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ABSTRACT 

Baclcscattering from c e r t a i n models of rough surfaces i s studied 

by a p p l i c a t i o n of a Monte-Carlo technique and by experiments on a 

physi c a l model. The models considered are l o s s l e s s arrays of hemicylinders 

and of hemispheres on a l o s s l e s s ground plane. 

For the Monte-Carlo simulation, the incident r a d i a t i o n i s 

considered to be a c y l i n d r i c a l or s p h e r i c a l wave with f i n i t e beamwidth. 

The shape of the beam i s chosen to be the same as the f a r f i e l d 

r a d i a t i o n pattern of an open waveguide. M u l t i p l e s c a t t e r i n g e f f e c t s are 

investigated f o r a per i o d i c array of hemicylinders and found to be 

s i g n i f i c a n t for object diameters greater than one wavelength, and 

den s i t i e s greater than 30%. It i s assumed that these r e s u l t s are also 

approximately v a l i d for random arrays. The s i n g l e s c a t t e r approximation 

i s used f o r a l l studies of the random case with these l i m i t a t i o n s i n mind. 

A s p e c i a l surface d i s t r i b u t i o n function i s developed and tested 

which includes the constraint of f i n i t e s c a t t e r e r s i z e i n a phys i c a l 

surface model. I t i s used to generate random coordinates from which a 

set of ph y s i c a l surfaces are formed out of die-stamped aluminum. These 

surfaces are scanned with 35 GHz. r a d i a t i o n from a pyramidal horn. Samples 

of the backscattered f i e l d are converted to d i g i t a l information and 

numerically analysed to determine the scattered f i e l d s t a t i s t i c s . These 

s t a t i s t i c s are compared to those obtained from the simulation. The means 

(coherent i n t e n s i t y ) are found to agree to within 2.5% while the variance 

(incoherent i n t e n s i t y ) obtained experimentally i s higher by a fa c t o r of 

about 15. This discrepancy i s a t t r i b u t e d to s i g n i f i c a n t phase measuring 

errors introduced by the present scanning system. 
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1. INTRODUCTION 

The a n a l y s i s of electromagnetic or acoustic wave s c a t t e r i n g by rough 

surfaces requires the s o l u t i o n of the wave equation\7^U = - subject 

to the appropriate boundary conditions on the "rough" boundary. By "rough", 

one should understand that the boundary i s s o l e l y described by i t s s t a t 

i s t i c a l properties. Examples of t h i s type of problem include radar returns 

from t e r r a i n or sea surface, radar exploration of the surfaces of the 

moon and planets, sonar returns from the ocean f l o o r , o p t i c a l r e f l e c t i o n s 

used i n d u s t r i a l l y to determine the q u a l i t y of machined surfaces, and many 

others. 

1.1 E x i s t i n g Methods of Solution 

B a s i c a l l y , one must f i r s t solve the wave equation f o r a general 

boundary and then integrate the f i e l d over a l l possible configurations of 

t h i s boundary to obtain the required s t a t i s t i c s of the scattered f i e l d . 

Of course, a s o l u t i o n t h i s general may not be obtainable by the methods 

presently a v a i l a b l e . Therefore, s u f f i c i e n t r e s t r i c t i o n s must be placed 

upon the d e f i n i t i o n of the problem to allow one to obtain u s e f u l r e s u l t s . 

The following r e s t r i c t i o n s have been imposed, not n e c e s s a r i l y a l l at once, 

by previous i n v e s t i g a t o r s : 

1. Harmonic time dependence. 

2. I n f i n i t e plane wave incidence. 

3. Boundary surface p e r f e c t l y conducting or pure d i e l e c t r i c 
i n t e r f a c e . 

h. Only s c a l a r s o l u t i o n obtained. 

5. One dimensional roughness only. 

6. Surface i s l o c a l l y plane and/or 
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7. Scattering elements are much smaller than the wavelength. 

8. Active scattering areas are either very dense or very 
sparse. 

9 . A particular restricted model i s chosen for the surface. 

A l l treatments of the problem have been subjected to limitation S. 

Generally speaking, there are two main methods for representing the 

scattering boundary which divides the methods for solving the problem into 

two distinct classes. The f i r s t method i s to define the boundary as some 

continuous random variable z = f(x,y) which is ultimately defined by i t s 

s t a t i s t i c a l moments (mean, variance, etc.) and subject to appropriate 

restrictions. The second method is to represent the surface by a collect

ion of discrete scatterers which are, in general, random in size, shape, 

and position. However, the only random variable considered so far has been 

the position of each object. 

1 . 1 . 1 Continuous Surface Model 

Consider f i r s t the cbntinuous surface model. This was f i r s t invest

igated by Lord Rayleigh in 1 8 9 6 . He assumed a sinusoidal perfectly 

conducting surface with normal incidence. His approach required a Fourier 
2 

series expansion of the incident wave and the surface profile. S.0. Rice 

generalized the Rayleigh approach to a slig h t l y rough surface described by 

i t s small deviation from a mean plane. Rice's reflection coefficient was 
5 

verified experimentally with reflections from blacktop roadway . W.C. 

Hoffman used a similar expansion of the surface, but applied i t to the 

Stratton - Chu integral for the scattered f i e l d . Hoffman's results were 

no more general than Rice's, but his derivation had the merit of being 
6 

mathematically rigorous. T.B.A. Senior assumed that the roughness was a 

perturbation of a mean plane, and by using a Taylor series expansion of the 
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f i e l d at the boundary he developed a surface impedance tensor f o r the 

rough surface. Again, t h i s method i s r e s t r i c t e d to s l i g h t l y rough surfaces. 
7 

Beckmann used a p h y s i c a l optics method to obtain the required r e f l e c t i o n 
8 

c o e f f i c i e n t . More recently, Middleton attacked the problem from the 

point of view of pure communications theory with l i t t l e consideration 
Q 

given to the electromagnetic aspect of the problem. Also, Bass et a l 

appl i e d a perturbation method to sea r e f l e c t i o n s . I t should be noted that 

a l l the above methods require surfaces that are only s l i g h t l y rough. That 

i s , the surfaces have e i t h e r small deviations i n height from a mean -Diane, 

or they have a long c o r r e l a t i o n distance. 

1.1.2 Discrete Scatterer Model 
!0 11 

The main i n v e s t i g a t i o n s have been c a r r i e d out by Ament , Biot , 

Spetner 3"^, and Twersky''"^'"'*^'1^'1^. Twersky"^' has a l s o considered the 

s t a t i s t i c a l problems which are connected with t h i s method when higher order 

s t a t i s t i c a l moments of the f i e l d are to be considered. Most i n v e s t i g a t o r s 

have only considered the problem of the mean scattered f i e l d , or at best, 

the mean and variance. 

Ament modelled his surface as a c o l l e c t i o n of randomly spaaed h a l f -

planes. Biot considered a uniform d i s t r i b u t i o n of hemispheres on a per

f e c t l y conducting ground plane, but these objects were required to be so 

small that very l i t t l e s c a t t e r i n g could take place. Spetner assumed a 

d i s t r i b u t i o n of point s c a t t e r e r s , which y i e l d e d r e l a t i v e l y simple r e s u l t s . 

Twersky has contributed the l a r g e s t amount of information towards the s o l 

u t i o n of these problems. He considered e i t h e r hemispheres or hemicylinders 

on a p e r f e c t l y conducting ground plane. The main advantage of the Twersky 

approach i s that use i s made of our extensive knowledge of the s c a t t e r i n g 

properties of a member of the d i s t r i b u t i o n alone. Here again, the random 
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variable has been l i m i t e d to be the position of the objects. Under s u i t 

able approximations the results are simple, at least f o r the mean of the 

scattered f i e l d . 

1.1.3 Experimental Studies 

Some workers have inve s t i g a t e d t h i s problem experimentally. 

In these studies, r e s t r i c t i o n #2 i s removed by the use of actual 

receiving and transmitting antennas with t h e i r associated f i n i t e beamwidth 

and non-plane wavefront. The remaining r e s t r i c t i o n s , except f o r 8, may also 

be removed. The choice of the surface model divides the experimental 

studies i n t o two sections corresponding to the choice of s p e c i f i c natural 

surfaces or of laboratory constructed models. Natural surface data has 
5 

been analysed by such investigators as W.H. Peake who considered r e f l e c t i o n s 
19 

from blacktop and lawn grass, and M. Katzin ̂  who considered radar sea 
on 

c l u t t e r . For the laboratory studies, R.H. Clarke and G.O. Hendry worked 
with a water surface agitated by a controlled a i r flow; Hiat t , Senior, and 

21 
Weston considered a surface produced by rough casting of metal; B.E0 

22 
Parkins constructed two surfaces, one by denting sheet metal with a 

hammer, and the other by flowing grout over sand. In a l l the above experi

ments, a method had to be devised f o r measuring the s t a t i s t i c s of the models 

as the s t a t i s t i c s could only be roughly controlled. 

1.2 Aims of t h i s Study 

B a s i c a l l y , the aims of t h i s investigation are the following. 

1. To choose a feasibl e and controllable surface model. 
2. To include the effe c t of the f i n i t e beamwidth and non-

plane character of incident radiation from an antenna. 
23 

3. To develop a Monte-Carlo technique f o r c a l c u l a t i n g the 
scattered f i e l d s t a t i s t i c s ; the main problem here i s to 
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d e v i s e a s u i t a b l e n u m e r i c a l m e t h o d f o r d e t e r m i n i n g 

t h e d i s t r i b u t i o n o f s c a t t e r e r s . 

k. To c a r r y o u t a s e r i e s o f e x p e r i m e n t s u p o n a n a r t i f i c i a l 

s u r f a c e f o r w h i c h t h e p r o p e r t i e s c a n be a c c u r a t e l y c o n t r o l l e d . 

1.2.1 S u r f a c e M o d e l 

F o r t h i s w o r k t h e T w e r s k y m o d e l o f a r o u g h s u r f a c e was c h o s e n . The 

r e a s o n f o r t h i s i s t h r e e f o l d . F i r s t , i t was f e l t t h a t a more e x a c t s o l u t i o n 

s h o u l d b e o b t a i n a b l e f o r h i g h e r d e g r e e s o f r o u g h n e s s b e c a u s e t h e s c a t t e r i n g 

c h a r a c t e r i s t i c s o f t h e i n d i v i d u a l o b j e c t s w e r e known e x a c t l y . S e c o n d , a 

M o n t e - C a r l o m e t h o d was p r o p o s e d f o r t h e c a l c u l a t i o n o f t h e s c a t t e r e d f i e l d 

s t a t i s t i c s w h i c h r e q u i r e s t h e g e n e r a t i o n o f t h o u s a n d s o f d i f f e r e n t s u r f a c e 

p r o f i l e s . T h i r d , e x p e r i m e n t a l m o d e l s c o u l d be more e x a c t l y c o n s t r u c t e d , 
c 

a n d w o u l d h a v e d e s i r e d r e p e a t a b i l i t y . 

The g e n e r a l a n a l y s i s o f t h e p a r t i c u l a r s u r f a c e s c o m p o s e d o f a r r a y s o f 

c i r c u l a r hemicylinders or hemispheres on a l o s s l e s s ground plane i s 

c o n s i d e r e d i n C h a p t e r 2. I t i n c l u d e s t h e e f f e c t o f f i n i t e n o n - p l a n e wave 

i n c i d e n c e . M u l t i p l e s c a t t e r i n g i s c o n s i d e r e d i n C h a p t e r 3 . 

1.2.2 I n c i d e n t Beam M o d e l 

T h e r e a r e two r e a s o n s f o r t h e i n c l u s i o n o f f i n i t e b e a m w i d t h n o n - p l a n e 

i n c i d e n t r a d i a t i o n . The m a i n one i s t o d e t e r m i n e t h e b e h a v i o u r o f t h e 

f i e l d i n a more r e a l i s t i c s i t u a t i o n . H o w e v e r , i t s h o u l d a l s o be m e n t i o n e d 

t h a t t h e i n f i n i t e b e a m w i d t h c a s e ca.nnot b e t r e a t e d b y t h e M o n t e - C a r l o 

a p p r o a c h b e c a u s e t h i s w o u l d r e q u i r e t h e s t o r a g e o f a n i n f i n i t e a r r a y o f 

numbers o r an i n f i n i t e amount o f c a l c u l a t i o n t i m e . 

The s p e c i f i c m o d e l p r o p o s e d i s t h a t o f t h e f a r - f i e l d r a d i a t i o n f r o m 

k 

a n a p e r t u r e w i t h a n a p p r o p r i a t e i l l u m i n a t i o n f u n c t i o n . T h i s m o d e l was 

c h o s e n f o r t h e f o l l o w i n g r e a s o n s : 



1. It can be made to resemble very closely the radiation 
pattern of a laboratory antenna. 

2. • It is simple enough mathematically to bs easily included 
in the field equations. 

3. The beamwidth, sidelobe level, and sphericity of the 
wavefront can be easily controlled. 

This problem of the incident beam is discussed in detail at the begin

ning of Chapter 2. 

1.2.3 Monte-Carlo Method 

The Monte-Carlo method is the most direct method for calculating the 

scattered field statistics and i t has known accuracy. Thus i t is suitable 

for obtaining numerical results and for evaluating theoretical approaches. 

Analytic solutions are usually obtained by the following sequence of opera

tions: 

1. Calculate the scattered field due to one object. 

2. Use the above to calculate the total field scattered 
by an a r r a y o f the above o b j e c t s . 

3. Integrate the field over a l l possible configurations using 
some particular distribution function for the locations 
of the objects to obtain a l l the desired statistical moments. 

The drawback of the analytic method is the inherent connection between the 

calculation of the field, and the calculation of its statistics. 

On the other hand, the Monte-Carlo technique proceeds as follows: 

1. As above. 

2. As above. 

3. Determine a single configuration according to some 
numerical random or pseudo-random process. 

k. Calculate the field due to this configuration by 2. 

5. Keep a running mean, variance, etc. 
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6. Repeat 3»4 and 5 u n t i l a s u f f i c i e n t number of surface 
configurations have been used t o approximate the desired 
s t a t i s t i c a l moments. 

It thus eliminates the drawback i n the a n a l y t i c method as i t w i l l work on 

any sequence of random functions, provided only that the elements of the 

sequence themselves may be numerically calculated. The implementation of 

the Monte-Carlo method i s therefore d i v i d e d i n t o three d i s t i n c t p a r t s : 

1. Obtaining an a n a l y t i c expression f o r the s c a t t e r e d f i e l d from 
a f i x e d configuration. 

2. Numerical determination of the coordinates of each 
configuration. 

3. Numerical c a l c u l a t i o n of the f i e l d using 2 and the 
c a l c u l a t i o n of the s t a t i s t i c a l moments. 

The a p p l i c a t i o n of the Monte-Carlo method to the surface models studied 

i n Chapters 2 and 3 i s given i n Chapter h, where the problem of s u i t a b l e 

methods of determining the d i s t r i b u t i o n of s c a t t e r e r p o s i t i o n s i s a l s o 

discussed. 

1.2.H Experiment 

The main purposes f o r performing an experimental study were t o compare 

a c t u a l r e s u l t s with theory and t o give another method which could be used 

where the approximate theory became i n c o r r e c t . These aims r e s t r i c t e d the 

choice of the experimental surface t o be of the c o n t r o l l e d l a b o r a t o r y type. 

The experimental surface used was, i n f a c t , a d u p l i c a t i o n of the one 

used f o r the t h e o r e t i c a l simulation of the problem: p e r f e c t l y conducting 

metal hemispheres on a n e a r l y f l a t metal ground plane. The l o c a t i o n s of 

the hemispheres could be determined by the same method as that used i n the 

simulation. Thus, unlike previous experiments the d i s t r i b u t i o n and density 

of the experimental surface could be s t r i c t l y c o n t r o l l e d . In p r i o r 
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experiments these f a c t o r s had t o he estimated a f t e r the surface was 

constructed. The implementation of the experiment i s described i n Chapter 5.* 

1 . 3 R e s t r i c t i o n s 

In summary the approach taken i n t h i s t h e s i s required that the previous 

l i s t of r e s t r i c t i o n s on the problem be modified t o the f o l l o w i n g : * 

1 . Harmonic time dependence. 

2. F i n i t e beam incidence with non-plane wavefront. 

3 . Boundary surface same. 

h. Vector s o l u t i o n . 

5. Surface two or three dimensional. 

6. Surface need not be l o c a l l y plane. 

7 . Object dimensions up t o a wavelength (simulation) 
or greater (experiments). 

8. Object density from sparse to about 50$. 

9. Surface model c i r c u l a r hemicylinders or hemispheres 
on a p e r f e c t l y conducting ground plane. 
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2 . THE SCATTERED FIELD FROM AN ARBITRARY 
CONFIGURATION OF DISCRETE SCATTERERS 
ON A PERFECTLY CONDUCTING PLANE 

2.1 Introduction 

In t h i s chapter the s c a t t e r i n g of a f i n i t e non-plane electromagnetic 

beam by a sing l e configuration of objects i s analysed. A simple far-zone 

r a d i a t i o n pattern i s assumed f o r the i n c i d e n t wave used i n the d e r i v a t i o n 

of the f i e l d scattered from an array of p e r f e c t l y conducting hemicylinders 

on a p e r f e c t l y conducting ground plane i n section 2 .2 , and from an array of 

p e r f e c t l y conducting hemispheres on a p e r f e c t l y conducting ground plane i n 

section 2 . 3 • 

The array of hemicylinders i s formulated as a purely two dimensional 

problem by considering i n f i n i t e l y long cylinders and the plane of incidence 

perpendicular to the axis of the cylinders as shown i n f i g u r e 2 . 1 . Hence 
2k 

the r e s u l t s may be derived from the s c a l a r wave equation . Of course, 

t h i s model of a rough surface i s a very r e s t r i c t e d one but the r e s u l t s could 

be applied to any p h y s i c a l problem which i s e s s e n t i a l l y (or l o c a l l y ) two 

dimensional such as radar returns from water waves. 
13 

The d e r i v a t i o n e s s e n t i a l l y follows Twersky . F i r s t , a gra t i n g of 
objects i s analysed by the separation of va r i a b l e s method, and then the 

13. 

Rayleigh Image technique i s ap p l i e d t o obtain the s o l u t i o n to the 

surface problem. Because of the r e l a t i v e s i m p l i c i t y of the c a l c u l a t i o n s and 

i n a n t i c i p a t i o n of the study i n the next chapter of the p e r i o d i c array, 

the c a l c u l a t i o n s are given i n d e t a i l f o r the two dimensional case. For 

convenience backscattering only i s considered. For the present purpose 

i t i s s u f f i c i e n t , to consider only the s i n g l e s c a t t e r approximation f o r 

normal incidence i n the three dimensional case. The reasons f o r the 
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normal incidence r e s t r i c t i o n i s given i n section 2.3.*+. Beckmann states 

that the geometry of the problem i s perhaps the most dominant f a c t o r i n 

rough surface scatter. Under t h i s assumption then even the approximate 

solutions considered here should prove u s e f u l . The experimental r e s u l t s are 

given i n Chapter 5 

The development generally follows the treatment of hemicylinders, but 

fu r t h e r complications are introduced by the vector nature of the problem. 

The f i e l d scattered from a sing l e sphere cannot i n general be derived from 

the two s c a l a r equations. These vector solutions are discussed f u l l y by 

S t r a t t o n ^ and. by Morse and Feshbach^, but the form used here i s essent

i a l l y that given by Twersky . 

In section 2.h a s p e c i f i c model i s proposed f o r the antenna beam 

used i n a l l subsequent studies. The model i s chosen to be representative 

of a laboratory horn antenna. 

F i n a l l y , i n section 2 . 6 the relevant parameters of the problem are 

discussed and t h e i r role i n the problem and range of values are decided upon. 

