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ABSTRACT

A direct digital control‘algorithm for low power reactors is
proposed using logarithmic power level as input. The logarithmic power
levels allow the use of fixed point arithmic resulting in faster calcu-
lation speeds than are obtainable with algorithms using floating point
arithmetic. A stability analysis for various sampled data hold types
is shown to hgve a 25% safety margin., A time optimal control sequence
for power increases is derived using switch points. The switch points
are determined using simulation techniques, eliminating the use of complex
and approximate calculations. A practical demand level controller is
developed using machine language programming ﬁo minimize the delay from
the sampling of the neutron poWer to the output of control action. The
controller is tested with digital and analog simulations of a thermal
reactor showing'that a successful, near time-optimal, control algorithm

with general applications to low power reactors has been developed.
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1. INTRODUCTION

Until recently, the role of the digital computer in nuclear
reactor systems has been that of a supervisory and dataécoilection naturel’z.
Strict safety regulations resulted in conventional methods being used
for reactor control due to the low reliability, slow speed and tremen-
dous expense of early computers. Advances in computer technology have
removed these objections. With reactor systems becoming larger and more
complex,‘it is advantageous that digital computers be used in the control
of nuclear reactors.

At first, computers_wefe used only for individual tasks
such as fuelling machine controi and failed fuel detectionl. For the
actual control of nuclear reactors, dual computer systems have been used;
one operational and the other in a "watchdog" énd "backup" mode. With
the addition.of more duties, such as load matching, turbine control,
spatial control and automatic fuelling, the size of the computers has
entered the medium range. Each of these duties is normally.handled by
separate design groups. The co—ordinafion of these groups in the devel-
opment of a single operating system is extremely difficultl.

Recent developments make the use of several small minicomputers
economically feasiblel. Each combuter is assigned its own specific
task. Ap added advantage is that each design group can develop and com-
mission its own separate system, without too much dependence onbthe
other groups. Figure (1.1) shows a possible system of minicomputers
working in a parallel mode. All the computérs are linked together by a
bus system as well as to the common mass storage units. Transfer of

data to or from these mass storage units is processed by a single control

computer to facilitate file orientated transfers without repetition of

1



software drivers.

Mass Storage Units

r T\
Input/Output
Channels Disc Drum M Tape P Tape
Cutput Multiﬁéexers . _ :
I' l ]
t |
' | Input/Output : Watchdog Mass o
: Computer | 1 Computer Storage | «—— Minicomputers
. t Control
|
i
1 : | [ l | e
Demand Power Spatial Turbine Fuelling Mini-
Controller Controller Control Machine computers
Control
(W N s/

Additional Input/Output Channels.

Fig. 1.1 Possible Reactor Control System Using Parallel
Mode Mini-Computers.

In Chapter 2, a basic error sampled data control system is de-
veloped and the transfer functions of the various system components are
given. Based on a study by Marciniaszthe overall system stability is
'analysed using various sampled data holds and sample periods. A review
6f existing digital control algorithms is given in Chapter 32’3. An al-
gorithﬁ requirihg a logarithmic neutron power level as input is developed,
resulting in a much faster and simpler digital controller. The use of
logarithmic power levels allows the use of fixed point arithmetic which
is much faster than floating‘point arithmetic. Using the results of pre-
vious studies on the time optimal control of nuclear reactors 2’4,

'time optimal conﬁrol sequence using switch points is developed in

Chapter 4 for power level changes. The switch points are determined

using simulation techniques. In Chapter 5, a practical demand power level



controller is developed using machine language programming. The per-
formance of the controller is tested using digital and analog simulations
of a thermal reactor; The stability analysis of Chapter 2 is shown to have
a 257% safety margin and power level changes wefe effectively carried out,
maintaining the reactor wifhin the safety constraints, with little

overshoot of the final end point power level.



2. DIGITAL CONTROL SYSTEMS FOR NUCLEAR REACTORS

A basic error sampléd closed loop control system is presented
in this section for wvarious types of hold units. The overall system
transfer functions aré derived, followed by a stability analysis for
low—-power or zero-power reactors using a linearizéd point kinetics modelz.

2.1 Basic Digital Control System

A basic nuclear reactor continuous control system is shown in
figure (2.1.1). The inpuﬁ to the system is a demand power level as well
as a constraint on the minimum allowable reaétor period. (The reactor
periéd is defined as the time necessary for the power level to change

mn

by a factor "e", the natural logarithm base). - These two inputs are

combined with the measured reactor power level to generate an error

Demand Gc(s) . Gr(s) Neutron
Power Level R(s)/ \Frror E(s) Gontrol Reactivity feactor Powver level
* Rod Drive : c(s)

P(s)
Méasuring
Circuits

Fig. 2.1.1 Basic Block Diagram of a Continuous
Reactor Control System

i ~ R(sY /N E(s) . “G(s) . Cc(s)
| N .

B(s)

Fig. 2.1.2 General Continuous Closed Loop Control System.

signal which drives the control rods. Simplification gives the general
feedback control system in figure (2.1.2) with the overall transfer

function

C(s) _ G(s)
R(s) 1 + G(s) H(s) (2.1.1)



where G(s) = Gc(s) Gr(s) = feed-forward transfer function
"(2.1.2)
H(s) = F(s) = feedback transfer function (2.1.3)
Gc(s) = control rod transfer function (2.1.4)
Gr(s) = reactor transfer function (2.1.5)

The most suitable sampled data control system to use for reactor control
is the error sampled closed loop system given in figure (2.1.3). Using

the z-transform notation, the overall transfer function is:

C(s)

G(s)

H(s) ~

Fig. 2.1.3 General Error Sampled Closed Loop Control System

1) (™) Ba) s B G (s) [ Go() [l O(e) O

?(s)

Fig. 2.1.4 Basic Sampled Data Control System for a Nuclear
- Reactor

Cz(z)-= Gz(z)
RZ(Z) 1+ GZHZ(Z)

(2.1.6)

which is of similar form to that aof the continuous case (see footnote).
Figure (2.1.4) gives the basic sampled data control system for a reactor

where Gh(s)vis the transfer function of the hold device following the

Note: Throughout this thesis the z-transform notation is the same as
-used in previous digital reactor control studies?. :



sampler, Gc(s) the transfer function‘for the control rods, Gr(s) the
transfer function of the reactor and F(s) the transfer function of the
neutron power level measuring circuits. The transfer functions of each
of the system blocks will be analysed in sections 2.2 to 2.5, followed
by a stability analysis of the overallbsystem using various types of
hold.

2.2 Sampled Data Holds

In the sampled data féactor control system, the sampled error
is used to drive the control rods at the required VelociFy. A pure
impulse signal is unsuitable for this task due to it being practically
unrealizable and the sampled signal is passed through some hold device
that performs the function of reproducing the sampled signal until the
next sampling. Two basic holds are the zero order and first order holds.
Holds of greater order are to be avoided, not only -due to the difficulties
of physical realization but also because of the delays they may intro-
duce into the system.

2.2.1 Zero Order Hold

£(%)

NGEY T

i 1
(n+1)T (n+2)T (n+3)7T

i
1
'
)
1
1
:
(
!
)T

(n-1

E
S ol

Time

Fig. 2.2.1 Output of Zero-Order Hold Device.



If the sampled signal is held until the next sample such that

N(t) = £(nT) nT < t £ (n+L)T

(2.2.1)

as in figure (2.2.1), the device is called a zero order hold and has

the transfer function
H (s) = (l-exp(-Ts))/s
In the case of the sampled data reactor control system

E(t) = Nd(nT) - N(nT), nT < t € (n+1)T

where Nd = demand neutron.power level (reference)
N = measured neutron power level
T = sample period
E = errorA

2.2.2 First Order Hold

| N(t)

el Tl T T U= P

- - - e mE——. - —-——

i
1
[
J
'
1
I
1
1
t
[
]
]
'
'
i
A

(n-1)T nT (n;1)T (n+2)T , (n+3)T

Time
Fig. 2.2.2 Output of First-Order Hold Device

(2.2.2)

(2.2.3)

If the last two samplings are used to calculate the slope of

the signal such that

N(t) = £(nT) + T

nT < t £ (p+1)T

£@D) -~ £1O-1T] oy

(2.2.4)



as in figure (2.2.2), the device is called a first order hold and has

the transfer function

. e Ny 2
oy (s) = {EH) - (rexp (T9) (2.2.5)

In the case of the sampled data reactor control system

E(t) = pan + ZER S EDD (o,
nT < t £ (n+1)T (2.2.6)
where E(nT) = Nd(nT) ~ N(nT) 2.2.7)
and E, Nd and N are as before. .

2.2.3 Linearized Hold

Log Neubron Power.

(n-1)T nT (n+1)T
Time

Fig. 2.2.3 Linearized Hold Device Sample Points
Cohn3 developed a hold that has particular bearing on nuclear

reactors such that

E'(t) = th(n+1)T] - N'[(a+1)T], 0T < t s (@1)T (2.2.8)

where Nd[(n+l)T] = Né = demand neutron power at next sampling

= predicted neutron power at next sampling if
no control action is taken from the present
to the next sampling.

and N'[(n+1)T]

n
=4
Hh



Let Nl = N](n-1)T] = neutron power level at last sampling
Np = N[nT] = neutron power level at present sampling
and T, = acutal reactor period. (See figure 2.2.3).
Now Nf = Np exp (T/Ta) (2.2.9)

where the reactor period Tos is ‘the inverse of the logarithmic slope of

the neutron power level such that

l/Ta = (In Np ~ 1n Nl)/T (2.2.10)
Therefore Nf = Np exp [T(In Np - 1ln Nl)/T] (2.2.11)
_ 2 (2.2.12)
NP /Nl
and E'(t) = N} - (sz/Nl), nT < t € (n+1)T (2.2.13)

The transfer function of this hold can be obtained in the
following manner:
Assuming that NP and Nl deviate only slightly from the demand Né and

that t is the present time and T the sample period,

n

N

p = N(©) = Ng (), |YPJ << 1 (2.2.14)

n

and . N

1 << 1 (2.2.15)

N(t-T) = Nj (1+¥;), |Y,]

Substitution into equation (2.2.13) and neglecting high order terms of
Yp and Y1 glyes |
] = - ] .
E'(t) [2Yp Yl]Nd (2.2.16)

But from equations (2.2.14) and (2.2.15)

Yp = (N(t) - Né)/Né (2.2.17)
and Y1 = (N(t-T) = Né)/Né : (2.2.18)
therefore E'(t) = 2[N(t) - Né] - [N(t-T) - Né] - (2.2.19)
As E(t) = N(t) -Nc'1 - (2.2.20)
fherefore E(t~T) = N(t~-T) - N! A _ (2.2.21)

d
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and E'(t) = 2E(t) - E(t-T) . (2.2.22)
As the output éf an error sampler is given by |
Ex(t) = ) E(t) §[t-nT] (2.2.23)
n=0 :
and substituting for equation (2.2.22) and taking the Laplace transform
gives

E'#(s) = 2E(0) il:§52512§2)+ [2E(T) - E(0)] exp(~Ts)

(1"exg(‘Ts)) + [20(2T) - E(T)] exp(-2Ts)

(1-exp(~Ts))
s

+oooe e e e e e e e e (2.2.24)

which may be simplified to

S

E'*(s) = SXRLTIS) [y L aip(o1e)] Ex(s) (2.2.25)
Thus the “transfer function of the linearized hold is

l-exp (~Ts)

Hl(s) = [Z—exp(—Tsﬂ <

(2.2.26)

The transfer functions for the three types of hold will be
used in the overall system stability analysis to determine which hold

gives the best performance.

