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Abstract

In this thesis we consider the following model for a three-
dimensional r x s x t contingency table:

B = mygpe = oIy P o5 P actPy, O5ictP 5 BanctP Vi tOiqe] 2 0

i=12,..,r; j=1,2,..,s; k=1,2,...,t with

s t T t T 5
551 % T B g T 0 aBn P Toaa Pae T 00 gBr ey T R vey O
r s t
and I

= = I.68. ..=0. indi i
141 6ijk jél Sijk kE1°045K A dot indicates summation over the

replaced subscript. The fijk's represent the frequencies and the

pijkjs represent the proportions. The problem we are concerned with is
testing the hypothesis HO: aijk = 0 for all i, js ko di.e. no second
order interaction is present. We then seek to extend the model and
problem to a w-way table,

We use the method of the likelihood ratio.. To a®mgist us in
determining the numerator of the likelihood ratio we reformulate
a theorem about constrained extrema and Lagrange multipliers and prove
this reformulation.

Some general conclusions we draw are: there are two extensions
to our 3-way.model; results‘we"obtain'using“our model and methods are in

close agreement:with results obtained using the models and methods of

other statisticians.
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- CHAPTER I INTRODUCTION

The cross classification of a seriés of observations according to
W characteriétics, or attributes, is referred to as a multidimensional
contingency table. The entries in the cells of a contingency table are
frequencies.

The usual hypotheses investigated in contingency tables are about
kinds of stochastic independence or lack of it. The descriptions of
stochastic independenée for several partitions of the sample space are
“those given by Kolmogorov (and by Feller for several events). Similar
_descriptions hold for density functions and cumulative distribution func-
tions of several random variables.

In this thesis we investigate how to handle and analyze multi-
. dimensional contingency tables. Quite a bit has been done in recent
' years, bu£ a lot sqill remains to be done. We concern ourselves basically
with definitions of interaction. |

Before we present our model and definition of interaction we will mention,
very briefly, the models and definitions of interaction pf some of the sta-
tisticians who were and may still be concerned with the analysis of contin-
gency tables. H. H. Ku and S. Kullback investigated the problem of interaction
) ip multidimensional contingency tablgs from the viewpoint of information theory
,éé developed by Kullback. The hypothesis of no rth-order interaction is
defined in the sense of an hypothesis of '"generalized" independence of
ciassifications with fixed r-th order marginal restraints. For a three-way

table, with given cell probabilities the minimum discrimination

pijk ’
is

inf ti , . .
nformation for a contingency table with marginals pij. s p.jk s Py x
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given by the set of cell probabilities Pijk = aijbjkcikpijk

where aij’ bjk’
x
and ¢ are functions of the given marginal probabilities. Qn(pijk/pijk) =

n aij + n bj + n cik , represents no 2nd-order interaction. The minimum

k
. o . . . s . X , 2 .
discrimination information statistic, asymptotically distributed as x~ with

appropriate degrees of freedom, is

r s t r s t S s _
2 v ¢ ¢ £, f, -2 5 ¥ I f.,lnf . > Owhere f, . are
i=1 j=1 k=1 DOK T R T ygg gag gy BR HRS 13k
" .
the observed cell frequencies and fijk are the '"mo interaction" cell fre-

quencies uniquely determined by a simple convergent iteration process of

the marginals on Pijk .

Bartlett defined no second order interaction in a 2x2x2 table as

B cqegs
P111P122P2712P221 =_pllzp121p211p222 where the p's are the cell probabilities,

Roy and Kastenbaum extended Bartlett's definition and arrived a set of

“no interaction constraints” in an rxsxt table in the form of

P...P:. PP, i=1,2, ..., (r-1)
rstijt _ “rsk¥ijk for § =1, 2, ...y (s=1)
PistPrit  PiskPrik k=1, 2, ..., (t-1)

The "mechanism'" used by Roy and Kastenbaum is based on the fact that the two

hypotheses

Bf Py ok~ Pi.P ok

HytPyg, © Pi..;.j.

will not imply H: pijk = pi..p.jk in a 3-way coptingency table. A dot in-

dicates summation over the replaced subscript. The '"no interaction' hypothesis



is required to generate the set of constraints such that these constraints,

when superimposed on H.l n H2 should imply H .

Simpson required the definition of '"no-second-order interaction" to
be symmetrical with respect to the three attributes of a 2x2x2 table. If
some function w(plll’.pIZl’IPle’ p221) is chosen to measure the associa-

. tion of classifications A, B 'and C , then the function must be such that

the equation (P95 Pyyys Pyyps Pypy) = ¥(Pyyps Pyjys Pyjgs Pyyy)

<=> ¥(Py175 Ppyg> Pyypr Poyp) =

V(Pyp1s Pyoqs Praps Pyy))

<=> He showed that

¥(Py11> Pra1s Prize Przp) = ¥(Pp13s Poyys Poips Poap) -
the function ¢ = P121p21i or the cross product ratio used by Bartlett,

~ PiaPoa
stisfies this requirement.

Lancaster defined the second order interaction by the partition of the
chi-square statistic xz,i.e. it is defined as the difference between the
total xz for testing complete independence of the three classifications,
and the sum of the 3 components corresponding to tests for independence in
each of the 3 marginal tables. Lancaster's definition does not always satisfy
Simpson's condition of symmetfy. In Chapter V of this thesis we will mention
the model he gives in his book, which is much like our own, though we have
used different approaches. We are in a way defending Lancaster against
the criticisms of the préponents of the loglinear model (to be mentioned
soon), while what he has done reinforces what we propose.

Darroch made an explicit comparison of the definitions of interaction

~in multiway contingency tables and in the analysis of variance. The main



point he made was that a natural symmetrical definition of '"mo second-order

interaction"

Pijk =‘p.jkpi.kpij. necessarily implies constraints on the marginal

P;.. PPk 1)

probabilities Pij s P K’ Py ¢ °

" _ )
i.e. I pyy = Pys = Pyl I Pp; P .
-1 i3k Ti3. o . oy Ti.k.gk
pi..p.j. P”k
N |
oF kil Ei:kf;i& - pi..p.j. ¥i, ] and the like,

Pk

This is undesirable since the condition for'no second-order interaction"
vdshould;relate‘ pijkyﬁto,any,given“setwofﬂmanginal probabilities and should
not place restrictions on the latter. Consequently Darroch defiﬁed a
"perfect three-way table'" as one for which conditioﬁ (1) and the résulting '
constraints on the marginal érobabilities are satisfied exactly. He con-
cluded further that "in imperfect tables it is not possible to express

pijk in terms ofbsimple functions of Pjs s> P when there is no

3.7 Pik’ Plgk

2nd order interaction."

The existence and uniqueness of the set pijk as the solution of

P P.. P P.. i=1,2, ..., (r-1)
rst 1jt . r;k ijk for =1, 2, ..., (s-1)
PistPrjt  PiskPrjk k=1, 2, ..., (t-1)

for any given set of mutually consistent marginal probabilities was con-
jectured for rxsxt tables and proved for the 2x2x2 case. The search

- for a simple formulation in terms of parameters which are implicitly de-



fined by the marginal probabilities led Darroch to define

Pyjp T MAyiBeiCyy vhere
. r : s r s -t
! A, = IB_.= IC.,=1 ad pI I 1 A, B.C.= 1 ; and
k=1 Jk i=1 ki j:l 1] i=1 j=l k=1 ] J
Fo show that p=1, Ajk ='p.;k s Bki = pi.k and Cij = pi.' .
P, Pk Pi..

Since there is no solution in ciosed form to the maximum likelihood
equations forbthe parameters under hypothesis of no second-order interaction,
unless the observed table happens to be perfect, Darroch suggested an inter-
ative solution and gave a numerical illustration using the example given by

Kastenbaum & Lamphierar, [1959] .

It is of interest to note that Darroch suggested the likelihood ratio test
r s t ‘
based on 2 = 21X z L f, 2n fijk : which is asymptotically
. ABC . . ij N
i=1 j=1 k=1 nuA. B, .C
jk ki ij

distributed as x2 with (r-1) x (s-1) % (t-1) degrees of freedom.
Good proposed to use the principle of maximum entropy as a heuristic
principle for the generation of null hypotheses, with main application to

w-dimensional contingency tables. By using his principle, it is shown
A

that for a w-dimensional 2x2x ... X 2 contingency table with

© P. = P. =.0,,1 and with all marginal probabilities down

9.3 9%
1

Mttty w
' : |i|eyen _Iilodd
to (w-1)-way assigned, the null hypothesis to be tested is ﬂpi = Hpi
. : i i



where Ii[ = il + 12 + ...+ iw . This expression reduces to

P1P4PeP7 = PoP3PsPg ( Py11P59Po19P991 = P11oPyp1P011Ppgp) When m =3 .

Good also generalized the definition to that of no rth-order and all higher-
order interactions in a w-dimensional contingency table with a complete set
of rth-order restraints b? means of discrete Fourier transforms of the log-
arithms of probabilities. However, the interactions so defined are usually
complex valued unless the number of categories within each classification
is equal to two.
| L. Goodman followed the definition by Good but proposed a test that
yields real valued interactions. Goodman has published many papers on
contingency tables, some of which are listed in the bibliography of this
thesis.

Another metﬁod of analysis has implicitly been given by B. Woolf in

the case of a 2x2xt table. Let the frequencies in the kth 2x2 table be

denoted by flk’ ka ’ f3k’ f4k’ where flk’ f2k occupy the first row
and f,,, f5, the first colum. Compute Z, = gnf,, - tnf,, - infgy + 2§f4k
and ey from -%—-= ; + % + ; + % .
“k 1k 2k 3k 4k o
. 2 t 2 t 2 t
If there is zero second-order interaction, then x = I e Z =~ (L eZ )/ T e
=l KK 1l KF g K

is asymptotically distributed as chi-squared with (t-1) degrees of freedom.
With unrestricted sampling conditions, M.W. Birch states that Roy and

+ 2n fisk +

Kastenbaum's condition may be rewritten as SLnfijk

= in frjk

fn £,, - in f

ijt ist 29 frjt B zn'frsk +an foge o

(lf_iir—l. 312j<sl31ckst-l) where £y, =np -



~condition is satisfied if, and only if, &n fijk can be written in the

form 2n fijk =u+u, + Uy Fug Fupgs Tt s ( l<i<r; 1<j<sy 1l<k<t),
where u) =wu, =ug =05 U4 =u,, =0, each 1u, Fu, =0,

. . Y
each vj 5 Upg p T Uyg e T 0, each k ; (where U =iiluli ) ; but otherwise
u,u are completely arbitrary. In general, we can write

1i° 0 Y235k

in the form:

%n fijk

tn fii# =u +»“1i,+ upy * “$k + ﬁlzij + “13ik_+ Y35k T Y1231k

where u123ijf_= 0, each (i, j) ; Wosik © 0, each. (i, k) ; and
 ““123:jk = O , each _(j,_k) "”The'”ulzg‘s .are .then .the second order inter-
" actions.

Y.M.M. Bishop adopts Birch's model; She utilizes his résult that
appropriate sums of the observed ceil frequenciesvare sufficientvstatistics
for maximum likelihobd estimation of the.cell frequencies under a specified
model; Birch does not give a coméuting method but refers to iterative
computing methods of Norton [1945] , Kastenbaum and Lamphier [1959], and
Darroch [1962]. Bishop uses a different computing method, an iterative
proportional method which she adaptedbfrom Deming and Stephan [1940). This
is illustrated in Chapter VI of this thesis. A

The work of S. Fienberg and F. Mosteller is closely allied with that
of Bishop and therefore we do not give a separate discussion of their

work. Some of their papers are listed in the bibliography.



The above is by no means an exhaustive list of statisticians who have
worked with contingency tables. It was our purpose just to present to the
reader an idea of some of the alternatives. This being accomplished, we

proceed to present our model.



CHAPTER II ‘ PRESENTATION OF OUR MODEL

Consider the following model for a three-dimensional rxsxt contin-

gency table:

—np... =n | + +
E(fy ) =oPygp = 00py Py P oo ¥Ry 0y VP g By VP sy T Ol 2

ijk

s t T t T s
with £ o, = £ o, =0, B8, = £B8,,=0, 2 vy,.= I vy,,=0
j=1 & g 3K =1 * =g 1E =1 oy
T s t _ F
and r 8., =L §,.. = 2 68,.,, =0.. A dot indicates as before summa-
i=1 ijk j=1 ijk -1 ijk

tion over the replaced subscript. The f£,.

. represent the frequencies
ijk's P q

and the pijk's represent the proportions.

’E(f.jk) = 0P gy T ﬁ[p.j.p..k toagl

ﬁE(fi.k) =Py g T nlpy Pt Byd =
E(flJ.) = nle. = n[p].. .p J + YlJ] :
ij TPk T Pii.Plk %
{Bik TPy TPiLPk & ié
Y15~ Pig. T PPl é

%13k T Pijr T Pi. PPk T Pi %5k T Pyl Bik TP ki

0
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= - - - +
Pijk ~ Pi..Pjk T P.3.Pi.k T PLkPiy. Y 2Py P 5 P Bfter

substitutlng the expressions for ajk’ Bik’ Yij .

We explain now why the modei presented seems reasonable. Consider:
first the case of a 2x2x2 contingency table. Let the.partitions of the
sample space be {A, A} , {B, BY , and {C, C} . Consider the two events
A and(-B . Everyone agrees that P(AB)- P(A)P(B) is a proper way of mea-
suring deviatien from pairwise independence. Suppose now that the three
events A, B, C are pairwise independent so that P(AB) = P(A)P(B)

P(AC) = P(A)P(C) (2)
P(BC) = P(B)P(C)

We show now by an example from Feller that pairwise independence does not
necessarily imply that P(ABC) = P(A)P(B)P(C) i.e. that the two events

-AB -and C -are -independent

(<=> P(ABC) = P(AB)P(C)) or that BC and A are independent
(<=> P(ABC) = P(A)P(BC)) or that AC and B are independent
(<=> P(ABC) = P(B)P(AB))

Example: Consider the six permutations of the letters a, b, ¢ as well
_as the three triples (a, a, a) , (b, b, b) and (c, c,c) . We take these
nine . triples as points of a sample space and attribute probability 1/9 to
each. Denote by Ak the event that the kth place is oceupied by the
letter a . Obviously each of these three events has probability 1/3
while P(AlAz) = P(A1A3) = P(A2A3) = 1/9 . The three events are therefore
pairwise independent, but they are not mutually independent because also

3) =1/9 . (The occurence of A1 and A2 implies the occurence

"of A, and so A, is not independent of A1A2) .

P(AlAzA

3 3



Ve resefvé
only (2) holds,
‘ensdres_that A
"of B and AC

Consider a

Fetting 'Pl.. =

P(BC)

P(BC)

P(BC)

P(BC)

as well as four

tions for the \f

corresponds to

' corresponds to

corresponds to ‘Yi

11

therefore the term independence for the case where not
but in addition P(ABC) = P(A)P(B)P(C) . This equation
and BC are independent and also that the same is true
and of C and AB .

2x2x2 table. i =1, 2; j=1, 2 ; k=1, 2 .

P(a) , P =P(B) , P , =P,

.1. N A

P(A), p, =P(B) , P ,=P0 ,

P (AB) = P(AC) , P = P(BC)

» P .11
P(AE) , etc.,

conditions (1) are equivalent to

P(B)P(C)

P(B)P(C)

P(B)P(C)

P(B)P(C)

and four similar equa-

similar equations for the .
q Blk's

j's Hence the condition that B and C are independent

ajk = 0 ; the condition that A and C are independent

Bik = 0 ; and the condition that A and B are independent

. 0.
J
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We have seen, by the example considered, that pairwise independence
does not necessarily imply mutual independence, hence the presence of the
term § . If ¢&,, - were not present, then pairwise independence

ijk ijk ,
would automatically imply pijk = pi P j P K i.e. P(ABC) = P(A)P(B)P(C)

(or P(ABC) = P(A)P(B)P(C) etc.) . .Gijk’ we have seen, is equal to
, 8o that, if there

is no first order interaction, becomes

%53k Pijk ~ Pi..P5.P .k

In this thesis we are mainly concerned with rxsxt contingency tables.

- Suppose therefore '{Al, Ays wees Ar} ,‘{Bl, Bys =ees BS} ,'{Cl, Cy» ...,th}

are three partitions of the sample space. The A and B partitions are

stochastically independeﬁt if P(AiBj) = P(Ai)P(Bj) , i=1 to r-1 ,

j=1 to s-1 . These (r-1l)(s-1) equations are linearly independent. Similar
statements hold for the other two pairs of partitions. There are further
conditions for complete independence beyond those for pairwise independence.

For three partitions the other conditions are P(AiBjCk) = P(Ai)P(Bj)P(Ck), i=

 1 to r-1 ; j=1 to s-1 ; k=1 to t~1 . These (r-1)(s-1)(t-1l) equations are

1ineafly independent. A. N. Kolmogorov in his text '"Foundations of
Probability" and W. Feller in his text "An Introduction to Probability
‘Theory and its Applications" deal with the theory of independence.

All this information is contained in our model pijk =Pp, P. P Kk +

+p - + .
PP TP Yey F S5k

i=1, 2, ..., r;j=1, 2, cees 83 k=1,2, ..., t.

