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ABSTRACT 

A d i r e c t d i g i t a l c o n t r o l algorithm f o r low power reactors i s 

proposed using logarithmic power l e v e l as input. The logarithmic power 

l e v e l s allow the use of f i x e d point arithmic r e s u l t i n g i n f a s t e r c a l c u 

l a t i o n speeds than are obtainable with algorithms using f l o a t i n g point 

arithmetic. A s t a b i l i t y analysis for various sampled data hold types 

i s shown to have a 25% safety margin. A time optimal control sequence 

fo r power increases i s derived using switch points. The switch points 

are determined using simulation techniques, e l i m i n a t i n g the use of complex 

and approximate c a l c u l a t i o n s . A p r a c t i c a l demand l e v e l c o n t r o l l e r i s 

developed using machine language programming to minimize the delay from 

the sampling of the neutron power to the output of c o n t r o l a c t i o n . The 

c o n t r o l l e r i s tested with d i g i t a l and analog simulations of a thermal 

reactor showing that a successful, near time-optimal, c o n t r o l algorithm 

with general applications to low power reactors has been developed. 
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1. INTRODUCTION 

U n t i l recently, the r o l e of the d i g i t a l computer i n nuclear 

reactor systems has been that of a supervisory and data->collection nature"*" 

S t r i c t safety regulations r e s u l t e d i n conventional methods being used 

for reactor control due to the low r e l i a b i l i t y , slow speed and tremen

dous expense of early computers. Advances i n computer technology have 

removed these objections. With reactor systems becoming l a r g e r and more 

complex, i t i s advantageous that d i g i t a l computers be used i n the c o n t r o l 

of nuclear reactors. 

At f i r s t , computers were used only f o r i n d i v i d u a l tasks 

such as f u e l l i n g machine con t r o l and f a i l e d f u e l detection"''. For the 

actual c o n t r o l of nuclear reactors, dual computer systems have been used; 

one operational and the other i n a "watchdog" and "backup" mode. With 

the a d d i t i o n of more duties, such as load matching, turbine c o n t r o l , 

s p a t i a l control and automatic f u e l l i n g , the s i z e of the computers has 

entered the medium range. Each of these duties i s normally handled by 

separate design groups. The co-ordination of these groups i n the devel-
1 

opment of a s i n g l e operating system i s extremely d i f f i c u l t . 

Recent developments make the use of several small minicomputers 

economically feasible"'". Each computer i s assigned i t s own s p e c i f i c 

task. An added advantage i s that each design group can develop and com

mission i t s own separate system, without too much dependence on the 

other groups. Figure (1.1) shows a pos s i b l e system of minicomputers 

working i n a p a r a l l e l mode. A l l the computers are l i n k e d together by a 

bus system as w e l l as to the common mass storage u n i t s . Transfer of 

data to or from these mass storage units i s processed by a s i n g l e c o n t r o l 

computer to f a c i l i t a t e f i l e orientated transfers without r e p e t i t i o n of 
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software d r i v e r s . 

Mass Storage Units 

Input/Output 
Channels D i s c Drum 

1 

Output Multiplexers 
A/D 

P Tape 

Input/Output Watchdog Mass 
Computer ! Computer Storage 

! Control 
Minicomputers 

Demand Power 
Controller 

Sp a t i a l 
Controller 

T r 
Turbine 
Control 

F u e l l i n g 
Machine 
Control 

Mini
computers 

Additional Input/Output Channels. 

F i g . 1.1 Possible Reactor Control System Using P a r a l l e l 
Mode Mini-Computers. 

In Chapter 2, a basic e r r o r sampled data c o n t r o l system i s de

veloped and the t r a n s f e r functions of the various system components are 
2 

given. Based on a study by Marciniak the o v e r a l l system s t a b i l i t y i s 

analysed using various sampled data holds and sample periods. A review 
2 3 

of e x i s t i n g d i g i t a l c o n t r o l algorithms i s given i n Chapter 3 ' . An a l 

gorithm r e q u i r i n g a logarithmic neutron power l e v e l as input i s developed, 

r e s u l t i n g i n a much f a s t e r and simpler d i g i t a l c o n t r o l l e r . The use of 

logarithmic power l e v e l s allows the use of f i x e d point arithmetic which 

i s much f a s t e r than f l o a t i n g point a r i t h m e t i c . Using the r e s u l t s of pre-
2 A 

vious studies on the time optimal c o n t r o l of nuclear reactors ' , a 

time optimal c o n t r o l sequence using switch points i s developed i n 

Chapter 4 f o r power l e v e l changes. The switch points are determined 

using simulation techniques. In Chapter 5, a p r a c t i c a l demand power l e v e l 
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c o n t r o l l e r i s developed using machine language programming. The per

formance of the c o n t r o l l e r i s tested using d i g i t a l and analog simulations 

of a thermal reactor. The s t a b i l i t y a n a l y s i s of Chapter 2 i s shown to have 

a 25% safety margin and power l e v e l changes were e f f e c t i v e l y c a r r i e d out, 

maintaining the reactor within the safety constraints, with l i t t l e 

overshoot of the f i n a l end point power l e v e l . 



4 

2. DIGITAL CONTROL SYSTEMS FOR NUCLEAR REACTORS 

A b a s i c e r r o r sampled closed loop c o n t r o l system i s presented 

i n this s ection for various types of hold u n i t s . The o v e r a l l system 

tr a n s f e r functions are derived, followed by a s t a b i l i t y a n a l y s i s f o r 

low-power or zero-power reactors using a l i n e a r i z e d point k i n e t i c s model^ 

2.1 Basic D i g i t a l Control System 

A b a s i c nuclear reactor continuous control system i s shown i n 

figure (2.1.1). The input to the system i s a demand power l e v e l as w e l l 

as a constraint on the minimum allowable reactor period. (The reactor 

period i s defined as the time necessary f o r the, power l e v e l to change 

by a f a c t o r "e", the n a t u r a l logarithm base). These two inputs are 

combined with the measured reactor power l e v e l to generate an e r r o r 

Demand 
Power Level r r o r 'B(s) Control 

Rod Drive 
R e a c t i v i t y 

Keactor 

Neutron 
Power Level 

Measuring 
C i r c u i t s 

C(s) 

F i g . 2.1.1 Basic Block Diagram of a Continuous 
Reactor Control System 

G(s) C(s) 

H(s) 

F i g . 2.1.2 General Continuous Closed Loop Control System. 

s i g n a l which drives the c o n t r o l rods. S i m p l i f i c a t i o n gives the general 

feedback co n t r o l system i n figure (2.1.2) with the o v e r a l l t r a n s f e r 

function 
C(s) =  

R(s) 1 + G(s) H(s) 
G(s) (2.1.1) 
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where G(.s) = G c(s) G r(s) = feed-forward tran s f e r function 

(2.1.2) 

H(s) = F(s) = feedback trans f e r function (2.1.3) 

G (s) = c o n t r o l rod t r a n s f e r function (2.1.4) c 

G^(s) = reactor transfer function (2.1.5) 

The most s u i t a b l e sampled data c o n t r o l system to use for reactor c o n t r o l 

i s the e r r o r sampled closed loop system given i n f i g u r e (2.1.3). Using 

the z-transform notation, the o v e r a l l t r a n s f e r function i s : 

( s ) G(s) 0 ( B ) 

H(a) 

F i g . 2.1.3 General Er r o r Sampled Closed Loop Control System 

K d ( s ) G h(s) G 0(s) G r Cs) 

F i g . 2.1.4 Basic Sampled Data Control System for a Nuclear 
• Reactor 

G z(z) 
R (z) 1 + G H (z) zs z z 

(2.1.6) 

which i s of s i m i l a r form to that of the continuous case (see footnote). 

Figure (2.1.4) gives the basic sampled data c o n t r o l system f o r a reactor 

where G ^ ( s ) i s the t r a n s f e r function of the hold device following the 

Note: Throughout this thesis the z-transform notation i s the same as 
-used i n previous d i g i t a l reactor c o n t r o l studies^. 
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sampler, G (s) the tr a n s f e r function f o r the con t r o l rods, G (s) the c r 

tra n s f e r function of the reactor and F(s) the tr a n s f e r function of the 

neutron power l e v e l measuring c i r c u i t s . The tr a n s f e r functions of each 

of the system blocks w i l l be analysed i n sections 2.2 to 2.5, followed 

by a s t a b i l i t y analysis of the o v e r a l l system using various types of 

hold. 

2.2 Sampled Data Holds 

i s used to drive the con t r o l rods at the required v e l o c i t y . A pure 

impulse s i g n a l i s unsuitable for t h i s task due to i t being p r a c t i c a l l y 

unrealizable and the sampled s i g n a l i s passed through some hold device 

that performs the function of reproducing the sampled s i g n a l u n t i l the 

next sampling. Two basic holds are the zero order and f i r s t order holds. 

Holds of greater order are to be avoided, not only due to the d i f f i c u l t i e s 

of p h y s i c a l r e a l i z a t i o n but also because of the delays they may i n t r o 

duce i n t o the system. 

2.2.1 Zero Order Hold 

In the sampled data reactor c o n t r o l system, the sampled e r r o r 

(n-1)T n T (n+1)T (n+2)T (n+5)T 
Time 

F i g . 2.2.1 Output of Zero-Order Hold Device. 
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I f the sampled s i g n a l i s held u n t i l the next sample such that 

N(t) = f(nT) nT < t £ (n+l)T (2.2.1) 

as i n f i g u r e (2.2.1), the device i s c a l l e d a zero order hold and has 

the t r a n s f e r function 

H q ( S ) = (l-exp(-Ts))/s 

.In the case of the sampled data reactor c o n t r o l system 

E(t) = N d(nT) - N(nT), nT < t * (n+l)T 

where = demand neutron power l e v e l (reference) 

N = measured neutron power l e v e l 

T = sample period 

E = error 

2.2.2 F i r s t Order Hold 

«(t) 

(2.2.2) 

(2.2.3) 

(n-1)T nT (n+1)T (n+2)T (n+3)0? 

Time 

F i g . 2.2.2 Output of F i r s t - O r d e r Hold Device 

I f the l a s t two samplings are used to c a l c u l a t e the slope of 

the s i g n a l such that 

f(nT) - f [ ( n - l ) T j N(t) = f(nT) + -(t-nT), 

nT < t ,< (n+l)T 

(2.2.4) 
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as i n f i g u r e (2.2.2), the device i s c a l l e d a f i r s t order hold and has 

the t r a n s f e r function 

2 
H ( S) - (1+Ts) (l-exp(-Ts))-
I T S 

In the case of the sampled data reactor c o n t r o l system 

E ( t ) = E(nT) + E(nT) - E((n-1)T) 

(2.2.5) 

nT < t £ (n+l)T 

where E(nT) = N d(nT) - N(nT) 

and E, and N are as before. 

2.2.3 L i n e a r i z e d Hold 

(2.2.6) 

(2.2.7) 

(n-1)T nT (n+1)T 

T i m e 

F i g . 2.2.3 L i n e a r i z e d Hold Device Sample Points 
3 

Cohn developed a hold that has p a r t i c u l a r bearing on nuclear 

reactors such that 
E'(t) = N d[(n+1)T] - N'[(n+1)T], nT < t s> (n+l)T (2.2. 

where Nj[(n+1)T] = = demand neutron power at next sampling 

and N'[(n+1)T] = = predicted neutron power at next sampling i f 
no c o n t r o l action i s taken from the present 
to the next sampling. 



9 

Let = Nl(n-1).T] = neutron power l e v e l at l a s t sampling 

Np = N[nT] = neutron power l e v e l at present sampling 

and T = acutal reactor period. (See figu r e 2 . 2 . 3 ) . 
3. 

Now N f = N p exp ( T / T ^ ( 2 . 2 . 9 ) 

where the reactor period T , i s the inverse of the logarithmic slope of 

the neutron power l e v e l such that 

1/T = ( l n N - l n N J / T ( 2 . 2 . 1 0 ) a p 1 

Therefore N f = N p exp [T(ln N p - l n N^/T] ( 2 . 2 . 1 1 ) 

= N V ( 2 . 2 . 1 2 ) 
p 1 

and E'(t) = N^ - ( N ^ / N ^ , nT < t $ (n+l)T ( 2 . 2 . 1 3 ) 

The t r a n s f e r function of t h i s hold can be obtained i n the 

following manner: 

Assuming that N p and N^ deviate only s l i g h t l y from the demand N^ and 

that t i s the present time and T the sample period, 

N = N(t) = N' (1+Y ) , |Y I « 1 ( 2 . 2 . 1 4 ) p d p 1 p 1 

and N 1 = N(t-T) = N^ ( 1 + Y ^ , \Y±\ « 1 ( 2 . 2 . 1 5 ) 

S u b s t i t u t i o n i n t o equation ( 2 . 2 . 1 3 ) and neglecting high order terms of 

Y and Y . gives 
P 1 . 

E'(t) = [2Y - Y J N ' ( 2 . 2 . 1 6 ) p 1 J d 

But from equations ( 2 . 2 . 1 4 ) and ( 2 . 2 . 1 5 ) 

Y = (N(t) - N')/N' ( 2 . 2 . 1 7 ) p d d 

and Y , = (N(t-T) - N')/N' ( 2 . 2 . 1 8 ) 
1 d d 

therefore E'(t) = 2[N(t) - N^] - [N(t-T) - N'] ( 2 . 2 . 1 9 ) 
d d 

As E(t) = N(t) - N^ , ( 2 . 2 . 2 0 ) 

therefore E(t-T) = N(t-T) - N' ( 2 . 2 . 2 1 ) 
d 
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and E*(t) « 2E(t) - E(t-T) (2.2.22) 

As the output of an erro r sampler i s given by 

E*(t) = I E(t) 6[t-nT] (2.2.23) 
n=0 

and s u b s t i t u t i n g for equation (2.2.22) and taking the Laplace transform 

gives 

E'*(s) = 2E(0) ( 1 " e x p ( " T s ) ) + [2E(T) - E(0)] exp(-Ts) 
s 

(l-exp(-Ts)) + [ 2 E ( 2 T ) _ E ( T ) j exp(-2Ts) 

(l-exp(-Ts)) 
s 

which may be s i m p l i f i e d to 

E'*( S) = 1 " 6 X P ( " T s ) [2 - exp(-Ts)] E*(s) (2.2.25) 

Thus the tr a n s f e r function of the l i n e a r i z e d hold i s 

H 1(s) = [2-exp(-Ts)] X " e x p ( " T s ) (2.2.26) 

The t r a n s f e r functions for the three types of hold w i l l be 

used i n the o v e r a l l system s t a b i l i t y analysis to determine which hold 

gives the best performance. 