2.3 Control Rod Servo Systém
| The simplest transfer function for the control rod servb system
is
Gc(s) = R/s (2.3.1)
-where R is the reactivity rate per unit error input. A time constant
should also be included in the transfer function, however, due to the
comple#ity of the overall system gain, it is neglected. In practice,

there is also a limit placed on the maximum reactivity rate which
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constrains the maximum system gain. This. too will belignoredz.

2.4 Reactor Model

Examination of the differential equations for the reactor
kinetics shows a reactor to be highly non-linear. (See Appendix A).
Schultz5 developed a linearized transfer function‘of a reactor model
about a steady state power level, incorporating all six groups of
delayed neutrons. Marciniak2 and Lipinsky4 have derived a time inde-
pendent, linear, monoenergetic, one-delayed-neutron-group kinetics trans-

fer function given as follows:

_ 8N(s) _ s + A
Gr(s) - Noék(s) "~ gs[s + A + B/2]

(2.4.1)

where ) = average decay constant
B = total-effective delayed neutron fraction
% = prompt neutron lifetime
N = peutron density about which the system is linear

S8k = effective reactivity

SN

deviation of neutron density from No'
This transfer function will be used for the reactor model in .
the stability analysis given in section 2.6.

2.5 Neutron Power Level Measuring Circuits

Due to reactor noise, the input to the computer must have
some smoothing. The method used on the ZPR-9 fast cfitical reactor at
the Argonne National Laboratory is very applicable for the digital moni-
toringof the neutron power 1eve13. An ioﬁ chamber is used to measure
the neutron flux and the output of the ion chamber amplifier is used
to drive a voltage-to—-frequency converter. Thé output of the voltage-
to-frequency convérter is fed into-a counter or scaler which is read

and then reset every T seconds. The counter acts as_an integrator
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smodthing fhe input to the computer. However, in most systems, computer
inputs are multiplexed to measure qther variables and not only the
neutron power. in this case, the output of the ion chamber amplifier
must be suitably filtered, depending on the sample period.
Taking the case of the counter, the average of a signal £(t)

over a period T is

- 1 rt ‘

p(t) =T t/~T p(t') dt’ (2.5.1)

Taking the Laplace Transform gives

B(sy = D) - E(®) expCls) (2.5.2)

Therefore the Transfer Function is

F(s) = * 'TEXP(‘TS) (2.5.3)

Schematic diagrams of the two possible neutron power level measuring

circuits are given in figures (2.5.1) and (2.5.2).

Yon Chamber [\\\\;\ Voltage to Tgngggpﬁggr
. . Frequency Counter |}———"—"»
! Converter

Ion Chamber
| ) Amplifier

| ‘ ) Control from-
Computer

Fig. 2.5.1 Neutron Power Level Measuring Circuit Schemétic
(Scaler plus Voltage-to-Frequency Converter)

i
i Ion Chamber
L R Suitable
. Filter R y To Computer
Multi- A/D Input Bus
Ion Chamber 1 | ——
Amplifier —o|plexer Converter
—

Control from Couputer

Fig. 2.5.2 Neutron Power Level Measuring Circuit Schematic
(Filter plus Multiplexer plus A/D)
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2.6 Overall System Stability

A basic sampled data control system for a nuclear reactor
was given in figure (2.1.4) and the overall transfer function by equation

(2.1.4), where

Gz(z) = Z[Gh(s)GC(s)Gr(s)] ) (2.6.1)
¢ H (z) = Z[Gh(s)GC(s)Gr(s)F(s)] (2.6.2)
aﬁd Z[G(s)] = Gz(z) (2.6.3)

is the z transform of G(s).
The transfer functions for the individual system blocks have

been derived in the previous sub-sections. The transfer function for

the system with zero—order'hold is?:
&N (z) Z[H (s)CG (8)G_(s)]
Z__ = °o__c¢ I . (2.6.4)
NONdZ(z) l+Z[HO(s)GC(s)Qr(s)r(sMA
BXTKz(azz+bz + ¢)
= 3 > 3 7 (2.6.5)
6X TRz (z-1) (ny)+K(dz +ez " +fz+g)
where
K=R2 -  (2.6.5b)
y = exp(-A'T) » (2.6.5¢)
a = A'ZTZ0428TA +28 (24+7) ~68 | (2.6.5d)
b = AA' 2120 (1-y) ~2BTA" (14y) -28 (1+27)+68 (2.6.5€)
¢ = A" 272 0yH2BTA v+ 28y-28 (2.6.5f)
a = 3130438120 -6 TA 68 (3Hy) 248 (2.6.5g)

e = M IT30 (bmy) 30 212 gy H6BTA (2Hy) +18B(14y) =368  (2.6.5h)
£ = 330 (1-4v) =31 2T26-68TA" (1427) -68(1437) 4248 (2.6.51)

g = Ty 4n OBy 68T yH68Y-68 - (2.6.5))
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For the first-order hold, the transfer function isz:

GNZ(z)

'4k'TK(th+k23+mzz+pz)

N N

where

A'

h

o dz(z) 24

'6T2222(z—1)2(z—y)+K(q24 frz3+uzz+vz+w) (2.6.6)

= A + (B/%) ' | (2.6.6a)
= R/2 . . (2.6.6b)
= exp(~-\'T) - (2.6.6c)
= _AA'3T32+3A'2T2 (A" T2+R)+6B (X' T-1) T

+68 (A" T-1) (3+y) -248(A"' T-1) (2.6.64)

= 3730 by =30 22 (AN TaHR) Y-68(A T T-1) TAT (24y)

-188(A"T-1) (1+y)+368(A'T-1) (2.6.6e)
= ' 3130(1-4v) =300 212 (AN Ta4B)+68 (AT T-1) TA" (142y)

H6B (L T-1) (1437)~248 (1 T-1) | (2.6.6£)
= -0 21030 21 O Ta8) 68 (T T-1) T

-68(A"T-1) Iy+68 (A" T-1) ~ (2.6.68)
b, 4

= ot 33 oo Tes) #1280 2 (A -1/ )

[}

248 (A" -1 /T)T2A =248(A"=1/T) T(4Hy)+120T (A'-1/T)  (2.6.6h)

= Aoy +an 33 O Tes) (3-y) —128 (AT -1/T) T A 2 (1)

+24B(X'—1/T)T21'(3+y)+488(A'—l/T)T(3+2y)~2408(A'T—l)
' ' (2.6.61)

4

110" 4180 (1-y) =122 313 (A Te+B) (L) +128(A'-1/T)

2002 (y-1) =728 (A" ~1/T) T2A" (14y)~488 (\'~1/T) T(2+37)
+2408 (A" T-1) (2.6.63)
At -11y) e 3T3 (A TeHs) (3y-1)
F128 (' T-1) TAA' 2 (1) 4248 (A T-1) TA' (1+37)

+24B8 (AT T-1) (1+4y) -120B8 (A" T-1) (2.6.6k)
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4, 4

w =~ 2

2%&%'3T3(KA'T£+B)—12§(A'T—l)IZA'
~24B8 (A"T=-1)TX" =248 (X" T-1) Jy+248 (A ' T~1) (2.6.61)
The overall system transfer function for the linearized hold i32

NZ(Z)

NoNdz(z)

SXYTKZ(Zz—l)(azz+bz+c)
T22(z—l)2(z—Y)+K(22—l)(dz3+ezz+fz+g)

6)

A

(2.6.7)
where all the constants are the same as defined fér the system with the
zero-order hold in equation (2.6.5).

Stability analysis of sampled data systems is performed by
determining the zeros of the characteristic equation, that is, the de~
‘nominator of equation (2.1.4), in the z plane; The criterion6 is that
the characteristic equgtion of the sampled data system have no zeros
outside the unit circle, or, if Xi denotes the ith root of the charac-
teristic equation then:

Il <1 | . (2.6.8)

Marciniakz, using a program developed by Hafner7, found the
roots of the characteristic equations for all three types of hold for both a
thermal and a fast reactor. Figures (2.6.1), (2.6.2) and (2.6.3) are
the root locus plots of thé‘characteristic equations of the system
transfer functions of a theraml reactor for a zeroforder, first-order
and linearized hold respectively. (Based on resuits of Marciniakz).
The sampling period is 0.1 second and the system parameters are as
follows:

2 =0.076 sec—l, B = 0.0064, 2 = 10“3 sec (2.6.9)

Examination of equations (2.6.5), (2.6.6) and (2.6.7) shows

that T and K are the only variables for a fixed reactor. T is the



16

4.03
P AN
/’ \\
rd Y
o ! N
/I N\
4 \
’ \
’ \
’ Y
. \
! \
] '
] [}
-1.0, ' 1.0
[ o R O
' 1
n‘ ]
\ '
'
\ ,
\ ’
\ 7
’
AY s
A Y
T=0.1 sec AR L’
A=0.0064 _, s .
A=0.076 sec o P
21=0.001 sec ~ . L7
| ' R I
, -1.0

Fig. 2.6.1 Root Locus Plot of a Thermal Reactor Sampled
Data Control System with Zero-Order Hold

’ | 4.03
,E ‘Unit Circle -~
I,’
rd
| /
4
I
' ’ -~
} 4
!
[}
’
1
]
1 -1.0, -~ o
‘ 1
.
, \
13
Y
! \
\
\
\
AN
AY
\
T=0.1 sec AR
B=0.0064 _, ..
A=0.076 sec N
1=0.001 sec Sl
“1-1.05

Fig. 2.6.2 Root Locus Plot of a Thermal Reactor Sampled
' Data Control System with First-Order Hold



17

-1.0

Aol Y1
oo

[eJeR o o]
. »
QO
~3
[}
]
83
[¢]

Fig. 2.6.3 Root Locus Plot of a Thermal Reactor Sampled
Data Control System with Linearized Hold

sample period and K is the reactivity rate per unit error per neutron
lifetime, i.e.

K = R/% (2.6.10)
But 2 is fixed for a certain reactor, therefore‘a sampled data reactor
system of thc form of figure (2.1.4) can be saild to be stable for a spe-
cific sample period T, provided the reactivity rate per unit error R is
less than a critical value Rmax' The value Rmax'ensufes that all poles
of the characteristic equation lie within the unit circle in the z

plane. The unit error Eu is defined as:

Eu = E/No (2.6.11)

Miarciniak2 has ‘drawn up tables of Rmax versus saﬁple period T for various
reactor types. Table (2.6.1) gives the maximum allowable reactivity

rate per unit error for various sample periods for the reactor with
parameters as in equation (2.6.9). From this table it can be seen that
the zero-order hold is the most stable except for the 0.1 second sampling

period.
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___Reactivity Rate (% 8§ k/k) / se¢
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T (sec.) Zero—Qrder Hold ’FirSt—Order Hold " Linearized Hold
0.1 7.l_+ 8.3 8.4

0.5 1.83 1.45 1.2

1.0 0.99 0.73 0.62

5.0 0.173 0.123

0.14

Table 2.6.1 Maximum Allowable Reactivity Rate Rmax per

Unit Error to Ensure Stability versus Sampled

Period. (Thermal Reactor)
7
I 1 T
6L ?[":2”/‘08 |
-~~~ Zero-Order Hold
: : -+~ First-Order Hold
sk .... Linearized Hold -
7 T il
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~
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T ’ oL
0 ‘-\\i '.’;:;:L—;\::'b'.;]"' '.",.'
0 1.0 2.0 3.0

Fig. 2.6.4 Amplitude versus Frequency for Zero-Order,
First-Order, and Linearized Holds.

