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ABSTRACT 

A number of on-line control methods have been studied for the 

operational control of a queuing system. Time-series models have been 

used, i n contrast to the probability models usual i n the t r a d i t i o n a l 

approach to such problems. 

I t i s shown that most queuing processes can be formulated as 

multistage control problems to which modern control theory can "be applied. 

The various control techniques applicable to a queuing system can be 

divided into two classes: decision and regulator control. In obtaining 

the control strategies, this thesis draws heavily from dynamic programming, 

least-squares estimation, the discrete maximum p r i n c i p l e and gradient 

techniques. 

The uncertainties encountered i n the queuing system can be 

overcome with an adaptive control method. The open-loop-feedback-optimal 

control technique has been stressed here due to i t s s i m p l i c i t y . A p p l i 

cations of the methods to various f i e l d s have also been studied. Ex

tension of the method to long i n t e r v a l control i s immediate i n a l l the 

cases. 

Although the optimal control of a queuing system has been d i s 

cussed, the methods are general enough to be applied to other areas. 

i 
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4.6 Comparison Between the Optimal Feedback Control State Tra
jectory and the Adaptive Control STate Trajectory 50 

4.7 Comparison Between the Optimal Feedback Control Gain and 

the Adaptive Control Gain 51 

'4.8 Optimal Scheduling of Operations with Ĉ  known 52 
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1. INTRODUCTION 

Queuing occurs i n many facets of our d a i l y l i v e s . To catch a 

bus, we j o i n a queue. To place a telephone c a l l , we j o i n a queue. 

Indeed, i t i s impossible to survive today without i n v o l u n t a r i l y p a r t i 

c i p a t i n g i n some sor t of a queuing process. 

As society gets more complex, so do the queuing processes one 

-encounters. -Consequently, -the-study of queuing processes i s an important 

feature of the way man i n t e r a c t s with h i s environment. 

1.1 Queuing System, Queuing Models and the C l a s s i c a l Queuing Theory 

A queuing system, or a stoch a s t i c s e r v i c e system - to include 

cases where the theory of queues has been applied to s i t u a t i o n s i n which 

no p h y s i c a l queues a c t u a l l y e x i s t , i s a process of "customers" waiting 

for s e r v i c e from "servers". The terms' "customers" and "servers" were 

i n h e r i t e d from e a r l i e r researchers whose problems were mostly i n con

nection with the telephone business. The theory of queues was es t a b l i s h e d 

about h a l f a century ago to study the behaviour of the mathematical models 

developed f o r the queuing process. 

A l l queuing theory models are based upon the three major charac

t e r i s t i c s of the queuing processes: the input-process, the s e r v i c e -

mechanism and the queue-discipline. With the f i e l d of s t a t i s t i c a l a n alysis 

already f i r m l y established, i t i s not s u r p r i s i n g to f i n d that a l l the 

c l a s s i c a l queuing models are p r o b a b i l i t y models, that i s models i n which 

emphasis i s placed upon the p r o b a b i l i t y d i s t r i b u t i o n i t s e l f , - i n contrast 

to time-series models where the actual values of some parameters are con-
(9) 

sidered . Subsequently, mathematicians have been able to apply queuing 

theory s u c c e s s f u l l y to obtain elegant a n a l y t i c r e s u l t s f o r a wide v a r i e t y 

of queuing processes. 
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Nevertheless, as Saaty has s a i d ^ : 

"The subject of queuing i s not d i r e c t l y concerned 
with optimization. Rather i t attempts to explore, 
understand, and compare various queuing situations 
and thus i n d i r e c t l y achieve optimization approxi
mately". 

The t r a d i t i o n a l s p i r i t of the p r o l i f i c amount of research on queuing 

systems has been towards the performance analysis rather than the con

t r o l aspect. 

An i n e f f i c i e n t l y controlled queuing process can be very frus

t r a t i n g and exasperating. From the engineer's point of view, i t i s ob

viously desirable to obtain a compatible optimization technique for the 

queuing processes one encounters. Just as the c l a s s i c a l queuing theory 

works to better control through understanding the behaviour of a queuing 

process, today's control engineer should aim at implementing better control 

-through his knowledge f-rom -the w e l l — developed-theo ry of -optimal control. 

1.2 Outline of Thesis 

This thesis i s an attempt to apply modern control theory to a 

queuing process. P a r t i c u l a r emphasis i s placed upon two different types 

of on-line control strategies: decision and regulator control. Several 

applications are included to demonstrate the v e r s a t i l i t y of the approach. 

The p o s s i b i l i t y of extending the method to adaptive control systems i s 

also investigated. The structure of the thesis i s as follows. 

The purpose of the f i r s t part of Chapter 2 i s to demonstrate 

the real-time approach to the queue-modelling problem where the c l a s s i c a l 

approach has been v i a pro b a b i l i t y modelling. A time-series model i s 

developed for a simple queuing process. Operational control s t r a t e g i e s , 

i n p a r t i c u l a r the decision- and regulator-type, are also discussed q u a l i 

t a t i v e l y . An adaptive control system i s also proposed. 
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Chapter 3 i s devoted to a d e t a i l e d discussion of d e c i s i o n con

t r o l f o r queuing systems. The d i s c r e t e Maximum (Minimum) P r i n c i p l e w i l l 

be applied extensively to obtain the necessary conditions f o r o p t i m a l i t y . 

A gradient technique i s used to compute the s o l u t i o n f o r the r e s u l t i n g 

two-point boundary value problem. This control algorithm i s then applied 

to two optimal ordering problems i n queuing and se r v i c e channelling pro

blems. Several numerical examples., a t r a f f i c c ontrol problem and a com

puter queuing problem, are presented. Extension of the. method to long-

term applications i s discussed, using an adaptive technique known as 

"open-loop-feedback-optimal" strategy. 

In Chapter 4 the regulator-type of control i s discussed. This 

class of control i s mainly confined to server-rate c o n t r o l . An on-line 

adaptive control method i s proposed: Dynamic Programming i s employed 

'for optimization while simultaneously the "sys*tem' i s - i d e n t i f i e d *by l e a s t -

square methods. A suboptimal, but feedback, c o n t r o l i s derived. The 

control strategy i s then a p p l i e d to a t r a f i c c ontrol problem and an 

operation-scheduling problem i n h o s p i t a l s . 

The major conclusions and some suggestions f o r further research 

i n t h i s area are presented i n Chapter 5. 
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2. A GENERALIZED QUEUING MODEL 

2.1 Introduction 

The main concern of this section i s to develop a mathematical 

model for a general queuing system with provision for on-line control. 

Most of the c l a s s i c a l queuing models have been pr o b a b i l i t y models that 

lead to results i n terms of p r o b a b i l i t i e s and expected values. 

In recent years, there has been a tendency towards time-series 

modelling of queuing s y s t e m s . However, the major attempts have been 

aimed at performance analysis rather than operational control of queu

ing systems. Although a number of researchers have applied control 
C 2 3 4) 

theory to the c l a s s i c a l probability model ' ' , the results they obtained 

were more t a i l o r e d for system designing: o f f - l i n e rather than on-line 

control. 

2.2 A Time-series Model for the Queuing System 

I t i s impractical to develop a highly generalized mathematical 

model that includes a l l queuing situati o n s . However, i t i s important 

to obtain a generalized queuing model which includes a l l the general 

characteristics of a queuing process, i . e . input-process, queue-discipline 

and service-mechanism. 

The simplest queuing process consists of: 

1. M p a r a l l e l streams of a r r i v a l customers 

2. N p a r a l l e l queuing channels or waiting l i n e s 

3. P p a r a l l e l service channels or servers 

The queuing phenomenon for such a system i s depicted i n Fig. 2.1. 

We s h a l l refer to i t as an elementary system unit because i t contains 

a l l the essential features of a queuing system. More sophisticated sys

tems can then be represented as a cascade or network of such queuing units. 



ARRIVALS QUEUES SERVERS 

F i g . 2.1 A Fundamental Queuing System 
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A mathematical model f o r such a unit w i l l be developed s h o r t l y . 

But f i r s t of a l l , the following remarks are appropriate: 

1) In the c l a s s i c a l queuing model, to obtain useful a n a l y t i c a l 

r e s u l t s , c e r t a i n p r o b a b i l i t y d i s t r i b u t i o n functions must be 

assumed on the input (poisson) and the s e r v i c e processes (ne

gative-exponential). No such assumptions w i l l be made here. 

2) For on-line control purposes, i t i s s u i t a b l e to have a mathe

matical model whose dynamics are depicted i n d i s c r e t e time u n i t . 

3) Define the following q u a n t i t i e s : 

{....k-1, k, k+1 } : d i s c r e t e sampling time i n s t a n t s , 

not n e c e s s a r i l y equally spaced i n time 

N 

q^ e R : The number of customers waiting i n the N queuing 

channels at the time k 

P 
s, e R : The number of customers each of the P servers xs k 
capable of s e r v i c i n g during [k, k+1) 

M 

X^ e R : The number of customers a r r i v i n g from the M input 

streams during the i n t e r v a l [k, k+1) 

Thus, the dynamics of the queuing process u n i t ( F i g . 2.1) can 

be represented by the model 
\ + l " Ik + \ \ " C k \ < 2"^ 

where.B. i s an (N x M) matrix, [b. .], , i n which b. . = f r a c t i o n of the ar^-k l j k IJ 
r i v i n g customers from the j*"* 1 input channel who joined the i ^ queuing 

channel during [k, k+1), and i s an (N x P) matrix t c ^ ] ^ * n w n i ° h 
A th c_^ =• the f r a c t i o n of the customers served by the 1 servers during 

[k, k+1), that had come from i ^ queuing channel. 

One can detect almost immediately the d i f f e r e n c e between t h i s 

generalized queuing model and the c l a s s i c a l p r o b a b i l i t y model. Most 
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c l a s s i c a l models treat the evolution of the state i n queuing process as a 

stochastic process. For instance, instead of using a queue s i z e , q f c as the state, 

P^q^, £ n) would be used as the state of the model. For real-time control, 

a deterministic formulation of the stochastic queuing process would be 

more convenient. However, as the queuing process i s b a s i c a l l y a highly 

stochastic process, the deterministic model would be inadequate for des

cribing .the.process.over a long time period. Over a long span of time, i n 

order to preserve a correct representation of the actual process, correc

t i v e adjustments would have to be taken on the model. Thus arises the 

need for an adaptive control model. 