2.3 Control Rod Servo System 

The simplest transfer function f o r the c o n t r o l rod servo system 

i s 
G (s) = R/s (2.3.1) 

c 

where R i s the r e a c t i v i t y rate per unit e r r o r input. A time constant 

should also be included i n the t r a n s f e r function, however, due to the 

complexity of the o v e r a l l system gain, i t i s neglected. In p r a c t i c e , 

there i s also a l i m i t placed on the maximum r e a c t i v i t y rate which 
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2 constrains the maximum system gain. This, too w i l l be ignored . 

2.4 Reactor Model 

Examination of the d i f f e r e n t i a l equations f o r the reactor 

k i n e t i c s shows a reactor to be h i g h l y non-linear. (See Appendix A). 

Schultz^ developed a l i n e a r i z e d t r a n s f e r function of a reactor model 

about a steady state power l e v e l , incorporating a l l s i x groups of 
2 4 

delayed neutrons. Marciniak and Lipinsky have derived a time inde

pendent, l i n e a r , monoenergetic, one-delayed-neutron-group k i n e t i c s trans

f e r function given as follows: 
r ( s ) e ^N(s) = s + X 
V S ; N o6k(s) £sls + X + B/A] U . 4 . ± ; 

where X = average decay constant 

B = t o t a l e f f e c t i v e delayed neutron f r a c t i o n 

I = prompt neutron l i f e t i m e 

N q = neutron density about which the system i s l i n e a r 

6k = e f f e c t i v e r e a c t i v i t y 

6N = deviation of neutron density from N . 
o 

This t r a n s f e r function w i l l be used f o r the reactor model i n 

the s t a b i l i t y analysis given i n s e c t i o n 2.6. 

2.5 Neutron Power Level Measuring C i r c u i t s 

Due to reactor noise, the input to the computer must have 
some smoothing. The method used on the ZPR-9 fa s t c r i t i c a l reactor at 

the Argonne National Laboratory i s very applicable for the d i g i t a l moni-
3 

t o r i n g o f the neutron power l e v e l . An ion chamber i s used to measure 

the neutron f l u x and the output of the ion chamber a m p l i f i e r i s used 

to drive a voltage-to-frequency converter. The output of the voltage-

to-frequency converter i s fed i n t o a counter or s c a l e r which i s read 

and then reset every T seconds. The counter acts as. an i n t e g r a t o r 
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smoothing the input to the computer. However, i n most systems, computer 

inputs are multiplexed to measure other v a r i a b l e s and not only the 

neutron power. In this case, the output of the ion chamber a m p l i f i e r 

must be s u i t a b l y f i l t e r e d , depending on the sample period. 

Taking the case of the counter, the average of a s i g n a l f ( t ) 

over a period T i s 

p(t) = i C p(t') dt' 
t-T 

(2.5.1) 

Taking the Laplace Transform gives 

v<*\ - p ( g ) P(s) exp(-Ts)  
n S } Ts " Ts (2.5.2) 

Therefore the Transfer Function i s 

F(s) = 1 - T ^ ( - T 8 > (2.5.3) 

Schematic diagrams of the two possible neutron power l e v e l measuring 

c i r c u i t s are given i n figures (2.5.1) and (2.5.2). 

Ion Chamber 

0 

Amplifier 

Voltace to 
Frequency 
Converter 

Counter 
To Computer 
Input Bus Voltace to 

Frequency 
Converter 

• 

Counter 

Control from 
Computer 

F i g . 2.5.1 Neutron Power Level Measuring C i r c u i t Schematic 
(Scaler plus Voltage-to-Frequency Converter) 

l Ion Chamber 

Ion Chamber 
Amplifier 

Suitable 
F i l t e r 

M u l t i 
plexer 

A/D 
Converter 

To Computer 
Input Bus 

Control from Computer 

F i g . 2.5.2 Neutron Power Level Measuring C i r c u i t Schematic 
( F i l t e r plus Multiplexer plus A/D) 
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2.6 O v e r a l l System S t a b i l i t y 

A b asic sampled data c o n t r o l system for a nuclear reactor 

was given i n fig u r e (2.1.4) and the o v e r a l l t r a n s f e r function by equation 

(2.1.4), where 

G z(z) - Z [ G h ( s ) G c ( s ) G r ( s ) ] ' (2.6.1) 

G zH z(z) = Z [ G h ( s ) G c ( s ) G r ( s ) F ( s ) ] (2.6.2) 

and Z[G(s)] = G (z) (2.6.3) 

i s the z transform of G(s). 

The tr a n s f e r functions f o r the i n d i v i d u a l system blocks have 

been derived i n the previous sub-sections. The t r a n s f e r function f o r 
o 

the system with zero-order hold i s : 

SN (z) Z[H (s)G (s)G (s)] z o c r (2.6.4) N N (z) 1+Z[H (s)G (s)G (s)F(s)] o d z l o c . r 
(2.6.4) 

3^TKz(az 2+bz + c) 
6A' 4TJlz(z - l) 2(z-Y)+K(dz 3+ez 2 T-fz+g) 

(2.6.5) 

1 = X + (6/A) (2.6.5a) 

K R/£ (2.6.5b) 

Y = exp(-X'T) (2.6.5c) 

a = XX , 2T 2Ji+2BTX ,+23(2+Y)-6B (2.6.5d) 

b = XX'2T2SL(1-Y)-2BTX' (1+y)-2B(l+2y)+6B (2.6.5e) 

c = -XX | 2T 2£Y+2BTX'Y+2BY-2B (2.6.5f) 

d = XX , 3T 3£+3BT 2X'-6BTX i-6B(3+Y)+248 (2.6.5g) 

e = XX' 3T 3£(4-Y)-3X , 2T 2BY+6BTX'(2+Y)+18B(1+Y)-36B (2.6.5h) 

f = XX' 3T 3£(1-4Y)-3X , 2T 2B-6BTX' ( l+2y)-66(1+3Y)+24B (2.6.5i) 

g = -XX'3T3X,Y+3X'2T2BY+6BTX'Y+6BY-6B (2.6.5J) 
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where 

2 
For the f i r s t - o r d e r hold,, the tr a n s f e r function i s : 

6 N z ( z )
 = . •4X,TK(hz4+kz3+mz2+j>z)  

N o N d z ( z ) 2 4 A , 6 T 2 i t z 2 ( z - l ) 2 ( z - Y ) + K ( q z 4 +rz 3+uz 2+vz-fv) (2.6.6) 

X' = X + (B/£) " (2.6.6a) 

K = R/£ ^ (2.6.6b) 

Y = exp(-X'T) (2.6.6c) 

h = XX , 3T 3£+3X , 2T 2(XX'T£+3)+63(X'T-l)T 

+6B(X'T-1)(3+Y)-246(X'T-1) (2.6.6d) 

k = XX' 3T 3£(4-Y)-3X , 2T 2(XX'T£+3)Y-6B(X*T-1)TX ,(2+y) 

-183(X'T-1)(1+Y)+36B(X'T-1) ' (2.6.6e) 

m = XX , 3T 3£(1-4Y)-3X' 2T 2(XX ,T£+3)+6B(X ,T-1)TX'(1+2 Y) 

+6g(X'T-l)(1+3Y)-24B(X'T-1) (2.6.6f) 

p = [-XX , 3T 3£+3X' 2T 2(XX ,T£+B)-6B(X ,T-l)TX , 

-6B(X ,T-1)]Y+6B(X'T-1) (2.6.6g) 

q = XX' 4T 4£+4X' 3T 3(XX 1T£+B)+12BT 3X' 2(X'-1/T) 

-24B(X !-1/T)T 2X'-24B(X*-1/T)T(4+Y)+120T(X ,-1/T) (2.6.6h) 

r = XX , 4T 4£(11-Y)+4X , 3T 3(XX'T£+B)(3-Y)-12B(X'-1/T)T 3X , 2(1+Y) 

+24B(X ,-1/T).T 2X ,(3+Y)+48B(X'-1/T)T(3+2Y)-240B(X'T-1) 

(2.6.6i) 

u = 11XX , 4T 4£(1-Y)-12X , 3T 3(XX'T£+B) (l+Y)+12B.(X'-l/T) 

T 3X , 2(Y-1)-72B(X'-1/T )T 2X'(1+Y)-483(X'-1/T)T(2+3Y) 

+240B(X'T-1) (2.6.6J) 

v = XX , 4T 4£(1-11Y)+4X , 3T 3(XX ,T£+B )(3Y~1) 

+12B(X ,T-1)T 2X , 2(H-Y)+24B(X'T-1)TX'(1+3Y) 

-!-24B(X'T-1)(1-1-4Y)-120B(X'T-1) (2.6.6k) 
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w = -[AA' 4T 4JlT :4A , 3T 3aX'T£+g)-12gCX ,T-l)T 2A' 2 

-24g(A ,T-l)TA ,-24g(A'T-l)]Y+24B(A'T-l) (2.6.61) 
2 

The o v e r a l l system transfer function for the l i n e a r i z e d hold i s : 

N z ( z ) _ 3A'TKz(2z-l) (azVbz+c) 
N o N d z ( z ) 6A^Til 2(z-l) 2(z-Y)+K(2z-l) (dz3+e.z2+f z+g) 

(2.6.7) 

where a l l the constants are the same as defined f o r the system with the 

zero-order hold i n equation (2.6.5). 

S t a b i l i t y analysis of sampled data systems i s performed by 

determining the zeros of the c h a r a c t e r i s t i c equation, that i s , the de

nominator of equation (2.1.4), i n the z plane. The c r i t e r i o n ^ i s that 

the c h a r a c t e r i s t i c equation of the sampled data system have no zeros 

outside the unit c i r c l e , or, i f A. denotes the i t h root of the charac-

t e r i s t i c equation then: 

J x J * 1 (2.6.8) 

2 7 Marciniak , using a program developed by Hafner , found the 

roots of the c h a r a c t e r i s t i c equations f o r a l l three types of hold for both a 

thermal and a f a s t reactor. Figures (2.6.1), (2.6.2) and (2.6.3) are 

the root locus p l o t s of the c h a r a c t e r i s t i c equations of the system 

transf e r functions of a theraml reactor for a zero-order, f i r s t - o r d e r 
2 

and l i n e a r i z e d hold r e s p e c t i v e l y . (Based on r e s u l t s of Marciniak ). 

The sampling period i s 0.1 second and the system parameters are as 

follows: 

A = 0.076 se c " 1 , 6 = 0.0064, £ = 10~ 3 sec (2.6.9) 

Examination of equations (2.6.5), (2.6.6) and (2.6.7) shows 

that T and K are the only variables f o r a f i x e d reactor. T i s the 
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- i . o : 

T=0.1 sec \ 
/3=O.O064- . \ 
A=0.0?6 s e c - ' 
X,=0.001 sec 

1.03 

-1.0 i 

F i g . 2.6.1 Root Locus Plot of a Thermal Reactor Sampled 
Data Control System with Zero-Order Hold 

- 1 . 0 0 

F i g . 2.6.2 Root Locus P l o t of a Thermal Reactor Sampled 
Data Control System with Fi r s t - O r d e r Hold 
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F i g . 2.6.3 Root Locus Plot of a Thermal Reactor Sampled 
Data Control System with. L i n e a r i z e d Hold 

sample period and K i s the r e a c t i v i t y rate per unit e r r o r per neutron 

l i f e t i m e , i . e . 

K = R/A (2.6.10) 

But £ i s f i x e d for a c e r t a i n reactor, therefore a sampled data reactor 

system of the form of figure (2.1,4) can be s a i d to be stable for a spe

c i f i c sample period T, provided the r e a c t i v i t y rate per unit e r r o r R i s 

l e s s than a c r i t i c a l value R . The value R ensures that a l l poles 
max max 

of the c h a r a c t e r i s t i c equation l i e within the unit c i r c l e i n the z 

plane. The unit error E i s defined as: 
u 

E = E/N (2.6.11) u o 

Marciniak has drawn up tables of R versus sample period T f o r various 
r max r r 

reactor types. Table (2.6.1) gives the maximum allowable r e a c t i v i t y 

rate per unit e r r o r for various sample periods f o r the reactor with 

parameters as i n equation (2.6.9). From t h i s table i t can be seen that 

the zero-order hold i s the most stable except for the 0.1 second sampling 

period. 
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Sample Period R e a c t i v i t y Rate (% <S k/k) / sec 

T (sec.) Zero-Order Hold F i r s t - O r d e r Hold L i n e a r i z e d Hold 

0.1 7.4 8.3 8.4 

0.5 1.83 1.45 1.2 

1.0 0.99 0.73 0.62 

5.0 0.173 0.14 0.123 

Table 2.6.1 Maximum Allowable R e a c t i v i t y Rate R per 
J max 

Unit Error to Ensure S t a b i l i t y versus Sampled 
Period. (Thermal Reactor) 

6 

5> 

0 

- : 

1 1 1 

a?=27r/uj>s 

Zero-Order Hold 
First-Order Hold 

-

- • • 

Linearized Hold 

_ 

' . ' *\ • * . , * *. 
**• ^ \ 

\ • • • • 
* s - • t . • » 

0 1.0 2.0 3-0 

F i g . 2.6.4 Amplitude versus Frequency for Zero-Order, 
First - O r d e r , and L i n e a r i z e d Holds. 

