249
BACKSCATTERING OF E.M. WAVES FOR ROUGH SURFACE MODELS
by

PATRICK DONALD O'KELLY

B.A.Sc., The University of British Columbia, 1965
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

)
DOCTOR OF PHILOSOPHY

in the Department of Electrical Engineering

We accept this thesis as conforming to the
S .

required standard

Research Supervisor....veveeeeesann Cheissaa e cieeaa ciecne

Members of the Committee. it seervercrsveoroceasosvsansnvs e

Head of Department..ce.e e iioenseesseesaesnosasrosssossnnssnssnc

Members of the Department

of Electrical Engineering

THE UNIVERSITY OF BRITISH COLUMBIA

November, 1971



In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication

of this thesis for financial gain shall not be allowed without my

written permission.

-

Department of Ek&ﬁ:ﬂcw( L’\I’L,%/VI/DC(/\//VL?

The University of British Columbia
Vancouver 8, Canada

Date M 4/791




~

to Kathleen

ii



ABSTRACT

Backscattering from certain models of rough surfaces is studied
by application of'a Monte~Carlo technique and by experiments on a
physical model. The models considered are lossless arrays of hemicylinders
and of hemispheres on a lossless gréund plane.

For the Monte-Carlo simulation, the incident radiation is
considered to be a cylindrical or spherical wave with finite beamwidth.
The shape of the beam is chosen to be the same as the far field
radiation pattern of an open waveguide. Multiple scattering effects are
investigated for a periodic array of hemicylinders and found to be
significant for object diameters greater than one wavelength, and
densities greater than 30%., It is assumed that these results are also
approximately valid for random arrays. The single scatter approximation
is used for all studies of the random case with these limitations in mind.

A special surface distribution function is developed and tested
which inclqdes the constraint of finite scatterer size in a physical
surface model. It is used to generate random coordinates from which a
set of.physical surfaces are formed out of die~stamped aluminum. These
surfaces are scanned with 35 GHz. radiation from a pyramidal horn. Samples
of the backscattered field are convertedvto digital information and
numerically analysed to determine the scattered field statistics. These
statistics are compared to those obtained from the simulation. The means
(coherent intensity) are found to agree to within 2.5% while the variance
(incoherent intensity) obtained experimentally is higher by a factor of
about 15. This discrepancy is attributed to significant phase measuring

errors introduced by the present scanning system,
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1. INTRODUCTION

The énalyﬁis of electromagnetic or acoustic wave scattering by rough
surfaces requires the solution of the wave eQuation§72U = -é%%g-subject
to the appropriate boundary conditions on the "rough" boundary. By "rough",
one should understand that the boundary is solely described by its stat-
istical properties. Examples of this type of problem include radar returns
from terrain or sea surface, radar exploration of the surfaces of the
moon and planets, sonar returns from the occean floor, optical reflections

used industrielly to determine the quality of machined surfaces, and many

others.

1.1 Existing Methods of Solution

Basically, one must first solve the wave equation for a general
boundary and then integrate the field over all possible configurations of
this boundary to obtain the requiréd statistics of the scattered field.
of courée, a solution this general may not be obtainable by the methods
preéently available, Therefore, sufficient restrictions must be placed
upon the definition of the problem to allow one to obtain useful results.
The following restrictions have been‘imposed, not necessarily all at once,
- by previous investigators:

1. Harmonic time dependence,
2. Infinite plane wave incidence.

3. Boundary surface perfectly conducting or pure dielectric
interface.

4., Only scalar solution obtained,
5. One dimensional roughness only.

6. Surface is locally plane and/or



7. Scattering elements are much smaller than the wavelength.

8. Active scattering areas are either very dense or very
sparse, '

9. A particular restricted model is chosen for the surface.

A1l treatments of thé problem have been subjected to limitation 9.

Generally speaking, there are two main methods for répresenting the
scattering boundary which divides the methods for solving the problem into
two distinct classes. The first method is to define the boundary as some
continuous random variable z = f(x,y) which is ultimately defined by its
statistical moments (mean, variance, etc.) and subject to appropriate
restrictions. The second method is to represent.the surface by a collect-
ion of discrete scatterers which are, in general, random in size, shape,
and position. However, the only random variable considered so far has been
the position of each object.

1.1.1 Continuous Surface Model

Consider first the continuous surface model. This was first invest-

: igated.by Lord Rayleighl in 1896. He assumed a sinusoidal perfectly
cohducting surface with normai incidence, His gpproach required a Fourier
serieé expansion of the incident wave and the surface profile. S.0. Rice
generalized the Rayleigh approach to a slightly rough surface described by
its small deviation from a2 mean plane. Rice's reflection coefficient was
verified experimentally with reflections from blaéktOp roadways. w.C.

Hoffman3

used a similar expansion of the surface, but applied it to the
Stratton - Chu integral for the scattered field. Hoffman's results were
no more general than Rice's, but his derivation had the merit of being

. 6 : :
mathematically rigorous. T.B.A, Senior assumed that the roughness was a

perturbation of & mean plane, and by using a Taylor series expansion of the



field at the boundary he developed a surface impeaance tensor for the

rough surface. Again, this method is restricted to slightly rough surfaces.
Beckmann7 used a physical optics method to obtain the required reflection
coefficient. More recently, Middleton? attacked the problem from the

point of view of pure communications theory with little consideration

given to the electromagnetic aspect of the problem. Also, Bass et a19
applied a perturbation method to sea reflections. It should be noted that
81l the above methods require surfaces that are only slightly rough. That
is, the surfaces have either small deviations in height from a mean wlane,
or they have a long correlation distance.

1.1.2 Discrete Scatterer Model

10
The main investigations have been carried out by Ament Biotll,

)
Spetner'?, and Twerskyl3» 115,16, AT18

Twersk has also considered the
statistical problems which are éonnected with this method when higher order
statistical moments of the field are to be considered. Most investigators
have only considered the problem of the mean scattered field, or at best,
the mean and variance,

Ament modelled his surface as a collection of randomly spaced half-
planes. Biot considered a uniform distribution 6f hemisphere§ on a per-
fectly conducting ground plane, but these objects were required to be so
small that very little scettering covld take place., Spetner assumed a
distribution of point scatterers, which yielded relatively simple results.
Twersky has contributed the largest amount of information towards the sol-
ution of these problems. He considered éither hemisphéres or hemicylinders
~ona perfectly conducting ground plane. The main advantage of the Twersky

approach is that use is made of our extensive knowledge of the scattering

properties of & member of the distribution alone. Here again, the random



variable has been limited to be the position of the objects. Under suit-
able apprcximations the results are simple, at least for the mean of the
scattered field.

"~ 1.1.3 Exverimental Studies

Sorne. workers have investigated this problem experimentally.
In these studies, restriction #2 is removed by the use of actual
receiving and transmitting antennas with their associated finite beamwidth
and non-plane wavefront. The reﬁéining restrictions, excépt for 8, may also
be removed. The choice of the surface model divides the experimental
studies into two sections correspondiﬂg to the choice of specific natural
surfaces or of laboratory constructed mbdels. Natural surface data has
been analysed by such investigators as W.H, Pegkes who considered refleétions
from blacktop and lawn gress, and M. Katzinl9 who considéred radar sea

20 worked

clutter, For the laboratory studies, R,H. Clarke and G.0, Hendry
with a water surface agitated by a controlled air flow; Hiatt, Senior, and
Xa!estonzl considered a surface produced by rough casting of metal; B.E,
Parkin522 constructed two surfaces, one by denting sheet metal with a
hammer, and the other by flowing grout over sand. In a&ll the above experi-

ments, & method had to be devised for measuring the statistics of the models

as the statistics could only be roughly controlled.

1.2 Aims of this Study

Basically, the aims of this investigation are the following.

1. To choose a feasible and controllable surface model.

2. To include the effect of the finite beamwidth and non-
plene character of incident radiation from an antenna.

3. To develop a Monte-~Carlo technique23 for calculating the
scattered field statistics; the main problem here is to



devise a suitable numerical method for determining
the distrivution of scatterers.

k, To carry out a series of experiments upon an artificial
surface for which the properties can be accurately controlled.

1.2.1 Surface Model

For this work the Twersky model of a rough surface was chosen. The
reason for this is threefold. First, if was felt that a more exact solution
should be obtainable for higher degrees of roughness because the scattering
characteristics of the individual objects were known exactly. Second, a
Monte~Carlo method wes proposed for the calculation of the scattered field
statistics which reqﬁires the generation of thousends of different surface
profiles. Third, experimental models co?ld be more exactly constructed,
and would have desired repeatability.

The general analysis of the particular surfaces composed of arrays of
circular hemicylinders or hemispheres on a lossless ground plane 1is
considered in Chapter 2. It includes the effect of finite non-plane wave
incidence. Multiple scattering is considered in Chapter 3.

1.2.2 Incident Beam Model

There are two reasons for the inclusion of finite beamwidth non-plane
incident radiation. The main one is to determine the behaviour of the
field in a more realistic situation. However, it should also be mentioned
thet the infinite beamwidth case cennot be treated by the Monte-Carlo
approach because this would require the storage of an infinite array of
numbers or an infinite amount of calculation time.

The specific model proposed is that of the far-field radiation from
an aperture with an appropriate illumination functionh. This model was

chosen for the following reasons:



It cen be made to resemble very closely the radiation
pattern of a laboratory antenna. :

It is simple enough mathematically to be easily included
in the field equations.

The beamwidth, sidelobe level, and sphericity of the
wavefront can be essily controlled.

. This problem of the incident beam is discussed in detail at the begin-

‘ning of Chapter 2.

1.2.3 Monte-Carlo Method

The Monte-Carlo method is the most direct method for calculating the

scattered field statistics and it has known accuracy. Thus it is suitable

" for obtaining numerical results and for evaluating theoretical approsches.

Analytic solutions are usually obtaihed by the following sequence of opera-

tions:

Calculate the scattered field due to one object.

Use the above to calculate the total field scattered
by an array of the above objects,

Integrate the field over all possible configurations using
some particulur distribution function for the locations

of the objects to obtain all the desired statistical moments.

The drawback of the analytic method is the inherent connection between the

calculation of the field, and the calculation of its statistics,

On the other hand, the Monte-Carlo technique proceeds as follows:

As above,
As above, ' -

Determine a single configuration according to some
numerical random or pseudo-random process. ’

Calculate the field due to this configuration by 2.

Keep a running mean, variance, etc,



6. Repeat 3,4 and 5 until a sufficient number of surface
configurations have been used to approximate the desired
statistical moments.

It thus eliminates the drawback in the analytic method as it will work on
any sequence of random functions, provided only that the elements of the
sequence themselves may be numerically calculated. The implementation of
the Monte-Carlo method is therefore divided into three distinct parts:

1. Obtaining sn analytic expression for the scattered field from
8 fixed configuration,

2, Numerical determination of the coordinates of each
configurstion.

3. Numerical cglculation of the field using 2 and the
calculation of the statistical moments.

The applicetion of the Monte-Carlo metheod to the surface models studied
in Chapters 2 and 3 is given in Chapter L, where the problem of suitable
methods of determining the distribution of scatterer positions is also
discussed,
1.2.h4 Experiment

The main purposes for performing an experimental study were to compare
actual results with theory and to give another method which could be used
where the approximate theory became incorrecﬁ. These aims restricted the
choice of the experimental surface to be of the controlled laboratory type.

The experimental surface used was, in fact, a duplication of the one
used for the theoretical simulation of the problem: perfectly conducting
metal hemispheres on a nesrly flat metal ground plane, The locations of
the hemispheres could be determined by the same method as that used in the
simulation. Thus, unlike previous experiments the distribution and demsity

of the experimental surfece could be strictly controlled. Im prior



experiments these factors had to be estimated after the surface was

constructed. The implementation of the experiment is described in Chapter 5.°

1.3 Restrictions

In summary the approach teken in this thesis required that the previous

list of restrictions on the problem be modified to the following: .

.

1. Harmonic time dependence,
2. Finite beam incidence with non-plane wavefrent. . .
3. Boundary surface same.
-k, Vector solution.
5. Surface two or three dimensional.
6. Surface need not be locally plane.

7. Object dimensions up to a wavelength (simulation)
or greater (experiments).

8. Object density from sparse to about 50%.

9. Surface model circular hemicylinders or hemispheres
© on a perfectly conducting ground plane.



2. THE SCATTERED FIELD FROM AN ARBiTRARY
CONFIGURATION OF DISCRETE SCATTERERS
ON A PERFECTLY CONDUCTING PLANE

2,1 Introduction

In this chapter the scattering of a finite nqn-plane electromagnetic
beam by a single configuration of objects is analysed. A simple far-zone
‘radiation pattern is assumed for the incident wave used in the derivation
of the field scattered from an array of perfectly conducting hemicyiinders
on a perfectly conducting ground plane in section 2.2, and from an array of
perfectly conducting hemispheres on a ﬁerfectly conducting ground plane in
éection 2.3,

The arréy of hemicylinders is formulated as & purely two dimensional
problem by considering infinitely long cylinders and the plane of incidence
perpendicular to the axis of the cylinders as shown in figure 2.1. Hence
the results may be derived from the scalar wave equation2h. Of course,
this model of a rough surface is a very restricted one but the results could
be applied to any physical problem which is essentially (or locally) two
dimensional such as radar returns from water waves.

The derivation essentially follows TwerskylS. First, a grating of
objects is analyéed by fhe separation of variables method, and then the
Rayleigh Image techniquelB'is applied té obtain the solution to the
surface problem. Because of the relative simplicity of the calculations and
in anticipation of the study in the next chapter of the periodic array,
the calculations are given in detail for the two dimensional case, For
convénﬁmce backscattering only is considered. For the present purpose
it is sufficient, to consider only the single scatter approximation for

normal incidence in the three dimensional case. The reasons for the
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normal incidence restriction is given in section 2.3.&. Beckmann7 states
that the geometry of the problem is perhaps the most dominant factor in
rough surface scatter. Under this assumption then even the spproximate
 solutions considered here should prove gseful. The experiméntal results are
given in Chapter 5

The development generally follows the treatment of hemicylinders, but
further complications are introduced by the vector nature of the ﬁroblem.
The field scattered from a singlefsphere cannot in general be derived from
the two scalar equations, These vector solutions are discussed fully by
Stratton25 and by Morse and Feshbachgé, but the form used here is essent-
ially that given by Twerskylu

In section 2.4 a specific model.is proposgd for the antenna beam
used in ali subseqﬁent_sﬁudies; Thé mbdél is ¢hosen to be representative
of & laboratory horn antenn;. | | | |

Finally, in section 2.6 the relevant parametefgyof the problem are

discussed and their role in the problem and range of values are decided upon.

2.2 Scattering from a Configuration of Hemicylinders

2.2.1 Cylindrical Incident Beam

-iat
Assume harmonic time dependence, e . Hence the reduced scalar

wave equation GO? + RZ)ET = 0 must be solved with the correct boundary
conditions on the surfaces of the cylinders, Although the golution may
be obtained as easily for dielectric cylinders, only the perfectly
conducting case shall be considered in the following problems for

computational simplicity. Let

E =E.+§ E (2.1)
T 1 s _
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where

ET is the total electric field
E; is the incident beam, at angle Q0 *

Eg is the complete gultiple scattered
field from the s h object

Ny i1s the total number of 6bjects

At this point, consider the form of E;. The usual treatment would
be to put E; = eiE'? = eikT cos (6 -0 +;l) and refer this to the
coordinate of the sth object. That is, one would assume plane wave
incidence, However, Ej may be considered to be the far-field radiation
from some directicnal but two dimensipnal source such as a long narrow
slot. The incident wave must be considered in terms of a series of
elementary cylindrical waves in order to match boundary conditiéns.
Now, let E; = P(R,0), where R andfare referred to the centre of the

radiator. 1In particular, since only the far-zone field of the radiator

need be considered, let

ikr
E. =E e £(6) (2.2)
1 Oﬁ{F

which is the form of a cylindrical wave multiplied by the space factor,

£(6).