2.3 Operational Control of Queuing Systems 

There are b a s i c a l l y two classes of methods used i n the operational 

control of queuing systems: 

"A) Decision Control - where the control i s generally imbedded i n 

the process of optimal selection. The optimal assignment of 

a r r i v i n g customers to the available queuing channel.s i s an ex

ample of this type of control. 

B) Regulator Control - this type of control generally involves set

ting a control mechanism at certain levels so that o v e r a l l op

timal system performance i s obtained. Examples are found i n 

server-rate control and scheduling problems. 

The objective of any type of control for queuing system i s to 

prevent a congestion s i t u a t i o n from bui l d i n g up. A certain performance 

c r i t e r i o n of the system i s to be optimized. In most socio-economical 

problems, a cost would be associated with this performance c r i t e r i o n . 

For instance, there may be a cost associated with the queue.size^.in .another 

s i t u a t i o n we might want to maximize the use of a server though assigning 
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a cost to each i d l e moment of the s e r v e r . However, to define a cost 

at t h i s stage would cause our g e n e r a l i z e d queuing model to l o s e much of 

i t s g e n e r a l i t y . 

In the context of the g e n e r a l i z e d queuing model, the f o l l o w i n g 

remarks are app r o p r i a t e : 

1) The matrices B, , C, i n f a c t represent the queuing and s e r v i c e 

d i s c i p l i n e of .the system. 

For example, b „ = 0 None of the customers from j * " * 1 input 
. . .th 
j o i n s the l queue 

c ^ = 0 =v* 1 se r v e r not s e r v i n g customers 
c *.u -th 
from the l queue 

In a s t a t i s t i c a l sense, b ^ i s the p r o b a b i l i t y of an a r r i v a l 
r , . th . . . . ... . th . , 

customer from the j input j o i n i n g the I queue; c ^ i s the 
p r o b a b i l i t y of a customer "in the queue bein g served "by the 
. t h 
1 s e r v e r 

2) From the c o n t r o l p o i n t of view, any type of d e c i s i o n c o n t r o l 

on the queuing or s e r v i c e d i s c i p l i n e would d i r e c t l y a f f e c t the 

t r a n s i t i o n matrices B^ and C^. 

3) In our g e n e r a l i z e d model, { X ^ } , the a r r i v a l sequence i s represented 

as a disturbance i n p u t whose dynamics are unknown to the c o n t r o l l e r . 

However, as f a r as the c o n t r o l of queues i s concerned, such 

knowledge i s not e s s e n t i a l . Consequently, throughout the r e 

mainder of t h i s t h e s i s , i t s h a l l be assumed that i n f o r m a t i o n 

on the a r r i v a l sequence {X^\ ( e i t h e r p r e d i c t e d or scheduled) 

w i l l be a v a i l a b l e to the c o n t r o l l e r . 

A) In the case of t o t a l l y unknown {X }, the question of op t i m a l 
K. 
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prediction can e a s i l y be studied through time-series analysis 

and a number of operations research techniques (9>10,11) w k i c h 

are beyond the scope of t h i s thesis • -

2.4 Adaptive Control of Queuing Systems 

The philosophy behind the generalized queuing model (2-1) aids 

i n the implementation of different types of control to a queuing system. 

As mentioned e a r l i e r , the ..deterministic nature .of the .model i s inade

quate to represent the actual queuing process which i s b a s i c a l l y a sto

chastic system. I n i t i a l information on such a system i s usually absent, 

or at best based on estimations. An e f f e c t i v e control would be the 

adaptive control process, i n which the state of knowledge about the sys

tem improves as i t evolves. This updating of information i s carried 

out by a learning mechanism. A simple adaptive control system (Fig. 2.2) 

would consist of a sys'tem i d e n t i f i e r , which i d e n t i f i e s the unknown 

system parameters i n the system> and a feedback controller which optimizes 

the performance of the system. A parametrized control i s usually obtained. 

A schematic representation of an adaptive control system for 

the queuing model i s shown i n Fig. 2.3. The two classes of control, 

regulator and decision type, are applied simultaneously to achieve an 

o v e r a l l on-line control for the queuing process. 

There, are many instants i n the control of a queuing system 

where an adaptive scheme would be useful. Typical examples are found . 

i n cases where the actual a r r i v a l sequence may d i f f e r s i g n i f i c a n t l y from 

the predicted values due to some non-anticipated disturbances. In the 

case where the regulator type of control i s carried out simultaneously 

but separately from decision control, knowledge of the effect of each 

control on the model parameters helps to establish an ov e r a l l optimal 
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control for the system. 

2.5 Discussion 

A generalized queuing model which includes a l l the basic fea

tures of a t y p i c a l queuing process has been developed. Using such a model, 

i t i s possible to obtain various control strategies to the queuing system. 

The complexity of most queuing systems makes i t necessary to separate 

the applicable control strategies into two major types: decision and 

regulator control. In the remainder of this t h esis, these two types of 

control w i l l be considered separately. Adaptive control techniques can 

be applied to both methods. 
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3. OPTIMAL DECISION CONTROL FOR QUEUING SYSTEMS 

3.1 I n t r o d u c t i o n 

D e c i s i o n c o n t r o l i n a queuing system a r i s e s whenever a s e l e c t i o n 

process e x i s t s i n the queuing order or s e r v i c e d i s c i p l i n e . Customers 

e n t e r i n g i n t o a queuing system are faced w i t h a number of p o s s i b l e queues; 

customers emerging from queues are faced w i t h the choice of a s e r v e r . A 

good example i s provided by a shopper checking out through a number of 

ca s h i e r s i n a supermarket. Before j o i n i n g any queue, each shopper makes 

a d e c i s i o n as to which queue would provide the f a s t e s t s e r v i c e . Very 

o f t e n a short queue does not imply f a s t s e r v i c e . This process of o p t i m a l 

s e l e c t i o n can be formulated as a d e c i s i o n c o n t r o l problem. 

I r e l a n d e,t _ a i . and Fsogbue^"^ have handled .problems of .this 

nature through the a p p l i c a t i o n of c o n t r o l to the c l a s s i c a l p r o b a b i l i t y 

model. A t i m e - s e r i e s model w i t h o n - l i n e c o n t r o l features w i l l be des

c r i b e d here. 

3.2 Mathematical Formulation of the Optimal D e c i s i o n C o n t r o l Problem 

Consider a d e c i s i o n c o n t r o l system which can be expressed as 

x k + l ~ X k = f ^ \ ' \ ^ k = 1,...,K (3-1) 

where x^ e R , i s the system s t a t e and 

" k E L m 

/o 
0 1 
• > • 

0 0 
\ 0/ \ o l 

I0\ 
0 

eR m i s the (3-2) 

d e c i s i o n c o n t r o l . 

As i s u s u a l , the performance measure for. the o p t i m a l s e l e c t i o n 
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process w i l l be expressed i n the form 

K 
J = 2L I(x , u ) + 0 ( x R , K+l) (3-3) 

j = l J 

Hence, we can formulate the decision control problem as a multistage de

c i s i o n problem: 

Given: x k + 1 - x f c = f( x f c , û .) ; c, x̂ . e R n, e R™ (3-1) 

with x^ = c 

and Uĵ . e L m (3-2) 

Find a c o n t r o l sequence {u.} . _ which would minimize the cost 
i i — I , . . . K 

f u n c t i o n a l J . (3-3) 

3.3 An Optimal Decision Control Algorithm 

Looking at the problem stated, one tends to conclude that the 
(12) 

s o l u t i o n n a t u r a l l y involves e i t h e r dynamic programming or the Discrete 
(22) 

(Maximum) Minimum P r i n c i p l e . The high dimensionality of the problem 

p r a c t i c a l l y eliminates the p o s s i b i l i t y of applying the exact Dynamic Pro-

gramming technique (Appendix I I ) . The p e c u l i a r form of control constraint 
(19) 

(3-2) makes any dynamic programming technique , such as l i n e a r feedback 

co n t r o l , formidably awkward to implement. 

When applying the Discrete Minimum P r i n c i p l e , there are c e r t a i n 

convexity conditions the system (3-1), (3-2), (3-3) has to s a t i s f y ' • 

Because of the p e c u l i a r structure of the admissible control set L , such 
m 

convexity conditions are not s a t i s f i e d here. Nevertheless, the convexity 

condition can be relaxed i n defining the Hamiltonian function and obtaining 

the necessary conditions f o r o p t i m a l i t y . With t h i s i n mind, the Hamil

tonian function i s defined: 
H ( v v pk+r k ) " I ( v V + pk+i f ( v V ( 3- 4 ) 
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where i s the costate vector. . 

^. . . . •-• (Appendix I) ' According to the Discrete Minimum P r i n c i p l e , i t 

i ^ l k - l K l s t' i e °P t :'- m a^ control sequence and | x* | K-t-1 l s t ^ e 

optimal t r a j e c t o r y , the following r e l a t i o n s hold: 

(i ) Canonical Equations: 

8 H 

k+1 9 pk+: 
f ( x * , u*) (3-5) 

Pk+1 p £ 
9 H _ 

3 x k 
(3-6) 

where f ( x ) | ^ = f(x*) 

( i i ) Boundary Conditions: 

x* 
1 

3* = - — 0(x* K+1) K+1 9 x * , K K+1. ' K+i 

(3-7) 

(3-8) 

( i i i ) Necessary Condition of Optimality 

H < * V P £ + l ' k) H(x*,u k, P * + 1 , k) V y e V ( 3 ~ 9 ) 

k = 1, 2, K 

An i t e r a t i v e s o l u t i o n to t h i s non-linear Two-Point-Boundary-
(25) 

Value-Problem (TPBVP) can be obtained through gradient techniques . 

The algorithm i s i n i t i a l i z e d with a nominal control sequence ("£} ^ 

This i s used to generate {x£} k = 1 K + 1 i n t h e f o r w a r d i t e r a t i o n 

of (3-5), (3-7), and {p?) , _", , -.in the backward i t e r a t i o n of 
K. iC 1 ) • > « j Jx "i X 

(3-6), (3-8). ^ H ( \ > \> P£ + 1' k ^ k = 1 K ° a n t h e n b e evaluated 

from (3 - 4 ). The new con t r o l sequence i s generated by changing the com

ponents i n the current control so as to decrease the Hamiltonian f u n c t i o n . 

