C = v.&é‘ EQw-M%?J :

This 1ift coefficient must now be used to determine the unit step

spoller actuation problen.,
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4,3 Unit Step Actuation

The complete linearity of the present system for K=0 makeé it
possible to use the methods of superposition to obtain the transient
solution to the spoiler actuation problem. The second term of equ-
ation (42) represents the contribution of the apparent mass term
and will be discarded since it has no contribution to the solution.
Before proceeding with the problem, a closer look at Q(p) is war-
ranted. The numerical solution of Q has limitations for large values
of m. Fortunately such large values of m haVe little effect én the
solution to the problem. Q(sm) is shovn in section (6) for different

spoiler positidns and sizes. It can be seen that as u gets larger, Q
tends to the imaginary éiis and the rate of change of the real part
of Q with 4 1s very small. This contributes to the solution converg-

. ing rapidly as s increases. A further discussion of this point will
be given after the solution has been developed. A further point to
notice is that as;& approaches infinity, Q becomes asymptotic to the
imaginary axis. This means that the real part of the 1ift approaches
Zero aslé approaches infinity. Physically it can be argued that the
blowing and sucking cycles occur so rapidly that the wake circulation

cancels the 1lift more effectively for these shorter wavelengths.

Equation (42) can be written as
C=vDQuw, (43)

" _
where vw%er" and the apparent mass'term has been dropped. The vel-
ocity boundary condition on the spoiler region for the unit step
spoiler actuation problem is as follows:

o, t<o
Vs{
smS ,‘t?o.
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This can be expressed as sin§i(t). If v, is put equal to sné_ 4

zvdw
equation (43) is integrated over all frequencies, the transient 1lift
coefficient becomes

C.= smS 03 & Qo dw.

oo Sut
00
Suppose
Ut = s'c

where s' is the distance moved in chords, then this equation can be

written as
. = C L), . , (4h)

where Ck; is the final steady state value of the 1lift coefficlent
and

oo ks’

I =25 ) 5 QUK olk. (45)

The frequency parameter k ls given by
k=mc.
The technique for solving this integral is given by Bisplinghoff (8).

Suppose

QU = R(KY +50K)

where R and S are both real functions of k. The integral of eguation

(45) becomes

(k)S"'\kS. dk ] | (46)



L6,

R is only known numerically and this integral must also be solved
numerically. It will be recalled that as s and hence k, increases

in size, R(k) and the ra?e of change of R(k) approach zero. This

and the k factor in the denominator make the integrand very rapid-
ly gpproach zero. Once again it is advantageous to integrate over

a length corresponding to an even multiple of . It is not necessary
to take k any greater than 25 to give very good accuracy for this
integral. The éolutions to this problem are given graphically for

different airfoil configurations in section (6).

L,4 Finite Time Actuation

In practical applications the spoiler actuation takes a finite
period of time. Once again the'complete linearity of the zero cavity
number solution allows this problem to be easily solved. The unit
step integral in equation (46) is entirely independent of the spoi-
ler angle. This means that nonsteady spoiler actuation solutions can
be superposed. For example, suppose at t=0 the spoiler angle jumps
AS and after t=At the spoiler angle again jumps AS. At t=At the dis-
tance travelled,Asﬂ is UAt and the total spoiler angle is 2A$. After
time t=te=NAt, during which time the foil has travelled s' =Sy=NaS',

the spoiler angle has risen to its erection angle
&= (N+1)AS

Using equation (44) and summing up each small step gives
C.= Dsmas{T,INas T+ LIn-0asT + .. +X [o]}.

After time t>t,, during which time the foil has travelled a distance

(s'~-Sg) with its spoller fully erected, the lift coefficient is



b7,

C.=0D s A5 {I.CS') +T,(s™- fﬂ") +I3(s'\- 3-':;—?) o, +T .., (s- S;)} .

Now Af$<<1 and sinl$§ can be replaced by

°
Qb =g

This gives the 1lift coefficient

Cl- = C"‘F W(S.)

where

w(s) =§";T{I.(S') +I,('- -‘,—;5)*-. . Im(s‘—s'e)} i

Strictly speaking in this solution C_, should equal D§ and not Dsing .

b4
However since it i1s the response function W(s') that is the important
part of fhis solution it is allowable, for conformity purposes, to
write the solution as given in equation (44). Once N is chosen, the
solution is a function of the total distance travelled and the dis-
ance travelled during spoiler erection, Typically N=20 shows very

good results., This solution for different airfoil configurations is

also shown graphically in section (6).
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SECTION 5
EXPERIMENTS

Experimental measurements for 1lift, drag and pitching moment
were taken for the 14% thick Clark Y airfoil, shown graphically in
figure (4). The airfoil was constructed of wood and had a 14 inch
chord. Each end of the airfoil had 1/8 inch steel-plates attached
to allow spanwise spoilers of heights 5% and 10% chord to be mounted
at spoiler angles of 15, 30, 45, A0, 75, and 90 degrees to the air-
foil surface at varying positions on the airfoil. Measurements were
taken for spoiler positions of 50 and 70% chord.