Figure (2.6.4) shows the amplitude versus frequency curves
for the three holds. Compared to the zero-order and first-order holds,
the linearized hold does not act as a very good filter in that it am-—
plifies frequencies greater than the samﬁling frequency. There is also

considerable amplification of frequencies less than the sampling fre-~

quency with a fairly steep cut off. Examination of figure (2.6.5),
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Fig. 2.6.5 Bode Plot of Thermal Reactor plus Control
Rod Servo Systemn.

the Bode plot of the reactor plus coﬁt;ol rod, shows that with a 0.1
second sample period the high frequency components are not readily
passed by any type of hold,vas_these components have an amplitude of the
order of ~35 dB. However, with longer sample.periods, frequencies above
the sample frequency are amplified by the linearized hold, making the
system less stable, Therefore the linéarized hold shoﬁld be used only
for sample periods in the érder of 0.1 second and the zero-order should
be used for all longer sample periods.

In Chapter 3 it Qill be shoﬁn that the resuits of the stability
analysis using linear power levels are appliéable to the logarithmic
power ievel control algorithm developed in that Chapter. 1In Chapter 5
the controller is Lested using analog and digital simulations and it

will be seen that the results of Table 2.6.1 have a 25% safety margin.
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3. DIRECT DIGITAL CONTROL ALGORITHM

The digital control algorithm besides maintaining the reactor
at a steady state must also be able to change the neutron power from one
demand level to another as quickly and as safely as possible with a mini-
mum of over- or undershoot of the final demand le&el. For safety reasons
the rate at which the neutron power level can change is constrained and
any such power level change must be carefully controlled., In this chap-
ter a summary of previous algorithms will be given, followed by the de-
velopment of an algorithm based on logarithmic power level that results
in much quicker and simpler computer calculations. All algorithms are
based on the error sampled closed loop contr&i system described in Chapter
2. Time optimal digital control will be covered in Chapter 4, although
allowances for its inclusion will be made in this chapter.

3.1 Constraints on Demand Power Level Changes

As mentioned in section 2.1, the input to the reactor control
system of figure'(2.1.4) is a demand power level plus a constraint on the
minimum allowable reactor period for safety reasons. This minimum period
constraint is only applicable to increases in power 1evé1. The demand

power level N, must thérefore be constrained such that:

d
ANd[(n+1)T]_§ Nd(ﬁT) exp (T/T) ©(3.1.1)
where
T = sample period
and T = minimum allowable period

However, during power level decreases, it is often desirable to constrain
the negative reactor period to prevent the control rods from being in-

serted too far, which would result in tremendous undershoot of the final
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demand level such that
Nd[(n+l)T] > Nd(nT) 'exp(T/—TS) (3.1.2)

where g is the demanded period for power decreases,
Reactors of any appreciable power often have a constraint im-—
posed upon them by the thermal system in the form of a linear rate con-

straint so thatg:
Nd(nT) - AN < Nd f(n+1D)T] < Nd(nT) + AN (3.1.3)

where

AN = |g§1max - | (3.1.4)

The digital control algorithm, besides maintaining the reactor
level must thus also be able to increase or decrease the reactor power
level within the above constraints. In Chapter 4, time optimal control
is handled and this too will impose some constraints on the reactor period.

3.2 Summary of Existing Algorithms

Cohn3 proposed a digital control algorithm in 1966 which was & - -
later modified by Marciniakz. The hold used was the. linearized hold ana-

lysed in section 2,2.1 where

2 _
1 = N' = N' _
E'(t) =N d. Nf. N d Np/Nl’ nT < t < (otD)T (3.2.1)
and
E'(t) = error
' : =
N d Nd[(n+l)T]
= demand flux level of next sampling
N, = N[ (n-1)T]
= measured flux level of last sampling
N = N(nT
. (nT)

= measured flux level of present sampling
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=
I

= N'[(n+1)T]

expected flux level of next sampling if no control action
taken from present to next sampling.
The algorithms were only developed for power increases and the flux de-

mand was given by:

t - ] | .
N g = min [Np + K, Nd exp(T/1), Ne} (3.2.2)
where K = constant
T = sample period

i

T demanded reactor period

Ne = final flux endpoint

The first argument (NP+K) ensures that in the initial stages the demand
does not diverge too far from the actual flux preventing excessively ra-
pid rises at a later stage. Only béng—bang control action was used and
if the error exceeded a certain deadband, the control rods were driven
full speed in or out depending on the error sign.

Nuclear reactors have a range covering many decades and this
has resulted in the use of floating poiht arithmetic for the control al-
gorithm calculations. Cohn9 tested the speeds of a selection of .small
computers and discovered that for computers with hardware fixed point
arithmetic units the time for an addition is‘in the order of 0.5 to 1.0
msec. Multiplication and division times are also from 0.5 to 1;0 msec,
with the logarithmic and sine function times in the order of 5.0 to 10
msec. The computer is not only respongible for the control of the reactor
power levgl but also for other functions such as safety interlocks and
safety scanning, data logging and the control of other system components.
This has meant that the maximum sample rate has often been set by the time

taken in the calculation of the control algorithm and other duties instead
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of a desired faster sample frequency. In section 2.6 it was shown that
the sample period set a maximum rate of reactivity change per unit error
to ensufe stability and thus the higher the sample rate the greater the
stability margin. There is still some controversy over high sample rates
due to the greaﬁer frequency of movement of the control rods. However,
a sample rate of 10Hz has now been accepted as the maximumbacceptable sam-—
ple rate. Besides the use of floating point arithmetic resulting in a re-
duction in the sampling frequency, there is also the delay between the
measurement of the reactor power and the actual output of control action
which makes the system less stable. This delay has not been taken into
account in the section on stability analysis (section 2.6). In the extreme,
the sampling of the neutron power level can immediately follow the output
of control action from the last sampling. In the next sub-section, it will
‘be shown how the use of logarithmic power levels can allow the Qse of fixed
point arithmetic, greatly increasiﬁg the algorithm calculation speed.
Examination of equation (2.4.1) shows that the gain of a reac-

tor is proportional to the neutron power level such that

A= K'N0 - (3.2.3)
where A = total gain

K' = gain constant

No = actual power level

In oxrder to hold the overall system gain constant, a gain term of the or-
der 1/No must be added to the error sampler. Cohn3 in his system aid this
by varying the error deadband in propbftion to the neutron power level.
Using logarithmic power levels will be seen to compensate the gain auto-

matically.
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3.3 Logarithmichigital Control Algorithm

Taking the case of the zero order hold define

e(t) = 1In El(t) = In Nd(nT) - 1n N(nT)
nT < t < (o + 1T (3.3.1)
instead of the normal linear case of

E(t) = Nd(nT) —~ N(nT), nT < t £ (n+l)T (3.3.2)

as given in equation (2.2.3). Therefore
El(t) = Nd(nT)/N(nT), nT < t € (n+1)T " (3.3.3)

Let

i

E (t) =1+4 (3.3.4)

Using the approximation that

In (1 +4) = A  for [o] << |1 © (3.3.5)
then e(t) = A : (3.3.6)
as N(nT) must deviate only slightly from Nd(nT).‘ Substitution in equa-

tion (3.3.4) gives
El(t) =1+ e(t), nT <t < (ntD)T (3.3.7)

Dividing equation (3.2.3) by N(nT) gives

N, (nT)
E(t) oo d _ :
N(aD) = _E?EET— 1 (3.3.8)
From equations (3.3.3) and (3.3.7)
E(t) _ -
ETHTY = Elgt) -1 | (3.3.9)
= e(?), nT < t £ (n+1)T (3.3.10)

For the first order hold the logarithmic error is defined as follows:

e(t) = e(nT) + (e(nT) - e((n-1)T)) (£-—nT)/T,

nT < t < (ot+l)T | (3.3.11)



where e(nT) = lnNd(nT) ~ 1InN{(nT)
The error of the linearized hold using logarithmic power levels is defined
as follows:

e(t) = 1In Nd[(n+l)T] ~ 2 1n N(aT) + In N[(n-1)T],

nT < t < (n+l)T (3.3.12)

Again it is easy to prove that for the first-order and linearized
holds that

.E(t) = E(t)/N(nT), nT < t £ (n+1)T . (3.3.13)
where e(t) is the error using logarithmic power levels and E(t) is the
error using linear power levels.

'The unit error that was defined in section 2.6 is the same as
equation (3.3.13), therefore.the stability analysis of that section applies
to the 1ogaritﬁmic gontrbl algbrithm'as well. Cohn3 in his system com-
pensated for the non linear géin of the reactor by varying the deadband
in proportion to the neutron power. From equation (3.3.13) it can be
seen that the logarithmic error sampler automatically compensates for
this gain variation. |

The range of power of a reactor can vary from a minimum:of 6
decades for heavy water moderated reactors to as much aé 14 decades for
" graphite reactors. It is this extreme range that has made floating
point arithmetic necessary. When using logarithmic powér levels this
range is reduced to 14 for the case of the graphite reactor making it
possible to use fixed point arithmetic with tremendous increaées.in cal-
culation speeds. 1In Chapter 5, a PDP-9 computer was used to test ex-
perimentally the control algorithm. The total time elapse from the rea-
ding of the neutron power level to the output of the control action was

twice the time taken for one addition using the floating point package



26

of the computer.

3.4 Logarithmic Digital Control Algorithm Demand Power Level Changes

In section 3.1 the constraints on the change in reactor power
level were seen to be a minimum allowable reactor period constraint and
a linear rate constraint. Time optimal control (which is covered in the
next chapter) imposes a constraint on the minimal allowable reactor
period as the final eﬁdpoint is approached, so that there is minimal

over— or undershoot. The demand power level at the next sampling is

given as:
Nd[(n+l)T] = Nd(nT) exp (T/Td) : (3.4.1)
Therefore
In Nd [(nt1)T] = 1In Nd (nT) + T/Td (3.4.2)
where T4 = demanded reactor period.
Let
L minimum allowable reactor period
‘Tl = minimum allowable reactor period as imposed by the linear
rate constraint
= N(nT) /AN ' (3.4.3)
where AN =|.%%¢ max (3.4.4)
and T, minimum allowable reactor period as imposed by the time
optimal constraint.
Then T4 = max [Tm, Tys TO] (3.4.5)

For the case when ln Nd (nT) < 1ln Ne, that is a power level increase,

where Ne is the final endpoint, then

In Nd[(n+l)T] = min {In N(nT) + C, 1n Nd(nT) +_T/Td, 1n Né]

(3.4.6)
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where C =.constant. ' (3.4.7)
Constant C is éhosen somewhere in the _order of twice the error which gives
full control rod velocity.