2.2 Scattering from a Configuration of Hemicylinders 

2 . 2 . 1 C y l i n d r i c a l Incident Beam 

conditions on the surfaces of the cylind e r s . Although the s o l u t i o n may 

be obtained as e a s i l y f o r d i e l e c t r i c c y l i n d e r s , only the p e r f e c t l y 

conducting case s h a l l be considered i n the following problems f o r 

computational s i m p l i c i t y . Let 

- i o t 
Assume harmonic time dependence, e Hence the reduced s c a l a r 

must be solved with the correct boundary 

( 2 . 1 ) 

6 = 1 



where 

i s the t o t a l e l e c t r i c f i e l d 

i s the incident beam, at angle Ct; 

E g i s the complete multiple scattered 
f i e l d from the s object 

N 0 i s the t o t a l number of objects 

At t h i s point, consider the form of Ej_. The usual treatment would 
TT 

be to put E± = e i k * ? = e i k r c o s ^ + 2~̂  and r e f e r t h i s to the 

coordinate of the s * h object. That i s , one would assume plane wave 

incidence. However, Ej_ may be considered t o be the f a r - f i e l d r a d i a t i o n 

from some d i r e c t i o n a l but two dimensional source such as a long narrow 

s l o t . The incident wave must be considered i n terms of a s e r i e s of 

elementary c y l i n d r i c a l waves i n order t o match boundary conditions. 

Now, l e t = F(R,0), where R and0are r e f e r r e d t o the centre of the 

radiator. In p a r t i c u l a r , since only the far-zone f i e l d of the r a d i a t o r 

need be considered, l e t 
i k r 

E. = E _e f(0) ( 2 . 2 ) 

which i s the form of a c y l i n d r i c a l wave m u l t i p l i e d by the space f a c t o r , 

f(0). 

The scattered f i e l d i s derived using the geometry given i n f i g u r e 

2 . 1 . 

Figure 2 . 1 Scattering Geometry f o r Two Dimensional Problem 
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In the above diagram, 

A = p o s i t i o n of antenna 

P = point of observation 

( X g , 0 ) = p o s i t i o n of the s^*1 c y l i n d e r 

Ct = angle of incidence 

L = distance from antenna t o surface 

Assume that L i s large, as the far-zone f i e l d of the antenna i s to be 

considered. Also, assume that r g i s small, which i s possible because 
4- V* 

r s w i l l be f i n a l l y placed at the surface of the s object to s a t i s f y 

boundary conditions. Thus, using f i g u r e 2.1, 

R 2 = ( L sinCi + X_ + r„ cos0 g )d + ( L cosQt - r s s ina ) 2 (2.3) 

l e t 

C 2 = ( L cosa) 2 + ( X s + L s i n a ) 2 (2.k) 

t 8 n & = Xo + L s ina ( 2 ' 5 ) 

and, since r L S 

s 

R 2 * ; C 2 + 2 r g c g c o s ( 0 s +/3g) ( 2 . 6 ) 

As C i s a c t u a l l y the distance from the centre of the antenna to the 
s 

th 
s object (see f i g u r e 2.1), and r w i l l be l i m i t e d t o the v i c i n i t y of 

s 
the surface of the object, i t i s a l s o true that r « C f o r any s, 

s N N s 

provided that the antenna i s s u f f i c i e n t l y f a r from the surface and that 

the i l l u m i n a t e d area of the surface i s s u f f i c i e n t l y l i m i t e d i n extent. Of 

course, the extent of the surface considered w i l l be l i m i t e d by the beam 



13 

width of the antenna. Therefore, 

R ~ C + r cos(0 + Q) (2.7) 
s s s 

A s i m i l a r approximation i s applied to the angular antenna coordinate. 

From f i g u r e 2.1 

r r - i f L c o s Ct- r s s i n Q 
0 = K - a - tan 1 - L\ (2. 8) 

* L s i n a + X +r cos 0 
^ S S s 

Now, make the assumption that the amplitude, f(0), i s constant and equal 

to the value i t a t t a i n s at the centre across the e n t i r e surface of the 

s c a t t e r i n g object. This approximation i s reasonable provided that 

r « L cos a 
s 

(2.9) 
• r « X + L sinCX 

s s 

which implies that the objects are small compared to the distance from the 

antenna to the surface. Hence, equation (2.8) becomes 

_. , L cos Ct 
6* jj--a- t a n ' X (2.10) ^ X + L sinCt s 

t h 

Therefore the incident wave a r r i v i n g at the s object can be assumed to 

be approximately plane i n the v i c i n i t y of that object, that i s , 

E . * E f i f i e i k r s c O S ( e s -Ps)f{E_a_p) ( 2 > 1 1 ) 

F o r s i m p l i c i t y , l e t 

ikC — 
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so that 

E. = E 0 D s e i k r s C ° s ( ^ + P s ) (2.13) 

Also, note that for convenience f(0) = 1 and that E c is merely a complex 

constant amplitude factor which may later be adjusted to give a 

normalized solution. 

2.2.2 Scattering Coefficients for Grating 

The plane wave (2.13) may now be expanded in a series of 

cylindrical waves2** referred to the axis of the s**1 cylinder. 
DO 

% = E 0 D s V ^ J n ( k r s ) ( i ) n e i n ^ s + PS) (2.lk) 

n oo 
+v» 

The wave scattered from the s object may be expanded in a similar 

series of outgoing cylindrical waves. 
oo 

E s - ^ B n s H n ( k r s ) e i n 0 s (2.15) 
n - - o° 

where H^Z) shall always refer to H^ 1\z), the Hankel function of the 

fir s t kind. Thus, from (2.1), the total field is given by 

E T * E i Y~\ sH n(kr s)e i n e £ 3 <2.l6) 
s = i n--°o 

for a particular set of positions X^, Xg, ... , and the unknowns 

B n g are determined from the boundary conditions. The calculation is 

outlined in Appendix A and the results are 
N 0 co 

3 - i f 3ns *n 

where 

E 0 D s ( i ) n e l r ^ s + XjWW kl*t " X s ! ) f r 
,st 
nm 

t-l m. - co 

(2.17) 

An = -HnTkaT ( 2' l 8 ) 

£ = - Jn{ t e) (2 va) 



S t f 1 ' * > s 

nm / \ m+n 
(-1) , t<s 

( 2 . 2 0 ) 

At t h i s point, one i s faced with the formidable task of s o l v i n g the 

i n f i n i t e set of simultaneous l i n e a r a l g e b r a i c equations, ( 2 . 1 7 ) , f o r the i n 

f i n i t e number of unknowns, B . F i r s t , reduce (2 .17) to a f i n i t e number of 
ns 

equations i n a f i n i t e number of unknowns by assuming that the A n become 

n e g l i g i b l e a f t e r some n = N, say. This i s reasonable e s p e c i a l l y i f ka i s 

small ( i . e . small s c a t t e r e r s ) . Second, introduce the change of v a r i a b l e s , 

ns 
(B + (-1) B n s ) 

2E -" s 

o 

n = 1 ,2 , 

B 
X os 
os 2E 

(2 .21) 

( i ) n 

ns (B 
2E ~ n s 

o 
ns' (2.22) 

Substitu t i o n of ( 2 . 2 l ) and ( 2 . 2 2 ) i n t o (2 . 17) y i e l d s 

r 
No N 

ns = ^ 1 D gcos n/̂ , + , .n-m + , • 
M X m t V ^ I X t 

Y n s » A -n 

£=•/ tjG mro 
No _N 

- i D . s i n nfi + ) ) ( i ) Y , H (k X. 
s <"~s / , [_ ; mt mnv 1 ^ 

t-/1.?s w-o 

i % st 
X s l ) f n m 

, v st I X ) f .} si ' nm( 

( 2 . 2 3 ) 

(2.24) 

where 

H* (s) = H (x) ± ( - l ) n H m + n ( x ) mn m-nv ' v ' Tn+n̂  > (2.25) 

( 2 . 2 6 ) 
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Use was made of the f a c t that C (s) = (-l) C (z) f o r any c y l i n d e r function 
-n n 

27 
C . Note that the systems of eauations to be solved, ( 2 . 2 3 ) and (2.2k), 
n 

are each h a l f the s i z e df the o r i g i n a l system (2 .17) but the operation 

must be performed twice. This i s , of course, a great saving of work i f an 

exact numerical s o l u t i o n i s required. Before attempting t h i s , however, 
1 ,7 ,13 

i t i s advantageous to apply the Rayleigh image technique t o obtain 

the proper form f o r the s o l u t i o n to the surface problem. 

Figure 2 .2 Real and Image F i e l d s Incident on a Cylinder 

2 . 2 . 3 Image Method f o r Transformation to Surface Problem 

The image method i s as follows. For a wave incident at angle QL 

as shown i n f i g u r e 2 . 2 , the scattered f i e l d from the h a l f c y l i n d e r w i l l 

be composed of the f i e l d produced by a f i e l d incident at angle Ct and i t s 

image at angleJT-CUncident upon a whole cyl i n d e r . The s o l u t i o n w i l l be 

correct i n the region Y)>0 only. The v a l i d i t y of t h i s may be r e a d i l y checked 

by t e s t i n g t o see i f the boundary conditions are s a t i s f i e d . I f E r j , i s now 

defined to be the t o t a l f i e l d f o r the surface problem, 

E^(CQ = E .(a) ± E^TT-CL) + 

= E . + E . + E , . mc plane obj 

E s c a t ^ ± E s c a t ^ - a ) (2.27) 

( 2 . 2 8 ) 



There i s considerable s i m p l i f i c a t i o n of the problem a f t e r a p p l i c a t i o n 

of the above equations due to the symmetry of the r e a l and image 

functions. Now, the E Q t ) j i n equation (2.28) i s composed of the f i e l d s 

scattered by the i n d i v i d u a l objects: 

E o b j » E s c a t ( a > * E s c a t ( ^ - a ) (2.29) 

E f d ) ± E s ( 7 7 - a ) (2.30) 

^ (2-31) 

I t i s i n t e r e s t i n g t o note that only one set of the c o e f f i c i e n t s Xns 

or Y n g need to be c a l c u l a t e d f o r each p o l a r i z a t i o n f o r the surface 

problem (see Appendix B). The r e s u l t i n g f i e l d s scattered by the s t h 

c y l i n d e r are: ^ 

E s = ^ Eo Xj^Xs 0 0 8 n 0 s H n ( k r s ) (2-32) 

N 

E s = - , + i E o X ^ ( i ) n Y n s S i n n W k r s ) ( 2'33) 

2.2.U Backscattered F i e l d 

From t h i s point onward, only the scattered f i e l d i n the backscatter 

d i r e c t i o n w i l l be considered. The analysis f o r other d i r e c t i o n s i s no 

d i f f e r e n t i n p r i n c i p l e . Backscatter i s a reasonable choice as i t repre

sents the monostatic radar problem. From a consideration of the geometry 

of the problem (see figu r e 2.1), i . e . p u t t i n g point P at point A 

° S (2.3*0 

(2.3k) holds a l s o f o r forward s c a t t e r i f C(CL) and R (P) are replaced 
s / s 

with C (-0) and,G s(-a). 
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H n(kC sW (-i) n-7= F-t/EST ( 2- 3 5> 

Since C i s assumed t o be large, HL(kC„) may be approximated by the s n s 
2 7 

f i r s t term of i t s large argument asymptotic expansion 

t n ( l ^ Q e ^ C s 

( 2 . 3 2 ) and ( 2 . 3 3 ) when combined with ( 2 . 3 ^ ) and ( 2 . 3 5 ) give the f o l l o w i n g 

approximate expression f o r the far-zone backscattered f i e l d from the 

array of hemicylinders: 

N ° ikC N 

v Ji 5=1 ^ ^S n - Q 
. .\ ^ ikC N 

E 1
 = hiV-ZjdE V %=^V ( - D V a i n nO ( 2 . 3 7 ) 

2 . 2 . 5 Normalization of F i e l d Equations 

F i n a l l y , the constant E q must be selected so as t o y i e l d a normal

i z e d r e f l e c t e d f i e l d . This normalization i s such that the t o t a l r e f l e c t e d 

f i e l d i s unity when the the surface i s f l a t . From equation ( 2 . 2 8 ) 

E = E, + E , + E ( 2 . 3 8 ) 1> inc plane obj 

= E . + \ a ( 2 . 3 9 ) 
mc l b 

where E i s the incident f i e l d , E i s the f i e l d r e f l e c t e d by the 
inc plane 

plane and E i s the t o t a l scattered f i e l d . The required normalized f i e l d 
Tb 

i s then 

E = E t s = 1 + E ° b j (2 .U0) 
E E 
norm plane 

Now, E ^ a r e i s simply the image of the incident wave i n the plane (see 

fi g u r e 2 . 3 ) . 

Therefore, from equation ( 2 . 2 ) , the corresponding image source becomes 
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"plane ~ "~ "o/kR E H ^ _ _ = ± E , 5 ~ f (9) (2.41) 

where R and Q are determined from the configuration shown i n 

fi g u r e .2. 3. 

s>- x 

Figure 2.3 Image Source 

For backscatter, 

i| j_ ei2kL cosQ 
E p l a n e = ± EoJKL~7^am) (2.42) 

while f o r s c a t t e r i n g i n the forward d i r e c t i o n 

,i2kL 
E ' = ± E 7ff= plane o/2kL (2.43) 

Equations (2.36), (2.37), (2.4o) and (2.42) may now be combined t o y i e l d 

the f i n a l form of the normalized backscattered f i e l d . 

E ' ' = 1 + i | ( 1 -jQvtekL cos a e rrr m) 
i k ( C s - 2L cos a) 

s= 1 

No 

( - l ) n X cos nO 
J ns 

ik(C„ - 2L cos a) 
r\-o 

N 

(2.44) 

S= 1 (2.45) 
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Now, i f the unknown c o e f f i c i e n t s X and Y can be determined from ' ns ns 

equations (2.23) and (2.2.4) then the normalized backscattered e l e c t r i c 

f i e l d may be determined from equations (2.44) and (2.45). 

In summary, the problem has thus f a r had the f o l l o w i n g r e s t r i c t i o n s 

placed upon i t : 

1. Expressions have been e x p l i c i t l y given only f o r the 
backscattered f i e l d . 

2. The surface must be i l l u m i n a t e d by a f i n i t e width 
beam located a large distance from the surface. 

3. The s c a t t e r i n g objects must be small compared to the 
e f f e c t i v e width of the beam at the surface. 

2.3 S c a t t e r i n g from a Configuration of Hemispheres 

2.3-1 Spherical Incident Beam 

The geometry of the problem i s shown i n f i g u r e 2.4. Note that only 

normal incidence i s considered from the outset. 

Figure 2.4 Geometry of Three Dimensional Scattering Problem 

In keeping with the two dimensional problem, consider a s i m p l i f i e d 

f a r - f i e l d r a d i a t i o n pattern of spherrcal waves, 

Y 
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e i k R a M s in(0 +BK + cos((7V 

e i k R a ^ 
° kR a 

(2.46) 

where 8 i s the polarization angle: 

6=0 for || polarization 

^ = If f o r I polarization 

and 6" , are unit vectors in the antenna coordinate system. 
& P 

NOT?, by standard vector analysis, 

<Ee = c o s 0 a c o s 0 a i a + c o s 0 a s i n 0 a j a - sin0 a " k ^ 

- s i n 0 a r + eos0aj; 

( 2 . 4 7 ) 

(2.48) 

i s the relation between the spherical and rectangular unit vectors. 

Therefore, at the antenna, 

E p = (s in(0 a +6)cos 0 a c t>s0 a - cos(0 a + t))sin(7j) a ^i a 

+ (sin(0 f t +5)cos 0 a s i n 0 a + cos((4-+6)008 0 ^ 3 ^ ( 2 . 4 9 ) 

- - s i n(0 a +6) sin 0 ^ 

Refer the incident f i e l d to the x s , y g , z g axes at the s object instead 

of to the antenna coordinate axes by the two translations along L and 

V 

y + Y„ (2.50) 

z a = L 

and the unit vectors become 
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consequently, 

J a = J 8 (2 .51) 

R ! = r s + R ! + ^ + 2 ( x s x s + y * Y s " z s L ) ( 2 ' 5 2 ) 

where, 

X s = R s c o s * s 

Y s = R B s i n c ^ s 

(2 .53) 

are the coordinates of the s^*1 scatterer. 

To f u r t h e r s i m p l i f y the problem, rotate the x s , y s , z g coordinate axes 

through the angle db„ about the z„ axis. That i s , 

x s = x s c o s < ^ s - v
s

s i n < P s ' 
y g = x^sin<£ s + y scos $>g (2.5*+) 

z = z' s s 

Equation (2.52) becomes, upon the s u b s t i t u t i o n of equation ( 2 . 5 ^ 

R a = r s 2 + C s + 2 ( R s x s " L z s > < 2 ' 5 5 ) 

where 

C 2 = R2 + L 2 (2 .56) s s 

From f i g u r e '2. U6 

s i n 9 = R./C 
C S S (2 .57) 

cos G c = L/CS 



Hence, 

R a = r s 2 + Cl + 2 C s ( x s s i n e c ~ z s c o s 0 C
) ( 2 > 5 8 ) 

And, since r « C i n the v i c i n i t y of the s t h object, 

C g + x s s i n 0 c - z s c o s 9 c (2.59) 

I t i s reasonable to assume, as i n the two dimensional case, that the 

amplitude functions f and e may be considered to be constant across the 
P 

surface of the s scatterer. This assumption w i l l be v a l i d f o r small 

objects. Therefore, from f i g u r e 2. k, 

(2.60) 

and from equations (2. 51) and (2.5*+), 

i = - cos cb i ' + s i n dp j / 

a - s s u s'Js 
J a = sindbgi^ + cos<$>sJ/ (2.61) 

Thus, by equations (2.6o) and (2.6l), equation (2.^9) becomes: 

7 ~ sin(dps - d)(cos 0 c T s + s i n Q*'B) + cos(£ s - 6)T S (2.62) 

F i n a l l y , then, the incident wave may be approximately represented as 

ikC 
E. « E Q - - S

e
i k ( x s s i n 6c - z scos 8 c ) f ( 0 ,77- $ ) 

1 k C s ' c s (2.63) 

sin(cp - 6 ) ( c o s Q i ' + s i n A k') + cos(d> - 5)V 
/ \ U c s ^ C S S / U S 

i n the x',y/
)z' coordinate system. This corresponds t o an incident wave, s ^ 

t h 
which i s plane across the s scatterer, with angle of incidence and angle 
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of polarization 

and 
a = - 6 c 

6' = <5-<£> 
(2.64) 

r e s p e c t i v e l y . 

2.3.2 Single Scattered F i e l d 

As the d e r i v a t i o n of the two dimensional scattered f i e l d has been 

considered i n d e t a i l , the f o l l o w i n g e x p r e s s i o n 1 ^ f o r the three dimensional 

f i e l d scattered from a single hemisphere on a ground plane with the 

incident plane wave of equation (2.63) i s presented without f u r t h e r comment: 

h 
F - - ^ V ^ - C ^ i ) , h , J 
E s ' " ^ s ~ / _ , ( i ) n W s ) 

n = x 
CO 

P™ cos m^sinp'-mP^sin m(7̂ cos(j)' 
* sTnTJ 

m - o 
m + n o d d 

Ac 

^ k r s ^ 
P™ cos m^sinS-m?^ sin m^cosO^ m 

+ i a n h
n ( k r s ) 

Y>-\+n odd 
sintt 

nTF^cos n d ) sinS+mPl? sin m.ct>cos6> 

T ^ 1 - sin0/sina sin9. 

n = t 

+2iE4^ (OVtll) P kW k r^V" [m
 P " C ° S ^ P ° ^ < s i n WB?1"̂  
sin@ ssina sinQs, 

• i a n h n ( k r / ) 

m - o 
m +n o d d —| j 

m + r> even 

P™ cos mC^coso^+mP^sin wtpsinff , 

ifnCX 3 1 JJ 

where, 

(2.65) 

J n ( k a >  
a n " " h n(ka) 

/ • j k a j ^ k a ] ' 
a n " " [ t a h j k a j ' 

(2.66) 

and 

,ra -- (n-m). jaf Q ' N m, . 
= 6 7 ;;—P (cos H )P„(cos(X) 

n ^m(n+m).' n v u s ' 
i k C s 

E ' = E _ — — f ( e c ^ ) o kC 

(2.67) 

(2.68) 



m 
The subscripts (X and Q of P denote d i f f e r e n t i a t i o n with respect to CC or Q 

m ra 
of the appropriate Legendre function P ( c o s d ) or P (cos@ ) i n equation 

n n s 

( 2 . 6 7 ) . 