The airfoill was mounted at the mid-chord position on a six-
component strain gauge balance system., The 1lift, drag and pitchiﬁg
moment were measured over a wide range of incidence. The gap be-
tween the spoiler and the alrfoll surface was sealed with masking
tape'for each configuration. The base pfeSsure in the wake region
was measured by taping a thin tube to the airfoil in the wake re-
gion., This tube was connected to an alcohol manometer together with
a tube leading to a static probe measuring the upstream undisturbed
static pressure. The test Reynolds number was 4x10 .

Identical measurements were taken on a 14% thick Clark Y air-
foil with a 32,5% flap. This airfoil and flap combination is shown
graphically in figure (5). For these measurements the airfoilkwas
mounted at the %-chord point. The gap on the lower surface between
the‘main foil and the flap was sealed with masking tape.

Al]l measurements were made in the low speed wind tunnel of the
Mechanical Engineering Department of the University of British Col-
umbia, This tunnel has a test séction of 3 ft. by 2% ft. over a

length of 8 2/3 ft. The tumnel produces a very uniform flow, with a
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turbulence level of less than 0.1% over a wind speed range of 0-150
fps. |

The wind tunnel wall correction technique employed was the
same as that employed by Jandali (1). This method uses the correct-
ions established by Pope and Harper (9), with a wake blockage term of
i (c/H)Cpinstead of #(c/H)Cp. Jandali found that measurements on air-
foils of varying chord lengths collapsed more sultably using these
corrections. There’exists some controversy over the techniques emp-
loyed for correcting the wake pressure coefficient. Bluff body and
stalled airfoll techniques such as those presented by Maskell (10)
are not strictly applicable. To overcome this problem, base pressﬁre
measurements were taken over a range of incidences on airfoils of ch-
ords 9, 14, 19 and 24 inches for normal spoilers of 5% and 10% heights
located at both the 50% and 70% chord positions. These measurements
were plotted and interpolated back to zero chord (or infinite stream).
The base pressure coefficient for the remaining spoiler angles, for
which measurements were taken on the 14 inch chord airfoil, were then
corrected in the same respective ratio. It is realized that, as'the
spoiler angle changes, the wake characteristics also change slightly,
This in turn would affect the correction ratios slightly. This tech-~
nique does however, glive reasonably realistic results and was used
in the absence of a better technique,

At Jow ailrfoil incidences and small spoiler angles the possib-
1lity of flow reattachment occurs,. In such a case the theories deve-
loped in sections (3) and (4) are not applicable. To ensure that
measurements were not taken for such cases tufts of cotton were att-
ached to the airfoll surface in the wake region. Observation of these
tufts in all airfoil configurations was carefully carried out. The
lower surface of the Clark Y airfoll is flat, and this base is used as

a referencekfor incidence rather than the usual chord line.
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SECTION 6

RESULTS AND COMPARISONS

The first part ofvthis section shows the results from the
steady linearized cavity flow theory developed in section (3). The
lift coefficients over a wide range of incidence, obtained for nor-
mal spoilers, are comparsd to those obtained theoretically by Woods
(2) and Jandali (1). The theoretical lift coefficients as functions
of incidence for several spoller angles, including the normal spoi-
lers, are compared with experiment. Comparisons between theory and
eXperiment are also presented showing the variation of 1lift coef-
ficient with spoiler angle for a given airfoil incidence. Examples
of~the pressure coefficiént predicted by the linearized theory com-
pPlete the steady state results presented. |

The latter part of this section contains the results from ?he
unsteady linearized. cavity flow theory developed in section (4) to
solve the spoiler actuation»problem. In the blowing case theoretical
results are given showing the variatibn with frequency of the ratio
of 1ift coefficient to quasi-steady lift coefficients, The ratio of
1ift coefficient to final 1lift coefficient as a function of distance
moved in chords is presented theoretidally for the unit step and fin-

ite time spoiler actuation problems.

6.1 Steady Theory

In figure (6) the experimental 1lift coefficientvand the lift
coefficient calculated.using standard linearized technigues are plot-
ted asla function of incldence for the 14% thick Clark Y airfoil. As
is expected the agreement around the zero 1lift angle of incidence is
good; the agreement becoming worse as the incidence increases. Around

the zero 1lift incidence the vorticity dissipation in the boundary
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layer is at a minimum and a close comparison between theory and ex-
periment is expected.

First 1ift coefficients over a range of incidence from the
present theory will be compared to the results of other theories,
and to experimental results, for the case of a normal spoiler. All
spoiler heights and positions are given as a percentage of the air-
foil chord.