=
1]
ot
o)
1]
g
T~
N
S’
e~
]

P(Ar)

|
o
~
=)
[
~
-
e~
2]

P(BS)
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Py = B(Cseees B = R(C)

Pyy. = P(A;B)) etc.
o = PG - P(Bj)P(ck)W
By = P(8;C) - P(A)P(C)) ‘ are the
Yy5 = P(AB) - P(ADP(B,)

‘measures of first order interaction or deviations from pairwise independence.
In our model, if we have pairwise independence, that is, if the -a's, B's,

+ & . In this case

' =
and vy's are all zero we get pijk pi”p‘j.p“k 15k

814k = Pijk ~ or 4.

iik = P(AiBjCk) - P(Ai)P(Bj)P(Ck) . If

Pi.. P3Pk

»)

P(AiBjC ik

= P(Ai)P(Bj)P(Ck) for all i, j, k then Gi =0 for all

i, j, k and since there is no first and no second order interaction we

have complete independence.
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CHAPTER 11X TESTING THE HYPOTHESIS OF NO SECOND ORDER

INTERACTION USING THE LIKELIHOOD RATIO TECHNIQUE

A. THE DENOMINATOR OF THE LIKELIHOOD RATIO

In our model second order interaction is present iff aijk # 0 for

some (1, 3, k&) , deec Aff pyg F Py P o FP Py TP gPys T2y PPy

for some (1, 3, k) . Let q; =Py P g FP 5Pyt P Py,

2pi“p'j‘p“k‘(p:,ij = qijk + aijk whether or not '6ijk is zero) .  Con-

sidering the given model we may want to test the following hypothesis:

Ho: 6ijk =0 for all (i, j, k) . i.e. no second order interaction is

present. Under Ho the model yieldé:

Pijk ~ Pi..Psk T P.5.Pik TP kPij. T PP i Pk T Y44k

i=ltor ; j=1ltos ;k=1¢tot . We use the method of likelihood
ratio.

The most general assumption is that the density or probability function

£

o ijk
r s t pi'k r s t
P=n!l 1 1 @1 £~ with O<p, S1, I 3 3 p. =1,
i=1 j=1 k=1 Tijk} D i=1 j=1 k=1 *J
r S t
where the f_ are non-negative integers and pX z y f,.. =n.
13k - i=1 j=1 k=1 >3k
r s t
The given constraints are % §,., = I §,.. = L §.. =0 -as well as
. i=1 ijk =1 1Jk k=1 ijk
s t r t T s
I a,= % a, =0, L g, = I B =0, I y. =TI v._,
g=1 3K g 3K i=1 k=1 ik i=1 g1 N T
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r s t
These constraints are equivalent to L p.., =P ., s L P,., = D. s L P,
. i=1 ijk gk j=1 ijk i.k k=1 &
pij . To maximize P under the most general set of assumptions we use the
r S t .
constraint X X L P.., =1 explicitly. The a., , B, » Ye.s O..
4=1 j=1 k=1 1Jk ’ Jk ik 13 le

do not have to brought in explicitly in dealing with the general case. The
constraints we placed on the a's , B's , y's and &'s were chosen so
that the contingency table would add up. We just keep in mind what

- -
Py » p.j., Py and pij.’ P; i p.jk stand for in terms of the pijk s

8. t r

Py.. < jzl kil Piik ’ P sk~ iil Pijk
Y t - »S

Pig. T 02 Pagk Pik ~ jf_l Pijk
r s

P~k 2 Pigy p,. = : p..
i=1 j=1 ij. -1 ijk

Let pijk denote the maximum likelihood estimator (MLE) of pijk in the
general case. It is well known that pijk = —%15 . Hence the denominator
r s 't £ fijk -
of our likelihood ratio is n! I T I (—%l—) /
ijk’

B. A THEOREM ABOUT LAGRANGE MULTIPLIERS

The usual Lagrange multiplier procedure is to have linearly independent
constraints on the variables, and the number of such constraints must be
fewer than the number of variables. For reasons of symmetry.it is useful

to have a form of the procedure in which the constraints no longer need

be linearly independent and may even exceed in number the number of vari-

ik
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>

| ébles, though 'the number of linearly independent constraints must still bé
fewer fhan thé number of variables. The following is a theorem about the
extended proéedure. Thé notation of thig theorem and its proof is in-
depeﬁd‘ent of that in the rest of the thesis. The proof of this theorem

‘closely péfallels Apostol's proof of the original Lagrange multiplier

- theorem. (See Tom M. Apostol, '"Mathematical Analysis, A Modern Approach

to Advanced Calculus". Reading, Mass,,1957. pp. 152-156).

Theorem: Let . f. be a real valued function having continuous first-order
/partial derivatives on an opéﬁ set S in n-dimensional Euclidean space

En . Let By » +ev> gp be p real-valued functions also having continuous
first-order partial derivatives on S , and assume that the number of
functionally independent members of .{gl s seey gp} on S is‘ r , with

r <n . Let Xo be that subset of S on which Bl > cee» gp~ all vanish,

that is, in set, vector notation, Xo {_}5|§ES » §(x) = 0} . Assume that
xé € X0 and assume that there . exists a neighborhood n(go) such that

f(x) < f(xo) for all x 1n‘ X°~nn(§o) or that £(x) > f(§o) for all x

. = 9 ,
in Xonn(zo) . Assume also that the matrix [Digj (50)] [ax. gj (x) ]
' ' L X=X
- =0
has rank r , with r < n . Then there exist p real numbers ' Al, ceesy J\P

such that the following n equations are satisfied:

L P -
Djf(go) + iil}\ingi(io) =0 (=1, 2, «.., n) . If- p > r , then

then (p-r) of the multipliers A cees }\p can be assigned arbitrary

1,

values, provided only that the r constraints associated with the other

r multipliers form a set of r functionally independent constraints.
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We now give an adaptation of the argument in Apostol:

Proof: Assume, without loss of generality, that the (rxr) minor in the
upper left~hand corner of the (nxp) matrix [Digj(§gﬂ has rank r .

Consider the following‘system of r linear equations in the p unknowns

Once

P : :
Al, cees xp:' kzl by Dhgk(g_co) = -th(gﬂ) (h=1, 2, .o, ) =
_ Ar+l’ ..., Ap have been assigned arbitrary values, there is a

‘unique solution for__Al, ""»Ar . It remains to show that the other
(n-r) linear equations are also satisfied for this set of values for

A A .

1y |
To do this we apply the implicit function theorem. (See Apostol (1957),
pp. 147-148) . Since r <n , every point x in S can be written

in the form x = (u ; v) ., say, where u ¢ Er and Vv e En—r . In the

remainder of this proof we will write u for (xl, cens xr) and v

for (x veas Xn) , so that v =x . In terms of the vector

r+1° 3 r+g

valged function g = (gl, e gp) , We can now write g (u s v) = 0 when-
ever‘_g_é"(g.; v) belongs tof‘i(0 . Since . g has continuous first-order
partial derivatives on S , and ;ince the (rxr) minor [Digj(go)] men-
tioned above haé rank r , all the conditions of the implicit function

theorem are satisfied. Therefore, there exists an (n~r)- dimensional

neighborhood V0 of v, and a unique vector-valued function
H = (Hl, cens Hr) , defined on Vé and having values in Er » such that

H has continuous first-order partial derivatives on v, o Eﬂvo) =u
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and for every v in Vo , we have g(H(v) ; v) = 0 . This amounts to
saying that the system of r equations gl(xl, e xn)= 0,

tees gr(xl,..., xn) = 0 can be "solved" for x,, ..., X in terms of

1,

X415 +rs X » glving the solutions in the form X, = Hl(xr+l’ ceay xn) ,

£ =1, 2, ..., r . We shall now "substitute'" these expressions for

X

1% v X into the expression f(xl,..., xn) and also into each ex-

pression g (xl,..., xn) . That is to say, we define a new function F
k

as follows:
F(Xr+1"°" xn) = f[Hl(Xr+l"'°’ xn) seens Hr(xr+1""’ xn] s X g1rees xn]

and we define r new functions G Gr as follows:

1’ LU Y
Gk(xr_*-_l,, o0y Xn) .= gk[}];l(xr_*_l, sy xn) [y s v ey Hr (Xr,_Fl,,... .3 Xn_) . Xr+1, o s 0 Xn]

k=1, 2, ..., r . More briefly, we can write F(v) = £(R(v)) and

Gk(g) = gk(g(g)) » where R(v) = (H(v), v) . Here v is restricted to
lie in the‘set V0 .

Each function Gk so defined is identically zero on the set V0 by

t he implicit function theorem. Therefore, each derivative Dth is

also identically zero on VO , and, in particular, Dth(zo) =0, 3ut

by the chain rule (Apostol (1957) , pp. 112-114) Dsz(zo) =

0 .
hil Dhgk(go)Dth(zo) =0 (=1, 2, ..., (n-r)) . But Rk(yg =

Hk(z) if 1 <k <r and RkQZ) =% if (r+l) <k < n . Therefore, when
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(r+l) ;k <n , we have DQ,Rk(X) ={1 if r+g = k
0 if r+g # k .
Hence the above set of equations becomes
r (2)
I Dyg (x)DH (v) + Dy zgk(x)‘o Ck=1,2, ..., 1
h=1 _ . =1, 2, ..., (n-1r) .

By continuity of H , there will be a neighborhood ”(Xo) C Vo such
that v ¢ n(_y_o) implies (H(w) ; V) € n(§o) , where n(_}so) is the ne;ghbor—
hood in Apostol's statement of the theorem. Hence vV ¢ n(\_ro) implies
HW ;5 v) é{Xonn(Eo)} and therefore, by hypothesis, we have either

< .

F(v) = F(XO) for all v in n(yo) or else we have F(v) > F(_y_o) for
all v in n(_\{o) . That is, F has a local maximum or a local minimum
at the intefior point v, . ‘Each partial derivative DQF(XO) must there-

fore be zero. If we use the chain rule to compute these derivatives,
) n

we find DQ,F(-YO) = hil th(-}fo)DSLRh(zo)' =0

2 =1,2, ..., (n-r)) , and hence we can write

r
hithf(gd)Dth(go) + Dr+£f(§o) =0 =1, 2, ..., (n-r)) (3)

If we now multiply (2) by Ak , sum on k , and add the result to (3) ,

we find

r r )
f f
[hElD (x )D Hh(v ) + D, (x )]+ kZl Ak[hz1 hgk(fb)Dth(Eo)

D8k (% )]



20

r r .
= DD EGx) + I A Dg (x)IDH (v) + D £(x)
h=1 k=1
=0
r
+ ¥ AD g, (x)
k=1 k r+2°k o

for ¢ =1, 2, ..., (n-r) . In the sum over h , the expression in the

' P
square brackets becomes [- % A, D g (x )] because of the way
Ker+1 k h®k o

Y A were defined. Thus we are left with [D f(x ) +
v r r+4 o

1700
(4)

r P r
L AD g(x)+[- A I Dg(x)IDH(W)] =0 for g =
k=1 k r+2°k —o k=p+1 k h=1 h®k o QHh -0

1, 2, ..., (n-r) . But, referring back to equation (2), the second square

P
bracket of the last equation (4) becomes by -AkDr+2gk(§5)
_ k=r+1
(=1, 2, ..., (n-r)) . Substituting this into (4) one gets
p . 0 »
Dr+zf(§o) + I Akgk(§o) =0 (¢#=1,2, ..., (n-r)), which is equivalent

k=1
to equation (1), and these are exactly the equations required to complete ’

the proof.

-

C. PREVIEW OF THE ARGUMENT TO COME

We will be considering the maximum likelihood estimation of the

qijk. 3

the hypothetical Pijk with 6ijk set equal to zero. Consider the

5 Y S t
equations 53~——- = 0 where q = log(n!) - T © & log(f,_kg)‘+

Pabe i=1 j=1 k=1 +J '
r s t r s t r s t
Z z r f£.. logp,. e z L L L X In
= i= = le le - [ P. - l] + .. [P.. - q.. ]
i=1 j=1 k=1 {=1 j=1 k=1 ijk i=1 §=1 k=L ijk Yijk 1Jk"
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a = 1‘to r ; b=1to s ;
c=1¢tot.
' f r s t og. .
39 .8 _ o4 3 p 1 oq.. ik,
%abc  Pabe i=1 j=1 k=1 13K 3P 5.
. a=1ltor b=1to s ;
c=1¢tot,

where

Bijk ~ Pijk T Yijk
These give us rst non-homogeneous linear equations in the unknowns 6

and the . The matrix of coefficients of the unknowns is

N3k

[8

% .gh(R)] s, h=0,1, ..., rst;a=1tor ;b=1ltos ;c=1tot.
abc :

The first step in applying the Lagrange multiplier theorem is to find the

rank of this matrix.

1 d g ’
It is shown that [é %@YQZ][BEELEL] ,and hence [g_ ’ghgg)] has rank
= ijk Piik

1

(r—l)(é—l)(t—l) + 1 , where ] is an  ((rst + 1) x (rst + 1))

te
0 XRYRZ

nonsingular matrix to be described later. Upon eliminating 6 from

the equations %ﬂ~—— = 0 , the resulting matrix of coefficients of the
Pabe
nijk has rank (r-1)(s-1)(t-1) .

Ordinarily the next step would be to solve for the Lagrange

multipliers n,

ijk and , having found them, to substitute these into the

equations gg——-= 0 and to solve these equations for qijk » the re-
abc

stricted maximum likelihood estimators of the pijk , given that the
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Sijk = 0 . In the present case this 1is not necessary. It will be shown

that the equations are consistent and have a solution (actually systems

of solutions) for the Pijk when one sets pijk equal to

Thus the are the restricted maximum likelihood estimators of the

95k

pijk when Gijk = 0 . Generally the equations are inconsistent for

other sets of values of the p;, .
ijk

D. SATISFYING THE CONDITIONS OF THE THEOREM

r s t
i f = o , '
Define f(plll’p112""’pllt""’Prst) log n! .Z .Z £ log (fijk.)
i=1 j=1 k=1
r s t , :
+ X L I £, logonp s P, > O.
i=1 j=l k=1 1Jk <. ijk . ‘le
' - f..
Let S = {(xl,...,xrst)l xl >0 for 2 =1 to _rst}.gf - ik s
- : Pijk  Pijk

which is continuwous on S , i =1
j=1l,...,s
k=1

«ssP Yy =0 ;

Consider the rst + 1 constraints gh(p st

111"’
h =0,1,...,rst:

v T s t
g.® =1 ¢ I p.. -1
© i=1 j=1 k=1 13k

gijk(E) T Pisk T Y45k 0

i=1 to r;j=1 to s;k=1¢to t , where p = [plll""’Prst]
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%

g, has continuous first order partial derivatives on S.. Essentially,

= 1 and, since constant functions are continuous, we have that
ijk ‘

the (p) are polynomials in the Pope ° hence all of the partial

&ijk

‘derivatives are continuous.

Now Q = {(XI"5°’xrst)|Xl+"'+xrst =1, x> 0 for g = 1A>t° rst}
' : r s t
is the subset of S where go(§) = ¥ % I X~ 1=0. Q@ is
: i=1 j=1 k=1 *J

the Xo to use in the earlier case for the general multinomial case.

When second order interactions are zero, then Xo ='{(xl,...,xrst)|gh(§) =0,

x >0 for 2

2 l to rst | ‘ v
h

]

0,1,...,rst}
“This "XO'C.”Q S 1is what we need here. |
Let us now find how many gh(E) are functionally independent on the
set S of the Lagrange multiplier theorem. The nuﬁber of gh(R)-that

are functionally independent on the set S equals the rank of the matrix

2 g, (®)] og ,
Bpabc h s, where p ¢ S . If we multiply the above matrix [-EE] by

a non-singular matrix, the rank remains unchanged. Let us use

1 0
[Q_ xavez!

, which we describe below. Note that @ stands for the direct
product of the matrices.
Let '{X(u)} » u=20,...,(r-1) , denote a set of functions orthonormal

with respect to '{pl seeesP } s {Y<V)} , v=10,...,(s~1) , a set

orthonormal with respect to {p 1';...,p &} {Z(w)} ,:w =0,...,(t-1) ,
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a set orthonormal with respect to {p PERREN I o with X(Q) =1,

.ot

'Y(O) =1, Z(O) 1. Let X = [Xiu)] s, 1i=1 to r; Y= [Y§w)] s

j=1 to s ;Z-= [Z(w) k=1 to t . The use of XRYRZ , where the

k H

superscript indexes the rows, and the subscript indexes the columns, and

Xéu)ng)Zéw) is the element of XRY®Z in the (u,v,w)th row and (i,j,k)th
column should reduce [g gh(R)] to much simpler form.
Pijk :
pabc
o8
abc _ _
Bpabc =1 [P.bc *p c + Pab + Pa. tp b tp c z(p.b.p..c +
+ b
Pa P c Pa. P b.*
(k#c) ag
abk _ ‘
I P px ¥ Pak TP kx ~ 2y Pt P, P ]
(3#b) °g_.
—2ic . + + -2 +
T [p je T Pay. Y P (e, p Pa..P.j )]
(i#a) og,
ibe _ _ -
B [Py o Py, TPy, —20y Pty Py
j#b) 98,1
o] o= = [y - 2 5 )]
abc 3
#a) 8.
ibk _
E"‘C Do [p; = 2>y P )]
'#a) CLIP
#] 3ot = = [pyy = 2y P )]
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i#a\ 9g,.
j#b) k-0,
k#c Pabe

r S t
X T T Xiu) (V) (w) Bg (u) (v) (w)
i=1 j=1 k=1 y ap abe X2 Y

r

W S ' W @), ) ()., ()
R?a [jil kil Yj zk ] + Yb [izl kzlxl K Py k]

r - S r
2y oz x@WyG, vy  p xwy
c i=1 j=1 i 73 ij. b "¢ 4=1 & 1.

s t
+ xW, ¢ Yf v) ]+ x(“) év) [ = zéw) ]
a ¢ j=1 j .J k=1 .