Figure (2.6.4) shows the amplitude versus frequency curves 

for the three holds. Compared to the zero-order and f i r s t - o r d e r holds, 

the l i n e a r i z e d hold does not act as a very good f i l t e r i n that i t am

p l i f i e s frequencies greater than the sampling frequency. There i s also 

considerable a m p l i f i c a t i o n of frequencies le s s than the sampling f r e 

quency with a f a i r l y steep cut o f f . Examination of fi g u r e (2.6.5), 
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ui r a d / s e c 

F i g . 2.6.5 Bode Plot of Thermal Reactor plus Control 
Rod Servo System. 

the Bode p l o t of the reactor plus c o n t r o l rod, shows that with a 0.1 

second sample period the high frequency components are not r e a d i l y 

passed by any type of hold, as these components have an amplitude of the 

order of -35 dB. However, with longer sample periods, frequencies above 

the sample frequency are amplified by the l i n e a r i z e d hold, making the 

system l e s s s t a b l e . Therefore the l i n e a r i z e d hold should be used only 

f o r sample periods i n the order of 0.1 second and the zero-order should 

be used f o r a l l longer sample periods. 

In Chapter 3 i t w i l l be shown that the r e s u l t s of the s t a b i l i t y 

a nalysis using l i n e a r power l e v e l s are a p p l i c a b l e to the logarithmic 

power l e v e l c o n t r o l algorithm developed i n that Chapter. In Chapter 5 

the c o n t r o l l e r i s tested using analog and d i g i t a l simulations and i t 

w i l l be seen that the r e s u l t s of Table 2.6.1 have a 25% safety margin. 
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3. DIRECT DIGITAL CONTROL ALGORITHM 

The d i g i t a l c o n t r o l algorithm besides maintaining the reactor 

at a steady state must also be able to change the neutron power from one 

demand l e v e l to another as quickly and as s a f e l y as p o s s i b l e with a mini

mum of over- or undershoot of the f i n a l demand l e v e l . For safety reasons 

the rate at which the neutron power l e v e l can change i s constrained and 

any such power l e v e l change must be c a r e f u l l y c o n t r o l l e d . In t h i s chap

ter a summary of previous algorithms w i l l be given, followed by the de

velopment of an algorithm based on logarithmic power l e v e l that r e s u l t s 

i n much quicker and simpler computer c a l c u l a t i o n s . A l l algorithms are 

based on the error sampled closed loop c o n t r o l system described i n Chapter 

2. Time optimal d i g i t a l c o n t r o l w i l l be covered i n Chapter. 4, although 

allowances f o r i t s i n c l u s i o n w i l l be made i n t h i s chapter. 

3.1 Constraints on Demand Power Level Changes 

As mentioned i n section 2.1, the input to the reactor c o n t r o l 

system of f i g u r e (2.1.4) i s a demand power l e v e l plus a c o n s t r a i n t on the 

minimum allowable reactor period f o r safety reasons. This minimum period 

c o n s t r a i n t i s only a p p l i c a b l e to increases i n power l e v e l . The demand 

power l e v e l N^ must therefore be constrained such that: 

N,[(n+1)T] < N(riT) exp (T/x) (3.1.1) d - d 

where 

T = sample period 

and x = minimum' allowable period 

However, during power l e v e l decreases, i t i s often d e s i r a b l e to constrain 

the negative reactor period to prevent the c o n t r o l rods from being i n 

serted too f a r , which would r e s u l t i n tremendous undershoot of the f i n a l 
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demand l e v e l such that 

N d[(n+1)T] > N d(nT) e x p ( T / - T G ) (3.1.2) 

where t g i s the demanded period f o r power decreases. 

Reactors of any appreciable power often have a constraint im

posed upon them by the thermal system i n the form of a l i n e a r rate con-

8 
s t r a i n t so that : 

N (nT) - AN < N, [(n+l)T] < N, (nT) + AN (3.1.3) d - d - d 

where 

AN = l | f - | m a x (3.1.4) 

The d i g i t a l c o n t r o l algorithm, besides maintaining the reactor 

l e v e l must thus also be able to increase or decrease the reactor power 

l e v e l within the above constr a i n t s . In Chapter 4, time optimal c o n t r o l 

i s handled and t h i s too w i l l impose some constraints on the reactor period. 

3.2 Summary of E x i s t i n g Algorithms 
3 

Cohn proposed a d i g i t a l c o n t r o l algorithm i n 1966 which was 
2 

l a t e r modified by Marciniak . The hold used was the l i n e a r i z e d hold ana

lysed i n section 2.2.1 where 
E'(t) = N' - N = N' -N2/N., nT < t < (n+l)T (3.2.1) d ; f d p i ~ -

and 

E'(t) = e r r o r 

N' d = N d[(n+1)T] 

= demand f l u x l e v e l of next sampling 

N 1 =N[(n-i)T] 

= measured f l u x l e v e l of l a s t sampling 

N = N(nT) 
P 

= measured f l u x l e v e l of present sampling 
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N f = N'[(n+l)T] 

= expected f l u x l e v e l of next sampling i f no c o n t r o l a c t i o n 

taken from present to next sampling. 

The algorithms were only developed f o r power increases and the f l u x de

mand was given by: 

N' d = min [N p + K, N d exp(T/x), N j (3.2.2) 

where K = constant 

T = sample period 

x = demanded reactor period 

N £ = f i n a l f l u x endpoint 

The f i r s t argument (N^+K) ensures that i n the i n i t i a l stages the demand 

does not diverge too f a r from the a c t u a l f l u x preventing excessively r a 

pid r i s e s at a l a t e r stage. Only bang-bang c o n t r o l a c t i o n was used and 

i f the erro r exceeded a c e r t a i n deadband, the c o n t r o l rods were driven 

f u l l speed i n or out depending on the erro r sign. 

Nuclear reactors have a range covering many decades and t h i s 

has r e s u l t e d i n the use of f l o a t i n g point arithmetic f o r the c o n t r o l a l -
9 

gorithm c a l c u l a t i o n s . Cohn tested the speeds of a s e l e c t i o n of .small 

computers and discovered that f o r computers with hardware f i x e d point 

arithmetic units the time f o r an a d d i t i o n i s i n the order of 0.5 to 1.0 

msec. M u l t i p l i c a t i o n and d i v i s i o n times are also from 0.5 to 1.0 msec, 

with the logarithmic and sine function times i n the order of 5.0 to 10 

msec. The computer i s not only responsible f o r the c o n t r o l of the reactor 

power l e v e l but also f o r other functions such as safety i n t e r l o c k s and 

safety scanning, data logging and the co n t r o l of other system components. 

This has meant that the maximum sample rate has often been set by the time 

taken i n the c a l c u l a t i o n of the c o n t r o l algorithm and other duties instead 
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of a desired f a s t e r sample frequency. In s e c t i o n 2.6 i t was shown that 

the sample period set a maximum rate of r e a c t i v i t y change per unit e r r o r 

to ensure s t a b i l i t y and thus the higher the sample rate the greater the 

s t a b i l i t y margin. There i s s t i l l some controversy over high sample rates 

due to the greater frequency of movement of the c o n t r o l rods. However, 

a sample rate of 10Hz has now been accepted as the maximum acceptable sam

ple rate. Besides the use of f l o a t i n g point arithmetic r e s u l t i n g i n a r e 

duction i n the sampling frequency, there i s also the delay between the 

measurement of the reactor power and the a c t u a l output of c o n t r o l a c t i o n 

which makes the system l e s s stable. This delay has not been taken i n t o 

account i n the section on s t a b i l i t y a n alysis (section 2.6). In the extreme, 

the sampling of the neutron power l e v e l can immediately follow the output 

of c o n t r o l a c t i o n from the l a s t sampling. In the next sub-section, i t w i l l 

be shown how the use of logarithmic power l e v e l s can allow the use of f i x e d 

point arithmetic, greatly increasing the algorithm c a l c u l a t i o n speed. 

Examination of equation (2.4.1) shows that the gain of a reac

tor i s proportional to the neutron power l e v e l such that 

A = K'N (3.2.3) o 
where A = t o t a l gain 

K' = gain constant 

- N = a c t u a l power l e v e l o r 

In order to hold the o v e r a l l system gain constant, a gain term of the or-

3 
der 1/N q must be added to the e r r o r sampler. Cohn i n h i s system did t h i s 

by varying the e r r o r deadband i n proportion to the neutron power l e v e l . 

Using logarithmic power l e v e l s w i l l be seen to compensate the gain auto

m a t i c a l l y . 
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3.3 Logarithmic D i g i t a l Control Algorithm 

Taking the case of the zero order hold define 

e(t) = l n E (t) = l n N d(nT) - l n N(nT) 

nT < t < (n + 1)T (3.3.1) 

instead of the normal l i n e a r case of 

E(t) = N d(nT) - N ( n T ) , nT < t < (n+l)T (3.3.2) 

as given i n equation (2.2.3). Therefore 

E,(t) = N,(nT)/N(nT), nT < t < (n+l)T (3.3.3) l d 

Let 

E (t) = 1 + A (3.3.4) 

Using the approximation that 

In (1 + A) « A f o r |A| « | l | (3.3.5) 

then e(t) * A (3.3.6) 

as N(nT) must deviate only s l i g h t l y from N^(nT). Subst i t u t i o n i n equa

t i o n (3.3.4) gives 

E 1 ( t ) = 1 + e ( t ) ) nT < t < (n+l)T (3.3.7) 

Dividing equation (3.2.3) by N(nT) gives 

N(nT) N(nT) 

From equations (3.3.3) and (3.3.7) 

. N (nT) 
MIA_ _ __d ± (3.3.8) 

i l l " E l ^ " 1 < 3- 3' 9 ) 

= £ ( t ) , nT < t < (n+l)T (3.3.10) 

For the f i r s t order hold the logarithmic er r o r i s defined as follows: 

e(t) - e(nT) + (e(nT) - e ( ( n - l ) T ) ) (t-nT)/T, 

nT < t < (n+l)T (3.3.11) 
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where e(riT) = lnN d(nT) - lnN(nT) 

The e r r o r of the l i n e a r i z e d hold using logarithmic power l e v e l s i s defined 

as follows: 

e(t) = l n N d[(n+1)T] - 2 l n N(nT) + In N[(n-1)T], 

nT < t < (n+l)T ' (3.3.12) 

Again i t i s easy to prove that for the f i r s t - o r d e r and l i n e a r i z e d 

holds that 

e(t) = E(t)/N(nT), nT < t < (n+l)T (3.3.13) 

where e(t) i s the error using logarithmic power l e v e l s and E(t) i s the 

e r r o r using l i n e a r power l e v e l s . 

The unit e r r o r that was defined i n section 2.6 i s the same as 

equation (3.3.13), therefore the s t a b i l i t y analysis of that section applies 
3 

to the logarithmic control algorithm as w e l l . Cohn i n h i s system com

pensated for the non l i n e a r gain of the reactor by varying the deadband 

i n proportion to the neutron power. From equation (3.3.13) i t can be 

seen that the logarithmic e r r o r sampler automatically compensates f o r 

this gain v a r i a t i o n . 

The range of power of a reactor can vary from a minimum of 6 

decades for heavy water moderated reactors to as much as 14 decades f o r 

graphite reactors. I t i s t h i s extreme range that has made f l o a t i n g 

point arithmetic necessary. When using logarithmic power l e v e l s t h i s 

range i s reduced to 14 f o r the case of the graphite reactor making i t 

possible to use f i x e d point arithmetic with tremendous i n c r e a s e s . i n c a l 

c u l a t i o n speeds. In'Chapter 5, a PDP-9 computer was used to t e s t ex

perimentally the control algorithm. The t o t a l time elapse from the rea

ding of the neutron power l e v e l to the output of the c o n t r o l action was 

twice the time taken f o r one addition using the f l o a t i n g point package 
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of the computer. 

3.4 L o g a r i t h m i c D i g i t a l C o n t r o l A l g o r i t h m Demand Power L e v e l Changes 

In s e c t i o n 3 .1 the c o n s t r a i n t s on the change i n r e a c t o r power 

l e v e l were seen to be a minimum a l l o w a b l e r e a c t o r p e r i o d c o n s t r a i n t and 

a l i n e a r r a t e c o n s t r a i n t . Time optimal c o n t r o l (which i s covered i n the 

next chapter) imposes a c o n s t r a i n t on the minimal al l o w a b l e r e a c t o r 

p e r i o d as the f i n a l endpoint i s approached, so that there i s minimal 

over- or undershoot. The demand power l e v e l at the next sampling i s 

given as: 

N d[(n+ 1 ) T ] = N d(nT) exp ( T / T J ) ( 3 . 4 . 1 ) 

Therefore 

l n N [(n+l)T] = l n N , (nT) + T / T , ( 3 . 4 . 2 ) d d d 

where T , = demanded r e a c t o r p e r i o d , d 
Let 

T = minimum all o w a b l e r e a c t o r p e r i o d m 
= minimum allowable r e a c t o r p e r i o d as imposed by the l i n e a r 

r a t e c o n s t r a i n t 

= N(nT)/AN ( 3 . 4 . 3 ) 

where AN = | | max ( 3 . 4 . 4 ) 

and T q = minimum a l l o w a b l e r e a c t o r p e r i o d as imposed by the time 
op t i m a l c o n s t r a i n t . 

Then T , = max [T , T . , T ] ( 3 . 4 . 5 ) d m 1 o 

For the case when In N, (nT) < l n N , that i s a power l e v e l i n c r e a s e , 
d e 

where N i s the f i n a l endpoint, then e 

l n N [(n+l)T] = min [ l n N(nT) + C, In N d(nT) + T/x d, In N J 

( 3 . 4 . 6 ) 
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where C = constant. (3.4.7) 

Constant C i s chosen somewhere i n the.order of twice the e r r o r which gives 

f u l l c o n t r o l rod v e l o c i t y . 

The power demand ( l n N,) i s used f o r the c a l c u l a t i o n of the 
d 

next power demand point instead of ( l n N), to ensure that the demand 

w i l l r i s e smoothly, unaffected by the s t a t i s t i c a l f l u c t u a t i o n s i n ( l n N). 

However, the f i r s t term ensures that the demand w i l l not diverge too 

fa r from the act u a l power i n the i n i t i a l stages of the power l e v e l 

increase, when the power i s r i s i n g much more slowly than the demand, thus 

preventing excessively rapid r i s e s at a l a t e r stage. 

I f there i s a decrease i n power l e v e l , that i s l n N^(nT) > 

l n N e, then l n N [(n+l)T] = max [ln N(nT) - C, 

l n N,('riT) - T/x,, l n N ] (3.4.8) 

d d e 

Equations (3.4.6) and (3.4.8) w i l l be used i n the development 

of a p r a c t i c a l d i g i t a l c o n t r o l l e r i n Chapter 4. 