2 . 3 . 3 Far-zone Backscatter 

As i n the c y l i n d r i c a l case, only the far-zone backscattered f i e l d w i l l 

be considered. Therefore, 

r ' = C s s 

es
7 =ec 

01= 7 7 

( 2 . 6 9 ) 

m . . . 
Consider the expressions f o r P given by equation ( 2 . 6 7 ) and i t s 

n . 

der i v a t i v e s . Substitute the va r i a b l e s from equations ( 2 . 6 4 ) and ( 2 . 6 9 ) . 

Then, 

n ni. (n+«j).' 
P m(cos e ) n v ^c ( 2 . 7 0 ) 

P n = ^ m T n 7 ^ P n ( C 0 S e c ) p n ( c ° s 0 c ) s i n 0 C (2-7D 

= -P_ n, 

But 28 

pjTcos Q ) = . 2 
nK w c sin y -n cos @ cP m(cos 0 C) + (n+m)P^_ 1(cos Qc) 

CL_ 
( 2 . 7 2 ) 

Let 

m 
- n cos 6 - f n + m 1 P n - l ( c o s 0 c ) 

^ ( c o T B X 
(2 .73) 

Then, 



m 
m m m °n 

P = -p^ = p 
n e n « n s i n 

Second, consider the function h (kr ) and i t s d e r i v a t i v e s . Since 

r = C i s large, h (kr ) may be approximated by the f i r s t term of i t s s s n s 
27 

asymptotic expansion . 

( 2 . 7 5 ) 

. ikC -n 

r -,/ ikC 

k r 7 s 

th 

Equation (2.65) f o r the backscattered f i e l d from the s hemisphere 

s i m p l i f i e s under the above approximations and s u b s t i t u t i o n s to the follow

ing expression. 

E « -2iE'-
s' o kC s 

n n 
m m m2 \ \ m 2 m> \ \ vn, v f \ v , , m m m2 V \ m 2 m 

> ( - D . ( ^ l ) a n ) - ( - 1 ) ^ 0 + a ) (-D m P n 

4 ' n( n+1) C L i • 2A nL / J 

m+n odd m+n e v e n 

sin(<5 - & ) € a 

( 2 . 7 6 ) 

/ N 1 1 , v / m 2 m \ \ m m m27| _ . — 
a
n ) (-D J i l n " a

n ) F n Q n f o s ( 6 " €

0 

n . i n ( n + l ) ^7p s i n ^ S i n 2 0 c ^ 
m+n odd - m+n even 

The scattered f i e l d given by the above expressions i s 

resolved i n t o s p h e r i c a l components i n the x 7, y', z ' coordinate system. 
s s s 

The f i n a l form of the f i e l d equations i s most conveniently given as 

components i n the antenna coordinate system. In t h i s case, the component: 



can be recognized as the d i r e c t and cross-polarized components. Let 

ikC 
! EQ ssin(5 -

's 
E = ~ 2 i E y e 2? s' EA sin(5 - cj> )C a + cos(<5 -&)€, 

u& s V / r s s cp, 
(2 .77) 

Wow, resolve these components i n t o the corresponding rectangular components. 

That i s , as i n equation ( 2 . 4 8 ) , and using ( 2 . 6 9 ) , 

E =-.-2iE7 e ikC, s' o E ^ Sin(6-O s)cosei s / + E 0 qcos(5-^) ; j q / s s' 

+ E& s i n (5 ~ Cp ) s i n g k 
s' - c s' 

(2 .78) 

From equation ( 2 . 6 l ) , 

i = - coscbi + sincpj s' *'s a g a 

j s,= s i n c p i + coscpj a (2 .79) 

k - - k s' a 

So that at the antenna, 

— ikC 
E = 21E e 

-E sin(5 - <$> )cos0 coscb + E, cos(£ - CD )sincp 
y s
 s c "s >"s ~s s 

E„ sin(5 - (f) )cos0 sincp + Ei cos(($ - cp )coscp 
- E Q sin((5 - cp )sin@ k 

( 2 . 8 0 ) 

I t i s s u f f i c i e n t , however, to consider only the two p o l a r i z a t i o n s f o r 



5= §-77 and 5= 0 respectively. That i s , 
_ 2 

ikCL E = 2 i E s o 
L . k C S - . 

-Eg cos <£> cos@ + E^ sin CD 
s s c rs s 

L 
E e cos0 + E 0 

sin<$>coscJ> j 
~s s E 

(2.81) 

-E cosc£> sin0 k \ 
es s c a J 

and 

TikC " 
2 i E 1 f i ( e C , 7 T - ^ S ) I 

E e s
c o s 6 c

 + E$s£ 
sinCD coscbi ~s T3 a 

2- r ^ 2 ~ - E e sin Cp cosQ + E^ cos Cp 
'a 

( 2 . 8 2 ) 

+EQ s i neb sin0 k 1 s - s c ai 

2 . 3 . 4 formalization of F ie ld Equations 

Again, the normalized to ta l backscattered f i e l d i s the actual 

quantity which should be considered. Since the plane reference surface 

w i l l not depolarize the incident radiation, the direct and depolarized 

components must be considered separately. That i s , 
• E V 11,-L , o b ^ 

E = 1 + ~ 
E 
plane 

( 2 . 8 3 ) 

as i n equation (2.ko) for the direct components. For the depolarized 
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components however, 

E 
.1 I ob,j 

plane 

E , i s , as before, the image of the incident f i e l d i n the plane. The plane 
geometry i s similar to that shown in figure 2.3 with CL = 0. 

II J_ e i 2 k L 

E = + E (2.85) 
plane 0 2kL 

It must be noted that the to ta l f i e l d scattered by the ensemble of 

objects w i l l be given simply by the vector sum of the field, scattered 

by each object, since the single scatter approximation i s assumed. The 

normalization of the to ta l f i e l d given by the sum over s of equations 

( 2 . 8 l ) and ( 2 . 8 2 ) by equations (2.84) and ( 2 . 8 5 ) may now be performed. 

F i r s t , the various polarization components of equation ( 2 . 8 3 ) must be 

recognized. That i s , the f i e l d i s i n the form 

^ = V a + E l 2 Ja + E i k a 

E ^ E 2 1 i a + E 2 2 j a + E 2 k a 

( 2 . 8 6 ) 

where 

E i s the direct component due to the || pol . incident wave 

E^g i s the depolarized component due to the 11 pol . incident wave 

E i s the depolarized component due to the | pol . incident wave 

E 2 2 ^ S "k*16 c& r e c t component due to theJ_pol. incident wave 

These four components may now be correctly normalized. The other components 

E and E along the z axis are not considered here for two reasons. F i r s t , 
1 2 . a ' 

they w i l l not be detected by an antenna i n the same or cross-polarized 
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orientation as the transmitting antenna, which i s physically the most 

r e a l i s t i c configuration. Second, they w i l l tend to cancel out when 

averaged over the ensemble of the objects i f the objects are distributed 

according to a continuous uniform distribution. This point w i l l be further 

discussed in Chapter h. 

The normalized backscattered f i e l d from an array of perfectly 

conducting hemispheres on a perfectly conducting ground plane, illuminated 

by a narrow beam antenna at normal incidence, by the single scatter approx

imation can now be cast into the form: 

E = 1 + 4 i M J e i k ( C s ~ L ) l f (0 , TT- cb) 
1 1 kC„ 

• Ea cos CD cosh+E, sinCp 
es s c ^s s 

E. 
12 

l+ikLJe i k (°s" L ) | f (0c,7T-cT>s) 

kC 

sincb coscb s ŝ 

(2.87) 

E21 = ^ i k L ( e i k ( C s " L ) ) f $ ) 
kC 

E A cos0 + E M sincfacoscb 0s c 9s\ s 
f l 

E = 1 + 
22 

. ( ik(C -L)' 
1+ikL e f (e c,77-$ B) -E„ sirKJ) cosQ + E^ cos^Cp s s c ^s s 

2.k Antenna Model 

It i s now possible to choose a specific function for the antenna 

space factors f ( 0 ) and f (0',0) respectively. There are several choices 

which could be made. The simplest one is the rectangular 
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k 16,1 >e0 

(2.88) 

This simple case was dismissed because the function has no sidelobes; 

only the beamwidth can be co n t r o l l e d . A s l i g h t l y more complex 

function was tested and found to be a reasonable representation of a 

narrow beam antenna with r e a d i l y c o n t r o l l a b l e beamwidth and sidelobe 

l e v e l . The model chosen i s that of an aperture with an appropriate 
n 1 

i l l u m i n a t i n g function cos (yJTx) 

The form of the space f a c t o r f o r the r a d i a t o r i s a s l i g h t l y modified 

version of that given by S i l v e r . 

n 

c o s ^ n±Z 
'XX 

* ( u ) - (n-l ) / 2 r _ / 2 > ? 9 o ( n + 2 ) u N 2 

g » -

k=0 _ o _J 

n/2 
\TTA ovfr- J k=0 L X 7 T A 2k0o 

n odd 

n even 

(2.89) 

where 

f(0) = g n ( s i n e ) (2.90) 

and 0 i s the angular distance to the f i r s t n u l l of the beam i n degrees, o 

The integer n reduces the sidelobe l e v e l i n di s c r e t e steps as n i s i n 

creased. Note that n = 0 and n = 1 reduce equation (2.89) to the approx

imate r a d i a t i o n patterns of an open waveguide i n the E-plane and H-plane 

respectively. 



THETR [DEGREES] 
Figure 2.5 Radiation Patterns f o r Horn Antenna (-£ &•) and for 

Approximate .Beam Functions. 



A comparison of (2 .89) with the a c t u a l r a d i a t i o n pattern of a horn 

antenna i s shown i n fi g u r e 2.5. Here i t can be seen that the simple forms 

given with n = 0 and n = 1 are s u f f i c i e n t to quite accurately describe t h i s 

p a r t i c u l a r antenna. Therefore, the functions 

g. (u) = sinj Q u) 
180 

ej 
/180 
1 u 

g (u) = c o s ^ ; 

0 6 (2 .91) 

,270 \ 

1 . ^ 2 / 2 7 0 u \ 2 

w i l l be used almost e x c l u s i v e l y f o r the study cf the hemicylinder problem. 

For the three dimensional problem i t i s s u f f i c i e n t to consider the product 

of the above two functions with s u i t a b l e arguments: 

L80 

(2.92) 

s i n tee7 c o s ( \ 6 h
u / 

= g(u,v) 

S i m i l a r l y , 

g ^ U j v ) = g(v,u) (2.93) 

where 

f ( 0 , 0 ) = g ( s i n 0 c o s 0 , s i n 0 s i n 0 ) (2.9k) 

The subscripts e and h on the beamwidths r e f e r to the beamwidths f o r the 

pattern i n the E-plane and H-plane of the antenna. 



2.5 R e s t r i c t i o n to Harrow Beamwidth 

As has already been mentioned, i t was decided to use the beam f a c t o r s 

( 2 . 9 l ) and ( 2 . 9 2 ) because of t h e i r s i m i l a r i t y to a laboratory horn antenna. 

Therefore, i t i s also reasonable to assume that the beamwidths to be 

considered w i l l be of the same order as that of an a c t u a l antenna . An 

e f f e c t i v e surface area may now be introduced which i s a function of the 

beamwidth,, and suitable approximations may be made which s i m p l i f y the f i n a l 

form of the f i e l d equations. 

2 . 5 . 1 Two Dimensional Case 

Let 0 be the angular distance to the f i r s t minimum of the r a d i a t i o n 

Figure 2 .6 E f f e c t i v e Surface Width 

o 
pattern. Then from fi g u r e 2 . 6 

W 2 L tan 0 o (2 .99) o 

W L s i n 6 + L s i n 6 \  
cos + (X) 

( $ . 9 6 ) 
cos (0 1 - a) 
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Define a constant K such that 

K tan Q = t a n 0 1 :(2.97) 

and le t 

C = 2K tan Q a ( 2 . 9 8 ) 

Further assume that the coordinate, X , may be derived from some normalized 
s 

distr ibution, p , -\SL. p — h Th 6 1 1 

Let 

Then 

- L sin @ 

L sin 0 
1. 

cos - (X) 

I ( O + i 

cos(6, - a) cos(6, +a) 

! 2pscosCC + |casin(X 
= t L C a 

cos a- ( I c ^ ^ s i n ^ 

n' i. 2PHcosCX+ |cRsinCX  
5 = "2" cos2CC- (ic a ) 2 s i n 2a 

X = LC n ' s aH s 

. ( 2 . 9 9 ) 

(2;100) 

(2.101). 

(2.102) 

(2.103) 

Note that the condition 

a <|TT- e x (2.101+) 

must be f u l f i l l e d in order that the surface width, W, may be kept f i n i t e . 

This stipulation rules out the case of grazing incidence. For this part 

of the problem a different method must be devised for determining the width 

of the effective scattering area, and w i l l not be discussed here. Equations 

(2.k) and (2.103) may now be combined to give 



/ 2 2 
C = L/(C n / + s i n a) + cos a ( 2 . 1 0 5 ) 
a J a.1 S 

L C ' (2.106) s 

The constant K of equation (2.97) can be determined by increasing i t s 

value u n t i l computed f i e l d values become constant. This w i l l be investigated 

thoroughly i n Chapters 3 and k f o r the p e r i o d i c and random cases, respec

t i v e l y . 

At t h i s point, the discussion of the two dimensional case w i l l a lso 

be r e s t r i c t e d to normal incidence only. I t seems p o i n t l e s s to keep the 

more general case as the three dimensional problem has already been re-

s t r i c t e d i n t h i s manner. . I t should however be pointed out that unlike 

the three dimensional case, a l l but grazing incidence can e a s i l y be con

sidered i n the two dimensional problem i f i t i s desired. Since 

C O << 1 (2.107) 

f o r a narrow beam, the following r e l a t i o n s h i p s are applicable. 

W = LC (2.108) 
a 

P/ = P B (2.109) 

2 2 

C g X L ( l + (2.110) 

s i n / i * 1 - Ic^Og (2.111) 
c°s/3S*CaPs ( 2 . H 2 ) 

These approximations may now be introduced i n t o the f i e l d equations 

(2.23), (2.24),. (2.25) and (2.26) along with the antenna function (2.9l) 

to give the f i n a l form of the scattered f i e l d due to the array of hemi

c y l i n d e r s : 



E 

Nl0 N 
II ^ = 1 + C e - i k L ^ u | ^ ( - l ) n X n s c o s nCs 

Mo N ( 2- 1 1 3) 
E X = 1 + i C e ' i k L ^ U ^ ( - l ) n Y n s s i n n ^ 

where 

X = A"j4SuV(C 0 ) c o s nO y~V) n" mX .H + (k|X_-X | )F S t> ns n JKL S
B x a^s <Ms / , /_ , mt mnv 1 ^ s i ' : 

t = l m=o 

i k L i v <> 
Y „ e = A l - i W ^ C D ) s i n nfj +) ) ( i ) n " m Y H _ (klx -X I ) F 

4*5 

and 2 2 
U g = e i K W a A . ( 1 . l ^ 2 , (2.115) 

2.5-2 Three Dimensional Case 

These same approximations may be applied t o the three dimensional 

problem. I f the act i v e s c a t t e r i n g surface i s made l a r g e r than necessary, 

obviously the r e s u l t s must remain unaffected. Therefore, assume f o r 

s i m p l i c i t y that the e f f e c t i v e area i s a c i r c l e i n s t e a d of an e l l i p s e , where 

the radius i s determined by the widest of the two beamwidths of the antenna. 

Thus, the diameter of the act i v e area w i l l be given by 

W = C L (2.117) 

which i s the equivalent of equation (2 . 1 0 8 ) . S i m i l a r l y i f p x and p 

are some-normalized d i s t r i b u t i o n of coordinates over the c i r c l e of unit 

diameter, then 

5 s v s 

and therefore, 
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s a M s (2.119) 

tancj> - ^ s 

•s PX 

s 

Furthermore, (2.111) s t i l l holds so that equations (2.56) and (2.57) 

become 

c ~ L ( I + |c2n2) (2 .120) s a s 
2 2 

cos0„ « 1 - §C O (2.121) 
c ^ a' s 

s i n A C 0 (2.122) 
u c aMst 

as f o r the two dimensional case. The above approximations considerably 

s i m p l i f y the expressions (2.87) f o r the scattered f i e l d , e s p e c i a l l y the 

functions E e and E^ . These functions may now be expanded as a power s s 

series i n the small quantity CgPs. These complex functions of s p h e r i c a l 

Bessel functions and Legendre functions have already been s i m p l i f i e d by 

the r e s t r i c t i o n to normal incidence. In f a c t , i f non-normal incidence 

i s considered the fol l o w i n g approximations do not y i e l d a more usable 

form of the Legendre functions. From equation (2.76) i t can be seen 

that the functions 
2 

m m m 
/ = k ^ L I ^ (2 .123) 
™ s i n 2 9 c 

and 
m 2 m 

8 (-1) m P n 

Bnm = 
sin y 

c 

are to be determined. The fol l o w i n g approximation may be applied f o r 
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small Q 

m, •, ( - l ) m

 Q \2m' (n+m)! 
P ( c o s A ) - i ~ (1 - cos0 ) ; \ 

n c 22* m:(n-m)J 
(2.125) 

« i4La(C aa)" (n+m)l  
2 ml (n-m) I 

m 

Note that for non-normal incidence, cos0 « 1 and hence the above expression 

becomes a much more complicated function of C fl. Now, 
QJS 

< f « m - | n M 
n a s 

. 2m 

p™~ f ; ( n + m ^ •' (C a*°f) • 
. n ~ m(n~m)I (m'.)d 2^ 

(2.126) 

so that 

"nm 

nm 

m 2(m-l) 
( - D e m ( n + m ) : (C aO s) 
(ml) (n-m) 2̂m~ m 

m 2(m-l) 
(-1) m(n +m)' (C aP s) 

2 2 , 2 ^ 
^'aPs + * n V s 

(2.127) 

(m«) 2 (n-m)' 2 2 m 

combine equations (2.127) and ( 2 . 7 7 ) , keeping only terms to the order of 
2 

(CgPs) • This operation yields 

( - l ) n (2n+l ) 

n - i 

n n 
\ * S V v s -a ' ) f + a ) g n m n / i nm n / 
m = o m= o 

m+n odd m+n even 

(2.128) 

« | b ( l +b f lC&f) 
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where 

even \ N a n ' n 

b = ) (2n+l) n 

L—/ a , n odd V n' n - l 
(2.129) 

CO 
\ = b 2 _ J 2 n + 1 ) < 

n = l 

-na' + v(n+2)(n-l)a n even 

n + |(n+2)(n-l) a^, n odd 
(2 .130) 

Similarly, 

E 0 S « -|b (1 + ^ C 2 J S ) (2.131) 

where 

(2n+l) 
a , n even n' 

n - i 

_2(n+l) + Kn+2)(n-l) 

-na n + £(n+2)(n-l) a£, n odd 
(2.132) 

The f i n a l simplified form of the backscattered f i e l d by an array of 

hemispheres on a perfectly conducting ground plane for narrow beamwidth 

and normal incidence therefore becomes': 

2 2 
2ib i2kLC„Dc, 

E l l = 1 " " k L 6 s( C£Ps c o s ^s' C aOsSinCP s ) 

E 1 2 = ^ ^ ^ W 0 ^ ' W 

v - ^ i2kLC?Ps 
E 2 1 - kL 6 

(2.133) 

g(C^ ssincT s , CaP s cosc^) | ( l^- | ) -b^ C ^ f sinc^cosc^ 

2 2 
E 2 2 = 1 - ^ e ^ ^ g C G ^ s i r ^ . C ^ c o ^ ) • 1 + k -1) s i n ^ + t y cos%-1] 
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The above equations w i l l be used f o r a l l the s t a t i s t i c a l studies on 

the three dimensional surface i n Chapter k. S i m i l a r two dimensional 

equations are given at the end of the next chapter, a f t e r a more d e t a i l e d 

i n v e s t i g a t i o n of t h e i r more exact counterparts ha.s been made. 