W S L) (w) ) (u) )
+2[xa [jfl 1,0 Lr g e [iilxl o, ) Lozt )

s . (v)
+ z(w) [ = x(“)p J s Y P.j.ﬂ}
¢ i=1 7 3=

We now make use of the orthogonality relations and also introduce Lancaster's

correlation notation:

r s ¢t : iy
Py = L I 2 xi“) gv) (w) P, s - Since x@ -1, vy©@ -y
is=1 =1 k=1 - - J J
[ t .
£0) -1 | this gives o = 1 1 YVg (W) , o =
ovw 3=1 k=1 3 .Jk uvo
R (T W ¢)) Tt ), W
) r XY, 'p.. and p = Z r X, 2 ,
t t
(w),,(0) .
p = I _(w) L i) TZ p =L if w=20
oV perfe Pkt ¢ ¢ R ooar w0
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Similarly p _=[1 if u and p = {1 4if v =0
uoo 0 if v #0

Note that there is no second order interaction in our model i.e. dijk = 0-¥L

r-1l s-1 t-1

(jk) if and only if £ I I p _=0.
' - u=l v=1 w=1

(Refer to Lancaster's ''The Chi—Squared_Distributioﬁ" for proof).

Hh Hh
o o
o

Let Azm = {é

r s t
or oz xMW2) B W0 @y 0y,

i=1l j=1 k=1 l, J op abe a a ‘ovw b Puow

(W) - V) () (u) (W) (w) () 5 (1)
t 2z, Puvo + Yb zc Aot Xa Ze A t LY Awo} + 2{Xa A votvo

A +z( A A} .
b uo wo uo vo

Let us now consider the following cases:

(u=0, v=0,w=0) . Recall pooo =1 .

'r s t

z b z ___;L_ _ .
i=1 =1 k=1 3p_ 1-6+2(03) = ( 1 equation)

(u=0, v=0,wé#0), Poow = 0, Pooo 1.

rorooro et Tijk o (w) 3zc<w) + 2zC<W) =0 ((t-1)eq'ns)



r S t .
r oz oz Y™V %y,

Ak Yév) - 3Y(V) + 2Y(V) = 0 ((s—l)eq'né)

i= 1= — j .
i=1 j=1 k=1 | apabc b b
(w# 0, v=0,w=0),p ~=0,p =1
r s t : _ i '
croozozoxW %y g - ;x4 2x§u) 0 ((x l}eq ns)
i=1l j=1 k=1 apabc a a

(u=20, v# 0, w#0)

r s t ) .
sy % Y§V)Z(W) 98 11 ) Y(V)Z§W) - {povw
b .

+ Y(V)Z(W)}
R k b e
i=1 j=1 k=1 P pe

- povw'((s—l)(t—l)eq'ns)
(u#O,v=0,w#0)

r s t

(w,_ W) 2g..
I I Xz ijk _ (), (W) (u), (w)
i=1 j=1 k=1 “ . a fe T leuouw T X Z)

= Puov ((xr-1)(t-1)eq'ns)
(u# 0, v#0, w=0)

r S t :
oz o3 xWy 384 ?'Xig)YéV? - o+ xéu)y(v)}

£1 521 kel 3Pabc uvo b

;<puvo ((xr-1s-1)eq'ns)
(u#0, v#0, w#0)

r. s t

s 3 xgu)Y§V)Z(W) 98, .1 = X(u)Y(v)z(w) _-{X(u)p
i=1 j=1 k=1 i 73 k 3;—1f b c a ‘Youw
abc

. )
¢ Puvo}

((rfD(S—l)(tél)eq'ns)

+ Y™

b

puO’W
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. Suppose we let h index the rows of [%5——— gh(B)] and (a, b, ¢)
- ‘ ‘ abe

the columns. We can put h = 0 first and then h = (i, j, k) afterwards
in some convenient order, say lexicographic order. Similarly we order
the (a, b, ¢) . The mafrix is (rst + 1) x rst .

et X = [xfu)] , (rxf) , with u dindexing rows and i columns.
- i -

(w)

K ] » (txt) . Then

Similarly for 'Y = [Y§V)] , (sxs) and Z = [Z
XAYRZ , (rst x rst) , has rows indexed by (u, v, w) lexicographically
and columns by (i, j, k) lexicographically.

Consider (1 Q' _ 3 ' ,
X The first row of
[Q_ XQYQZ] [apijk 8h(2)] (rst +‘12 x rst . ‘

 the product matrix consists of 1's. The row corresponding to u=0, v=0, w=0,
‘consists of 1's. The (r-1) rows corresponding to u#04 v=0, w=0 consist of 0's.

0, v# 0, w=0 consist of 0's .

‘The (s-1) rows corresponding to u

0, v=0, w# 0 consist of 0's.

The (t-1) rows corresponding to u
The (s-1)(t-1) rows corresponding to u=0, v# 0, w# 0 consist of

povw's,

The (r-1)(t-1) rows corresponding to u# 0, v=0, w # 0 consist of

Puow's °

(r-1) (s-1) rows corresponding to u # 0, v # 0, w =0 consist of

&

£

o

‘,gw‘
'h

uvo's.
Obviously the rank of the submatrix consisting of the
1+ 1+ (r-1) + (s-1) + (t-1) + (s-1)(t-1) + (r-1)(t-1) + (r-1)(s-1)

rows listed above is one. In general the submatrix consisting of the
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" remaining (r-1)(s-1) (t-1) rows will have rank (r-1)(s-1)(t-1l) because
of the linear independence of the orthonormal functions. We now prove

this statement.

The matrix V ((r-1)(s-1)(t-1) x rst) with elements

X(u)Yév)Zéw), u# 0, v#0,w# 0, (u,v,w) indexing rows,‘(a,b,c)

indexing columns, has rank (r-1)(s-1)(t-1), since its rows are among

those of the non-singular matrix X8Y8Z . The last (r-1)(s-1)(t-1) rows

. of
1 0 %85 ] have elements
9P
0  X8Yez: 3g
P
r s "t y Bg..
I Iz X§U)Y§V)ZIEW)_§£E
i=1 j=1 k=1 * 3 Pabe

Gy (W), w) o (u) ) (w)
=X Yy T {Xa Povw T Tb Puow T % puvo} )

(u,v,w) indexes rows (u=1 to (r-1), v=1 to (s-1),w=1 to (t~l)).
(a,b,c) indexes columns (a=1 to r,b=1 to s, c=1 to t).
Let us denote this ((r-1)(s-1)(t-1l) X rst) matrix by Q . Let 1w be an

(rst x rst) diagonal matrix with diagonal elements P, PP > 0.

“Tae rank of QuV' is < rank of @ .. If we can show that QrV' has full
rank (r-1)(s-1)(t-1) , then Q must have rank > (r-1)(s-1)(t-1) . But
‘it cannot have rank > (r-1)(s-1)(t-1) . The element in the (u,v,w)th row

and (u', v', w')th column of QuV' 4is :
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r s t
(U) (V) (W) {X;u)p + Y(V)p + Z(W)p }

Z I I p_ P.7P [X
a=1 b=] c=1 2°° b.o. b ovw b uow c uvo

PO ARPARS

X(u)Y(V)z(W)X(u')Y(V')Z(W')
a b c a b c

e C

r s t ‘ ' ' '
-1 3 t p p.p MW, 4 Y(v)p + Z(w)p px (U ?Y(V )7 (")
_ _ T SbaT . a ovw b uow c uvo’ a b c

a=1 b=1 c=1 |

The first term on the right equals

(U) (u ) , ' 1 if (u,v,w)=(',v',v
(z2 p, X )( Xl P, éV) (v ))( : p 20y
=1 *°¢¢ ¢ 0 if (u,v,w}#(u',v',v

In the second term:

r S t 1 ' '
r 1 I Pa..Pp.P cxéu)povwxsu )Yév )Zéw ‘
a=1 b=1 c¢=1 trotErote
' - v w'
=ow<zp X0 pbé)xz 28y =0
a=1 ' : b=1 =1
(4 t
] \
Since L p b Y(V ) o 0 for v' # 0 and I p Z(W ) - 0 for
.b. b .C C
b=1 c=1

w' =0, similar calculatioﬁs for the other two parts of the second term
show that each part equals 0 , hence the whole second term equals O .

The diagonal elements of Qnv' are 1's and the off diagonal elements

are 0's . Hence Quv' has full :ank and hence Q has rank (r-1) (s-1) (t-1).
- This means that (rs + rt + st - r - s - t + i) of the Lagrange multipliers
can be assigned convenient arbitrary values, and then we must solve for

the other 1 + (r-1)}s-1)(t-1)



E. SOLVING FOR ONE OF THE LAGRANGE MULTIPLIERS

r S t r S t
Consider q = log(!) - = b r log(f, k!) + hX b fi‘
i=1 j=1 k=1 - i=1 j=1 k=1
r 8 t ) r () t
{6l £ £ % P,y =11+ T T I Mo dpPiiy - ais ).
i=1 j=1 k=1 13k =1 j=1 k=1 +dk i3k Tijk
f b _ r s ¢t ag..k
gq =2% e+ 1 I I n)t a=1to r3b=1 to
Pabe  Pabe i=1l j=1 k=1 ] Pabe

S
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i 198 Pigk

c=1t¢tot.

What we have actually found is the rank of the coefficient matrix of the homo-

geneous part of these rst equations.

f T s t 3gi.k

wii e CR LI L
abc abc i=1 j=1 k=1 abc
= —ghe _ 8 -n + ; .g n P + I ; n P
Pobe abc j=1 k=1 ajk “.jk 1=1 k=1 ibk “i.k
r S X S t
T jfl Yje Pig. * 121 "ibe Pi.. T 351 agePg. 2 Tabk Pk
st r t r s
- 2{jil e Py Pt D M Pyl Pt T jfl e
Since Pabe ~ (Pa..p.bc + p.b.pa.c+ P..cpab.— 2pa..p.b.p..c? by‘hypothesis,
B S ST -
a=l b=1 c=1 2P¢ Pgp. a=1 b=l c=1 2P¢ @ 1 o1 k=1
T S t - r S t r S t
* io1 bot ey WPk PobPLk * ifl jfl cfl Mije Poic Pag. * 151 bzl cil libe
r S t rFS t

+ 3 X Y n. P. P + I z I n

a=1 b=1 k=1 abk P..k Pab.

najk Pa.. p.jk
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r s t r s t
-2{z = 1 . P . D + I I I n.,..P.
am1 §ol kel Majke P Pog Poe T2 m 0 Mk Pp Pl

_ r s t
+ . I I n
i=1 j=1 c=1

p _}.

Pi. Pi.Pe

ije

r s t 5 r S t
$ L I p., DX =-ne+xr I I n

~4+ _4 “abc 3p 1 o - abc[pa..p.bc + Pb.Pac + P cPab.
ad b=1 c=1 abc a=1l b=1 c=1

Set this equation equal to O .
r s t .

Then 6 =n+ I I % n..Ip, P, +pP. P, ., +P ,P.. =-4p, P .P ,I]
1=1 j=1 k=1 ijk il Lk #Jo ik kij, .o ..k

The equations A =0 a=1 tor jb=1tos ;jc=1t¢tot

represent rst equations in rst + 1 unknowns; the n's and 6 . We
found thaf there are (r-1)(s-1)(t-1) + 1 1linearly independent equations
among these rst equations. To arrive at the equation (5) in ¢ we
multiply the first of .the (r-1)(s-1)(t-1) + 1 independent equations by
a suitable nonzero constant and add to this multiples of the other re-
maining independent equations. We can then eliminate 6 from the

(r-1) (s~1) (t-1) equations. It is clear that these (r-1)(s-1)(t-1) equa-

tions are linearly independent.

F. THE SYSTEM OF EQUATIONS HAVE A FINITE SOLUTION

Now let us go back and look at the original equations in the form

9 . 0 . If 0 has been replaced by the expression in the n

P '
abc apabc abc's,



33

then there are rst non-homogeneous linear equations in rst wunknowns.
The rank of the coefficient matrix now is (r-1)(s-1)(t-1l) . 1In order
for the system of equations to have a finite solution, the rank of the

augmented matrix must be the same as the rank of the coefficient matrix.

9 - 0 after the expression for ¢ has

The equations Pobe 5
abc
‘been substituted become
r s t _g_l.15
Pabe 2 jfl Rt L I T L R S b5 PPl

) (6) . Now the term of p L S 0 not involving

o abe apabc

abce abe

the be * after 6 has been eliminated,is (fabc-npabc) « In order for
.the .augmented matrix .to have rank (r-1)(s-1)(t-1) , it is necessary that

r s t
R NS x(“)YéV)

Z(w)(f -np ) = 0 whenever one or more of the
a=1 b=1 c=1 c abc abc

indices u,v,w are zero. The above requirement for the equations

pabc-%%—~— = 0 to be consistent automatically rules out many otherwise
abce

possible sets of values for the Pobe

Let X(u) , {v) ,‘éw) represent orthonormal functions with respect

-

"tosfhe distributionsv'{pi Y, {p } ,‘{P k} respectively, as before.

Let X(u), Y(V), Z(w) represent orthonormal functions with respect to

£, f . f
the empirical distributions { ;"} s { QJ'} , { é'k} respectively.
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N VM O

Let »p = I z P
Iuvw a=1 b=1 c=1 b ¢ abc
~ r 's t . “ n f
b a=1 b=l c=1
~ r s t f
= I z X(u)YéV)Z(w) —ﬁhﬁ
YW a=1 b=l c=1 2 ¢
Then Pooo 1, Puoo = Povo = Poow - 0 for u#0, v#0,w# 0.

Similarly for p but not for p , though Pooo = 1.

Writ ~ - (fa..f.bc + f.b.fa.c + f..cfab. _ Zfa..f.b.f..c)
e dape 2 3
n : n
b o s t . ~ ~ ~ ~ ~ ~
T r 3 X(u)Y(V)Z(W)q =A p__+A p _+A p =20 A A
a=1 b=l c=1 & Db ¢ abc uo’ ovw Vo' uow WO uvo uo vo wo
1 for g=nh r . A f 1 foru=20
where A h = since I X;u)X§0)~§L; =
g 0 for g # h , a=1 0 for u# 0
r s t . “ " R
Thus I I z Xiu)Yév)Z(w)q be = (1 for u=0,v=0,w=0
a=1l b=1 c=1 ¢ abc 0 for any two of u, v, w = 0
P v for u =0, but v#0, w# 0
<puow for v = 0, but u # O,_w £ 0
Puvo for w=0, but u# 0, v#0
O for u# 0, v# 0, w# 0
r s t ' :
. . (W, (), (w)
Similarly for az I r X Yb ZC Pobe? where the Pobe represent

1 b=1 c=1

their hypothetical values, except that p is without A .
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r s t ., . f N
b) z z X(U)Y(V)Z(w) —abe p = (1 for u=0, v=0,w=20

a=1l b=1 c=1 b e n uvw 0 for any two of u, v, w =0
0 for u =0, but v#0, w#0
. ovw
<puow for v=0, but u# 0, w#0
; for w=0, but u# 0, v#0
uvo
Lpuvw for u# 0, v#0, w#0
;e W) .
Thus h) by r XYM Z (f - nq, ) =| 0 when at least one of the
b c abc abc X
a=1l b=1 c=1 u, v, w 1is zero
ns when all indices are not
zeros

r s t
On the other hand z P} r X

~

() (), () fabe _

o » which usually
a=1 b=1 c=1 b e m uvw
_ fa ~ - -
# Puvw ¥RETE P # ", ete. Also p s P s Py C2D DOE be ex-
f ' r s t
pected to be zero when p # -2 etc. Thus % I % X(u)Y(V)Z(W)(f -
a.. n a=1 b=1 c=1 b c abc

npabc) = n(puvw - puvw) , where Pope has its hypothetical value. For

u=0, v=20, w = 0, one has n(pooo -~ pooo) = 0 . In the other cases,

one has n(puvw - puvw) .

We conclude that if the equations (6) are multiplied by X;u)Yév)Zéw)

and then summed with respect to a, b, ¢, then, in general, the resulting

rst equations will have on the right side n(puVw - puvw) , of which

(rst - 1) may be expected to be different from zero. However, the rank
of the matrix of coefficients of nabc on the left side is (r-1) (s-1)(t-1),

so that the equations will be inconsistent except for special sets
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.{pa }, {p b }, {p C} which leave an appropriate set of not more than

(r-1) (s-1) (t-1) terms on the right of the equations non-zero. We want
- f f f

to verify that {p_ } = {2}, {p  }= (=2}, {p _} = (=5

will accomplish this.