3.5 Logarithmic Power Level Measuring C i r c u i t s 

Two possible methods of measuring the logarithmic power l e v e l 

are as follows: 

a) The same c i r c u i t s as i n s e c t i o n 2.5 can be used and the 

logarithm of the power ca l c u l a t e d d i g i t a l l y ; 

b) The ion chamber am p l i f i e r s of figures (2.5.1) and (2.5.2) 

can be replaced by logarithmic ion chamber a m p l i f i e r s . 

Exceptionally good logarithmic a m p l i f i e r s covering up to 

seven decades are now a v a i l a b l e . This method i s p r e f e r 

able to (a) as i t provides a much more even spread of 

d i g i t i z e d logarithmic power l e v e l s besides r e q u i r i n g fewer 

measuring ranges to cover the entire, power operating range. 
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4. TIME OPTIMAL REACTOR CONTROL 

Due~t,p the approximate nature of the models used i n time op

timal c o n t r o l studies, p r a c t i c a l a p p l i c a t i o n s to r e a l or simulated sys

tems normally r e s u l t i n sub-optimal c o n t r o l . This i s e s p e c i a l l y true 

of reactor systems which are highly non-linear and complex. Safety 

standards impose many constraints upon reactor operation, making optimal 

c o n t r o l more complicated. ; Studies i n time optimal d i g i t a l c o n t r o l of 

nuclear reactors have thus r e s u l t e d i n time consuming computer c a l c u l a 

tions of high complexity. In th i s s e c t i o n , optimal control sequences 

using switch points w i l l be developed. Simulation techniques w i l l be 

used i n obtaining the switch points, thereby e l i m i n a t i n g the complex 

and very approximate c a l c u l a t i o n s . 

4.1 Review of Present L i t e r a t u r e 

Much has been published i n the past twenty years concerning 

the optimization of continuous and sampled-data control systems. Most 

notable of these endeavours are the more general theories advanced by 

Pontryagin et a l ^ and Bellman^. Only i n recent years has much at t e n t i o n 

been focused on the optimization of nuclear systems, e s p e c i a l l y i n the 

optimal shutdown of reactors to avoid the poisoning of the reactor by 

Xenon b u i l d up. L i t e r a t u r e on the design of optimal d i g i t a l or sampled-

data control systems for nuclear reactors i s sparse. 
12 13 1A-

A serie s of papers published by Monta ' 5 was one of the 

f i r s t complete studies on the optimization of continuous as w e l l as 

dis c r e t e reactor systems. The analysis was based on the c a l c u l a t i o n of 
12 

the r e a c t i v i t y using a prompt-jump approximation . This approximation 

was proven to be inadequate as the reactor, when set for a 25 sec. mini

mum period, increased with an unsafe 16 sec. period. A side e f f e c t was 
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that the minimum sample frequency possible was 0.5 Hz, due to the c a l -

4 c u l a t i o n time. L i p i n s k i , who has made a complete l i t e r a t u r e study of 

papers p e r t a i n i n g to nuclear reactor c o n t r o l systems, proposed a l i n e a r 

d e t e r m i n i s t i c system using a Kalman f i l t e r . The r e s u l t s from t h i s sys

tem were extremely good; however they were i d e a l i s t i c , because the reac

t i v i t y and delayed neutron precursor d e n s i t i e s were required at each 

sampling i n s t a n t , r e s u l t i n g i n long c a l c u l a t i o n times. I t was suggested 

that a hybrid computer system be used, with the analog portion s o l v i n g 

the d i f f e r e n t i a l equations i n order to speed up the c a l c u l a t i o n time. 

These studies did not include a l l the constraints imposed on a nuclear 

reactor such as minimum allowable period, the maximum rate of r e a c t i v i t y 

i n s e r t i o n and l i n e a r rate constraints. With t h e i r i n c l u s i o n , the com

p l e x i t y of the optimum c o n t r o l algorithms can only be expected to i n 

crease. Since t o t a l optimization of the control of a nuclear plant i n 

cludes the o v e r a l l performance and cost of the c o n t r o l l e r as w e l l , the 

question i s r a i s e d whether sub-optimum performance of the reactor i s 

not desirable. With so l i t t l e p r a c t i c a l experience at present with a c t u a l 

sampled data reactor control systems, t h i s question i s d i f f i c u l t to 

answer and might form the basis of an i n t e r e s t i n g future i n v e s t i g a t i o n . 
2 

Marciniak studied the problem from the side of the constraints imposed 

upon the system by safety regulations. This study seems to be most 

applicable to p r a c t i c a l applications and w i l l form the basis of a time 

optimal study using the logarithmic d i g i t a l c o n t r o l algorithm developed 

i n the previous chapter. 

4.2 Time Optimal Power Increases 

For power increases i t i s desirable that the minimum allox^able 

reactor period constraint be adhered to and that there be a minimum of 
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overshoot. There i s also the constraint on the maximum allowable 

r e a c t i v i t y rate imposed e i t h e r by s t a b i l i t y or mechanical design r e q u i r e -
2 

ments. Taking these into account Marciniak applied the Maximum P r i n c i p l e 

of Pontryagin"^ to obtain an optimal c o n t r o l sequence for reactor power 

increases. For the case where the delayed neutron precursors are ignored, 

the sequence i s as i n figure (4.2.1). The c o n t r o l rods are withdrawn at 

f u l l speed u n t i l the demanded minimum period i s obtained and the r e a c t i v i t y 

i s then held constant. At a switch point S the control rods are in s e r t e d 
m 

at f u l l speed such that as the f i n a l demand l e v e l i s reached, the t o t a l 

Time 

Fi g . 4.2.1 Time Optimal Control 
Sequence for Prompt 
Reactor. 

Time 

F i g . 4.2.2 Time Optimal Control 
Sequence with Delayed 
Neutrons Included. 

r e a c t i v i t y i s zero. Taking one group of delaj'ed neutrons into account 

resulted i n the sequence as given i n f i g u r e (4.2.2). Again the c o n t r o l 

rods are withdrawn from the reactor at f u l l v e l o c i t y u n t i l the demand 

period i s obtained a f t e r which the r e a c t i v i t y i s held constant. At a 

switch point S^, the control rods are inserted at maximum rate u n t i l the 

f i n a l demand i s reached. However, on reaching the f i n a l demand, the t o t a l 

r e a c t i v i t y i s not zero, and the r e a c t i v i t y i s now decreased exponentially, 
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maintaining the endpoint l e v e l . When the endpoint i s reached, the de

layed neutrons are not i n equilibrium f o r the endpoint l e v e l and the 

power l e v e l i s held constant by the v a r i a t i o n of the r e a c t i v i t y while 

precursor-density equilibrium i s attained. The v a r i a t i o n of the r e a c t i v i t y 

to maintain the f i n a l demand l e v e l can be obtained as follows: 

The one delayed group k i n e t i c s equations as given i n Appendix A are 

•dn u - 8 
dt £ 

and 

n + AC (4.2.1) 

f = f n - AC (4.2.2) 

where u = the r e a c t i v i t y or co n t r o l . 

Solving f o r u ( t ) , when dn/dt i s zero gives 

u(t) = 8 - (A£C(t)/n e) (4.2.3) 

where n i s the f i n a l demand l e v e l , e 

Harrer^^ showed that the r a t i o of C to n when the reactor i s 

on an asymptotic period T can be given by 

C _ B (4.2.4) n £(A + 1/T) 

Therefore i f i t i s assumed that the reactor i s on an asymptotic period 

T when the f i n a l demand l e v e l n i s reached, then: e e 

n e 3 

C = e £(A + 1/T ) (4.2.5) 

e 

Solving the d i f f e r e n t i a l equation (4.2.2) f o r when the demand l e v e l n^ 

i s reached,gives 

8n f exp[-A(t-t )] 
C ^ = - A ! j 1 - (AT E + i ? > ( 4 ' 2 ' 6 ) 

where t i s the time when the demand l e v e l n was reached. S u b s t i t u t i n g e e 
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for C(t) into equation (4.2.3) gives 

u(t) = 7 I 7 + 1 T S X P [ - X ( t _ t e ) ] (4.2.7) 

D i f f e r e n t i a t i o n gives the r e a c t i v i t y rate 

du(t) _ -BX 
dt (xx +i7 e x P I - ^ t - V ^ <4-2-8> 

The maximum r e a c t i v i t y rate i s needed p r e c i s e l y at the time the f i n a l 

demand l e v e l i s reached, thus i f the maximum r e a c t i v i t y rate i s known, 

the minimum allowable asymptotic period x^ at the i n s t a n t the f i n a l 

demand l e v e l n i s reached, can be c a l c u l a t e d to ensure no overshoot, e 

X R Therefore, from (4.2.8) R = T (4.2.9) max Xx + 1 e 

and x = ~r— - v (4.2.10) 
e R X max 

where R i s the maximum.rate of r e a c t i v i t y , max 

As the maximum r e a c t i v i t y r a t e i s normally known f o r a p a r t i 

cular reactor, as w e l l as the minimum allowable period, a check using 

equation (4.2.9) or (4.2.10) can v e r i f y whether the c a l c u l a t i o n of a 

switch point i s necessary. 

Examination of equation (4.2.3) shows that the f i n a l demand 

power l e v e l can only be held constant when 

R * max 
XI dC 
n dt e 

(4.2.11) 

Due to the non-linear nature of reactors, the e a s i e s t method f o r deter

mining the switch point i s by simulation methods. In Chapter 5, a-

d i g i t a l simulation of a zero-order, s i x delayed group, point k i n e t i c s 

model i s used f o r t e s t i n g of the d i g i t a l c o n t r o l l e r . The simulated 
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reactor i s set on a power increase and brought to the desired demand 

period with the a i d of the c o n t r o l l e r . 

When an asymptotic period has been 

attained, the c o n t r o l rods are i n 

serted at f u l l speed. The condition 

of equation (4.2.11) i s met when the 

peak power value N g i s reached, as 

i n f i g u r e (4.2.3). The switch point 

can be determined i n • the form of a 

r a t i o of N to N where N i s the s e s 

power l e v e l at the switch point. 

Table (4.2.1) gives the r a t i o of N 

F i g . 4.2.3 Time Optimal Con
t r o l Switch Point 
C a l c u l a t i o n 

to N f or various minimum allowable e 
periods and maximum r e a c t i v i t y rates f o r 

the thermal reactor simulated i n Chapter 5. 

Reactor SWITCH POINT N s/N e 

Period 0.2mk/sec. O.lmk/sec. 0.05mk/sec. 0.02mk/sec. O.Olmk/sec. 
(sec). max rate max rate max rate max rate max rate 
20 0.983 0.922 0.726 0.278 0.048 
30 - 0.976 0.885 0.549 0.213 
40 - 0.943 0.722 0.400 
50 - - 0.971 0.814 0.548 

100 - — — 0.966 0.880 

Table 4.2.1 Time Optimal Switch Points 
For Power Increases 

2 
Marciniak .developed the switch equation 

N C 
r " r + c d + b ( 1" d ) / + 

e o 

+ R 
max 

£- tr - 1=̂  + i- 2 

Ha K a J 21 A 
-1 

(4.2.12) 
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where 

a = A + 6 / £ 

b = X/a 

c = B/£a 

d = exp (~at A) 

U q = t o t a l r e a c t i v i t y at the switch point S^ 

t^ •= time i n t e r v a l from the switch point to the f i n a l demand 
l e v e l 

and where t^ i s ca l c u l a t e d by assuming that when the f i n a l demand i s 

reached, the period i s asymptotic. Making use of the r e l a t i o n s h i p between 

asymptotic period and r e a c t i v i t y developed by G l a s s t o n e ^ where the 

r e a c t i v i t y u i n terms of the period x i s 

u = (Xx + 1) (4.2.13) 

as w e l l as 

u = u - R (t.) e s max A (4.2.14) 

the time i n t e r v a l i s 

fcA = F 
max 

(Xx + 1) (Xx + 1) (4.2.15) 

In the der i v a t i o n of equation (4.2.12), use was made of the l i n e a r i z e d 

one delayed group k i n e t i c s equation (See Appendix A), where 

dn Bn 
dt 

un 
I  + X C + — 

(4.2.16) 

This equation i s only v a l i d i n the v i c i n i t y of n Q . As a r e s u l t , equation 

(4.2.12) i s only r e l i a b l e f o r switch points i n the v i c i n i t y of the f i n a l 

demand l e v e l which i s the case f o r minimum periods greater than 80 to 

100 seconds or f o r reactors with l a r g e maximum r e a c t i v i t y rates. 

In Chapter 5, a p r a c t i c a l d i g i t a l c o n t r o l l e r i s developed and 
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use w i l l be made of the switch point f o r time optimal c o n t r o l . 

4 . 3 Time Optima] Power Decreases 

The optimal shut-down of reactors has been well covered i n 
17 18 19 20 

optimal reactor c o n t r o l studies ' ' ' and w i l l not be covered here. 

Therefore, for reactor shut-downs, where the cont r o l of the xenon poison

ing i s required, the demand power l e v e l of the reactor w i l l be program

med according to a time optimal sequence as given i n tne above references. 