2.6 Importance and Range of Parameters 

Before any r e s u l t s ( s t a t i s t i c a l or otherwise) are obtained from 

equations (2.11*0 or (2.133) i t i s advantageous to summarize the r e s t r i c t 

ions and proposed treatment of a l l the parameters of the problem. I t i s 

i n s t r u c t i v e at t h i s time to decide upon suitable values f o r these parameters 

which n a t u r a l l y divide i n t o two sections, those of the beam, and those of 

the surface, as l i s t e d i n Table 2 . 1 . 

The reasons f o r the choices shown are the following. The angle of 

incidence i s chosen mainly f o r convenience, n and 0 O are chosen to agree 

with the laboratory antenna, while L i s chosen to put the surface just i n t o 
k 

the f a r f i e l d of t h i s antenna using the c r i t e r i o n 
2 

R 2 > y (2.13*+) 

The upper l i m i t s of the size of the objects and object density are d i r e c t l y 

r e l a t e d to multiple scatter, and w i l l be i n v e s t i g a t e d i n the next chanter. 

The f a c t o r K w i l l be determined f o r the p e r i o d i c and random problems, and 

the r e s u l t s f o r both cases, w i l l be compared. 

With these ideas i n mind, the p e r i o d i c configuration of scatterers 

may now be investigated. 



Parameter Description Treatment Value as fixed parameter 

Antenna Parameters 

a angle of incidence set to normal incidence, Ct= 0, 
for convenience 

a= o 

n sidelobe level i s a function of n vary to find effect of sidelobes n" = o n1- = 1 

L distance from antenna to surface vary to fi n d effect of 
antenna position 

L = 8oA 

e c 
width of main beam vary to find effect of beamwidth 

keeping QQ < 30 
ee = 8° 6 , - 8 ° 

Surface Parameters 

a radius of objects variable, but of lesser importance 
use a few values .̂0.5 

a = 0.2A, 0.5A. 

K proportionality between width of 
main beam and surface width 

vary to find the smallest surface 
width required 

small as possible 

P area density of objects the main independent variable 
accuracy decreases with increasingp 

P<0.25 

Table 2.1 The parameters of the Scattering Problem 
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3. PERIODIC ARRAYS OF HEMICYLINDERS 

One of the simplest rough surface problems i s that of the two dimensional 

periodic array of hemicylinders. As has already been mentioned, there are 

three main reasons for choosing this simple configuration. F i r s t , exact 

numerical values may be obtained for the X and Y of equations (2.111+) 
J ns ns v ' 

so that the single scatter approximation (and other higher order approxi

mations) may be compared with the exact solution. Second, the periodic 

results can be indicative of the behaviour of the random problem. In fact, 

i t i s hoped that any estimates of parameter l imi ts w i l l be even better for the 

random case due to the averaging processes. Third, a l l computation times are 

much shorter because only one configuration, not thousands, need be considered 

for each set of parameters. The three dimensional surface of course, w i l l 

not be considered here due to i t s extreme complexity. 

3.1 Solutions for Various Orders Of Accuracy 

3 . 1 . 1 Exact Solution 

In principle, equations (2.Ilk) can be solved. The solution i s obtained 

merely by inverting the matrix of coefficients of the X ^ and Y ̂ . However, 

i n a case where N = 25, which i s quite reasonable, and N = 5, which o 

corresponds to objects about 1 . 2 ^ i n diameter, one i s faced with solving a 

set of 125 simultaneous l inear algebraic equations i n 125 unknowns - a 

formidable problem. Therefore, the parameters in the cases that w i l l be 

considered w i l l be selected such that a solution i s feasible. 

For s implici ty, locate the origin of the coordinate system at the 

centre of the middle hemicylinder for an odd number of hemicylinders and 

halfway between the two centre hemicylinders for an even number of hemi

cylinders as in figure 3 . 1 . 



Ar 

ih-
-w-

Figure 3 .1 P e r i o d i c Two Dimensional Surface 

Put 

A. =< 
| ( 2 s - l ) ( ^ ) / N D even 

( 3 . 1 ) 

s =< 
-KN 0 -1), -KN 0+1), . . - 1 , 0 , 1 , . - . |(NQ-1) , NQ odd 

-k®0, -Kv 1)'-- •• •••^No ' N
0

 e v e n 

( 3 . 2 ) 

and hence 

X = d(t - s) 
s ( 3 . 3 ) 

Equation (3-3) vrhen applied to the arguments of H~ i n equations ( 2 . 2 3 ) 
mn 

and (2.2k) immediately makes a l l the elements of every diagonal above and 

every diagonal below the main diagonal the same. Hence, the minor problem 

of merely c a l c u l a t i n g the elements of the c o e f f i c i e n t matrix i s now 

withi n the area of computational f e a s i b i l i t y . 

A quick glance at the number of unknowns i n equations (2.111+) 
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immediately rules out any hope of obtaining a s o l u t i o n by d i r e c t numerical 

i n v e r s i o n of the matrix (e.g. Gauss e l i m i n a t i o n ) . The d i g i t a l computer 

a v a i l a b l e (IBM 360/67) d i d not have a large enough memory, and i f a u x i l i a r y 

memory such as magnetic tape were used, the computation time and roundoff 

e r r o r would become p r o h i b i t i v e . Therefore, an i t e r a t i v e method, the only 

a l t e r n a t i v e , must be r e l i e d upon, but t h i s does not n e c e s s a r i l y converge i n 
29 

a l l cases. Twersky has a c t u a l l y w r i t t e n down the se r i e s s o l u t i o n which one 
30 

obtains by applying the method of d i r e c t i t e r a t i o n to equations s i m i l a r to 

(2 .23) and ( 2 .2k). In a form s u i t a b l e f o r i t e r a t i o n these can be written as 
M0 -N 

+ > ) K :ns * / J Vst^t 
or, more compactly ti-s 

(3.4) 

, W = HW + C ( 3 . 5 ) 

where the main .diagonal of the .matrix H i s zero and H i s symmetric. Then the 

i t e r a t i o n follows the scheme 

—k+1 —k. — ° 
W = HW + C, W = 0 ( 3 . 6 ) 

"til 
f o r the k i t e r a t i o n . Conditions f o r the convergence of ( 3 . 6 ) t o the correct 

s o l u t i o n (the s o l u t i o n i s correct i f convergence i s obtained at a l l ) are 
30 

given by Faddeeva . In f a c t , the matrix H - I, I being the u n i t matrix, must 

have a dominant main diagonal. Note that Twersky claims that (3 -6) always 

converges f o r the s c a t t e r i n g problem. 
30,31 

A b e t t e r method i s the s o - c a l l e d Gauss-Seidel method . Let 

H = L + U ( 3 . 7 ) 

where L i s a lower t r i a n g u l a r and U an upper t r i a n g u l a r matrix. Then, perform 

the i t e r a t i o n according to the scheme 
-k+1 —k+1 -k _o , 
W = LW + UW + C, W = 0 ( 3 . 8 ) 
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That i s , the new values are used immediately as they are cal c u l a t e d . Faddeeva' 

states that t h i s method w i l l converge whenever (3.6) converges, w i l l probably 

converge f a s t e r , and w i l l converge i n other cases as well. Therefore t h i s 

method, ( 3 . 8 ) , was used i n a l l subsequent c a l c u l a t i o n s . 

3.1.2 Nearest Neighbour Approximation 

For the nearest neighbour (N-N) approximation, one s t i p u l a t e s that the 

multiple s c a t t e r i s produced only by i n t e r a c t i o n s between those cylinders on 

e i t h e r side of the c y l i n d e r i n question. That i s , 

30 

r + 
H (kd),• t = s+1 mnv '' — 

H . = < mnst ( 3 . 9 ) 

o, t £ s+1 

i n equation (3.*0« The system matrix i s now a t r i - d i a g o n a l matrix which g r e a t l y 

reduces the amount of computation required i n equation ( 3 . 8 ) . 

3.1.3 F i r s t Order Nearest Neighbour Approximation 

The f i r s t order nearest neighbour approximation (N-N-l) i s obtained by 

f i r s t assuming that there i s a minimum separation of s c a t t e r e r s such that 

k X X « 1 s i (3.10) 

which implies a r e l a t i v e l y low density. Then, i t must be f u r t h e r assumed that 

the m ultiple s c a t t e r e f f e c t s are small compared t o the primary scattered f i e l d 

due to an i s o l a t e d c y l i n d e r (e.g. low density and f a i r l y small objects). 

The r e s u l t i n g N-N-l s c a t t e r i n g c o e f f i c i e n t s 
N 

Y ^ -iA" ns 
l e J T T 2 V - L i . 

nykL 
t o r ns 

.^2C 
a i k d 

s+1/ . m m> s+l 

X ~ 
ns 

i k L ] 1 ,ikd 
U . ii+n I II 

(-1) A h . v . m m, s-1 

N 

s - l l_, 

s+1/ , m m,s+i 

(3.11) 
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where 

are derived i n Appendix C. Note that these are the ac t u a l c o e f f i c i e n t s ; 

no i t e r a t i o n i s required. 

3.1.4 Single Scatter Approximation 

The s i n g l e s c a t t e r approximation i s obtained by assuming that 

Hmnst = 0 (3.13) 

f o r a l l s and t, or eq u i v a l e n t l y that the i t e r a t i o n scheme (3.6) converges 

s u f f i c i e n t l y with no i t e r a t i o n at a l l . Therefore, only the f i r s t terms are 

kept i n equation ( 3 - l l ) with the r e s u l t that 

. a . e i k L \ x Y « - i A 7=-U^h ns n x/kL s ns 

ll e i k L \ || 
X n s "~ \ / k L U s h n s 

(3.14) 

f o r the sing l e s c a t t e r s c a t t e r i n g c o e f f i c i e n t s . 

3.2 Numerical Calculations of the Scattered F i e l d 

The preceding four methods f o r determining the X n s arid Y n s were pro

grammed on the IBM 360/67 d i g i t a l computer along with equation (2.117) f o r 

the scattered f i e l d produced by these c o e f f i c i e n t s . Up to 30 objects and an 

N of 10 were allowed f o r . Any increase i n these values would tend to use 

too much memory f o r the e f f i c i e n t running of the program under the MTS time-

shared system. 
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3.2.1 Determination of Active S c a t t e r i n g Area 

The f i r s t problem i s to determine the optimum value of the r a t i o between 

the beamwidth at the surface and the necessary surface area. This f a c t o r (K i n 

equation (2.98)) can be determined by i n c r e a s i n g i t s value u n t i l the f i e l d 

i s v i r t u a l l y i n v a r i a n t to any f u r t h e r increase. The r e s u l t s are shown i n 

f i g u r e 3-2. The c y l i n d e r s i n t h i s case are 1.0 wavelength i n diameter and the 

spacing i s 5.0 wavelengths which gives a density of 20%. For these parameter 

values i t can be seen that the e r r o r due t o the s i n g l e s c a t t e r approximation 

i s appreciable. 

From f i g u r e (3.2) the smallest value of K that can be used appears t o be 

about 1.5 and t h i s value w i l l be used f o r a l l f u r t h e r studies of the p e r i o d i c 

surface. As K = 1 gives a surface width equal to the width of the main beam, 

t h i s value (K = 1.5) implies that at l e a s t the f i r s t sidelobes make some 

contr i b u t i o n to the scattered f i e l d . Cylinder diameters of O.U and 0 . 6 

wavelengths were a l s o t r i e d , but with s i m i l a r r e s u l t s . The only d i f f e r e n c e 

to be noticed was the degree of multiple s c a t t e r . 

3.2.2 E f f e c t of the Orders of Scat t e r i n g Approximations 

The r e l a t i v e errors of the magnitude and phase of the scattered f i e l d 

f o r the single s c a t t e r and f i r s t order nearest neighbour approximations com

pared to the exact s o l u t i o n are shown i n f i g u r e 3-3 and 3.k. Here, the 

independent v a r i a b l e i s the area density of the objects, 

p=_^o_ (2a) (100%) (3.19) 

A density greater than 35% has not been shown because i n several cases 

the exact s o l u t i o n d i d not converge. S i m i l a r l y , a c y l i n d e r diameter greater 
29 

than 1.0 wavelength was not used. This f a c t i s i n disagreement with Twersky 

who claims that the s e r i e s should always converge on p h y s i c a l grounds, 

although an even b e t t e r converging seri e s (3-8) was used here. As a consequence. 



Figure 3.2 Magnitude and Phase of Scattered F i e l d as a Function of the Ratio 
of Surface Width to Beamwidth. 



DENSITY (PERCENTJ 

DENSITY (PERCENT) 

Figure 3.3' Error Introduced by the Single Scatter Approximation as a Function 
of Hemicylinder Density f o r Various Values of Hemicylinder Radius. 



DENSITY (PERCENT) 

DENSITY (PERCENT) 

Figure 3.4 Error Introduced by the F i r s t Order Nearest Neighbour Approximation 
as a Function of Hemicylinder Density f o r Various Values of Hemi
cyli n d e r Radius. 
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the usefulness of the s e r i e s s o l u t i o n obtained by i t e r a t i o n i s severely 

l i m i t e d . In f a c t , i t can be seen from ( 2 . I l k ) that the diagonal elements of 

the system matrix increase as the s i z e of the objects i s decreased, and the 

off-diagonal (multiple scattering) elements decrease as the spacing i s increased 

Therefore, the diagonal i s dominant f o r small c y l i n d e r s and large separation, 

and a point can be reached by increasing the r e l a t i v e amount of multiple 

s c a t t e r i n g so that the diagonal i s no longer dominant. This point corresponds 

to a f a i r l y small amount of multiple s c a t t e r f o r the parameters considered. 

Now, the a c t u a l problem to be dealt with i s that of the random case. 

As the errors are seen to f l u c t u a t e as a function of object spacing, i t i s 

reasonable to expect that the average errors f o r the random array w i l l be 

somewhat l e s s than the maximum errors shown i n f i g u r e 3 . 3 and 3.*+. Therefore, 

with these points i n mind, the f o l l o w i n g r e s t r i c t i o n s w i l l be imposed; 

0.2^Xa<( 0 . 5 A 5 and average density <^20 .̂ Of course, very small value of 

a/A^ 0 . 0 5 w i l l again be acceptable. These l i m i t s have been selected on 

the basis of using only the s i n g l e s c a t t e r .approximation. The higher order 

approximations would give smaller errors, but use too much computation time 

to be considered f o r the Monte-Carlo simulation. 

3 . 3 Scattered F i e l d Using Single Scatter Approximation 

As the e r r o r i n using the s i n g l e s c a t t e r approximation has been 

ascertained, the f i e l d equations f o r the two dimensional problem equivalent 

to ( 2 . 1 3 3 ) f o r the three dimensional problem may now be determined from 

(2.11^) and ( 3 . 1 7 ) . The r e s u l t s are v a l i d under the f o l l o w i n g r e s t r i c t i o n s . 
o 

1. Narrow beamwidth approximately 15 

2. Average separation about 2A or l a r g e r 

3. Object diameter about l A or smaller 

k. Normal incidence backscatter 
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Ho N 

E " =1 + / i E v l , ( caPs> L (-D V 0 8 

Ho N! (3 . 2 l ) 

The above equations w i l l be used for a l l s t a t i s t i c a l studies of the two 

dimensional rough surface. 
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h. RANDOM ARRAYS OF HEMCYLINDERS AND HEMISPHERES 

The equations (2.91) and ( 3 . 2 l ) derived in Chapters 2 and 3 may now 

be put to the use for which they were intended, namely the calculation of 

certain average properties of the electric f i e l d scattered from a rough 

surface. The so-called rough surface in this particular case consists of 

perfectly conducting hemicylinders or hemispheres situated on a perfectly 

conducting ground plane. The "roughness" i s determined by the choice of 

the distribution of object coordinates , p g . In Chapter 3, p was chosen 
s 

such that the objects were located periodically. This situation i s , i n 

one sense rough because the surface so created i s not f l a t . However, by rough, 

i t i s meant in this context, that at least one s t a t i s t i c a l moment other than the 

mean must be non-zero. Therefore the f i e l d s t a t i s t i c s must be calculated by 

integration or by a Monte-Carlo method. The la t t e r has been chosen for 

reasons already stated in the Introduction. 

The essence of the particular Monte-Carlo technique to be used has 

already been outlined but the method i s given here i n more detail as follows. 

1. Generate a set of coordinates, p„ . 

2. Calculate the electric f i e l d from equation (2.91) or 
(3.21) as desired. 

3. Keep a running total of s t a t i s t i c a l sums of the results 
of 2. • 

4. Repeat 1, 2, and 3 u n t i l enough configurations have been 
included to be reasonably representative of a l l configurations. 

5. Take the f i n a l results from 3 and calculate the required 
s t a t i s t i c s . These st a t i s t i c s may be used to determine when 
"enough" has been reached in k. If not, 1, 2 and 3 may 
be repeated a number of additional times, and the results 
rechecked. 

The usefulness of this method has already been discussed so now 

consider the implementation of the above sequence of events. Note that 



step 2 has already been studied at length i n the preceding chapters. 

The f i r s t problem i s that of determining the coordinate distr ibution ĵ jĈ J. 
A special distr ibution i s developed here for f in i t e scatterer separation 

with particular reference to the experimental problem. 

With a suitable distribution chosen for the coordinates, steps h 

and 5 may be executed to f ind the f i e l d s ta t i s t ics . The remainder of this 

chapter i s devoted to an investigation of the effects of the various 

parameters under the restrictions which have been imposed as a result of the 

study of the periodic problem. 

J+.l Generation of Scatterer Coordinates 

k.1.1 Uniform Distribution 

The simplest method of obtaining the object locations i s to use the 

continuous uniform distribution where a l l values of D in the unit interval 
' s 

(-§-,|) are equally probable. This distribution w i l l be.used in most cal

culations for three reasons. F i r s t , this distr ibution may be obtained 

approximately from a d ig i t a l computer in the form of a pseudo-random sequence. 
32 

The s t a t i s t i c a l accuracy of such a sequence i s discussed by Olsen . Second, 

most theoretical calculations of the f i e l d s ta t i s t ics by the approximate 

integration method use this distr ibution. Third, i t i s a reasonable approx

imation to many pract ical problems. In this model the separation of the 

scatterers may take any value including those which make the objects overlap. 

The qualitative results may not be greatly affected by this , but i t certainly 

does not completely represent a physical situation. Like the single scatter 

approximation i t i s useful in i t s s implici ty provided that the density of 

scatterers i s f a i r l y low. ( i . e . probability of overlaps i s low). 

k.1.2 Non-Uniform Distributions 

There are situations which cannot be considered using the uniform 
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d i s t r i b u t i o n , e. g. when attempting to construct a p h y s i c a l rough surface from 

a t a b l e of the coordinates. I t i s t h i s problem, the construction of a lab

oratory surface f o r experiments, v h i c h prompts the development of a non-

32 

uniform d i s t r i b u t i o n . Olsen has developed two methods f o r computing 

d i s t r i b u t i o n functions -which allow f o r f i n i t e dimensions of the s c a t t e r e r . 