A set of non—homogeneous linear equations are consistent, that is,
have a solution <=> rank of coefficient matrix = rank of augmented-
matrix _— <=> column space‘of coefficient matrix = column space

of the augmented matrix.

-~

We have shown that the vector q lies in the column space of the vectors

(u) ) (w)

X Y 8 Z , where u# 0, v # 0, w# 0, but that, in general,

the same can not be said of other possible p . 1If we can show that the

column space of

+p - 4p, p p..k] equals the

.Pik TP Py, i..P..

column space of '{§‘u) @‘X‘v) 8 Z‘w) |u £0, v#0, w# 0}
then the set of equations will be consistent when p =g . Note that
here (a, b, ¢) indexes rows, (i, j, k) and (u, v, w) columns.

The column space of the coefficient matrix above is a subspace of

rst-dimensional Euclidean space, Erst . The matrix was shown to have

.x~nk (r-1)(s-1)(t-1) , hence its column space is an (r-1)(s-1)(t-1) sub-

1

space of JErst .
u=20 to (r-1)
Now the set of vectors §‘u) 8 X‘v) 8 Z‘w) v =0 to (s-1)
w=0 to (t-1)
forms a basis for E » We will show that the column space of the

rst
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coefficient matrix is orthogonal to the subépace spanned by the set of

vectors {z(u)v@ z‘v) @_g(w)

l one or more of u , v, w is zero} . This
isa 1+ (r-1) + (s-1) + (t-1) + (s-1)(t-1) + (r-1)(t-1) + (r-1)(s-1)

= rst - (r-1)(s-1)(t-1l) dimensional subspace. Hence its complement,

the (r-1)(s-1)(t-1) -dimensional subspace spanned by the set of vectors

-{g(u) 8 X‘v) ® Zﬁw) l u# 0, v£0, w# 0}, is the same as the column
space of the coefficient maﬁrix. We have shown that the vector (E.— nﬁ)
lies iﬁ this subspace. Hence the set of equations would be consistent
when (f - n&) is the non-homogeneous part of the equations.

To show that the column space of the coefficient matrix is orthogonal

to the subspace spapned by the set of vectors -{Eﬁu) ® X‘Y) ) Z‘w) | one
or more of u, v, w is zero} , recall
T s t 3g. . lforu=v=w=20
X I I X{u)ng)Zéw) S—Elk = 0 if two of u, v, w are 0, one not 0
i=1 j=1 k=1 3 Pabe - if one of u, v, w is 0, two not O
MOMOH ORI ORI
a b c a ovw b uow
Z(w)p }if none of u, v, w is O .
g c uvo ..
- SO
Recall also that I Xi P, = 0 for u#20
1=1 e -
s t
Tz ng)Zéw)p G = P , etc.
i=1 k=1 JE oW
Y s t 3g. .
Bence 3 3 1§ xWyMW 0w ik o o Lo o
i 73 k p i.. .k geoildk
abc

i=1 j=1 k=1

TP Py, TPy PP ]
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0 if at least one of u, v, w is O

(w)

f Wy @@ @)
c a b c

4+ Z
b ovy puow

o} 4if none of u, v, w is 0 .
uvo’

This shows that the column space of the matrix

+p -'4p P p..k] is orthogonal to

+
.21k T P kP, i..P.5.

(u) ) (w)

all the vectors X Y 8 Z for which at least one of u, v, wis O .

G. THE NUMERATOR OF THE LIKELIHOOD RATIO
The numerator of our likelihood ratio we now see to be
r s t (£, £ .. + £ . £, + £ f,. . .
At nmon om |-Lee .jk .j. ik ..kif. i.. .. ..k
i=1l j=1 k=1 n n

H, SUMMARY OF CHAPTER III

In this chapter we discussed testing the hypothesis of no second order
interaction. We chose the method of the likelihood ratio. There are no
difficulties in determining the denominator of the ratio. To assist us
in determining the numerator of the likelihood ratio we introduced a
theorem about Lagrange multipliers, modified it, and proved the modified
version. We then proceeded to show that our problem éoes satisfy the
conditions of the modified theorem and hence our use of the modified
theorem was valid. We finally arrived at an expression for the numerator
of the likelihood ratio.

One could alternately think of this chapter as finding the maximum

likelihood estimators of the pijk’ first under the most general assumptions,
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then under the hypothesis of no second order interaction, that is, 6ijk =0

for every i, j, k .+ We could then decide to test the hypothesis of no
second order interaction using the likelihcod ratio criterion or

-2 log (likelihood ratio), or else we could use
' k r s t f.., - n;.. 2
x2 = Iz I I ( ijk = 1JL) , where this
i=1l j=1 k=1 nqijk

.. is the restricted
qle

‘nmximum likelihood estimator of pijk under the hypothesis that second

order interaction is zero.
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CHAPTER IV  CONTINGENCY TABLES FOR WHICH THE HYPOTHESIS
OF NO SECOND ORDER INTERACTION IS NOT

MEANINGFUL

Ordinarily the pijk can vary over a finite region. When the @arginal
totals are specified, that leaves an (r-1)(s-1)(t-1) subspace for the pijk
to vary over. We expect that the maximum likelihood estimators of the qijk
will usually lie in the interior of this region. Occasionally they may
héve to lie on the boundary, on one of the faces of the region or where
two or more of the faces intersect.

Now P(neither A mor B, but C) = P(C) - P{(AUB)C} = P(C) -P{(AC) U (BC)}
= P(C) - P(AC) —‘P(BC) + P(ABC) > 0 . Hence P (ABC) 3_P(AC) + P(BC) - P(C) .

Thus it follows that

maxt0, Py ¥ P g TP g0 Pyj, FPi TPy Py TP g TP )

< pijk f-mln{p.jk’ Pi 1o pij.} . We have not really used these

restrictions in deriving the maximum likelihood solution.

In a three-way contingency table it is sometimes possible for one or

more to be

95k

< max{0, Py +p,. - P, ,PpP.,. T P o P

ij. i.. ij. 3 i’ p.jk + Pix ~ p..k}

or > mln{p.jk, Pi k* Pia } , which it is impossible for to satisfy.

Je Pijk

Similarly for and the corresponding relative frequencies.

113k
Let Q' th - i ' e
e Q' denote e set of real non-negative numbers {plll’ s Prst}

which are possible probabilities in an r X s x t contingency table with

1.
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given marginal probabilities. In the cases indicated above with the pijk
or pijk set equal}to

set equal to the point does not 1lie

93k 95k

in Q' . There is no solution (p seeesP._ _.) lying within Q' under

, 111 rst
the conditions imposed. We do not want to tamper with the marginal totals
or the two-way table interactions, so what can we do?

Since -2, p. P + &

= +
Pijk = Pi..Pojk TPy Pi Y P iPyy. i P05 Poe T %k
r} ) —- - + -
expression qijk < max{0, P, T Pij. " Pi..? Pij. + Pk~ Pj.0 Pk P; kP. .k
implies that Gijk > 0 , while expression qijk > min{p.jk, P pij.}

implies that aijk < 0 . This suggests that when (plll""’prst) lies

outside of Q' we not hypothesize that all of the &, are zero, but

ijk
..rather allow certain contrasts.of .the dijk.wtoube"nonrzero.while hypothe-
sizing that all linear combinations of the ¢_, orthogonal to the given

ijk

contrasts be zero. Possibly one could estimate the direction of this

vector (the vector of coefficients of the aijk in the non-zero contrast),

but it is much simpler to prescribe the direction to begin with and just
worry about the length of the vector.

Consider the following marginal totals of a 3x2x2 contingency table:

1}
ClUC2 Bl B2 Sum _BluBZ Cl C2 Sum AlUAéJA3 Cl‘ C2 Sum
Ay | 1/12) 3/12) 1/3 Ay 1/24) 7/24 | 1/3 B, 1/12| 5/12] 1/2
A, | 2/12f 2/12| 1/3 A, 2/241 6/24 | 1/3 '32 2/121 4/12} 1/2
Ay | 3/12) 1/12] 1/3 Ay 3/24) 5/24 | 1/3
Sum 1/2 | 1/2 1 Sum 1/4 | 3/4 1 Sum 1/4 | 3/4 1
Note that p, ~=p, =py = 1/3
P, 7P o 7 1/2
P..l=l/4 ’ P_ = 3/4



Consider the following table: 42

possible values of

(3| pyy 4Py 7Py Pis. PP k7P 5. Py kP akPL K Pisk
mi| 1,1 8_-s| 1,1 6_-8| 1,1 _ 6=x3 0 to 1
1272 2% "%\ 2 T2 1279 |12 T 74 74
m2| 1,7 8_ 1|1, 5_ 6_o | 7,5 18_-1| 1t 2
L % " %Sl T2 TR 2% Y12 " 2% T 74 2% 7
120) 3,18 ) 3. 2 6_-=2| 1,2 6_=1 1
V% 2%t 2w |t % T2 0 to

22| 3, 7 8_5| 3, 4_6_ 2| 7+ 4-18=-3| 5
12 724 24 2| 12712 "127 24 | 26 1z 2% 74 24 “° 24
| 2, 2_ 8 _=2| 2, 1_ 6_-6| 2, 1_ 6_=2 2
V%% "% | 12712 " 12°%% |36V 12 "% T3 0 to3
22| 2, 6_8_ 2 2, 5_6_2| 6,5 18_-2| 2 . 4
L 5% "% "% Tt 12w | %Y1 T T 7 24 7%
21| 2, 2 8_=2| 2, 2_ 6_=4| 2, 2  6_ 2
S YA vA B v A v il v i vl By il Yl 0 to
222 2, 6_8_ 2 2. 4_ 6_, | 64+ 4-18-=| 2 4
112 U240 24 24112 12 0 12 24 12 24 24 24 24
su| 3, 3 8_ 1] 3, 1_6_=4| 3, 1_6_-1 1,2
2% " 2% "% 1212 T 12°% | 26T 12 T %% T 74 %4 24

22| 3, 5 8_3 3,5 6_ 4|5, 5_18_=3 4 .5
I YA TA I IR v Sl v i YA B v ¥ Ml YA 72 A 7

321/ 1, 3_ 8_-3 1, 2_ 6_=6| 3, 2 6_1 1, 2
LV 2% "%~ Tt T Tt T T 2% 7%

3220 1, 5_ 8_-1] 1, 4_6_-2| 5, 4 18 _-5 2
Tt  mT T T nlntn T 0 too

TABLE XIV UPPER AND LOWER BOUNDS OF pijk .
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Let us evaluate q97 + 9397 = Py, P 33 +P P11 f P .1P11. ~ Zpy P3P

1 1. 1 1 1 1. 101 1 _ - o 2
.= (—3—)( E) + (-E XEZ) + (Z X 12) - 2(3X 2 X 4) 7 . Slmllarly q211 72 . We

" now enter the in the cells of the table. For (i, j, k) = (1, 1, 1) the

i3k

entfy is -1/72 ; for (i, j, k) =(2, 1, 1) it is 2/72.

C; B, B, | Sum C, | B, | B, | Sum cuc, | B, | B, | Sum
3 21 6| 18 | 24
A @ 72 A @: 72 |72 |72 | 72
A N N A |0 8] 18 A 12 112 | 24
2| 72 72| 72 2|72 |72 | 72 2 |72 |72 | 72
Al B & A (13 2] 15 A (18| 61 24
3| 72| 2| 72 3172172 72 3 172 |72 | 72
: 61 12| 18 30 | 24 | 54 36 | 36
Sl 2l 72 Sinlnl 7 e R
AfJAiJA3 Cl C2 Sum BlUB2 Cl C2 Sum
B 6 130 | 36 A 312 2
1 72 |72 | 72 11 72 |72 72
B 12 | 24} 36 A 6| 18 | 24
2 72 |72 | 72 2 | 72 | 72| 72
18 | 54 9 115 | 24
Smo | 2|72 Y M| 7| 7
18 | 54
Sum 3 | 77 1

The circled entries are impossible.

The intuitive way to apportion the § contributions of the layers for A

w 2
'U'addf A3 is to make the & contributions proportional to Py and Py (or
to f2 and f3 ) respectively. In the example P, =Py =.1/3 (of
at leas;uwfz‘. =_f3;. = 24) . L .
et I - T T Tt B TP Tt L PR L DL TE Prae
93 5% 2 . 3
n n

-~

In our example the 9ijk 8ive us impossible estimates:
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&111 = - 1/72 <0, etc. Suppose that

R A WO L _a - f1..)

111 n n A

s = fa..

211 5 A
. f

_ 3.
8311 = Tn
+ 847, =0 . The ¢§'s i i

Then 6111 + 6211 5311 0 The ¢'s in the other columns are automatically
spec;fled, since Gijl + 6ij2 =0, Gilk‘+ éiZk =0 .

The problem then is to estimate  A , which is proportional to the length of -

the coefficient vector of the § contrast.

o & e ) \ R TURF WY
P11 % n ‘ | P11 = Y n A
. £, - £a..
P11 T 911 T A , Poo1 T 9901 T T A
e 4 f3..A S TN
311~ P31 T o P321 = 9321 T ThT
_ o fz..x : -4 fa..
Pr12 T 9212 Tn- Poop T dppp T A
= - ‘ - f3"}‘ = - +f3..
P312 T 9312 Tn , P3pp = dgpp + A
ol 4 £y, .7 £5,.00 o &y i
112 - Y12 n P122 T 9322 n
£ '
3.2 2 po ]
p= n' I @ I %11_?
i=1 j=1 k=1 “ijk’
| 3 2 2 3 2 2
Q =log ni +I I £, logp,., - L ¥ & f,.°!
i=1 j=1 k=1 K. Ak 4o 5= kep MK
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2 3.. 2. 3..
s TP T L D3
a £, 4 E, £ . £,
477 - NGy F 2 930 T
. (fz + f3..) . £, ) £3..
+ 121 n _ 221 n 321 n
- £, * i, - F N ;
S R ) A 9321 = Tp  * 9321 - @ 2
£ £
2.. 3..
e (fz..+ £ - f9127n f312 2
112 n N £ - ]
=, (fz F i oy f212 7T A 9312 =
912 n .
£+ f £ £
2.7 £, 2.. 3.,
- iy )+ * ofy
: £
~ £+ f ~ 2.. ~ 3..
Az 7 (e 3enyy Dy T A A3 PR

In C.R. Rao's text "Advanced Statistical Methods in Biometric Research"
we find the method of scoring for the estimation of parameters. This
method works well with maximum likelihood equations which are too complicated
to solve diréctly. The above equation is such a one. The general method
in such cases is to assume a trial sblution and derive linear equations
for small additive corrections. The process can be repeated till the

corrections become negligible.

The quantity %%-is defined as the efficient score for A . The maximum

likelihood estimate of A 1is that value of ) for which the efficient
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score vanishes. If Ao is the trial value of the estimate, then expand-

ing %% and retaining only the first power of d6 = 6 - 60 ’,
2

29 . 3Q , 4 37

oA — 3A 5 2

:;%%— - dx I(Ao) where I(Ao) , the information at the value 4A-=-Ao s
“"o

is the expected value of 329 . In large samples the difference between

ar?

' 2 i )
—-I(Ao) and 3°Q will be of 0(1/n) , where n is the number of observa-

ax 2
o

tions, so that the above approximation holds to the first order of small

quantities. The correction dA is obtained from the equation

L)
AAI(A) = 5
0
- Q .
dx a, I(A,)

The first approximation is (AO + dx) , and the above procesé can be re-
peated with this as the new trial wvalue.

This chapter has by no means exhausted the possible methods of
treating three-way contingency tables for which the hypothesis of no
_second order interaction is not meaningful. It does however propose

an idea of how these sitﬁations can be dealt with.
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CHAPTER V EXTENSION TO HIGHER DIMENSTONAL CONTINGENCY TABLES.

A. TWO EXTENSIONS OF THE THREE DIMENSIONAL MODEL TO THE FOUR DIMENSIONAL
CASE,
- Consider a q x-r x s x t contingency table. Consider as

well the following two possible extensions of our model:

(34)

= PPhigk T PlPh Pui Pyl P TP Pgl %y

I. E(f i i ;

hifk

(24) (23 (14 (13)

TP P %k YPh Pk %y PP Py % YRy Py %

| (12) (234) (134) (124) (123)
TP Pk ®ht P Sige TPl Suse TPy Shie Pk Shig

+6hijk],h=ltoq,i=1t0.r;j=ltos,k=ltot with

8

(34)  (34) (24)  (24) (23)  (23) (14)  (14)
“kx T %, T 03 oy =05, = O:‘“.j =0y, T0a, e =0
(13)  (13) 12).  (12) (234)  (234)  (234)
® TOon TOoy mog =058 g =8y =8, =0
(134)  (134)  (134) (124)  (124)  (124) (123)  (123)
gk T % T Oy, T 088 g =0 T8y, T 058 4. =6
(123)
= Shi. = 0; e.ijk = eh.jk = ehi.k = ehij. = 0 where the dot indicates

summation over the replaced subscript.

v (34)
I B0 = ®Ppggie = 2Py Pl P Pt PhaL. %k
1(14) (23) (14) A (13) .(12)
TPha. %k T Phk %5 TPlag. %me TPlik %y Pk %
(234 L(134) (124) (123)

TP % TP Shg TPl Shik YRk Shay O nagils
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h=1ltog, i=1tor, j=1tos, k=1¢tot with

(34)  (34) (24)  (24) (23)  (23) (14 (14)

G TOoy, 0oy = =00, =0 =0a, = =0

J13)(13) (12)  (12) (2364) . (234)  (234)

g oy, =0ay =ay =058 0 =6y =08y =0

(134)  (134)  (134) (124)  (124)  (124) (123)  (123)

Sk T %k T Oy, TO S gk T =8 . =08 55 = 6
(123) \ | SR "

= 6hi._ = 0; e.ijk = eh.jk = ehi.k = ehij; = 0 where the dot indicates

summation over the replaced subscript,

Note that if we sum model I over h we obtain
(34) (24)

= n[p.. P . Py +p, o, +0p a,

E(f.ijk) =P ico FLu3e B Al Tk 3. ik

Jdjk
,(23). (234)

a,, +6,, 1 which we note is the model for the three
N S ijk

+p

dimensional case. The same result holds true if we sum over h in the

second extension of our model.