The scattered field is derived using the geometry given in figure

- Ay DT .
2.1. R P

ryl

«

U2

Figure 2.1 Scattering Geometry for Two Dimensional Problem



In the above diagrem,

A = position of antenna
P = point of observation
(X4,0) = position of the st eylinder
(X = engle of incidence
L = distance from antenna to surface

Assume that L is large, as the far-zone field of the antenna is to be

considered. Also, assume that rg is small, which is possible because

th

r, will be fipally placed at the surface of the s object to satisfy

boundary conditions. Thus, using figure 2.1,

R = (L sinCl + X, + rg cos@s )2 + (L cosQl - rg sin(l )2 (2.3)
let
Cg = (L cosCl)2 + (Xg + L sinCX)2 (2.54)
__ L cos(} , : |
_t&HKBS " g + L sin( ' (2.5)
and, since rs<< L,
Kz o+ 2r C_cos@. +0.) (2.6)
s s’s s ] .

As CS is actually the distance from the centre of the antenna to the

sth object (see figure 2.1), and r will be limited to the vicinity of
the surface of the s?h object, it is also true thet rs<K-Cs for any s,
provided fhat»the antenna is sufficiently far from the surface and that
the 1lluminated area of the surface is sufficiently limited in extent. Of

course, the extent of the surface considered will be limited by the beam
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width of the antenna. Therefore,
R=C + r cos + - 2. {

A similar approximation is applied to the angular antenna coordinate.

From figure 2.1

' -1 L cos(l- rgsin
0 = - O - tan 8

(2.8)

My

L sin((+ X_+r cos B
S S [

Now, make the assumption thet the amplitude, f(8), is constant and equal
to the value it attains at the centre across the entire surface of the

scattering object. This approximation is reasonable provided that

r KL cosQ
]
| (2.9)
r{ X + 1L sin(}
S S
which implies that the objects are small compared to the disfance from the
antenna to the surface. Hence, equation {2.8) becomes

1 L cos ()

6~ —g-a- tan - (2.10)

XS + L sin(X

‘ th :
Therefore the incident wave arriving at the s object can be assumed to

be spproximately plane in the vicinity of that object, that is,

e15Cs  ixrgeos(Bs +3s) o0 7T
~ R T U~ 2.11
E; ~ B TR e 8 e (5 - 0-f) (2.11)

For simplicity, let

ikCq

o

D, = %ﬁ?f(lg—’- a-8Bg (2.12)



so that

ikrgecos(Bg + ,Bs)

E. = EoDse (2. 13)

1

Also, note that for convenience f£(0) = 1 and that E, is merely a complex
constant amplitude factor which may later be adjusted to give a
normalized solution,

2.2.2 Scattering Coefficients for Grating

The plane wave (2.13) may now be expanded in & series of

cylindrical wavesahAreferred to the axis of the sth cylinder.
00
E; = ED ZJn(kr )(i)“ein(@s +Bs) (2.14)
Nz-00
th

The wave scattered from the s object may be expanded in a similar

series of outgoing cylindrical waves.

(=24

E, = ZanHn(krs)eines : (2.15)

n=-00

where H,(Z) shall always refer to Hﬁl)(z), the Hankel function of the
first kind. Thus, from (2. 1), the total field is given by

Z ZB H (krg) in0g (2.16)

S=1 nz.oo

for a particular set of p051tions Xl’ Xé, coe Xﬁ 5" and the unknowns
an are determined from the boundary conditions. The calculation is

outlined in Appendix A and the results are

"'J‘E: Dy (i) e s +Z ZBthn (k| X - s')fSt] | (2.17)

t=1 pm:-c0

where t#s
i Jnlka) '
An = - W (2.18)
Jn(ka)

A-!Ll =T anka5 - (2.19)

14
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st l, t>S

£ = N
mn ()T s

(2.20)
At this point, one is faced with the formidable task of solving the
infinite set of simultaneous linear algebraic equations, (2.17), for the in-
finite number of unknowns; an. First, reduce (2.17) to d finite number of
equations in a finite number of unknowns by assuming that the An become
negligible after some n = N, say. This is reasonable especially if ka is

small (i.e. small scatterers). Second, introduce the change of variables,

LR
(1) n
X =—(B + (-1) B ) n=1,2,
ns oF -ns ns*
° (2.21)
X - [o]3]
os 2E
o]
(a)n n
Y= ;;—-(B_ns - (-1) an) (2.22)
(o]

Substitution of (2.21) and (2.22) into (2.17) yields

No N

- T

X = A_|D.cos n]. + ()" ™ 1 (x|% - X )fSﬂ 2,2
B §;§“Vli‘ n-n séw
Yy = A |-iD sin nﬂ%%:) /21_51) Yﬁtﬂ;n(klxt - Xsl)fnmf (2.24)
- =l L$8 m=0 -
where
() = By () 2 (1) Hyn (%) . (2.25)
Hop () = (-1) 1y () (2.26)
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Use was made of the fact that C n(z) = (-1)ncn(z) for any cylinder function

27
C . Note that the systems of equations to be solved, (2.23) and (2.24),
n .

are each half the size of the original system (2.17) but the operation

must be performed twice. This is, of course, a great saving of work if an

exact numerical solution is required. Before attempting this, however,

1,7,1
it is advantageous to apply the Rayleigh image technique 7513 to obtain
the proper form for the solution to the surface problem,
b4
A
/jz//”ﬂ
IT—-Q
= X

" Figure 2.2 Real and Image Fields Incident on a Cylindef

2.2.3 Image Method for Transformation to Surface Problem

The image method is as follows. For a wave incident at angle (X
as shown in figure 2.2, the scattered field from the half cylinder will
be composed of the field produced by & field incident at angle(land its
image at angleJ-(Qlincident upon a whole cylindef. The solution will be
correct in the region YO0 only. The validity of this may be readily checked
by testing to see if the boundary conditions are satisfied. If Emp is now

defined to be the total field for the surface problem,

Ei(CX) + Ei(YT-Oi) + EEscat(a) + Escat(ﬂ- Oﬁ)} {2.27)

4
B @)

[}

- Einc * Eplane * Eobj (2.28)



There is considerable simplification of the problem after application
of the above equations due to the symmetry of the real and image
functions. Now, the Eobj in equation (2.28) is composed of the fields

scattered by the individual objects:

= B @) £ B (IT-Q) (2.29)

obj scat

=Z:E»:S(a) + ES(W-Q)] | (2.30)
-_-ZEQ* (2.31)

S

It is interesting to note that only one set of the coefficients an~
or Yhs need to be calculated for each polarization for the surface
problem (see Appendix B). The resulting fields scattered by the st

cylinder are:

= kB ZE::kl) X ,C0s n@ B (krg) L (2.32)

i |
= -MiE 2{:: )" Y sin nOH (kr (2.33)

: 2.2.4 Backscattered Field

From this point onward, only the scattered field in the backscatter
direction will be considered. The analysis for other directions is no
different in principle. Backscatter is a reasonable choice as it repre-

sents the monostatic radar problem. From a consideration of the geometry

of the problem (see figure 2.1), f.e. putting point P at point A
r.=¢C
s 8 (2.3L)
6s =77—"/3s

(2.34) holds also for forward scatter if CS(OL) and IGS((I) are replaced

with C_(-) and B (-0.

17
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Since CS is assumed to be large, Hﬁ(sz) may be approximated by the

first term of its large argument asymptotic expaunsiong7

H (kCg) ~ (1) = (2.35)

(2.32) and (2.33) when combined with (2.34) and (2.35) give the following

approximate expression for the far-zone backscattered field from the

array of hemicylinders:

Np s N
I (1. - i) E:: elkcs n
E : = h—:—-—E -1 ‘ 2, 6
obj ‘/ T 05:1 JT(_(Z n:.o( ) ancos n/:g ( ’ )
. . No ikC. N
L 1l - s n .
Eobj - uig.__.ilgo é .QEE-F- ;,('l) Y (sin nﬂg (2.37)
JIT sty LoTs T -

2.2.5 Normalization of Field Equations

Finally, the constant Eo must be selected so as to yield a normal-
ized reflected field. This normalization is such that the total reflected

field is unity when the the surface is flat. From equation (2.28)

E =E + + E 2.38
iy ine Eplane obj (2.38)
=E +E . (2.39)
~ inc TS
where E, is the incident field, E _  is the field reflected by the
inc plane o
plane and ETS is the total scattered field. The required normalized field
is then ‘
E E .-
B oI5 TS -1 4903 (2.40)
“norm Eplane
Now, Eplare‘is simply the image of the incident wave in the plane (sece
figure 2.3).

Therefore, from equation (2,2), the corresponding image source becomes



L ot
plene s kR

£(5) (2.h1)

where R and O are determined from the configuration shown in

figure 2.3.
4
P
L«
Ry
2> X
L
a
Figure 2.3 Image Source
For backscatter,
0oL 12kl cos(Q
Eplane = o/“kL cos QL (@) (2.42)
while for scattering in the forward direction
I, 4. i
Eplane == Eo/éki ' (2.43)

Equations (2.36), (2.37), (2.40) and (2.42) may now be combined to yield

the final form of the normalized backscattered field.

i

=
t

No ,
; “i) oix(Cg - 2L 04
' u(lf._l) zk]g(ég’sa> ) > ( 1)"x__cos n3,

' ‘5“ (2.44)

gt L_.;i) 2kT,_cos (. 1k(c ~ 2L cos (1) (- l) sin o
- fL(o') Z; 7 B(e.hs)

]

19



Now, if the unknown coefficients an and Yﬁs can be determined from
equations (2.23) and (2.2.4) then the normalized backscattered electric
field may ve determined from equations (2.44) and (2.L45),.

In summary, the problem has thus far had the following restrictions

placed upon it:
1. Expressions have been explicitly given only for the
backscattered field. ‘

2. The surface must be illuminated by a finite width
beam located a large distance from the surface,

3. The scattering objects must be small compared to the
effective width of the beam at the surfeace.

2.3 Scattering from a Configuration of Hemispheres

2.3.1 Spherical Incident Beam

The geometry of the problem is shown in figure 2.4, Note that only

normal incidence is considered from the outset.

y <% , =

Figure 2.4 Geometry of Three Dimensional Scattering Problem

In keeping with the two dimensional problem, consider a simplified

far-field radiation pattern of sphericval waves,

20
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1kR |
e "a . — _ —_
By = Eomf(@a,éa)[sin(@a +O)& + cosd, +8>€¢]
' (2.46)
ikR
e~"g —_
where O is the polarization angle:
5 =0 for H polarization
- (2. k47)
S = = for_| polarization
and E‘g, ‘G—‘; are unit vectors in the antenna coordinate system.
How, by standard vector analysis, -
= e s A T . - 4
€, = cos 5 cos gbala + cos O sinQgje - sin 6aka (2.18)

€4 = -sin@aia.+ cos(f)aja

is the relation between the spherical and rectangular unit vectors.
Therefore, at the antenna,
E, = (sin (,ba + O)eos H cos gba - cos(d)a + 5)51n¢a>ia
+ <sin((2()a +8)cos easin(pa + cos(d}aﬁr 0)cos Cba)i (2.49)
- sin(ij)a +O)sin 0.k,

Refer the incident field to the gy Ygs 24 axes at the sth

s object instead

of to the antenna coordinate axes by the two translations along L and

R
Xy = —(Xs + XS)
Vo = ¥g *+ Yg (2.50)
Zg, =L ~ 24

and the unit vectors become



l-‘-l
]
:

a is
Jo T Jg
ka = ~kg
consequently,
2 2 2 2
R, =rg +R +L + 2(x Xy + yg¥s - zL)
where,
X, = Rgcos c_bs
Y, = Resinds

th

are the coordinates of the s scatterer.

To further simplify the problem, rotate the xg,ys,Zg

through the angle i[)s about the z, axis. That is,

P
\

/ ! a4 T
s = xiecosDg - yisin @

e
i

s xésin@s + ylcos (i[)s

- w/
% = %

Equation (2.52) becomes, upon the substitution of equation (2.5h),

, 2 2
2 _ 7
R, =1 +Cg+ E(Rsxs - Lzs)

where

2
¢ = RS + 17
s s
From figure '2.46°
sin ) = RS/CS
cos G, = L/C,

(2.51)

(2.52)

(2.53)

coordinate axes

(2.54)

(2.55)

(2.56)

(2.57)

22
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Hence,

2_ 2, F /54 — 2.58
R, =) +C + 2Cs(xssm ec z/cos Gc) (2.58)

And, since rg (K C, in the vicinity of the s'm object,
~ / /
R = Cy + x{sin ec ~ zfcos O (2.59)

It is reasonable to assume, as in the two dimensional case, that the
amplitude functions f and _e-p may be considered to be constant across the
surface of the sth scatterer. This assumption will be valid for small

objects. Therefore, from figure 2.4,

c (2.60)

and from equations (2.51) and (2.5k4),

~ - - Yz e

i =- cos (I)Sls + SinCI)sJS

Jg = sin(I)si; + cos @Sjé (2.61)
Y - L W/

ke. = - ks_

Thus, by equations (2.60) and (2.61), equation (2.49) becomes:

-e—I; = sin@?S - O)(cos Gc;é + sin ec'ié) + cos@)s - 6)3% | (2.62)

Finally, then, the incident wave may be approximately represented as

1kCq _ ' ' |

o & ik(x4sin Be - z'cos B..) _

B % Bopg e ’ s¢9% Yel£(B,, 1T- @) (2.63)
{sin(ci)s -0 )(cos ec:; + sin ecii—g) + cos(@s - 5)33

in the xg, yg »24 coordinate system. This corresponds to an incident wave,

th

which is plane across the s scatterer, with angle of incidence and angle
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of polarinzation

and ¢ - (2.6k)
&

0
S
e

respectively,

2.3.2 Single Scattered Field

As the derivation of the two dimensional scattered field has been
. 1k . .
considered in detail, the following expression” for the three dimensional
field scattered from a single hemisphere on a ground plane with the

incident plane wave of equation (2.63) is presented without further comment:

-— -2i 2n+l) ’ . "
E = kr§°> ﬁ_( )n alh (kr )2___/[ cos m[/%,slnﬁ mP sin Egg;osﬁj

n=1

0 ™ 4 oc\d
j“‘ on+l
_ZiEé ém":f\ E{rghn(kr/—] ; ED cog m(j)cmﬁ- sin m@cos{)}
- 51na
m+r\ gdd
+ie h (kr/)% l:-m Pmcov xvf;bsm{)?ml’m sin mecoogJ
Moo sm@/su‘lw sindg

- VR En 2V

+21iE/ % hn(kr/ Z[m P cos nﬂlposS:mP sin n&@smﬁq

Py sing siny s1n » J
m+n oda
-ianhn(kr,.)g [P‘“ cos mqbcos&rmP sin m@°1n5 w (2.65)
' anO(, J
fl\*ln even ‘
where,
L 3y (ka)
n hy, (ka) (2.66)
a/ [1:(8,‘] (ka_J
n [_kehn ke.i
and
D (n=m): P (cos @ )P (cosQ) (2 67)
n (n+m) ! ’
ikCq
B/ - 20T D) (2.68)

kC
s



25

n ,

The subscripts ( and § of Pn denote differentiation with respect to (X or §
m n

of the appropriate Legendre function P (cos) or P (cos@s) in equation

(2.67).

2.3.3 vFar— zone Backscatter

As in the cylindrical case, only the far-zone backscattered field will

be considered. Therefore,

ré = CS
07 =0 | (2.69)

¢ =71

. m .
Consider the expressions for Pn given by equation (2.67) and its

derivatives. Substitute the variables from equations (2.6L4) and (2.69).