In figure (7) and (8) the 1lift coefficlients for the three

theories and the experiﬁental lift coefficients are shown for a
1042 normal spoiler at the 50 and 70% positions respectively. The
corresponding comparisons for a 5% normal spoiler are shown in fig-
ures (9) and (10). These figures show the agreement between the
theory and experiment is quite good. The agreement with experiment
shown by Jandali's theory is very good, but it will be recalled the
additional condition of no 1lift incidence is required as an input
into this theory. In the caléulation of Woods! theory the em?irical
equation for C&r suggested by Barnes (3) was used. Although Woods!
theory shows reasonable agreement wilth experiment, it does not seem to
predict the correct 1lift curve slope. For the experimental base pre-
ssure applicable in these cases, the cavity length is quite short.
This has the tendency of making the solution more highly dependent
on the accuracy of the base pressure coefficient. The camber and
thickness solutions which constitute a considerable portioh of the
1ift coefficient, are dependent to a very small extent on the cavity
number. They have a very small effect on the determination of the
cavity length, and enter primarily through satisfying the condition
at infinity. This fact reduces the solution dependence on the cavity
length and hence the cavity number. The contribution of the thickness

solution increases negatively from zero as the spoiler moves ahead
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from the trailing edge. The contribution of the camber solution de-
creases from a maximum as the spoliler moves forward. For the cases
presented of 50 and 70% spoiler positions, the thickness contribu-
tions is the same order of magnitude as the camber contribution.

In Woods' theory the thickness term is discarded as a second order
term.

Comparisons between theoretical and experimental results will
now be considered for spoiler angles other than 90 degrees. In fig-
ures (11) and (12) the comparisons are shown for a spoiler of angle
L5 degrees positioned at the 50% chord point, the spoiler heights
being 10% and_S% respectively. Figures (13) and (14) show a compar-
ison of theoretical and éxperimental lift coefficients for spoilers
located at the 70% chord point with a spoiler angle of 60 degrees
and spoiler heights of 10% and 5% respectively. Figures (15) and
(16) show the corresponding comparisons for a spoiler angle of 30
degrees,

These results will now be presented for a fixed airfoil incid-
ence, the spoiler angle being the variable against which the 1lift
coeffisient is plotted. The spoiler 1s located at the 70% chord
point. Figure (17) is a comparison in 1ift coefficients between
theory and experiment at an airfoil incidence of 6 degrees, and a
spoiler height of 10%. Figure (18) shows a corresponding comparison
at an airfoil incidence of 6 degrees and a spoiler height of 5%. As
expected the 1lift coefficient decreases as the spoiler angle incre-
ases. The agreement between theory and experiment is once again
guite good. It should be recalled that this graph of 1lift coeffici-
ent verses spoiler angle cannot be extrapolated back to zero spoiler
angle, since the theory 1s only applicable as long as the cavity

exists, and in such a case the cavity physically could not exist.
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Comparisons for the airfoil with spoiler and flap between the
theoretical and experimental 1lift coefficients for a 10% normal spo-
jler at the 70% chord point will now be given for different flap
angles. Figure (19) shows the comparison for a flap angle of 15 de-
grees, and figure (20) is a comparison for a flap angle of 30 deg-
rees. This result is consistent with simple linear flap theory, the
theory over predicting the 1lift as the flap angle gets large.

To complete fhe results presented for the steady state solut-
ion, some examples of the theoretical pressure coefficient distri-
bution for normal spoilers will be given. Figure (21) shows the theo~
retical pressure coefficient distribution for a 10% spoiler located
at the 70% chord.positioh with an airfoil incidence of 12 degrees.
The theoretical pressure coefficient distribution for a 5% spoiler
1ocated at the 50% chord point for an éirfoil incidence of 10 degre~
es, is glven in figure (22). For comparison the results given by
Jandali (1) are shown on thesé graphs for the same airfoil config-
urations. The singularities in the pressure distributions are inher-
ent in 1inearized techniques, and the distributions give basically

gualitative information,

6.2 Nonsteady Theory

In the consideration of the nonstead§ solutions it will be re-
called that the solution is independent of the spoiler angle and
that the cavity must already exist. This fact means that the thick-
ness, camber, incidence, and flap solutions are not going to change
during further spoiler actuation and their steady state solutions
are fully additive to the nonsteady spoiler solution. It is proposed
therefore to present only the results to the nonsteady spoiler sol-

ution.
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Although they are of little physical importance and are prim-
arily an intermediate result, some blowing case solutions will be
presented. It will be recalled from equation (42) that the ratio of
1ift coefficient to quasi-steady 1lift coefficient was expressed as
a function ofam, the frequency of blowing. Figure (23) gives this
ratio for a spoiler region length of 10% positioned at the 70% chord
point. Figure (24) gives this ratio for a spoller region length of
5% positioned atbthe 504 chord point. It can be seen that these plots
asymptotically approach the imaginary axis, the real part of the 1lift
coefficient approaching zero. It may be reasonable to argue physically
that the blowing and sucking cycles occur so quickly as the fregquency
gets large, that the net'affect approaches zero.