Let us now determine Ohijk . E(f ..jk) = np..jk

. (34)
=nlp 5P ot oy |

@8 @H a3 a

o

Similarly for O o B aﬁk s ahj s Ops

(34) Lo,

E(f ,,.) =np .. = . ) . .
(.ljk) PP ogqk =Py P gD R TP, % TPy % P k%

I T S, I

o 23

(234)
+§

ijk

]
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(234) (34) (24) (23)
=> 85k TPk TP .Pg  Poik TPaiL. %5k TPLLg. %k TPk %y

2

Pask ¥ 2P 4 P s Rk TP Plsk TPy Puie T Pk Pl

(134)  (124) (123)

Spyk * O 8

Similarly for hik * Shiy -

(34)

(24) (23) (14) (13)
TPho Pigl %k TPl Pl % T Puin Pl %nk T PliL. Pl k%ng

(12) (234) (134) (124)
" Ph... Sisk T Pui.. Smir TPy, Shik

(123)
P...k %nij °

After substituting the expressions just derived for

(34) (234)

o, and the other a's and for 6., and the other §'s into the
jk : ijk

formula for ehijk’ and combining terms we obtain:

-

®hijk = Phijk = Ph... P.1.. P Pk

Ph... Poijk T Pii.. Ph.jk

P 5. PRtk TPk Phij. P Ph.. Pl Pk T Ph... Py Pk

+p +p

heoo Pk Puig. YPL P 5 Pk T PLiL Pk Phuy

TP 5. Pk Phi.. -

- "
Let us now determine © hijk" From the second extension of our

1 (34) 1 (34)
s 1T

del - N | _ -
node E(f-~jk) gk T nle g Pt o PoskP.L5.PL.
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24 @3 a4 A3 ,QA2) 1 (234)

Similarly for o s O + O =p

ik * %5 %k’ %nj hi T Cijk Lijk
TP L P 5 Pk TP P gk TP Pk TPk Py
L(134) ,(126) o (123)
Slmllarly for Ghjk s Ghik s Ghij . 0 hijk = phijk -
, (34) 1 (24) v (23)
Phoo o Pois o Pliis Bok T PniL, Y% T Py, %ik T Phllk %ig
¢ (14) y (13) y (12) y (234) v (134)
“P.i. %k Pk % TPk ®hi " Ph... Sijk T Pli.. Shik
 (124) : (123) .
- p..j. Shik “ Pk Ghij . After substituting the expressions just
v (34) ' ' y (234) -
derived for g and the other o * s and for dijk and the other

b

&' s into the formula for and combining terms we obtain:
g

]
higke
®nijk = Phijk ~ PPh... Poi.. Pog Pt Png Py Pk TP,

Py, P oty Py, P,y T Pho.. Pk TP gk Py, P

I W .03

+ 3 L = 2 - 2p

P ik Ph... Poi.. " %Phi.. P sk T %Phy. Plik .ij. Ph..k

Phoo. Pligk TPl Phigk T Pllg. Phiuk T PLLlk Phij.

B. LANCASTER'S DEFINITION OF INTERACTIONS COMPARED TO OURS
Consider for a moment the following definition of interactions
given by Lancaster in his text "The Chi-Squared Distribution' (1969)

ppP. 254-256: Let Fi R Fi i s Fi {4 20 denote the one-, two-, three-,
1 172 17273

<i <i < sevees

... dimensional distribution functions, where i 9 3

1
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1 _ : :
let T denote the (n-1)-dimensional distribution function of the set

. T
complementary to the particular random variable chosen, F as the

(n-2) dimensional distribution function of the (n-2) variables complementary

to the particular pair (il,iz) chosen, and so on. With this convention,

 interactions of the (n—l)th order are said to exist if, and only if, F

cannot be displayed as a sum

1 ' " (A1 n (n—l)
F = ZFi F - EFi Fi F + IF, Fi Fi F - el (-) ZFi Fi ‘ Fi F
1 ) t1ot2 3 1 20 “(n-1)
T F, F, T,
l 20.. V n
where the summation is over all combinations of indices (il i2 o ik),
’ sevry

(n-1)

k=1, 2,...,(n-1), We have written F éo mean F with (n-1)

primes as superscripts. The last two terms are of the same form and may

be consolidated as (,~l)n (n-1) F, F, F, ,n> 2.
, | iy Tdpe.ees Ti

For three variables, X, Y, Z second order interactions exist
if F cannot be written as the following sum:

F = F (X) Fya(¥Z) + Fy(¥) Fyg(X2) + Fy(2) Fi,(XY) = 2F (X) F,(¥) Fy(2).

Now let X, Y, Z be code random variables: X = i when an observation

falls in the Ai category of the first classification, 1 = 1 to r,

and so on. The distributions are then discrete. Then pijk = A3 FXYZ(i,j,k)

or A3 F123(i,j,k), where A3 denotes a first difference with respect to

three variables. (See Samuel S. Wilks (1962) Mathematical Statisties

pp 39-41, 49-50 about differences.)
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n _ n-m
If one has F(xl,.'.’xm) g(xm+l’...’xn), then A (Fg) = (AmF)(A g).

Thus .Lancaster's expression in terms of cumulative distributions is
equivalent to ours. Our expression is the three variable first difference
of Lancaster's expression. This would be so even if the distributions
were not discrete;

Consider now the case of four variables W,X,Y,Z.‘ Third order

interactions exist if F cannot be written as the following sum:

F=TF (W F234(X,Y,.Z) + Fy(X) Fyq, (W,Y,2) + F (¥) Fp,, (W,X,2) +
F4(Z) F123(X’Y,Z) - Fl(w) FZ(X) F34(YZ) - Fl(w) F3(Y) F24(st) -

F, (D) Fy(2) Fpa(X,Y) - Fy(X) Fo(¥) Fy,(W,2) - Fy(X) F,(2) Fi5(0,Y) -

CFy(Y) F,(2) Fi,(X,Y) + 3F; () F,(X) Fy(Y) F,(2) .

Similar to the case of three variables, let W, X, Y, Z be code
random variables which take on the values 1 toq, 1 tor, 1 tos, 1 tot
respectively, It is easy to see that third order interaction is present
iff
Phijk T Pho.. Poijk * Poi.. Phogk Y Polg. Phik 2.k Phij.

T Ph. . Plil Plik T Pho  Plgl Plik T Ph... Pook Plig. T PLiL,

P g Ph kTP Pk Phy. TP 5 Pk Phi,, TPy P,

P 5 P k for some h, i, j, k. (This is the four variable first
difference of Lancaster's expression.) i.e. iff ehijk' of our first

extension of our 3-way model + 0 for some h, i, j, k. Hence for the
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k—dimenéional case, only our definition of the presence of 3rd order
" interaction in our first ektension of our.original nodel coincides with
that of Lancaster's.
‘C. THE GENERAL CASE FQRYTHE FIRST EXTENSION OF OUR 3-WAY MODEL.
There are w partitions or clagsifications of the sample space.

We divide the set {1, 2,..., w} into twoAdisjoint parts,.{rl,rz,...,ru}
and '{sl, sz,...,s.}, with u + v = w. For definiteness we take
v

r, <r, < ... <zt and s, <8, < ... <s_, Let T denote the ordered
2 u 1 2 v u

u~tuple (rl,rz,...,ru) and wv the ordered v-tuple (sl,sz,..,sv).

Let ih =1 to m be the subscript for the r, ~th partition and

h h

i, = 1 to ™ the subscript for the s, —-th partition. Let o, denote

J
k K k

the ordered u-tuple (il,iz,...,iu). Let UQ denote the ordered v-tuple

s

(jl’jZ""’jv)' We will write p(rh; ih) to denote P i
\ SThe o

d ~ .
(rh_l) ots (w rh)dots
The y-factor interactions involving the partitions sl, SoreesSy can be

written A(wv; ov) or sometimes A(SlSZ”"sv; 31,32,...Jv). A constraint

on such a v-factor interaction is

¥ A(sl,sz,...,s ; jl,jz,..,jV) = 0 where k =1,2,..., or V yhere _

v
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The general case for the first extension of our 3-way model.

can be written

‘ W w u
B(fp p .0 ) =g g p = bl pOul) + LT Gy £ 0] Al o))
172 W 172" w : v=2 =1

wv h h
.where it is understood that u = w-v, and that ih = Er . The summation
h
: Z is a summation over all possible v-tuples with 1 < S <8y < een <'sv <
i .
v

It is a v-fold summation, and there are w) terms altogether. ( When

0
u=0, I p(rh; ﬂr ) = 1, since empty products are conventionally always
h=1 h
set = 1.)

The terms of the sum for Py Z g can be separated into two
12... ) N

. u
classes: (1) those in which the wth subscript appears in the I p(rh; Kr )
' ' h=1 h

part as the factor p(w; ZW), and (2) those in which the wth subscript

appears in the A(y; o) factor, which is then A(s s s W3
v 1,..., v-1

4 L £ ). The two classes of terms are mutually exclusive and

take in all possible cases. Now we sum the Py p 2 term by term with
B R

respect to ﬂw (the other £'s held fixed). The terms of the first class

m
\'8

have a factor . z p G Zw) = 1 and those of the second class a factor
2 ‘
w=l

m

- _ v
% Acsl,..,sv—l, W;'ﬂsl’...’£5v_l’ L) = 0. What is left is the marginal
w=1
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model for Py 2 - We could have done the same sort of thing for
10 Y1 :
any other subscript and its partition. One can repeat the argument and
get the marginal model for (w-2) partitions, etc. To avoid ambiguity

with lots of dots instead of subscripts, one might write 'p(l,Z,..,w;Kl,K

for p , etc. The first set of letters or numbers within the
£1£2""'£w

parenthesis indicates the partitions involved, the second set indicates
the indices or categories considered of the corresponding partitions in
the first set, E.g. Suppose there are 5 partitions. Then

p(1,2,4; h,i,k) = p Here the old notation is good enough, but,

hi.k. *
when there are, say u subscripts and. v dots, things can become
pretty confusing.

Using the information of the previous paragraph we can arrive

at an expression for A(l,2,..,w;'£l,£ KW) or (w-l)th order interaction.

2,.0

We prove the following by induction:

A(L,2,..,w; 21,12,..,£w) = lezz...ﬁ *
_ v

w2 u Toou ‘ '
uZl(—l) % [hzlp(rh; Krh)] p(y,; o) +
v

‘5(-11‘>W‘i (.w4i; ;.p.(kz; zk) Here
k=1

P(wv; 60) = p(sl,sz,..,sv : Esl,ﬂsz,...,ﬂsv), and u = 1 to (w=2) is

equivalent to v = (w-1) to 2 or, turned around, v = 2 to (w-1), since

£

2w

)
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Thus the (w-1)th order interaction of our first model is the
same as that of Lancaster's model.
Proof:

Lancaster's model can be written as

w-2 .

o ] .
P = 3 LT I et £ p®. s o) + (1Y (w-1) T p(h; L)
lllz...ﬂw uzl g hel B ry v v h=l zh

+ 3(1,23-'-3W; £1'£2" ’KW)

w~2

u .
a(1,2,...,w; £.,2.,..,2) =p +. ) ) GOV [T plr,; £ )] x
_ 1272 W Ellz...ﬁw we1 wv h=1l BT

w
It

. w-1
POy3 o) + (DY - T

p(h; £.)

From our first extension of our three-way model

' w WEZ z u
P = I p(h; £) +- : [ @
2y, T L P L L LT

Ay I p(r,; ﬂr )] A(wv; o)

1 h

- . . . Tx e

+ AL, 2, .. W El,ﬂz,..,ﬂw)

W w-2 u
A(L,2,...,w; £.,L ,..ﬁ )=p - T p(h; ) - 2 : Z [ T pl, ;8 )]
1727 Ty zl!_z,..zw bl ['h u=l g h=l n>"h’

A(wv,ov)
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It has been shown that the two models are equivalent for w = 2, 3. To
show by induction that they are equivalent for any whole number w > 2,
suppose our A(ww;ow) equals Lancaster's a(ww; Gw) for w= 2, 3,...,k.

We now want to show that our A(1,2,..., kt1, ﬂl,ﬂz,...,£k+l) = Lancaster's

a(l,2,..., k+1; !Ll,ﬂz...lk_'_l).
Our A(l,2,..., k+1; £2.,2,,... ) =p
- AQ | vtar ) TR e

k‘i‘l N k-il z u £ ) . Viz z m
- I pCh; £) - : [ T p(r,; )} pW ;5 o) + (-1 *x
h=1 “n wsl y b=l N A - ¢

m v : 5 v '
[ X pGys £ 01 Gy o) + G Loen fopes €)Y ()

h h=1 - h
w2 w-1 k-1 _ k
Here u+v=w=k+1 - Z <=>.,X and Z <=> Z
_ ' =1 v=2 =1 Cv=2
m+n=v
v-2 v-1
] o< ]
=l n=2

The last .tefm on the right of equation (*) is

k-1 u v v
P Y [mp(r; £.0] (17 (v-1) T p(h; £, )
u=l 9y h=l h h=1 h
k v k+1 k+1 k o
=1 I 0V -1 IopG; 401 = [0 p(h; £)] ] 1Y @-1) ] 1
v=2 wv =1 h=1 v=2 ¢v

' oy RRL (kL) T
But 1= ()= €0 = orgy

v
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..... (k+1)!

R (k1)1 =t _ k+1
v-1) g L= G G T T vroeT - D (I - D
v .
k v ' k - v k+l
YD A1) 1= - (ktl) E(l) c Z(l) o)
v=2 v=2
v
. k-1 K+,
= = {(lH1) Z 1" Z COMEQUDS:
v=2
: =]
Now (1-1)° = z (-1 (i) = 0 for s a whole number.
- r=0
k-1 ‘ | [ 0 if k is .0dd
Thus -} (DY () =<1 + (DF ) =l ,
u=1 -2 if k is even
k
R G M e I N G R i (i P ST
v=2 :
1 (k-1) 4if Kk is odd
) (kt1) 41if k is even
e " - { (1) 0 + (k-1)} = - (k-1) if k is odd
r DY - F1o=d |
v=2 N = {(ktl) (-2) + (k+1)} = (k+l) if k is even

DSk o+ 1,

li

"kgl ; u v v
Thus : [TpG ;s £.)] (-1)° (v-1) I p(h, £ )
Sy, wn R, h=1 s,
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| S
= {(~1)" k+1} wl p(h.;'Zh_). .

The next to last term on the right of equation (*) is

kil z u VEZ z m‘ m
-} I mpC.s £ )] LY [ npr,s £ )1 ply_s o).  (¥%)
wsl § hel A —_ v =1 P Tn n’on

First the w= k + 1 letters are separated into two disjoint sets

Ty =‘{rl,r2,...,rﬁ} and wv =A{sl,s2,...,sv} , then the latter is

separated into two disjoint sets T and ¢ . Let T = T uvuT .
m n utm u n

It is the complement of wn. Let us look at the terms of the sum above
involving a partdcular wn; ~Here n 1s ‘some whole number “such -that
2 <'n < v-1. The partial sum involving a particular wn consists of

several terms, each of the form
u+m

"t TopG £, 01 pQhyi o) Gtm = e = kent).
- h=1 . h ‘

The problem is to find how many such terms there are.

m(= v-n) __u m v = kendd
A ’
1 k-n k
2 k-n-1 k-1
\ .
3 k-n-2 k=2
> u * L] L]
AN ken-1 | 2 2
. line utm = k-n+l
k-n 1 n+l
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Out of the k — n + 1 letters not in wn’ there are (k_2+1) = (k—z+l)
ways to assign u letters to Tu and m letters to Tm'
The sum of the coefficients of terms involving
k~n+1 Py
I hgl p(rh; ﬂrh)] p(wn; on), including the factor (-1) , 1is
kon m-1 k-n+l k-n+1 k-n+1 k-n+1 k-n+1
LT Y = T+ (D) Gop) = 1+ D
m=1
0 if (k-n+l) is odd, (k-n) is even
2 if (k-n+l) dis even, (k-n) is odd
Hence the sum (*%) is
k=1 - oy, ken#l
Y {1+ (1) }[on p(rh; L )] p(y_; 0.). One can replace
- r n’ n
n=2 y_ h=l h

the dummy variable n by v.