Then,
(n-m):
PI;: = €m(z+m) {E’m(cos 6] : (2.70)
m (n-m) !
Pn“ € i)} ,P " cos 6 )P (cos B.)sin e (2.71)
= -p’r‘:e
But.28, |
m/ !
Pn(cos @c) = sin26 [—n cos GCP:(cos B.) + (n+m)PI:_i(cos ec) (2.72)
c
Let |
" (cos O,
_m
Q, = n cos 6 - (n+m): ;m%izzsec)) €2.73)

Then,



m

m Pm m Qn
P = - = —
lg B " sin @C
. ) (2.7%)
m m On
P =-P
Mo n sin B
c

Second, consider the function hn(krs) and its derivatives. Since

r_=C 1is large, hn(krs) may be approximated by the firsttierm of its
s

[

asymptotic expansion27.

ikC -n
; s S/ s
hn(krs)r\/ 1§EU§T(1)
(2.75)
/ ikCS -n
- / s
@réhn(krsﬂ,\, e (1)
— == kC
kré s

Equation (2.65) for the backscattered field from the sth hemi sphere
simplifies under the above approximations and substitutions to the follow-

ing expression.

. elkC
E o~ -2iR—"
s’ 0 kCgq
oo n N 5 .
n — m m m2 NI m m
[ (-1) (2n+1) {ani; -(-1) Po + 8 sin(® -
n{n+1) VA . & ZL_J
Py oy sinBe m=0 sin“Ue .
m+n odd © mtn even
| (2.76)
o0 n
n < meaem Y )
+ [. “(=1) (2n+1) 2, ) (-1) mp, - 8 ( l) P, O JTOS(C) Q@ )6
oy n(n+1) Lj;g sin%ég Mz Q 51”79

m+n odd . m+n even

The scattered field given by the above expressions is
resolved into spherical components in the xé, y;, zé coordinate system.
The final form of the field equations is most conveniently given as

components in the antenna coordinate system. In this case, the components
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can be recognized as the direct and cross-polarized components. Let

—_ ikCq
E = -2iE’ ¢
& 0. kCS

[E@SSin(g - CI)S)-G_@-S/ + E¢Scos(6 - CIDS)—G;S-]‘ (2.77)

Now, resolve these components into the corresponding rectangular components.

That is, as in equation (2.48), and using (2.69),

U 0 e S S/
(2.78)
+ E8881n (5 ~3 ) sinf ks:}
From equation (2.61),
e T af - " 3 1T e
ls’ cos;’psla Sln(—%']a
T = sin(}%ia + cos(%,ja (2.79)
.l
5 a
So that at the antenna,
_ ikcc(
E = 25.EO e 2
s KC, L
-E, sin(Q - D YcosH cosd + E, cos(d - D Ysindd|i
s 5 c s s s s| a (2. 80)

o+ [Eessin(b - Cbs)cosacSin@S + E¢SC°S(§ - (PS)COS{PJ ja

-E, sin(C - & )sin@E;
s s c

It is sufficient, however, to consider only the two polarizations for



&= YT anda 6= 0 respectively . That is,

;'-s’. = 2iEo[c1kCJ f”( B, TT- <I> ){
KC

2 2'”]__
-E, cos D cosd + E,sin® |1
N 0 mSCO 9C P ?J a

(2.81)
+r£ + E incD cosh j.
L escosEL ¢%] 31nQ%coskS .
-E, cosD sine_l:\
s s c a
and
2
- ikC
E = 211«3_@ s | f‘L(@C, - O )!
s O kC ~
5
’AE 5 —} d Bi
L., COS + E sin coshi
| s ¢f} s %% (2.82)

-
LEe sin CL) cos@ + Ty cos cp]”'

+Eessinqgsin6%§;}

2.3. 4 Yormalization of Field Equations

Again, the normalized total backscattered field is the actual
quantity which should be considered. Since the plane reference surface
will not depolarize the incident radiation, the direct and depolarized

components must be considered separately. That is,
E ..
1L , ObJ
E =1 + -——_“,_L . (2. 83)

plane

as in equation (2.40) for the direct components. For the depolarized

28
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components however,

E .
L obd '
E = L (2. 8l)

plane
Eﬁlane is, as before, the image of the incident field in the plane. The
geometry is similar to that shown in figure 2.3 with L = 0.
e

SR - —— 2.85)
plane o 2x1, (

i, L i2kL
E ’

It must be noted that the total fileld scattered by the ensemble of
objects will be given simply by the vector sum of the field scattered
by each object, since the single scatter approximation is assumed. The
normalization of the total field given by the sum over s of equations
(2.81) and (2.82) by.equations (2.84) and (2.85) may now be performed.
First, the various polarization components of equation (2.83) must be

recognized. That is, the field is in the form

E= EliI; ¥ Eppdy + Bk
: (2. 86)
B'= Bppig + Epply * Ep,
where
11 is the direct coméonent due toithe H pol. incident wave
E12 is the depolarized component due to the l|pol. incident wave
E2l is the depolarized component due to the_l_pol. incident wave
E22 1s the direct component due to the_Lpol. incident wave

These four components may now be correctly normalized. The other components
E} and E2 ajong the za axis are not considered here for two reasons, First,

they will not be detected by an antenna in the same or cross-polarized
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orientation as the transmitting antenna, which is fhysically the most
realistic configuration. Second; they will tend to cancel out when
gveraged over the ensemble of the objects if the objects are distributed
according to a continuous unifonn&lstribution. This point will be further
discussed in Chapter UL,

The normalized backscattered field from an array of perféctly
conducting hemispheres on a perfectly conducting ground plané,illuminated
by a narrow beam antenna at normél incidence, by the singlé scatter approx-

imation can now be cast into the form:

, . .
Ell =1 + bikule” £? L) £ (ec,77L<ig)[}Eescos(igcos6%+E¢ssin%ﬁ%]
kCS -
2
. ix(c -1L) ) ' ~ ﬁl . T
E12 = LikI e »s f (ec,77;<bs){%ascos5%+ E¢§Js1ni%cosgg
kG ’
N (2.87)
E = ulki(éik(cs_Ly\2f (6,77- @& M E, cos + E “‘sindbcos@>
21 i;_____..__i} e’ 95; Og c ?%ﬁ S s
kC
s
(6 )Y | i
ik(C -L - i . ~ 2.
E22 =1 + hlkLL £ (E%’YT-QPS)[}EBSSln%bs cos( E¢S cos(piJ
K C

2.4 Antenna Model

It is now possible to choose a specific function for the antenna
space factors f (&) and f (E%,d)) respectively. There are several choices

which could be made. The simplest one is the rectangular



r@) -7 B0 0 (2.88)
o, |6|>6

This simple case was dismissed becaﬁsé tﬁe function has no sidelobes;
only the beamwidth can be controlled. A slightly more complex
function was tested and found to be a reasonable representétion of a
narrow beam antenna with readily controllable beamwidth and sidelobe
level. The model chosen is that of an aperture with an appropriate
illuminating function cosné%ij)

The form of the space féctor for tﬁe radiator is a slightly modified

version of that given by Silver .

+
cos u

gy(u) = (n-l)/2I: (ﬁf - u —] n odd

2k+1)6 B
(2.89)
(90(n+2)\ 90(n+2)‘;
(o] n even
(u) =
g, _,quZ_J: 90(n+2) > ]
where |
£(0) = g (sinH ) | (2.90)

and,eb is the angular distance to the first null of the beam in degrees.
_The integer n reduces the sidelobe level in discrete steps as n is in-
creased. Note that n =0 and n =>l reduce eéuation (2.89) to the approx-
imate radiation patterns of an open waveguide in the E-plane and H-plane

respectively.
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A comparison of (2.83) with the actual radiation pattern of a horn
antenna is showm in figure 2.5. Here it can be séen that the simple forms
given with n =0 8nd n = 1 are sufficient to quite accurately describe this

particular antenna. Therefore, the functions

elte) = ssn(’5%)
80
(5
6e (2.91)
g () = COS(%]%u)

will be used almost exclusively for the study cf the hemicylinder problem.
For the three dimensional problem it is sufficient to consider the product

of the .above two functions with suitable arguments:

. (180 270
I _ S“’(lee'> °°s< @hu>
RN GO C2)

(2.92)
= g(u9v)
Similafly,
L
g (u,v) = g(v,u) (293)
where
£(0,P) = g(sind cos(}’), sin@ sin(D) (2.94)

The subscripts e and h on the beamwidths refer to the beamwidths for the

pattern in the E-plane and H-plane of the antenna.



2.5 Restriction to Narrow Beamwidth

As has already been mentioned, it was decided to use the beam factors
(2.91) and (2.92) because of their similarity to a laboratory horn antenna.
Therefore, it is also reasonable to assume that the beamwidths to be
considered will be of the same order as that of an actﬁal antenna . An
effective surface area may now be introduéed which is a function of the
beamwidth, and suitable approximations may be made which simplify the final
form of the field equations.

2.5.1 Two Dimensional Case

g

Ve -

Figure 2.6 Effective Surface Width

Let H be the angular distance to the first minimum of the radiation

pattern. Then from figure 2.6

=
[t

2L tan 8, (2.95)

W = L sin @1 + D sin@l | . (-:2096)
COS(@l - Q) cos(@l + ()

34
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Define a constant K such that
K tan = tan®), (2:97)
and let
¢ = 2K tan f§ "(2.98)
a o

Further assume that the coordinate, Xs, may be derived from some normalized

distribution, YOI -% i ‘Os S_ % Then
L sin & .
X =W + 3) - = (2:99)
s (DS ?) cos(‘cfl - )
1 0 4 1
{ + .
=L sin 8 [ 8 2 + SA = (2.100)
1 cos(@i -G cos@ +Q) !
= 310 aOSco;a‘ ! %Casénaz - (2.101}
* cosTX - (3¢,) “sin"d
Let
) _ 1 2Pqcos O+ 3Cysin (X (2.102)
57 % cos?X - (%Ca)zsinza
Then
X = 1C Y (2.103)
s als
Note that the condition
a<i77- 6, (2.10k)

must be fuifilled in order that the surface wi‘dth, W, may be kept finite.”

This stipu-lation rules out the case of grazing incidence. For this part

of the problem a different method must be devised for determining the width
of the effective scattering area, and will not be discussed here. Eqguations

(2.4) and (2.103) may now be combined to give
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Q
1]

. . 5 |
Lj(caps/ +sinQ) + cosga (2.105)

LC” : (2.106)
S

The constant X of equation (2.97) can be determined by increasing its
value until computed field values become constant. This will be investigated
thoroughly in Chapters 3 and L for the periodic and random cases, respec-
tively.

At this point, the discussion of the two dimensional case will also
be restricted to normal incidence only. It seems pointless to keep the
more general case as the three dimensional problem has already been re-
stricted in this manner.. It should however be pointed out that unlike
the three dimensional case, all but grazing incidence can easily be con-

sidered in the two dimensional problem if it is desired. Since
C 1 2.10
OGN » (2.107)
for a narrow beam, the following relationships are applicable.

W= LCa (2.108)

RL =Py : (2.109)

S
22 4
C, = (1 + 5C,04) (2.110)
22
sin ~ 1 - 3,0, (2.111)
cos(3, & C 0, (2.112)

These approximations may now be introduced into the field equations
(2.23), (2.2k), (2.25) and (2.26) along with the antenna function (2.91)
to give the final form of the scattered field due to the array of hemi-

cylinders:
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M—
1
}_l
+
Q
)
3
=
(20 g
-
J
=
N’
5
=
/2]
o
o
]

" N (2.113)
L - % n
E =1+ iCe Us (-1) Y,sin q[%
sS=1 n=1
where ,
x - aledie o) + Y (" K (kxex )FSa
ns ~ “n| kL <8 aﬁ% cos ch Al “mt " mn lxt' sl r&{
=1 m=o
BRSL . (2.114)
Y —AJ ingU}égL(C )sin n 5_91 ()™ H (x|x -x |)F’St
ns - ﬁL- JKL s oP) 510 ﬁ% L/, mt | t s’/ mm
t=1 m=1 .
t#S
and 50 -
ikIC '
U, =e aJos(l - 3¢, 05) (2.115)
W1 - i)J2
C = —p=" : 2.116):
i - (ens

2.5.2 Three Dimensional Case

| These same approximations may be applied to the three dimensional
problem. If the active scattering surface is made larger than necessary;
obviously the results must remain unaffected. Therefére; assume for
simplicity that the effective area is a circle instead of an ellipse, where
the radius is determined by the widest of the two beamwidths of the antenna,

Thus, the diameter of the active area will be given by

W= CL » (2.117)

which is the equivalent of equation (2.108). Similarly if pxs and py
_ s

are somenormalized distribution of coordinates over the circle of unit

diameter, then

O =P, +pP_. (2.118)

and therefore,



R = LC
5 % (2.119)

. P
tgntig =-Z§EL
X
S

Furthermore, (2.111) still holds so that equations (2.56) and {2.57)

become

22

¢ = n(1l+ iC . 2.120

< (1+ 3 aﬁ%) ( )
22

cosE%tx 1 - gcapé (2.121)

ing =~ C - (2.122

31n€L aﬁé , (2.122)

as for the two dimensional case. The above approximations considerably
simplify the expressions (2.87) for the scattered field, especially the
functions EGS and E¢s. These functions may now be expanded as a power
series in the small quantity Caﬁ%‘ These complex functions of spherical
Bessel functions and Legendre functions have already been simplifiéd by
the restriction to norﬁal incidence. In fact, if non-normal incidence
is considered the following approximations do not yield a more usable
form.of the Legendre functions. From equafiqn (2.76). it can be seen

that the functions

< m_m m
£ - (-1) PyQn (2.123)
o sin29
c
and
( )m 2mn
5 -1)m?P
Eam = —‘—-"———“2-‘—9" (2.124)
sin B
c

are to be determined. The following approximation may be applied for
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small Gc :

(1 - cosB,)? m_ (ntm)t

o3m m; (n-m)!

P (cos@ ) =

(2.125)

o A (o)

m!{(n-m)!

Note that for non-normal incidence, cos@c<< 1 and hence the above expression

becomes a much more complicated function of Caps' Now,

, 22
Q:% m - zn C L
' (2.126)
'Pm (n+m) ! C&Os )
o m(n m)! (m! ) 2"

so that

s (~1) 6 (n+m)' (C404) (m’l)[: ) oL h:l
m - C + 'E n C
o @) (nem)t 22 ey )
(2.127)
2(m-1)

s (1) ()t (6 Q)

Em ™ 2
nm (m') (n_m) t 22m

combine equations (2.127) and (2.77), keeping only terms to the order of

2
(Caps) . This operation yields

00 n
(-1 o) F s Sl
Beg = , n(n+1) -ani Tom ¥ an> Enm
n=1 m=0 =0 (2.128)
- - : 2.1

m+n odd m+n even

104

N 22
(1 + vy C L)
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where
Q?iw aé, n even
b = (2n+1) (2.129)
ZL_J a_, n odd
n= i n
[e)
1 -na/ + #(n+2)(n-1)a,, n even
by = 0y (2n+1) 1 ' Y ) (2.130)
+ 5(n+2)(n-1)| aj, n odd
n=1 [ﬂ;}ﬁ-} 2 J n?
Similarly,
E;s =~ =% (1 +0b cip?) (2.131)
Ps 2 ¢ ~als o
where

(2.132)

= ; nn' + #(n 2)(n-15 a_, n even
b ‘%ZE:: (2n+1) 12( 1) ’ J n? "

-na_ + +(n+2)(n-1) aé, n odd

The final simplified form of the backscattered field by an array of
hemispheres on a perfectly conducting ground plane for narrow beamwidth

and normal incidence therefore becomes:

22
2ib 12KLC 0, o [ [ 2. 2 2 o
Ell =1 - = g(cdjscosi%,C&Cgs1m1%)L~l«€Qa-§)cos q;+b¢s1n($gfl Cols
22
2ib ikLCap - . - 1 1 22 .= -
Bip = Sg(ca;%cosg%,0g38s1nq%){fba—z)—bé)chgs1n4%cosls

5 5 , (2.133)
2ib 12k1C,04 e - 22 .
Epy = aﬁ%g(053351m% ,C&OSCOSQ%){kbe—%)-b%}Caﬁ§s1n? cos

=1 2ib iszCin (c.0.5indD,C.O.cosD)! -1+{b —l)sing"“ +b cosz@-l 02 :
p2 =7 8(Co0s 5 Cdseosl)) 1M Ppm2)sin Gty 08 S by Bl

=1
1
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The above equations will be used for all the statistical studies on
the three dimensional surface in Chapter L. Similar two dimensional
equations are given at the end of the next chavoter, after a more detailed

investigation of their more exact counterparts has been made.