The number of control elements at which adjustment i s made i s determined 
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by a predetermined step s i z e f a c t o r . The complete algorithm takes the 

form: 

1) Start with control function {u.1} , .. 
, K k = 1, .. . K 

2) Determine {x.1} . , , T r , » N from (3-5), (3-7) 

k k = 1,. . . , (K + 1) 

3) Determine {p^} k _'•]_ ( K + 1 ) f r ° m ^ 3 ~ 6 ^ » ( 3~ 8) 

4) Determine the Hamil.tonian ,{H(x^, u^, P^-^ k).} ^=1 
from (3-4) 

5) Determine the "optimal" Hamiltonian values { H ^ } K _^ ^ K 

whe 
" i A . i i i . ere Hfc = H < V V P k + 1»k) 

A " i i i i where g = arg {Max [21 | H£ - H(x£, i ^ , P f c + 1» k ) I « 

and = arg {Min H(x£, K, P^ + 1» k ) } 
£e L 

m 

where "arg" i s used to denote the value of the argument at 

which minimization i s achieved. 

6) Determine the integer "step s i z e " g 

I 

L 
a k=i 

K . 
Sh £_ |H(x£, U£, p j + 1 , k) |]} 

k=l 

6h: a predetermined step s i z e f a c t o r 

|•| = Absolute value of a vector 

7) Update Control Function: 
u^ = n k k = 1, . . ., g 

= k = g + l , . . . , K 

8) Return to Step (2) 
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Convergence occurs when 

K 
ZL 
k=l 

71 , i+1 i+1 i+1 . . K 
- Z _ H ( x J , u J , p^ + 1, k)| $ e 

k=l 

where e i s a small positive number. 

I t should be pointed out here that the integer step size g i s 

i n fact adjusted to l i m i t :the o v e r a l l change i n the Hamiltonian within a 

predetermined step size factor 6h. Further refinements such as variable 

step size can also be included. 

I t i s also interesting to note that the control constraint 

(3-2) i s automatically s a t i s f i e d i n i t e r a t i o n step (5) of the algorithm. 

Hence the extremal solution for our relaxed problem w i l l also be an extre

mal solution for the o r i g i n a l problem. 

3.4 An I l l u s t r a t i v e Example 

We s h a l l demonstrate the technique by a simple numerical ex

ample for which the exact solution i s e a s i l y obtainable by dynamic pro

gramming. This example i s a simple decision control for queuing channels, 

to be discussed i n a following section. 

Consider the cost, 

where 

J = Z L fa. (x. + q) -6] + ( x g + q ) ' F(x g + q j 
i = l 

x i+1 x . + u . : x., u. e R 

u. e L 2 

10.0 
1.10 
20 q = F = 1 0 

0 1 

,3L Ij2^««*^ .5 



!7 
Table 3.1 Complete Dynamic Programming Solution f o r 

Queuing Channel Decision Control Example 

3 5 

40 
T 

-1 0 
# 

0 
5 

64 

50 

0 
30 
1 
0 

40 
r • 

1 
0 

40 

34 
1 
0 

44 
1 
0 

44 
1 
0 

34-

52 
1 
0 

62 

l ' 

0 

62 

1 
0 

52 
1 
0 

r n 3 2 

4 
1 

62 
0 
0 

0 
1 

72 r- n 72 
2 

0 
o" 

1 

r- - 62 
3 
0 

42 
0 
1 

34 

# • 

Admissible state. 
Minimum cost of reaching the f i n a l . s t a t e at K = 6 
for any given state 
Optimal control (or controls where both are optimal) 



Table 3-2 Optimal Decision Control Solution 
for Example in 3.4 

I N I T I A L 
T R A J E C T O R Y 

K X ( K ) i n K ) 

O P T I M A L 
T R A J E C T O R Y 

K X ( K ) U ( K ) 

0 

0 

0 

1 

1 

1 

1 

2 

2 

2 

2 

3 

0 

1 

1 

0 

0 ' 

1 

1 

0 

0' 

1 

5 

0 

0 

1 

0 

2 

0 

3 

0 

u 
0 

4 

1 

0 

0 

0 

.0 

0 

1 

TOTAL C O S T = 90 . T O T A L - C O S T = 62 

^ • c o n v e r g e n c e a f t e r 3 i t e r a t i o n s 
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The complete s o l u t i o n v i a Dynamic Programming (Appendix II) i s shown i n 

table 3-1. The optimal s o l u t i o n v i a Discrete Minimum P r i n c i p l e and gra

dient technique i s shown i n table 3-2. 

3.5 A p p l i c a t i o n I 

3.5.1 An Optimal Decision Control Problem f o r Queuing Channels 

The type of decision control required i n a queuing problem i s 

b a s i c a l l y that of s e l e c t i n g an appropriate queue for an incoming cus

tomer. Let us assume that associated with each customer i s a queuing 

cost a, such that the cost of j o i n i n g a queue of s i z e q w i l l be qa. 

We s h a l l also assign a "reward", B to each queuing channel. For instance, 

a high reward w i l l be assigned to a f a s t moving queue. In general, a 

customer has to decide how much "reward" he can obtain from j o i n i n g a cer

t a i n queue a f t e r paying for the queuing cost. 

-Consider -the -situation -where -K -customers-arrive --at -n p a r a l l e l 

queuing channels. Let x^ e R n denote the number of customers who have 

already joined the queues on the a r r i v a l of the k*^ customer, then the 

queue s e l e c t i o n process can be w r i t t e n as 

x k + 1 = x k + U k (3-10) 

where u. e L i s the decision vector: L i s the set of n-dimensional u n i t it n n 
vectors'defined i n (3-2). 

th 

The t o t a l cost of j o i n i n g any one queue for the k customer 

would be u^ [a^ (x^ + q) - B] where i s the queuing cost of the customerj 

3 e R n i s the reward from the queuing channels, and q i s the queue s i z e 

before the a r r i v a l of the K customers. 

The o v e r a l l cost for assigning the K customers to the queuing 

channels would be 

K 
J = 2L [a. (x. + q) - 3 ] + ( x ^ + q)' F ( x R + 1 + q) i = l 

(3-11) 
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Applying the Discrete Minimum P r i n c i p l e , we obtain for the Hamiltonian: 

H ( V \ P k +i» k ) = ^ l \ ( x k + q ) - B ] + pk+i \ ( 3 " 1 2 ) 

p k + l = P k - \ \ ( 3 " 1 3 ) 

P K + 1 = 2 F <*K+1 + <3-14> 

H ( V V p
k + r k ) * H ( V V p k + r k ) V \ e L

n
 ( 3 _ 1 5 ) 

where x̂ ., û _, ,p.̂  are evaluated ..along the optimal trajectory. The algorithm 

from section 3.3 can then be applied. 

3.5.2 Example - Optimal Queuing of Computer Batch Jobs 

An i n t e r e s t i n g application of decision control i s found i n the 

optimal queuing of computer batch jobs. Programs with d i f f e r e n t p r i o r i t i e s 

are submitted for service from a number of peripheral devices. Various 

devices have dif f e r e n t execution speed. The p r i o r i t y of a job i s a func

tion of waiting cost. Tt "is desirable to match the r e l a t i v e p r i o r i t i e s 

of different jobs to the e f f i c i e n c y of the devices so as to achieve an 

o v e r a l l optimal system performance. 

Applying the model discussed i n the l a s t section, would de

note the p r i o r i t y of the k*"*1 job submitted. 8 r e f l e c t s the e f f i c i e n c y of 

a device, q i s the number of jobs already l i n e d up for service from the 

devices before the a r r i v a l of the batch of, say K jobs. F would measure 

the t o t a l cost of running the jobs. 

A numerical example i s shown below for optimal queuing of 10 

jobs to 3 devices. The values of some of the parameters are: 

{ \ } k = 1,...,10 = ( 1 , 4 j 1 0 , 5' 2' 6 ' 2' 8' 4' 1 2 ) 

6 = 
10 
20 
30 V 

• 0 0 1 
0 3 1 0 
1 0 0 
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0 
q = 0 

3 

1 0 0' 
F = 0 2 0 

0 0 3 

A number of runs with d i f f e r e n t i n i t i a l c ontrol functions are made. The 

complete r e s u l t s are shown i n F i g . 3-1 and Table 3-3. In a l l the runs, 

convergence i s achieved i n less than ten - i t e r a t i o n s . In addition, i t i s 

noted that the f i n a l optimal p o l i c i e s are d i f f e r e n t i n a l l four cases. 

This i s due to the a b i l i t y of the gradient technique to track l o c a l 

o p t i m a l i t i e s . 

3.5.3 Remarks 

The control obtained above i s obviously an open loop c o n t r o l . 

An assumption made i s that {OL } _ must be known. For on-line 
K K — JL , . . . ,Jx 

operation, one would prefer a feedback type of c o n t r o l . However., .one .can 

r e a d i l y extend the above algorithm to an on-line a p p l i c a t i o n through an 

open-loop-feedback-optimal (0LF0) s t r a t e g y ^ 1 4 ' 2 " ^ : At stage k, only the 

f i r s t element u^ of the optimal open-loop control sequence (u^} ^-j-]^ 

i s transmitted. At the next stage k + 1 , information on the system 

parameters, such as 3> o r q> c a n be updated. A new open-loop contro 

sequence (u.}' . _ , - i s thus generated. 
1 1 - K T 1 ) . i t j R 

For long term optimizations, where K -> °°, a " s h i f t i n g i n t e r v a l " 

can be used. In t h i s case i t i s assumed that at a l l times the c o n t r o l l e r 

can only see K i n t e r v a l s ahead, and an open-loop control i s obtained f o r 

that i n t e r v a l . The procedure i s repeated as the stage progresses. Of 

course, the o v e r a l l decision control obtained w i l l be sub-optimal, but 

from a computational point of view, such a scheme i s desi r a b l e for on

l i n e operations. 
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T a b l e 3-3 O p t i m a l Queu ing P o l i c i e s f o r Computer B a t c h J o b s 

J RUN 1 RUN 2 RUN 3 RUN 4 

0 IN IT IAL FINAL IN IT IAL F INAL I N I T I A L FINAL IN IT IAL FINAL 

B POLICY POLICY POLICY POLICY POLICY POLICY POLICY POLICY 

1 (1 , 0 , 0 ) * (0,0,1) (0,1,0) (0,0,1) (1,0,0) (0,0,1) (0,0,1) (0,0,1) 

2; (0,1,0) (0,1,0) (0,1,0) (0,0,1)! (1,0,0) (0,0,1) (0,1,0) (0,1,0) 

3 (0,0,1) (0,1,0) (Q,1,0) (1,0,0) (1,0,0) (0,1,0) (1,0,0) (1,0,0) 

4 (1,0,0) (0,1,0) (0,1,6) (1,0,0) (1,0,0) (0,1,0) (0,0,1) (1,0,0) 