The middle term (third term) on the right of equation (*) is

k-z-l 5 ‘u ' IZ{ 5 k~v+1
- ) [TpC,; £ )1 pW 0 )=- ) )} [ 0 p.s L ) pQW ;o).
w=l ¥ h=l © T viowv v=2 ¢  h=l ® Ty viov

v v

Now we substitute the above results into (*). Our

. k+1
A,2,..., k+1; £ ,2.,..., ) =p - I, p(h; )
vhertad Tree e T el 4

z k~v+1
p I W opGe s £.)] p(Ws ) +
v h=1 h rh: v v

{
LU mart ool

v=2
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k-1 gy, vl ‘ o
¥ Y {1+ 1) }[Lon p(rh; L Y pQ 3 o) + {1+(-1)" k} x
v=2 h=1 Th vy
v
k+1
T p(h; Kh).
h=1
, K L
Our A(1,2,..., k+1; £.,2.,..., ) =p + (-1) " k 1 p(h,L)
. o rhar) TP p it
k _ k~v+1
+. ) ) (—l)k' vil [ T plrs Kr )1 pO,s o)
v=2 wv h=1 h
kil z u u
=P + LTI ples 2.1 p(W 3 o)
bhe b v g =1 ® T Vi
o Kkl )
+ (-1)" k T p(h;
h=1 g

Lancaster's a(l1,2,..., k+l; £1’£2""’£k+1) with w=Lk + 1.

Thus the induction is complete.

In testing the hypothesis A(1,2,..,w; 21, Zz,...,ﬂw) =0

for all (£1’£2" ,ZW), using a similar method as was used to test the

hypothesis 6ijk =0 for all (i,j,k), our first concern is whether
' ' : gy @ |
any problems arise in determining the rapk of [ap(l,Z,..,w; 51:32"--£w)

where H ranges through 0, 111...1, 11l1...2,..., mlmzx}..Xm and

w
ml m . .
g @ = f e L pLZw Ll k) -1 ed gy g ®)

A g1
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_ , 1o =g,
= A(Q,2,...,w; Kl,ﬂz,...,ﬂw) . Let Aij AL ) { 0 if 143
Bl N ; w2
Cop(l,2,..,w; a158,..,8 ) A(Zk,a )+ 2 (-l) z
W wv
o wu | ]
{ ITpC.; 2 ) H AL, , a )+ ) AL ,a ) [ I p(r 2. )] p(b,3 0 )Y
=l * T k=1 Sk Sk  ye1 Ty Fy B=lTUH *h

hity

. w w
- DY =D ] A sa) [T plk,g)]
z=1 k=1

k#z

| Py
We multiply the-matrix {ap(l > T T 2.)] on the
3 3* ey > l} 2""’ W .

1

1 0 1)
left by [ -~ _ ] where {x }, = 0y0eey (m,-1),
0 Xleng...@Xw i

denote a set of functions orthonormal with respect to {p(i;l), p(i;2),... p(i,mi)]

(u)
and Xi = [Xi’j ] =1to éi'
- ° . A”ag ) -
: ) T (ul) (uz) (u ) £l£2°°'£w
"J.-‘hen z . z s s e K Xzz f W 1.2- . )
; 21 £2=1 Wl l 2... w op(1,25..,w; 3158950058,
() X("z) X(“w) W=2 u r, _
= Xlal 23.2 oo 0 ot Waw + . z (—1) Z I z X(ur ,—@ ) 3%
’ = u=l v, b=l ¢ =3 h T’



m

+ L X s ) n [ Z (L ) p(r )] x

y=1 y 'y h=1 £fz=1 'h Th h

h#y Th

m n m m

P Fd ~

: : cees ) [ I X(u L )] pl s o)}
L =14£=1 ¢ =1 £ =1 k=1 Sk vy

81 So 53 Sy

w Mk

- 1Y (w-1) Z X(u_,a_
: z=1

where X(a,b) stands for

m m m ag
Thus % % .o g X(ul) X(uz).... (uw)‘. tl{z..
=L g,=1 £ =1 1t 2% R T T

u
+ z X(u ,a ) [ H
y=1 Ty Ty  n=1

) T OLY XCus L) ple £)]
k=1 KE_ uk £k P ﬁk

k#z

X with a as superscript and b

630

as subscript.

AL
W

v
Z {1 m A(u_ ,0)] T X(u_ ,a
h=1  Tn =1 Sk Sk

A(u »0)1 p (sl,sz,...,sv; u U .

s

*h 1 72

hiy

- (DY w1 ) X,
z=1

a ) [ H A(uk,O)], since
" k=1
ki#z

)

. e

w;.al,az,..,

s
v

su_ )}

aw)
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"k 1 i€ u =0

X, , £) pk,2) = £, ,0) = {
z=l E: ﬂk . Kk k 0 if u £ 0

p(s 3895058 5 Ul HU_ suee,U ) 1is the v-factor correlation with sub-

VoS S %y
script u_ - at the skrth subscript position. E.g. When w = 3,
k,
' s t @) (2
Po12 = p(2,3; 1,2) =- Z z Yj' Zk P ik By examining the above equation
j=1 k=1 ‘ .

carefully it becomes evident that the rank of the submatrix of

o

]

]
1 l [ 08, (P ]
: - : consisting of the first
0 X, 8X,0...8X 3p(1,2,..,w; L850, L) |

row and the rows where one or more of u seesl is zero, is one. That

1

-

the submatrix consisting of the remaining rows has rank (ml—l)(mz-l)"’(mw—l)

follows as a direct extension for the proof where w = 3, which we have

already done.

my ) M
Consider Q = log(n!) -. z : z cee 2 log (£ D
g1 L1 E=1 .k
my o m M IR Sl R
+ 3y Y ...} f Clogp, , = {60 ) ... pp . ,-1]
. J’£i=15£2=1 . L =1:~£1°*'£w "«"Llf‘fzw' o f=1 £ =1 41"°£w_- '
L W _— I 1 w
'ml m
+ 2 cenn z n, gDA4: ‘
= £....0 ’ }
»Cl—-l £ =1‘ 1 W 'e'lo . .KW
£ m n
A B
3. = 5 -{e+) ... n,. AL}
al...aw al. . aW ,@l=1 2 =1 f@l.. £W Bpalaz.“a



65.

a; = 1 to m,o3 i=1to w.

The rank of the homogeneneous part of these:'mlmz...mW equations is

(ml—l)(mz—l)...(mw—l) +1. If we multiplied the above equations by

hypothetical P, and then summed with respect to B1seeesd

1- ... W w

we would obtain an equation of the following form:

. m m m m

o} 0 P b

oo ) L =n -0+ ) ... ) M h

Ca,=1 a=1 21°°°%; %Py . . a,=1 ‘a=1 21°°°% %13

1 W 1 W 1 W
from which we could solve for 6 in terms of the n's.

“Th i Q9 -0,a, =1 =1
e equations Eﬁ;—~—————> = ,a:.L = to m, yi1=1,..0,w
ajeeea,

represent m eem equations in m seem + 1 unknowns, the n's and

1 1

6. We found that there are Onl-l)...(mg-l) + 1 1linearly independent

equations among these ml...mw equations. After we eliminate 6 we

have (ml—l),..(mwvl)> 1inear1y independent equations. This follows by

similar reasoning'to'that used in the case of .three variables.
S : T :”fi o . - :
The term of pé" ﬂ'a Eﬁ;jﬂl————- = 0 not involving the
, 1'""%w "Fa

after © has been eliminated is (£
Q, e+ ed . a

1 W ‘ 1.;aw _ a .

order for the augmented matrix to have rank Gnl*l)"°(m§_l) it is _
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necessary that : Z_'» E— seee - E ” X]_a . 'Xwa , (fa ceed npa .o )
al_l' 32_1' aw_l' 1 W 1 W 1 W

u  are zero. In this

= 0 whenever one or more of the indices Upseesty

R (ul) N (uzl, A (uwl

case let X, s Xy seas -Xw“ " represent orthonormal functions
. le. * . E f"ez “ee - fn -a. .Zw
with respect to { }, { }oeeeey {(—— 1 respectively.
n n n

A w§2 ,(___l)u+l 2 u

Write q = e [T £(r., £_)) £@W_; o) +
@peeeea usl nu+l wv h=1 h rh v’ v

10" 1 -

= (w-1) [ 1 £(z.; £_ )}, where f(r., £ )= f.. .. & .. ..

w g h’> ¢ h' ¢ T
n h=1 h ) h | he

(rh-—l)dots (w-rh) dots

and.f(\pv; ov) = f(sl’sz"""sv;‘jl’jZ’.""jv)

1 2 B . ,\(uw) w2 et u
ciee ) S qal...a = 7 (<) ‘% A, ,0) %

w
P(8,38,500e58 3 U ,u_ - u ) + (—-l)_w(w—l) I Ade, ,0).
1°72 V817 By 8y h=l h
Thus (1 for ui=0,i=l‘ to W @)
m ‘__ : = 2
1 Y W) . @) (Eforany (w.l) of theuiOv .()
. E M ’ X-I-‘loo..X o " = p",*’st st ;ut ’ut ) ut ) -
a1=l“ a =1 -2 Waw - qala B S S 1. 722" ™p
o - W i for u_ ~u,_- #0, p>2 3)
t ,Q.., t - . .
12 P T
8(1,2,...,i-—l,i+l,...,w;ul,uz,...,ui_l,
Uit ’uw)
L94=0, all others nonzero - (&)

70"8'7117“1.::4_ ) _ —_— LS)* -
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(1) follows from the equality E (,1)k+l (() =1,

v k+l fw\ L k | _ W : _ _
[ Z G () - kgoel) (%) lx=1 +1= = (@D g - -C1) = 1]

@), 3, &), (5)> follow by close examination of above equation.

Similarly for

m T (u)) | "(u )

1
w
: Z NI Z eesX P where the p
al=l aw=1 Xlal waw al...aw, _ <al...aw
represent their hypothetical values, except that p is without ~..
m m £
| % z Xiul) A(u ) al...awA ) ;
e a aw n Upoew ol =
1
(ﬁl for u,=0,i=1 to w
, i

) 0 for any (w-1) of the ui=0.

p (s, ,s s, 3 u_ ,u

t. 27t 0.0,y L ty’ tyy...ou_ ) for u_ ,u u_# 0,p>2
< 1 2 p 1 "2 tp £y tz,...,tp ’
p(1,2,..,i-1,1i+1,..,w; ul,uz,..ui_ypiﬁl,...,uw),ui=0,all others mnonzero
p(1,2,..,w;.ul,u2,..fuw) all>ui¢0.
.“?% m‘f‘ NECH RN ) A
Thus - )} (oo X e XU(F -np. )=
a1=1l aw=l lal wa Tag...a _al'°7aw‘

0 when at least one of the uiéo

np(,2,..,w; ul,uz,...,uw) when all indices are not zero's .
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) 1 W (ul) "(pW)A aj.ea -
On the other hand - Z ceen - Z X vee X T =
. a wa, n U,...U ,
a,=1 =] 1 1 W
1 w
. - f(1,a,)
which usually # o . 717
Upsenall when p(l,al) # T » ete. Also
B(l;ul), 5(2,u2),....,5(w;uw) cannot be expected to be zero
C£(L,a)) i ) B (a )
when P(l;al) # -“*H—~—' etc. Thus . z~ . z— cees z* X1a ....Xwa X
a.=1l a.=1 a =1 1 w
1 2 w
(fa «s.a_-np ) = n(pu voow Pyl ).Fpr ui=0’ =1 to v one has
1""""w Fa,...a 1°*" w 1 w .
1 w
n(pOO...O - pOO...O? = 0, In the other cases, one has n(pu CouPu ).
. . 1 w 1 w
EEL——————&0_= 0 after 6 has

Consider the equations P, a- 3
_ , B R p.-a,l.'..aW

been replaced by its expression in: the n's. Suppose now that these equations
y P n PP q

(ap) ) -
are multiplied by“Xla cees Xwa and then summed with respect to
1

a

l,...,aw; We conclude that, in genéral, the ?esu}ting ml"'m§  équati°nS',,.

will have on the right side n(p 0 - o . .
: 8 ul;.tUﬁTrpgl.;.u ),,'of wh%gh. (ml mw.li

may be expected to be different from zero depending on the values the u's

take on. However, the rank of the matrix of coefficients of the n, a

1" 8y,
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on the left side is (mi-l)_. .;(mw—l) so that the equations will be
inconsistent except for special sets {pC’l,al»)},' {p(2,a2.)},...4,{p.CW,aW)‘}
which leave an appropriate set of not more than (ml—l) (mz-l) e (mw;-l)
terms on the i;ight of the equations non-zero. We want to verify that

_ £Qa, al) £(2, az) v v f(w;aw)
{p(1, al)} {—————— {pCZa)}‘{ ———},ceeey {plwya )} = {(—=}

n Y n

will accomplish this.

-~

We have shown that the vector ¢ lies in the column space of

(ui) (u )

the vectors X 8...8X V., where uy # 0; 1 =1 tow, but that, in

=1

A general the same can not be said of the other possible- E If we can show

82,8 - -
that the column space of I-é———-—-— + ht 17, 2 1 equals the column
Paa ..a 172w
12w
@) @) ) |
space of {Xl x X & ...0 X | u; # 051 =1 tow} then the

set of equations will be consistent when p = q. Note that here (al,..,aw)
indexes rows, (Zl,..,ﬂw) and (ul,..,,uw) columns.
. The column space of the coefficient matrix above is a subspace

of MMy eesem = dimensional Euclidean space., The matrix was shown to have

rank (ml—li (mz-i)_. .o (mwz;'l), hence its column space is an (ml-l) (mz—l) ‘e (mw—-l’)

subspace of E n n
ml 2.».. w
v . (ul) , (uz) (uw) u1=0 to (m-1)
Now the set of vectors '{X; 86X, " '&..8X : }

uw=0 to (mW—l)
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forms a basis for Em'm 'ﬁ . We will show that the column space of the
172w

coefficlent matrix is orthogonal to the subspace spanned by the set of
CG) @) ()
vectors {§1 . 8 X, 8 ... @_Xw | one or more of the u, 1is zero}.

This is a mymy ..o Gnlfl)ﬁnz—l) . (mw—l) dimensional subspace.

Hence its complement, the (ml—l)(mz—l)...(mw—l) dimensional subspace

(W) - (uy) (u,)

spanned by the set of vectors :{51 Q‘XZ 9...®_Zw v

Iui#O; i=1 to w}
is the same as the column space of the coefficient matrix. We have shown
that (f-ng) 1lies in this subspace. Hence the set of equations are
consistent when "(f-nq) is the non-homogeneous part of the equations.

That the column space of the coefficient matrix is .orthogonal

(up) () (

u
to the subspace spanned by the set of vectors '{El ®_§2 8 ... Q.XW v

)

I one or more of u ,uz,...,uW is zero } follows by direct extensiom

1

from the proof for w=3 and so is left to the reader.

D. THE GENERAL CASE FOR THE SECOND EXTENSION OF OUR 3-WAY MODEL.
The general case for the second extension of our 3-way model

 can be written

w w .
E(f ) =np =n I p@,L,) +n. -y o p@ o) B 30.)
£1£2'f'£w | £1£2'7 EW‘ i=1 it VZZ %v u’u vy

where it is understood that .u = w-v. (When u = O,p(Tu;du) = 1).

As before the terms of the sum Pp p g can be separated
' 159k,

into two classes: (1) those in which the wth subscript appears in the
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p(Tu;au) part, and (2) those in which the wth subscript appears in the
' B(¢v;cv) factor. The two classes of terms are mutually exclusive and

take in all possible cases. Now we sum the p term by term
: 2152...£w

with respect to Zw (the other £'s held fixed). The terms of the first

m
class have a factor . X p(Tu;Qu) and those of the second class have
= EwFl

il

3 I3 L2
a factor B(S;544.48 S W ) = 0. What is left is

2 =1 1 w-1 sl,..., sv—l’ w

W
the marginal model for Pp 2 . We could have done the same sort

o 1.0.

w-1
—~of thing for any other subscript and its partiﬁidn. One can repeat the
argument and get the marginal model for (w-2) pértitiqns; ete.,

We would like now to establish that the sum of the coefficients

. of the terms of B(1,2,..,w; Kl’£2’f"’£w) is zero. For the 3-way case
we ‘got

6ﬁk‘= P]‘\-ik“ Pi\!' p'jk- P'j' pi'k T‘Ip'lk pijc + 2pio. pajn potk *

Note that the sum of the coefficients is zero. For the four variable
case, recall we obtained

' ‘ ’

®hijk T Pnijk T Pn...P.ijk T P.i.. Ph.jk T P..4. Phi.k T P...k Phij.