2.6 TImportance and Range of Parameters

Before any results (statistical or otherwise) are obtained from
equations (2.114) or (2.133) it is advantageous to summarize the restrict-
ions and proposed treatment of all the parameters of the problem. It is
instructive at this time to decide upoﬁ suitable values for these parameters
which naturally divide into two sections, those of the beam, and those of
the surface, as listed in Table 2.1.

The reasons for the choices shown are the following. The angle of
incidence is chosen mainly fér convenience. n and an are chosen to agree
with the laboratory antenna, while I, is chosen to put the surface Jjust into

the far field of this antenna using the criterion

= - (2.134)

A

The upper limits of the size of the objects and object density are directly
related to multiﬁle scatter, and will be investigated in the next chanter.
The factor K will be determined for the periodic and random problems, and
the results for both cases will be compared.

With these ideas in mind, the periodic configuration of scatterers

may now be investigated.



Parameter

Description

Treatment

Value as fixed parameter

Antenna

Parameters

angle of incidence

sidelobe level is a function of n

distance from entenna to surface

width of main beam

set to normal incidence, (0 = O,
for convenience

vary to find effect of sidelobes

vary to find effect of
antenna position

vary to find effect of bgamwidth
keeping @o {30

A=0
n”_O n'L\=l
L = 80\

O, =8 6,=8

Sufface

Parameters

radius of objects

proportionality between width of
main beam and surface width

area density of objects

variable, but of lesser importance
use a few values £O.5 :

vary to find the smallest surface
width required

the main independent variable
accuracy decreases with increasingQ

0.2}, 0.5\

o
i

small as possible

0 Lo.25

Table 2.1 The parameters of the Scattering Problem

Yy



43

3. PERIODIC ARRAYS OF HEMICYLINDERS

One of the simplest rough surface problems is that of the two dimensional
periodic array of hemicylinders., As has already been mentioned, there are
three main ressons for choosing this simple configuration. First, exact
numerical values mey be obtained for the X  end ¥ o of equations.(2.11&)
so that the single scatter approximation (ahd other higher order approxi-
mations) may be compared with the exact solution. Second, the periodic
results can be indicative of the behaviour of the random problem. In fact,
it is hoped that any estimates of parameter limits will be even better for the
rendom case due to the averaging processes, Third, all computatidn times are
much shorter becaﬁse only one configuration, not thousands, need be considered
for each set of parameters. The three dimensioﬁal surface of course, will

not be considered here duve to its extreme complexity.

3.1 Solutions for Varidus Orders Of Accuracy

3.1.1 Exact Solution

In principle, equations (2.114) can be solved. The solution is obtained

nerely by inverting the matrix of coefficients of the th and Y However,

mt’
in a case where NO = 25, which is quite reasonable, and N = 5, which
corresponds to objécts about l.2)\in diameter, one is faced with solving =z
set of 125 simultaneous linear algebraic équations in 125 unknowns - a
formidable problem. Therefore, the parameters in the cases that will be
considered will be selected such that a solution is feasible.

For simplicity, locate the origin of the coordinate system at the
centre of the middle hemicylinder for an odd number of hemicylinders and

halfway between the two centre hemicylinders for an even number of hemi-

cylinders as in figure 3.1.
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Figure 3.1 Pericdic Two Dimensional Surface

Put
@
s\yw/ s N, odd
] = 1 d (3'1)
5(28—1)<ﬁ>/ N, even
. -HN 1), X +1), .. -1,0,1,...3(N -1), N_ odd 5.2
"%NO’ -%(Noﬂ.),.. ee =1,1, ...%‘NO , No even
and hence
X - X =d(t - ,
L - X =t - s) (3.3)

Equation {3.3) vwhen applied to the arguments of Hin in equations (2.23)
and (2.2L4) immediately makes all the elements of every diagonal above and
every diagonal below the main diagonal the same., Hence, the minor problem
of merely calculatiﬁg”;he elements of the coefficient matrix is now

within the area of computational feasibility.

A quick glance at the number of unknowvms in equations (2.11k)
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immediately rules out any hope of obtaining a solution by direct numerical
inversion of the matrix (e.g. Gauss elimination). The digital computer
available (IBM 360/67) did not have a large enough ﬁemorj, and if auxiliary
memory such as magnetic tape were used, the computation time and roundoff
error would become prohibitive, Therefore, an iterative method, the only
alternative, must be relied upon, but this does not necessarily converge in
all cases, Twersky29 has actually written down the series solution which one
obtains by applying the method of direct iterafion3o to equations similar to

(2.23) and (2.24). In a form suitable for iteration these can be written as

N, N
W =A,C . + : ; W : 3.4
ns nl:ns / / HonstWg (3.4)
t=1 m=1 :
or, more compactly 33
 W=H+TC (3.5)

where the main diagonal of the matrix H is zero and H is symmetric. Then the

iteration follows the scheme

—k+ —K —0
W o HW +C, W

- 0 (3.9
for the kth iteration. Conditions for the convergence of (3.6) to the correct
solution (the solution is correct if convergence is obtained at all) are
given by Faddeevaso. In fact, the matrix H - I,VI being the unit matrix, must
have s dominant main diagonal. Note that Twersky claims that (3.6) always
converges for the scatteringlproblem;

0,31
A better method is the so-called Gauss-Seidel method3 >3 . Let

H=1L+U ) (3.7)

vhere L is a lower triangular and U an upper triangular matrix. Then, perform

‘the iteration according to the scheme

—k+ —k+1 -~k -0
W l:;,w +UW +C, W =0 (3.8)
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That is, the new values are used immediately as they are calculated. FaddeevaBO
states that this method will converge whenever (3.6) converges, will probably
converge faster, and will converge in other cases aslwell. Therefore this
method, (3.8), was used in all subsequent calculations.

3.1.2 Nearest Neighbour Approximation

For the nearest neighbour (N-N) approximation, one stipulates that the
multiple scatter is produced only by interactions between those cylinders on

either side of the cylinder in question. That is,

H = ' (3.9)

0, t £ s+l

in equation (3.4). The system matrix is now a tri-diagonal matrix which greatly
reduces the amount of computation required in equation (3.8).

3.1.3 PFirst Order Nearest Neighbour Approximetion

The first order nearest neighbour approximation (N-N-1) is obtained by

first assuming that there is a minimum separation of scatterers- such that
k‘X-X| 1 .10
x, - x| < (3.10)

which implies a relatively low density. Then, it must be further assumed that
the multiple scatter effects are small compared to the primary scattered field
due to an isolated cylinder (e.g. low density and fairly small objects).

The resulting N-N-1 scattering coefficients

N
LeikL L elkd 1 m+n
A - 2
Y o~ -ik Jk—L ulrc(kd)z 2 > (-1) hm o1

m=1
1
aj oLl
+ Us+l mAmpm,s%g |
m - (3.11)

ik} 1 ikd | 1 T \
lle _'__‘/" 9_1 [: ( l)m+n I

m m,s-1
mo

+ Ué A”h“
s+l m m,s+}

mz=0



where

sin n
ILL lll(c nﬁ}
cos
s

'(3.12)

are derived in Appendix C. Note that these are the actual coefficients;
no iteration is required.

3,1.4 Single Scatter Approximation

The single scatter approximatioﬂ is obtained by assuming that

Hpnst = © (3.13)

for all s and t, or equivalently that the iteration scheme (3.6) converges
sufficiently with no iteration at all. Therefore, only the first terms are
kept in equation (3.11) with the result that

ikL

3
Ushns

Y m -if°S
ns nykKL

(3.14)

1
N lle LUE
ns J-— s ns

for the single scatter scattering coefficients,

3.2 Numerical Calculations of the Scattered Field

The preceding four methods for determining the X,g and Y,g were pro-
grammed on the IBM 360/67 digital computer along with equation (2.117) for
the scattered field produced by these coefficients. Up to 30 objects and an
N of 10 were allowed for. Any increase in these values would tend to use
too much memory for the efficient running of the program under the MTS time-

shared system.

47
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3.2.1 Determination of Active Scattering Area

The first problem is to determine the optimum value of the ratio between
the beamwidth at fhe surface and the necessary surface area. This factor (K in
equation (2.98)) can be determined by increasing its value until the field
is virtually invariant to any further increase, The results are shown in
figure 3.2. The cylinders in this case are 1.0 wavelength in diameter and the
spgcing is 5.0 wavelengths which gives a density of 20%. For these parameter
values it can be seen that the erroridue to the single scatter approximation
is appreciable.

From figure (3.2) the smallest value.of K that can be used appears to be
about 1.5 and this value will be used for all further studies of the periocdic
surface. As K = 1 gives a surface width equal to.the width of the main beam,
this value (K = 1.5) implies that at least the first sidelobes make some |
contribution to the scattered éield. Cylinder diameters of O.L4 and 0.6
wavelengths were also tried, but with similar results. The only difference
- to be noticed was the degree of multiple scatter,

3.2.2 Effect of the Orders of Scattering Approximations

The relative errors of the magnitude and phase of the scattered field
for the single scatter and first order nearest neighbour approximations com-
pared to the exact solution are shown in figure 3.3 and 3.4. Here, the

independent variable is the area density of the objects,

p;%Q (2a)(100%) (3.19)

A density greater than 35% has not been shown because in several cases
the exact solution did not converge., Similarly, a cylinder diameter greater
than 1.0 wavelength was not used. This fact is in disagreement with Twersky29
who claims that the series should always converge on physical grounds,

although an even better converging series (3.8) was used here. As a consequénce,
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the usefulness of the series solution obtained by itération is severely
limited. In fact, it can be seen from (2.114) that the diagonal elements of
the system ﬁatrix increase as the size of the objects is decreased, and the
off-diagonal (multiple scattering) elements decrease as the spacing is increased
Therefore, the diagonal is dominant for small cylinders and large separation,
and a point can be reached by increasing the relative amount of nultiple
scattering so that the diagonal is no longer dominant. This point corresponds
to a fairly small/amount of multiple scatter for the parameters considered.
Now, the actual problem to be dealt with is that of the random case.
As the errors are seen to fluctuate as a function of object spacing, it is
reasonable to expect tﬁat the average errors for the random array will be
somewhat less than the waximum errors shown in figure 3.3 and 3;&. Therefore,
with these points in mind, the following restrictions will be imposed:
0.2).{a{ 0.5/, and aversge density {20%. Of course, very small value of
é/%~<0.05 will again be acceptable. These limits have been selected on
the basis of using only the single scatter;approximation. The higher order
approximaﬁions would give smaller errors, but use too much computation time

to bebconsidered for the Monte-Carlo simulation.

3.3 Scattered Field Using Single Scatter Approximation

-

As the error in using the single scatter approximation has been
ascertained, the field equations for the two dimensional problem equivalent
to (2.133) for the three dimensional problem may now be determined from
(2.114) and (3.17). The results are valid under the following restrictions.

1. Narrow beamwidth approximately 150

2. Average separation about 2A~or larger

W

Object diameter about lﬂ,or smaller

F

Normal incidence backscatter
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The above equations will be used for all statistical studies of the two

dimensional rough surface,
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L. RANDOM ARRAYS OF HEMICYLINDERS AND HEMISPHERES

The equations (2.91) and (3.21) derived in Chapters 2 and 3 may now
be put to the use for which they were intended, namely the calcula%ion ofv
certain average properties of the eiectric Tield scattered from a rough
surface. The so-called rough surface in this particular case éonsists of
perfectly conducting hemicylinders or hemispheres situated on a perfectly

conducting ground plane. The "

roughness" is determined by the choice of

the distribution of object coordinates,(Os. In Chapter 3, pé was chosen

such that the objects were located periodically. This situation is, in

one sense rough because the surface so created is not flat. However, by rough,
it is meant in this context, that at least onestatistical moment other than the
mean must be non-zero. Therefore the field statistics must be calculated by

integration or by a Monte-Carlo method. The latter has been chosen for

reasons already stated in the Introduction.

The essence of the particular Monte-Carlo technique to be used has
already been outlined but the method is given here in more detail as follows.
1. Generate a set of coordinates, .

2., Calculate the electric field from equation (2.91) or
(3.21) as desired.

3. Xeep a running total of statistical sums of the results
of 2.

4., Repeat 1, 2, and 3 until enough configurations have been
included to be reasonably representative of all configurations.

5. Take the final results from 3 and calculate the required
statistics. These statistics may be used to determine when
"enough" has been reached in 4, If not, 1, 2 end 3 may
be repeated a number of additional times, and the results
rechecked,

The usefulness of this method has already been discussed so now

consider fhe implementation of the above sequence of events. Note that



step 2 hes already been-studied at length in the preée&ing -chapters.
The first problem is that of determining the coordinate distribution [ﬁ%].
A special distribution is developed here for finite scatterer separation
with particular reference to the experimental problem.

With a suitable distribution chosen for the coordinates, steps U4
and 5 may be executed to find the field statistics, The remainder of this

chapter is devoted to an investigation of the effects of the various -

parameters under the restrictions which have been imposed as a result of the

study of the periodic problem.

4.1 Generation of Scatterer Coordinates

4.,1.1 Uniform Distribution

The simplest method of obtaining the object locations is to use the
continuous uniform distribution where all wvalues of pé in the unit interval
(-%,%) are equally probable., This distribution will be.used in most cal-

culations for three reasons. First, this distribution may be obtained

approximately from a digital computer in the form of a pseudo-random sequence.

The statisticel accuracy of such a sequence is discussed by Olsen32. Second,
most theoretical calculations of the field statistics by the approximate
integration method use this distribution. Third, it is a reasonable approx-
imation to many practical problems. In thié nmodel the separation of the
scatterers may take any value including those which make the objects oVerlap.
The qualitative results may not be greatly affected by this, but it certainly
does not completely represent a physical situation. ILike the single scatter
approximation it is useful in its simplicity provided’that the density of

scatterers is fairly low. (i.e. probability of overlaps is low).

L4,1.2 Non-Uniform Distributions

There are situations which cannot be considered using the uniform

55
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distribution, e.g. when attempting to construct a physical rough surface from
a table of the coordinates. It is this problem, the construction of a lab-
oratory surface for experiments, which prompts the development of a non-

32

uniform distribution. Olsen” has developed two methods for computing
@istribution functions which allow for finite dimensions of the scatterer.

One distribition of this type is formed by generating a set of coordinates
using the continuous uniform random number generator RAND which is supplied
with the IBM 360/67 computer. The distances between each pair of objects are
calculated; any objects closer than a given value are rejected; then new co-
ordinates for the rejected ones are calculated until all the minimum separation
criteria are satisfied. These calculations are straight-forward when applied
to a one dimensional array such as the coordinates for the hemicylinder problem
and should give an accurate representation of a physical collection of finite
scatterers. Note that a many-body distribution function of this type has only
been determined numerically but never analyticelly.

‘There are three drawbacks inherent in the above method. The first is
that many calculations and hence a relaiively large calculation time is required
to produce a set of coordinates. Also, the time increases sharply as the
scatterers become more dense. The second is that the program itself becomes
very complex when generéting pairs of coordinates in a plane. Also too many
numbers have to be remembered simultaneously. 'The third drawback is not an
 inherent problem, it is merely caused by the particular algorithm used by
Olsen to calculate the distribution, and could therefore be remedied. Using
this algorithm the Olsen distribﬁtionvtends toward periodicity as the density
is increased or the width of the empty regions is increased. Each single
configuration must become periodie, of course, but each succeeding one should
be different within the width of the empty region. Therefofe, tﬁe Olsén

distribution will give a smaller variance than one would expect from a truly
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random surface.
. . . . 32
The second distribution considered by Olsen has removed the comput-
ational problems noted above. This distribution provides the necessary
minimum separation but cannot exactly represent a physical situation because
the coordinates are allowed to attain only specific values. This method
(see figure 4.1) consists of dividing the surface into square boxes, the width

of which is the minimum allowed separation of the scatterers., The output of

X

X | X

Figure 4.1 Discrete Distribution of Scatterers

RAND is truncated to yield an integer between 1 and the number of boxes in
a row (7 in figure 4.1). A pair of these integefs is then used to place an
object into the corresponding box. If there is already an object there,

8 new set of coordinates is calculated until an empty box is found. This
distribution should be reasonably good for a low ratio of number of objects

to number of boxes ( 25% shown in figure 4.,1).