One d i s t r i b u t i o n of t h i s type i s formed by generating a set of coordinates 

using the continuous uniform random number generator RAND which i s supplied 

with the IBM 360/67 computer. The distances between each p a i r of objects are 

c a l c u l a t e d ; any objects closer than a given value are rejected; then new co

ordinates f o r the r e j e c t e d ones are c a l c u l a t e d u n t i l a l l the minimum separation 

c r i t e r i a are s a t i s f i e d . These c a l c u l a t i o n s are straight-forward when a p p l i e d 

to a one dimensional array such as the coordinates f o r the hemicylinder problem 

and should give an accurate representation of a p h y s i c a l c o l l e c t i o n of f i n i t e 

s c a t t e r e r s . Note that a many-body d i s t r i b u t i o n f u n c t i o n of t h i s type has only 

been determined numerically but never a n a l y t i c a l l y . 

There are three drawbacks inherent i n the above method. The f i r s t i s 

t h a t many c a l c u l a t i o n s and hence a r e l a t i v e l y l a r g e c a l c u l a t i o n time i s required 

to produce a set of coordinates. Also, the time increases sharply as the 

s c a t t e r e r s become more dense. The second i s that the program i t s e l f becomes 

very complex when generating p a i r s of coordinates i n a plane. A l s o too many 

numbers have t o be remembered simultaneously. The t h i r d drawback i s not an 

inherent problem, i t i s merely caused by the p a r t i c u l a r algorithm used by 

Olsen t o c a l c u l a t e the d i s t r i b u t i o n , and could therefore be remedied. Using 

t h i s algorithm the Olsen d i s t r i b u t i o n tends toward p e r i o d i c i t y as the density 

i s increased or the width of the empty regions i s increased. Each s i n g l e 

configuration must become p e r i o d i c , of course, but each succeeding one should 

be d i f f e r e n t w i t h i n the width of the empty region. Therefore, the Olsen 

d i s t r i b u t i o n w i l l give a smaller variance than one would expect from a t r u l y 
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random surface. 
32 

The second distribution considered by Olsen has removed the comput

ational problems noted above. This distr ibution provides the necessary 

minimum separation but cannot exactly represent a physical situation because 

the coordinates are allowed to attain only specific values. This method 

(see figure 4.1) consists of dividing the surface into square boxes, the width 

of which i s the minimum allowed separation of the scatterers. The output of 

X 

X X 

X X X 

X X 

Figure 4.1 Discrete Distribution of Scatterers 

RAND i s truncated to yie ld an integer between 1 and the number of boxes in 

a row (7 in figure 4.1) . A pair of these integers i s then used to place an 

object into the corresponding box. I f there i s already an object there, 

a new set of coordinates i s calculated u n t i l an empty box i s found. This 

distribution should be reasonably good for a low ratio of number of objects 

to number of boxes ( 25% shown in figure 4.1) . 

A distribution function that l i e s between the discrete and continuous 

methods outlined above and removes both the computational and theoretical 

disadvantages i s now proposed. By increasing the number of discrete -

positions, it ' should be possible to approximate the desired continuous 

function as nearly as i s required. The one problem associated with this 



method is that the condition (full or empty) of each cell must be remembered. 

Therefore, as the number of cells is increased, an increasingly large amount 

of computer storage is required. Hopefully, then, a large number of cells 

will not be required. 

This method is similar to the discrete Olsen method only now each cell 

is divided into a number of subcells, Ng, which gives a larger number of 

cells (and hence a larger number of discrete positions) per row (compare 

figure k.2 where N = 3 with figure k.l). In this case, a pair of cell 
s 

coordinates are generated by RAND and then the required number of cells 

around the chosen one and the chosen cell itself are checked for the :. 

presence of an object. If there is no object detected, a l l these cells 

are set to f u l l . The process is repeated until a l l the objects have a 

position. 

For this distribution there is the added problem of determining Ns, 

which obviously must be kept as small as possible. Ng, like the antenna 

factor K, must be determined experimentally by increasing its value until 

the change in the field statistics is negligible. 

x 
X 

X 
X X 

r X 

r 

Figure k.2 Modified Discrete Distribution of Scatterers 



k.2 Calculation of Field Statistics 

The remaining part of the Monte-Carlo technique i s the actual calcu

lation of the statis t i c s from the collection of f i e l d values Ĵ EJ . F i r s t 

of a l l , i t must be decided upon which particular s t a t i s t i c a l functions 

should be considered. A thorough discussion of the properties of a l l 
17 

the related s t a t i s t i c a l functions i s given by Twersky . The results 

presented here w i l l primarily be concerned (for simplicity) with the f i r s t 

and second s t a t i s t i c a l moments only. Of course, higher order moments may 

be calculated as readily by this method, with only a small sacrifice in 

computational time and storage requirements. This i s the great advantage 

of the Monte-Carlo method. Analytical methods become so complex that 

usually only the mean may be determined; even the, calculation of the 

variance i s extremely d i f f i c u l t . 

A brief outline of the s t a t i s t i c a l parameters which w i l l be used i n 

conjunction with this particular problem may now be considered. Assume 

that N values of the complex elec t r i c f i e l d E have been calculated for 
n 

N different configurations of the objects according to the desired dis

tribution of coordinates. The functions required for the analysis of the 

mean and variance of the elec t r i c f i e l d for a rough surface are then: 

<Ex> = 
n = 4 

¥E I m ( E n } 

o 1 N /• >|2 
< Ex>" ¥E{ R e ( E n } ) 

n=4L ^ J 

<4>-TE{Im(E">}2 

M 

< w -¥ 2_ yRe(E n)lm(E n) 
n-1. 
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The set of numbers calculated according to equations (k.l) are the five 

basic outputs of the Monte-Carlo portion of the analysis. From these numbers, 

the desired statistical results may be derived. Note that there will be 

additional sums of higher order products i f higher statistical moments 

are required. 

The means of the real and imaginary parts of the field are useful as 

given above in the fi r s t two equations of (k.l). However, the usual 

functions which are considered are the so called "coherent intensity" 

and "coherent phase". 

p 2 2 C =<E X> + <EY> 

(*.2) 
- l <Ey> 

CL = tan 
<Ex> 

The variance of the real and imaginary parts of the field may be 

calculated from 

VlE{Re^)-<E
x>2} 

= <E2>-<E X > 2 (U.3) 

cr 2 = <E 2> - <E > 2 

y N y yy 

Here, the usual function to be considered is the " incoherent intensity". 

Finally, the co-variance and correlation coefficient may be determined 

from 

(>•. 5) 

P o- xa y 
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32 The accuracy of the means may readily be calculated. These 

estimates should give a sufficient indication when enough samples have been 

used in the Monte-Carlo calculation. That i s , the results may he checked 

after a certain number of samples have been processed, and then more samples 

may be taken. The size of the error w i l l also give a good estimate of how 

many more samples are required. These errors of the means are: 

10? A<E v> = 2 p l _ 
N-1 

( 4 . 6 ) 

A<E > = 2 
y 

2 

N-1 

The above calculations w i l l give the desired means and variances 

for any complex function E of the random variables X1,X2, .. X^ for any 

distribution of the X . These calculations must be adhered to unless the 
n 

"til 
f i e l d equations and distribution function for the s object are functions 

of the s^ n coordinate only (e.g. single scatter approximation with con

tinuous uniform distribution). For this case the means may be calculated 

exactly and the variances calculated approximately with a considerable 

saving of computational effort. These special calculations are given i n 

Appendix D. The main advantage of this method i s that the density,p, 

appears after the Monte-Carlo operations have been completed. The 

disadvantages are i t s limited application and limited results. This method 

is only used as a comparison with the Monte-Carlo simulation. 
k.3 Determination of Active Scattering Area 

The value of K = 1.5 for the ratio of the effective surface width to the 

width of the area illuminated by the main beam of the antenna (see equation 

2.97) was checked by performing the same experiment as i n section 3.2.1 

for the periodic surface, upon the random surface. 
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In this case, the beam sharpness factor, n, was varied also. 

As a finite number of objects are being considered, the density must take 

on only discrete values. So that a l l the results could be referred to one 

fixed density, two sets of data were calculated, one above and one below 

P= 0.25. The results were then linearly interpolated to p = 0.25 and are 

shown as functions of K in figures 4.3 and 4.4. 

From figure 4.3 i t can be clearly seen that the value K = 1 is 

sufficient, even for the case of large sidelobes (n = 0 ) , to determine 

the coherent field. However, from figure 4.4 i t appears that K = 1. 5 

would be preferable for calculation of the incoherent intensity. On 

closer inspection of the curves of figure 4.4 i t can be-seen that the curves 

are functions of K for 1.0 < K< 1.5 but not of n. This fact may be inter

preted as indicating that the effect of the sidelobes is negligible. 

Perhaps this variation with K appears because the main beam is seeing only a 

portion of the distribution of objects end hence slightly different surface 

statistics. Thus, in cases where i t is necessary to restrict the number of 

objects for computational reasons, K = 1.0 will be used. In most cases, how

ever, the value K - 1. 5 (which agrees with the periodic array results) will 

be retained. 

4.4 Comparison of Results 

Two sets of functions are available with which to compare the Monte-Carlo 
15 

simulation. The first of these is the Twersky results for the coherent and 

incoherent field scattered by the hemicylinder problem for a continuous uniform 

distribution and infinite plane wave incidence. The second functions are given 

in Appendix E and are obtained by approximate integration of the field equations 

derived in Chapter 2. These functions are for the continuous uniform distrib

ution but include finite beam incidence. A l l methods are based upon the single 

scatter approximation. 
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k.k.l C o h e r e n t F i e l d 

15 The Twersky c o h e r e n t f i e l d i s g i v e n b y 

<E p> = 1 +pfj (4.7) 

where 

11,1 
_ ATE 

11,1. 

n 
n = o 

and 

2a' 

. , 1 
o w 

(4.8) 

(4.9) 

i s t h e number o f a c t i v e s c a t t e r s p e r w a v e l e n g t h . 

The f u n c t i o n m o d i f i e d f o r f i n i t e beamwidth g i v e n i n A p p e n d i x E i s 

<E b>. = 1 + p'f b (4.10) 

where 

f = - 2 
IB 
kL 

a n d 

C a/2kL 

II 1350 

(1 - K & e 1 * * 1 + k L C a ) ~1 

B ~ e 

B ~ 
1.526.8 

(4.n) 

(4.12) 

As t h e above f u n c t i o n s , (4.7) and (4.10) a r e e x p l i c i t f u n c t i o n s o f t h e 

d e n s i t y , p y , and a r e b o t h i n t h e same f o r m , i t i s e a s i e s t t o compare o n l y f ^ 

a,nd f i n d e p e n d e n t l y o f pf However, f o r t h e M o n t e - C a r l o r e s u l t s t h e f u n c t i o n 
P 
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f M C = ^ { < E > - ^ 1 3 > 

must be calculated for every value of p ' . 

f, , f , and fx,n are shown in figure 4. 5 as functions of the antenna to b p Mt • 

surface distance l>/\ for a density, p , of 2% and object radius, a, of 0.2/\. 

The same functions are given in figure 4. 6 for a = 0.05A- From figure 

4 . 5 the following results are evident: 

1. The Monte-Carlo method is the best method for calculating 
the coherent intensity. At least, for the parameter values 
chosen, the analytic solution is too much in error. 

2. The analytic method gives quali tat ively the form of the curves, 
but their variation i s too large. 

3. The approximate analytic solution becomes better as the 
antenna to surface distance i s increased. 

4. The results for f in i te beam incidence are f a i r l y close to 

the plane wave results even for the narrow beamwidth used here. 

From figures 4 . 5 and 4 . 6 i t can be seen that the accuracy of the methods i s 

independent of the object radius. This fact verifies the result found i n 

Appendix E that i t is permissible to s e t = \TJ i n the f i e l d equations. 

Thus, the use of this assumption (see equation ( 2 . 8 0 ) ) for the three dimen

sional case i s indeed reasonable. 

4.4.2 Incoherent Intensity 
15 

The Twersky plane wave incoherent intensity is given by 

P P (4.15) 

P' 

where 

<I*> = -2Re(f ) (4 .16) 

which i s derived by assuming that a l l the incoherent power i s i n the backscatter 

direction only. 
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The f in i te beamwidth modified function i s derived in Appendix E as 

< V • P <4 > -P' (^.17) 

where 

2 II 

2 1 

II 2ft8e 2 
f" 1 
p 90 JtbCa 

2 n 2 6 h 

270 

Again, the Monte-Carlo results may be put into the same form 

MC = P' <XMC> -P' MC (4.19) 

so that 

"Co P' <EMC> (4.20) 

The behaviour of f, , f , and f „ has already been discussed so now i t i s 
b' p' MC 

2 2 2 necessary only to compare <I > , <I. > , and <L.- > to determine the behaviour 
L o o M O o 

of the incoherent intensity. These functions are shown in Figure 4.7 for the 
same parameter values as the coherent intensity. 

From 4.7 i t i s clear that: 

1. The Twersky model gives far too large an incoherent intensity, 
and therefore the assumption that most power i s scattered into 
the backscatter direction i s not va l id at least for this range 
of parameters. 

2. The Twersky results are better for smaller diameter objects. 

3. The analytic method ignores the fine variations due to 
changes in L/\, but gives a reasonably good result, especially 
for low densities. 

4. The analytic and Monte-Carlo results agree more closely for a lower 
number of objects. 



k. 5 Summary 

In summary, then, i t has been found that the Monte-Carlo method as 

implemented in this chapter i s a useful method for calculating the mean and 

variance of the f i e l d scattered from the discrete scatterer model of a rough 

surface. The Monte-Carlo method also allows the use of the same distributions 

of object coordinates to be used for both computer simulations and physical 

experiments. The actual distribution function to be used has been developed, 

and w i l l be studied i n detai l in the next chapter. 

The analytic solution has the advantage of being simple to calculate 

numerically but gives .large errors in some cases. In fact, the plane wave 

solution i s better than the analytic solution for the coherent intensity 

while the opposite i s true for the incoherent intensity. Thus, a good estimate 

of the behaviour of the scattered f i e l d may be obtained by using a combination 

of the plane wave and analytic beam solutions. That i s , 

with F ' given by equation (E. kk). 

For the three dimensional problem, the Monte-Carlo method remains the only 

useful means of numerical analysis. 

2 / 2 

a « arg(l + p f p ) (4.21) 
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5. CONSTRUCTION OF A LABORATORY SURFACE AND THE 
MEASUREMENT OF ITS SCATTERED FIELD 

Perhaps the most accurate method f o r determining the f i e l d s t a t i s t i c s 

i s the d i r e c t measurement of the f i e l d scattered from a s u f f i c i e n t l y 

large number of independent ensembles of scatterers which are i l l u m i n a t e d 

by a r e a l antenna. This experimental i n v e s t i g a t i o n i s a t t r a c t i v e because 

of the inherent freedom from mathematical approximations (such as the single 

scatter approximation). 

On the other hand, there are two main disadvantages to the experimental 

approach. The f i r s t a r i s e s from the d i f f i c u l t y of ad j u s t i n g the system 

parameters to exact values, that i s the system must have close mechanical 

tolerances and s t a b i l i t y . The second i s the inherent i n f l e x i b i l i t y of 

the system. The v a r i a t i o n of most parameters requires the construction 

of a new part of the system. 

These disadvantages are outweighed, however, by two features which 

are d i f f i c u l t , i f not impossible, to implement i n the computer simulation. 

F i r s t , object shapes other than hemicylinders or hemispheres may be 

considered with l i t t l e extra e f f o r t . Second, a d i s t r i b u t i o n of sizes 

as w e l l as locati o n s of objects may be used. Although these features 

w i l l not be u t i l i z e d i n t h i s study, t h e i r a p p l i c a t i o n i s immediate and 

therefore provides impetus f o r the development of a workable experimental 

system. 

5.1 Design of the Experimental System 

For the design of the experiment, four major problems must be considered. 

The f i r s t i s the choice of suitable parameters so that the greatest 

amount of information can be obtained f o r the simplest and l e a s t number of 

changes i n the experimental set-up. 



The second i s the method of construction of a s p e c i f i c rough surface. 

The t h i r d i s the method of measurement and data c o l l e c t i o n . The f i n a l 

problem i s the method of analysis of the data i t s e l f . 

5.1 .1 Parameter Values 

For the experimental problem, the s e l e c t i o n of s u i t a b l e parameter 

values i s l i m i t e d mainly by the dimensional constraints of the experimental 

set-up and the computation time l i m i t a t i o n s of the corresponding Monte-Carlo 

simulation. 

The wavelength was chosen i n the 8 millimeter range to keep a l l 

the p h y s i c a l dimensions of the experiment reasonably small. For example, 

at .3 • cm. wavelengths, the dimensions of a sin g l e surface would be too 

large, while at h mm. wavelengths, the mechanical tolerances (to a f r a c t i o n 

of a wavelength) could become a problem. 

The simulation time i s a function of the number of objects so i t i s 

necessary to work with as few scatterers as possible. This implies that 

t h e i r size/wavelength should be large, t h e i r density low, the antenna 

close to the surface, and the beamwidth narrow. In terms of the approx

imations used i n the simulation, the narrow beamwidth and low density are 

desirable while the large s i z e of scatterers and small antenna to surface 

distance are undesirable. 

The upper bound of the object s i z e , then, i s l i m i t e d by the sin g l e 

s c a t t e r approximation, while the lower bound i s determined from the l i m i t e d 

number of objects. These considerations give a u s e f u l range f o r the object 

radius of 

0 . 3 < - ^ - < 0 . 5 (5 .1 ) 

The upper l i m i t was chosen f o r t h i s experiment to y i e l d as large an amount 
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of incoherent s c a t t e r i n g as possible. Therefore, at 8 mm. , 

a =X/2 
(5.2) 

= .169 i n . 

The antenna-surface distance i s l i m i t e d by the requirement that the 
k 

surface l i e i n the f a r f i e l d of the antenna. That i s 

D 2 

L > . - ~ (5.3) 

where D i s the width of the r a d i a t i n g aperture. For the horn used i n 

figu r e 2.5 and at a frequency of 35-0 GHz., 

K ,7.62 2 

L 2 ( 7 B 5 I ) 

>79A 

(5-4) 

(5.5) 

Therefore, choose 

L = 80A. 

* 27 i n . 

k 

Actually, twice the above value i s to be p r e f e r r e d to be absolutely 

c e r t a i n that the surface i s i n the f a r f i e l d of the antenna, but (5-5) 

must be used to keep the i l l u m i n a t e d surface area as small as possible. 

The laboratory antenna has a f i x e d beamwidth of 

6 = 8 ° (5.6) 
o 

which w i l l also be used f o r the simulation. 

Some parameters i n t h i s experiment can be varied without too much 

e f f o r t . The most r e a d i l y v a r i a b l e parameter i s the frequency, which may 

be varied from 32 to 38 GHz. f o r the p a r t i c u l a r generators used. The 
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other e a s i l y v a r i a b l e parameter i s the object density. As the density 

i s to be kept low, a good s t a r t i n g value i s chosen to be 

P~% (5-7) 

5.1.2 Method Of Measurement 

The problem of experimentally measuring the s t a t i s t i c s of the f i e l d 

scattered from a rough surface proceeds as follows: 

1. Construct a rough surface s u f f i c i e n t l y l a r g e r than the 
area i l l u m i n a t e d by the main beam of the antenna. 