5 (0,1,0) (0,1,0) (0,1,0) (1,0,0) (1,0,0) (0,1,0) (0,1,0) (0,0,1) 

6 (0,0,1) -(1,'0,0)' (0,1,0)' '(0,1,'0)- (i,o,-o) • (0,1,0)- (i/o/o) • -(i,'0,o)-

7 (1,0,0) (0,1,0) (0,1,0) (1,0,0) (1,0,0) (0,1,0) (0,0,1) (1,0,0) 

8 (0,1,0) (1,0,0) (0,1,0) (0,1,0) (1,0,0) (1,0,0) (0,1,0) (0,1,0) 

9 (0,0,1) (0,0,1) (0,1,0) (0,1,0) (1,0,0) (1,0,0) (1,0,0) (0,1,0) 

10 (1,0,0) (1,0,0) (0,1,0) (0,1,0) (1,0,0) (1 ,0 ,0 ) (0,0,1) (0,1,0) 
No. o f 

I t n s . 
10 ,7 . 6 8 

I n i t i a l 

Cos t 89.0 • 312.0 312.0 101.0 

F i n a l 

C o s t 29 .0 29.0 26.0 29.0 

: The p o s i t i o n o f "1" d e n o t e s t h e d e v i c e number t o w h i c h t h e job 
i s a s s i g n e d . 
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3.6 Application I I 

3.6.1 An Optimal Decision Control Problem for Service Channels 

A different kind of decision control problem occurs i n the opera

ti o n of service channels. Here the choice i s usually between operating 

or shutting down a server. To keep a server active requires both operational 

and maintenance costs. On the other hand, to shut down a server at the 

expense of customers waiting i n queues would incur another cost to the 

server. 

Hence, the system performance function would consist of two 

terms: Total cost to the server system = ( I d l i n g cost) + (Operational 

cost) (3-16) 

This cost structure w i l l be applied to a p r a c t i c a l example i n the following 

section. 

3.6.2 -Example - -Optimal -Gontrol-o-f T-ra-ff-ic 'Congestion at "an -Inter 
section 

A large amount of work on the t r a f f i c control of an i n t e r s e c t i o n 
(5 7) 

' has been done previously. The c l a s s i c a l p r o b a b i l i t y model i s used 

i n p r a c t i c a l l y a l l of the cases. This example w i l l adequately demonstrate 

the more r e a l i s t i c type of control one gets when the time-series model 

i s employed. 
Consider an intersection of two one-way t r a f f i c streams. 

2 
l e t : x^ e R denote the queue size at the intersection.at time k 

2 

A e R denote the number of vehicles a r r i v i n g i n the i n t e r v a l [k, k+1) 

s denotes the number of vehicles allowed to pass the in t e r s e c t i o n i n 

each green cycle of period equal to the i n t e r v a l [k, k+1). 

I f û . i s the decision control where u^ e L2 = { 1 1 ' o l } ' t' i e dynamics 
of the process can thus be expressed as 
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x. (3-17) k + 1 
Adopting the cost structure established i n (3-16), the following cost 

functions are defined: 
2 

c^ e R : The cost each t r a f f i c stream "pays" for a green 

cycle. This i s the operational cost of the system. 

Q̂ , A(2 x 2) diagonal matrix whose elements are the queuing 

cost of each stream. This represents the cost each stream "pays" for a 

red cycle, which also r e f l e c t s the i d l i n g cost of the intersection l i g h t . 

Hence, the cost functional can be written as: K - l 
J = Y [x Q. x. + u C ] + x' T x,, 

4—^ i l l i i K K 1=1 
(3-18) 

Before applying the optimization algorithm of 3.3, i t w i l l be 

assumed that a predicted record of vehicle a r r i v a l s { X, ) , . ., 
I k l k = 1,...,K-1 

i s available K time instants ahead. A large number of current time-series 
-, • i • (9,10,11) .. _ , 1_. analysis techniques are available for such a prediction. 

Application of the Discrete Minimum P r i n c i p l e yields the Hamil-

tonian: 

H ( v v p k + i > k ) = x k Q k \ + pk+i ( \ - s V K ck ( 3 _ 1 9 ) 

and costate equation: 

P k + 1 + 2 % \ 

with Boundary Conditions: 

K 2 T 

x^ = x 

(3-20) 

(3-21) 

(3-22) 

values: 

In the simulation below, the parameters assume the following 

1 •0 1 10 
- = T ; c = ; x = 

0 1 1 30 
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s = 10 

In a d d i t i o n , i n order to simulate the e f f e c t of having inaccurate 

information on the a r r i v a l s {A }, a noisy measurement on {A. }, i s assumed: 

K. K. 

\ ~-\ + ^ k 

where y = noise index 

£ = a random sequence, \<rlth | £ | < 1 
K. K. 

Simulation r e s u l t s f or 20 time units are shown i n figures 3.2, 3.3. 

In F i g . 3.4, the e f f e c t of an open loop c o n t r o l based on inaccurate pre

d i c t i o n on the a r r i v a l s i s studied. I t i s apparent that for noise index 

y < 2, the control resembles the optimal control where y = 0. 

I t should also be noted that with zero noise index, the control 

obtained i s optimal feedback c o n t r o l . This property i s demonstrated i n 

the complete r e s u l t shown i n F i g . 3.3. 

3.6.3 Remarks 

Remarks s i m i l a r to those found i n 3.5.3 can be applied to t h i s 

section, that i s a "short-term open-loop-feedback-optimal" control strategy 

can be employed i n long-term on-line a p p l i c a t i o n s . Here, the information 

needed to update would be the v e h i c l e a r r i v a l sequence * ^ n addition, 

other parameters such as and s can also be updated as time progresses 

to accommodate the varying t r a f f i c demands of the day. 

F i n a l l y , one can e a s i l y extend the above a p p l i c a t i o n to a t r a f f i c 

merging problem i n v o l v i n g more than 2 streams of t r a f f i c . 

3.7 Discussion 

The decision control problem i n queuing system has been f o r 

mulated and the necessary condition of o p t i m a l i t y have been derived by 

the a p p l i c a t i o n of the Discrete Minimum P r i n c i p l e . Solutions of the r e s u l 

t i n g TPBVP are obtained using gradient techniques. The s i m p l i c i t y of the 



2 7 

F i g . 3 . 2 C o n v e r g e n c e o f t h e P e r f o r m a n c e F u n c t i o n f o r t h e 

T r a f f i c I n t e r s e c t i o n C o n t r o l - P r o b l e m 
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suggested algorithm offers a f e a s i b l e , i f subopt-imal, solution to a problem 

which otherwise would have been formidable using dynamic programming. 

A fringe benefit of the algorithm i s the p o s s i b i l i t y of exten

ding i t to on-line control applications. Using the " s h i f t i n g i n t e r v a l " 

and open-loop-feedback-optimal technique, a short term adaptive scheme 

can be obtained. 

F i n a l l y , one must observe the generality of the decision control 

model. The v e r s a t i l i t y of the model l i e s i n the d e f i n i t i o n of the per

formance index (3-3). One can e a s i l y adapt the algorithm to accommodate 

different decision control situations by defining an appropriate cost 

model. This has been exemplified by the two applications i n this chapter. 
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4. OPTIMAL AND ADAPTIVE REGULATOR CONTROL FOR QUEUING SYSTEMS 

4.1 Introduction 

The previous chapter treated the problem of dec i s i o n c o n t r o l 

i n queuing systems. As mentioned i n Chapter 2, i n queuing systems we 

are faced„wi„th another ..class of .control, .namely, .regulator type of 

con t r o l . This type of control attempts to optimize the o v e r a l l system 

performance by manipulation of a control mechanism, us u a l l y the s e r v i c e 

mechanism. The rest of th i s chapter w i l l devote i t s e l f to such a problem. 

The generalized queuing model developed i n Chapter 2 w i l l be adopted. 

Both the optimal and adaptive c o n t r o l s t r a t e g i e s w i l l be discussed. 

The generalized queuing model (2-1) i s rewritten 

q k + 1 = q k + \ \ " °k U k 

when q^ e Rn, i s the queue s i z e at k 

e Rm> i s the a r r i v a l i n [k, k+1), and i s assumed known or pre

di c t a b l e 

u^ e R P, i s the server capacity control 

B^, C^ are (n x m) and (n x p) matrices r e s p e c t i v e l y . 

The r e s u l t s of decision control of the queuing or se r v i c e channels w i l l 

be r e g i s t e r e d i n B. and C, . For instance, b. . of B. w i l l denote the 
b k k I J k 

f r a c t i o n of customers from the a r r i v a l streams that selected the i * " 

queue: c , of C, w i l l denote the f r a c t i o n of customers from the l^1 

x l k 

queuing channel that was served by the 1 ^ server. As f a r as the server 

control i s concerned, B^ and C^ must be known, or i d e n t i f i e d i f unknown, 

before an optimal s o l u t i o n can be evaluated. 
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In the following sections, the question of i d e n t i f y i n g B, and 

w i l l be treated separately from the optimal control problem. Combin

ing the two schemes, an adaptive control algorithm i s obtained. 

4.2 An On-Line I d e n t i f i e r for Queuing Systems 

Assume that B^ and C^ are either constant or quasi-stationary. 

Rewriting the queuing model 

% + l [I • B : C] •= S 'k+1 (4-1) 

T A 

Where S = [I j B i C] i s an n x (n + m + p) matrix and I i s an (n x n) 

unit matrix. 
r V 

\ 
k+1 an (n + m + p) - vector 

After making k observations of q^, we have 

S or Qk = 0 k S (4-2) 

where (.)' denotes the transpose of a vector, 

Qk i s a (k x n) matrix 

0^ i s a (k x (n + m + p)) matrix 

Note the s i m i l a r i t y of (4-2) to the observation equation i n state 



33 

(23) estimation problems 

Z k = \ X ( 4 _ 3 ) 

where Z, = observation vector k 
H. = observation matrix k 

x = unknown state to be estimated 

Using the l e a s t squares state estimation technique i n (4-3) gives 

*k - ( H k V ' " 1 H k \ 

where x^ = estimated value of x a f t e r k observations, 

A matrix version of the above l e a s t squares estimation (MLSE) can s i m i 

l a r l y be derived (Appendix III) f o r (4-2). 