A distribution function that lies'between the discrete and continuous
methods outlined sbove and removes both the computational and theoretical
disadvantages ié now proposed. By increasing the number of discrete
positions, it should be possible to approximate the desired continuous

function as nearly as is required. The one problem associated with this



method is that fhe condition (full or empty) of each cell must be remembered.
Therefore, as the number of cells is increased, an increasingiy large amount
of computer storage is required. Hopefully, then, a large number of cells
will not be required,

This method is similar to the discreté Olsen metﬁod only now 2ach cell '
‘is divided into a number of subcells, N,, which gives a larger number of
cells (and hence a larger number of discrete positions) per row (compare
figure 4.2 vhere N, = 3 with figure 4.1). In this case, a pair of cell
coordinates are generated by RAND and then the required number of cells
around the chosen one and the chosen cell itself are checked for the .
presence of an object. If there is no object detected, all ﬁhese cells
are set to full. The process is repeated until all the objects have a
position,

For this distribution there is the added problem of determining Ng,

like the antennsa

vhich obviously must be kept as small as possible. N,

factor K, must be determined experimentally by increasing its value until

the change in the field statistics is negligible.

Figure 4.2 Modified Discrete Distribution of Scatterers
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4,2 (Calculation of Field Statistics

The rémaiﬁing part of the Monte-Carlo technigue is the actual calcu-

lation of the statistics from the collection of field values [E‘J First

NE
of all, it must be decided upon which particular statistical functions
should be considered. A thorough discussion of the properties of all

the related statistical functioné is given by Twersky17. The results
presénted here will primarily be concerned (for simplicity) with the first
and sécond statistical moments only. Of course, higher order moments may -
be calculated as readily by this method, with only a small sacrifice in
computaticnal time énd storage requirements., This is the great advantage
of the Monte-Carlo method. Analytical methods become so complex that
usually only the mean may be determined; even the calculation of the
variance is extremely difficult.

A brief outline of the statistical parameters which will be used in
conjunction with this particular problem may now be considered. Assune
that N &alues of thevgomplex electric field En have been calculated for
N differeﬁf”éonfigufafionémgfmgﬂéwébjécts accordiné.to the desiéé&uéis;

tribution of coordinates. The functions required for the analysis of the

mean and variance of the electric field for a rough surface are then:
1 N
B =) Re(E)
n=4
N

B> =5 In(Ey)

=4
N
CE2 - %Z{R@(En)}g (k1)
h;ﬁ.
Eo>=3) {Im(En)}

- N
<ExEy> = %—}n:‘ Re(E,) Im(E,)
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The set of numbers calculated according to equations (4.1) are the five
basic outputs of the Monte-Carlo portion of the analysis. From these numbers,
the desired statistical resulfs may be derived. Note that there will be
additional sums of higher order products if higher statistical moments
are required,

The means of the real and imaginary parts of the field are useful as
given above in the first two equations of (h.l). However, the ususl
functions which are considered are the so called "coherent intensity"

and "coherent phase".

P =(Ey + <y

(4. 2)
1 <E

<Ey>

a = tan

The variance of the real and imaginary parts of the field may be

calculated from ) ,
- 2: 1¢ | 2
o, =—ﬁE{Re(En) -<E > }
2 2
= <Ex> - <Ex> : (,"'- 3)
) 2 2
= <E - CE
05 = <E> - B>
Here, the usual function to be considered is the " incoherent intensity".
I =0, +0, | (k. 4)

Finally, the co-variance and correlation coefficient may be determined

from

Oy = (ExEy> - (Ex><Ey>

o (k.5)
p o =

x0y
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~ The accuracy of the means may readily be calculated.32 These
estimates should give a sufficient indication when enough samples have been
ﬁsed in the Monte-Carlo celculation., That is, the results may be checked
after a certain number of samples have‘been processed, and then more samples
mey be taken. The size of the error will also give a good estimate of how

many more semples are required. These errors of the means are:

A<Ex> =2
(4.6)

G.
A<Ey> = 2|2Y_

N-1
The above calculations will give the desired means and variances
for any complex function E of the random variables X ,X2, ‘e Xﬁ for any

distribution of the Xh. These calculations must bé adhered to unless the

field equations and distribution funection for the sth object are functions

of the sth

coordinate only (e.g. single scatter approximation with con-
tinuous uniform distribution). For this case the means may be calculated
exactly and the variances calculated approximstely with a considerable
saving of computational effort. These special caslculations are given in
Appendig D. . The main adventage of this method is that the density,Q,
appears after the Monte-Carlo operations have been completed. The

disadvantages are its limited application and limited results. This method

is only used as a comparison with the Monte-Carlo simulation.

4.3 Determination of Active Scattering Area

The value of X = 1.5 for the ratio of the effective surface width to the
width of the area illuminated by the main beam of the antenna (see equation
2.97) was checked by performing the same experiment as in section 3.2.1

for the periodic surface, upon the random surface.
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In this case, the beam sharpness factor, n, was varied also.

As a finite number of objects are being considered, the density must take
on only discrete values. So that 211 the results could be referred to one
fixed density, two sets of data were calculated, one above and one below
P = 0.25. The results ﬁere then linearly interpolated to Q= 0.25 and are
shown as functions of K in figures 4.3 and L. L,

From figure 4,3 it can be clearly seen that the value K = 1 is
sufficient, even for the case of large sidelobes (n = 0),. to determine
the coherent field. However, from figure L. 4 it appears that K = 1.5
would be preferable for calculation of the incoherent intensity. On
closer inspection of the curves of figure 4.4 it can be:seen that the curves
are functions of K for l.Of& K_S_l.S but not of n., This fact may be inter-
preted as indicating that the effect of the sidelobes is negligible.
Perhaps this variation with K appears because the main beam is seeing only a
portion of fhe distribution of objects and hence slightly different surface
statistics. Thus, in caseé where it is necessary to restrict the number of
objects for computational reasons, K = 1.0 will be used. In most cases, how-
ever, the value K = 1.5 (which agrees with the periodic array results) will

be retained.

4.4t Comparison of Results

Two sets of functions are available with which to compare the Monte-Carlo

15

simulation. The first of these is the Twersky-results for the coherent and
incoherent field scattered by the hemicylinder problem for a continuous uniform
distribution and infinite plane wave incidence. The second functions are given
in Appendix E and are obtained by approximate integration of the field equations
derived in Chapter 2. These functions are for the continuous uniform distrib-

ution but include finite beam incidence. A1l methods are based upon the single

scatter approximation.



4. 4,1 Coherent Field

The Twersky coherent field

15

is given by

/ .
<EP> =1 +pfp (k. 7)
where
o0
L i, L
o Am !
£, = % > A (4.8)
n=o
and
A (_@ 4
p= 2a’
(&.9)
= NO?F
is the number of active scatters per wavelength.
The function modified for Tinite beamwidth given in Appendix E is
, .
<Eb>. =1+ QT (4.10)
where
£ o=f£{1-2= 4+ —=—(1- BC )e " a) b, 11
b D [kL Cq J2KL ( a)e :’ (h.12)
and V
S, 130
‘ ~ 2
Oe
(k.12)
1 1526.8
R
ﬁ .

As the above functions, (4.7) and (4.10) are explicit functions of the

density,ﬁ)/, and are both in the same form, it is easiest to compare only fb
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’ ,
and fp independently ofﬁ). However, for the Monte-Carlo results the function
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e =—l—, EY - 1} (L.13)

must be calculated for every value of pf.
£ fp, and fy~ are shown in figure h75 as functions of the antenne to
surface distance Lf) for a deﬁsity, 0O, of 2% and object radius, a, of 0.2
The same functions are given in figure 4.6 for a = 0.05A.. From figure
4.5 the following results are evident:
1. The Monte-Carlo method is the best method for calculating
the coherent intensity. At least, for the parameter values

chosen, the analytic solution is too much in error.

2. The analytic method gives qualitatively the form of the curves,
but their variation is too large. ‘

3. 'The approximate analytic solution becomes better as the
antenna to surface distance is increased.

L, The results for finite beam incidence are fairly close to
the plane wave results even for the narrow beamwidth used here,.

From figures 4.5 and 4.6 it can be seen that the accuracy of the methods is
independent of the object radius. This fact verifies the result found in
Appendix E that it is permissible to set[BS = %7T in the field equations.
Thus, the use of this assumption (see equation (2.80)) for the three dimen-
sional case is indeed reasonable.

4. 4,2 Tncoherent Intensity

The Twersky plane wave incoherent intensityl5 is given by

<I§> T Civ (k.15)
- o<y -]
where
1> = -2re(ry) (4.16)

which is derived by assuming that all the incoherent power is in the backscatter

direction only.
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The finite beamwidth modified function is derived in Appendix E as

ol [ 2:] (4.17)

I2 ] ” Qﬂee 2
T l | [ erca]

it

.
T

where

R

(4.18)
2
2 L 2 O,
I ~
< b0> ’ p[ 270
Again, the Monte-Carlo results may be put into the same form
2 / 2 / 2
Le =P [{I fMCI:J (L.19)
 so that
2 1 2 N 2 )
Gy =07 e I<EM0> " lI (4. 20)

The behaviour of f fp, and f

b’ MC
necessary only to compare <IP > » <L > , and <II‘2/IC > to determine the behaviour
o ) o

has already been discussed so now it is

of the incoherent intensity. These functions are shown in Figure 4.7 for the
same parameter values as the coherent intensity.
From 4,7 it is clear that:
1. The Twersky model gives far too large an incoherent intensity,
and therefore the assumption that most power is scattered into
the backscatter direction is not valid at least for this range
of parameters.
2. The Twersky results are better for smaller diameter objects.
3. The analytic method ignores the fine variastions due to
changes in L/)\, but gives a reasonably good result, especially

for low densities.

‘4. The analytic and Monte-Carlo results agree more closely for & lower
number of objects.
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4.5 Sﬁmmary

In summary, then, it has been found that the Monté-Carlo method as
implemented in this chapter is a useful method for calculating the mean and
variance of the field scattered from the discrete scatterer model of a rough
surface. The Monte-Carlo method also allows the use of the same distributions
of object céordinates to be used for both computer simulations and physical
experiments, The actual distribution function to be used has been developed,
and will be studied in detail in the next chapter.

The analytic solution has the advantage of being simple to calculateA
numerically but gives.large errors in some cases. In fact, the.plane wave

solution is better than the anslytic solution for the coherent intensity

while the opposite is true for the incoherent intensity. Thus, a good estimate
of the behaviour of the scattered field may be obtained by using a combination

of the plane wave and analytic beam solutions. That is,
2 /. 12
C = |1+pP°f
|+ 0%
a = 1+ 0 o (h.21
arg(1 + 0'7)) (4.21)

<i2>zp‘lfpl 2( pird p’)

ILL
with F'"given by equation (E. k),
For the three dimensional problem, the Monte-Carlo method remains the only

useful means of numerical analysis.
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5. CONSTRUCTION OF A LABORATORY SURFACE AND THE
MEASUREMENT OF ITS SCATTERED FIELD

Perhaps fhe most accurate method for determining the field statisticé
is the direct measurement of the field scattered from a sufficiently
large number of independent ensembles of scatterers which aré illumiﬁated
by & real antenna. This experimental investigation is attfactive because
of the inherent freedom from mathematical approximations (such as the single
scatter aporoximation).

On the other hand, there are two main disadvantages to the experimental
‘ apprdach. The first ariééé frob the.difficulty of adquting the system
parameters to exact values, that is the system must have close mechanical
tolerances and stability. The second is the inherent inflexibility of
the system. The variation of most parameters requires the construction
of a new part of the system. .

These disadvantages are outweighed, however, by two features which
are difficult, if not impossible, to implement in the computer simulation.
First, object shapes other than hemicylinders or hemispheres may be
coﬁsidered with 1little extra effort. Second, a distribution of sizes
as well as locations of objeclts may be used. Although these features
will not be utilized in this study, ﬁheir application is immediate and
therefore provides impetus for the development of a workable experimental

system.

5.1 Design of the Experimental System

For the design of the experiment, four major problems must be cohsidered
The first is the choice of suitable parameters so that the greatest'
amount of information can be obtained Ffor the simplest and least number of

changes in the experimental set-up.
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The second is the method of construction of a specific rough surface.
The third is the method of measurement and data collection. The final
problem 1s the method of analysis of the data itself.

5.1.1 Parameter Values

For the experimental problem, the selection of suitable parameter
values is limited mainly by the dimensional constraints of the exﬁerimental
set-up and the computation time limitations of the corresponding Monte~Carlo
simulation.

The wavelength was chosen in the 8 millimeter range to keep all
the physical dimensions of the experiment reasonably small. For example,
at ' 3 cm. wavelengths, the dimensions of a single surface would be too
large, while at 4 mm. wavelengths, the mechanical tolerances (to a fraction
of a wavelength) could become a problem.

The simulation time is a function of the number of objects so it is
necessary to work with as few scatterers as possible. This implies that
their size/wavelength should be large, their density low, the antenna
close to the surface, and the beamwidtﬁ narrow. In terms of the approx-
imations used in the simulation, .the narrow beamwidth and low density are
desirable while the large size of scatterers and small antenna to surface
distance are undesirable.

The upper bound of the object size, then, is limited by the single
scatter approximation, while the lower bound is determined from the limited
number of objects. These considerations give a useful range for the object

radius of

0.35—;({_0.5 | (5.1)

The upper limit was chosen for this experiment to yield as large an amount
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of incoherent scattering as possible. Therefore, at 8 mm.,

©
1t

A/2
(5.2)

.169 in.

The antenna-surface distance is limited by the requirement that the
!
surface lie in the far field of the antenna, That isF
2
D :
I:)ﬁjxj (5.3)
where D is the width of the radiating aperture. For the horn used in

figure 2.5 and at a freguency of 35.0 GHz.,

7.62 2
L2 (T5=5)
- (5.4)
29N
Therefore, choose

L = 80A

(5.5)
x® 27 in.

Actually, twice the above value is to be preferred to be absolutely

certain that the surface is in the far field of the antenna, but (5.5)

must be used to keeﬁ the illuminated surface area as small as possible.
The laboratory antenna has a fixed beamwidth of

6 =8 | (5.6).

0
which will also be used for the simulation.
Some parameters in this experiment can be varied without too much

effort. The most readily variable parameter is the frequency, which may

be varied from 32 to 38 GHz. for the particular generators used. The
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other easily variable parameter is the object density. As the density

is to be kept low, a good starting value is chosen to be

0 =5% (5.7)

5.1.2 Method Of Measurement

The problem of experimentally measuring the statistics of the field
scattered from a rough surface proceeds as follows:

1. Construct a rough surface sufficiently larger thain the
area illuminated by the main beam of the antenna.

2. DPlace the surface in the beam at a certaln position.
3. Measure the scattered field from this surface.

Lk, Measure the scattered field from a flat surface at the
same position.

5. Normalize the field (3) by the field (k).

6. Repeat steps (1) to (5) keeping all paremeters fixed
for a large number of independent surfaces (1).

As such a large number of independent surfaces are required, it was
decided to reduce the manual labour by constructing a surface which wa.s
several beamwidths in‘area. By this method, several independent samp{;s
may be obtained from one surface. This surface nmay thenlbe moved contin-
uously past the antenna to give a continuous scattered fieid as a function
of position. The maximum number of independent samples may then be
selected by some method from this continuous set of data. This method
was implemented using the transverse positioner and anechoic chamber
developed by.Olsen32 for his scaﬁtering investigations..