2. Place the surface i n the beam at a c e r t a i n p o s i t i o n . 

3. Measure the scattered f i e l d from t h i s surface. 

4. Measure the scattered f i e l d from a f l a t surface at the 
same p o s i t i o n . 

5. formalize the f i e l d (3) by the f i e l d (4). 

6. Repeat steps ( l ) to (5) keeping a l l parameters f i x e d 
f o r a large number of'independent surfaces ( l ) . 

As such a large number of independent surfaces are required, i t was 

decided to reduce the manual labour by constructing a surface which was 

several beamwidths i n area. By t h i s method, several independent samples 

may be obtained from one surface. This surface may then be moved contin

uously past the antenna to give a continuous scattered f i e l d as a function 

of p o s i t i o n . The maximum number of independent samples may then be 

selected by some method from t h i s continuous set of data. This method 

was implemented using the transverse p o s i t i o n e r and anechoic chamber 
32 

developed by Olsen f o r h i s s c a t t e r i n g i n v e s t i g a t i o n s . 

This scanning method has one disadvantage, however. I t i s d i f f i c u l t 

to construct a surface where the ground plane portion i s f l a t over as large 

an area as i s required f o r a large number of samples. I t i s also hard 

to adjust the p o s i t i o n i n g of the surface on the scanner such that the 
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ground plane i s always the same distance from, and i n the same o r i e n t a t i o n 

with respect to the antenna. These errors can e a s i l y introduce phase errors 

of the order of 2 radians at 8 mm. wavelengths. 

The s o l u t i o n to t h i s problem was to devise a system which tends t o cancel 

the phase errors. The system used f o r t h i s experiment i s shown i n f i g u r e 

5.1. The d i r e c t i o n of motion of the surface i s normal to the page. Here, 

35Ghz. klystron 

isolator 

mixers 

X 
I mi 
rcvr. 

<3 REF* 

<3 SIC. 

tape 
rec. 

4 chart. 

scanner 

Figure 5-1 Experimental System 

the surface i s covered with the d i s t r i b u t i o n of hemispheres i n the lower 

h a l f , while the upper h a l f remains f l a t . A reference s i g n a l i s 

obtained from the upper antenna, while the a c t u a l scattered s i g n a l from 

the rough surface i s obtained from the lower antenna. The d i v i s i o n of the 

rough surface s i g n a l by the f l a t surface s i g n a l should then give the normal

i z e d scattered f i e l d . The remaining errors are now due only to t i l t i n g of the 

surface as i t i s moved. Every e f f o r t was made to mount the surface so that 

these errors were kept to a minimum. 

The reference s i g n a l i s then f e d to the reference channel of the 
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Scientif ic Atlantic Model 1751, #8 phase-lock receiver while the random 

signal i s sent to the signal channel. The three outputs (signal phase -

reference phase, reference magnitude, and phase magnitude) are recorded 

on an Ampex Model SP - 300 F.M. tape recorder for later analysis. Before 

any measurements can be taken, an absolute reference must be 

established since the gain and phase shifts w i l l not necessarily be the 

same over the signal channel and the reference channel,This reference is 

obtained by placing a f la t metal plate against the rough surface and 

para l le l to i t as in figure 5.2. The slight variation i n position between 

the f la t surface and the actual one under i t should not noticeably affect 

the magnitude, and the phase shift w i l l cancel due to the measurement method. 

The system gain controls and phase shifts could now be set to give a 

Figure 5-2 Reference Plate for Normalization 

reading of 1 (0 db) on the magnitude channels and 0 on the phase channel. 

It i s more convenient, however, to merely record the actual readings on 

the three channels, and then record the subsequent data from the rough 

surface without altering the controls. The data can then be normalized 

later at the time of processing (see section 5 . 4 . 1 ) . 
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5.1.3 Construction of the Surface 

The material chosen f o r the surface was .05 i n . t h i c k s o f t annealed 

aluminum. Ordinary aluminum and so f t copper sheet were t r i e d , but these 

materials were not d u c t i l e enough. The hemispheres were then formed i n 

the sheet at the appropriate l o c a t i o n s using a punch and die as shown i n 

figur e 5-5-

Figure 5-3 Forming a Hemispherical Scatterer i n Aluminum Sheet 

The die was machined to be a perfect hemisphere of the desired radius, 

but the shape of the punch had to be c a r e f u l l y determined by t r i a l and 

error. The main problems encountered were tearing of the metal and pointed 

"hemispheres". 

The d i s t r i b u t i o n of s c a t t e r e r positions.was generated 

by the algorithm developed i n Chapter h f o r the discrete d i s t r i b u t i o n 

of f i n i t e - s e p a r a t i o n scatterers. As the method was programmed on the 

IBM 360/67 d i g i t a l computer, i t was advantageous to use the Calcomp d i g i t a l 

p l o t t e r to obtain a d i r e c t p l o t of the object p o s i t i o n s f o r each surface. 

Part of a scaled down output i s shown i n f i g u r e J.k. 

The coordinates were p l o t t e d i n r e a l size so that the computer output 

could be fastened d i r e c t l y to the aluminum sheet. The object l o c a t i o n s 

were then t r a n s f e r r e d to the metal surface with an automatic centre punch. 
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Figure 5.4 Computer Generated Hemisphere Coordinates 

5.2 Simulation Test of the Surface Distribution 

Recall at this point (see section 4.1.2) that there are two main para 

meters which characterize the distribution function developed for use in 

the experimental study. These parameters are the minimum separation, 
dmin* a n d t h e n u m b e r o f subdivisions of the basic c e l l , N g . The l imit ing 

effect of these parameters i s shown i n figure 5.5- Obviously, K 
s 

should be as large as possible and dn]j_n as small as possible to allow 

continuous 

distribution 

^ i n - * - 0 

< 
discrete 

distribution 

continuous 
' uniform 

distribution 
-4-

i n 

Figure 5.5 Effect of Distribution Parameters 
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comparison to be made with the continuous uniform distr ibution (ideal case). 

5.2.1 Determination of Minimum Grid Subdivision 

The coordinate distribution function of section 4.1.2 may now be 

investigated by the Monte-Carlo simulation to determine the minimum value 

of N , the number of c e l l subdivisions required to approximate a continuous s 

distribution. The minimum value i s used, of course, to minimize the comp

utation time. As the same parameter values should be used as for the 

experiment, this problem was not discussed earl ier in Chapter k. 
2 

Figure 5.6 shows the coherent intensity, C , the coherent phase, (X, 

and the incoherent intensity, <̂ I ) as a function of N for densities of 

2. 5$, 5$, and 10$. The minimum separation has been conveniently chosen to 

be 0.5 in . or 1.48X at 35-0 GHz. This i s about the minimum separation 

that can be mechanically formed because of the f in i te dimensions of the 

walls of the die. These curves (figure 5.6) indicate that N = 3 i s 
S-

sufficient for densities of 10i, while N = 2 i s sufficient for lower densities 
s 

In the interest of minimizing computation time, the value of N = 2 was 
s 

selected as sufficiently large for the purposes of this experiment. 
Note that the coherent phase i s the quantity most sensitive to 

changes in N and shows some variation even for a density as low as 2. 5$. s 

This increase of the coherent phase with increasing N g shows that the surface 

actually becomes "rougher" even though i t can be seen that the incoherent 

intensity i s • decreasing. The reason for this effect i s that the increased 

roughness causes more power to be scattered into other directions instead 

of increasing the fluctuations in the specular direction. 

5.2.2 Effect of Minimum Separation 

The other distribution parameter, d [ n ^ n may now be investigated, 

although the value of d m i n = 1. has already been selected. Figure 5-7 

shows the coherent intensity, coherent phase, and incoherent intensity as 
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Figure 5.7 Scattered F i e l d S t a t i s t i c s vs. Density of Hemispheres 
Various Separations. 
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a function of density for a minimum separation of 0, 1, and 1. U8 wavelengths 

for Ns=2. For a density of 5% (the value chosen for the experiment) the 

variation over the range of d ^ can be seen to be relatively slight. 

In this case, the surface is actually becoming more 

periodic as d is increased. This fact is illustrated by the decrease in 
min 

coherent intensity. Obviously, the coherent f i e l d w i l l approach some limiting 

value <1 since even the periodic surface is rough to the extent that i t w i l l 

scatter power into directions other than the specular one. 

5.2.3 Probability Density of Coordinates 

A more direct check upon the behaviour of the distribution function may 

be obtained by numerically calculating the probability density of the 

normalised polar coordinates of the scatterers as a histogram. Polar 

coordinates are used to minimize problems in calculating the histograms due 

to an accidental correlation between the discrete divisions of the d i s t r i 

bution function and the discrete "boxes" of the histogram. The radial 

coordinate i s that given by equation (2.118), that i s 

R + < ( 5 - 8 ) 

while the angular coordinate is given by 

1 P ^ 
0 = — t a n " 1 p (5.9) 

The individual coordinates are sorted into 25 discrete ranges for 500 

independent samples of the surface. On the average there are about 15 

scatterers per surface giving about- 7500 coordinate values per graph. 

Figures 5-8 - 5-10 show the probability density histograms for an object 

density of 5% with. N = 1, 2, and 3 respectively. Figures 5.11 - 5-13 show 

the same functions for an object density of 10%. The continuous straight 

lines on the graphs indicate an ideal continuous uniform distribution. 
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Figure 5-10 P r o b a b i l i t y Density of Hemisphere Coordinates 
f o r an Object Density of 5% a n d 500 Sample 
Surfaces, N = 3-
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Figure 5-12 P r o b a b i l i t y Density of Hemisphere Coordinates 
f o r an Object Density of 10% and 500 Sample 
Surfaces, N = 2 . 
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The following important characteristics of the surface distr ibution 

are i l lus t ra ted by these graphs: 

1. The distr ibution for Ng=2 (h subcells) i s more uniform than 
for N s=l (no subcells). For Ns=3> however, the improvement 
i s not so pronounced. 

2. As N g i s increased, the density function i t s e l f becomes more 
random. A moderate periodic effect can be seen for N =1. 

s 
3. For N g=l, the probability density functions are almost 

identical for an object density of either 5$ or 10$ while 
for larger values of N , the higher object density shows 
the greatest amount of improvement. 

Characteristics #1 and #2 show that the distribution function behaves as 

desired, and point out the poor characteristics of the simple discrete 

distribution (N. = l ) . Thus, the use of such a distr ibution i s jus t i f ied and 

#3 shows that i t i s even more important to use this distr ibution as the 

object density i s increased. #2 also strengthens, the previous choice of N : 
s 

= 2 for the experimental study. 

The variance of the coordinate distr ibution i s shown in figure 5- iM 

as a function of N g . These curves also show that increasing N g causes the 

distribution of coordinates to behave more l ike a continuous uniform 

distribution. Of course, (see figure 5.5) the minimum separation must also 
0.034 0.34-1 

0.032 

N, 

Figure 5 .ik Variance of Scatterer Coordinates as a Function of N : 
(a) P= % ' S 

(b) p= 10$ 
(c) Continuous Uniform Distribution 
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go to zero before the continuous uniform distribution i s reached exactly. 

Notice that for the particular parameters chosen for this surface, the 

higher density behaves more like the continuous uniform distribution. Such 

behaviour is not general, however, as can be seen by the following example. 

Take N =.:.l and a density high enough so that a l l boxes are f i l l e d . For s 

this case,the distribution has become periodic for a large density, not 

more random. 

The means of the coordinates have not been illustrated because they are 

quite insensitive to changes in the distribution parameters and hence 

remain essentially constant over the range of variables studied here. 

5.2.k Distribution of the Number of Scatterers per Independent Sample 

As a f i n a l check upon the surface distribution, the probability density 

of the number of spheres per independent illuminated area is shown in figure 

5.15- The solid curves are Normal (Gaussian) distributions calculated using 

the mean and variance which were determined from the actual distributions. 

In a l l cases i t can be seen that the number of scatterers i s distributed 

almost normally. The correspondence becomes better for increasing N , 

further i l l u s t r a t i n g the improvement obtained using this distribution function. 

The fact that the distributions are almost normal also indicates that 

the illuminated areas are chosen from a sufficiently larger area. That i s , 

edge effects and odd effects due to the fact that the density must be actually 

fixed over a limited area (for computational expediency) are negligible. 

5.3 I n i t i a l Testing of the Experimental Surface 

For an i n i t i a l test to determine the magnitude of the edge effects, 

separation distance of the antennas, and the best widths for the f l a t and 

rough sections of the experimental surface, a special test surface was used. 

This surface consisted of a 2 f t . square aluminum sheet with hemispheres 
formed only in the lower right hand quarter. 



The surface was scanned by the system shown i n f i g u r e 5.1 with the an

tennas a r b i t r a r i l y separated by 4.75 i n . centre to centre. The r e s u l t i n g 

output from the receiver i s shown i n f i g u r e 5.l6. The distances shown are 

a c t u a l l y the average of several t e s t s performed with the surface at d i f f e r e n t 

elevations. The v a r i a t i o n between these t e s t s was s l i g h t . 

From f i g u r e 5«l6 i t can be seen that both antennas should be about •• 

k i n . from the edge of the surface and about 2 i n . from the t r a n s i t i o n l i n e . 

These f i g u r e s give a smallest surface that i s 12 i n . wide with random 

scatterers over the lower 6 i n . 

t e s t surface 

magnitude 

phase 

6 f — 81 distance 

Figure 5.16 Results from the Test Surface 

The "length" of the surface i s determined from the f a c t s that there must be 

k i n . extra at each end to take care of edge e f f e c t s while the chamber i t s e l f 

i s 96 in- wide. These dimensions give a surface width of 52 i n . with a 
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scanning distance of hk i n . I f the apparent figure of h i n . 

i s assumed to give the distance between independent samples, then each 

surface should give at least 13 independent samples of the scattered f i e l d . 

5.4 Experimental Results Compared With Simulation Results 

A set of ten experimental surfaces were bu i l t according to 

the preceding specifications. These surfaces were scanned with the measuring 

and recording apparatus of figure 5-1 using the method of section 5.1.2. 
Frequencies of 35 to 39 GHz. in steps of 0.5 GHz. were used. A Monte-Carlo 

simulation was also performed, using the equations (2.133) to calculate the 

f i e ld . The object coordinates were generated by the same program as used 

for the experiment and the relative coordinates were calculated for the antenna 

at 100 positions across the surface to simulate the experimental scanning 

as closely as possible. 

5.4.1 Preliminary Processing of the Experimental Data 

The analog signals from the tape recorder were converted to a set of 

d ig i t a l samples using the DEC PDP-9 d ig i t a l computer and i t s associated 

multiplexed analog to d ig i t a l converter. Use of the multiplexer allowed 

essentially simultaneous sampling of the three signal channels plus a fourth 

control channel, which was generated automatically by the scanner, to indicate 

the beginning and end of data on the other three channels. The digi ta l ized 

samples were then transferred from the PDP-9 memory to punched paper tape. 

This paper tape was then used as input data for the much larger IBM 360/67 
d ig i t a l computer, which i s a superior machine for performing the many accurate 

numerical operations required for the s t a t i s t i c a l analysis of large amounts 

of data. The raw data as read from the paper tape i s unnormalized and 

consists of the following: ( l ) the level on the phase channel (0) for 0° 
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phase shift on the receiver phase meter, (2) The reference plate reading 

(R , S , d) ), and (3) The signal from the surface (R , S , 0J. 
P P p . s s 0 

The next part of the data processing i s concerned with the calculation 

of the actual normalized samples of the scattered f i e l d . F i r s t , the 0° 

phase reference i s averaged over a l l samples to minimize effects of channel 

noise and frequency d r i f t . Second, the reference plate signals are averaged 

over a l l samples (there are added fluctuations here due to deviations from 

a perfectly f l a t reflector). For the normalized fields, 

R / = K <R > 
p r N p' 

p S N V 
( 5 . 1 0 ) 

where KR, KS, and K0 are the overall channel gains, and RZ, S', and (£/ 

are the true normalized f i e l d value; Thus 

= 1 
P 

0 ' = o c 

(5.11) 

th so that the k sample of the normalized f i e l d scattered from the rough 

surface i s given by 

S s < V  
R s <SP> 

a ^ ( k ) ) = {<0P>-0s}f 
(5 .12) 

These two quantities were calculated, for each sheet (approximately 100 

samples per sheet per frequency) and stored on d i g i t a l magnetic tape for the 

subsequent s t a t i s t i c a l analysis which comprises the third and f i n a l stage 
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of the processing of the experimental data. The corresponding samples 

generated by the Monte-Carlo simulation were also stored on the same 

magnetic tape for ease of comparison. 

These sets of normalized data were plotted against the scanning position 

for a preliminary inspection before any further processing was carried out. 

Data for a typical sheet i s shown in figure 5-17 (a) and (b). I t was 

noticed that some of the experimental curves showed an appreciable l inear 

offset from the normalized values, as well as the expected random variations. 

These offsets were completely different from sheet to sheet and for different 

frequencies, indicating that some measurement errors due to improper 

normalization remain in spite of the precautions which have been taken (see 

section 5.1-2). The Monte-Carlo simulation results, however, do not exhibit 

this characteristic and furthermore, they show very l i t t l e variation over 

the range of frequencies used (due. t o the fact that the f i e ld 

i s normalized for each frequenc5r). The absence of this variation with 

frequency was fortunate, and suggested one f i n a l method for reducing 

measurement errors. 

Assume that the offset errors are completely random for each scan, and 

that the actual variation with frequency i s essentially negligible as 

indicated by the simulation. Then, average the data over the various 

frequencies to obtain one set of frequency averaged data. The data so 

obtained w i l l then be approximately that obtained by performing the ident ical 

experiment nine times and using the average of the nine readings. This 

process w i l l also reduce errors due to measurement of the parameters of the 

system such as the antenna to surface distance. Typical frequency averaged 

data i s shown in figure 5.17 (c). Notice that the offset for this sheet has 

been considerably reduced. 



5.4.2 Correlation Distance for the Scattered F i - l d 

To determine the maximum number of independent 'samples which can be 

obtained from each surface, the magnitude of the complex autocorrelation 

coefficient, 

was calculated both for the experimental data and for the simulation data. 

to yie ld the curves shown i n figure 5«l8 (a). For comparison, i t can be 

seen from figure 2.5 that for the experimental antenna to surface distance 

of 27 inches, the 3 db width of the beam at the surface i s approximately 

3.6 i n . while the width of the entire main beam i s about 7.9 i n . 

The simulation curve gives an uncorrelated distance of about 1.75 i n . 

which i s considerably less than the half-power width, while the experimental 

results y ie ld an uncorrelated distance s l ight ly larger than the half-power 

wi dth ( similar results were obtained in the preliminary testing of section 

5.3). This discrepancy may be explained by considering the opposing 

errors for the two methods. 

For the Monte-Carlo simulation, the main source of error is caused by 

the single scatter approximation. The absence of M.S. w i l l cause the auto

correlation function to be narrower, and have a sharper transition from 

correlated to uncorrelated samples because interactions from adjacent but 

unilluminated areas are not considered. A secondary source of error, that 

of considering the antenna beam amplitude to be zero beyond a certain angle 

w i l l also contribute to this effect. 

On the other hand, the main experimental errors w i l l tend to widen the 

correlated area. These errors are caused by improper normalization and surface 

P was calculated separately for each sheet and then averaged over a l l sheets 



RRGtE).IDEGREES) u ; RRG(E3 [DEGREES] 

Figure 5.18 S t a t i s t i c s of Simulated ( l e f t ) and Experimental (right) Data. 
(a) Autocorrelation of the E l e c t r i c F i e l d as a function of the 

distance between samples. 
(b) P r o b a b i l i t y Density of the Magnitude of the F i e l d . 
(c) P r o b a b i l i t y Density of the Phase of the F i e l d . 
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waviness due to s l i g h t bending of the aluminum sheet. Both of these e f f e c t s 

cover areas -wider than the beamwidth, and hence w i l l increase the c o r r e l a t i o n 

over a f a i r l y long distance. 