= %pi., Pk T PPy, Prk T 2P ag, Prok
t3Ppg Pl Pkt 3Ph g P R T, Py Py

+ 3 + 3

3P‘ij. ph--cpc.ok— . pniok ph.on pltj" pc-jk phouo p.ino

“'91’1.1... Pi.. P 5. Pk
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Again, note the sum of the coefficients is zero. Let us examine the

b-way case somewhat more carefully by writing the terms of 6 hijk as
follows:

v ) B (34) - (24)
% hijk ~ Phijk " Ph... P.i.. Poli. Piik T Phi.. %k T Phey.® ik

2 (23) o @4) ¢ (13) 2 (12) v (234)

“Phk® 4§ “Po4y. ®hk "Pak%nj TP.gk ®hi T Ph... ®ijk

, v (134) y (124) y (123)
“Pi.. Shie TPyl Shik TPk ®onig

ﬁote that the coefficients of the first two terms cancel out. Since each
d consists of two terms, one with positive 1 coefficient and one with
negative 1 coefficient, the coefficients of all the terms involving an

o cancel out. Since the sum of the coefficients of the terms that make

up any 6 is zero the coefficients of the terms involving the §'s
. \

cancel out. Hence the sum of the coefficients of the terms of © hijk

is zero.
- We prove by induction that the result holds true for

B(1,2,..,w; 21,32,..,£W). Suppose now the result holds true for

B(s L - ,@ ’:'.0‘"’65 ) Dy eees B.(_S

12523253 &g £, )

28,3
I 1727 7syas,

Congider B(,2,...,k, k+l; £ ,2.,... s ) =p
R T e T L WA

k+1 .k
__’H p(i,ﬂi) - Z ; Z p(Tu,Qu) B(wvgov) . The‘coefficients of the
i=1 v=2 wv

first two terms cancel out.. By our inductive hypothesis the coefficients

of the remainding terms cancel out. Hence the sum of the coefficients
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of the terms of B(1,2,...,w; £1’£2’f .,KW) is zero.:

In testing the hypothesis B(l,é,i..,w; Elgﬂé,...,ﬂwl = 0
for all (Kl;ﬂz,.; ,Kw) using a similar method as was used to test the
hypothesis Gi,kv= 0. for all (i,j,k), again our first concern is whether

|
{agﬁsqp

an roblem rise in determining the rank of

7P s arise & hg ! & or . ap(l,2’° N 'P—l;'ez: 7‘8* )

where H ranges through 6, 111...1, 111...2,....., m.m ...m and

12 w
m m
' 1 W
gy ® = £2=1... 22=1p(l,2,...,w; £,8,,...,4) ~1 and
1 W

I B
_ g,glzz.‘.z (@ = B@1,2,...,w; zl,ﬂz,...,tw) .
w

1
It is not immediately obvious what g ) 2 is.
1590

! w w-1
N R T I A L

172" ""w w  i=1 v=2 wv

Consider the following table:
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"Zfﬁé§‘£éﬁlé':“ B 3;way table = -~ -} - b—ay table
#  coef. x : : " # co-ef; x ' #  coef. x
@2 1 1 1@y 1 1 | @ 11 1
a1 a1 a4 a2 3 o -3 las 4 a1 -
2 o lad 1 2 2 (2,2) 3 -2 -6
5 o | a®2y 6 3 18
a®» 1 -9 -9
15 o
5-way table 6-way table
# coef.  x " #  coef. x
(5) - 1 1 1 (6) 1 1 1
1,4) 5 -1 -5 1,5) 6 -1 -6
(2,3) ) 20 | (2,8 s -2 =30
a?,s) 10 3 30 | 6H 10 -2 -20
@,2% 15 4 60 ?,4) 15 3 45
a*2: 10 . -u a0 @,z 6o 4 240
@) 1 4 ug @ 15 6 90
S5 S E e
- , b a@ty o Si200 et <220
at2h s w630
-(i4,25 AT 537 795
a% 1 - 265 - -265
203 | Iy

TABLE I COEFFICIENTS IN THE EXPRESSION FOR THE HIGHEST ORDER INTERACTION
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The first column in the table represents the p's, for example, (1,22)
stands for any product of three p's, one of which has one subscript, the
other two each two subscripts, the subscripts h,i,j,k,£ all being

represented. The second column gives the number of different terms of

5 = 15 ‘terms of the form (1,22).

the form (1,22); There are.

The third column gives the coefficient of the term in the first column

and the entries in the last column are the products of the entries in

the second and third column. |
Suppose one 1s dealing with the w-way case. The subscripts

are il’i2""’iw' Consider the following grouping of these subscripts

dl d2 d
into say n groups (c1 s Cp aeeesCo ). Here dl+d2+...+'dm =n

and the cj, dj are all positive integers. Also Cldl+c2d +...+cmdm = w,

and m < mn. The number of partitions of this type are

w!

C‘l

— ——— e - For example,consider w=6 and the
v 1 m .
‘.dll'f'dm' (cl!) ..(cm!)

. type of partition (12,22)5 Here  h=2,k=4. The number of distinct

L . L9 9 6! ~720
Partltlo?sggf this type (%',2 gH;?§ 2121 (l!}Aﬁ2!)? ”.‘= 16 = 45,

. : e, e e :
One can also write the partition as (1 1,2 2,...,w W),. where ej may
be 0. If ej is 0, then there are no gfbupings of j letters.

Then e,+e +...+e.W = n, the number of grbups. le

178y +2e2+f..+weW =W .

1

The number of distinct bartitions of this type is
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w!
e e e

eyle,l. e t (L1) Yo 2. @) ¥

This is a type of symmetric function

and can be found in tables of symmetric functions. For example,

2.2 .,0,0 .0 .0 6!

2 .2
a-,27) = (1%,27,37,47,57,6), ' = 45,
212101010101 (1) 221231 %41 %51 %61)°

While it is not immediately obvious what the remaining entries -
for the w-way table would be, we can however still make a few observations.

If we denote by ¢ k=2,3,..., the coefficient of the last term for

k’

each table, that is, ¢ -1, ¢, = 2, ¢y, = -9 etc. we note thevfollowing

2" 3

relationship: ¢ = —(k+1) ¢ -1 (and cl=0). We have proved before

k+1
that the sum of the coefficients of the terms of B(1,2,...,w; Kl,Zz,...,Ew)
is zero. Hence the sum of the entries under the heading X must always
be zero. Note also that the sign of a coefficient = (41)n°' of groups -l'.
Note that a coefficient, say, in the 6-way table can be derived
from the coefficients of the previous tables of lower dimension. Consider
the term (1,2,3). We obtain from p(l;g) B(2,3;4,5,6; h,i,j,k,£) and
the table of coefficients‘for fﬂé fi;éfway table a cdefficient of 2, fh;
negative of the coeffiéieﬁf%eﬁ%éy iﬁzthg (2,3) row. From p§2,3;h,i);t;> -
Bt1,4,5,6; g,3,k,2) we get aﬁcoefficiént of 1; the negafivelgf the |
coefficient éntry in thé (1,3) row of the table for the fouf-way case.
From p(4,5,6; j,k,£) B(1,2,3; g,h,i) we get a coefficient of 1, the
negative of the coefficient entry in the (1,2) row of the table fof the

three-way case. Since (1,2,3) has three groups the coefficient of’
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(1,2,3) is + (2+1+1) or 4.

Finally note that we can obtain the sum of the coefficients of,

g.. A
say, 55&15@. by referring to the four-way table, multiplying each number
ijkl

in the X column by the number of groups in the entry in the first columm.

2g. .
To illustrate, the sum of the coefficients of the terms in 55&1&& is
: ijkl

1 x14+2x (-4)+2x (-6)+3 x 18 + 4x(-9) = -
We complete this section by referring back to a four-way table.

The work for the w-way table will simply involve more terms. We want to
9

find the rank of .[és——;—~
‘hijk

H(p)] where H takes on the values

© 0, 1111, 1112,...,qrst.

t

Again we consider the product [1 394‘ o] [2- gH(-p-—-)]
' 0 wexevyez Bphijk
. .
) Shijk
- After calculating all the derivatives 3 — , multiplying by
: Pdabe
m) @ ) ) »
W, X, .’Yj- Z, and summ?ng we arrive at
¢ ¥ s @ @ )y @ @ @) w

EZZZZW:' Y,z —E oy x,Yz

h=1 i=1 j=1 k=1 i 3 . k apdabc d s b’ c
W) ) @ @ @ @
f Zc Pruvo va Prvow ~ Xa Povw wd Pouvw ~ Wd Xa »Yb Awo
(m) (u) (W) @ W) (W) (W) @)
- W X Z A - W Y Z A - X Y YA A
b c uo a b c mo

d a c vo d
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W) ) ' ()] W)

+3Z2 A o + 3Y A p + 3Z A p + 3Z. A p
c mo © ouvo b  "mo ouow c uo "movo ¢ vO muoo
v) () - (w) (u)

+ 3Y A o} + 3Y A P + 3X A p + 3X A o) .
b uo moow b WO,  muoo a mo ' oovw a Vo ' moow
(u) (m) (m) (m)

+ 3Xa Awo Prmovo + 3wd Aué P oovw + 3Wd Avo'pouow + 3wd Awo P ouvo

W) W) (W) W) , (m) W)

+ 3Y Z A A + 3X A A A + 3W Z A A
b c mo uo a c mo vo d c uo vo
) W ) W) (m) (u) (m)

+ 3Xa Yb Amo Awo + 3W& Yb Auo Awo + 3wd Xa Avo Awo - 9wd Aquvkoo
(u) : (v) (w)

- 9% A A A - 9y A A A - 97 A A A
a mo VO WO b mo uo wo c mo uo Vo
@) ) ) ) (m) 4 w)

- 2Yb~ Zc Pmuoco ~ 2Xa-, Zc Pmovo ~ ZW& 'Zc ®ouvo
(m) () (m) (u) @) W

- 2Wy Yy Pouow ~ 20y Xo Poovw ~ %2 Vb Pmoow .

TES R ) ) ) ) g

PLE Iy oy g -

b=l i=1 §=1 k=1 %P yabe

.
-1 for m=0, u=0, v=0, w=0 (1 equation)

0 for m=0, u=0, v=0, w#0 ((t-1l) equatioms)
0 for m=0, u=0, v#0, w=0 ((s-1) equations)

0 for m=0, u#0, v=0, w=0 ((r-1) equations)

0 for m#0, u=0, v=0, w=0 ((q-1) equations)



for
oovw

for
ouow

2p for
moow

2p for
ouvo

20 for
movo

2p
muoo

for

-p for

-p for

)
\~ a b

1
Consider [

m=0,
m#0,
m=0,

m#0,

m#0,

m#0,
m#0,

m#0,

ouvo

P

moow

9

u#0,
u#0,

u70,

u#0,

(w)

v£0,
=0,

v=0,

- v#0,

v#0,

v=0,

v#0,
v=0,
v#0,
v#0,

(w)

C

-Z

(w)

Z
c

Y

muoco a C

(m)

d Y

0 weX8YS8z
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w#0 ((s-1)(t-1)

equations)

w#0 ((r-1) (t-1)

equations)

wt0 ((q-1)(t-1)

equations)

w=0 ((r-1)(s-1) equations)

w=0 ((q~1)(s-1) equations)

equations)

((q-1) (x-1)

((gq=1) (r-1) (s-1) equations)
((g-1) (r~1) (t-1) equations)
((q-1) (s-1) ( t-1) equations)

((x-1) (s-1) (t~1) equations)

) (u)

pmuvo - Yb pmuow - Xa P
(u)

-2X  Z

movw

(w)

P
movo

) @ (u)
X p

b pouow —2wd a oovw

for m#0, ut0, v#0, wE0,((q-1) (r-1)(s-1)(t-1) equations

3

gy (p)
(qrst + 1) x qrst

]I :
Phiik

The submatrix consisting of the first row of the product matrix and the
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qrst - (q—l)(r—l)(s-i)(t~i) rows where one or more of the m,u,v,w is
zero has rank one. The submatrix consisting of the rows where m#0,
u#0, v#0, w#0 has rank (q-1) (r-1) (s-1)(t-1) because of the linear
independence of the orthonorﬁal functions. The proof of this, though
not a direct extension of the proof for t%e.Suway case, is very similar.

g r s

Note that terms of the form z Z z z P p 0 0
d=1 a=1 bel ce1 Geee s8ee 7 bTLlle X

| | t

] .
vy (w) @) @) @) @) d (m )
Yb Zc Pmuoo wd' Xa Yb zc - pmuoodzl pd...wd X
r ' s 1 ' ’ :
5 (u) 5 vy (v) 122 w)y (w) ' .
P X P Y Y P Z yA = 0 since m 0.
a1 a3 b=1 ..b.7b b ey +reCC c
|
3g () . ‘
Hence we conclude that [-55~———~ has rank (q-1) (xr-1) (s-1) (£-1) + 1.
dabc

g r s t

Consider q4 = log(n!) _h ; _Zl ‘Zl kzl log(fhijk!)
= 1= J= =

qg r s ¢t q r s t

+ 3 1 I Y £ logpa- 6L) Y Y )] op. -1l
hel i=1 j=1 k=1 D3k hijk hel i=1 §=1 k=1 D43k

q r s t
]

D Y YL PN -
hzl i=1 j=1 k=1 hijk ® hijk

We found that the rank of the coefficient matrix of the homogeneous part

of these qrst equations is (gq-1)(r-1)(s~1)(t-1) + 1.
aq

If we obtain the derivative A , multiply it by hypothetical »p
3pdabc ' dabc
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and then sum with respect to d, a, b, ¢ we obtain the following equation:

- q f s t q r s o
' L . P v Ny ..r IP D ..
" d=1 a=1 b=1 czl dabe apdabc 2 .Z .Z Z hijk “*h...%.ijk

+p

PP Phogk TPy P TPk Paag. T ®Pna.. Pligl Pllk

= 6P 4., Ph.y. PLlk Ppoi. Pril, Pl T oPy... P.ik PL.5.

6P g Ph kP, TP Pk Plai., TR, P

i P 5. P

e Taude Tk
20 5k Phog. TP 5k Phi.. T %Ph, ok PLiy.!

If we equate this equation to zero we obtain an expression for 6 in
terms of the n's.

. There are (q—l)(r—l)(s—l)(t—l) linearly independent equations among

.0q,, .
& . 0 d=1 togq, a=1tor, b=l to s, c=1 to t after & has been
apdabc

eliminated.

Let us now look at the original equations in the form Pdabe X

29q :
4 =0 . If 8 has been replaced by the expression in the ndabc's,

P gabe

then there are qrst non-homogeneous linear equations in qrst unknowns.
The rank of the coefficient matrix now is (q-1)(r-1)(s-1)(t-1). 1In
order for the system of equations to have a finite solution, the rank of

the augmented matrix must be the same as the rank of the coefficient matrix.

9q
Now the term of p . - = 0 not involving the n s
dabe apdabc dabce
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after © has been eliminated, is In order for the

(fiabe ~ ™Pdabe) *

~augmented matrix to have rank (q-1)(r-1)(s-1)(t-1) it is neceésary

S ¢ I O R CO R )

that § 7 ¥ V7 w, x Y 9z

(£ - np ) =0
d=1 a=1 b=1 c=1 d a b c dabce dabc

~(m)

whenever one or more of the indices m, u, v, w are zero. Let W s

@) () L(w)

X ,Y ,Z be as before.
Let PO 0 fd;..f.abc + f.a.. fd.bc + f..b. fda.c + f...c fdab.
et q- =- 2
dabce n
. 0. F v Y Ha e T
2
n
- 3fda. £ b £ e C + 3fd.b. f.a f.. ¢t 3fd c f.a £ b,V
3
n
3f ab fd £ c + 3f.a c fd.. f..b.+3f. bcfd
+ 9fd .f.a . ..b.f .c]
4
n

By similar method as before we arrive at

} t
‘2‘ ; ; ; RCYINCYINCIINCD o )
W, X Y. 7 (£, . -Bd,. )=
d=1 a=1 b=1 c=1 ¢ & b ¢ “dabc "idabe of m,u,v,w = 0

nop when all
nmuvw

0 when at least one

indices are not zero.
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From here the remainder follows similarly to the three-way case and so is

left to the reader.
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CHAPTER VI NUMERICAL ILLUSTRATION USING OUR MODEL AND METHODS AND

OTHER MODELS AND METHODS.-
A. THE LIKELIHOOD RATIO WITH OUR MODEL

We will now consider a numerical example to illustrate our
.three—waf model. Consider fhe data in tableIIvbelow. -This data was taken
from Kullback's text fInformation Theory and Statistics" (p. 180). 1t
fepresents the number of items passing, P, or failing, F, .two tests

Tl’ T2 on certain manufactured products from manufacturers A, B, C, D.

T, | ® F | Total T, | F | Total
A 112 32 | 144 A 84 24 108
B 76 20 96 B 86 10 96
- C 87 9 | 96 C 58 14 |- 72
D - | 41 7 48 ' D 40 8 48
Total | 316 68 384 | ‘ Total| 268 56 324

TABLE IT: DATA REPRESENTING NUMBER OF ITEMS PASSING OR FAILING TWO

TESTS ON CERTAIN MANUFACTURED PRODUCTS.