This scanning method has one disadvantage, however. It is difficult
to construct a surface where the ground plane portion is flat over as large

an area as is required for a large number of samples. It is also hard

to adjust the positioning of the surface on the scanner such that the
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ground.plane is always the same distance from, and in the same orientation
with respect to the antenna. Thése errors can easily introduce phase errors
of the ordér of 2 radians at 8 mm. wavelengths.

The solution to this problem was to devise a system which tends to cancel
the phase errors. The system used for this experiment is shown in figure

5.1. The direction of motion of the surface is normal to the page. Here,

- ]
35Ghz, klystron l ' 4 REF.
3 | d
isolator
" ﬁ S16. :
bl d
Y
mixers ﬁZ‘“SZ”
] ) tape scalphner
> rec.
revr. 4 chan.

Figure 5.1 Experimeﬂtal System
the surface is covered with the distribution of hemispheres in the lower
half, while the upper half remains flat. ‘A reference signal is
obtained from the upper antenna, while the actual scattered signal from
the rough surface is obtained from the lower antenna. The division of the
rough surface signal by the flat surface signal should then give the normal-
ized scattered field. The remaining errors are now due only to tilting of the
surface as it is moved. Every effort was made to mount the surface so that
these errors were kept to & minimum.

The reference signal is then fed to the reference channél of the



Scientific Atlantic Model 1751, #8 phase-lock receiver while the random
signal is sent to the signal channel. The three outputs (signel phase -
reference phase, reference magnitude, and phase magnitude) are recorded
on an Ampex Model SP - 300 I'.M, tape recprder for later analysis. Before
any measurements can be taken, an absolute reference must be
established since the gain and phase shifts will not necessarily be the
same over the signal channel and the reference channel, This reference is

obtained by placing a flat metal plate against the rough surface and

parallel to it as in figure 5.2. The slight variation in position between

the flat surface and the actual one under it should not noticeably affect

77

the magnitude, and the phase shift will cancel due to the measurement method.

The system gain controls and phase shifts could now be set to give a

—]
]

Figure 5.2 Reference Plate for Normalization
reading of 1 (0 db) on the magnitude channels and O on the phase channel.
It is more convenient, however, to merely record the actua; readings on
the three channels, and then record the subsequent data from the rough
surface without altering the controls. The data can then be normalized

later at the time of processing (see section 5.4.1).
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5.1.3 Construction of the Surface

The material chosen for the surface was .05 in. thick sof't annealed
aluminum. Ordinary aluminum and soft copper sheet were tried, but these
materials were not ductile enough. The hemispheres were then formed in
the sheet at the appropriate locations using a punch and die as‘shown in

figure 5.5.

Figure 5.3 Torming a Hemispherlcal Scatterer in Aluminum Sheet

The die was machined to be a perfect hemisphere of the desired radius,
but the shape of the punch had to be carefully determined by trial and
error. ‘The main problems encountered were tearing of the metal and pointed
"hemispheres".
he distribution of ;catterer positions was generated

by the algorithm developed in Chapter 4 for the discrete distribution
of finite-separation scatterers. As the method was programmed on the
IBM 360/67 digital computer, it was advantageousvto use the Calcomp digital
plotter to obtain a direct plot of the object positions for each surface.
Part of a scaled down output is shown in figure 5. 4.

The coordinates were plotted in real size so that the computer output
could be fastened directly to the aluminum sheet. The object locations

were then transferred to the metal surface with an automatic centre punch.
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Figure 5.4 Computer Generated Hemisphere Coordinates

5.2 Simulation Test of the Surface Distribution
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Recall at this point (see section 4.1.2) that there are two main para-

meters which characterize the distribution function developed for use in

the experimental study. These parameters are the minimum separation,

dmin’ and the number of subdivisions of the basic cell, NS. The limiting

effect

of these parameters is shown in figure 5.5. Obviousl N
P g , N

should be as large as possible and d;;, as small as possible to allow

continuous

distribution

—» oo
NB

<

dyin=0

v

discrete

distribution

continuous
“uniform
distribution

dmin'a'o

N

Figure 5.5 Effect of Distribution Parameters
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comparison to be made with the continuous uniform distribution (ideal case).

5.2.1 Determination of Minimum Grid Subdivision

The coordinate distribution function of section 4.1.2 may now be
investigated by the Monte-Carlo simulation to determine the minimum value
of Ns’ the number of cell subdivisions required to approximate a continuous
distribution. The minimum value is used, of course, to minimize the comp-
utation time. As the same parameter values should be used as for the -
experiment, this problem was not discussed earlier in Chapter L.

Figure 5.6 shows the coherent intensity, CZ, the coherent phase,(],
and the incoherent intensity, (12> és a function of NS for densities of
2.5%, 5%, and 10%. The minimum separation has beeﬁ conveniently chosen to
be 0.5 in. or l.h8)&‘at 35.0 GHz. This is about the minimum separation
that.can be mechanically formed because of the finite dimensions of the
walls of the die. These curves (figure 5.6) indicate that N, =3 1is
sufficient for densities of 10% while NS = 2 is sufficient for iower densities
In the interest of minimizing computation time, the value of NS = 2 was
selected as sufficiently large for the purposes of this experiment.

NHote that the coherent phase is the quantity most sensitive to
changes in NS and shows some variation even for a density as low gs 2.5%.
This increase of the coherent phase with increasing NS shows that the surface
actually becomes "rougher" even though it can be seen that the incoherent
intensity is - decreasing. The reason for this effect is that the increased
roughness causes more power to be scattered into other directions instead
of increasing the fluctuations in the specular direction.

5.2.2 Effect of Minimum Separation

The other distribution parameter, d ;, may now be investigated,
>
although the value of d ;, = l.hSA. has already been selected. Figure 5.7

shows the coherent intensity, coherent phase, and incoherent intensity as
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a function of density for a minimum separation of O, i, and 1..48 wavelengths
for Ng=2. For a density of 5% (the value chosen for the experiment) the
variation ovér the range of dmin can be seen to be relatively slight.

In this case, the surface is actually becoming more

periodic as d | is increased. This fact is illustrated by the decrease in
min
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coherent intensity. Obviously, the coherent field will approach some limiting

value {1 since even the periodic surface is rough to the extent that it will

‘scatter power into directions other than the specular one.

5.2.3 Probability Density of Coordinates

| A more direct check upon the behaviour of the distribution function may
be obtained by numerically calculating the probability density of the
normalized polar coordinates of the scatterers as a histogram. Polar
coordinates are used to minimize problems in calculating the histograms due
to an accidental correlation between the discrete divisions of the distri-

i

bution function and the discrete "boxes" of the histogram. The radial

coordinate is that given by equation (2.118), that is

. 2 L A°
lf,\/pxs 'O¥S (5.8)

while the angular coordinate is given by

1 _l_lfi
O = 77 ten P (5.9)

The individusl coordinates are sorted into 25 discrete ranges for 500
independent samples of the surface. On the average there are about 15
scatterers per surface giving about 7500 coordinate values per graph.
Figures 5.8 - 5.10 show the probability density histograms for an object
density of 5% with Ns =1, 2, and 3 respectively. Figures 5.11 - 5.13 show
the same functions for an object density of 10%. The continuous straight

lines on the graphs indicate an ideal continuous uniform distribution.
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The following important characteristics of the éurface distribution

ere illustrated by these graphs:

1.

The distribution for N.=2 (4 subcells) is more uniform than
for Ng=1 (no subcells). For Ns=3, however, the improvement
is not so pronounced.

As Ng is increased, the density function itself becomes more
random. A moderate periodic effect can be seen for NS=1.

Tor N_=1, the probability density functions are almost
identical for an object density of either 5% or 10% while
for larger values of N , the higher object density shows
the greatest amount of°improvement.

Characteristics #1 and #2 show that the distribution function behaves as

desired, and point out the poor characteristics of the simple discrete
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distribution (N = 1). Thus, the use of such a distribution is justified and

#3 shows that it is even more important to use this distribution as the

object density is increased. #2 also strengthens.the previous choice of Ns

= 2 for the experimental study.

The variance of the coordinste distribution is shown in figure 5.1k

as a function of Ng. These curves also show that increasing N; causes the

distribution of coordinates to behave more like a continuous uniform

distribution, Of course, (see figure 5.5) the minimum separation must also
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go to zero before the continuous wniform distributioﬁ is reached exactly.
Notice that for the particular parameters chosen for this surface, the
higher density behaves more like the continuocus uniform distribution. Such
behaviour is not general, however, as can be seen by the following example.
Take N =1 and a density high enough so that all boxes are filled. For
this case,the distribution has become periodic for a large density, not
more random.

The means of the coordinates have not been illustrated because they are
guite insensitive to changes in the distribution parameters and hence

remain essentially constant over the range of variables studied here,

5.2.4 Distribution of the Number of Scatierers per Independent Sample

As a final check upon the surface distribution, the probability density
of the number of spheres per independent illuminated area is shown in figure
5.15. The solid curves are Normal (Gaussian) distributions calculated using
the mean and variance which were determined from the actual distributions.

In all cases it can be seen that the number of scatterers is distributed
almost normally. The correspondence becomes better for increasing Ns’
further illustrating the improvement obtained using this distribution function.

The fact that the distributions are almost normal also indicates that
the illuminated aréas ére chosen from a sufficiently larger area. That is,
edge effects and odd effects due to the fact that the density must be actually

fixed over a limited area (for computational expediency) are negligible.

5.3 Initial Testing of the Experimental Surface

For an initial test to determine the magnitude of the edge effects,
separation distance of the antennas, and the best widths for the flat and
rough sections of the experimental surface, a special test surface was used,

This surface consisted of a 2 ft. square aluminum sheet with hemispheres

formed only in the lower right hand quarter.
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The surface was scanned by the system shown in fiéure 5.1 with the an-
tennas arbitrarily separated by 4.75 in. centre to centre. The resulting
outﬁut frombthe receiver is shown in figure 5.16. The distances shown are
actually the average of several tests perfqrmed with the surface at different
elevations. The variation between these tests was slight.

From figure 5.16 it can be seen that both antennas should be about
Y in. from the edge of the surface and about 2 in. from the transition line,
These figures give a smallest surface that is 12 in, wide with random

scatterers over the lower 6 in.

test surface

magnitude

phase

distance

Figure 5.16 Results from the Test Surface

The‘iengtﬁ'of the surface is determined from the facts that there must be
L in, extra at each end to take care of edge effects while the chamber itself

is 96 in. wide. These dimensions give a surface width of 52 in. with a
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scanning distance of 44 in, If the apparent figure of k4 in,
is assumed to give the distance between independent samples, then each

surface should give at least 13 independent samples of the scattered field.

5.4 Experimental Results Compared With Simulation Results

A set of tehAexperimehtal surfaces were built according to
the preceding specifications. These surfaces were scanned with the measuring
and recording apparatus of figure 5.1 using the method of section 5.1.2.
Frequencies of 35 to 39 GHz. in steps of 0.5 GHz. were used. A Monte-Carlo
simulation was also performed, using the equations (2.133) tp calculate the
field. The object coordinates were generated by the same program as used
for the experiment and the relative coordinates were calculated for the antenna
at 100 positions across the surface to simulate the experimental scanning
as closely as possible.

5.4.1 Preliminary Processing of the Experimental Data

The analog signals from the tape recorder were converted to a set of
digital samples using the DEC PDP-9 digital computer and its aesociated
lmultiplexed analog to digital converter. Use of the multiplexer allowed
essentially simultaneocus sampling of the three signal channels plus a fourth
- control channel, which was generated automatically by the scannery to indicate
the beginning and end of data on the other three channels. The-digitalized
samples wefe then transferred from the PDP~9 memory to punched paper tape.
This paper tepe was then used as input data for the much larger IBM 360/67
digital computer, which is a superior machine for performing the many accurate
numerical operations required fof the statistical analysis of large amounts
of data. The raw data as read from the paper tape-is unnormalized and

consists of the following: (1) the level on the phase channel (q%) for 0°



phase shift on the receiver phase meter, (2) The reférence plate reading
(RP, %P’qép)’ and (3) The signal from the surface (RS, Ss,qbs).

The next part of the data processing is concerned with the calculation
of the actual normalized samples of the scattered field. First,.the 0°
phase reference is averaged over all samples to minimize effects of channel
noise and frequency drift. Second, the reference plate signals are averaged
over all samples (there are added fluctuations here due to deviations from

a perfectly flat reflector). For the normelized fTields,

/_
R/ = KR
Sz/> = K80 (5.10)

+ Ky

@3
/ P
2! ’TE "B

where Kr’ Ky, and K, are the overall channel gains, and Ré, Sé, and qbé

are the true normalized field values. Thus

(5.11)

so that the kth sample of the normalized field scattered from the rough

surface is given by

() - Sq <R»>
R

0 )-{ - o) I

o]

(5.12)

These two quantities were calculated for each sheet (approximately 100

samples per sheet per frequency) and stored on digital magnetic tape for the

subsequent statistical analysis which comprises the third and final stage
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of the processing of the experimentsl data. The cor;esponding samples
generated by the Monte-Carlo simulation were also stored on the same
magnetic tape for ease of comparison,

These sets of normalized data were plotted against the scanning position
for a preliminary inspection before any further processing was carried out.
Data for a typical sheet is shown in figure 5.17 (a) and (b). It was
noticed that some of the experimental curves showed an appreciable linear
offset from the nérmalized values, as well as the expected random variations.
These offsets were completely different from sheet to sheet and for different
frequencies; indicating that some measurement errors due to improper
normalization remain in spite of the precautions which have been taken (see
section 5.1.2). The Monte-Carlo simulation results, however, do not exhibit
this characteristic and furthermore, they show very 1little variation over
the range of frequencies used (due to the fact that the field
is normalized for each fregquency). The absence of this variation with
frequency was fortunate, and suggested one final method for reducing
measurement errors.

Assume that the offset errors are completely random for each scan, and
that the actual variation with frequency is esseﬁtially negligible as
indicated by the simulation. Then, average the data over the various
frequencies to obtain one set of frequency averaged data, The data so
obtained will then be approximately that obtained by performing the identical
experiment nine times and using the average of the nine readings. This
process will also reduce errors due to measurement of the parameters of the
system such as the antenna to surface distance. Typical frequency averaged -
data is shown in figure 5.17 (c). Notice that the offset for this sheet has

" been considerably reduced.
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5.4.2 Correlation Distance for the Scattered F..1ld

To determine the maximum number of independent samples which can be

obtained from each surface, the magnitude of the complex autocorrelation

111 ﬁ(k)v c+a) *
lod - (.)__. [ﬁzm g(l‘ d) __. <EYLE >J (5.13)

was calculated both for the experimental data and for the simulation data.

coefficient,

=N

pﬁ was calculated separately for each sheet and then averaged over all sheets
to yield the curves shown in figure 5.18 (a). For comparison, it can be

seen from figure 2.5 that for the experimental antenna to surface distance

of 27 inches, the 3 db width of the beam at the surface is approximately

3.6 in. while the width of the entire main beam is about 7.9 in.

The gimulation éurve gives an uncorrelated distance of about 1.75 in.
which is considerably less than the half-power width, while the experimental
results yleld an uncorrelated distance slightly larger than the half-power
width (similar results were obtained in the preliminary testing of section
5.3). This discrepancy may be explained by considering the opposing
errors for the two methods.

For the Monte-Carlo simulation, the main soufce of error is caused by
the single scatter‘approximation. The absence of M.S. will cause the auto-
correlation function to be narrower, and ﬁave a sharper transition from
corfelated to uncorrelated samples because interactions from adjacent but
unilluminated areas are not considered. A secondary source of error, that
of considering the antenna beam amplitude to be zero beyond a certain angle
will also contribute to this effect.

On>the other hand, the main experimental errors will tend to widen the

correlated area. These errors are caused by improper normalization and surface
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waviness due to slight bending of the aluminum sheet.. Both of these effects
cover areas wider than the beamwidth, and hence will increase the correlation
over a fairly long distance,

In view of the sbove results, it was decided to keep samples that were
the half-power width (i.e. 3.6 in.) apart. Thus, 13 independent samples per

sheet were obtained.