We have S. = ( 6 T 6. ) - 1 0.T Q (4-4) 

which minimizes the estimation error f u n c t i o n a l 

1=1 

= Tr [(Q k - 0 k S k) (Q k - 0 k S k ) T ] (4-5) 

where Tr (.) denotes the trace of a matrix. A sequential form f o r (4-4) 

i s derived; t h i s makes the i d e n t i f i e r an on-line i d e n t i f i e r f o r the system: 

when _, 
p k + i = p k - p k W ( I + p k W ~ ^ ' k + i p k <4"7> 

where S k: an n x (n + m + p) matrix 

P k: an ( n + m + p ) x ( n + m + p ) matrix 

P 
o i s unknown. However, a number of simulation runs with P = 1 

o 
y i e l d f a i r l y rapid convergence f or the algorithm. Of course there are 

(23) 
b e t t e r ways of f i n d i n g P^ , but such s o p h i s t i c a t i o n i s beyond the 
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scope of th i s t h e s i s . A fringe b e n e f i t of the MLSE technique i s that 

(I + l s n 0 W 3 s c a-'- a r quantity. The rather arduous job 

of matrix inversion i n vector LSE i s eliminated here. 

F i n a l l y , i t should be noted that i t has been assumed that the 

queue s i z e s , q^, can be measured d i r e c t l y . This i s n o t too unreasonable 

an assumption i n queuing systems. For low system noise l e v e l and small 

.fluctuations ,o.f ..the .mo.de 1,parameters,, the MLSE .can . give f a i r l y s a t i s f a c t o r y 

r e s u l t s as w i l l be demonstrated by an a p p l i c a t i o n below. 

4.3 An On-Line Adaptive Co n t r o l l e r for Queuing Systems 

The s t o c h a s t i c s e r v i c e - r a t e c o n t r o l problem may be stated: 

Find a se r v i c e - r a t e sequence: ( u, \ , T„ ., which minimizes the 
N \ K. J k=o, . . . ,K-1 

performance index 

K - l 
J = E 

{q, > , „ i=0 k k=o,...,K 

where E {f(x)} denotes the expected values of the function f ( . ) of the 
x 

random v a r i a b l e x. 

Q^ i s an (n x n) matrix, = Cost of queuing i n the system 

R^ i s an (n x p) matrix = Cost of operation of server 

q. e R n; u. E R P 

Due to the unknown parameters i n the systems, the predicted system model 

w i l l be 

q k + l k• " \ + \ k A k " C k k \ ( 4 " 9 ) 

where f. 
J 

= expected value of the function f at time j , based on the 

information a v a i l a b l e up to and i n c l u d i n g time i 

q *k+l k " E ( q k + l | q k ' q k - l ' q k - 2 ' " - ' q 0 ; \ ' V l U 0 , V A k - l " " V 
q k + l 

http://mo.de
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(qk+l %' u w V k' k> V (4 -10) 

k+1 

B k | k ' Scjk a r e t * i e i d e n t i f i e d v a l u e s o f and m a t r i c e s 

a f t e r k measurements . E q u a t i o n (4 -10) i s a d i r e c t consequence o f the 

m a r k o v i a n n a t u r e o f the mode l ( 4 - 9 ) . {A, } , . ... . . . w i l l be assumed 
k k = o , l , . . , ( K - l ) 

known or p r e d i c t a b l e . 

U s i n g dynamic programming (Append ix I V ) , a s t o c h a s t i c f e e d b a c k 

c o n t r o l a l g o r i t h m 

; j=k , k + 1 , . . . , K - l ( A - l l ) k J 
, x . + b . 

k J J 
can be o b t a i n e d where the c o n t r o l g a i n s A.. | ^ and b j j ^ a r e a ( P ™ ) m a t r i x 

and a p - v e c t o r r e s p e c t i v e l y . F o r j = k, k + 1 , . . . K - l , 

*j|k- nj|k \ | k V l | k 

A -1 r £ T 
b. h = A. |, [C, .3. k j.k k k ( m j + l 1 + L -4.1 

k J + l . 
k \ 

, A.)] 
k 2 

( 4 -12 ) 

(4 -13 ) 

w i t h 

A j | k - R j + ak|k V i k cklk (4 -14) 

\ | k k E ( B k | \ > v Vs ilk" E ( c k|v v V (4"15) 

j j + k | k a n d m j + i | k 
L . 1 T i, and m . , , i i _ a r e o b t a i n e d f rom the f o l l o w i n g r e c u r s i v e r e l a t i o n s : 

Lj|k = Qj + [ I " Lj+l|k Scjk V k ' ^ l k 3 Lj+l|k (4 -16 ) 

mj|k = [ I - Lj+l|k Scjk Aj|k ^|k ] C mi+l|k + L

j + l | k \ | k V <4~17> 

w i t h the boundary c o n d i t i o n s : 

^K|k - T > 0 

" K j k = ° 

(4 -18) 

(4 -19 ) 



36 

I t i s noted that the sequence treated as a known disturb an 

input i n (4-9), i s assumed available at any stage, as shown i n Equation 

(4-17). This assumption i s essential i f the control (4-11) i s to be op

timal; otherwise, a suboptimal control would be obtained. 

An adaptive control i s obtained when the feedback control (4-11) 

i s applied simultaneously with the least-squares i d e n t i f i e r of 4.2 to 

the system. 

4.4 Application I 

In section 3.6, we considered the t r a f f i c control problem 

using decision control. In th i s section, we s h a l l investigate the 

application of regulator control to another t r a f f i c problem: the merging 

problem. 

4.4.1 Optimal T r a f f i c Control for a Highway Merging Problem 

Consider a section of a highway consisting of •n-merging-points 

located i n series (Fig. 4.1), assuming that a l l the t r a f f i c i s i n the 

same direc i t o n . Furthermore, the merge points are assumed equally spaced; 

and a l l the vehicles to move at the same constant speed, or the same 

constant average speed. The dynamics involved i n vehicle acceleration 

w i l l be ignored. 

Let: x, E R n denote the t o t a l number of vehicles at each of the k 
merging points at time k. 

X̂_ E R n denote the t o t a l number ,of vehicles a r r i v i n g at the 

merging points i n the time i n t e r v a l [k, k+1). 
s, E R n denotes the number of vehicles released from each k 
merge point during [k, k+1). 

p > 0, denotes the number of time units each vehicle takes to 

tra v e l from one merge point to the next. In other words, the 
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average speed of the vehicles i s given by: 

Average vehicle speed = Distance between successive merge points 
P 

(4-20) 
Hence, at time k, the t o t a l input to the i ^ 1 merge point w i l l be 

Aj^ + s^_p where the superscript i denotes the i * * * 1 element of a vector. .th 

The o v e r a l l merging process can be represented by 

x, + A. + s, - s, 

where s 

"k+1 "k 
A 

k-p 

(4-21) 

(4-22) 

k ' "k-p "k 

0 
1 
k-p 
2 

s 
k-p 

n-1 
k-p 

denotes the input into any junction from the preceding one. 

To obtain an optimal o v e r a l l control of the vehicle merge, we 

s h a l l formulate the following control problem: 

Given, the system dynamics represented by (4-21), (4-22), f i n d a control 

sequence {s, } , which w i l l minimize the quadratic cost function 
K, K. X ^ • • • 9 ix 

K 
J = 

i= l 
(x! Q. x. + s. R. s.) + x,' T x. 

1 1 1 1 1 1 K+1 K+1 (4-23) 

where Q̂ , R^,'which are (n x n) diagonal matrices, denote respectively 

the vehicle waiting cost and the cost of releasing vehicles at the junc

tions. T, a p o s i t i v e d e f i n i t e (n x n) matrix, i s the cost of incomplete 

vehicle release at the end of the planning horizon [1, K] . 

Employing the control algorithm discussed i n 4.3, we obtain the 

following feedback control strategy: 

. s k = [ \ + W 1 [ m k + i + pk+i ( x k + ( 4 ~ 2 4 ) 
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where 6, = X, + s. 
k k k-p 

(4-25) 

P k 5 mk a r e c o i n P u t e d from the recursive relations 

P k " \ + I'1 " P k + 1 Pk+1 

m k = [ I " Pk+1 A " k ] [ m k+1 + Pk+1 6 k ] 

where 
A = \ + pk+i 

and the boundary conditons 

PK+1 " T > ° 

(4-26) 

(4-27) 

(4-28) 

(4-29) 

(4-30) "K+l = ° 

A system with 4 merging junctions and different a r r i v a l i n 

te n s i t i e s at each junciton i s simulated with the following parameter 

values: 

10.0 .0 0 0 
0 10.0 0 0 
0 0 10.0 0 
0 0 0 10.0 

20.0 0 0 0 
0 20.0 0 0 
0 0 20.0 0 
0 0 0 20.0 

T = 
30.0 0 0 0 

•0 30.0 0 0 
0 0 30.0 0 
0 0 0 30.0 

K = 24 

Simulation results for p = 10 and p = 25 are shown i n Table 

4-1 and Table 4-2 respectively. In Fig. 4.2, the r e l a t i o n between the 

junction delay time p and the t o t a l cost i s studied. I t appears that for 

a l l p >. K, the t o t a l cost stays constant. In other words, the junctions 

are i n effect decoupled as far as the o v e r a l l control i s concerned. 

However, for p < K, the control algorithm (4-24) to (4-30) i s i n fact 

repeated once every p time units i n order to update s^. Consequently, a 
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M E R G I N G P O I N T N O . 1 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 1 . 5 0 3 0 
2 2 . 2 1 1 9 
3 1 1 . 4 1 8 
4 2 7 . 0 2 1 
5 2 5 . 6 1 9 
6 1 2 . 1 2 1 3 
7 6 . 1 1 9 
8 3 . 8 5 
9 0 . 6 3 

1 0 6 . 3 2 
1 1 1 8 . 7 1 8 
1 2 1 8 . 7 1 6 
1 3 1 1 . 9 1 2 
1 4 4 . 8 8 
1 5 7 . 4 7 
1 6 2 . 4 6 
1 7 4 . 0 6 
1 8 1 0 . 0 9 
1 9 1 7 . 1 9 
2 0 8 . 9 5 
2 1 1 1 . 1 2 1 7 
2 2 1 4 . 6 1 4 
2 3 1 3 . 6 1 2 
2 4 1 0 . 7 1 0 

2 5 7 

M E R G I N G P O I N T N O . 2 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 3 . 5 0 4 6 
2 1 9 . 1 7 3 7 
3 2 4 . 9 3 4 
4 9 . 9 2 9 
5 2 8 . 0 3 1 
6 1 7 . 7 2 7 
7 1 4 . 7 2 4 