The power demand (In Nd) is used for the calculation of the
next power demand point instead of (In N), to ensure that the demand
will rise smoothiy, unaffected by the statistical fluétuationé in (In N).
However, the first term ensures that the demand will not diverge too
far from the actual power in the initial stages of the power level
increase, when the power is rising much more slowly than the demand, thus
preventing excessively rapid rises at a later stage.

If there is a decrease in power level, that is 1n Nd(nT) >
in Ne, then 1n Nd[(n+l)T] = max [In N(nT) - C,

In Nd<ﬁT) - T/Td, in Ne] | (3.4.8)

[

Equations (3.4.6) and (3.4.8) will be used in the development
of a practical digital controller in Chapter 4.

3.5 Logarithmic Power Level Measuring Circuits

Two possible methods of measuring the logarithmic power level

are as follows: ‘

a) The same circuits as in section 2.5 can be used and the
logarithm of the power calculated digitally;-

b) The ion chamber amplifiers of fiéures (2.5.1) and (2.5.2)
can be replaced by logarithmic ion chamber amplifiers.
Exceptionally‘goéd logarithmic amplifiers covering up to
seven decades are now available. This method is prefer-
able to (a) as it provides a much more even spread of

digitized logarithmic power levels besides requiring fewer

measuring ranges to cover the entire power operating range.
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4. TIME OPTIMAL REACTOR CONTROL

Due.tp the approkimate nature of the models used in time op-
timal control studies, practiéal applications to real or simulated sys-—
tems normally result in sub-optimal control. This is especially true
of reactor systems which are highly non-linear and complex. Safety
standards impose many constraints upon reactor operation, making optimal
control more complicated. : Studies in fime optimal digital control of.
nuclear reactors have thus resulted in time consuming computer calcula-~
tions of high complexity. In this section, optimal control sequences
using switch points willbe develdpéd. Simulation techniques will be
used in obtaining the switch points, thereby eliminating the complex
and very approximate calculations.

4,1 Review of Present Literature

Much has been publiéhed in the past twenty years concerning
the optimization of continuous and sampled-data control systems. Most
notable of these endeavours are the more general theories advanced by
Pontryagin et al].'O and Bellmanll. Only'in recent years has much attention
been focused on the optimization of nuclear systems, esﬁecially in the
optimal shutdown of reactor;lto avoid the poisdning of the reactor by
Xenon build up. Literaturelgn the design of optimal digital or sampled-
data control systems for nuciear reactors is sparse.

12,13,14 was one of the

A series of papers published by Monta
first-éomplete studies on the optimization of continuous as well as
discrete reactor systems. The analysis was based on the calculation of
. - '. . R . 12 . . .
the reactivity using a prompt-jump approximation™ ., This approximation

was proven to be inadequate as the reactor, when set for a 25 sec. mini-

mum period, increased with an unsafe 16 sec. period. A side effect was
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that the minimum sample frequency possible was 0.5 Hz, due to the cal-
culation time. Lipinskia; who has made a complete literature study of
papers pertaining to nuclear reactor control systems, proposed a linear
deterministic system using a Kalman filter. The results from this sys-
tem were extremely good; however they were idealistic, because the reac-
tivity and delayed neutron precursor densities were required at each
sampling instant, resultiﬁg in long calculation times. It was suggested
that a hybrid computer system be used, with the analog portion solving -
tﬁe differential equations in order to speed up the calculation time.
These studies did not include all the constraints imposed on a nuclear
reactor such as minimum allowéble period, the maximum rate of reactivity
insertion and linear rate constraints. With their inclusion, the com-
plexity of the optimum control algorithms can only be expected to in-
crease. Since total optimization of the control of a nuclear plant in-
cludes the overall performance and cost of the controller as well, the
question is raised whether sub-optimum performance of the reactor is

not desirable. With so little practical experience at present with actual
sampled data reactor control systems, this question is difficult to
answer and might form the basis of an interesting future investigation.
Marciniak2 studied the problém from the side of the constraints imposed
upon the system fy safety regulations. This study seems to be most
applicable to practical applications and will form the basis of a time
optimal study using the logarithmic digital control algorithm developed
in the previous chapter.

4.2 Time Optimal Power Increases

For power increases it is desirable that the minimum allowable

reactor period constraint be adhered to and that there be a minimum of
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overshoot. There is also the constraint on the maximum allowable

reactivity rate imposed either by stability or mechanical design require-

ments. Taking these into account Marciniak2 applied the Maximum Principle

.10 . .
of Pontryagin to obtain an optimal control sequence for reactor power

increases. TFor the case vwhere the delayed neutron precursors are ignored,
the sequence is as in figure (4.2.1). The control rods are withdrawn at

full speed until the demanded minimum period is obtained and the reactivity
is then held constant. At a switch point Sm the control rods are inserted

at full speed such that as the final demand level is reached, the total
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Fig. 4.2.2 Time Optimal Control
. Sequence with Delayed
Neutrons Included.

Fig. 4.2.1 Time Optimal Control
Sequence for Prompt
Reactor.

reactivity is zero. Taking one group of delayed neutrons into account

- resulted in the sequence as given in figure (4.2.2). Again the control

rods are withdrawn from the reactor at full velocity until the demand

period is obtained after which the reactivity is held constant. At a-

switch point Sd’ the control rods are inserted at maximum rate until the
final demand is reached. However, on reaching the final demand, the total

reactivity is not zero, and the reactivity is now decreased exponentially,
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maintaining the endpoint level. When the endpoint is reached, the de-
layed neutrons are not in gquilibrium for the endpoint level and the
power level is held constant by the variation of the reactivity while
precursor-density equilibrium is attained. The variation of the reactivity .
to maintain the final demand level can be obtained as follows:

The one delayed group kinetics equations as given in Appendix A are

-dn u - B

e L (4.2.1)
and _

ac _8 _ _ ' '

it ¢ D AC (4.2,2)

where u = the reactivity or control.
Solving for u(t), when dn/dt is zero gives

u(t) = 8 - (ALC(t) /n,) (4.2.3)

where n, is the final demand level.
15 ' . .
Harrer showed that the ratio of C to n when the reactor is

on an asymptotic period T can be given by

o

=_—B——-
n (2 +1/1)

(4.2.4)
Therefore if it is assumed that the reactor is on an asymptotic period
T, when the final demand level ne-is reached, then:-

n B
c = e
e T X\ F /7)) (4.2.5)

Solving the differential equation (4.2.2) for when the demand level o,
is reached,gives

Bn exp[-A(t-t,)]

e VA R TRy

(4.2.6)

where t, is the time when the demand level n, was reached. Substituting
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for C(t) into equation (4.2.3) gives

u(t) = ————3—+——l—) exp [-A(t-t.)] (4.2.7)
e

(At
Differentiation gives the reactivity rate

du(t) _ _ -BA
dt (Are + 1)

exp [—A(t—te)] (4.2.8)

The maximum reactivity rate is needed precisely at the time the final
demand level is reached, thus if the maximum reactivity rate is known,
the minimum allowable asymptotic period T, at the instant the final

demand level n is reached, can be calculated to ensure no overshoot.

5 AB
Therefore, from (4.2.8) Rmax —.X;;_l-f_ | (4.2.9)

and T =

1 ' |
e "R -5 (4.2.10)
- _

ax
where Rmax is the maximum. rate 6f reactivity.

As the maximum reactivity rate is normally known for a parti-
cular reactor, as well as the minimum allowable period, a check using
equation (4.2.9) or (4.2;10) can verify whether the calculation of a

switch point S, is necessary.

d

Examination of equation (4.2.3) shows that the final demand

power level can only be held constant when

A de

n dt
e N

R z
max

(4.2.11)

Due to the non-linear nature of reactors, the easiest method for deter-
mining the switch point Sd is by simulation methods. In Chapter 5, a-
digital simulation of a zero—order, six delayed group, point kinetics

model is used for testing of the digital controller. The simulated
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reactor is set on a power increase and brought to the desired demand

period with the aid of the controller.

When an' asymptotic period has been
N
3 Ye attained, the control rods are in-
N
By s :
29 serted at full speed. The condition
= 0
& '
}? of equation (4.2.11) is met when the
peak power value Ne is reached, as
- ‘ in figure (4.2.3). The switch point
+ [}
- T -
ke 1 . can be determined in-:the form of a
43 0O ! ! .
o - | ' . - L.
] ' ratio of N .to N where N_ is the
o t . s e s
. I
s T power level at the switch point.
Time ’
Table (4.2.1) gives the ratio of NS
Fig. 4.2.3 Time Optimal Con- to Ne for various minimum allowable
trol Switch Point T
Calculation periods and maximum reactivity rates for

the thermal reactor simulated in Chapter 5.

Reactor SWITCH POINT Ng/Ne
Period 0.2mk/sec. 0.1lmk/sec. 0.05mk/sec. 0.02mk/sec. 0.0lmk/sec.
(sec).  max rate max rate max rate max rate max rate
20 0.983 0.922 0.726 0.278 ' 0.048
30 - 0.976 0.885 0.549 0.213
40 - - 0.943 0.722 0.400
50 - - 0.971 ' 0.814 - 0.548

100 - | - - 0.966 0.880

Table 4.2.1 Time Optimal Switch Points
For Power Increases

Marciniakz_developed the switch equation

Ns Co c . b
ﬁ;‘= b + cd + b(1-d) ﬁ;'+ {EE (1-4) + E'tA] u

1 -1
C_ (¢ - 1—;‘1) + Dy 2] (4.2.12)

max | Ra
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where
a= X+ 8/2
b = A a
c = B/La

. d = exp (—atA)

u = total reactivity at the switch point S,
tA»= time interval from the switch point to the final demand
level

and where th is calculated by assuming that when the final demand is
reached, the period is asymptotic. Making use of the relationship between
asymptotic period and reactivity developed by Glasstone16 where the

reactivity u in terms of the period T is

B

u = o +f1$_ (4.2.13)
as well as
u, = ug - Rﬁax (tA) (4.2.14)
the time interval is
~ B 1 1
8 =X [_(x-rs ¥D T Gr + D ] (4.2.15)

max
In the derivation of equation (4.2.12), use was made of the linearized
one delayed group kinetics equation (Seé Appendix A), where

%nt_= _%JJCJ,ER‘Z |  (4.2.16)
This equation is only wvalid in the vicinity of n . As a result, equation
,(4.2.12) is only reliable for switch points in the vicinity of the final
demand level which is the case for minimum periods éreater than 80 to -

100 seconds or for reactors with large maximum reactivity rates.

In Chapter 5, a practical digital controller is developed and
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use will be made of the switch point for time optimal control.