This is a 4x2x2 table. The denominator of the likelihood ratio is

' 4 2 2 _f..k f,,k .
n! I I I (—%l—o 1J /f v The numerator of the likelihood ratio is
i=1 j=1 k=1 ijke »
Ohk
4 2 2 (£, £, +f  f, . +f 26 £, f +J
al T 0 T .o W3k . 1.k k7ij _ 5 d. .k
1=1 j=1 k=1 (n) (n)>
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The likelihood ratio becomes

: £,
L = bz 2 nalEyE A R gy ) 2 E L ) 1K
= 0. I .1 N :
i=1 j=1 k=1 \ w2 ¢
ijk
4 2 2
Log_ L= ) ) ) £, login(f, £ ,+f , £ _+f £ . ) -2f f .
e i=1 §=1 kel ijk i..7.dk TLy Tl kT ki, i..7.]
4 2 2
-2xnlogn- |} ¥ z £.., log £, ..
i=1 j=1 k=1 ijk ijk
112 log 112 = 528.4718735951 84 log 84 = 372.1886111028
32 log .32 = 110.9035488896 - 24 log 24 = 76.2732919284
76 log 76 = 329.1357338618 86 log 86 = '383.0738674778
20 log 20 = 59.9146454711 10 log 10 = '23.025809299
87 log 87 = 1388.5340063229 : 58 log 58 = 235.5056946117
9 log 9 = 19.7750211960 14 log 14 = 36.9468026146
41 log 41 = 152.2564547349 40 log 40 = 147.5551781646
7 log 7 = 13.6213710434 8 log 8 = 16.6355323334
1602.6126551048 11291.2048291632
TABLE III VALUES OF fijk log fijk
2 x 708 log 708 = 9292.4208366704
>
The last two terms of Loge L = - 12186.2383
Now £, =252 £, = 584 £ 4 =384 £ 4 = 316
f00 =192 £, =124 £, =324 £ 4= 68
£ = 168 £ = 268

3 : .12



4.. . R s . - o . .
£00=196 £, =56 £ =14 £ =108
fpy, T 162 fpy =30 a7 % f2.2= 9%
3, =145 £3, =23 f5,=96 . - f5,= 72
Ey = 8L £, =15 £ =48 = 48
Let Ryg = [n(f; £ ¢ 5 850 afag ) - 265 F 5.8 4]

. e .J.' ‘ok

Consider the following table:

(13k) R

14k log Ry £iqk 198 Rygp

111 | 56181312 | 17.8441 ° . 1998.5392
211 | - 40578048 17.5188 |  1331.4288
311 | -41353040 | -<17:5376 - - 152557712
ooo.os11 | 20289024 16.8256 . | 689.8496
121 16000704 |- 16.5881 . '530.8192
221 7543296 15.8361 . '316.7220
321 16770304 15.7280 ' " 141.5520
421 3771648 15.1431 106.0017
112 42066432 17.5548 1474.6032

212 1 40626720 17.5200 1506.7200 .
312 31332240 | = 17.2601 1001.0858
412 | 20313360 | = 16.8266 . 673.0640
122 112070080 116.3060 .- 391.3440
222 7494624 15.8298 158.2980
322 . 4758768 15.3755 - - 215.2570
D 422 . ..3747312 |  15.1365 = 121.0920
12182.1477

| TABLE IV ‘s
VALUES OF fijk log Rijk Where Rijk = [n(fi..f-‘k+f.j.fi.k+f,.kfij.)

"y



& 2 2
- I I f£,., log
i=1 j=1 k=1 K
Hence LogeL = - 4,0906

the parameter space,is
parémeter space such
(x-1) + (s-1) + (t-1)

case dimension of @

87.

& 2 2

z r. » f,,
i=1 j=1 k=1 =

Risx

H

12182.1477

and U = - 2 LogeL = 8.1812. The dimension of @,

rst-1l., The dimension of W, the subset of the
that 2nd order interaction is zera , is
+ (r-1) (s-1) + (r-1)(t-1) + (s-1)(t-1). 1In this

is 15 and dimension of w is 12, U dis asymptotically

distributed as a.xz with 3 (= 15-12) degrees of freedom. Since

3 3

2 _ 2
*.95 = 7,82 and X.90
HO: Sijk = 0 for all

= 6.25 and since 8.1812 > 7.82 we reject

i,j,k at the five percent level.

B. THE CHI-SQUARED STATISTIC WITH OUR MODEL

We now calcu

where the summation ex

2
2 _ ; (0-E)

late the chi-square statistic T

tends over all cells. Consider table V
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- TABLE 'V CALCULATION OF x

2

. R
' _ ijk,
04k Biik = ! (708)2
111 112 112.079287
211 76 80.951450
311 87 82.493536
411 41  40.475725
121 32 31.920712
221 20 15.048549
321 9 13.506463
421 7. 7.524274
112 84 83.920712
212 - 86 81.048549
312 58 62.506463
412 40 40.524274
122 24 24.079287
222 10 14.951450.
322 14 9.493536 .
422 8 7.475725 .
Sum 708 707.999992 :
TR
2
[ O41E 410 | 0451 "Ey 1)~ Eiik
111 ~.079287 .006286. -000056
211 4.951450 24.516857 - ©.302858
311 4.506464 20.308217 246179
411 .524275 .274864 .003331
121 .079288 .006286 .000196
221 4.951451 24.516867 1.629184
321 4.506463 20.308208 1.503591
421 .524274 .274863 .036530
112 .079288 006286 .000074
‘212 4.951451 24.516867 .302496
312 4.506463 20.308208 .324897
412 524274 .274863 .006782
122 .079287 .006286 .000261
222 4.951450 24.516857 ' 1.639764
322 4.506464 20.308217 2.139162
422 .524275 .274864 036767
Sum 8.172128

'USING EXPECTED VALUES =

R,.
13k, 2
(708)



89.

X2 = 8.172128. As before we reject HO : 8

ijk'= 0 for all i, j, k at

the five percent level.

C. BISHOP'S MODEL AND METHODS
We will now examine the contingency table using Yvonne M.M. Bishop's
model and methods and compare the results we obtain to those from our

model. She defines npijk = E(fijk) and expresses this expected value

in the logarithmic scale as

log mpygp = U+ Uy iy ¥ Uy F sy F o0y T Ysgr) T Y3 ary 12335k
| (@

where u 1is the overall»mean value and the subscripted u-terms are the

main and multiple-factor effects. The numerical subscripts denote the

variables involved and the alphabetic subscripts the categories for these

variables in the same order. Thus ulZ(ij) is the two-factor effect

between variables 1 and 2 at levels i and j, respectively.
The subscripted terms are deviations, as in the linear models

familiar in analysis of variance of quantitative data. Thus,
r r s

L u =ZXu .. Iu pan T
g=1 Y@ o, r2GEn L1230

3

"0 'and, in general, each u-term sums
1 )

to zero over any of its variables.

Using this notation, Birch has shown that models corresponding
to different hypotheses are defined by omitting one or more terms from
expression (1) in order of descending hierarchy. For instance, if we

wish to postulate that there is no three-factor effect then u123(ijk) =0
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for all i,j,k, or more briefly, Ujp3 = 0 and the last term of expression

(1) disappears.

It is not possible to write down the estimates for the elementary
cells as direct p?oducts of the configuration cells for all models. When
it is mot possible, the estimates can be obtained iteratively; In three
dimensions the only model that requires iteration is the one mentioned
above, that of no three factor effect.

We now describe the iterative procedure. Preliminary values

(0) _
Yijk " are put in every elementary cell of the matrix; in practice
we use the value 1 for every cell and it is apparent that as log 1 = 0

we have not introduced unwanted multiple-factor effects. Any constant

could be used, or any set of numbers that do not exhibit higher-order

(0)
effects than those we wish to estimate. The preliminary values, Yijk s
are then adjusted to yield estimates Yi§i) in each cell where
(0)
a v, £ :
Y, - ijk 43. . The new estimates are again adjusted to yield
ijk Y(0)
ijl
(1)
) Yige fik
Yi'k = _—;L_ZIY;_ . The cycle is completed when these values are
J ¥ .
i.k
(2)
(3) Yi.k £ e
adjusted to yield Yijk = ‘"l?ETLl‘ . The cycle is repeated until no

ik
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(3r) (Br—l)
difference is discernible between Y., and Y., . In practice
ijk ik
we proceed until no cell estimate differs from the preceding estimate
for this cell by more than 0,01.
Applying the iterative procedure to our considered contingency

,table we obtain the following sequence of tables:

(0)
'Yijk Sum Sum
1 1 2 1 1 2
1 1 2 1 1. 2
1 1 2 1 1 2
1 1 2 1 1 2
Sum 4 4 8 Sum 4 4 8
TABLE VI
(1)
ijk | sum _ o Sum
98.0 | 28.0 126.0 98.0° | 28.0 |126.0
81.0 | 15.0 96.0 : 1 81.0 | 15.0 | 96.0
72.5 | 11.5 84.0 | 72.5 | 11.5 | 84.0
40.5 | 7.5 48.0 - . 40.5 7.5 | 48.0
Sum [292.0 | 62.0 | 354.0 - Sum - {292.0 | 62.0 [354.0

FoeN -

::‘. " Fyat /o
" TABLE.VI1



(2)
Yijk Sum
111200000000 “| * "32.0000 0000 | 144.0000 0000
81.0000 0000 |~ 15.0000 0000 | 96.0000 0000
82.8571 4286 | 13.1428 5714 96.0000 0000
40.5000 0000 7.5000 0000 48.0000 0000
Sum  |316.3571 4286 67.6428 5714 - | 384.0000 0000
(2) Sum
Yisk | 784.0000 0000 27,0000 0000 108.0000 0000
81.0000 0000 15.0000 0000 96.0000 0000
62.1428 5714 9.8571 4286 72.0000 0000
40.5000 0000 7.5000 0000 48.0000 0000
Sum |267.6428 5714 56.3571 4286 324.,0000 0000
TABLE ' VIII
3)
Yijk Sum
|111:8735 6061 | 32.1689 5460 144.0425 1521
80.9085 5724 15.0791 9747 95.9877 5471
82.7636 0354 | 13.2122 4920 95.9758 5274
404542 7860 7.5395 9874 47.9938 7734
Sum [315.9999 9999 |  68.0000 0001 384.0000 0000
(3)
'Yijk Sum
84.1120 8968 23.8479 0874 107.9599 9842
81.1080 8647 14.9049. 4296 96.0130 2943
-------- 62,2257 8060 | © 9.7946 7681 72.0204 5741
40.5540 4325 7.4524 7148 48.0065 1473
268.0000 0000 55.9999 9999 323.9999 9999

TABLE TX

92.



We continue this cycle three more times and arrive at the following table

after rounding off to the fifth decimal place:

az)

'Yijk . ‘ Sum-
-|111.84777 32.15223 144 .00000
'80.90964 | 15.09036 *°96.00000
82.78777 | 13.21223 96.00000
------- 40.45482 7.54518 48.00000
Sum*  |316.00000 68.00000 384.00000
12)
Y5k - A Sum
""""" 84.15223 | 23.84777 | . 108.00000
------- '81.09036 " | "14.90964 '96.00000
------- 62.21223 '9.78777 72.00000
40.54518 7.45482 48.,00000
Sum |268.00000 | 56.00000 324.00000
TABLE X

TABLES VI- X CALCULATION OF EXPECTED VALUES
_ USING ITERATIVE METHOD
2 _ , (0-B)
E

We now calculate y where the summation extends over all

_ the cells. We use the values in the last table as the expected cell

values.



Consider the following table:

94.

_ 9 (Qijk'Eijk)z
WR | Oy | By {1050 Bagil | QuucBipd” E L

111 112 | 111.84777° .15223 | .02317 .00021
o211 76 | 80.90964 4.90964 24.10456 .29792
311 87 | 82.78777 4.21223 17.74288 .21432
411 41 | 40.45482 .54518 .29722 .00735
121 32 | 32.15223 .15223 .02317 .00072
221 20 | 15.09036 4.90964 24.10456 1.59735
321 9 | 13.21223 4.21223 17.74288 1.34291
421 7.54518 .54518 .29722 .03939
112 84 | 84.15223 .15223 .02317 .00028
212 86 | 81.09036 4.90964 24.10456 .29726
312 58 | 62.21223 4.21223 17.74288 .28520
412 | w0 | 40osusi8 | Jsus1s 129722 .00733
122 . 24 | 23.84777 .15223 .02317 ,00097
222 10 | 14.90964 4.90964 24.10456 1.61671
322 14 9.78777 4.21223 17.74288 1.81276
422 8 | 7.45482 .54518 .29722 .03987
7.56055

TABLE XTI CALCULATION OF ¥

2

USING EXPECTED VALUES

'DERIVED FROM ITERATIVE METHOD

We note that the expected values in Table V and in Table X{

differ by very little. XZ

for all i, j, k at the ten percent level but not at the five percent level,

. values.

= 7.56055.

Finally let us calculate U =

Hence we would reject H

0' Y123(i3k)

-2 loge L using Bishop's expected

0
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) £
e ijk
“ o2 2 (—iﬂ‘———)
= !
L= ol 0 50 oy F
ijk

ho2 2 (f_l_Jk fi5
! | O
»adghdn \

fijkl
N ..
bo2o2 [f 13k 5
= iglljgl nigh f;j; s Where fijk are Bishop's expected values.
42 2 N 42 2
Ilog L= ¢ § =& £f,,, logf,.. - £ ¥ f.. logf,,
¢ i=1 j=1 k=1 13k R 13k
4 2 2 . :
= I % X f log £y~ 2893.81748 .

i=1 j=1 k=1
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(five digits)

fi5k tog £ fisk £y 108 £
111.85 4.71716 112 528.32192
80.910 4.39333 76 333.89308
82.788 4.41628 87 384.21636
40.455 | - 3.70010 | a1 151.70779
32.152 3.47047 32 111.05504
15.090 2.71403 20 - 54.28060
13.212 2.58112 9 23.23008
7.5452" 2.02091 7 14.14637
84.152 4.43262 84 372.34008
81.090 4.39555 86 378.01730
62.212 4.13054 58 . 239.57132
© 40.545 3,702410 40 14809640
23.848 3.17170 24 . 76.12080
14,910 12.702030 10 27.02030
9.7878 2.28114 14 31.93596
"""" 7.4548 2.00886 - g 16.07088
' 2890.02428

log f.., WHERE
ij

TABLE XI VALUES OF f£,,
ij k

k

fijk ARE BISHOP'S EXPECTED VALUES

Loge L = 2890.02428 - 2893.81748 = - 3.,79320.U = - 2Loge L = 7.58640,

hence we reject H 0 , for all i, j, k at the ten percent

0% “123(ijk) "
level but not at the 5% level. These results are in close agreement

with our previous results,
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D. COMPARISON OF ADDITIVE AND MULTIPLICATIVE (LOG LINEAR) MODELS FOR

A THREE—WAY CONTINGENCY TABLE.

For the additive model of an r x s X t contingency table:

+ p. .B 8

Pigk T Pi P3P Y PrL %k PP B TPk Yay T ke

where oy =P 4 TP 3. Pk’

ik - Pik "Pi, Pk
Yi3 =-Py5, ~ Py Py, » 2nd
S5k T Pijk T P1..Pgk T PLiPrc T PIPig, TP Py Pk

The most interesting hypotheses for this model are

I Sy =0 for all A3,k pygp =Py Pyt PPt 1Pij 2P P

II Bijk = 0 and Yij = 0 for all i,j,k

IITI ¢ =0 0 for all_i,j,k,

13k = 0» Y54 = 05 By Pijk = P1..P.3k

ijk s Yij = 0’ Bik. = 0, o = 0 for all i,j ,k

Iv - § =0 ik

> PiskPi. P3Pk

The maximum likelihood estimators for these hypotheses can ‘be obtained by

Lagrangian methods simlar to those presented earlier in this thesis.

, pijk=pi..P.jk+P.j.)pi.k_pi..p;j':';p..k

Pk
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..,ﬁijk(MLE)_for,Likelihood,Ratiq,pr x? Tests

‘Additive Model

Log-Linear Model

"No Constraints on "fi;k fi'k Observed cell
model parameters -—i%— __%f' proportions,
Zero 2nd-order - no closed-form expression; °
.interactlons;. l_(f. £ .+ . £, .+ £..) requires iter?tlv?
I no constraints n2 ioo W jk Tuj ik Tl kT numerical estimation
on lst order ' procedure.
(AB, AC,BC) )
interaction, - ;3(fi..f.j.f..k)
Zero 2nd-order 1 £ :
interactions and 2(£i.. .jk+f.j.fi.k) —E§E§~LLE—
zero AB lst n ..k
IT order inter- .- 1
action . R R T L CEa e Bl
Fefie ™
[f.jk B o+ 5 By
T f n f n variables A and B

conditionally independent
given level of C.

CELE ] £k
n n n
Zero 2nd-order, f f, f . £, .
11T AB, AC JkTi., ..jk"i.. A independent
] , 2 . 2 of B and C
interaction. n n . e
jointly ,
Independence £, £ . £ K £, £, £ Kk
v zero 2nd order =X 'g' 2 ‘Jé -
AB, BC, and n n

ACVinteraction.

TABLE XIII ADDITIVE MODEL V.S. MULTIPLICATIVE (LOG LINEAR) MODEL.
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The two models are -equivalent in cases of full independence
or one set of first-order interactions.. .In case iI, with two sets‘of
first-order interactions, the log-linear model has a concrete, ﬁéeful
" interpretation: 1if this hypothesis ié accepted, then the overall 2-way
-table of A cross ciassified with B is‘regarded.as'avpooling (over
~levels of C) of several independent B‘x C tables. Case 1 for
“the additive model doés not have an obvious interpretation.

One virtue of the additive model is that méximum likelihood
estimates under all its natural hypotheses are intuitive, are eaéy
~ to verify theoretically, and can be calculated in closed form, whereas
the log-linear model's hypofhésis of zero:second'ordef‘interactions
requires an iterative ﬁumerié procedure to compute maximum likelihood

estimates.
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