The occasion could a r i s e , however, when i t i s required to reduce the 

reactor power to a predetermined l e v e l f o r a short period of time, such 
16 

that the xenon poisoning problem can be disregarded. Glasstone has 

shown that i t i s not possible to reduce the neutron f l u x i n a reactor 

more r a p i d l y than i s permitted by the most delayed neutron group with 

the r e l a t i o n s h i p between the r e a c t i v i t y u and period T given as follows: 
( 4 . 3 . 1 ) 

1 + A T 

where A^ i s the decay constant of the group having the precursor of 

longest l i f e . As u increases numerically, (1 + A^T) ->• 0 , thus f o r large 

negative r e a c t i v i t i e s the stable period T approaches 1 / A ^ . I t must be 

noted that B i s l a r g e r than usual since the delayed neutrons now c o n s t i 

tute a greater proportion of the f i s s i o n neutrons. For most reactors , 

A^ i s i n the order of 0 .0125 sec \ therefore the stable period f o r 

large negative r e a c t i v i t i e s tends towards 80 seconds. Due to the con

s t r a i n t on the r e a c t i v i t y rate, i t has thus been customary to constrain 

the maximum amount of negative r e a c t i v i t y i n order to prevent tremen

dous undershoots of the f i n a l demand l e v e l . A second method i s to l i m i t 

the allowable negative reactor period f o r power decreases. Figure ( 4 . 3 . 1 ) 

shows a simple sub-optimal power decrease co n t r o l sequence with a con-
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s t r a i n t on the minimum allowable negative period. The e f f e c t of the 

precursor with longest delay time can be c l e a r l y seen, as more than 10 

minutes i s required for a stable asymptotic period of 100 seconds to be 

attained. At a switch point S the r e a c t i v i t y i s inse r t e d at maximum 

' i 1 1 — — T 

.1 i i u_i . L 

1 1 I I I I 

0 5 10 15 20 25 30 35 

Time (minutes) 
F i g . 4.3.1 Power Decrease with 100 Second Period Constraint 

rate u n t i l the f i n a l demand' l e v e l i s reached. As was seen i n the case 

for power increases, when the endpoint i s reached, the r e a c t i v i t y i s not 
c 

zero. The power l e v e l i s held constant by the v a r i a t i o n of the r e a c t i 

v i t y while precursor-density e q u i l i b r i u m i s attained. C a l c u l a t i o n of 

the switch point S g i s complex, with many approximations and assumptions. 

Again the e a s i e s t method i s by simulation techniques. A minimum negative 

reactor period of the order of 100 seconds i s s u i t a b l e , as i t requires 

only 1.6 to 2.0 mk to maintain i t on a stable period (see fig u r e 4.3.1) 



37 

and does not d i f f e r too much from the 80 second l i m i t . The main pro

blem i s that the power l e v e l has decreased by as much as s i x decades 

before a stable asymptotic period i s attained. However, i f the switch 

point i s determined when this period has been attained, i t w i l l be con

servative f or -power decreases of fewer decades as far as undershoot i s 

concerned. Using the d i g i t a l simulation and c o n t r o l l e r of Chapter 5, 

with a 100 second minimum allowable reactor period for power decreases, 

and a maximum, r e a c t i v i t y rate of 0.02mk/s, the r a t i o of switch point 

l e v e l N to the f i n a l endpoint N i s 1.188. s r e 

In the next chapter, the switch points w i l l be used i n the 

development of a p r a c t i c a l d i g i t a l c o n t r o l l e r which permits f a i r l y 

good approximations to the time optimal control sequences o u t l i n e d i n 

the previous sub-sections. 
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5. PRACTICAL DEMAND POWER LEVEL CONTROLLER 

A p r a c t i c a l d i g i t a l c o n t r o l l e r i s developed using machine 

language programming and incorporating the time optimal sequence switch 

points o u t l i n e d i n Chapter 4. D i g i t a l and analog simulations of a thermal 

reactor are used to test the c o n t r o l l e r f o r o v e r a l l s t a b i l i t y as w e l l as 

for c o n t r o l l e d power l e v e l changes with various minimum allowable periods 

and r e a c t i v i t y rates. 

5.1 Control Computer S p e c i f i c a t i o n s and Programming 

As mentioned i n Chapter 1, the b a s i c power l e v e l c o n t r o l l e r 

w i l l be assumed to be part of a much l a r g e r system c o n s i s t i n g of a 

number of mass storage units and mini-computers assigned t h e i r own 

p a r t i c u l a r tasks. 

The control computer must therefore be able to communicate 

with the other system computers as well'as read from and write to the 

mass storage u n i t s . A hardware f i x e d point arithmetic unit option must be 

i n s t a l l e d i n the computer. I f output of c o n t r o l action i s d i r e c t l y from 

the b a s i c c o n t r o l l e r then the necessary equipment must be i n t e r f a c e d to 

the computer. 

The range of a nuclear reactor can extend over more than four

teen decades, although under normal operating conditions t h i s would be 

i n the order of s i x to ten decades, depending on the reactor type. How

ever, i t i s convenient to have the computer extending over the widest 

range possible, e s p e c i a l l y for i n i t i a l startups and long term shutdowns. 

Cal c u l a t i o n speed i s important, and as f l o a t i n g point arithmetic units 

for mini-computers are not r e a d i l y a v a i l a b l e , the logarithmic c o n t r o l 

alogarithm was developed i n Chapter 3, making the use of f i x e d point 
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arithmetic possible. Of the v a r i a b l e s f o r the algorithm, the demand 

power l e v e l requires the greatest p r e c i s i o n . From equation ( 3 . 4 . 2 ) 

the logarithmic power l e v e l i s 

l n N d[(n+1)T]= l n N d(nT) + T/x d ( 5 . 1 . 1 ) 

or f o r the log^Q case 

log N d[(n+1)T]= log N d(nT) + ( T / T ^ log (e) ( 5 . 1 . 2 ) 

The minimum l i k e l y sample period T i s 0 .1 second (see section 

3 . 2 ) . If the smallest maximum rate of r e a c t i v i t y change'R i s 0 . 01 
J a max 

mk/sec, then from equation ( 4 . 2 . 1 0 ) the longest probable period f o r 

power changes i s 630 sees. This period gives a minimum l i n e a r rate 

constraint of 0.16% full.power per second which i s more than adequate. 

Therefore 

[ ( T / T J ) l o g ( e ) ] min = ( 0 . 1 / 1 6 0 ) 0 . 4 3 5 ( 5 . 1 . 3 ) 

= 6 . 8 x 1 0 ~ 5 ( 5 . 1 . 4 ) 

Assuming a 1% accuracy f o r these extremely long periods and taking the 

16 decade power range into account gives a p r e c i s i o n requirement f o r 

log N d of nine decimal d i g i t s or t h i r t y b i t s . This i s an extreme maxi

mum l i m i t . On the other hand i t might only be p o s s i b l e to bbtain a 

spread of 1000 sample points per decade. Assuming a c a l c u l a t i o n accuracy 

of 1%, t h i s gives a p r e c i s i o n requirement of seven decimal d i g i t s or 

twenty-three b i t s . The word length of most mini-computers i s 1 2 , 1 6 , 18 

and 24 b i t s . Therefore, for most machines, double p r e c i s i o n f i x e d point 

arithmetic i s necessary. Depending on the sample period, the power range, 

accuracy of c a l c u l a t i o n s and maximum required reactor period, i t might 

be p o s s i b l e to use s i n g l e p r e c i s i o n arithmetic with the 24 b i t machines, 

which has many advantages. In the development of a p r a c t i c a l d i g i t a l 
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21 c o n t r o l l e r , a D i g i t a l Equipment Corporation PDP-9 computer with a word 

22 
length of 18 b i t s was used. This computer i s l i n k e d to an EAI 231R 

analog computer to form a hybrid f a c i l i t y . The hybrid i n t e r f a c e was 
23 

o r i g i n a l l y developed by Marston with a software package being developed 

by Crawley 2 4. 

Most mini-computers are supplied with comprehensive soft-ware 

packages., i n c l u d i n g a.basic operating system, Fortran, an assembler, e d i 

tor and 1 loaders. The development of an o v e r a l l operating system w i l l not 

be dealt with i n t h i s t h e s i s . In previous reactor control system pro

gramming, much use has been made of Fortran, due p a r t l y to the r e q u i r e 

ment of f l o a t i n g point arithmetic. Use of machine language programming 

usually r e s u l t s i n much fas t e r and smaller programs i n core space than 

would be attained with Fortran programming. Throughout the development 

of a p r a c t i c a l d i g i t a l c o n t r o l l e r the PDP-9 Assembly language was used. 

A f t e r examination of the p r e c i s i o n and mathematical functions required, 

a double p r e c i s i o n fixed point two's complement arithmetic package was 

developed. The sub-routines i n the package and t h e i r c a l c u l a t i o n speeds 

are given i n table 5.1.1. Comparison of the c a l c u l a t i o n speeds with 
9 

those found by Cohn show how much f a s t e r the fixed point routines are 
than t h e i r f l o a t i n g point equivalents. Part of the software support 

25 

package f o r the PDP-9 i s a macro-assembler which can s i m p l i f y tedious 

machine language programming. A macro d e f i n i t i o n f i l e was developed for 

the c a l l i n g of the above sub-routines and includes c o n d i t i o n a l as w e l l 

as s i n g l e p r e c i s i o n arithmetic macros. The form of the macros i s as 

follows: 
LABEL FUNCTION VARIABLE 1,-VARIABLE 2, (ANSWER OR CONDITIONAL JUMP 

. . ADDRESS) 
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Using these macros makes programming much simpler and more r e l i a b l e as 

w e l l as e l i m i n a t i n g many p i t f a l l s f o r the inexperienced machine language 

programmer. 

Function C a l c u l a t i o n Time (ysec) 
Fixed Point F l o a t i n g Point* 

Two's Complement 37 -

Addition 48 500 

Sub t r a c t i o n 55 550 

P o s i t i v e M u l t i p l y 130 500 

Signed M u l t i p l y 245 500 

F r a c t i o n a l P o s i t i v e 
M u l t i p l y 70 -

F r a c t i o n a l Signed 
M u l t i p l y 190 -

Logarithm** 183 4770 

A n t i l o g * * 230 -

Ten Power X** 140 -

* See Reference 9 

** See Reference 26 for Algorithms 

Table 5.1.1 Arithmetic Sub-routine Functions and C a l c u l a t i o n 

Times 

5.2 Demand Power Level C o n t r o l l e r 

A flow diagram of the b a s i c power l e v e l c o n t r o l l e r i s shown 

i n f i g u r e (5.2.1). On the sample period i n t e r r u p t , the neutron power 

i s sampled and i f more than one c i r c u i t i s used, the readings are then 

averaged. I f the readings are i n l i n e a r form, the logarithmic value 

i s found and then scaled and c a l i b r a t e d . The e r r o r between the deman

ded f l u x at that sampling and the actual f l u x i s determined and the 
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F i g . 5.2.1 Basic C o n t r o l l e r 
Flow Diagram 

necessary action i s output to the con

t r o l rods. The demanded f l u x f o r the next 

sampling i s then c a l c u l a t e d before e x i t i n g 

from the routine. By f a r the longest c a l 

c u l a t i o n i s f o r the demand power at the 

next sampling and i t i s ca l c u l a t e d l a s t , so 

that the output of c o n t r o l action occurs as 

soon as possible a f t e r sampling the neutron 

power. In the following sub-sections, each phase of the algorithm w i l l be 

dealt with i n d e t a i l . , 

5.2.1 Fetching of Neutron Power Sample 

The precise manner i s which the neutron power i s sampled w i l l de

pend on the o v e r a l l system configuration. I f a separate computer i s used 

for data a c q u i s i t i o n and logging, as i n Chapter 1, i t can t r a n s f e r the 

•averaged power l e v e l to the demand power l e v e l c o n t r o l l e r and then i n t e r 

rupt i t . I f logarithmic conversion, s c a l i n g and c a l i b r a t i o n are required 

t h i s can take place i n e i t h e r computer. I f po s s i b l e , logarithmic ion 

chamber am p l i f i e r s should be used so that the logarithmic neutron l e v e l 

can be sampled d i r e c t l y , as well as providing an even spread of d i g i t i z e d 

power l e v e l s (see figures (2.5.1) and (2.5.2)). E x c e l l e n t logarithmic 
27 

ampl i f i e r s covering up to seven decades, are now a v a i l a b l e . No matter 

which type of a m p l i f i e r i s used, i t w i l l be necessary to divide the 

e n t i r e power l e v e l span into overlapping measuring ranges as i n fig u r e 

(5.2.2). The t r a n s i t i o n from one range to the next i s given by 
N = (1-a) N.. + aN 1 u (5.2.1) 

where N i s the power l e v e l , N^ i s the reading from the lower range, N^ 

i s the reading from the upper range and a i s as i n fig u r e (5.2.2) 
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F i g . 5.2.2 Merging of Upper and Lower Measuring Ranges 

In the test of the c o n t r o l l e r using the d i g i t a l simulation, t h i s stage 

i s omitted as the simulation transfers the logarithmic neutron power 

l e v e l d i r e c t l y to the c o n t r o l l e r . Using the analog simulation, the 

l i n e a r power l e v e l was sampled by analog to d i g i t a l converters covering 

two ranges: one from 0 to 10% f u l l power and a second from 0 to 150% 

f u l l power. A f t e r s c a l i n g , the two readings were merged using equation 

(5.2.1) before f i n d i n g the logarithmic power l e v e l d i g i t a l l y . A flow 

diagram i s shown i n fig u r e (5.2.3). 

5.2.2 Error C a l c u l a t i o n 

The equations f o r the error, using the zero-order and l i n e a r 

i z e d holds, are given by equations (3.3.1) and (3.3.12) r e s p e c t i v e l y . 

The f i r s t - o r d e r hold w i l l be neglected because, from the s t a b i l i t y 

analysis of Chapter 2, i t was seen to be the worst of the holds analysed. 

From equations (3.4.6) and (3.4.8) the demand power l e v e l can be given 

by: l n N ' d = l n N
d [ ( n + 1 ) T ] (5.2.2) 
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min lnN(nT) + C, lnN.(nT) + T / i j , max 1 — d — d 

l n N (5.2.3) 

where min and + are for pox^er increases and max and - are for power de

creases r e s p e c t i v e l y . The l a s t two terms are independent of the sampled 

Enter ^ 
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N = K +BIAS * SC ALE1 
u u 
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FLXP e L o g 1 0 (LIHP) 

^ Return. ^ 

F i g . 5.2.3 Flow Diagram of Neutron Power Fetch 

neutron f l u x and can be calculated and tested before the sampling i n t e r 

rupt (see section-5.2.4). Equation (5.2.3) can then be reduced to 

lnN d[(n+l) T]= ^ JlnN(nT) + C, l n N " d [(n+l)TJ \ (5.2.4) 

where 

lnN" d[(n+l)T] = m n I l n N,,(nT) + T/x,, l n N max ] d — d e (5.2.5) 

A flow diagram of the err o r c a l c u l a t i o n i s given i n fig u r e (5.2.4). 
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F i g . 5.2.4 Flow Diagram of E r r o r C a l c u l a t i o n 

5.2.3 Output of Control Action 

The precise form of the c o n t r o l a c t i o n , i . e . moderator l e v e l , 

c ontrol rods, depends e n t i r e l y on the design of the reactor system. How

ever, the input drive i n a l l cases i s a v e l o c i t y s i g n a l and the maximum 

rate of change of r e a c t i v i t y i s l i m i t e d . There are three b a s i c forms 

of v e l o c i t y s i g n a l : 

(a) Bang-bang control with deadband. The r e a c t i v i t y rate i s 
e i t h e r zero, f u l l speed withdrawal or f u l l speed i n 
s e r t i o n . 