4.3 Time Optimal Power Decreases

The optimal shut-down of reactors has been well covered in

17,18,19,20 and will not be covered here.

optimal reactor control studies
Therefore, for reactor shut~downs, where the cont;ol of the xenon poison-
ing is required, the demand power level of the reactor will be program-—
med‘according to a time optimal sequence as given in the above references.
The occasion could arise, however, when it is required to reduce the
reactor power to a predetermined level for a short period of time, such
that the xenon poisoning problem can be disregarded. Glasstonel6 has
shown that it is not possible to reduce the neutron flux in a reactor

more rapidly than is permitted by the most delayed neutron group with

the relationship between the reactivity u and period Tt given as follows:

B

1+ A

. (4.3.1)
1

u:

where Al is the decay constant qf the group having the precursor-of
longest 1life. As u increases numerically, 1+ AlT) -+ 0, thus for large
negative reactivities the stable period 1 approaches 1/%1. It must be
noted that B is larger than usual since the delayed neutfons now consti-
_ tute a greater proportion of the fission neutrons. For most reactors ,
Al is in the order of 0.0125 secnl, therefore the stable period for
large negative reactivities tends towards 80 seconds. Due to the con-
stfaint on the reactivity.rate, it has thus been customary to constrain
the maximum amount of negative reactivity in order to prevent tremen-
déus undershoots of the final demand level. A second method is to limit

the allowable negative reactor period for power decreases. TFigure (4.3.1)

shows a simple sub-optimal power decrease control sequence with a con- .



36

straint on the minimum allowable negative pe¥iod. The effect of the
precursor with longest delay time can be clearly seen, as more than 10

minutes is required for a stable asymptotic period of 100 seconds to be

attained. At a switch point SS the reactivity is inserted at maximum
T Ll T T T A T
102 | 1
Rmax = 0.02mk/s
10t | See Section 4 for Reactor g
Parameters
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Fig. 4.3.1 Power Decrease with 100 Second Period Constraint

rate until the final demand level is reached. As was seen in the case

for power increases, when the endpoint is reached, the reactivity is not

zero. The power level is.held constant by the variation of the reacti-
vity while precursor-density equilibrium is attained. Calculation of

the switch point Ss is compléx, with many approximations and assumptions.
Again the easiest method is by simulation techniques. A minimum negative

reactor period of the order of 100 seconds is suitable, as it requires

only 1.6 to 2.0 mk to maintain it on a stable period (see figure 4.3.1)

s
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and does not differ too much from the 80 second limit. The main pro-
blem is that the power level has decreased by as much as six decades
before a stable asyﬁptotic period is attained. However, if the switch
point is determined when this period has been attained, it will be con-
servative for ‘power decreases of fewer decades as far as undershoot is
concerned. Using the digital simulation and controller of Chapter 5,
with a 100 second minimum allowable reactor period for power decreases,
and a maximum reactivity rate of 0.02mk/s, the ratio of switch point
level NS to tﬁé final endpoint Ne is 1.188. .
Ip the next chapter, the switch points will be used in the
development of a practical digital controller which permits fairly

good approximations to the time optimal control sequences outlined in

the previous sub-sections.
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5. PRACTICAL DEMAND POWER LEVEL CONTROLLER

A practical digital contfoller is developed using machine
language programming and incorporating the time optimal sequence switch
points outlined in Chapter 4. Digital and analog simulations of a thermal
reactor are used to test the controller for overail stability as well as
for controlled power level changes with various minimum allowable periods
and reactivity rates.

5.1 Control Computer Specifications and Programming

As mentioned in Chapter 1, the basic power level controller
will be assumed to be part of a much larger system consisting of a
number of mass storage units and mini-computers assigned their own
particular tasks.-

The control computer mgst therefore be able to communicate
with the other system computers as well-as read from and write to the
mass storage units. A hardware fixed point arithmetic unit option must be
installed in the computer. If output of control action is directly from
the basic controller then the necessary equipment must be interfaced to
fhe computer.

The range of a nuclear reactor can extend over more than four-
teen decades, although under normal operating conditions this would be
in the order of six to ten decades, depending on the reactor type. How-
ever, it is convenient to have the computer extending o;er the widest
range possible, especially for initial startups and long term shutdowns.
Calculation speed is important, and as floating point arithmetic units

for mini-computers are not readily available, the logarithmic control

alogarithm was developed in Chapter 3, making the use of fixed point
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arithmetic possible. Of the variables for the algorithm, the demand
power level requires the greatest precision. From equation (3.4.2)

the logarithmic power level is

In N, [((@D) 1] = 1n Ny@T) + T/7, (5.1.1)
or for the log10 case

log N, [(nt1)T}= log N (nT) + (T/7,) log (e) (5.1.2)

The minimum likely sample period T is 0.1 second (see section
3.2). 1If the smallest maximuy rate of reactivity change'RmaX is 0.01
mk/sec., then from equation (4.2.10) the longest probable period for
power changes is 630 secs. ~This period gives a minimum linear rate
constraint of 0.167 full power per second which is more than adequate.

Therefore

(0.1/160) 0.435 (5.1.3)
5

[(T/Td) 1og(e)] min

It

6.8 x 10~ (5.1.4)
Assuming a 1% accuracy for these extremely long periods and taking the
‘l6 decade power ?ange into account givés a precision requirement for

log Nd of nine decimal digits or thirty bits. This is an extreme maxi-
mum limit. VOn the other hgnd it might only be possible to bbtain a
spread of 1000 sample points per decade. Assuming a calculation accuracy
of 17, this gives a'precision requirement of seven decimal digits or
twenty—-three bits. The word length of most mini-computers is 12, 16, 18
and 24 bits. Therefore, for most machines, double precision fixed point
arithmetic is necessary. Depending on the sample petriod, the power range,
accuracy of calculations and maximum required reactor period, it might

be possible to use single precision arithmetic with the 24 bit machines,

which has many advantages. In the development of a practical digital
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controller, a Digital Equipment Corporation PDP-—921 computer with a word
length of 18 bits was used. This computer is linked to an EAI 231R22
analog computer to form a hybrid facility. The hybrid interface was
originally developed by Marston23 with a software package being developed
by Crawleyza.

Most mini-computers are supplied with comprehensive soft-ware
packages, including a.basic operating system, Fortran; an assembler, edi-
tor and'loaders. The development of an overall operating system will not
be dealt with in this thesis. 1In previous reactor control system pro-
gramming, much use has been made of Fortran, due partly to the require-
ment of floating point arithmetic. Use of machine language programming
usually results in much faster and smaller programs in.core space than
would be attained with Fortran programming. Throughout the development
of a practical digitél controller the PDP-9 Assembly language was used.
After examination‘of the precision and mathematical functions required,

a double precision fixed point two's complement arithmetic package was
developed. The sub-routines in the paékage and their calculation speeds
are given in table 5.1.1. Comparison of the calculation speeds with
those found by Co.hn9 show how much faster the fixed point routines are
than their floating point equivalents. Part of the software support
package for the PDP-9 is a ma’cro—assembler25 which can simplify tedious
machine language programming. A macro definition file was developed for
the calling of the'above sub-routines and includes conditional as well
as single precision arithmetic macros. The form of the macros is as

follows:

LABEL  FUNCTION  VARIABLE 1, VARIABLE 2, (ANSWER OR CONDITIONAL JUMP
| .. ADDRESS)
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Using these macros makes programming much simpler and more reliable as

well as eliminating many pitfalls for the inexperienced machine language

programmer.
Function Calculation Time (usec)
Fixed Point Floating Point*
Two's Complement 37 -
Addition 48 500
Subtraction 55 550
Positive Multiply 130 500
Signed Multiply 245 500
Fractional Positive
Multiply 70 ' -
Fractional Signed .
Multiply 190 -
Logarithm#*#* o 183 4770
Antilog# 230 -

Ten Power X#% 140 -

* See Reference 9
#% GSee Reference 26 for Algorithms

Téble 5.1.1 Ariphmetic Sub-routine Functions and Calculation
Times

5.2 - Demand Power Level Controller

A flow diagram of the basic power level controller is shown
in figure (5.2.1). On the sample period interrupt, the neutron power
is sampled and if more than one circuit is used, the readings‘are then
averaged. If the readings are in linear form, the logarithmic value
is found and then scaled and calibrated. The error between the deman-

ded flux at that sampling and the actual flux is determined and the
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Sa?ﬂe Rm;iD necessary action is output to the con-—
nrvaroupt .

Feteh and Calibrate
Log Neutron rower
Sample
1
L@rror Calculation]

i
Output Conbrol from the routine. By far the longest cal-
Action

J : culation is for the demand power at the
Next Demand
Level Calculation

next sampling and it is calculated last, so

that the output of control action occurs as

trol rods. The demanded flux for the next

sampling is then calculated before exiting

Fig. 5.2.1 ©Basic Controller
Flow Diagram soon as possible after sampling the neutron

power. In the following sub-sections, each phase of the algorithm will be

dealt with in detail.

5.2.1 Fetching of Neutron Power Sample

The precise mannér is which the neutrén power is sampled will de-
pend on the overall system configuration. If a separate computer is used
for data acquisition and logging, as in Chapter 1, it can transfer the
-averaged power -level to the -demand power level controller and then inter=
rupt it. If logarithmic‘conversion, séaling and calibration aré required
this can take place in either computer. If possible, logarithmic ion
chamber amplifiers should be used so that the logarithmic neutron level
can be sampled directly, as well as providing an even spread of digitized
power levels (see figures (2.5.1) and (2.5.2)). Excellent logarithmic
amplifiers covering up to seven decades.are now avaiiablezy.. No matter'
which type of amplifier is used, it will be necessary to divide the
entire power level span into overlapping measuring ranges as in figure

(5.2.2). The transition from one range to the next is given by
N = (1-a) Nl + aNu ‘ (5.2.1)

where N is the power level, N, is the reading from the lower range, Nu

1

is the reading from the upper range and o is as in figure (5.2.2).
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Fig. 5.2.2 Merging of Upper and Lower Measuring Ranges
In the test of the controller using the digital simulation, this stage
is omitted as the simulation transfers the logarithmic neutron power
level directly to the controller. Using the analog simulation, the
linear power level was sampled by analog to digital converters covering
two ranges: one from O to 10% full power and a second from 0 to 150%
full power. After scéling,lthe two readings were merged using equation
(5.2.1) before finding the lpgarithmic power level digitally. A flow
diagram is shown in figure k5.2.3). |

5.2.2 Error Calculation

The equations for the error, using the zero—order and linear-
ized holds, are given by equations (3.3.1) and (3.3.12) respectively.
The first-order hold will be neéleéted because, from the stability
analysis of Chapter 2, it was seen to be the worst of the holds analysed.
From equations (3.4.6) and (3.4.8) the demand power level can be given

by: | 1nN' = 1nN L(n+l)T] (5.2.2)
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_ min
= ax InN(nT) + C, lnNd(nT) i_T/Td,

In Ne (5.2.3)

where min and + are for power increases and max and - are for power de-

creases respectively. The last two terms are independent of the sampled

Read A/D Channels 1 and 2
Nu = Channel 1 .

N_l = Chaunel 2
! ’ = N, _+BIAS *SCALE1 --._:Amplifiers are biased
u u ’ so that zero is ~Vref
Yl = N1+BIAS *SCALE2 and full scale ig +Vref.
0.4 [¢]
, — LoW
LINP = Ny =0
(4] 0
N, - HI
=0 LIRP = N .