The unit step spoller actuation problem will be considered next.
The results for the spoiler actuation problems are réported as the
ratio of the instantaneous lift coefficient over the final steady
state 1ift éoefficient, as a function of the distance moved in chords.
Since the spoiler actuation problems are independent of spoiler angle,
the solution becomes a function of spoiler position and height only.
Figure (25) is the solution for a 10% and a 5% spoiler at the 70%
chord point.

The use of linearized theory allowed the superposition of the
unit step solutions into the finite time spoller actuation problem.
This again makes the solution independent of spoiler angle. These
results are also reported as the ratio of the instantaneous 1ift
coefficient to the final steady state lift coefficient as a function
of distance moved in chords. The unit step spoller actuation solu-
tion is included with the finite time solutions for purposes of com-
parison., Theoretical results are given for actuation distances of 5,

10 and 15 chords. In figures (26) and (27) the theoretical solutions
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are given for 10% spoiler at the 70% chord point and a 5% spoiler
at the 50% chord point. In figure (28) the distance travelled for
the 1lift coefficient to fall to 90% of its final steady state value
is plotted against spoiler position for both 5% and 10% spoilers
with varying erection distances. |

Figure (29) shows the distance travelled for the 1lift coeff-
icient to fall to 90% of its steady state value as a function of
erection distance for both 5% and 10% spoilers at various spoller
positions. As the spoiler erection time increases the nonsteady sol-
ution asymptotically approaches the quasi-steady solufion. For very
slow spoller actuation rates only the quasi-steady solution is nec-
essary. However for faster rates of actuation a full nonsteady ana-

lysis is necessary.
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PART II

AN EXACT FREE STREAMLINE POTENTIAL FLOW THEORY
FOR THE STEADY STATE AIRFOIL SPOILER AND
SPOILER PLUS SLOTTED FLAP PROBLEMS
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SECTION 7
SOLID ATRFOIL WITH A SPOILER

7.1 Surface Singularity Theory

The surface singularity technique employed in the following
problems was developed recently by A.M.O0. Smith and hls associates
at the McDonnell-Douglas Aircraft Company. Several comprehensive pub-
lications (6,7) of this theory exist, and therefore it will not be
repeated. Although‘Smith's theory is applicable to two and three
dimensional flows, this analysis is limited to a two dimensional,

incompressibtle, inviscid and irrotational flow field.

7.2 Formulation of the Problem

The airfoil without a flap is positioned in the z;plane as
described in section (3.2). This configuration is shown pictorially
in figure (30). In this problem there is a wake extending to infin-
ity. The waké is bounded by free streamlines,one springing from the
spoller tip and one from the trailing edge. Experimentally the base
preésure on the airfeoil in this wake region tékes a constant &alue.
.Sincé no satisfactory theory for predicting the base pressure cor-
rectly has been devised, all such theories require at least one en-
pirical parameter., There 1s no advantage in correctly modelling the
constant value of this base pressure over the wake region, If the
theory correctly predicts the separation pressure coefficients on
the free streamlines detaching from the spoiler tip and the trailing
edge, the pressure on the airfoil between the streamlines inside the
wake can be assumed congtant. and equal to the separation pressure,
regardless of what type of flow is in this region. This approach
was used effectively by Jandali (1) and Parkinson (11), Their method

of using sources on the body in the wake region to create the wake
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is also bursued here. Jandali considers both 1 and 2-source models
for a solid airfoil with a normal spoller. The current theory is not
limited to a normal spoiler. Use of the Z2-source model allows the
pressure to be stipulated on both separating free streamlines. The
1-source model allows the pressure to be stipulated on only one of
the separating free streamlines. The other value floats fréely. but
was shown by Jandalli to be finite. The iterative method of position-
ing the source in the numerical technique employed in the current
theory makes it extremely difficult to consider the 2-source prob-
lem. In the 2-source model there are five unknowns; the two source
strengths, two source positions and one unknown circulation. There
are however only four conditions; the two Kutta conditions, and the
stipulation of the base pressure at the spoller tip and at the trail-
ing edge of the airfoil. This problem will be discussed further when

the 2-source model is treated in detail.