8 1 6 . 7 2 2 
9 2 . 1 1 1 6 

1 0 2 6 . 7 1 4 
1 1 1 6 . 2 9 5 3 
1 2 1 2 . 2 2 4 2 
1 3 1 5 . 1 1 3 6 
1 4 9 . 8 3 3 
1 5 1 8 . 5 3 0 
1 6 8 . 1 2 2 5 
1 7 1 4 . 8 2 2 
1 8 1 2 . 9 1 8 
1 9 1 0 . 8 1 5 
2 0 3 2 . 6 1 3 
2 1 1 3 . 2 7 4 0 
2 2 1 3 . 1 8 3 1 
2 3 6 . 1 6 2 3 
2 4 1 3 . 1 1 1 9 
2 5 1 3 

M E R G I N G P O I N T N O . 3 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 1 1 . 5 0 5 2 

2 2 1 . 1 9 4 3 
3 3 3 . 7 4 1 
4 1 8 . 9 3 7 
5 2 5 . 0 3 7 
6 4 1 . 0 4 0 
7 3 2 . 1 1 3 5 
8 7 . 1 8 2 6 
9 2 2 . 9 2 2 

1 0 1 0 . 1 9 1 2 
1 1 4 . 2 7 7 5 
1 2 4 4 . 2 7 4 
1 3 3 8 . 9 7 0 
1 4 3 6 . 1 1 6 6 
1 5 3 2 . 1 0 6 1 
1 6 3 7 . 1 2 5 6 
1 7 5 . 2 0 4 7 
1 8 3 4 . 2 4 7 
1 9 4 4 . 1 1 4 1 
2 0 3 8 . 3 0 2 7 
2 1 1 2 . 5 5 9 3 
2 2 3 5 . , 2 7 7 9 
2 3 3 3 . 2 5 6 7 
2 4 3 1 . 2 7 5 4 
2 5 3 7 

M E R G I N G P O I N T N O . 4 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 4 2 . 5 0 7 3 
2 3 5 . 2 9 5 9 
3 4 6 . 1 5 5 3 
4 2 . 1 8 4 4 
5 4 5 . 0 5 9 
6 8 4 . 0 6 4 
7 2 7 . 3 0 4 9 

8 2 . 1 8 4 0 
9 7 6 . 0 4 9 

1 0 4 8 . 3 7 3 1 
1 1 2 7 . 6 4 1 2 2 
1 2 6 9 . 2 1 1 1 3 
1 3 8 1 . 2 0 1 0 3 
1 4 5 . 3 9 8 3 
1 5 7 3 . 0 8 6 
1 6 3 5 . 2 4 7 5 
1 7 3 1 . 2 4 6 3 
1 8 2 5 . 2 7 5 0 
1 9 2 2 . 2 8 3 7 
2 0 1 6 . 3 5 2 0 
2 1 6 4 . 4 3 1 3 0 
2 2 0 . 5 2 1 0 4 
2 3 9 . 2 2 9 4 
2 4 7 8 . 7 9 0 
2 5 6 1 

T O T A L C O S T = 5 . 3 0 6 7 E 0 6 

T a b l e 4 .1 O p t i m a l C o n t r o l f o r t h e H ighway M e r g i n g P r o b l e m w i t h p = 10 
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M E R G I N G P O I N T N O . 1 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 1 . 5 0 3 0 
2 2 . 2 1 1 9 
3 1 1 . 4 I S 
4 2 7 . 0 2 1 
5 2 5 . 6 1 9 
6 1 2 . 1 2 1 4 
7 6 . 1 0 1 0 
8 3 . 6 7 
9 0 . 2 6 

1 0 6 . 0 1 0 
1 1 1 8 . 0 1 5 
1 2 1 8 . 3 1 4 
1 3 1 1 . 7 1 1 
1 4 4 . 7 8 
1 5 7 . 3 7 
1 6 2 . 3 6 
1 7 4 . 0 7 
1 8 1 0 . 0 1 1 
1 9 1 7 . 0 1 3 
2 0 8 . 4 1 1 
2 1 1 1 . 1 1 1 
2 2 1 4 . 1 1 2 
2 3 1 3 . 3 1 1 
2 4 1 0 . 5 8 
2 5 7 

M E R G I N G P O I N T N O . 2 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 3 . 5 0 4 6 
2 1 9 . 1 7 3 7 
3 2 4 . 9 3 4 
4 9 . ' 9 2 9 
5 2 8 . 0 3 1 
6 1 7 . 7 2 8 
7 1 4 . 6 2 6 
8 1 6 . 4 2 5 
9 2 . 5 2 3 

1 0 2 6 . 0 3 0 
1 1 1 6 . • 6 2 7 
1 2 1 2 . 5 2 5 
1 3 1 5 . 2 2 4 
1 4 9 . 3 2 3 
1 5 1 8 . 0 2 4 
1 6 8 . 4 2 2 
1 7 1 4 . 0 2 3 
1 8 1 2 . 1 2 4 
1 9 1 0 . 0 2 5 
2 0 3 2 . 0 3 1 
2 1 1 3 . 1 1 2 6 
2 2 1 3 . 8 2 3 
2 3 6 . 8 1 9 
2 4 1 3 . 5 1 6 
2 5 1 2 

M E R G I N G P O I N T N O . 3 

T I M E A R R I V A L Q U E U E S C O N T R O L 

1 1 1 . 5 0 5 2 
2 2 1 . 1 9 4 4 
3 3 3 . 6 4 1 
4 1 8 . 8 3 7 
5 2 5 . 0 3 8 
6 4 1 . 0 4 1 
7 3 2 . 1 0 3 7 
8 7 . 1 5 3 0 
9 2 2 . 2 2 9 

1 0 1 0 . 5 2 8 
1 1 4 . 0 3 1 
1 2 4 4 . 0 4 9 
1 3 3 8 . 5 4 8 
1 4 3 6 . 5 4 5 
1 5 3 2 . 6 4 3 
1 6 3 7 . 5 4 1 
1 7 5 . 1 1 3 5 
1 8 3 4 . 0 4 5 
1 9 4 4 . 0 4 6 
2 0 3 8 . 8 4 3 
2 1 1 2 . 1 3 3 7 
2 2 3 5 . 0 3 9 
2 3 3 3 . 6 3 7 
2 4 3 1 . 1 2 3 1 
2 5 2 2 

M E R G I N G P O I N T N O . 4 

T I M E A R R I V A L Q U E U E S C O N T R O L 

. 1 4 2 . 5 0 7 3 
2 3 5 . 2 9 6 0 
3 4 6 . 1 4 5 3 
4 2 . 1 7 4 4 
5 4 5 . 0 6 0 
6 8 4 . 0 6 6 
7 2 7 . 2 8 5 3 
8 2 . 1 2 4 7 
9 7 6 . 0 7 1 

1 0 4 8 . 1 5 6 3 
1 1 2 7 . 1 0 5 9 
1 2 6 9 . 0 7 1 
1 3 8 1 . 8 6 8 
1 4 5 . 3 1 5 4 
1 5 7 3 . 0 6 2 
1 6 3 5 . 2 1 5 1 
1 7 3 1 . 1 5 4 5 
1 8 2 5 . 1 1 4 0 
1 9 2 2 . 6 3 7 
2 0 1 6 . 1 3 7 
2 1 6 4 . 0 4 8 
2 2 0 . 2 6 3 5 
2 3 9 . 1 3 5 
2 4 7 8 . 0 5 2 
2 5 3 6 

T O T A L C O S T = 2 . 9 0 0 0 E 0 6 

Table 4.2 Optimal Control f o r the Highway Merging Problem with p = 25 
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JUNCTION DELAY TIME V (K=24) 

P i g . 4 . 2 T h e R e l a t i o n s h i p b e t w e e n t h e T o t a l C o s t a n d J u n c t i o n 

D e l a y T i m e f o r t h e H i g h w a y M e r g i n g P r o b l e m 
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suboptimai control i s obtained. In ad d i t i o n , the cost parameters Q^, 

R^, T can be made time-varying to r e f l e c t the f l u c t u a t i n g t r a f f i c demands 

of the day. 

4.4.2 Remarks 

Once again the f a m i l i a r assumption of known a r r i v a l sequence 

{A^} holds i n t h i s a p p l i c a t i o n . For long term operations (K -> °°) , 

w i l l have to be updated constantly i n order to account for any p r e d i c t i o n 

e r r o r . The " s h i f t i n g i n t e r v a l " concept discussed i n the l a s t chapter 

can again be applied here. An on-line adaptive control w i l l r e s u l t 

through the use of the open-loop-feedback-optimal control technique 

combining with the p r e d i c t i o n of {A^* 

4.5 A p p l i c a t i o n II 

In 4.3, we mentioned the p o s s i b i l i t y of an on-line adaptive 

cont-rol through-s-inmlt-aneous •application -of -the system i d e n t i f i e r -of 4-2 

and the c o n t r o l l e r of 4.3. In t h i s s e c t i o n , an a p p l i c a t i o n o f t h i s tech

nique to a scheduling problem w i l l be discussed. 

4.5.1 Optimal and Adaptive Scheduling of Operations i n a H o s p i t a l 

Consider a h o s p i t a l with p operating rooms and enough s u r g i c a l 

f a c i l i t i e s f o r n types of'operations. Patients demanding operations 

are f i r s t t ransferred from the h o s p i t a l ward into the operating ward 

where they are screened for surgery or r e j e c t i o n . In the case of surgery, 

they are allowed to j o i n a queue for the type of operation (one of the 

n-type) each re'quires. I f patient's case i s a " f a l s e alarm" or a r e l a 

t i v e l y mild case compared to other emergency cases, he i s re j e c t e d and 

returned to the h o s p i t a l ward. The complete queuing phenomenon involved 

i n the surgery process i s shown i n F i g . 4.3. 

In view of the number of patients i n the surgery queue and the 
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F i g . 4.3 The Queuing Phenomenon f o r a Sur g e r y 

P r o c e s s i n a H o s p i t a l 
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cost of operations, the nurse has to decide on an optimal operation sche

dule at the beginning of each period (say a month). In addition, the 

type of operations performed i n each operating room may vary from time 

to time (say every week) due to complications a r i s i n g from the surgeon's 

schedule or the relocation of equipments. Hence the operation schedule 

decided on e a r l i e r w i l l have to be revised constantly i n order to cope 

with the varying s i t u a t i o n . Under such circumstances, an on-line adaptive 

scheduling strategy would be most desirable. 

The optimal scheduling problem can be formulated as a control 

problem as follows: 

Let x^ e R n denote the number of patients waiting for different types, 

of operations i n the operating ward at time k. 

A^ e R n denote the number of new applications for the operations 

before screening process during the period [k, k+1). 

u^ e RP denote the number of operations performed i n the operating 

rooms during the period [k, k+1). 