ALPHA = (Nl—LOW)/(HI—LOW)
LINP = (1~ALPHA)*N,
+ALPHA*N

[FLXP = Log,q (LINP)‘

Fig. 5.2.3 Flow Diagram of Neutron Power Fetch

neutron flux and can be .calculated and tested before the sampling inter-

rupt (see section-5.2.4). Equation (5.2.3) can then be reduced to

_ min "
1N, [(at1) T]= T {1aN(aT) * €, 1nN", [(nt+1)T] (5.2.4)
where
1" _ min -
1nN d[(n+l)T]— max 3 1P Nd(nr) + T/Td, ln N, (5.2.5)

A flow diagram of the error calculation is given in figure (5.2.4).
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[Fixp-1EM

ERRO =FLXD~2FLXD+FLXL
(Linearized Hold)

or

ERRO=FLXD~-FLXP
(Zero~-Order Hold)

Fig. 5.2.4 TFlow Diagram of Error Calculation

5.2.3 Output of Control Action

The precise form of the control action, i.e. moderator level,
control rods, depends entirely on the design of the reactor system. How-
ever, the input drive in all cases is a velocity signal and the maximum
rate of change of reactivity is limited. There are three basic formé
of velocity signal:

(a) Bang-bang control with deadband. The reactivity rate is

either zero, full speed withdrawal or full speed in-

sertion.

(b) A discrete number of reactivity insertion and withdrawal
rates.

(¢c) A continuously variable reactivity rate, with or without
deadband.

The three forms of signal are shown schematically in figure (5.2.5).

The most commonly used is the first, due to its simplicity and the low
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Fig. 5.2.5 Reactivity Rate Signal Types
frequency of rod movement. The discrete system has been.limited to two
or three reactivity rates, while the continuous systems have always re-
quired fairly complex feedback control, i.e. tachometer. With nuclear
quality stepping motors now readily available, and coupled %ith direct
digital control, the discrete and continuous systeﬁs areAnow easily
~realizable -without ‘the-need -for complex feedhack systems. Detailed
coverage of these systems is given by Schultz5 and Harrerls. - Flow dia-
grams for all three types of system are given in figure ( 5.2.6). As
the maximum reactivity insertion rate for a particular reactor is
lusually fixed (Rmax)’ the stability of the reactor is ensured by choosing
the appropriate controller gain (see section.2.6). The variable GAIN
sets the required error bef&een the actual-neutron power level and the
demanded power level to give a maximum reactivity rate signal.

5.2.4 Demand Power Level Calculation

Resides maintaining the reactor on a steady state reactor
power, the controller must be able to change the power from one level to
another, maintaining the performance within the constraints as given
in section 3.1. The linear rate constraint, aithough applicable only

to the higher powered reactors, will be included to give a complete
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TEK1=GAIN*od (ERRO)
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{ERRG = Sign(ERRO)* TEM]
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Error Output on D/A#1.
For Digital Simulation
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(a). Basic Flow Diagram. Only if
Deadband

Required.

v !TEN1 = WAXE]
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Right Shift or
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(b). Bang-Bang with Deadband. ?

(c). Discrete

Fig. 5.2.6 TFlow Diagram of Control Action Output
general controller. TFrom equation (5.2.3) the demand power level is
seen to be a function of the final endpoint and the demanded reactor
period. The first term is to ensure that tﬁe demand does not diverge too
far from the actﬁal power during the initial stages of level changes.
Taking the linear rate constraint into account results in the inverse
demand period being a function of the power level as given in figure
(5.2.7).

Below the switch point S, the demand period T, is the minimum

d

allowable reactor period T Above the switch point the inverse demand

1

period is:

1/Td = l/Tl ' (5.2.6)
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‘AN
=§— (5.2.7)
* d
where
_ 1 an ‘
AN = |dt max (5.2.8)

/T,

m

Normalized
Inverse Pericd
(sec™T)

Log Neutron Power
Fig. 5.2.7 1Inverse Period for Log and Linear Constraints.
The inverse demand period, besides being physically measurabie, is used
as it is the form of the period required by equation k5.2.3).
In Chapter 4, dealing with time-optimal control, it was seen
that for a power level increase, the control reds are inserted at maxi-
mum rate on reaching a switch point S

d

attained. The easiest method is to open the control loop on reaching the

until the final demand level is

4éwitch point, and output a maximum control rod velocity signal, closing
the loop again when the final demand power. is reached. This method is
only suitable under ideal conditions. If, on‘reaching the switch point
Sd’ the reactor is rising on a slower period than the minimum allowable
period, then with the maximum rate of control rod insertion, the final
endpoint will never be reached. The problem as to what control procedure
must be followed also arises if the initial power level is above the
switch point. With these problems,.it is doubtful whether the controller
would pasé the strict safety regulations with an open loop control band

about the final endpoint. The ideal solution is to have dynamic time
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optimal control. The study by Lipinski4 has shown this to be possible,
but the complexity of the calculations required after each sampling

results in extremely long calculation times, even when a hybrid computer

is used.
It was seen in section 4.2 that for a maximum reactivity rate
Rmax’ there is a corresponding minimum allowable period Tys such that

for reactor periods greater than T,» DO switch point is required. The

relationship between Rm and T, is given by equations (4.2.9) and (4.2.10).

ax
Therefore the minimum allowable period at the final endpoint must be
greater than Ty if the neutron power is to be held constant. A possible
method of obtaining maximum control velocity, while still maintaining
closed loop control, is to increase the demand period to Ty at the switch
point, as in figure (5.2.8). Examination of equation (5.2.3) shows that
for power increases the minimum of the three terms is chosen as the
demand power level In Né. The neutron power will therefore increase
rapidly compared to the demand, with the resulting error giving full

control rod velocity.. From the error calculation flow diagram (figure

5.2.4), it can be seen that as the neutron power reaches the final end-

1

d is automatically set to the final endpoint

point, the demand power ln N
value 1n Ne. The disadvantages of this system arevfﬁat'the final endpoint
péwer must be attained, otherwise the demand level 1n Né will continue

to rise on a period Te, inétead of being set to the final endpoint. As

a result, the neutron power Jevel will turn around and decrease until

the demand level is reached, after which the final endpoint will be
approached on a peridd Te (see figure (5.2.9))._‘If the initial power

level is above the switch point, then the demand period will be

kept constant at Tys which is far from optimal.
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If the demand period is gradually increased from T at the

switch point to T, at the final endpoint as in

be possible to maintain an error signal giving maximum reactivity rate,

while not allowing the demand level to lag too far behind the actual

neutron power level, as was the case in figure (5.2}9). This method

also permits faster power level changes if the initial level is above

the switch point. However, there is now a slight delay after reaching

the switch point, before the error is sufficient to output a maximum

control signal as shown in figure (5.2.11). This delay is dependent on

the controller gain; the higher the
switch points given in table 4.2.1

up for the delay. The delay can be

/T,

El

A
~
>

B

(sec'q)

AT,

Log Power Level

Fig. 5.2.12 Inverse Period
for Time Optimal Power
Increase. (Continuous
plus Step Increase of

gain, the shorter the delay. The
will have to be compensated to make
shortened by vafying the demanded
reactor period as shown in figure
(5.2.12); as it is often impossible
to increase the system gain due to
instabilities arising.

Ideally, the deménd neu-
tron power should reachi the final
endpoint at tﬁé same instanf as the .
neutron power. The time"taken for
the demand neutron power 1e§el to
reach the endpoiﬁt from the switch

point can be calculated as follows:

Period).
Let Ld = 1n Nd - 1ln NS
L =1InN - 1InN
e e s
in Nd = log demand power level
In N = log switch point power level

figure (5.2.10), it should
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In Ne = log endpoint powerllevel
Tm = minimum allowable reactor period’
1~ = allowable reactor period at endpoint

l/Tm - 1/Te

From figure (5.2.10) it can be seen that for the continuous case

t ALd(t) :
Ly(t) = / 1t -4 dt (5.2.9)
(o] e
Therefore
dL AL
d _ -4
i - 1/t I (5.2.10)
e
The solution of this equation is:
Lo =1/t s [1- exp(—tA/Le)] (5.2.11)

The time taken for Ld to reach Le 1s required, therefore the following

equation is solved for t:

t = a Le/A ' (5.2.12)

where a is solved from

N

exp(-a) (5.2.13)

1
l—l
I
jod
et
=}

=1 /1 . ' (5.2.14)

For the case where the period is varied as in figure (5;2.12), T is
replaced by T%.

The actual times taken by the reactor from the switch point
to the endpoint under ideal conditions‘were measured when the switch
points of table 4.2.1 were determined. Tabie 5.2.1 gives these times
forlvarious minimum allowable periods and maximum reactivity rates.

- The table also gives the times for the demand power level to rise from
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the switch point to the endpoint using equations (5.2.12) and (5.2.14).
The endpoint period To for the various reactivity rates was determined

using equation (4.2.10). It can be seen that, except for those cases

MINIMUM TIME (SECONDS)

PERIOD Ry ., = .lmk/s Rpayx = -05mk/s Rpax = .02mk/s Rpax = -0lmk/s
(sec). Reactor Demand Reactor Demand Reactor Demand Reactor Demand
20 3.2 2.6 15 13.6 71 75 162 219
30 2.3 .95 11 6.7 50 46.5 121 149
40 1.7 425 8 3.8 38 31 96 109
50 - -~ 5 2.2 29 22 80 84

100 - - - - 11 5.8 37 28.4

Table 5.2.1 Times for Reactor and Demand to Reach Endpoint
from Switchpoint

where the maximum reactivity rate is 0.01 mk/second, and where the 20
second period is combined with Rmaﬁ = 0.02 mk/second, the time for the
demand power level to reach the endpoint is shorter than that for the
reactor. The period can therefore be varied as in figure (5.2.12), to

compensate for the delay in attaining a maximum reactivity rate signal.

By choosing appropriate values for T'm and T'e such that:.

' s _ (5.2.15)

and B AT S ' , (5.2.16)

the reactor and demand power levels can reach the final endpoint at the
same instant. Table 5.2.2 gives values fqr T'm and T'e using the switch
points of table 4.2.1.

The problem still exists for those cases where the demand power -
level takes longer than the reactor to reach the endpoint. If a slightly

shorter value for T, can be tolerated, the time for the demand to reach
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the endpoint can be made the same as the reactor. The appropriate values

'e were included in table 5.2.2. Whether these values can be toler-

of T
ated will be determined when the controller is tested in section 5.5.

The preceding analysis has been for power increases. Similarly,
for power level decreases the same proceaure can be followed, with the
reactor period varied as in figure (5.2.13). Table 5.2.3 gives the switch

point values, the time for the reactor to reach the endpoint and appro-

priate values of T'm and T'e.

/T,
/T,

Normalized
- Inverse Feriod
(sec™ M)

1/72

Log Neutron Power

Fig. 5.2.13 Inverse Period for Power Level Decrease .
(Continuous Increase of Period).