7.3 Boundary Conditions

The boundary conditions for the l-source problem, itemized in
detail, are as follows:
(1) Kutta condition at the trailing edge and spoiler tip.
(11) Pressure stipulated on the separation free streamline
at the spoiler tip,
(i1i) Surface normal velocity condition of no flow through
the surface.
Although Smith's theory is an exact analytical theory, numerical app-
roximations are necessary in obtaining a solution. The airfoll is
divided into straight line elements the centres of which are the
control points. The Kutta condition at the trailing edge is then sat-

isfied by matching the tangential velocity at the last control point



86.

on the upper surface to the tangential velocity at the last control
point on the lower surface. This matching technique applies identi-
cally in satisfyihg the Kutta condition at the spoiler tip. It must
be realized that these conditions are noﬁ applied right at the se-
paration point, but at the last control points before the separation
point. This is inherent in the method and cannot be avoided. Hence
1ﬁ satisfying condition (ii), the pressure is actually stipulated
at the 1last controi point before the spoiler tip. There are then
three conditions to be satisfied by three unknowns. The unknowns are;
the source position, the source strength and the circulation about
the airfoil. Condition (iii) also can only be satisfied at the con-
trol points and this is done in the usual Way of putting a distribu-
tion of sources over the elements. For the 2-source model conditions
(1) and (iii) remain unchanged and condition (ii) becomes:

(11) Pressure stipulated on the separation free streamline

at the spoller tip and at the trailling edge.

7.4 i-Source Model

First the method of solving this problem for the l-source model
will be described. Suppose that a source is positioned somewhere on
the airfoil between the spoiler and the tralling:edge. The solution
can then be determined directly by satisfying the Kutta condition
at the spoiler tip of the airfoil, and by stipulating the pressure
on the last element before the spoiler tip. The trailing edge is then
observed to see 1f the Kutta condition there 1is satisfied. If it 1is
not satisfied the source can be moved along the surface of the air-
foil, and the solution deﬁermined again. This procedure is repeated
until it is observed that the Kutta condition is satisfied at the
tralling edge. When this occurs the correct solution has been deter-

mined.
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In order to effect a solution a large circular fillet is plac-
ed behind the airfoil spoiler. This is necessary since the spoiler
otherwise is infinitely thin and not adaptable to Smith's method.
Such a modification to the airfoil and spoller in the wake region
has no effect on the problem solution. Modification to the ajirfoil
surface in this region was also employed by Jandali. In positioning
the source onset flow care must be taken to ensure that as the source
moves along the surface, it passes smoothly through the control points.

It now remains to adopt the above arguments into a mathematical
" formulation of the problem. In this configuration there are threce
onset flows to the airfoil, namely the free stream, the concentrated
source flow and the circﬁlatory flow. Following Smith's technique
the circulatory flow is crested by distributing vorticity over the
elements of the airfoil. Suppoée Aﬁj' an element of matrix A, is the
normal velocity at control point i1 due to a unit source distribution
over element j, and Bg y an element of matrix B, is the tangéntial
velocity. Thmq-&%é is the normal velocity at control point i due
to a unit vorticity distribution over element j, and Aﬁj is the tan-
gential velocity. The normal velocity 1is defined as positive out-
wards from the airfoil and the tangential velocity is defined as
positive in a clockwise direction starting from the leading edge.

If mu and mu are the normal and tangential velocities respect-
ively, due to the concentrated source of unit strength and.ié and

"L

gg those duve to a unit free stream, the normal velocity boundary
A

condition (iii) can be written as

) .G )
ALJ'UJ = __a%,i,+ B,’,JSJ X"‘Vp‘”x '

where ¥ is the uniform vorticity strength,)\ the concentrated source

strength andcg the strength of the source distribution on the J+h
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element, Suppose that starting from the leading edge In a clockwise
manner N, is the number of the last element before the spoiler tip
and N, the flrst element after the spoilerAtip. Suppose élso that «,
and N, are respectively the last element before and the first element
after the trailing edge. The Kutta condition at the spoiler tip then
gives the equation:

24
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Application of boundary condition (ii) gives the final equation:

3 B - AEEe NN TG

where Cﬁ,is the base pressure, obtained experimentally, and empiri-
cally entered into the solution. These equations can be combined to

give the equation:

_ ar 3 7
.. e 3
Aij -Bij8) Yo 119 3%;.
3
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This essentially raises the order of the matrix A byitwo and can be
solved directly. The Kutta condition at the trailing edge can then

be expressed mathematically as

d .q- KX -
_é +B 0"' + A“‘J 5%+ \4. )\ = _}%;‘4‘ BﬂAJOJ—_A'JAaSJX vtuA :

NA ]