Thus, the s u r g i c a l queuing process can be expressed as: 

Xk+1 = \ + \ ~ Ck \ ( 4 " 3 1 ) 

where C, , an (n x p) matrix, represents the f r a c t i o n a l amount of the type 
K. 

of operations performed i n different operating room. In e f f e c t , c ^ u.. 

i s the t o t a l number of the i ^ -type operations performed i n the 

operating room i n the period fk, k+1). 

The mathematical statement of the scheduling problem i s as 

follows: 

Given the process dynamics (4-31), f i n d a schedule {u^} k _o (K-l) 

which w i l l minimize the quadratic cost function 
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K - l 
J = ~> [x! Q. x. + u'. R. u.] + x' T * (4-32) x ^x x x x x K K 

1=0 

where Q̂ , an (n x n) matrix, denotes the cost of waiting for operation 

i n the surgery ward (x^ > 0), or the cost of r e j e c t i n g p atients (x^ < 0). 

R^, a (p x p) matrix, denotes the cost of surgery and T, an (n x n) 

matrix, i s the cost of incomplete operations at the end of the scheduling 

period. 

In the case of adaptive .scheduling, when i s unknown, the 

cost function (4.32) w i l l be replaced by 

K - l 
J = E t 2L K ! % x - r + u-l R i U P + K T X K ] ( 4 " 3 3 ) 

r i .—^ 1 X X X X X K . R {x, } . . X=0 
K k=0,...,K 

where i s now an random v a r i a b l e . 

The on-line adaptive control algorithm (4.11) to (4..19) can then 
A 

be applied with B ^ j ^ replaced by I, a unit matrix. At any time k the 

optimal control sequence {u.} n can be computed from the 
i 1—k, k + I ,. . ., K.—X 

following equations: 

u. = A. x. + b. (4-34) 
1 x x x 

where A. = A - 1 cf-P.., (4-35) 
x x k l + l 

b. = A"} (cf'.tm-.., + P.., X.]) (4-36) x x k x+1 x+1 x 
A A 4- A 

A i - R i + c k p i + l c k ( 4 ~ 3 7 ) 

p i - \ + 1 1 - pxfc+i K A _ 1 i c ^ p i + i ( 4- 3 8> 

m i [ I - p i + i K A 1 & K + i + p i + i \ ] ( 4 - 3 9 ) 

t 

where (.) denotes the transpose of a matrix, C^ i s the i d e n t i f i e d value 

of which i s assumed constant during the i n t e r v a l [ k , . . . , K - l ] . The 

on-line i d e n t i f i e r of 4.2 can be used for t h i s purpose. 
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In the case of unknown Ĉ ., only the f i r s t element of the 

sequence { u. ) . , „ ., i s transmitted at time k. A new sequence i s ^ I 1 J x=k,...,K-1 
generated at k+1, and the same procedure continues. Hence, th i s i s 

i n fact an open-loop-feedback-optimal control strategy. 

In the case where C, i s known, the complete sequence can be 
K. 

used, and the resulting control function w i l l be optimal feedback. 

In the simulation .below,, the following values have been used: 

n = 2; p = 3; K = 30 

Ck = 
0.4 0.3 0.6 

0.6 0.7 0.4 
; Q i , 

10.0 0.0 

0.0 10.0 

50.0 0.0 

0.0 50.0 

30.0 0.0 0.0 
0.0 30.0 0.0 
0.0 0.0 30.0 

X0 = 

50 
50 

The a r r i v a l sequence {X^} k = 1 2 g i s assumed known (Fig. 4.4). Several 

runs have been made on the same system for both the optimal (C^ known) 

and the adaptive case (C^ unknown and estimated through a least-squares 

estimator). The i d e n t i f i e d values for are shown i n Fig. 4.5. 

Fig. 4.6 gives a comparison between the optimal and adaptive 

state t r a j e c t o r i e s . Similar comparison can be made for the feedback 

control gain A^ and control bias b^. Only one element from each i s plotted 

i n F i g . 4.7. The other elements behaved s i m i l a r l y . The complete control 

schedules are shown i n Fig. 4.8 and Fig. 4.9. 

Examination of the plots w i l l demonstrate the nature of'an 
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adaptive system. During the i n i t i a l stages (p ^ k ^ 7), the adaptive 

control behaves rather e r r a t i c a l l y . The uncertainty i n the control 

arises from a lack of s u f f i c i e n t information on the system. The iden

t i f i e r gradually reacts properly as the number of measurements increases. 

The adaptive control c o l l e c t s information on the system through the i d 

e n t i f i e r , and as time progresses, converges onto the optimal control. 

.Hence., although the i d e n t i f i e r i s separ.ated from the c o n t r o l l e r , there i s 

an i n d i r e c t i n t e r a c t i o n between the two. 

F i n a l l y , i t i s noted that i n both the optimal and the adaptive 

case above, the a r r i v a l sequence {X } has been assumed known. In the 

case of unknown {X, }, a suboptimal control can be obtained i f the X. i n k j 
(4.36) and (4.39) i s replaced by X^ for a l l K - l £ j ~i k. In other words, 

a l l future a r r i v a l s are assumed to be the same as the present a r r i v a l s . 

"The results for this -suboptimal -strategy are shown i n Fig. '4.TO, Fig. 

4.11 and Fig. 4.12. 

4.5.2 Remarks 

An on-line adaptive control method has been demonstrated for the 

operation-scheduling problem. This method i s i n fact of the open-loop-

feedback-optimal (OLFO) type discussed i n the l a s t chapter. The same 

strategy can of course be extended to long-term scheduling problems 

(K 00) i f the i n f i n i t e i n t e r v a l i s approximated by a number of f i n i t e 

i n t e r v a l s . The r e s u l t i n g o v e r a l l control would of course be suboptimal. 

Nevertheless, on-line control i s achieved. 

4.6 Discussion 

Systems with time-varying parameters cannot be treated with the 

i d e n t i f i c a t i o n algorithm discussed i n 4.2, unless the parameters vary 

slowly with time. However, there are always other more sophisticated 
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, S U B O P T I M A L F E E D B A C K , 

T IME 

P i g . 4.11 . S u b o p t i m a l C o n t r o l S t a t e T r a j e c t o r y w i t h Unknown 

A r r i v a l s [ X ^ j . ( x ? behaves s i m i l a r l y ) 
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i d e n t i f i c a t i o n techniques i n the l i t e r a t u r e that can be applied. 

F i n a l l y , i n view of the generalized queuing model discussed 

i n Chapter 2, the system parameters Ĉ. and i n fact represent the 

results from decision control i n the system. Hence, simultaneous ap p l i 

cation of the regulator and decision control on the same system i s pos

s i b l e . Hie coupling between the two controllers w i l l be through the 

on-line - i d e n t i f i e r . 
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5."• CONCLUSIONS AND SUGGESTIONS 

5.1 Conclusions 

Two different techniques have been demonstrated for the on-line 

control of a queuing system. Time-series models have been used. This 

i s i n direct contrast to the t r a d i t i o n a l approach where pr o b a b i l i t y 

models are widely used. 

I t has been shown that decision control problems can be form

ulated as a control-constrained optimization problem. Application of the 

Discrete Maximum P r i n c i p l e and gradient techniques yields s a t i s f a c t o r y 

results. Extension of the decision control strategy to the adaptive case 

i s immediate through the open-loop-feedback, optimal approach. 

Regulator control i s mainly applied to the control of a service 

mechanism. I t has been shown that dynamic programming can be used to 

obtain an optimal feedback solution for such problems. An on-line adaptive 

control method has been demonstrated by applying the control and an iden

t i f i c a t i o n scheme simultaneously but separately. A direct coupling of the 

regulator and decision control i s thus possible through this i d e n t i f i c a t i o n 

process. 

Least squares i d e n t i f i c a t i o n has been used because i t does not 

require any s t a t i s t i c a l information on the system. More sophisticated 

techniques can of course be used to obtain better r e s u l t s . However, the 

philosophy behind the present work has been to demonstrate the f e a s i b i l i t y 

of applying an on-line control strategy to a queuing system, rather than 

attempting an elaborate solution to any p r a c t i c a l problem. 

5.2 Suggestions 

The techniques demonstrated here can t h e o r e t i c a l l y be applied, 

without any major modification, to the control of large scale systems. 
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However, i n any large scale system, there i s always the problem of unde

si r a b l e interactions among the variables. In addition, the optimality for 

the o v e r a l l system i s doubtful. Therefore, other large-scale system op

timization techniques should be considered. 

F i n a l l y , the successful application of on-line control to a 

queuing system can be the s t a r t of a trend for c o n t r o l l i n g other socio-

..economical .systems.. ..In view of the ..current .awareness of .the environment 

by s c i e n t i s t s and engineers, i t i s apparent that large prospect exists i n 

the f i e l d of environmental control. Successful application of modern 

control theory to such problems can be most rewarding. 
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APPENDIX I 

The Discrete Maximum (Minimum) P r i n c i p l e 

The P r i n c i p l e w i l l be merely stated here for reference. A com

plete proof can be obtained from the l i t e r a t u r e ^ 2 2 ' " * " 8 ^ . 

Consider the system of discrete equations 

\ = f k "lP ' k = ° ' 1 5 2 ' N - 1 
(Al-1) 

with u^ e L, x^ e R n and û . e P™. Consider the scalar cost functional 

N-1 

k=0 
(Al-2) 

the Assuming that for every k = 0, 1, . .., N-1, and for every x^ e R , t 

set {f'k u j c ) : Uj. e L} i s convex or at least d i r e c t i o n a l convex (18) ̂  
(Al-3) 

Define the Hamiltonian function 

H <V pk+i> u k ) = \ <V u k ) + pk+i fk <V u k ) (Al-4) 

where p^ i s the costate vector. 

The Minimum P r i n c i p l e states that at the optimal trajectory 

{x*}'_ „ and optimal control {u*} _ , , the following relations 
K. K. U j « • j JN 1C K. U y • • • j JN X 

hold: 

i ) Canonical Equation 

x& — x* 
k+1 k 

Sn
ap k+1 

(Al-5) 

k+1 F k 
9H (Al-6) 

i i ) Boundary Conditions 

x* o (Al-7) 
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9<j> 

i i i ) Minimization of the Hamiltonian 

(Al-8) 

H ( xk> P k + l ' ' ^ * H ( x k ' Pk+1' \ } 

for every e L. 