MINIMUM T'm and T‘e (sec)
PERIOD R__ = .lmk/s R___ = .0O5mk/s R = .02mk/s R = .0lmk/s
max max max max
(sec). T! T! T' ' T! T! T! T
m e m e m e m e
20 30 51 25 110 24 180 24 165
30 94%  94% . 67 115 35 280 35 245
40 182%  182% 137%  137% 56 307 46 315
50 - - 167% - 167%. 75 307 57 465
100 - - - - 314% 314% 151 627
*Note: A = 0, therefore 1' = 1' =1 [/t
m e e

Table 5.2.2 T'm and T'e for Simultaneous Arrival of

Reactor and Demand at Endpoint
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Switch Time to
nax Point Endpoint T'm T'e
mk/sec -NS/Ne (sec) (sec) (sec)
.05 1.008 1.9 211 211
.02 1.188 37 150 310
.01 1.63 114 140 475
Table 5.2.3 Parameters for Power Decreases with
100 second Minimum Period Constraint
1/75
S
g \
' 8 &;\—/\ 1/ m ,]/7;116.
S SN . 4/7;d
do o X
B0 ©n
[ TR
R
faE
1/7;
1V 7ea

Log Power Level

Fig. 5.2.14 InversevPeriod as a Function of Poﬁér Level

If the reactor is at steady state, the variation of the deﬁand
period about the steady state lével is given in figure (5.2.14). There is
a deadband of value C on either side of the steady state level and if the
neutron power level remains in this deadband, the demand power level is
held at the steady state 1evei. If tﬁe neutron power level should deviate
outside the deadband the demand power level In Nd' is set to the value
In N + C, depending on whether it is below or above the steady state.
(See the error flow diagram of figure (5.2.4)). The demand power
level In Nd' is then returned to the steédy state level with the demand
period varying as in figure (5.2.14). Figure (5.2.15) shows the variation

of the demand period when the final endpoint is in the range where the

linear rate constraint is active.
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A flow diagram of the demand power level calculation is given
in figure (5.2.16). It must be remembered that the switch points given
in table 4.2.1 are for ideal conditions. If there is any delay in attai-
ning a maximum reactivity rate signal after the switch point, the switch
point must be compensated to avoid over- or undershoot of the final level.
It is probable that the controller developed will have a sub-
optimal response. Just how sub-optimal it is, willlbe determined in
'subsectiog 5.5, where the controller is tested using a digital simulation
of a thermél reactor. The results obtained for power 1e§el increases
and decreases. will be compared to the ideal results of Chapter 4 and

necessary adjustments in the switch points will be determined.

5.2.5 New Endpoint and Switch Point Calculations

The only probable interaction between the safefy system and
the controller would be the setting of the final endpoint by the safety
system for'controlled power reversals and power level limit setbacks.
Program or operator initiated power level holds can also be expected.

A logic diagram of possible endpoint priorities is given in figure

(5.2.17). The switch points associated with a particular endpoint are



Load New Endpoint and
Switchpoints. Reset EP Flag.
T

{PERD=

—TEN

[ PERD=-TEN2]

N .
"12=(FLXD—SWST)/(FLXE—SHSTﬁ
PEN1 =UMRT-( UMRT-ULRT ) TEM2

fTEM2=LNR’I‘/LINDI

<0 >0

[PERD=-LNRT/LIND]

RT/L.IND]

[PERD=TEMA]

[PERD=TEM2] _

[PERD=-DRAT :
N
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TEN] =FLXD-FLXE

Fig. 5.2.16 TFlow Diagram of Demand Calculation
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simple to calculate. As the maximum reactivity rate RmaX and the minimum
allowable reaétor period T, are fixed for a reactor, the switch points
" for time optimal control for a particular endpoint N'e are given as follows:

InN ., =1InN' + 1In S (5.2.9)
si e

di

where 1 = 1 1is for power increases
i =2 is for power decreases
and Sd = ratio of Ns/Ne as determined by simulation methods described

in Chapter 4.
The linear rate switch point remains fixed, independent of the final

endpoint and is given by

Ny = 1 |dn/de| (5.2.10)

'With the occurrenceof a reactor scram or emergency shutdown, the end- .
point is set to the minimum power level, the controller output discon-
nected and the demand power level allowed to float down with the neutron

power level.
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5.2.6 ‘Genéral Remarks

Throughout the development of the controllér, an attempt was
made to minimize the calculation time from the sample interrupt to the
output of the control action. All calculations not dependent on the mea-
sured neutron flux, were completed prior to the sample interrupt. The
algorithm as it stands is by no means complete. Areas such as shim and
regulator rod control, maintaining the regulator rod at maximum effective-
ness and many.others have»not been included as in most cases they are de-
pendent on the individual reactor type. .

From the stability analysis of Chapter 2, it was seen that
except for extremely fast sampling rates, the zero-order ﬁold was the
best of the three hold types. Examination of equation (3.3.1) shows
that at steady state there is only proportional‘control, with no rate
control. 1If the'error‘equation (3.3.12) for the linearized hold is

broken down, the following form Qan’be obtained:

e (t) = [n Ny(T) - In N(D]  + {T/ry; - [1aN(aT)-1nN(a-1)T]

(5.2.11)
Therefore, it can be seen that the. linearized hold gives proportional

plus rate control.

5.3 Digital Simulation of a Nuclear Reactor

The contr§11er requires as input a logarithmic neutron power
level and dutputs control action in the form of a limited reactivity‘
rate signal.

The point reactor kinetics equations with six groups of delayed
neutrons are given in Appendix A by equations (A.1.1) and (A.1.2). These

equations result in a linear neutron power. Dividing through by n in both
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equations gives:

L 6
oo, gk g L%
e / n = ) +4lz 'Ai Ci/n + S/n (5.3.1)
i=1
and
dCi Bi
—/m= -2 C/n : (5.3.2)
Let
_dn
m = dt'/ n (5.3.3)
V. =C,/n (5.3.4)
i 1
and
w=25/n (5.3.5)

Substitution into equations (5.3.1) and (5.3.2) gives

6
ok _ 8 \
m==p - T+ 1 XV, +w (5.3.6)
i=1
and
dVi Bi
~ =7 - Vi (m i Ai) (5.3.7)

. dn . . .
The quantity == / n is the inverse reactor period. Also
q dc p

loge n = /rm dt (5.3.8)

Therefore with the change in the variable, the logarithmic neutron power
can be obtained directly from the simulation,with the simulation input

of reactivity being retained. Equations (5.3.6) to (5.3.8) are more suited
to digitallthan to analog simulation techniqﬁes. The six equations of

the form of (5.3.7) require extremely accuréte and relatively fast mul-
tipliers which are not always available. The main problem is the 'open

loop" integrator of equation (5.3.8). Both of these problems are elimi-
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nated with digital simulation techniques.' The change in variable has
the added advantage of normalizing the equations, with the delayed

neutron precursors being transferred into ratios instead of absolute

values extending.over the range of power level of a nuclear réactor.

It is therefore possible to use the fixed point arithmetic routines devel=-
oped for the controller, with much faster calculation times possible

than would be fhe case with floating point arithmetic.

Much criticism has been levelled at digital simulation techni-
ques due to the inherent quantization and serial operation. Many sophi-
sticated methods for the numerical solution of differential equations
have been proposed in an attempt to reduce the errors incurred by digital
techniques. One of the so-called "unsophisticated" integration methods,
the trapezoidal integrétion method, was‘used in the digital simulation of
the nuclear reactor because of its simplicity, ease of programming and
excellent stability propertieszg. The form of trapezoidal integration is
as follows:

3T T

Y4l = Yn + —E-fn - E-fn—l (5.3.9).
where
Y, = the output of the integrator at time nT
fn = sum of inputs to the integrator at time nT
and T = sample period.

The accuracy of the digital simulation as a function of sample
period T was tested against the analog simulation described in section 5.5
for step inputsvin teactivity. With a sample period of 0.1 second, there
was a noticeable error in the order of 57 during the initial stages
after the step where the influence of the prompt neutrons was the greatest.

With a 0.05 second sample period, this error was reduced to 1%, while at
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a sample period of C.Ol second, the error could not be distinguished in
the noise of the analog computer simulation. For the ionger sample
periods, the error was only detectable in the initial stages where the
prompt neutrons were effective. Although the simulation was accurate
when the effect of the delayed neutrons became prominent, the initial
error was carried forward and remained.

A flow diagram of the basic digital simulation is given in

figure (5.3.1). Using a sample period of 0.0l second, the simulation

‘ Enteyx ’

TENF4=0
REACT=REACT+ T*RRATE
]

DC FOR X=1 TO 6
TENMP1=LANDA(X ) * DELAY (X)

: TEMPY = TEFDY+ TEMP1
TEMP%=BETA(X)~Ta1P1 -NRATE* DELAY (X)
DELAY (X)=DELAY{(X)+3*T/2* TEME3-T/2* FUNC(X)
CFUNC(X)=TEMP3
]

PEMPA =TPEMPY + REACT=BETAT
POYWER=DPOWER+3*T/2* TEMP4~T/2* NRATE
NRATH=TEMP4

( Return. )

Fig. 5.3.1 Digital Simulation of Nuclear Reactor-
Flow Diagram. (One Sampling Only)

time was about half the real time. A handler was developed to control
the digital simulation and controller and pass the necessary variables
between the two programs. Thé handler provides on line graphic readout
of the logarithmic power 1evel,réactor period, reactivity rate and total
reactivity, and also prints out final results on a strip chart recorder.
Program interruption and re-initializationor the setting of any variable
is possible without disturbingbthe;continuous simulation sequence. The
_three sample periods, simulation, controller and_readout are independent

of each other and can be set to the required values. The handler simu-
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lated the neutron power measuring circuits (see section 2.5) by averaging
the neutron power from one controller sampling to the next, before pas-
sing the neutron power level to the cont?oller.

A thermal reactor with parameters as given in Appendix A.4
was simulated for the testing of the digital controller.

5.4 Analog Simulation of a Nuclear Reactor

The point kinetics equations with six groups of delayed neutrons
are given in Appendix A by equations (A.1.1) and (A.1.2). The analog
compuéer circuit diagram is given in figure (5.4.1). The analog simu-
lation was set up on an EAI, PACE 231R analog computer which is inter-
faced to the PDP-9 computer used for the digital controller.

The neutron power level measuring circuit described in section
2.5 is simulated by integrating the neutron power level from éne sampling
to the next and by initializing the integrator after eaéh sampling.
Fortunately the 231R analog computer is equipped with electronic switching
for the integrator modes and the shorter sample periodé of 0.1 second can
be easily.handled. Two measuring rangeé are used; one up to 107 and the
second to 150% full power. The two ranges are merged using the tech-
nique described in section (5.2.1). The outputs of the two integrators
are sampled by a multiple#ed analog to pigital converter. No - -timing pro-
Blems were encountered as all the inputs to the multiplexer are preceded
by sample and hola units and the integrators are initialized immediately
after sampling and holding the two signals. The initial conditions.of
the two integrétors are biased, so as to allow full use of the A/D.
sampling range of + Vref, thereby gaining double the number of digitized

power levels.
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Fig. 5.4.1 Analog Simulation of Nuclear Reactor

The control actionin the form of a reactivity rate or a total

reactivity signal is returned to the analog simulation from the controller-

by means of a digital to analog converter.

The same reactor parameters were used as for the digital simu-

lation. (See-Appendix A.4).