The concentrated source must be iteratively moved and the solution
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recalculated until this equation is satisfied. Once this equation
is satisfied the tangential velocity at the 4th control point, T

is given by

-‘1 =%$&+ B"JGZ + A"JSJX*'Vt&’\

The pressure coefficient at the ith control point denoted by Cmdis

Co, =1 -T2

75 Z-Sourcé‘Model

The 2-source model is solved in an identical manner. It was
pointed out in sectionl(7.2) that in this problem there are five
unknowns with only four conditions. Jandali (1) used the zero lift
incidence as the extra condition. That condition is not adaptable
to this theory and some other condition is necessary. Jandall found
that the second source fell on the airfoil between the first source
and the trailing edge and was weaker in strength than the first sou-
rce., He found that if the second source was moved towards the trail-
ihg edge its strength approached zero, and the Z2-source model appr-
oached the 1-source model. In the current work it is not proposed
to search for another condition suitable for this theory, but merely
to demonstrate how the boundary conditions can be satisfied, and how
the numerical technique shows consistency with Jandalits results.
The second source in the 2-source model is therefore merely fixed
on the airfoil surface in a position that makes the present theory
| agree with Jaﬁdali's 2-source model. This conveniently positions the
second source between the first source and the trailing edge of the

airfoil as in Jandali's theory.
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Suppose thand %“Lare the normal and tangential velocities res-
pectively due to the second source of unit strength. If A 1s the str-
ength of the second source, and the first source strength and vel-
ocities are given the subscript 1, then development of this problem

as in the l-source problem gives the equation:

- .7 ¥
AA.J —B,;,J'SJ' Vm; Vm; 9 —%%;
N J - Bn 2 (A, J - A )5 Yt." .1- Vi n V.f,"':' V,,f,“‘ ¥ b’tn Bt“)
T
B“‘j A"'jsj vn;“. Vst,‘. N ‘;%ur i-Cy,
. M \ -aj
] BN‘J A":JSJ . V.t“’ Vzt," L )‘z- i Aty r-Coy

Once again this equation must be solved and the Kutta condition at
the trailing edge observed. The first source, as in the 1l-source
model must be iteratively relocated until the Kutta condition at
the trailing edge is satisfied. Since the pressure, and hencé the
velocity, has been stipulated on the last control point before the
trailing edge on the upper surface of the airfoil, this Kutta cond-
ition can be expressed mathematically as

é'é 4+ BNAJ "485 x*vlt“ )\ *Vtt A,_.-.s - |-C‘;b
Once this equation is satisfied the pressure coefficient at the ith

control point is

where

=3

at~+ B"J 07 + A,.aS i+ V,%AMV,&L)\,
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The pressure coefficient can be numerically integrated to determine
the lift‘coefficient for any case desiredf This completes the sol-
ution to the steady state airfoil spoiler problem for both 1 and 2-
source models. Results from the above theory for the 1 and 2-source
models are presented in section (9).

Some comment is warranted on the numerical procedures. General-
ly when grading the elements and determining element size, the guide-
lines given by Smith (6) are satisfactory. It has been found necess-
ary in this problem to reduce the element size on the underside of
the airfoil in that region opposite the COncentrated sources which
are situated on the upper surface. Relatively speaking these scurces
are quite streng and the element size should be much less than the
distance between the elements and the séurce. A value of 110 elé-
ments was found to give good accuracy. On an I.B.M. 360/67 computer
the iterative solution to this problem for 110 elements has a typi-
cal execution time of 60 seconds for both 1 and 2-source models. This

time guoted includes six iterations of relocating the source posit-

ion,.
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SECTION 8

AIRFOIL WITH A SLOTTED FLAP AND A SPOILER

8.1 Formulation of the Problem

The airfoil is’positioned in the z-plane as described in sec-
tion (3.2). The oonfigﬁration is shown piétorially in figure (31),
In this case of a slotted flap, the problem is essentially a two
body problem where one of the bodies is of the type described in
section (7), and the other body, the flap, is a basic airfoil. There
is one extra unknown, the circulation about.the flap, and one extra
boundary condition, the Kutta condition at the flap trailing edgé.
The choices of an iterative or a direct solution, as preseﬁted by
Smith (6) are open to such a multiple body problem. Both methods were
tried and the direct method was chosen as simpler and shorter in com-

putation time.

8.2 Boundary Conditions

The boundary conditions for the l-source problem are:
(1) Kutta conditions at the main foil trailing edge, flap
trailing edge and the spoiler tip.
(11) Pressure stipulated on the separation free streamline
at the spoiler tip.
" (111) Surface normal velocity condition of no flow through
the surface.
For the 2-source model boﬁndary condition (ii) becomes:
- (11) Pressure stipulated on the separation free streamlines

at the spoiler tip and main foil trailling edge.