(b) A d i s c r e t e number of r e a c t i v i t y i n s e r t i o n and withdrawal 
rates. 

(c) A continuously v a r i a b l e r e a c t i v i t y rate, with or without 
deadband. 

The three forms of s i g n a l are shown schematically i n figure (5.2.5). 

The most commonly used i s the f i r s t , due to i t s s i m p l i c i t y and the low 
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F i g . 5.2.5 R e a c t i v i t y Rate Signal Types 

frequency of rod movement. The discre t e system has b e e n ( l i m i t e d to two 

or three r e a c t i v i t y rates, while the continuous systems have always r e 

quired f a i r l y complex feedback control, i . e . tachometer. With nuclear 

q u a l i t y stepping motors now r e a d i l y a v a i l a b l e , and coupled with d i r e c t 

d i g i t a l c o n t r o l , the di s c r e t e and continuous systems are now e a s i l y 

r e a l i z a b l e without the -need 'for complex feedback systems. Detailed 
5 15 

coverage of these systems i s given by Schultz and Harrer . Flow d i a 

grams for a l l three types of system are given i n f i g u r e ( 5.2.6). As 

the maximum r e a c t i v i t y i n s e r t i o n rate for a p a r t i c u l a r reactor i s 
usually f i x e d (R ), the s t a b i l i t y of the reactor i s ensured by choosing J max J J O 

the appropriate c o n t r o l l e r gain (see section 2.6). The v a r i a b l e GAIN 

sets the required e r r o r between the actu a l neutron power l e v e l and the 

demanded power l e v e l to give a maximum r e a c t i v i t y rate s i g n a l . 

5.2.4 Demand Power Level C a l c u l a t i o n 

Resides maintaining the reactor on a steady state reactor 

power, the c o n t r o l l e r must be able to change the power from one l e v e l to 

another, maintaining the performance within the constraints as given 

i n s ection 3.1. The l i n e a r rate constraint, although applicable only 

to the higher powered reactors, w i l l be included to give a complete 
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F i g . 5.2.6 Flow Diagram of Control Action Output 

general c o n t r o l l e r . From equation (5.2.3) the demand power l e v e l i s 

seen to be a function of the f i n a l endpoint and the demanded reactor 

period. The f i r s t term i s to ensure that the demand does not diverge too 

f a r from the actual power during the i n i t i a l stages of l e v e l changes. 

Taking the l i n e a r rate constraint i n t o account r e s u l t s i n the inverse 

demand period being a function of the power l e v e l as given i n f i g u r e 

(5.2.7). 

Below the switch point the demand period x^ i s the minimum 

allowable reactor period T . Above the switch point the inverse demand 
m 

period i s : 

l / x d = l / x 1 (5.2.6) 
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where 

(5.2.7) 

(5.2.8) 

Log Neutron Power 

F i g . 5.2.7 Inverse Period for Log and Linear Constraints. 

The inverse demand period, besides being p h y s i c a l l y measurable, i s used 

as i t i s the form of the period required by equation (5.2.3). 

In Chapter 4, dealing with time-optimal c o n t r o l , i t was seen 

that for a power l e v e l increase, the control rods are i n s e r t e d at maxi

mum rate on reaching a switch point u n t i l the f i n a l demand l e v e l i s 

attained. The e a s i e s t method i s t o open the c o n t r o l loop on reaching the 

switch point, and output a maximum co n t r o l rod v e l o c i t y s i g n a l , c l o s i n g 

the loop again when the f i n a l demand power i s reached. This method i s 

only s u i t a b l e under i d e a l conditions. I f , on reaching the switch point 

S^, the reactor i s r i s i n g on a slower period than the minimum allowable 

period, then with the maximum rate of control rod i n s e r t i o n , the f i n a l 

endpoint w i l l never be reached. The problem as to what c o n t r o l procedure 

must be followed also arises i f the i n i t i a l power l e v e l i s above the 

switch point. With these problems, i t i s doubtful whether the c o n t r o l l e r 

would pass the s t r i c t safety regulations with an open loop c o n t r o l band 

about the f i n a l endpoint. The i d e a l s o l u t i o n i s . to have dynamic time 
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optimal c o n t r o l . The study by L i p i n s k i has shown th i s to be p o s s i b l e , 

but the complexity of the c a l c u l a t i o n s required a f t e r each sampling 

r e s u l t s i n extremely long c a l c u l a t i o n times, even when a hybrid computer 

i s used. 

It was seen i n section 4.2 that for a maximum r e a c t i v i t y rate 

R , there i s a corresponding minimum allowable period T , such that max e 
for reactor periods greater than x , no switch point i s required. The 

r e l a t i o n s h i p between R a n d T i s given by equations (4.2.9) and (4.2.10). 
max e 

Therefore the minimum allowable period at the f i n a l endpoint must be 

greater than x g i f the neutron power i s to be held constant. A p o s s i b l e 

method of obtaining maximum control v e l o c i t y , while s t i l l maintaining 

closed loop c o n t r o l , i s to increase the demand period to x & at the switch 

point, as i n figure (5.2.8). Examination of equation (5.2.3) shows that 

for power increases the minimum of the three terms i s chosen as the 

demand power l e v e l l n N^. The neutron power w i l l therefore increase 

r a p i d l y compared to the demand, with the r e s u l t i n g e r r o r giving f u l l 

c o n t r o l rod v e l o c i t y . From the e r r o r c a l c u l a t i o n flow diagram ( f i g u r e 

5.2.4), i t can be seen that as the neutron power reaches the f i n a l end-

point, the demand power In i s automatically set to the f i n a l endpoint 

value In The disadvantages of t h i s system are that the f i n a l endpoint 

power must be attained, otherwise the demand l e v e l l n w i l l continue 

to r i s e on a period T , instead of being set to the f i n a l endpoint. As 

a r e s u l t , the neutron power l e v e l w i l l turn around and decrease u n t i l 

the demand l e v e l i s reached, a f t e r which the f i n a l endpoint w i l l be 

approached on a period (see figure (5.2.9)). I f the i n i t i a l power 

l e v e l i s above the switch point, then the demand period w i l l be 

kept constant at x , which i s far from optimal. 
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If the demand period i s gradually increased from T at the 

switch point to T G at the f i n a l endpoint as i n f i g u r e (5.2.10), i t should 

be possible to maintain an error s i g n a l giving maximum r e a c t i v i t y r ate, 

while not allowing the demand l e v e l to l a g too f a r behind the actual 

neutron power l e v e l , as was the case i n f i g u r e (5.2.9). This method 

also permits f a s t e r power l e v e l changes i f the i n i t i a l l e v e l i s above 

the switch point. However, there i s now a s l i g h t delay a f t e r reaching 

the switch point, before the e r r o r i s s u f f i c i e n t to output a maximum 

con t r o l s i g n a l as shown i n figure (5.2.11). This delay i s dependent on 

the c o n t r o l l e r gain; the higher the gain, the shorter the delay. The 

switch points given i n table 4.2.1 w i l l have to be compensated to make 

up f o r the delay. The delay can be shortened by varying the demanded 

reactor period as shown i n f i g u r e 

(5.2.12), as i t i s often impossible 

to increase the system gain due to 

i n s t a b i l i t i e s a r i s i n g . 

I d e a l l y , the demand neu

tron power should reach, the f i n a l 

endpoint at the same insta n t as the 

neutron power. The time taken f o r 

F i g . 5.2.12 Inverse Period the demand neutron power l e v e l to 
for Time Optimal Power 
Increase. (Continuous reach the endpoint from the switch 
plus Step Increase of 
Period). point can be c a l c u l a t e d as follows: 

E ' e 
Log Power Level 

Let l n N, - l n N d £ 
L = l n N - l n N e e s 

ln = l o g demand power l e v e l 

l n N g = log switch point power l e v e l 
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ln = l o g endpoint power l e v e l 

T = minimum allowable reactor period m 
f" = allowable reactor period at endpoint e 
A = 1/T - 1/T m e 

From figure (5.2.10) i t can be seen that f o r the continuous case 

dt (5.2.9) 

Therefore 
dL AL 
- 7 ^ = 1 / 1 (5.2.10) dt m L e 

The s o l u t i o n of t h i s equation i s : 

L,(t) = L / T A f l - exp(-tA/L ) ] (5.2.11) d e m L .
 r v e J 

The time taken f or L^ to reach L i s required, therefore the following 

equation i s solved f o r t: 

t = a L /A (5.2.12) 

e 

where a i s solved from 

exp(-a) = 1 - AT m (5.2.13) 
= T / T (5.2.14) 

.me 

For the case where the period i s va r i e d as i n fig u r e (5.2.12), i s 

replaced by T\ 

The act u a l times taken by the reactor from the switch point 

to the endpoint under i d e a l conditions were measured when the switch 

points of table 4.2.1 were determined. Table 5.2.1 gives these times 

for various minimum allowable periods and maximum r e a c t i v i t y rates. 

The table also gives the times f or the demand power l e v e l to r i s e from 
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the switch point to the endpoint using equations (5.2.12) and (5.2.14). 

The endpoint period f o r the various r e a c t i v i t y rates was determined 

using equation (4.2.10). I t can be seen that, except f o r those cases 

MINIMUM TIME (SECONDS) 
PERIOD 
(sec) . 

^max 
Reactor 

lmk/ s 
Demand 

^max 
Reactor 

.05mk/s 
Demand 

Rmax _ • 
Reactor 

02mk/s 
Demand 

^max -

Reactor 
.Olmk/s 
Demand 

20 3.2 2.6 15 13.6 71 75 162 219 

30 2.3 .95 11 6.7 50 46.5 121 149 

40 1.7 .425 8 3.8 38 31 96 109 

50 - - 5 2.2 29 22 80 84 

100 - - - - 11 5.8 37 28.4 

Table 5.2.1 Times for Reactor and Demand to Reach Endpoint 
from Switchpoint 

where the maximum r e a c t i v i t y rate i s 0.01 mk/second, and where the 20 

second period i s combined with R = 0.02 mk/second, the time f o r the 
max 

demand power l e v e l to reach the endpoint i s shorter than that f o r the 

reactor. The period can therefore be va r i e d as i n f i g u r e (5.2.12), to 

compensate f o r the delay i n a t t a i n i n g a maximum r e a c t i v i t y rate s i g n a l , 

By choosing appropriate values f o r T 1 and x' e such that: 

and 

T > T 
m m 

T ' £ T 
e e 

(5.2.15) 

(5.2.16) 

the reactor and demand power l e v e l s can reach the f i n a l endpoint at the 

same in s t a n t . Table 5.2.2 gives values f o r T ' and T ' using the switch 
m e ° 

points of table 4.2.1. 

The problem s t i l l e x i s t s for those cases where the demand power 

l e v e l takes longer than the reactor to reach the endpoint. I f a s l i g h t l y 

shorter value f o r T can be toler a t e d , the time f o r the demand to reach 
e 
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the endpoint can be made the same as. the reactor. The appropriate values 

of T ' were included i n table 5.2.2. Whether these values can be t o l e r -e 

ated w i l l be determined when the c o n t r o l l e r i s tested i n section 5.5. 

The preceding analysis has been f o r power increases. S i m i l a r l y , 

for power l e v e l decreases the same procedure can be followed, with the 

reactor period v a r i e d as i n figure (5.2.13). Table 5.2.3 gives the switch 

point values, the time for the reactor to reach the endpoint and appro

p r i a t e values of T ' and x 1 . 
r m e 

o 
O U /-> 
N « V -

H o 

n u 
o 0) 

w 

e e 
Log Neutron Power 

F i g . 5.2.13 Inverse Period for Power Level Decrease 
(Continuous Increase of Period). 

MINIMUM x' and x' (sec) m e 
PERIOD R 

max 
.lmk/s R max .05mk/s R max •02mk/s R max .Olmk/s 

(sec) . T 1 

m 
x' 

e 
x' 
m 

x' 
e 

x' 
m 

T 1 

e 
x' 
m 

x' 
e 

20 30 51 25 110 24 180 24 165 

30 94* 94* 67' 115 35 280 35 245 
40 182* 182* 137* 137* 56 307 46 315 

50 - - 167* 167* 75 307 57 465 
100 - - - - 314* 314* 151 627 

*Note: A = 0, therefore x ' = x' 
m e - Vt 

Table 5.2.2 x' and x' for Simultaneous A r r i v a l of m e 
Reactor and Demand at Endpoint 
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Switch Time to 
R Point Endpoint T ' T* max 1 m e 
mk/sec N /N (sec) (sec) (sec) 

.05 1.008 1.9 211 211 

.02 1.188 37 150 310 

.01 1.63 114 140 475 

Table 5.2.3 Parameters for Power Decreases with 
100 second Minimum Period Constraint 

Log Power Level 

F i g . 5.2.14 Inverse Period as a Function of Power Level 

I f the reactor i s at steady state, the v a r i a t i o n of the demand 

period about the steady state l e v e l i s given i n f i g u r e (5.2.14). There i s 

a deadband of value C on e i t h e r side of the steady state l e v e l and i f the 

neutron power l e v e l remains i n this deadband, the demand power l e v e l i s 

held at the steady state l e v e l . I f the neutron power l e v e l should deviate 

outside the deadband the demand power l e v e l l n N^' i s set to the value 

l n N + C, depending on whether i t i s below or above the steady state. 