5.5 Test of Digital Controller

Both analog and digital simulations described in the previous
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subsections will be used in testing the digital controller. The ad-
vantage of the digital simulation is that it covers the entire range of
possibleireactor power levels. Another advantage is that no additional
external equipment is necessary for the testing of the aigital controller.
The analog computer simulation provides the best real time conditions

with the monitoring and calculation delays, as would be expected in an
‘actual reactor system. The disadvantage is that the range is limited to
about 2 decades of operation. Automatic rescaling is possible with power-
ful and advanced analog systems, but they are not always available.

5.5.1 Calculation Time of Control Algorithm

Using the analog simulaﬁion, the time taken from the moment
the sampling of the neutron power is begun, to the output of the control
action is 0.8-1.1 ms. ' More than half of this time is required in the
sampling, merging and “finding the logarithm of the neutron power. These
problems encountéred using a "hybrid" simulation are the same as would
be encountered in'a true on-line system. The longer calculation times of
1.1 ms are required when two measuring ranges are merged.' The total time
from the sampling to the exit after calculating the next demand level is\
1.5 -1.8 ms; Even with the shortest sample périod of 0.1 second, the
effect of the calculation délay before the output of the control action
can be neglected. The use of the logarithmic control algorithm.and fixed
point arithﬁetic can be seen to give exceptionally faét and simplé calcu-
Jdations. The time taken from sémpling to the output of control action

is about twice as long as the time for an addition using the computer's

floating point package.

5.5.2 Stability Test of Controller

The overall system stability was analysed in section 2.6. For
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a particular sample period T, the stabilitylof the reactor could be en-
sured by maintaining the reactivity rate per unit error less than a
maximum'value Rmax' Table 2.6.1 gives Rmax,per unit error for various
sample periods for the thermal reactor of the analog and digital simu-
lations.

The most convenient method of testing the overall stability is
to use the analog simulation. By means of adjusting the control rod
gain potentiometer, the gain can be increased slowly until stability
is lost. For both the linearized and zero-order holds, the values given
in table 2.6.1 were conservative, The value of Rmax’ where stability
was lost, was 25 to 35% greater than the theoretical values for all four
sample periods. This is an jdeal situation from the safety point of view,
as the theoretical calculations of section 2.6 then have a safe 25%
margin. When using the digital simulation, the results differea by no
more than 27 from those obtained uéing the analog simulation.

5.5.3 Power Level Increases

Using the digita} simulation, the controller was tested for
power increases using the switch points of table 2.6.1 and the respective
ﬁalues of T'm and T'e as in table 5.2.2. A sample period of 0.1 second
was used throughout the teéting, as one of the main reasons for the log-
arithmic control algorithm was to allow the use of these. fast sample
frequencies.

Figure (5.5.1) shows power increases with a 20 second minimum
allowable period and a maximum reactivity rate of 0.02 mk/second. With
the controller gain such that a .1%/decade error between‘the'power level
and the demand gave a maximum reactivity rate signal, the évershOOt was

never more than 0.57 of the final endpoint, for 'all the combinations
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of period and RmaX given in table 2.6.1. When using a lower controller
gain, such that an error of 1J/decade resulted ir Rmai out, the overshoot
in all cases was betweén 5 and 7% of the final endpoint. This greater
overshoot is not only due to the delay in attaining a maximum reactivity
signal but also because an overshoot of 2.3% of the final endpoint is
required to obtain a maximum output signal. These results aré-excellent,
with the overshoot being a little over twice the error required for a

- maximum reactivity signal. |

Examination éf figure (5.5.1) shows that the period becomes
shorter than the minimum allowed just prior to attaining an asymptotic
period. During the initial stagés of start-up, thé demand does not deviate
too far from the power level, due to the first term of equation (3.4.6).
This peak in the inverse period occurs as the power finally catches up
with the demand. The amount of pezking can be reduced by reducing c
of equation (3.4.6). The most suitable value of C was found to be in the
order of one-and-one-half times to twice the error required for a maximum
reactivity signai.

In tables 5.2.1 and 5.2.2,.it was seen that for the smaller
values of Rmax’ T'e had to be smaller than the desired final endpoint
period Tg» SO that the deménd and power levels reached the endpoint to-
gether. To see whether these values of T'e could be tolerated, the reac-
tor was set on a.power increase with a minimum allowable period of T'e.
On attaining an asymptotic period, the control rods were inserted at
maximum velocity and the overshoot measured. For the case of Tle = 165
seconds, (instead of the desired 627 seccnds) and Rmax = 0.01 mk/second,

the overshoot was 6.5%. With a T'e of 245 seconds, this overshoot re-

duced to 2.57%. These overshoots were much less than those obtained when
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there was a sizable delay in attaining a maximum reactivity rate signal
after the switch point. Fortunately, the probability of any reactor
having a 20 second allowable period is small, especially if it only has
a reactivity rate of 0.0l mk/second and the values of T, can therefore
be tolerated where necessary. The greater overshoot will only be found
in those cases where: (a) the switch point is conservative, (b) the
minimum allowable period has not been attained and (c¢) the initial power
level is above the switch point, all of which are shown in figure (5.5.2).

As was expected, the conttroller is suboptimal. However, the
higher the controller gain, the closer to the ideal is the performance.
Taking as examples the cases shown in figure (5.5.1), the ideal time from
switch point to endpoint is 71 seconds. With a controller gain of .1%/
decade for an output of Rmax’ the time‘for the power finally to settle
within .23% of the endpoint is 71.5 seconds. When the gain is lZ/decade,
the cofresponding time to settle within 2.3% of the endpoint is 86 seconds.
This longer time is due to the greater overshoot, which is a direct re-
.sult of the delay in attaining a maximum reactivity signal. For these
lower gain céses, the time could be shortened slightly by making the
logarithmic switch point cénsérvative by about 27 of a decade. It can
bg seen in figure (5.5.i(a)) from the spike in the reactivity rate signal,
how the demand and reactor power reach the endpoint simultaneously;'
followed by an instantaneous maximum signal whiéh tapers off while pre-
cursor density equilibrium is attained.

Figufe (5.5.3) shows a power increase whenla 1inear.rate con—
straint of 17 full power per second is imposed. The reactor is first
constrained by the minimum allowable period, followed by the linear rate

constraint and finally the time optimal constraint.
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5.5.4 Power Level Increases wifh,Noisy Reactor

The analog simulation was used for testing the controller with
a noisy reactor. This made it easy to add various noise signals; further-
more, the simulation included the digitizing effect of the analog to di-
gital converters. Figuré (5.5.4) shows a power increase with a white
noise signal with R.M.S. value of 3% of full power. The overshoot of
the final endpoint was only .5% greater than the reactor without ﬁoise.
Removal of the filtering circuit before the A/D converter resulted in
much poorer performance, especially.ét low power, due to the low signal
to noise ratio.

A linear power signal is read by the A/D converters and the
logarithmic power is digitally calculated. The resuiting uneven spread
of digitized power levels can be clearly seen: in the reactivity rate sig-
nal of figure (5.5.4). As stated previously, the use of logarithmic ion

chamber amplifiers will alleviate this problem.

5.5.5 Power Level Decreases

A power level decrease with a 100 second period constraint is
shown in figure (5.5.5). The undershoot was found to be twice the error
required for a maximum output signal, which was identical to the results
for power increases. As mentioned in section 4.3, time optimal povwer

decreases were not dealt with due to the wealth of existing literature.
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6. CONCLUSIONS

A basic error sampled data control system for a nuclear reactor -
was developed. The control system was analysed for stability with various
sampled data holds and sample frequencies. The results obtained, when
compared to those measured with digital and analog simulations, proved
safe, with a 257 margin.

A digital eentrol -algorithm, using the lbgarithmic neutron power
level as input, was developed, which allowed the use of fixed point arith-
metic. The calculation speeds of the algorithm were seern to be much faster
than algorithms using floating point arithmetic. Time optimal power in-
creases were studied, and a time optimal control sequence using switch
points was derived. The determinatioﬁ of the swiﬁch points was done by
simulation techniques, eliminating the use of complex and very approximate
calculationé. |

A practical demand power level controller was developed, using
machine lénguage prégramming. All calculations not requiring the sampled
neutron flux‘were calculated prior to fhe sample interrupt, in an attempt
to minimize the delay from the sampling to the output of control action.
The actual aelay was found to be from 0.8 to 1.1 ms; which is the time
required for approximafely two floating point additions. Time optimal
power increases were tested using a digital simulation of a thermal reactor.
The overshoot of the final endpoint was seen to be twice the error required
for a maximum reactivity rate signai which is most satisfactory. The
controller, although sub-optimal, approached the ideal time optimal tra-
jectory as the controller gain Qas increased. A coﬁtroller gain of .1%/de-
cade for a maximum reactivity rate signal resulted in near time-optimal

results.
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It can be concluded that a successful, near time-optimal con-
trol algorithm has been developed with general applications to low power

reactors.
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A.1 General Reactor Kinetié¢s Equations
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The space independent reactor kinetics equations for six groups

of delayed neutrons areS:

g—‘;=&2—"——§ n+§_ »Aici*S (A.1.1)
i=1
and
dc Bi
-1 ™ —_AiCi (A.1.2)
where
n = neutron density (neutrons/cmB)
B = total fraction of delayed neutrons
8k = reactivity
£ = mean effective lifetime of a neutron (sec)
Ci = concentration of neutrons in the ith delayed group (neutrons/cm3)
Ai = decay constant of the ith delayed group (sec
Bi = fraction of neutrons in the ith delayed group

S = source strength (neutrons/cmB/sec)

The space independent reactor kinetics equations in the absence

5
of an external source for one group of delayed neutrons are :

g% = 6K; B n + AC
and

w oo
where

(A.1.3)

(A.1.4)

(A.1.5)
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‘A.2 Linearized Reactor Kinetics Equations

Linearized kinetics equations ahout a power level n_ are as

followssz
dn 8 6 Sk
T gt izl: ACy + S+ n (A.2.1)
and
dC:.L Bi :
il _’Aici (A.2.2)

For the single delayed group model the linearized kinetics equations in the

5
the absence of an external source are ™ :

dn B Sk »

it g O + AC + 7 Do (A.2.3)
and

_d__C_ = ﬁ_ — '

ac QB - AC (A.2.4)

A.3 Reactor Kinetics Transfer Function
Using the linearized kinetics equations the reactor transfer

2,4,

function is as follows
_NGs) ls+6+§ AB/[s+)\] (A.3.1)
nok(s) i=1 i~i ‘ i -2 t

The transfer function for the one delayed group model is:

N(s) _ s + A
nok(s) fs(s + A + B/8)

(A.3.2)

A.4 Thermal Reactor Parameters

The parameters of the delayed neutron groups of the thermal
reactor used throughout this study are given in table A.4. The total

fraction of delayed neutrons is:

B = 0.0064
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the mean effective neutron lifetime is:

L= 10_3 sec
From equation (A.l.5) the decay constant for the single delayed neutron
group case 1is:

A= 0.076 sec

Group Fraction of
Number Decay Constant ° Delayed Neutrons

i ‘xi (sec l) ‘ Bi

1 0.0124 0.00024

2 0.0305 0.00140

3 0.1110 0.00125

4 0.3010 0.00253

5 1.1400 0.00074

6 3.0100 0.00027

Table A.4 Parameters of Delayed Neutron Groups of a
Thermal Reactor
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