8.3 1-Source Model

The manner in which this problem is solved follows identically
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“the procedure described in sections (7.4) and (7.5). Suppose -BIL
is the normal velocity at control point i, on the main foil or flap,
due to a unit vorticity distribution over element k, on the main
foil, and A 1is the tangential velocity. Similarly -B, and Ay are
the Qelocities due to a unit vorticity distribution over element 4@,

on the flap. The normal velocity boundary condition (iii) becomes

Aijo; =-3_*.;+Bkskx+3,zgzx Vo)

where &, is the vorticity strength on the main foll and l, the vor-
ticity strength on the flap. Suppose that thé elements are numbered
from the leading edge of the main foil clockwise sround the main

foil, and then from the leading edge of the flap clockwise around

the flap. All symbols and definitions given in section (7) apply
directly to this solution. Suppose that N’is the number of the last
element before the flap trailing edge andr% is the first element after
the flap trailing edge. The Kutta condition at the trailing edge of
the flap gives the equation: |

P)
:f“: BugjG + Ay Mt R 5098+ Ve, N =3 “h -*q“‘ = RaxSidi-R 288~ %2

The Kutta condition at the spoiler tip gives the equation:
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Application of bhoundary condition (11) gives the final equation:

3
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These eguations can be combined to give the equation:
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This equation can be solved directly. The Kutta condition at the

trailing edge of the main can be expressed as

_é + B O'-rA“ .‘S,X* %e&, #V A s-s?- ,,4“8,} AN eSz

L] ,J

Once this equation has been satisfied the tangential velocity at

the «th control point is

11:3_%3* B,'.JO‘T + R:kskx- + AT;LSﬂxa- ' V"-i)‘)

and the pressure coefficient is

CP&:I |"-E:L

8.4 2-Source Model

The discussion of the 2-source model given in section (7.5)
is fully applicable to this solution. Development of the problem as

given in section (7.5) and (8.3) leads to the equation
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The Kutta condition becomes
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Once this equation is satisfied the pressure coefficient at the +th

control point is

where

T. --'t + B,,dd‘a-A kskx +A‘_25‘¢X "Vit Mo+ ~>\...

Once again this pressure cdefficient can be numerically integrated
to determine the 1ift coefficient. This solves the problem of the
steady state airfoil with a slotted flap and a spoiler.,

In solving this problem care should be taken to follow the
guidelines given at the end of section (7). The number of elements
needed is approximately 100 for the main foil and 80 for the flap.
With such a number of elements the execution time for this solution

is approximately 4 minutes for both 1 and 2-source models. This time



includes six iterative changes in the source position.
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SECTION
RESULTS AND COMPARISONS

In the first part of this section the theoretical‘results for
a solid airfoil with a spoiler are presented. These results are com-
pared with theoretical results obtained by Jandali (1). The latter
part of this section shows the solution to the problem of an airfoil
ﬁith a spoiler and a slotted flap. Experimental or other theoretical
results are not available for this case, and hence only the fheoret-
ical change in the pressure distribution over the basic foil and flap
is given.

The second source in the theories developed in sections (7.5)
and (8.4) was arbitrarily located between the first source and the
trailing edge. It was discussed in section (7.5) that some further
condition is necessary to fix the position of this seccnd source.

If the circulation about the airfoil is neglected, one of the exist~
ing conditions could be used for a mathematical solution to the pro-
blem, Howevér, such neglect of the circulation gives an érroneous
result, varying widely from experiment., It is therefore necessary

to include the circulation, and look for another condition. It will
be fecalled from section (7.5) that this second source is much weak-
er than the first source, and approaches zero strength as its loc-
ation approaches the tralling edge. The 2-source mbdel then approach-
es the l-source model. The Z2-source model agrees more closely with
experiment and satisfies all the boundary conditibns. The theoret-
ical results presented here are intended to demonstrate this point

and to show consistency with Jandali's results,

9.1 Solid Airfoil with a Spoiler

The results given in this section were determined by Jandali (1)
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for a 14% Clark Y airfoil shown in figure (30). The spoiler is loc-
ated at the 70% chord point. Since the theory presented by Jandali
is limited to normal spoilers, theoretical comparisons can only be -
presented for this case, First figures are presented comparing the
current results for normal spoilers with those obtained theoretica-
lly by Jandali. Some results for spoilers of varying angles for the
1-source model then follow. All angles of incidence presented for
the Clark Y are méasured from the lower surface. Spoiler heights
are given as a percentage of the airfoll chord.

Figure (32) shows a comparison between the pressure distribu-
tions for the Jandali 1-source model and the present l-source model
for a 10% normal spoiler'at an alrfoll incidence of 12 degrees. Fig-
ure (33) shows the corresponding comparison for the 2-source model.
In these results the chord is 4.043 as given by Jandali. The agree-~
ment between theories is seen to be very good. The agreement between
theory and experiment waé shown by Jandali to be quite good eicept
in the region in front of the spoiler, where there is actually a
region of separated flow., Potential theory is not able to model such
a flow. Anélytically any such sharp concave corner will produce a
stagnation point, and hence in this region the theory diverges from
experiment. In the surface singularity theory employed it will be
recalled that the flow properties are considered at control points
that are slightly removed from such sharp corners, and theoretical-
1y the stagnation point will never be reached. The trend towards a
stagnation point however, is strongly evident. Figure (34) shows a
comparison between the Jandali l1-source model and the present 1-
source model for a 5% normal spoiler at an airfoil incidence of 10
degrees. The corresponding comparison for the 2-source model is pre-

sented in figure (35). Although only representative results héve
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beeﬁ presented it can be seen that the agreement is excellent, and
that the two theories are consistent.,