5.4,3 Statistics of the Scattered Field

For the simulation and for the experiment, the coherent and incoherent
fields were calculated along with their probability density functions. The
probability densities are shown in figures 5.18 (b) and (c). The solid
curves are normal densities calculated using the mean and variance of the

respective data. The statistical moments are given in table 5.1.

' 0 1° <IE[> QZ. g B> | Oupe

(o]
simulation | .9541 L3469 |.00221 .9835 . 595 .0009 $2.79
experiment | .9755 2.335° |.03265 |1.0025 2.17 .0052 98.0

Table 5.1 Statisties of Simulation and Experimental Data.

From figure 5.18 (b) and table 5.1 it can be seen that the distributions
of the field magnitude for the experiment and for the simulation are reason-
ably similar. The means are very close, while the standard deviation for the
experiment is increased by a factor of about 2.4, A reasonable agreement
between these figures is expected because the measurement of the masgnitude of
the field is not nearly as sensiti;e to experimental error as is the phase
measurement. Thus, it is reasonable to conclude that a high percentage of
the deviation is due to multiple scattering effects. The sensitivity of the

phase measurements is illustrated in figure 5.18 (c) where the phase
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distributions are shown. Here there is an appreciable difference between
the experiment and the simulation. In fact, the standard deviation for

the experimental data is now almost 6 times larger.
5.5 Summary

The experimental approach as investigated in this chaptér can be
considered to be a qualified success. The method itself is an excellent
one, but the use of the existing scanner introduced some large errors which
made it difficult to assess quantitatively the comparative behaviour of the
simulation and the experiment. Suggestions for improving this situation
are given in sections 6.3 and 6.4,

The design of the surface model and its associated distribution function,
though, was found to be experimentally practical and a good representatiocn
of a random surface. The actual distribution used for the experiment was
based upon a division of the original 4 in. cells into four i in. subcellé.
The coordinate distribution generated for this choice of Ng was found to
give an acceptable trade-off between computation time and the required
charécteristics of the distribution.

A detailed study of the behaviour of the model would require that

many more surfaces be built for several different parameter values. This

extension of the work was considered to be beyond the range of this thesis.
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6. CONCLUSIONS

6.1 Surface model

The results of section 5.1.3 and 5.2 indicate that the surface model
developed in this thesis has all the characteristics that were originally
required. Basically, these requirements were

1. That the statistics could be controlled as desired.

2. That the model be usable both for computer simulation
and for actual experiments.

The first criterion was satisfied by using an array of discrete
scatterers (as opposed to a continuous rough surface) where the randomness
was determined by using a computer generated pseudo-random sequence.

In the case studied here, the randomness was introduced by the scatterer
coordinates although other variables such as scatterer size and/or shape
could have been used. In the simplest case, the simulation of the

single scattered field, no special problems arise. That is, a continuous
uniform distribution may be used directly to generate the coordinates
becaﬁse overlapping scatterers do not matter.

For eny simulationvwhich includes multiple scatter (and hence
scatterer separation) or to satisfy thé second criterion above,

a more sophisticated coordinate distribution function must be utilized.
Such a distribution function wes developed in section L.1 and fully tested
in section 5.2. The test results, which are illustrated in figures 5.6
to 5.16,sh0w that this distribution is an acceptable function to use for
the study of any discrete scatterer problem. It is a good approximation
to a continuous uniform distribution, and it is simple and quick to

numerically calculate for one, two, or three dimensional position vectors.
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The second criterion further limited the model to be composed of specific
shapes (hemicylinders and hemispheres) so that either the scattered field
could be represented mathematically with ease, or that a metal surface model
could be machined into the same shape. The mathematical scattering functions
are derived in Chapter 2 while the method of surface construction is outlined
in section 5.1.3. The accuracy of data obtained using this surface model
depends upon the degree of approximation which is applied to the mathematical
scattering functions and the degree of precision with which the surface is
méchined. For this study, the single séétter approximation was mainly used
for the simulation, and the ekperimental surface was formed with a tolerance of
better than is% for object size and shape. Slight distortion of the surface
between scatterers was inevitable.

The surface model developed in this thesis for the study of rough
surface scattering was, therefore, found to be entifely satisfactory. This
model is versatile, easy to use, and lends itself to generalization to
higher ofders of randomness.

6.2 simlation
| The aims of the computer simulation of the rough surface scattering
problem were essentially:
1. To find a good mathematical method for the field
calculations based upon the prior choice of surface

model.

2. To use finite non-plane incident radiation,
representative of a physical antenna.

3. To provide compafison’with experimental studies.

As only a numerical method for determining a surface distribution was
developed, the average field calculations were based on a Monte-Carlo method.

A single calculation will therefore involve only the instantaneous field
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value due to a fixed configuration, while the actual statistics are calculated
from a set of such values. It was found impractical to use any other than

the single scatter or first order nearest neighbour approximation for the
field due to a single configuration, but only the single scatter method was
generally used. Higher order multiple scattering effects were investigated
however, for the restricted case of a periodic arrasy of hemicylinders. The
results indicated that for densities of greater than 30% and object size
greater than %)\ in radius the multiple scattering effect is definitely not
negligible.

The Monte-Carlo method requires that only a finite number of scatterers
be considered. This is not a serious constraint because physical problems
are nearly always composed of finite areas of surface. In fact, the second
aim of this part of the study automatically restricts the number of scatterers
per sample by requiring only a finite beam of illumination. The particular
form of the incident radiation is developed in section 2.4 and illustrated
in figure 2.5. The functions were chosen to reasonablj approximate a horn
antenna radiation pattern, have independently variable beamwidth and
sidelobe level, and be simple to calculate numerically. The values of the
variable parameters of this model were subsequently set to approximate the
horn antenna used for the experiment.

The cne problem which is encountered with the finite beam is that it is
difficult to directly compare the results with other methods of calculation.
This was attempted in section h.h, where some analytical solutions are given
for the coherent and incoherent fields. It was concluded that the Monte-Carlo
simulation was the best means of calculation.

6.3 FExperiment

The aims of the experimental study were
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1. To demonstrate that a suitable experiment could be performed.
2. To compare with numerical methods.

3, To extend the investigation to areas where numerical methods
are prohibitive.

The first goal above was amply demonstrated. The'technique.of scanning
a formed metal surface was shown to be a practical method. The forming of
the sheet according to the pre-calculated distribution of coordinates was
quick and very simple once the proper punch and die had been constructed.

The scanning system that was used though, was less than perfect, giving
rise to relatively large phase measurement errors. Some methods of preventing
this problem in future experiments are discussed in the next section.

The experimental results compare favorably with the simulation, but
the aforementioned phase errors make it difficult to interpret the deviations
in terms of specific mechanisms. A set of experimental data for various
densities would most likely help to analyse the various errors, but this is
beyond the scope of this work.

The third goal has been attained in theory, but was judged also to be
beyond the preéent scope. The formed metal surface can directly accomodate
high densities of scatterers, large sizes of scatferers, and odd shaped-
scatterers. With a slight modification to the distribution function random

sizes of scatterers could also be included.

6.4 Numerical Results

| The main result of this study has been to develop éertain valid methods
for investigating the behaviour ofrrough surface scattering. There are a
large number of variable parameters, and even for a fixed set of parameters,
a large nﬁmber of random variables inherent in this problem. Because

of this, a detailed numerical study of the scattered field was not
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undertaken. Instead, the behaviour of parts of the scattering were
investigated for suitability and for the best parameter values to use for
subsequent calculations.
For the periodic model of hemicylinders it was found that
1. The width of the active scattering area should be at
least comparable to the width of the main beam of the
antenna at the surface.
2. The relative error from neglecting multiple scatter is less
than 20% for a < 0.5% and p € 357% except for some special

values of a.

3. The first order nearest neighbour approximation reduces
these errors by a factor of 1/2.

4. Computation time is prohibitive for higher order approximations.

For the random single scatter model of hemicylinders with a continuous
uniform coordinate distribution, the coherent field and incoherent
intensity were determined analytically. Comparison with the Monte-Carlo
simulation showed that the calculation of the coherent field is relatively
inaccurate while the calculation of the incoherent intensity gives excellent
results.

The following results were noticed for the coordinate distribution:

1. The improvement attained by using this distribution increases
with object density. :

2. Division of the simple model into only four subcells is
sufficient to produce a reasonably uniform distribution without
excessive computation time.

3. The finite separation of the scatterers necéssitated by the

experiment causes a negligible effect.

6.5 General Recommendations

The main problem involved in this investigation is the need for control

of the various errors so that their effect can be evaluated. This was done
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to a limited extent by studying a special case - the periodic two dimensional
array. It would thus be very instructive to extend the accuracy in a
specific manner of the three dimensional problem for the simulation and
for the experiment,
The accuracy of the simulation could be improved by deriving the
first order nearest neighbour approximation for the array of hemispheres.
The comparison of these results with the single scatter results would
give a better indication of the amount of multiple scatter in this case.
The experimental results could be greatly improved, and the actual
setting up of the experiment (it took a long time to properly mount the
sheets and align the scanner for each data set) made easier by redesigning
the scanner itself. The scanner which was used for the experiment was
originally designed as an antenna positioner for péttern measurements, and
therefore moved in a vertical plane. The problems encountered were due
to the surface to antenna distance changing due to improper alignment.
These problems would be eliminated if the surface was lying in a horizontal
plane, and supported upon a flat backing plate which was in turn supported
on rollers.A The antennas could then be directed straight downward from
some point above the device (e.g. suspended from the ceiling) while the
surface was gently pulled across beneath by means of a wire winding on
a drum. Mounting of the surface upon the scanner would also be facilitated
because gravity would hold it in position, unlike the vertical mounting

system that was used.
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APPENDIX A DETERMINATIOCN OF UNKNOWN SCATTERING COEFFICIENTS

The total electric field, using the equations (2.1), (2.1L), and

. o. “hapter ma. e written as:
(2.15) of Chapter 2, may b tt

Mo
: T\
ET = E:'an * Es
571 _No
=FE + E + E
inc t
o o (8.2)
LI in(B40;) |, inQ
= § Iy(kr ) (1) e B, sHp(krg)e
Nz -~ t\!c o r‘;é—w
° i
‘ t
+§ é Bthm(kr,t)e
é i np=-ce
Now, Graf's addition theorem for cylinder f’unctlonsg7 is
oo
E ina _ \ ik
Cn(w)e = > n+k(u)J (v)e (a.2)

k=00
where [v[{Ju|] and u,v,w,0, and 3 are related by the fcllowing geometry,

and Cn(x) is any cylinder function. Apply this theorem to equation (A.1)

for t {s:

From the gbove diagram,

Hm(krt)eimab = ZHm+n<k(Xs“xt)> Jn(krs)ei“m - 65) "(A.3)

Nz ~00
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or, by using the fact that

ca(z) = (-1)"c_ (2) (A1)

replacing n by -n and summing in the opposite direction obtein the equiv-

alent expression

H (kr )elmet Z( 1)™y - k(X -X )>J (ke Yok inds (A.5)

N=-co

Now, for t s,

> kx
SN in@,
Hm(krt)eimet =LHn+m(k(xt-Xs))Jn(krs)eln = (A.6)
N=-0o
Again,
Hm(krt)ennE% =21-JHn_m(k(Xt-Xs))Jn(krs)eimgs | (2.7)

The combination of equations (A.5) and (A.7) may be written

[+'<]

Hm(krt)éimst = > Hy n(EIX =%, ] )3, Cerg yeinbs §° F (A.8)
‘ Nz~00
with
('l)m+n) t <S :
Fsb . "(2.9)
mmeoqr t>s

Therefore, the total electric field becomes

Na r o) o 3 (,?_0._\ .
R, = Z B D }: g (kr_ y(1)% 0 G) 4 ) By H (kr )elnes
5:1. L.m Nz— Nz-e0 (AJ].O)
+ T‘Bty* (] x|)J (krg ye170s F}Sh;]
't 1 tz-on = -y

t#s



The following boundary conditions must be satisfied on the surfaces

of the cylinders, i.e, at r, = a,

ET = 0, _]_ polarization

E ‘ (A.21)
g I 0, H polarization
r

s

Since (A.10) must hold for all @s, the coefficients of each elnes may be

equated to zero in equation (A.10) or its T derivative, which yields the

equation for the unknown coefficients, B

0,4

B
ns

where

ns
Ng ol
o vk ;e inGs st '
= A {EZODS(J_) e M8 4 | Bthn_m(kIXS-th)an (pA.12)

t=1 m:z-oco

t#S
L Jn(ke,)
H (k=)
» (A.13)
I Jr:(ka) ‘
A, =

-H;(ka)
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APPENDIX B RELATIONS BETWEEN REAL AND IMAGE FUNCTIONS

The problem is to simplify the expression for the scattered field

th
caused by the s hemisphere as given by equation (2.30) of Chepter 2,

that is
i ‘
SRR (B.1)
s s - S
where the superscripts r and i refer to the real and image functions
respectively. Therefore, from equation (2.15),
[~}
AN E r i inf
Es = J(an + BnS)Hn(krs)e 3 (B.2)

Nz-co

And, from equation (2.17),

Bis - ‘*n[ ° i, f(r o 3,) (1)t Z Z "t nmst] >3

t=1 m:-00
‘(:#S.

Note that G is not a function of (. To find B: - (A ust be replaced

nnst
by J7-Q. TFirst, it is obvious that the distance C; must be the same for

the real end image functions. Second, the angle iGs is given by

i L cos(7T- )
tan Bs

XS + L sin(JT-Q)

=L cos (]

= ; (B. 4)

Xs + L sin(
r

=-tan

on 3
Therefore,

i
B = -BY (B.5)
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Third, the antenna radiation pattern is given by

B
it

f Z-]T+C(,+
= ﬁ:) (B.6)

1

2(Zraf)

But, the antenna pattern may be assumed to be an even symmetric function,

therefore

The above may be applied to equation (B.5)

No o |

ikC , =

i e 8. 7T -n -in( ; : i

B = AnE:OJE_ f(—_—z-—Oi- ,GS)(l) e + > BthnmSé] (B.8)
s t=4 rm=-00 .