In the case of unconstrained control, (Al-9) yields 

(Al-9) 

3 \ 
= 0 (Al-10) 
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APPENDIX I I 

Dynamic Programing Formulation of the  
Optimal Decision Control Problem 

The i l l u s t r a t i v e example shown i n 3.4 w i l l be formulated below 

as a multistage decision process. 

Given: x, ., = x, + u, (A2-1) k+1 

V \ e *R  

x i = ( o ) 

u k E E2 

2 

to] 1 
,1l 

> 

the cost 

Find a control sequence {u^ e ^ ^ k + l 5 

J = 2— L (x. , u., i ) + <Kx6, 6) 
i = l 

lC X y • • • y 5 

which w i l l minimize 

(A2-2) 

where L ( X i, u i , i ) = u^ [a ± (Xj. + q) - 3] 

* ( x 6 , 6) = ( x 6 + q)' ' F ( x 6 + q) 

Define an optimal value function 

*<V k> = v ^ . u . E , { ^ L < V V « + *<V 6 ) } ( A 2 " 3 ) 

k 5 2 i=k 

Because the cost at any stage i s independent of any previous 

stage, we can write 

Min Min 5 

*(x 6, 6) }] 

By the d e f i n i t i o n of iCx^, k) i n (A2-3), we have : 
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1 C x k > k > = • V E 2

 I L ( x k > V 1 0 + 1 C xk+1> k + 1 ) ] 

= f e E 0
 t L ( V V k ) + 1 <*k + V k + 1 ) ] ( A 2 

k 2 

S t a r t i n g from the terminal condition 

I ( x 6 , 6) = <Kx6, 6) = (x f i + q)' F ( x 6 + q) 

the f u n c t i o n a l equation (A2-4) can be solved completely. The optimal 

t r a j e c t o r y can be obtained f o r any i n i t i a l point at any stage 1 $ k $ 5. 

F i n a l l y , i t should be noted that (A2-4) i s i n f a c t the mathe

matical formulation f o r Bellman's P r i n c i p l e of Optimality. 
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or equivalently 

APPENDIX I I I 

Matrix Least Squares State Estimation 

Consider the observation equation 

*k = g T * k 

4 - K s ' 

where x k e Rn, ^ e R™ and S i s an (m x n) matrix. 

T 

(.) denotes the transpose of a matrix, and 

(.)' denotes the transpose of a vector. 

After k observations, we have 

(A3-1) 

(A3-2) 

— s 

k H, S k (A3-3) or 

where i s now a (k x n) matrix and i s a (k x m) matrix. Consider 

finding a least squares estimate of S which would minimize the error 

function 

J (S k) - T r [ ( Z k . - H k S k ) ( ^ - H ^ ) ] (A3-4) 

where S. denotes the estimate of S after k measurements and Tr(.) denotes k 
the trace of a matrix. 

Expanding (A3-4) we have 

m ^ rp rp -A rri ^ rp rp 

J (S k) = Tr {Z kZ k - Z k S k H k - l y ^ + } 
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9J ( S k ) 

as, " 0 " - \ zk " \ \ + 2 \\ s k 

Hence 
A T - I T 
S k " ( H k V \ Z k 

(A3-5) 

Some o f the g r a d i e n t m a t r i x i d e n t i t i e s u s e d above a r e : 

i f A : n x m; B: m x n ; C: p x n 

t h e n l l r (AB) _ T _ ^ T r (BA) 
a 1 A 

^ T r (CAB) „T „ T 
fT = C B 

Now c o n s i d e r t a k i n g a n o t h e r measurement x k + l * 

"k+1 
~zk " 

_ v 
Sk+1 = V l Sk+1 

where S 
k+1 " ( Hk+l ' V l 5 1 "Hk+1 Zk+1 (A3--6) 

T • • 
= Pk+1 \+l Zk+1 

u . -1 A T _I ' , ,. . , 
where p k + 1 = H k + 1 H k + 1 = H k H k + ^ ^ 

pk+i = (Hk v' 1 - (\ T v"1 w ( I + *i+i ( HkHk ) _ 1 w \ X v _ 1 

o r p

k+i = pk - pk V i ( I + V i pk V P V i pk (A3-7) 
wh ich i s the consequence o f a M a t r i x I n v e r s i o n Lemma. 

(I + ^ k + ^ P k ^+]_) 1 S a s c a l a r q u a n t i t y 

S u b s t i t u t i n g (A3-7) i n t o (A3-6) and e x p a n d i n g the t e r m s , we have 

V i = C I - \ V i ( I + K+i V W " 1 <Vi ] pk < zk 
-1 

+ p

k V i [ i - ( I + V i pk V P V i pk V i ]
 K + i 
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- * - pt \+i C I + K+I Pk V i ) _ 1 V P K 

-i + pk V i ( I + K +i pk W " { I +"'K+i pk V i " K+i p

k V i } K+i 

- i 
= \ + pk V i ( I + K+i pk W [K+i" K+i sk] 

From the matrix Inversion Lemma 

pk+i K+i = p

k K+i [ I + ( I + K+i pk K+r)_1 K+i pk K+i] 

pkA+i [ I + K+i pk K+i ] - i 

Hence, we obtain the sequential form of (A3-5) 

S

k+i = p

k+i V i ( V i - K+i V (A3-8) 

where Pk+1 = Pk 
pk V i ( I + K+i pk V i ) _ 1 K+i pk (A3-7) 

m x n 

m x m 

1 + K+i pk V i 

n x 1 

m x 1 

l x l 
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APPENDIX. XV 

An Adaptive Feedback C o n t r o l A l g o r i t h m  
v i a Dynamic Programming 

Consider the o p t i m i z a t i o n problem: 

Find: Min 
(u, } Vk=0,...,N-l { Xk}k=0,. . ,N 

N-1 
[ 7 (x! Q.x. + u! R. u.) + 

* N T V (A4-1) 

su b j e c t to 
x, = x. + B, A, - C, u K+ i le k k k k (A4-2) 

where 
•nn -\ r>m t>P x k e R , X k e R , e E r 

I f the parameters B k and C k are unknown, (A4-2) w i l l be replaced by 

k+1 \ * \ |k \ " Ck' (A4-3) 

where f. estimate of the value of the f u n c t i o n f at time i based on 

the t o t a l i n f o r m a t i o n a v a i l a b l e at time j . 

5k|k and C j J k are the estimated values of B k and C k r e s p e c t i v e l y . 

X j ^ ^ j k = E ^ x k + i ^ s t* i e P r e d i c t e d value of at k. 
^c+l 

where E ( f ( x ) | g ) - expected value of the random f u n c t i o n f ( x ) over the 
x 

random v a r i a b l e x, given i n f o r m a t i o n s e t g. 

T, i s the i n f o r m a t i o n s e t a v a i l a b l e at time k. For the above k 
problem, a s u f f i c i e n t s e t of i n f o r m a t i o n at k would be 

k' c k (A4-4) 

Define the o p t i m a l value f u n c t i o n 

A Min ( x ^ k ) W i ( . ) , . . . , V i ( 0 

N-1 
E [7 (x'.Q.x. + u'. R.u.) 

x. fee J 3 3 3 2 2 

+ *N T x N (A4-5) 
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Applying Bellman's P r i n c i p l e of Optimality (A2-4) to (A4-5), we obtain 

Min , , , Min 
I < V W - ^ {*k\\ + " k V k + „ k + 1 ( . ) , . . . ,u N _ 1 ( . ) 

' E C 
V l - l , " ' , XN 

N-1 
J ~ (x'.Q.x. + u!R.u. ) 
-j =k+l 1 J 3 3 3 J 

Min f . rMin 
[ K W + + ^ [\+is--->v-i(-> 

N-1 
(x E x ( T- fx ' .q.x, + U !R.U.H x! i x., F k + 1 ) } 

Hence 

I ( V k ) = ̂  { x ^ + + "E - ( I ^ , k+l7| T k ) } (A4-6) 
*k+l 

Assuming a l i n e a r feedback structure of the optimal control, we 

obtain a l i n e a r quadratic optimal cost: 

I(x k,k) = x k P k x k + 2 m k x k + b k (A4-7) 

where P k : an (n x n) symmetric matrix 

an n vector 

om 

b k : a scalar quantity. 

The reason for including and b k i n (A4-7) i s to account for the rand 

input term X k i n (A4-2). 

Substituting (A4-7) and (A4-3) into (A4-6) and d i f f e r e n t i a t i n g 

with respect to u k, we obtain the optimal control 
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\ik = (\ •+ ilk Pk+i \ik r l i | k
 imk+i+Pk+i(v\ikAk)] 

(A4-8) 

Replacing i n (A4-6) by the optimal function (A4-8), and re

placing l(xk,k) by (A4-7), we obtain after equating the co e f f i c i e n t of 

the l i n e a r and quadratic terms of x^: 

p k - \ + 1 1 - Pk+i i|k Mik 6k|k
 ] Pk+i ( M- 9 ) 

\ = C I - Pk+i ck|k
 A?k|k ck|k i h c + i +

 pk+i \|k \ 3 <A4-l0> 
P N = T (A4-11) 

11̂  = 0 (A4-12) 

The complete control sequence i s as follows: 

u j-|* " *j |k X J + I* i = k , k + 1 ' * • * ' N _ 1 ( M " 1 3 ) 

k = 0,1,2,...,N-1 

* i | k = Aj|k i l k V l I k (A4-14) 

"j|k * Aj|k k̂|k ^+l|k + Pj+Hk \|k V 3 (A4-15) 

Aj|k = R3 + C k|kP j + l|k K|k ( A 4 - 1 6 ) 

where 

Pj|k a n a m j | k
 a r e obtained from the recursive equations: 

p j i k = Q i + [ I- p j + i | k i | k

 Aj|k ijk 3 p j + i | k ( A 4 ~ 1 7 ) 

m i i k = [ i - p?+iik iik'Ajik i i k 3 h + 1 | k
+ p j + i | k \ i k v ( A 4- i 8 ) 

PN|N«-1 = T > \ l N - l = ° ( A 4 " 1 9 ) 

The above algorithm i s i n effect an approximation to the optimal 

control. At each stage k, the system parameters B^ and Ĉ. are assumed 

file:///lN-l
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equal to |̂ . C^jk for a l l remaining stages Ik, k+1,...,N-1]. This 

fact i s i l l u s t r a t e d i n equations (A4-14) to (A4-18) where B ^ j ^ and C^j^ 

are used instead of B . i , and C . i , for the optimal case. A further ap-
j|k j|k 

proximation can of course be made(when the random input i^-^i i s unknown 

by replacing A with Â .. In th i s case, a l l future random inputs are 

assumed to be the same as A. . 
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