(See the er r o r flow diagram of f i g u r e (5.2.4)). The demand power 

l e v e l l n N^1 i s then returned to the steady state l e v e l with the demand 

period varying as i n f i g u r e (5.2.14). Figure (5.2.15) shows the v a r i a t i o n 

of the demand period when the f i n a l endpoint i s i n the range where the 

l i n e a r rate constraint i s a c t i v e . 
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F i g . 5.2.15 Inverse Period as a Function of Power Level 

(Linear Constraint) 

A flow diagram of the demand power l e v e l c a l c u l a t i o n i s given 

i n f i g u r e (5.2.16). I t must be remembered that the switch points given 

i n table 4.2.1 are for i d e a l conditions. I f there i s any delay i n a t t a i 

ning a maximum r e a c t i v i t y rate s i g n a l a f t e r the switch point, the switch 

point must be compensated to avoid over- or undershoot of the f i n a l l e v e l . 

I t i s probable that the c o n t r o l l e r developed w i l l have a sub-

optimal response. Just how sub-optimal i t i s , w i l l be determined i n 

subsection 5.5, where the c o n t r o l l e r i s tested using a d i g i t a l simulation 

of a thermal reactor. The r e s u l t s obtained f o r power l e v e l increases 

and decreases- w i l l be compared to the i d e a l r e s u l t s of Chapter 4 and 

necessary adjustments i n the switch points w i l l be determined. 

5.2.5 New Endpoint and Switch Point Calculations 

The only probable i n t e r a c t i o n between the safety system and 

the c o n t r o l l e r would be the> s e t t i n g of the f i n a l endpoint by the safety 

system for c o n t r o l l e d power reversals and power l e v e l l i m i t setbacks. 

Program or operator i n i t i a t e d power l e v e l holds can also be expected. 

A l o g i c diagram of possible endpoint p r i o r i t i e s i s given i n f i g u r e 

(5.2.17). The switch points associated with a p a r t i c u l a r endpoint are 



TEM2=( S'»/SD-FLXD)/( SWSD-FLXE) 
TEK1 =DHRT- ( DKRrJ-DERT ) TSH2 

Load Kew Endpoint and 
Switchuoints. Reset EP Flag. 

LIMD=AKTILOG(FLXD) 
FLXT=FLXE - FLXD 

|PERD—TEMll [ PERD=-TEM2J [PERD=-LNRT/LIKD 

|PERfl=-DRAT| 
T 

•IEM2=( FLXD-SW8T- )/(FLXE-SV;ST ) 
TEH1 ='Ji4HT-( UFlR'X'-UERT ) TEM2 

FERD=URAT 

PERD=LKRT/LIHD| IF£RD=T£M1| |PERD=TEM2 

FLXD=FLXD+FERD 
TEK1=FLXD-FLXE 

I 

^Return. ^ 
O i 

F i g . 5.2.16 Flow Diagram of Demand C a l c u l a t i o n 
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Flaps Power 
Hold 

Desired 
Endpoint 

Demand at 
Flag Set 

e.g. H0% P u l l Power 

e.g. 1CT 6 F u l l Power 

Power 
Limit 

Power 
Setback 

Actual 
Endpoint 

F i g . 5.2.17 Endpoint P r i o r i t y Chain' 

simple to c a l c u l a t e . As the maximum r e a c t i v i t y rate R and the minimum 
J max 

allowable reactor period x are f i x e d for a reactor, the switch points 
r m 

fo r time optimal control f o r a p a r t i c u l a r endpoint N 1 are given as follows: 

l n N . = l n N' + In S,. 
s i e d i 

(5.2.9) 

where i = 1 i s for power increases 

i = 2 i s f o r power decreases 

and S , = ratio, of N /N as determined by simulation methods described d s e J . 

i n Chapter 4.-

The l i n e a r rate switch point remains f i x e d , independent of the f i n a l 

endpoint and i s given by 

N = x dn/dt| 1 m 1 ' max (5.2.10) 

With the occurrence of a reactor scram or emergency shutdown, the end-

point i s set to the minimum power l e v e l , the c o n t r o l l e r output discon

nected and the demand power l e v e l allowed to f l o a t down x^ith the neutron 

power l e v e l . 
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5.2.6 General Remarks 

Throughout the development of the c o n t r o l l e r , an attempt was 

made to minimize the c a l c u l a t i o n time from the sample i n t e r r u p t to the 

output of the control a c t i o n . A l l c a l c u l a t i o n s not dependent on the mea

sured neutron f l u x , were completed p r i o r to the sample i n t e r r u p t . The 

algorithm as i t stands i s by no means complete. Areas such as shim and 

regulator rod con t r o l , maintaining the regulator rod at maximum e f f e c t i v e 

ness and many others have not been included as i n most cases they are de

pendent on the i n d i v i d u a l reactor type. 

From the s t a b i l i t y analysis of Chapter 2, i t was seen that 

except for extremely fast sampling rates, the zero-order hold was the 

best of the three hold types. Examination of equation (3.3.1) shows 

that at steady state there i s only proportional c o n t r o l , with no rate 

c o n t r o l . I f the error equation (3.3.12) f o r the l i n e a r i z e d hold i s 

broken down, the following form can be obtained: 

e n ( t ) = [ln N d(nT) - l n N(nT).] + JT/TJ - [lnN(nT)-lnN(n-l) T] 

(5.2.11) 

Therefore, i t can be seen that the. l i n e a r i z e d hold gives p r o p o r t i o n a l 

plus rate c o n t r o l . 

5.3 D i g i t a l Simulation of a Nuclear Reactor 

The c o n t r o l l e r requires as input a logarithmic neutron power 

l e v e l and outputs control action i n the form of a l i m i t e d r e a c t i v i t y 

rate s i g n a l . 

The point reactor k i n e t i c s equations with six- groups of delayed 

neutrons are given i n Appendix A by equations (A.1.1) and (A.1.2). These 

equations r e s u l t i n a l i n e a r neutron power. D i v i d i n g through by n i n both 
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equations gives: 

and 

f / n = ^ - f + I ^ C . / n + S/n (5.3.1) 
1=1 

dc . 8. 

"dt / n " "I " A i V n • ( 5 ' 3- 2 ) 

Let 

ra = / n (5.3.3) 
dt 

V = C./n (5.3.4) i i 

and 

w = S/n (5.3.5) 

Su b s t i t u t i o n i n t o equations (5.3.1) and (5.3.2) gives 

,m = - | + I A . V + .w (5.3.6) 
i = l 

and 
dV. 3. 
~ = - y - V. (m + A.) (5.3.7) 

d t £ l i 

The quantity / n i s the inverse reactor period. Also 

l o g e n = Jm dt (5.3.8) 

Therefore with the change i n the v a r i a b l e , the logarithmic neutron power 

can be obtained d i r e c t l y from the simulation, with the simulation input 

of r e a c t i v i t y being retained. Equations (5.3.6) to (5.3.8) are more s u i t e d 

to d i g i t a l than to analog simulation techniques. The s i x equations of 

the form of (5.3.7) require extremely accurate and r e l a t i v e l y f a s t mul

t i p l i e r s which are not always a v a i l a b l e . The main problem i s the "open 

loop" in t e g r a t o r of equation (5.3.8). Both of these problems are e l i m i -
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nated with d i g i t a l simulation techniques. The change i n v a r i a b l e has 

the added advantage of normalizing the equations, with the delayed 

neutron precursors being t r a n s f e r r e d i n t o r a t i o s instead of absolute 

values extending over the range of power l e v e l of a nuclear reactor. 

I t i s therefore possible to use the f i x e d point arithmetic routines devel

oped f o r the c o n t r o l l e r , with much f a s t e r c a l c u l a t i o n times p o s s i b l e 

than would be the case with f l o a t i n g point arithmetic. 

Much c r i t i c i s m has been l e v e l l e d at d i g i t a l simulation techni

ques due to the inherent quantization and s e r i a l operation. Many sophi

s t i c a t e d methods for the numerical s o l u t i o n of d i f f e r e n t i a l equations 

have been proposed i n an attempt to reduce the errors incurred by d i g i t a l 

techniques. One of the s o - c a l l e d "unsophisticated" i n t e g r a t i o n methods, 

the trapezoidal i n t e g r a t i o n method, was used i n the d i g i t a l simulation of 

the nuclear reactor because of i t s s i m p l i c i t y , ease of programming and 
2 8 

excell e n t s t a b i l i t y properties . The form of trapezoidal i n t e g r a t i o n i s 

as follows: 
y x i = y " T f i (5.3.9). 

•'n+l n 2 n 2 n-1 

where 

y n = the output of the int e g r a t o r at time nT 

f = sum of inputs to the integra t o r at time nT 

and T = sample period. 

The accuracy of the d i g i t a l simulation as a function of sample 

period T was tested against the analog simulation described i n s e c t i o n 5.5 

for step inputs i n r e a c t i v i t y . With a sample period of 0.1 second, there 

was a noticeable e r r o r i n the order of 5% during the i n i t i a l stages 

a f t e r the step where the influence of the prompt neutrons was the greatest. 

With a 0.05 second sample period, this e r r o r was reduced to 1%, while at 



62 

a sample period of 0.01 second, the e r r o r could not be distin g u i s h e d i n 

the noise of the analog computer simulation. For the longer sample 

periods, the error was only detectable i n the i n i t i a l stages where the 

prompt neutrons were e f f e c t i v e . Although the simulation was accurate 

when the e f f e c t of the delayed neutrons became prominent, the i n i t i a l 

e rror was c a r r i e d forward and remained. 

A flow diagram of the basic d i g i t a l simulation i s given i n 

figur e (5.3.1). Using a sample period of 0.01 second, the simulation 

T£MP4=0-
KEACT=REACT+T*RRATE 

DO F O R X=1 TO 6 
TEKP1 =LAMDA ( X ) * DELAY ( X ) 

TEMP4 = TEKT4+ TEMPI 
TEMP3=BETA(X)-TEMPI-HRATE* DELAY(X) 

DELAY ( X )=DELAY ( X )+J * T/2 * TEHP3-T/2 * FUR C ( X ) 
FUNC(X)=TE!'iP3 ' 

TEMP4=TEMP'l + REACT-BETAT 
P0V,'ER=P0WER+ 3 * T/2 * TEMP4-T/2 * NRATE 

NRATE=TEMP4 

^ R e t u r n . ^ 

F i g . 5.3.1 D i g i t a l Simulation of Nuclear Reactor-
Flow Diagram. (One Sampling Only) 

time was about h a l f the r e a l time. A handler was developed to c o n t r o l 

the d i g i t a l simulation and c o n t r o l l e r and pass the necessary v a r i a b l e s 

between the two programs. The handler provides on l i n e graphic readout 

of the logarithmic power l e v e l j r e a c t o r period, r e a c t i v i t y rate and t o t a l 

r e a c t i v i t y , and also p r i n t s out f i n a l r e s u l t s on a s t r i p chart recorder. 

Program i n t e r r u p t i o n and r e - i n i t i a l i z a t i o n or the s e t t i n g of any v a r i a b l e 

i s possible without d i s t u r b i n g the continuous simulation sequence. The 

three sample periods, simulation, c o n t r o l l e r and readout are independent 

of each other and can be set to the required values. The handler simu-
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l a t e d the neutron power measuring c i r c u i t s (see se c t i o n 2.5) by averaging 

the neutron power from one c o n t r o l l e r sampling to the next, before pas

si n g the neutron power l e v e l to the c o n t r o l l e r . 

A thermal reactor with parameters as given i n Appendix A.4 

was simulated f or the t e s t i n g of the d i g i t a l c o n t r o l l e r . 

5.4 Analog Simulation of a Nuclear Reactor 

The point k i n e t i c s equations with s i x groups of delayed neutrons 

are given i n Appendix A by equations (A.1.1) and (A.1.2). The analog 

computer c i r c u i t diagram i s given i n fig u r e (5.4.1). The analog simu

l a t i o n was set up on an EAI, PACE 231R analog computer which i s i n t e r 

faced to the PDP-9 computer used f or the d i g i t a l c o n t r o l l e r . 

The neutron power l e v e l measuring c i r c u i t described i n s e c t i o n 

2.5 i s simulated by i n t e g r a t i n g the neutron power l e v e l from one sampling 

to the next and by i n i t i a l i z i n g the i n t e g r a t o r a f t e r each sampling. 

Fortunately the 231R analog computer i s equipped with e l e c t r o n i c switching 

for the integra t o r modes and the shorter sample periods of 0.1 second can 

be e a s i l y handled. Two measuring ranges are used; one up to 10% and the 

second to 150% f u l l power. The two ranges are merged using the tech

nique described i n section (5.2.1). The outputs of the two in t e g r a t o r s 

are sampled by a multiplexed analog to d i g i t a l converter. No timing pro

blems were encountered as a l l the inputs to the multiplexer are preceded 

by sample and hold units and the integrators are i n i t i a l i z e d immediately 

a f t e r sampling and holding the two s i g n a l s . The i n i t i a l conditions of 

the two integrators are biased, so as to allow f u l l use of the A/D. 

sampling range of + Vref, thereby gaining double the number of d i g i t i z e d 

power l e v e l s . 
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F i g . 5.4.1 Analog Simulation of Nuclear Reactor 

The c o n t r o l action i n the form of a r e a c t i v i t y rate or a t o t a l 

r e a c t i v i t y s i g n a l i s returned to the analog simulation from the c o n t r o l l e r 

by means of a d i g i t a l to analog converter. 

The same reactor parameters were used as for the d i g i t a l simu

l a t i o n . (See Appendix A.4). 

5.5 Test of D i g i t a l C o n t r o l l e r 

Both analog and d i g i t a l simulations described i n the previous 
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subsections w i l l be used i n t e s t i n g the d i g i t a l c o n t r o l l e r . The ad

vantage of the d i g i t a l simulation i s that i t covers the e n t i r e range of 

possible reactor power l e v e l s . Another advantage i s that no a d d i t i o n a l 

external equipment i s necessary for the t e s t i n g of the d i g i t a l c o n t r o l l e r . 

The analog computer simulation provides the best r e a l time conditions 

with the monitoring and c a l c u l a t i o n delays, as would be expected i n an 

actual reactor system. The disadvantage i s that the range i s l i m i t e d to 

about 2 decades of operation. Automatic r e s c a l i n g i s possible with power

f u l and advanced analog systems, but they are not always a v a i l a b l e . 