Next it is demonstrated how the theoretical pressure distri-
bution changes as the spoller angle is progressively increased to
90 degrees. In figure (36) the pressure distributions for the 1-
source model are presented for the Clark Y airfoil with a 10% spoi-
ler at the 70% chord point with angles of 30, 60, and 90 degrees,
and these are combared to the theoretical distribution for the case
of no spoiler. The airfoil incidence in all cases is 12 degrees. It
can be seen how the pressure peak and the area between the curve
and the chord line progressively decrease as the spoiler angle in-
creases, Such decreases éignify a progressive loss in 1lift. The bas-
ic airfoil pressure distribution was calculated using Smith's theory
(6), and it can be once again seen that the theory is unable to pre-
dict a stagnation point at the finite angle tralling edge. It is
more noticeable for the cases with inclined spoilers that, aithough
the pressure distribution in front of the spoiler tends towards a
stagnation point, it does not actually reach it. The consideration
of control points around such a concave corner as the spoiler base
has the affect of rounding the corner and the theory is not expected

to model the stagnation poinﬁ corredtly.

9.2 Airfoil with 5 Slotted Flap and a Spoiler

The results presented in this section are for the NACA 23012
airfoil with a 25.66% slotted flap shown in figure (31). The basic
theoretical and experimgntal pressure distributions are shovm in
figure (37) for this airfoil at 8 degrees incidence and 20 degrees
flap angle} The experimental results were obtained from reference

(12). Since no experimental results are avallable for the spciler
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caselonly representative examples of the theoretical results are
shown. It will be demonstrated how the present 2-source model is
superior to the 1-éource model., The pressure distributions. for the
airfoil with a spoiler at varying angles will be compared to the
basic distribution calculated using Smith's theory (6). In the fol-
lowing results the spoiler is positioned at the 60% chord point.

The airfoil incidence is 8 degrees and the airfoil chord is 4.0.
The flap angle is 20 degrees. The emplrical input of base pressure
coefficient is set at =1.0 in the absence of experimental results.
Figure (38) is a comparison between the present 1-and 2-source mod-
els for a 10% normal spoiler. This comparison shows the 1l-source
model giving an unrealistically high pressure peak on the flap. It
will be recalled that in the 1-source model only the Kutta cpndition
is stipulated at the main foil trailing edge, and the separation
pressure coefficient, although finite, determines its own value., In
this case it determines a very negative value of less than -2. The
main foll trailing edge is so close to the flap that thié high neg-
ative value directly affects the negétive preséure peak on the flap,
making it unrealisticzally high, 1t would be expected then that if
the separation pressure was stipulated at the main foil trailing
edge, as in the Z2-source model, a direct effect would be noticed on
the flap. This point is indeed demonstrated in figure (38), where
it can be seen that the 2-source model gives a much better result
than the l-~source model., The second source in this case has been
arbitrarily located between the first source and the treiling edge
of the main foil. For this reason the solution for the 2-source mod-
el will not be pursued further.

The effect of spoiler angle is shown in figure (39). In this

figure the theoretical result for a basic airfoll with a slo’.ted
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flap is presented with the 1l-source model for a 10% spoiler at ang-
les of 45 and 90 degrees. Once again the characteristic losses in

pressure coefficient can be observed as the spoiler angle increases.
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SECTION 10

CONCLUSION

The 1ift given by the linearized cavity potential theory dev-
eloped in part 1 shows good agreement with experiment. The pressure
predicted by the theory gives only qualitative information about
the pressure distribution on the airfoil. Such singularities in the
pressure distribution as given by the theory are inherent in linear-
ized technigues, Ohly theoretical results for the spoiler actuation
problem have been presented. Experimental measurement is currently
being done in an attempt to verify these results,

In part 11 the theorvaas shown to glive pressure distributions
consistent with Jandali's theory (1) for the solid airfoil with a
normal spbiler; Jandali showed that this result was in good agree-
ment with experiment except for a small region in front of the spoi-
ler. In this region the actual flow separates and the thepretical
prediction of a stagnation point is not in agreement with experiment.
Although no experimental or other theoretical results are available
for the case of angular spoilers, the good agreement for the normal
spoller case 1s an indication that these results most likely agree
closely with experiment.

For the case of an airfoll with a spoliler and a slotted flap,
experimental results are not available., The 2-source model, which
gives much better results for this case than the’l-source model, 1is
probably in quite good agreement with experiment. Investigation is
necessary for a further condition to fix the position of the second
source, It should also be verified that the theory does in fact agree

with experiment.
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