By & comparison of (B.3) and (B.8) it can be seen that

i _ n, T ‘

B s = (-1) B o | (B.9)
Hence, after dropping the superseript r,

22
L n ine
Sl % - s
B = (an + (-1) B_nS)Hh(krs)e

S
nz - <o

S) gy £ D)0 (e s
n= 1

n in
* (an x (-1) B-ns)Hn(krs)e s + (Bos 4 Byg)Ho(kry)
(B.10)

(_l)th(Frs)einE%(B-ns x (‘l)ans)(e-in s & ein s)

o0

fl

L |

o0
X,ceos nf,) [2E X H_(kr)
[ , A1 S 0SSO S
an§ (i) Hn(krs +
n=4

1Y, sin ng 0

+
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APPENDIX C FIRST ORDER NEAREST NEIGHBOUR APPROXIMATION

For a low denéity of objects, the average separations will be large.
Thus, any terms involving the object separation may be approximated by their

large argument asymptotic expansion. In particular, the asymptotic expansion
i (2) P iZ( .)n ~itw - i(hne—l) N | (c.1)
~ S -1 ——m e .
'zt € 8z

may be utilized to calculate the coefficients

I-%m ={ Jxd) + (-1 (kd)}(l)n_m i (c.2)
in equation (3.9) with the result that in equation (3.L4)
(1_i)eikd f‘ﬁ%ﬁﬂ 5 J_pol
Hmns,gilﬁd [ JEH’{f l)m“Ln la(m +n -u) , 1 pol. (¢.3)

For large kd, the coefficients for the perpendicular polarization tend to

zero faster than those for parallel polarization. Thus it is expected that

most calculations will be more accurate for the perpendicqlarly polarized case,
As a large separation has been assumed, it is also reasonable to assume

thet muitiple scattering effects are small and hence only one iteration is

required to obtain convergence of equation (3.6). This means physically

th

that the multiple scattered wave from the s cylinder is caused by the singly

th th . .
scattered waves from the (s-1) and (s+l) cylinder. That is,

Y, ~ -1ALeikLU2 J‘(Capt)s:m n{?

mt

(c.k)
mt

RIS NERT
X, ~ Ae °g"(C_ 0 )cos m(3
e (oo o

for t = s+l only. Substitution of equations (C.3), (C.4), and (3.9) into

equation (3.4) gives the N-N-1 approximation to the scattering coefficients:



114

N
ikL{’; ikd by n+n i
ORI it L S R 5 n| U2 > (-1) ‘mA h
ns n fxT, L.s ns (kd)z | s-1 SRV mm,s-1
=% s
+Ug 41 E mAmhm, s+£l
m=1
(c.5)
— N ‘
ikLy L ikd
i Rl 1 1 E m+n It i
X h 2C— i U2 -1 h
th Pz % ns +E\'[_C( )é[_Us 1 _o( Y Ay m,s-1
i
- ; :Anhn :]
s+1 mm,s+l||
with
TN LY !
ho = g (cQ) (c.6)

Equation (C.5) for the parallel polarized field was derived under the additional
-x -2
assumption that the (kd)™2 term sufficiently dominates the (kd) 2 term in

equation (C.3).
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APPENDIX D SINGLE OBJECT SINGLE SCATTER STATISTICAL CALCULATIONS

This simplified method consists of using the statistics of a single
object averaged over all possible positions to calculate the exact means
and the approximate variances for the given ensemble of objects., Higher
order moments may not be calculated with any accuracy at all. The potential
saving here is very large, because the values calculated by the Moate-Carlo
section of the anelysis are independent of the density of the objects,
thus eliminating one of the‘many varisble parameters of the problem.

For the single scatter uniform distribution,
. N,
E=1+ ZES(XS) ©(p.1)
$=1
Therefore,

B = <Ex> + i<Ey>

=<1e ) By ©.2)
5=3

=14<) B>
Gzl

But, as all the objects are identical and independnt,

]

< ES= ) <E(%)>

N6<Eo>

(D.3)

Here, the subscript o means that any ocne of the No objects is to be used

to calculate the average.“‘Therefore

F? = 1+ Nl (0.4)

® > = NgE, >
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2
To calculate the variance, an approximation must be made3 .

2 2 2
02 = <y - B
N,
2 2 - -
=<1 E - (E N . D.
<( + Szzi xs> > < / ( 5)
o No No
= NE, > - N<E> +Z;Z(E E_>
S#t

It may be sssumed that, for large numbers of objects in conjunction with a
fairly low density, the last term of egquation (D.5) may be neglected. If

this is indeed possible, then (D.5) reduces to

2 2 2
= No(<EXO> - N0<Exo> )

X

2 2 2
Similarly, oy = No(<Ey S - N0<Eyo> ) (D.6)
(o]

Oy * N(<E 1: >-N<E ><E >)

Now; from the area density function used in Chapter k,
~p{(——~)m} )
_ (e.7)
P
2 p0(c k)
o}
where

1 for hemicylinders
p= , (. 8)
2 for hemisgpheres :
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Therefore, the statistical functions become

> =1 +p(crn)Xe, >

; xt o AN xo

P/
{E > =p(c xL)<E
> =R(CHXE >
- Yle2 | E |
0, = P(cxu) 5> -p(cxL)<E_ > . (D.9)
o X, Xq

2

D(cokL)p(@yo

P P
,O(cokL) <<E"0Eyo> - p(C_kL) <Exo><EyO‘>>

P
> - P(CEL) <Eyo>2}

O
be

O
4
13

These functions are valid only for a uniform distribution with the single

scatter approximstion.
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APPENDIX E TINTHEGRATION OF SINGLE SCATTER COHERENT AND INCOHERENT

INTENSITY FOR THE CONTINUOUS UNIFORM DISTRIBUTION

The comparison of the mean scattered field calculated by the Monte-
Carlo method for the finite beamwidth problem and the Twersky infinite
plane wave problem in Chapter 4 indicates that the differences are small,

and hence amenable to approximation.

E.1 Two Dimensional Problem

E.1.1 Coherent Field

The average field scattered by a single object in the sctive scattering

area is

B> = ﬁ[ E(x)ax (¥.1)
-3

let
p== (E.2)

be the continuous counterpart of the coordinate distribution pg. Then

05
E, = E(W0)d0 (E.3)
-0.5
Therefore, using equation (3.21),
<Em1>_ T r ikL(Caﬁ»g( ) 1L [cos nﬂﬂ
o =TT Ef 20)e (c0) ) (1) u“ﬂ

(8.1)
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33 - 2
The method of steepest descents  indicates that, provided kLC&,is large,
the major centribution to the integral occurs forﬁ) near zero., This fact

means that [33'(from equation 2.5) may be approximated by 377. Hence,

0.5 22
1 .
m =i5JT27T i2KLC 22 4 1 : L
B D= fee - f e ap(l—%:cap)g?cdo)dp 7)) By
-0.5 ’
(E.5)

o 0.5 22
et [kein;n;L f 0 (1302 2) g“’J(CaQ) a0
“005

A very important point to note here is tﬁat it was necessary to assume
the equivalent of ﬁ}s = 27T in the three dimensional case in order to
obtain a useful solution, It was mentioned at that time that this would
be velid only for a very narrow beam. However, it is indicated by equation
(E.4) that cnly the product %82 must be large. Thus, it will be reasonable
to expect good results even for fairly wide beams provided that the antenna
is a few hundred wavelengths away from the surface. This will certainly

be the case in most physical situations.

To perform the integration of (E.L4), let

-
t = ~1kLC, O (E.6)

and, since is small, expand the antenns space factor, g, in a Taylor

series about 0= 0. From equation (2.95)

I . 118,22
~ 1~ A
g (u) 6(Ge ) u

gHw) % 1 - (%;719)2{5 ) (%)Q}ue-

(E.7)



or more simply,

"L 2
where
5400
P =
e @ee

364501 . 8
ho 0,2 77*{}
Then, equation (%.5) becomes

05 ) |
1377 - 2 2
<E”,J~.> ~ f -—2‘-(—2’”’1)2 ?.Z._T e t 1 -~ (%- + b )c ,O 5dO
o gk SrEJ
"0

Further, let

1 + 2b
B = :
8
Thus,
<1 2
[-xﬂmc gmc
Tt 1 -t
| -k =t Y
<E‘*>~£_. v[ t"%e dt+BC f t2e dt
KLC L 8l 1 k1,05
. a
But

z
b )
fe"tt at ~I'(v+1) - 2Pe™ 2
0

(E.8)

(E.9)

(B.10)

(E.11)

(B.12)

(B.13)

is the asymptotic expansion of the incomplete gamma function for large

]z} and arg(z) £ 37/2 7.
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Application of equation (E.13) to (E.12) yields the following expression



for the single object average:

2
ont 2iB 2 o 1dn(1+la) .
(E 5o Bly- - (1 - BC,)e T (E.1k4)
°  xIC KL  C [rkL
a 8
and hence the coherent field is given by, using equation (D.9),
.3 2
iB 5 17;.11(1+kLCa)
B =1 +Q)f {1 -2/— + (1-BC)e T (E.15)
2a P KL cyfma @

E.1.2 Incoherent Intensity

For the second statistical moment of the scattered field, under the
assumption of a continuous uniform distribution, the single object

function is given by

0.5
2 . 3% .
<E0> = fh(wp)E (Wo)ap | (3.16)

-0.5

Again, from equation (3.21) with L% = 377,

0.5
_ 22202
@By e, fu - 3,00 € (a0

-0.5

For the above integral, it is not sufficient to use the Taylor series exp-

ansion for g(Ca.) because the method of steepest descents is not applicable.

Therefore, the function g must be included in its entiréty. Thus,

Vi

o ||
kL

(6C,0)

. L 2.
<Eo>:2:|fp %Q%]h(l - cip?)ﬁiﬂ_iﬁgéggqo (E.17)
0
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where

Let

with

Then,

Now let

8
S J‘"' - e,

Ay

G 2
2.2 2 2 . 30 . _;.{‘,
= [fp‘ 21t f( ) 22) I:sm(maﬁ) N s%n(t 17 )! at

KLQC b1 g0 |

0

Il(a) j
0
3
sin t
T (@) f
I (OC) [ sin dt
I, = tjﬂ sin®t at

l\)])—-

(E.18)

(E.19)

(E. 20)

(E.21)

(E.22)

(E.23)

(E}zu)
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' Therefore, o A
2 L @) (E.25)
< 0> _‘ KLOL i b2 3 :
For the perpendicularly polarized case, substitute

u=t+ 350 (E. 26)

in the appropriate integrals to obtain after simplification

2 ‘
5§ lf l 23‘? 112—-1 3 0
<E-o> = PkL_a %1((1”1) + Il(a—ﬂﬂ [ -hb—Q_J + !:IQ(Q+JT)-I2(C(- j[g—bz - R]

_ - (E.27)
3 | e
- 13((1+TL) + I3(a-uﬂ[:2] +Eﬁh(a+n) - Ih(a'nz”}ﬁsz
Eveluate the integrals of equgtions (E.2l4). .
2d ,
sin t
I, @ = 2 ot
(6]
1
z4
- -251n%¢ +f st“ Cat { (E. 28)
0
= -% sinQ% + 5iQ

where Si( is the well known sine inte%xdal function 7.
2

.
sin t
dt
t
0
iad

il

I @

o

C o= %(}’+ inQ) - CiCY,)

Here, Ci(l is the cosine integral function and Y is Euler's constant.

s t-1
- %fﬁit dt (E.29)
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I3(a) =f sintdt
0 (E.30)
= O - sinQ)
Finally, 1y
2
Iu(a) = | t sin“tdt
0 (E.31)
1
= '5(%2' -QsinQ + 1 - cosQ)

Tt is now possible to simplify (E.28) and (E.29) by using the asymptotic
expansions for the sine and cosine integrals. This procedure is valid since
(<L1. In fact,

bC
a

80 -
7OJ(C)K tan@ (E. 32)

=R
I

il

>10

o] 2
even for § as small as 8 . Therefore 7,
)

cos(y sin(Y

o4 a® B (E.33)

Si(C) ~ K12
-2

sin()
Ci()~ 5 -c"os,ag

Thus, the single object incoherent intensity for the parallel polarization

becomes

ol it |f{2( 2 e 1 & .
<E0>ry P tL - 1+ 2 %—(1 - —%)sin bCaJ (E. 34)
a



For the perpendicularly polarized case,

Il(a_ + 1Y) + Il(a - )~ X .+ Oz—(lcosa +é(l‘[ecosq + sinQ)

a
I(Q+T) - I(Q-T0) = ci(Q+ M) - ci(Q- ) + L2
2 2 ﬁ_]_
but27
in ?E 2 27 a
‘ﬁ-l _d-. ﬁ>>1
Therefore,

I§a+n)-14a ) ~ i;{ga ﬁ

Without approximation,

13(a+n) + 13(a- ) = H A+ sinQ)
and

r(@+10 - 1,0-1) =Xa+ sinq)

so that the perpendiéula.r component becomes

3, 2
ek 2mltp| [ 1 [Cupd
<E°> ~ et {% itbca[: <y bCa) - —-;(h -c ) sin bc:]

q
Now, from equation (D.3190),

II.L 2
a®y ~<%*“’2j’$[ 2 - D2, ]

olw

If terms to the order of (—%—)-

the approximate incoherent intensity is given by

(E. 35)

(E.36)

(E.37)

(E. 38)

(E.39)

(E. ko)

(E. k1)

(E.42)

.or less and (bca)-:2 or less are neglected,
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0L _BCE c2 h(1-3c2
<I?> 2 (%) lfpla F”"L-C-Oz-é—\)(} + e—é——éi %)cos%ﬁ(l + kI;.[a) + za):| (E. 43)

where

(E. blt)

E,2 Three Dimensional Problem

E.2.1 Coherent Field

For a continuous uniform distribution on a plane,

¥ 1
<E> = [B (%,y)axay

2TT W

) |
L f f B (Rmmd (g

c o0

2JTL

nd f f B (Wod)odg0sd
0 0

Consider the angular integral first. Then, it can be immediately seen

I

that the cross polerized components have the following form (see equation
(2.133)) for i #

27T -
<Eij> =k f f@)sind.rosnbi@'
0 (E. 46)

=0
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since f is an even function of . Note, as was mentioned in Chapter
2, the same reasoning may be applied to the z-axis component which has
already been neglected., Thus, the cross polarized components are zero
to the degree of approximation that has been used. Physically then, one
would expect very little depolarization of the backscattered field at
normal incidence for any surface which does not exhibit an appreciable
amount of multiple scattering. That is, equation (E.17) will be zero
for any physical distribution.

The direct components of the coherent field may now be calculated.

Again, from equations (2.133),

o 0
E, = -'i—beikmipz (g(caosmq),capcos@)l(l - 02,02)[1 T (ID}
ii, kL g( Capcos(p,capin(b)J al

As before, the antenna radiation pattern, g, may be expanded in a Taylor

series about 0= O.
2 2
glu,v)x~ 1 - (bhu +b_v ) (E.48)

where b_ and bh are given in equation (E.8). Substitute equations

(E.22) and (E.23) into (E.20) and keep only terms to the order of ,02.

. 1 ' .
2 2T 55
GE..S 4ib ikLC, O |:1 C2 pz<1 bhsin@be008$+%cosa®)@ 0 (5.
: PR =T e - + G E.
g kL) o) & besin%)+bhcos%@+§sin2© 4 PP 2
0 O

Carry out thé@-integration first. Then,

>

<€, = <E22> <E > | (E.50)

and,
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3 22
8ip [ LELC 22
P, a - ~ .
Epx -~ |e (1 - BC 0 )0dD (F. 51)
0
with
25 + b, + D
B = . (. 52)
2
Let
22 .
t = ikLC_O (E. 53)
Then,
ib@c
5
E >= e (1 + dt
<> kL )
(. 51
2
2 1
2 iB 1{KLC
= il 4 et a(l - = - imc )
kL.C kL
a
Therefore, the approximate coherent field is given by
) i‘kL02
B 2 b LELLy iB 3.2 D
{B>x1 - ﬁ)( ) {;L + e (1 - - uBca):} (E.55)

In this (three dimensional) case, the expression for the average
scattered field is not an asymptotic evaluation. In fact, it is to be
expected that the results will be accurate only for small surface areas.
This implies that (E.55) will only be valid if the product (L) (ca)

remains sufficiently small, In fact, it can be seen that (E.55) becomes

.1 2
13kILC
proportional to e WETR por large L. Clearly, this cannot be valid unless
iderc?

Ca—+ 0 simultaneously to remove the indeterminate phase factor e



129

E.2.2 Incoherent Intensity

From equations (2.133)

WL b e | 2
o\ L2 , ipf 2 P $
<Ed> = Eﬂ(kL) (1 - C0) |1 - 3C, 512
0”0

2 -

g (C fcosd,C 0sind) }

. o & _ Q%D (E.56)

g (CJOsinqp,Cdgcosgpy
Unfortunately, when the form of g has been substituted from equations (2.96),
. the integrations above become impossible to perform analytically. The pfoblems
arise because integrals of the form
a b
sin™(a sind) cos®(b sind)

Pl(a sin®) P,(b sind)

403 (E.57)

where Pl and P2 are polynomials and a and b are functioﬁs ofﬁ) are encountered.
Whichever integration is performed first is immaterial - the second integration
becomes impossible because the asymptotic expansions of the sine and cosine
integrals cannot be applied after the first integration alone,

Therefore, the incoherent intensity for the three dimensional case must
. be calculated by the Monte-Carlo technique in all cases involving the antenna
model chosen for this study. An approximate expression could be derived by
assuming a square beam (see equation (2.92)), but'this is not considered here,

The same reasoning is applicable to the cross-polarized components.
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