In view of the above r e s u l t s , i t was decided to keep samples that were 

the half-power width ( i . e . 3 .6 in.) apart. Thus, 13 independent samples per 

sheet were obtained. 

5 . 4 . 3 S t a t i s t i c s of the Scattered F i e l d 

For the simulation and f o r the experiment, the coherent and incoherent 

f i e l d s were ca l c u l a t e d along with t h e i r p r o b a b i l i t y density functions. The 

p r o b a b i l i t y d e n s i t i e s are shown i n f i g u r e s 5 - l 8 (b) and ( c ) . The s o l i d 

curves are normal de n s i t i e s c a l c u l a t e d using the mean and variance of the 

respective data. The s t a t i s t i c a l moments are given i n table 5-1. 

c 2 a I 2 <|Ef> <afg E> 

simulation • 9 5 4 l .3469° .00221 .9835 .595 .0009 2.79 

experiment • 9755 
o 

2.335 .03265 1.0025 2.17 .0052 9 8 . 0 

Table 5.1 S t a t i s t i c s of Simulation and Experimental Data. 

From f i g u r e 5 . l 8 (b) and table 5-1 i t can be seen that the d i s t r i b u t i o n s 

of the f i e l d magnitude f o r the experiment and f o r the simulation are reason

ably s i m i l a r . The means are very close, while the standard deviation f o r the 

experiment i s increased by a f a c t o r of about 2 . 4 . A reasonable agreement 

between these figures i s expected because the measurement of the magnitude of 

the f i e l d i s not nearly as s e n s i t i v e to experimental e r r o r as i s the phase 

measurement. Thus, i t i s reasonable to conclude that a high percentage of 

the deviation i s due to multiple s c a t t e r i n g e f f e c t s . The s e n s i t i v i t y of the 

phase measurements i s i l l u s t r a t e d i n f i g u r e 5>l8 (c) where the phase 
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distributions are shown. Here there i s an appreciable difference between 

the experiment and the simulation. In fact, the standard deviation for 

the experimental data i s now almost 6 times larger. 

5.5 Summary 

The experimental approach as investigated in this chapter can be 

considered to be a qualified success. The method i t s e l f i s an excellent 

one, but the use of the existing scanner introduced some large errors which 

made i t d i f f i cu l t to assess quantitatively the comparative behaviour of the 

simulation and the experiment. Suggestions for improving this situation 

are given in sections 6. 3 and 6.h. 

The design of the surface model and i t s associated distr ibution function, 

though, was found to be experimentally practical and a good representation 

of a random surface. The actual distribution used for the experiment was 

based upon a division of the or iginal |- i n . ce l l s into four i n . subcells. 

The coordinate distribution generated for this choice of N g was found to 

give an acceptable trade-off between computation time and the required 

characteristics of the distribution. 

A detailed study of the behaviour of the model would require that 

many more surfaces be bu i l t for several different parameter values. This 

extension of the work, was considered to be beyond the range of this thesis. 
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6. CONCLUSIONS 

6.1 Surface model 

The r e s u l t s of section 5.1.3 and 5.2 i n d i c a t e that the surface model 

developed i n t h i s t h e s i s has a l l the c h a r a c t e r i s t i c s that were or i g i n a l l y -

required. B a s i c a l l y , these requirements were 

1. That the s t a t i s t i c s could be c o n t r o l l e d as desired. 

2. That the model be usable both f o r computer simulation 
and f o r a c t u a l experiments. 

The f i r s t c r i t e r i o n was s a t i s f i e d by using an array of d i s c r e t e 

scatterers (as opposed to a continuous rough surface) where the randomness 

was determined by using a computer generated pseudo-random sequence. 

In the case studied here, the randomness was introduced by the s c a t t e r e r 

coordinates although other v a r i a b l e s such as s c a t t e r e r s i z e and/or shape 

could have been used. In the simplest case, the simulation of the 

single scattered f i e l d , no s p e c i a l problems a r i s e . That i s , a continuous 

uniform d i s t r i b u t i o n may be used d i r e c t l y to generate the coordinates 

because overlapping scatterers do not matter. 

For any simulation which includes multiple s c a t t e r (and hence 

sca t t e r e r separation) or to s a t i s f y the second c r i t e r i o n above, 

a more soph i s t i c a t e d coordinate d i s t r i b u t i o n f u n c t i o n must be u t i l i z e d . 

Such a d i s t r i b u t i o n function was developed i n section 4.1 and f u l l y tested 

i n section 5-2. The t e s t r e s u l t s , which are i l l u s t r a t e d i n f i g u r e s 5.6 

to 5 . l 6 , show that t h i s d i s t r i b u t i o n i s an acceptable function to use f o r 

the study of any d i s c r e t e s c a t t e r e r problem. I t i s a good approximation 

to a continuous uniform d i s t r i b u t i o n , and i t i s simple and quick to 

numerically c a l c u l a t e f o r one, two, or three dimensional p o s i t i o n vectors. 
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The second c r i t e r i o n f u r t h e r l i m i t e d the model t o be composed of s p e c i f i c 

shapes (hemicylinders and hemispheres) so that e i t h e r the scattered f i e l d 

could be represented mathematically with ease, or that a metal surface model 

could be machined i n t o the same shape. The mathematical s c a t t e r i n g functions 

are derived i n Chapter 2 while the method of surface construction i s o u t l i n e d 

i n section 5 « 1 . 3 . The accuracy of data obtained using t h i s surface model 

depends upon the degree of approximation which i s applied to the mathematical 

s c a t t e r i n g functions and the degree of p r e c i s i o n with which the surface i s 

machined. For t h i s study, the s i n g l e s c a t t e r approximation was mainly used 

f o r the simulation, and the experimental surface was formed with a tolerance of 

b e t t e r than +5$ f o r object s i z e and shape. S l i g h t d i s t o r t i o n of the surface 

between scatterers was i n e v i t a b l e . 

The surface model developed i n t h i s t h e s i s f o r the study of rough 

surface s c a t t e r i n g was, therefore, found to be e n t i r e l y s a t i s f a c t o r y . This 

model i s v e r s a t i l e , easy to use, and lends i t s e l f to g e n e r a l i z a t i o n to 

higher orders of randomness. 

6.2 Simulati on 

The aims of the computer simulation of the rough surface s c a t t e r i n g 

problem were e s s e n t i a l l y : 

1. To f i n d a, good mathematical method f o r the f i e l d 
c a l c u l a t i o n s based upon the p r i o r choice of surface 
model. 

2. To use f i n i t e non-plane incident r a d i a t i o n , 
representative of a p h y s i c a l antenna. 

3. To provide comparison with experimental studies. 

As only a numerical method f o r determining a surface d i s t r i b u t i o n was 

developed, the average f i e l d c a l c u l a t i o n s were based on a Monte-Carlo method. 

A single c a l c u l a t i o n w i l l therefore involve only the instantaneous f i e l d 
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value due to a f i x e d configuration, while the a c t u a l s t a t i s t i c s are c a l c u l a t e d 

from a set of such values. I t was found i m p r a c t i c a l to use any other than 

the s i n g l e s c a t t e r or f i r s t order nearest neighbour approximation f o r the 

f i e l d due to a single configuration, but only the s i n g l e s c a t t e r method was 

generally used. Higher order multiple s c a t t e r i n g e f f e c t s were inve s t i g a t e d 

however, f o r the r e s t r i c t e d case of a p e r i o d i c array of hemicylinders. The 

re s u l t s i n d i c a t e d that f o r de n s i t i e s of greater than 30% and object s i z e 

greater than §-,\ i n radius the multiple s c a t t e r i n g e f f e c t i s d e f i n i t e l y not 

n e g l i g i b l e . 

The Monte-Carlo method requires that only a f i n i t e number of scatterers 

be considered. This i s not a serious constraint because p h y s i c a l problems 

are nearly always composed of f i n i t e areas of surface. In f a c t , the second 

aim of t h i s part of the study automatically r e s t r i c t s the number of scatt e r e r s 

per saciple by r e q u i r i n g only a f i n i t e beam of i l l u m i n a t i o n . The p a r t i c u l a r 

form of the incident r a d i a t i o n i s developed i n section 2.k and i l l u s t r a t e d 

i n f i g u r e 2.5. The functions were chosen to reasonably approximate a horn 

antenna r a d i a t i o n pattern, have independently v a r i a b l e beamwidth and 

sidelobe l e v e l , and be simple to calculate numerically. The values of the 

vari a b l e parameters of t h i s model were subsequently set to approximate the 

horn antenna used f o r the experiment. 

The one problem which i s encountered with the f i n i t e beam i s that i t i s 

d i f f i c u l t to d i r e c t l y compare the r e s u l t s with other methods of c a l c u l a t i o n . 

This was attempted i n se c t i o n h.k, where some a n a l y t i c a l solutions are given 

f o r the coherent and incoherent f i e l d s . I t was concluded that the Monte-Carlo 

simulation was the best means of c a l c u l a t i o n . 

6 . 3 Experiment 

The aims of the experimental study were 
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1. To demonstrate that a su i t a b l e experiment could be performed. 

2. To compare with numerical methods. 

3. To extend the i n v e s t i g a t i o n to areas where numerical methods 
are p r o h i b i t i v e . 

The f i r s t goal above was amply demonstrated. The technique of scanning 

a formed metal surface was shown to be a p r a c t i c a l method. The forming of 

the sheet according to the pre-calculated d i s t r i b u t i o n of coordinates was 

quick and very simple once the proper punch and die had been constructed. 

The scanning system that was used though, was less than perfe c t , g i v i n g 

r i s e to r e l a t i v e l y large phase measurement errors. Some methods of preventing 

t h i s problem i n future experiments are discussed i n the next section. 

The experimental r e s u l t s compare favorably with the simulation, but 

the aforementioned phase errors make i t d i f f i c u l t to in t e r p r e t the deviations 

i n terms of s p e c i f i c mechanisms. A set of experimental data for various 

den s i t i e s would most l i k e l y help to analyse the various e r r o r s , but t h i s i s 

beyond the scope of t h i s work. 

The t h i r d goal has been attained i n theory, but was judged also to be 

beyond the present scope. The formed metal surface can d i r e c t l y accomodate 

high densities of sc a t t e r e r s , large s i z e s of s c a t t e r e r s , and odd shaped 

s c a t t e r e r s . With a s l i g h t m odification to the d i s t r i b u t i o n function random 

siz e s of scatterers could also be included. 

6.4 Numerical Results 

The main r e s u l t of t h i s study has been to develop c e r t a i n v a l i d methods 

for i n v e s t i g a t i n g the behaviour of rough surface s c a t t e r i n g . There are a 

large number of v a r i a b l e parameters, and even f o r a f i x e d set of parameters, 

a large number of random v a r i a b l e s inherent i n t h i s problem. Because 

of t h i s , a d e t a i l e d numerical study of the scattered f i e l d was not 
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undertaken. Instead, the behaviour of parts of the sc a t t e r i n g were 

investigated f o r s u i t a b i l i t y and for the best parameter values to use for 

subsequent c a l c u l a t i o n s . 

For the per i o d i c model of hemicylinders i t was found that 

1. The width of the act i v e s c a t t e r i n g area should be at 
lea s t comparable to the width of the main beam of the 
antenna at the surface. 

2. The r e l a t i v e error from neglecting multiple scatter i s l e s s 
than 20% f o r a £. 0.5X and p $ 35% except for some s p e c i a l 
values of a. 

3. The f i r s t order nearest neighbour approximation reduces 
these errors by a factor of 1/2. 

4. Computation time i s p r o h i b i t i v e f o r higher order approximations. 

For the random s i n g l e s c a t t e r model of hemicylinders with a continuous 

uniform coordinate d i s t r i b u t i o n , the coherent f i e l d and incoherent 

i n t e n s i t y x^ere determined a n a l y t i c a l l y . Comparison with the Monte-Carlo 

simulation showed that the c a l c u l a t i o n of the coherent f i e l d i s r e l a t i v e l y 

inaccurate while the c a l c u l a t i o n of the incoherent i n t e n s i t y gives excellent 

r e s u l t s . 

The following r e s u l t s were noticed for the coordinate d i s t r i b u t i o n : 

1. The improvement attained by using t h i s d i s t r i b u t i o n increases 
with object density. 

2. D i v i s i o n of the simple model into only four subcells i s 
s u f f i c i e n t to produce a reasonably uniform d i s t r i b u t i o n without 
excessive computation time. 

3. The f i n i t e separation of the scatt e r e r s necessitated by the 
experiment causes a n e g l i g i b l e e f f e c t . 

6.5 General Recommendations 

The main problem involved i n t h i s i n v e s t i g a t i o n i s the need f o r con t r o l 

of the various errors so that t h e i r e f f e c t can be evaluated. This was done 
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to a l i m i t e d extent by studying a s p e c i a l case - the p e r i o d i c two dimensional 

array. It would thus be very i n s t r u c t i v e to extend the accuracy i n a 

s p e c i f i c manner of the three dimensional problem f o r the simulation and 

for the experiment. 

The accuracy of the simulation could be improved by d e r i v i n g the 

f i r s t order nearest neighbour approximation for the array of hemispheres. 

The comparison of these r e s u l t s with the s i n g l e s c a t t e r r e s u l t s would 

give a better i n d i c a t i o n of the amount of m u l t i p l e sca t t e r i n t h i s case. 

The experimental r e s u l t s could be greatly improved, and the actual 

s e t t i n g up of the experiment ( i t took a long time to properly mount the 

sheets and a l i g n the scanner for each data set) made easier by redesigning 

the scanner i t s e l f . The scanner which was used for the experiment was 

o r i g i n a l l y designed as an antenna p o s i t i o n e r for pattern measurements, and 

therefore moved i n a v e r t i c a l plane. The problems encountered were due 

to the surface to antenna distance changing due to improper alignment. 

These problems would be eliminated i f the surface was l y i n g i n a h o r i z o n t a l 

plane, and supported upon a f l a t backing plate which was i n turn supported 

on r o l l e r s . The antennas could then be dir e c t e d s t r a i g h t downward from 

some point above the device (e.g. suspended from the c e i l i n g ) while the 

surface was gently p u l l e d across beneath by means of a wire winding on 

a drum. Mounting of the surface upon the scanner would also be f a c i l i t a t e d 

because gravity would hold i t i n p o s i t i o n , unlike the v e r t i c a l mounting 

system that was used. 
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APPENDIX A DETERMINATION OF UNKNOWN SCATTERING COEFFICIENTS 

The to ta l e lectr ic f i e l d , using the equations (2.1), (2. lU), and 

(2.15) of Chapter 2, may be written as: 
Ho 

E_ = E. + ) E T mc / s 

sTt' Mo 
= E i nc + E

s

 + / E t 
t*-s 

(A. l ) 

E D \ J n (k r o s / Xi> s 
B n a H n ( k r J e i n 9 s ns n v s' 

t*S 27 
Now, Graf's addition theorem for cylinder functions i s 

00 

C (w)e ina C , (u)<J. (v)e n+kv ' k v ' 
ik (A. 2) 

where jv[ <|u| and u,v,w,(2, and-̂ Q are related by the following geometry, 

and C n(x) i s any cylinder function. Apply this theorem to equation (A. l ) 

for t <s: >? P 

From the above diagram, 

P<3 
. ^ H m + n ( k ( X s - X t ) ) j n ( 1 c r s ) e 1 " ( 7 7 - 6.') (A.3) 
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or, by using the fact that 

cn(z) = (-Dnc_n(z) (A. h) 

replacing n by -n and summing in the opposite direction obtain the equiv

alent expression 

Now, for t > s, 

Again, 

H (kr )e 
m t X ] V m ( k ( V V ) J n K ) 

i n a 

H (kr )e t =) H (k(X,-X ) )J (kr )e mv t / , n-m\ t 5') n v s ; 

(A. 6) 

(A. 7) 

The combination of equations (A.5) and (A.7) may be written 
CO 

V k r t ) e i m 9 t = HHn-mU!Xs-Xtl ) J n C k r s ^ i n 9 s C ^ 8 ) 

f\--ao 

with 

F st 
nm 

* m+n 
(-1) } t<s 

3 t>s 
(A.9) 

Therefore, the to ta l e lectr ic f i e l d becomes 

E y E D f j (kr ) ( i ) n e i n ( 0

S ^ s ) + T"̂  B H (kr ) e i n 9 s 
T l — j o s {—> n s L - J n s n s 

5:1 I— w~—c& 

+ E E v r W * i v\i )^(^)-in0s c i s mt 
inO g ^ t 

nm 

(A:10) 
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The following boundary conditions must be satisfied on the surfaces 

of the cylinders, i . e . at r = a, 
s 

E T = 0 , _L polarization 

• -• = 0 , j j polarization 
Or 

(A.11) 

in*9 
Since (A.10) must hold for a l l 0 , the coefficients of each e may be 
equated to zero i n equation (A.10) or i t s r derivative, which yields the 

s 
equation for the unknown coefficients, B : ^ ' ns 

where 

ns n 

No £*0 

EDD ( i ) n e i n A ; +Y~Ny\tH (k X -X, )pst ° s / , [_ f M-t n-m s t nm (A.12) 

A =s -

^ H (ka) 

A" => -

n 
j'(ka) 

(A.13) 

n 
n <(ka) 
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APPENDIX B RELATIONS BETWEEN REAL AND IMAGE FUNCTIONS 

The problem Is to simplify the expression for the scattered f i e l d 
t h 

caused by the s hemisphere as given by equation (2.30) of Chapter 2, 

that i s 
E U A = E r + E i (B. l ) g s - s 

where the superscripts r and i refer to the real and image functions 

respectively. Therefore, from equation (2.15), 
CO 

E l ' L = y"(B r + B 1 )H ( k r s ) e i n Q s (B.2) s / , s ns - ns' n v s v ' 
XS---K) 

And, from equation (2.17), 

B r = A,, ns " , mt nmst 
t-1 rn - - t 

(B.3) 

Note that G ^ i s not a function of(2. To find B ^ g , Qmust be replaced 

by TT- QL. F i r s t , i t i s obvious that the distance C g must be the same for 

the real and image functions. Second, the angle B i s given by 

i L cos(77- a) 
tan/3g 

X + L sin(7T-0t) s 

-L cos a 
(B. h) 

X + L sinCt s 

-tan ̂3 

Therefore, 

B 1 = - B r (B. 5) 
s s 
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Third, the antenna radiation pattern i s given by 

f 1 = fiU-jj+a+jQ 

= f(-J +a +/£) 
(B.6) 

But, the antenna pattern may be assumed to be an even symmetric function, 

therefore 

1 r f = f (B.7) 

The above may be applied to equation (B.5) 

31 

ns I T = A n E 

N„ 

Bmt^nmst (B.8) 

By a comparison of (B.3) and (B.8) i t can be seen that 

B 1 = ( - l ) V -ns v ns (B.9) 

Hence, after dropping the superscript r, 

E,U=V^(B ± ( - l A n s ) H (kr ) e l n 6 s 
s /_ f ns x ' -ns' n v s' 

n - - oo 

( B _ n s + ( - l ) n B n s ) ( - l ) n H j k r J e - i n e s 
nN s' 

+ <Bns ± ( - l ) n B - n s ) H n ( k r s ) e i n 0 s + ( B Q S ± B o s ) H 0 ( k r g ) 

(B.10) 

" ( - l ) n H n ( k r s ) e i n 6 s ( B _ n s ± ( ~ l ) \ s ) ( e ' 1 * s ± e i n s) 
*> -1 

+ ( B o s ± B 0 S ) H 0 ( k r g ) 

oo f 

n = -1 C 

* n s c o s n%) . f 2 E o X

D s H o ( k r s ) ] 

Y n s s i n n0 e 
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APPENDIX C FIRST ORDER NEAREST NEIGHBOUR APPROXIMATION 

For a low density of objects, the average separations w i l l be large. 