5.5.1 C a l c u l a t i o n Time of Control Algorithm 

Using the analog simulation, the time taken from the moment 

the sampling of the neutron power i s begun, to the output of the c o n t r o l 

a c t i o n i s 0.8-1.1 ms. More than h a l f of t h i s time i s required i n the 

"sampling, "merging "and •finding the logarithm of the neutron power. These 

problems encountered using a "hybrid" simulation are the same as would 

be encountered i n a true on-line system. The longer c a l c u l a t i o n times of 

1.1 ms are required when two measuring ranges are merged. The t o t a l time 

from the sampling to the e x i t a f t e r c a l c u l a t i n g the next demand l e v e l i s 

1.5 - 1.8 ms. Even with the shortest sample period of 0.1 second, the 

e f f e c t of the c a l c u l a t i o n delay before the output of the control a c t i o n 

can be neglected. The use of the logarithmic c o n t r o l algorithm and f i x e d 

point arithmetic can be seen to give exceptionally f a s t and simple c a l c u 

l a t i o n s . The time taken from sampling to the output of control a c t i o n 

i s about twice as long as the time for an addition using the computer's 

f l o a t i n g point package. 

5.5.2 S t a b i l i t y Test of C o n t r o l l e r 

The o v e r a l l system s t a b i l i t y was analysed i n section 2.6. For 
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a p a r t i c u l a r sample period T, the s t a b i l i t y of the reactor could be en

sured by maintaining the r e a c t i v i t y , rate per unit e r r o r l e s s than a 

maximum value R . Table 2.6.1 gives R per unit error for various max max 

sample periods for the thermal reactor of the analog and d i g i t a l simu

l a t i o n s . 

The most convenient method of t e s t i n g the o v e r a l l s t a b i l i t y i s 

to use the analog simulation. By means of adjusting the c o n t r o l rod 

gain potentiometer, the gain can be increased slowly u n t i l s t a b i l i t y 

i s l o s t . For both the l i n e a r i z e d and zero-order holds, the values given 

i n table 2.6.1 were conservative. The value of R , where s t a b i l i t y 
max 

was l o s t , was 25 to 35% greater than the t h e o r e t i c a l values for a l l four 

sample periods. This i s an i d e a l s i t u a t i o n from the safety point of view, 

as the t h e o r e t i c a l c a l c u l a t i o n s of section 2.6 then have a safe 25% 

margin. When using the d i g i t a l simulation, the r e s u l t s d i f f e r e d by no 

more than 2% from those obtained using the analog simulation. 

5.5.3 Power Level Increases 

Using the d i g i t a l simulation, the c o n t r o l l e r was tested f o r 

power increases using the switch points of table 2.6.1 and the respective 
values of T' and x' as i n table 5.2.2. A sample period of 0.1 second m e r r 

was used throughout the t e s t i n g , as one of the main reasons for the l o g 

arithmic c o n t r o l algorithm was to allow the use of these f a s t sample 

frequencies. 

Figure (5.5.1) shows power increases with a 20 second minimum 

allox^able period and a maximum r e a c t i v i t y rate of 0.02 mk/second. With 

the c o n t r o l l e r gain such that a .1%/decade err o r between the power l e v e l 

and the demand gave a maximum r e a c t i v i t y rate s i g n a l , the overshoot was 

never more than 0.5% of the f i n a l endpoint, f o r a l l the combinations 
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F i g . 5.5.1 Time Optimal Power Increase 
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of period and R given i n table 2.6.1. When using a lower c o n t r o l l e r max • ° 

gain, such that an error of 1%/decade r e s u l t e d i n R out, the overshoot 
max 

i n a l l cases was between 5 and 7% of the f i n a l endpoint. This greater 

overshoot i s not only due to the delay i n a t t a i n i n g a maximum r e a c t i v i t y 

s i g n a l but also because an overshoot of 2.3% of the f i n a l endpoint i s 

required to obtain a maximum output s i g n a l . These r e s u l t s are e x c e l l e n t , 

with the overshoot being a l i t t l e over twice the er r o r required f or a 

maximum r e a c t i v i t y s i g n a l . 

Examination of figure (5.5.1) shows that the period becomes 

shorter than the minimum allowed j u s t p r i o r to a t t a i n i n g an asymptotic 

period. During the i n i t i a l stages of start-up, the demand does not deviate 

too f a r from the power l e v e l , due to the f i r s t term of equation (3.4.6). 

This peak i n the inverse period occurs as the power f i n a l l y catches up 

with the demand. The amount of peaking can be reduced by reducing C 

of equation (3.4.6). The most s u i t a b l e value of C was found to be i n the 

order of one-and-one-half times to twice the e r r o r required f or a maximum 

r e a c t i v i t y s i g n a l . 

In tables 5.2.1 and 5.2.2, i t was seen that f or the smaller 

values of R , T ' had to be smaller than the desired f i n a l endpoint max e 

period x , so that the demand and power l e v e l s reached the endpoint to

gether. To see whether these values of x 1 could be t o l e r a t e d , the reac

tor was set on a power increase with a minimum allowable period of T 1 . 

On a t t a i n i n g an asymptotic period, the c o n t r o l rods were inse r t e d at 

maximum v e l o c i t y and the overshoot measured. For the case of T*~ = 165 
•• J e 

seconds, (instead of the desired 627 seconds) and R = 0.01 mk/second, 
max 

the overshoot was 6.5%. With a x' of 245 seconds, t h i s overshoot r e -
e 

duced to 2.5%. These overshoots were much l e s s than those obtained when 
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there was a s i z a b l e delay i n a t t a i n i n g a maximum r e a c t i v i t y rate s i g n a l 

a f t e r the switch point. Fortunately, the p r o b a b i l i t y of any reactor 

having a 20 second allowable period i s small, e s p e c i a l l y i f i t only has 

a r e a c t i v i t y rate of 0.01 mk/second and the values of x can therefore 
e 

be t o l e r a t e d where necessary. The greater overshoot w i l l only be found 

i n those cases where: (a) the switch point i s conservative, (b) the 

minimum allowable period has not been attained and (c) the i n i t i a l power 

l e v e l i s above the switch point, a l l of which are shown i n f i g u r e (5.5.2). 

As was expected, the c o n t r o l l e r i s suboptimal. However, the 

higher the c o n t r o l l e r gain, the c l o s e r to the i d e a l i s the performance. 

Taking as examples the cases shown i n f i g u r e (5.5.1), the i d e a l time from 

switch point to endpoint i s 71 seconds. With a c o n t r o l l e r gain of .1%/ 

decade for an output of R , the time for the power f i n a l l y to s e t t l e 
max r J 

within .23% of the endpoint i s 71.5 seconds. When the gain i s 1%/decade, 

the corresponding time to s e t t l e within 2.3% of the endpoint i s 86 seconds. 

This longer time i s due to the greater overshoot, which i s a d i r e c t r e 

s u l t of the delay i n a t t a i n i n g a maximum r e a c t i v i t y s i g n a l . For these 

lower gain cases, the time could be shortened s l i g h t l y by making the 

logarithmic switch point conservative by about 2% of a decade. I t can 

be seen i n figure (5.5.1(a)) from the spike i n the r e a c t i v i t y rate s i g n a l , 

how the demand and reactor power reach the endpoint simultaneously, 

followed by an instantaneous maximum s i g n a l which tapers o f f while pre

cursor density e q u i l i b r i u m i s attained. 

Figure (5.5.3) shows a power increase when a l i n e a r rate con

s t r a i n t of 1% f u l l power per second i s imposed. The reactor i s f i r s t 

constrained by the minimum allowable period, followed by the l i n e a r rate 

constraint and f i n a l l y the time optimal c o n s t r a i n t . 
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5.5.4 Power Level Increases with. Noisy Reactor 

The analog simulation was used f o r t e s t i n g the c o n t r o l l e r with 

a noisy reactor. This made i t easy to add various noise s i g n a l s ; f u r t h e r 

more, the simulation included the d i g i t i z i n g e f f e c t of the analog to d i 

g i t a l converters. Figure (5.5.4) shows a power increase with a white 

noise s i g n a l with R.M.S. value of 3% of f u l l power. The overshoot of 

the f i n a l endpoint was only .5% greater than the reactor without noise. 

Removal of the f i l t e r i n g c i r c u i t before the A/D converter r e s u l t e d i n 

much poorer performance, e s p e c i a l l y at low power, due to the low s i g n a l 

to noise r a t i o . 

A l i n e a r power s i g n a l i s read by the A/D converters and the 

logarithmic power i s d i g i t a l l y c a l c u l a t e d . The r e s u l t i n g uneven spread 

of d i g i t i z e d power l e v e l s can be c l e a r l y seen: i n the r e a c t i v i t y rate s i g 

n a l of figu r e (5.5.4). As stated previously, the use of logarithmic i o n 

chamber amplifiers w i l l a l l e v i a t e t h i s problem. 

5.5.5 Power Level Decreases 

A power l e v e l decrease with a 100 second period constraint i s 

shown i n figure (5.5.5). The undershoot was found to be twice the e r r o r 

required for a maximum output s i g n a l , which was i d e n t i c a l to the r e s u l t s 

for power increases. As mentioned i n section 4.3, time optimal power 

decreases were not dealt with due to the wealth of e x i s t i n g l i t e r a t u r e . 
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6. CONCLUSIONS 

A basic e r r o r sampled data c o n t r o l system f o r a nuclear reactor 

was developed. The con t r o l system was analysed f o r s t a b i l i t y with various 

sampled data holds and sample frequencies. The r e s u l t s obtained, when 

compared to those measured with d i g i t a l and analog simulations, proved 

safe, with a 25% margin. 

A d i g i t a l c o n t r o l algorithm, using the logarithmic neutron power 

l e v e l as input, was developed, which allowed the use of f i x e d point a r i t h 

metic. The c a l c u l a t i o n speeds of the algorithm were seeri to be much f a s t e r 

than algorithms using f l o a t i n g point a r i t h m e t i c . Time optimal power i n 

creases were studied, and a time optimal c o n t r o l sequence using switch 

points was derived. The determination of the switch points was done by 

simulation techniques, e l i m i n a t i n g the use of complex and very approximate 

c a l c u l a t i o n s . 

A p r a c t i c a l demand power l e v e l c o n t r o l l e r was developed, using 

machine language programming. A l l c a l c u l a t i o n s not r e q u i r i n g the sampled 

neutron f l u x were c a l c u l a t e d p r i o r to the sample i n t e r r u p t , i n an attempt 

to minimize the delay from the sampling to the output of con t r o l a c t i o n . 

The a c t u a l delay was found to be from 0.8 to 1.1 ms, which i s the time 

required f o r approximately two f l o a t i n g point additions. Time optimal 

power increases were tested using a d i g i t a l simulation of a thermal reactor. 

The.overshoot of the f i n a l endpoint was seen to be twice the e r r o r required 

for a maximum r e a c t i v i t y rate s i g n a l which i s most s a t i s f a c t o r y . The 

c o n t r o l l e r , although sub-optimal, approached the i d e a l time optimal t r a 

j e c t o r y as the c o n t r o l l e r gain was increased. A c o n t r o l l e r gain of .1%/de-

cade f o r a maximum r e a c t i v i t y rate s i g n a l r e s u l t e d i n near time-optimal 

r e s u l t s . 
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It can be concluded that a successful, near time-optimal con

t r o l algorithm has been developed with general a p p l i c a t i o n s to low power 

reactors. 
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APPENDIX A. REACTOR KINETICS EOUATIQNS 

A . l General Reactor K i n e t i c s Equations 

The space independent reactor k i n e t i c s equations f o r s i x groups 

of delayed neutrons are'': 

— = n + I A;C. + S (A. 1.1) dt £ h , i i i = l 

dC 8. 
-~ = ~r n - A.C. (A.1.2) dt 1 i i 

and 

where 
3 

n = neutron density (neutrons/cm ) 

8 = t o t a l f r a c t i o n of delayed neutrons 

6k = r e a c t i v i t y 

£ = mean e f f e c t i v e l i f e t i m e of a neutron (sec) 
3 

C^ = concentration of neutrons i n the i t h delayed group (neutrons/cm ) 

A_̂  = decay constant of the i t h delayed group (sec ^) 

8^ = f r a c t i o n of neutrons i n the i t h delayed group 
3 

S = source strength (neutrons/cm /sec) 

The space independent reactor k i n e t i c s equations i n the absence 

of an external source f o r one group of delayed neutrons are"': 
dn :6k- 8 dt £ n + AC (A. 1.3) 

and 

where 

f = f * - AC (A.l.4) 

/ 6 

A = 8 / I 6 ±/X i (A.l.5) 
/ i = l 
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A. 2 Lin e a r i z e d Reactor K i n e t i c s Equations 

L i n e a r i z e d k i n e t i c s equations ahout a power l e v e l n are as 
o 

follows^: 

£ --f „ + j V l t « ^ . D ( A . 2 . 1 ) 

1 = 1 
and 

dC. 3. 
-~ = — n - A.C. (A.2.2) 

dt J , i i 

For the s i n g l e delayed group model the l i n e a r i z e d k i n e t i c s equations i n the 

the absence of an external source are"*: 

£ . _ ! n + X C + i | „ o (A.2.3) 

and 

f = f n - A C (A.2.4) 

A. 3 Reactor K i n e t i c s Transfer Function 

Using the l i n e a r i z e d k i n e t i c s equations the reactor t r a n s f e r 

n , • • jr i i ' 2 , 4 
function i s as follows : 

The t r a n s f e r function for the one delayed group model i s : 

n k(s) ls(s + X + B/A) (.A.J.^; 
o 

A.4 Thermal Reactor Parameters 

The parameters of the delayed neutron groups of the thermal 

reactor used throughout t h i s study are given i n table A.4. The t o t a l 

f r a c t i o n of delayed neutrons i s : 

B = 0.0064 
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the mean e f f e c t i v e neutron l i f e t i m e i s : 

H = 10~ 3 sec 

From equation (A.1.5) the decay constant f o r the s i n g l e delayed neutron 

group case i s : 

A = 0.076 sec - 1 

Group Fr a c t i o n of 
Number Decay Constant ' Delayed Neutrons 

i A. (sec "*") B. 
I • x_ 

1 0.0124 0.00024 
2 0.0305 0.00140 
3 0.1110 0.00125 
4 0.3010 0.00253 
5 1.1400 0.00074 
6 3.0100 0.00027 

Table A.4 Parameters of Delayed Neutron Groups of a 
Thermal Reactor 
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