Thus, any terms i n v o l v i n g the object separation may be approximated by t h e i r 
27 

large argument asymptotic 'expansion. In p a r t i c u l a r , the asymptotic expansion 

, N t~o~ i Z , . x n - i-jrK f i(4n - l ) 1 . . 

vz^]4e (-i)e (l+-Sz— ••• (c-l} 

may be u t i l i z e d to c a l c u l a t e the c o e f f i c i e n t s 

4 = ( H
m - n ( k d ) i ( - 1 ) n H m + n ( k d ^ i ) n " m f n m <C-2> 

i n equation ( 3 . 9 ) with the r e s u l t that i n equation (3 .k) 

( l - i ) e i ^ d f 1 "] T-TtfP 2 ,-LpoO 
Hmns,s+1~ ^ " | k T ^ - l ) f f i + n J ^ + +n , || p o l . J (C3) 

For large kd, the c o e f f i c i e n t s f o r the perpendicular p o l a r i z a t i o n tend to 

zero f a s t e r than those f o r p a r a l l e l p o l a r i z a t i o n . Thus i t i s expected that 

most c a l c u l a t i o n s w i l l be more accurate f o r the perpendicularly p o l a r i z e d case. 

As a large separation has been assumed, i t i s a l s o reasonable to assume 

that multiple s c a t t e r i n g e f f e c t s are small and hence only one i t e r a t i o n i s 

required to obtain convergence of equation ( 3 . 6 ) . This means p h y s i c a l l y 
th 

that the multiple scattered wave from the s c y l i n d e r i s caused by the s i n g l y 
/ \th . .th scattered waves from the (s - 1 ) and (s+1) cylinder. That i s , 

(o .M 

f o r t = s+1 only. S u b s t i t u t i o n of equations (C. 3 ) , ( C . 4 ) , and ( 3 - 9 ) i n t o 

equation ( 3 . 4 ) gives the N-N-l approximation to the s c a t t e r i n g c o e f f i c i e n t s : 
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Y « ns -iA 
x„ikL 

ns 

<U2h' 
s ns 

ikd I S v 

U 2
 n ) (-1) mA h" 
s-1/ , 

— lYlzl 

H 

A
n J k L <U h 

,ikd 
s ns ^ C ( k d ) ^ : 

IF 
s-1 

1 

m, s-1 

•HI* > A'h" 
s+lZ , ra ra,s+l^ 

(C .5 ) 

with 

cos 
(C . 6 ) 

Equation (C .5 ) for the parallel polarized f i e l d was derived under the additional 
_1 - 2 assumption that the (kd)~ 2 term sufficiently dominates the (kd) a term i n 

equation (C.3). 
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APPENDIX D SINGLE OBJECT SINGLE SCATTER STATISTICAL CALCULATIONS 

This s i m p l i f i e d method consists of vising the s t a t i s t i c s of a sing l e 

object averaged over a l l p o s s i b l e p o s i t i o n s to c a l c u l a t e the exact means 

and the approximate variances f o r the given ensemble of objects. Higher 

order moments may not be c a l c u l a t e d with any accuracy at a l l . The p o t e n t i a l 

saving here i s very large, because the values c a l c u l a t e d by the Mohte-Carlo 

section of the ana l y s i s are independent of the density of the objects, 

thus e l i m i n a t i n g one of the many v a r i a b l e parameters of the problem. 

For the single s c a t t e r uniform d i s t r i b u t i o n , 

E = 1 + 

Therefore, 

<E> = <E x> + i<Ey> 

5 = 1 

= 1 + <E Es> 
•5-1 

But, as a l l the objects are i d e n t i c a l and independent, 

C v = E< Eo ( xo» 

= N <E S o N o / 

(*3) 

Here, the subscript o means that any one of the N Q objects i s to be used 

t o c a l c u l a t e the average. Therefore 

<V - 1 + "c<V ( D A ) 



32 To calculate the variance, an approximation must be made . 

-<(1+ L\) >-<v ( B-5 ) 

= N 0<V - No<v2 + £ E<\v 
It may be assumed that, for large numbers of objects in conjunction with a 

fairly low density, the last term of equation (D.5) may be neglected. If 

this is indeed possible, then (D.5) reduces to 

° Z * N o « \ > " Ko< V > 

2 2 2 

Similarly, Q = N « E > - N <E > ) (D.6) 
" >y Q 0 ^ 0 

Now, from the area density function used in Chapter ks 

N =p((̂ -)i4P 

i P(C kL) P 

o 

( C 7 ) 

where 

1 for hemicylinders 
P = 

2 for hemispheres 
(D.8) 
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Therefore, the s t a t i s t i c a l functions become 

• <E >- 1 + p ( C o k L ) P < E x > 

<E > =p(C kL) P<E > 
y ° y 0 

G* ~ P(C M / f o f > -p(C ckL) P<E >^ (3).9) 
o \ xQ

 xo 

Oy* P(C 0tt) P(<By o>-p(C 0KL) P<E y o>^ 

0 x y * P ( C o k L ) P ( < E X o E y o > -P(C 0kL) P<E X o><E y o>) 

These functions are valid only for a uniform distribution with the single 

scatter approximation. 
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APPENDIX E INTEGRATION OF SINGLE SCATTER COHERENT AND INCOHERENT 

INTENSITY FOR THE CONTINUOUS UNIFORM DISTRIBUTION 

The comparison of the mean scattered f i e l d calculated by the Monte-

Carlo method f o r the f i n i t e beamwidth problem and the Twersky i n f i n i t e 

plane xrave problem i n Chapter h indicates that the differences are small, 

and hence amenable to approximation. 

E.1 Two Dimensional Problem 

E . l . l Coherent F i e l d 

The average f i e l d scattered by a single object i n the active scattering 

area i s 

(B.D 

l e t 

be the continuous counterpart of the coordinate d i s t r i b u t i o n Q • Then 

0 . 5 

(E.3) 

Therefore, using equation (3.2l), 

0 . 5 2 0,1 (cos n/3) 
i 2 -}dQ 
n (sin n/J 0 7 7 JkL 

ikL(C a p) ( l - | C a p )g ( C ^ ) ^ ( - l A 



1 1 9 

33 2 
The method o f s t e e p e s t d e s c e n t s i n d i c a t e s t h a t , p r o v i d e d kLC i s l a r g e , 

a 

t h e m a j o r c o n t r i b u t i o n t o t h e i n t e g r a l o c c u r s f o r Q n e a r z e r o . T h i s f a c t 

means t h a t £3 ( f r o m e q u a t i o n 2 .5) may be a p p r o x i m a t e d b y Hence, 

,11,1. r- -i#T£77 
<E > % V2e — 

Q-5 2 2 
i21cLCap 

J k L P 

v 0 . 5 

0 . 5 2 2 

i k L C ^ ( i - J c ^ ) g " ' t c D ) a p 

• 0 . 5 

A v e r y i m p o r t a n t p o i n t t o n o t e h e r e i s t h a t i t was n e c e s s a r y t o assume 

t h e e q u i v a l e n t o f = §-77 i n t h e t h r e e d i m e n s i o n a l c a s e i n o r d e r t o 

o b t a i n a u s e f u l s o l u t i o n . I t was m e n t i o n e d a t t h a t t i m e t h a t t h i s w o u l d 

be v a l i d o n l y f o r a v e r y n a r r o w beam. However, i t i s i n d i c a t e d b y e q u a t i o n 
L 2 

(E .U ) t h a t o n l y t h e p r o d u c t x C a must be l a r g e . Thus, i t w i l l be r e a s o n a b l e 

t o e x p e c t good r e s u l t s even f o r f a i r l y w i d e beams p r o v i d e d t h a t t h e a n t e n n a 

i s a f e w hu n d r e d w a v e l e n g t h s away f r o m t h e s u r f a c e . T h i s w i l l c e r t a i n l y 

be t h e case i n most p h y s i c a l s i t u a t i o n s . 

To p e r f o r m t h e i n t e g r a t i o n o f (E.k), l e t 

t = - i k L C ^ p 2 2 
a/" ( E . 6 ) 

and, s i n c e p i s s m a l l , expand t h e a n t e n n a space f a c t o r , g, i n a T a y l o r 

s e r i e s a b out p = 0 . From e q u a t i o n ( 2 . 9 5 ) 

(E .7) 
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or more simply, 

r (u) * 1 - b e j h u ( E . 8 ) 

where 

5kO0  
b e = 9 e 2 

36450^ ( 8 N 

(E.9) 

Then, equation (E.5) becomes 

x o ^ pyjf N l k L 
e - l 

2 2\ 

4) 
<* + b e , h ^ C a P j d P (B.10). 

Further, l e t 

1 + 2b 
B = e,h ( E . l l ) 

Thus, 

-i-frkLC 

kLC 

_ i - t 2 t 2e dt + BC a 
i K L C L 

I - t 
t 2 e dt 

fo 
(H.12) 

But 

e _ t t b d t ^ F ( b + l ) - z b e ' z 

0 

(E.13) 

i s the asymptotic expansion of the incomplete gamma function f o r large 
27 

| z| and arg(z) < 37T/2 . 

Ap p l i c a t i o n of equation (E.13) to (E.12) y i e l d s the f o l l o w i n g expression 



f o r the single object average: 

2TTf r 2iB 
1 -

kLC kL C jKkL aN 

2 S i ^ ( l + — 
-(1 - BC a)e 7 1 (E.lU) 

and hence the coherent f i e l d i s given by, using equation (D . 9 ) . 

<E> = 1 H - ^ f 1 
2a 

I B i p i ^ C l + ^ C )• 
+ . ( l - B C )e - r T " 

kL 
C aJjTkL 

(E .15) 

E. 1.2 Incoherent I n t e n s i t y 

For the second s t a t i s t i c a l moment of the scattered f i e l d , under the 

assumption of a continuous uniform d i s t r i b u t i o n , the si n g l e object 

function i s given by 

0 . 5 

<E > = E(wp)E (Wp)dp (E.16) 

- 0 . 5 

Again, from equation ( 3 « 2 l ) with p = |-7T, 

0 . 5 

Z l 2 14-7T 1 , t. <- c c 

. 0 . 5 

For the above i n t e g r a l , i t i s not s u f f i c i e n t to use the Taylor ser i e s exp

ansion f o r g(C ) because the method of.steepest descents i s not applicable. 

Therefore, the function g must be included i n i t s e n t i r e t y . Thus, 

2 II 2J£[(i- c a p 2 ) s i ^ f d p 
kL, 

(E.17) 

0 
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, 2.1 
o 

28x 
kL 

-z 

(1 

0 

2 2 c o s 

CP) 
2 

U . J - » 
I - ^ ( b C a P ) 

2~2dP (E . 1 8 ) 

where 

II 
h 

b 

180 

0e 

270 

0h 

(E . 1 9 ) 

Let 

(E . 2 0 ) 

with 

a= hc_ (E . 2 1 ) 

Then, 

, 2 I' <E*> o 

8ft f +2, s i n 2 t 
t 2 dt 

'0 

2 J-
<E > 

o kLa 
sin(t+|jt) sin( t-|-ft)j 

t - ! -|jt 
dt 

Now l e t 

'0 

i 1(a) 

i2(a) 

i 3(a) 

2 
s i n t 

•dt 

'0 

ha 
s i n ^ t dt 

'0 

r- , 2 

Jo 

s i n dt 

(E . 2 2 ) 

(E . 2 3 ) 

(E . 2 4 ) 

ik(a) t s i n t dt 



Therefore, 
2 II 

,2 
f l 8H~ -, 
- p - ! — r (a) --tWa) 
kLQ 1 b 3 

(E . 2 5 ) 

For the perpendicularly p o l a r i z e d case, s u b s t i t u t e 

u = t + \tt (E . 2 6 ) 

i n the appropriate i n t e g r a l s to obtain a f t e r s i m p l i f i c a t i o n 
. .2 ? , 
| f _ l 2J 

. 2 . J . r p <E > = it + 1 
y 

i 2 ( a + i t ) - i (a-n) 
"3ic 2_n 

2 b 2 " Jt 

i3(a+3t) +1 u-n) ik(a+ri - ifi-n) 
— - 2 ~ 
t) rtb 2 

- — _ 
* 

(E . 2 7 ) 

Evaluate the i n t e g r a l s of equations (E.2k): 
l a 2 
s i n t . . Csin 

T l
 (CZ) = J ~ t 2 

0 

'dt 

2 . . 2rt r s i n 
• g s i n ^ + j dt (E . 2 8 ) 

= - | s i n 2 | + Sia 

27 
where S i d i s the w e l l known sine i n t e g r a l f u n c t i o n . 

let . 
2 

s i n t 
I2(a) = I dt 

• = |(y+ ma- c i a ) 

(E . 2 9 ) 

Here, CiCZis the cosine i n t e g r a l f u n c t i o n and y i s Euler's constant. 
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M 
I (CO = I s i n 2 t d t 

3 4 
= iKCX - sinQ) 

(E .30) 

F i n a l l y , 
ret 

I (a) = | t s i n ^ t d t 

= - asina + i - cos a) 

(E.31) 

I t i s now pos s i b l e to s i m p l i f y (E.28) and (E . 2 9 ) by using the asymptotic 

expansions f o r the sine and cosine i n t e g r a l s . This procedure i s v a l i d since 

( Z « l . In f a c t , 

a= be 

(180) i 
% 7 o k ) K ^ ^ o 

(E . 3 2 ) 

>10 

o 27 
even f o r Q as small as 8 . Therefore , 

o 

s i (CO 

Ci(C() 

Tt cosq sinCX 

2 " a ~ a2 

s i n a c o s a 
a ~cT2 

(E . 3 3 ) 

Thus, the sing l e object incoherent i n t e n s i t y f o r the p a r a l l e l p o l a r i z a t i o n 

becomes 

2 I to 
o W^bC 

\2r 

WoCc 

d 2 -

1 + - r + T ^ r ( l - -=)sin bC 
4 b<V 1/ a (E . 3 ]

+ ) 



For the perpendicularly polarized case, 

lAOL + rt) +1, (a - rc) ~ it + Icosa +-2 (̂i[2cosa + sina) 
i i u a 2 (E. 

1 ( a + n ) - i ( a - TC) = c i (a+rc) - c i ( a - n ) •+ m - g 
2 2 

£ + 1 
-2.-1 

(E. 

but 27 

In & + 1 2Jt a (E. 

Therefore, 

i 2 (a + n) i 2 ( a - n ) ~ f sina 
a 

(E. 

Without approximation, 

and 

i 3 ( c x + j t ) + i (cx-at) = K a + sina) (E. 

i ,(a + K ) - i . (a -n) =^(a+sina) (E. 
4 4 Ij. 

so that the perpendicular component becomes 

4 ^ ^ f t - i -
o kLbC a I jtbCj 

ca/rt? 
b \ U 

—(h - C 2) sin bC 
bcn a a 

(E. 

Now, from equation (D.10). 

. 2 ^ . „C^kLC a 

2a * 2Jt /E

2\ A ^ ^ E S (E. 

T ~ — 2 If terms to the order of (-=-) 2 .or less and (bC &) or less are neglected 

the approximate incoherent intensity i s given by 
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(E.U3) 

where 

b 

JtbCc 

(E .UU) 

E.2 Three Dimensional Problem 

E.2.1 Coherent F i e l d 
For a continuous uniform distribution on a plane, 

<E Q> =j- E o(x,y)dxdy 

A 27T-|w 
'v^f f Eo(R,^)RdRd<|) ( E > U 5 ) 

0 0 

2TTh 

= | J E Q ( W P ^ ) ) O C P * I > 

0 0 

Consider the angular integral f i r s t . Then, i t can be immediately seen 

that the cross polarized components have the following form (see equation 

(2.133)) for i r j 

27T 

<E^> = k Jf(c|>)sin&os$ac|) 

0 (E.'46) 
= 0 



127 

since f i s an even function of Note, as was mentioned i n Chapter 

2, the same reasoning may be applied t o the z-axis component which has 

already,been neglected. Thus, the cross p o l a r i z e d components are zero 

to the degree of approximation that has been used. P h y s i c a l l y then, one 

would expect very l i t t l e d e p o l a r i z a t i o n of the backscattered f i e l d at 

normal incidence f o r any surface which does not e x h i b i t an appreciable 

amount of multiple s c a t t e r i n g . That i s , equation (E.17) w i l l be zero 

f o r any p h y s i c a l d i s t r i b u t i o n . 

The d i r e c t components of the coherent f i e l d may now be calculated. 

Again, from equations (2.133), 

E. - . ^ i ^ a P 2 ! ^ 0 ^ 1 0 * ' 0 ^ 0 8 * ^ ! - C
2 0 2 ) 

g ( C ^ o s < £ , C l i n c h . ) ! i i 0 kL 
2 2 

1 -
' 2) cos (£> 

2* sin (p 
(E.47) 

As before, the antenna r a d i a t i o n pattern, g, may be expanded i n a Taylor 

seri e s about p = 0. 

2 2 
g(u,v) as 1 - ( b h u + b g v ) (E.l*8) 

where and b^ are given i n equation (E.8). Substitute equations 

(E.22) and (E.23) i n t o (E.20) and keep only terms t o the order of pc 

I 2J7 2 

1+ib 
< E i i >* * 5 

e i k L C a P 2^2/ 
i - c a p ( i + < 

0 0 

^osf^+lcosC 

b sinfp+b cosCJp+§sinC 

Carry out thec^)-integration f i r s t . Then, 

)d$p<*P (E.1+9) 

<E > = <E > = <E > 
N i r N 22^ x ° (E.50) 

and, 



\ 2 2 

8 i b f ikLC p 2 2 

< E o > ! : f " T T I6 S ( l - B C a p ) p a p ( E . 5 1 ) 

with 

2h + b„ + b. 
B = 1 * (E. 52) 

Let 

2 2 
t = ikLC (E. 53) 

Then, 
i£kLC 2 

2 

2 I 2 fiB H^LC . iB ! 

(E. 54) 

IkLC J IkL kL H a 
v. a' v 

Therefore, the approximate coherent f i e l d i s given by 

In this (three dimensional) case, the expression for the average 

scattered f i e l d i s not an asymptotic evaluation. In fact, i t i s to be 

expected that the results w i l l be accurate only for small surface areas. 

This implies that (E .55) w i l l only be v a l i d i f the product (L) (C ) 

remains sufficiently small. In fact, i t can be seen that (E .55) becomes 

proportional to e for large L. Clearly, this cannot be va l i d unless 
1 2 

C —> 0 simultaneously to remove the indeterminate phase factor e u k^^a. 
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E.2.2 Incoherent I n t e n s i t y 

From equations (2.133) 

pcpdcp (E .56) 

Unfortunately, when the form of g has been s u b s t i t u t e d from equations (2.96), 

the in t e g r a t i o n s above become impossible to perform a n a l y t i c a l l y . The problems 

a r i s e because i n t e g r a l s of the form 

vhere P 1 and P are polynomials and a and b are functions of Q are encountered. 

Whichever i n t e g r a t i o n i s performed f i r s t i s immaterial - the second i n t e g r a t i o n 

becomes impossible because the asymptotic expansions of the sine and cosine 

i n t e g r a l s cannot be applied a f t e r the f i r s t i n t e g r a t i o n alone. 

Therefore, the incoherent i n t e n s i t y f o r the three dimensional case must 

be c a l c u l a t e d by the MonterCarlo technique i n a l l cases i n v o l v i n g the antenna 

model chosen f o r t h i s study. An approximate expression could be derived by 

assuming a square beam (see equation (2.92)), but t h i s i s not considered here. 

The same reasoning i s appli c a b l e t o the c r o s s - p o l a r i z e d components. 

a b 

2 
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