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ABSTRACT 

The purpose of the investi g a t i o n was to study, by 

analysis of friction-induced v i b r a t i o n , the underlying 

physical mechanisms of me t a l l i c boundary f r i c t i o n . Dynamic 

system response and i n t e r f a c i a l f r i c t i o n force data, from 

a pin-on-disc machine operating over a broad range of 

surface speeds, was e l e c t r o n i c a l l y monitored and photo­

graphically recorded. Excellent agreement i n the response 

curve p r o f i l e s of recorded rate-sensitive s t a t i c f r i c t i o n 

data and a predictive curve developed by assumption of a 

p l a s t i c deformation model of contact area growth suggests 

strongly that p l a s t i c deformation i s indeed the c o n t r o l l i n g 

physical mechanism of m e t a l l i c s t a t i c f r i c t i o n . The 

existence of an upper asymptote of s t a t i c f r i c t i o n i n the 

presence of a lubricant, and the existence i n the " s l i p " 

f r i c t i o n curve of a transient which appears governed by 

the r e l a t i v e dynamic displacement of the surfaces, has 

been proven. Vibratory s l i p and quasi-harmonic o s c i l l a t i o n 

both exhibited simultaneous solid-contact and viscous f l u i d 

f i l m c h a r a c t e r i s t i c s . The "humped" form of f r i c t i o n force vs 

v e l o c i t y curve necessary for quasi-harmonic o s c i l l a t i o n 

was concluded to d i f f e r from that of non-oscillatory s l i p 

only because of thermal v a r i a t i o n i n the f l u i d v i s c o s i t y , 

s i m i l a r to that encountered i n elastohydrodynamic studies. 



In every i n s t a n c e r a t e e f f e c t s were found to determine or 

pro f o u n d l y i n f l u e n c e the p h y s i c a l mechanisms of m e t a l l i c 

boundary f r i c t i o n . 
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NOTATION 

Description Units 

2 
t o t a l area of actual contact at the i n 
interface of two surfaces, area of 
actual contact at inception of s l i p , 
and rate of change of area of contact 
at inception of s l i p , respectively 

o 
modulii of e l a s t i c i t y of s t e e l and l b / i n 
aluminum, respectively 
t o t a l tangential load at interface of lb 
f r i c t i o n surfaces, i n t e r f a c i a l tangen­
t i a l load at inception of s l i p , and 
rate of change of tangential load at 
inception of s|lip, respectively 

. 4 
area moments of i n e r t i a of portions of i n 
composite cantilever beam 
work equivalent of heat in-lb/BTU 

constant of propo r t i o n a l i t y 
lengths of portions of composite i n 
cantilever beam 

2 
dynamic equivalent mass of s l i d e r lb-sec / i n 
and supporting structure 
normal load supported by f l u i d lb 
pressure 

normal load supported by s o l i d contact l b 

applied load lb v 

radius of s l i d e r i n 
2 

p r i n c i p a l stresses l b / i n 
temperature o^ 

ve l o c i t y of s l i d e r i n x d i r e c t i o n in/sec 
r e l a t i v e to lower surface, (x - v) 



X 

Symbol D e s c r i p t i o n U n i t s 

V v e l o c i t y of s l i d e r i n y d i r e c t i o n i n / s e c 

W t o t a l normal l o a d a t f r i c t i o n a l l b 
i n t e r f a c e 

2 
Y , y i e l d s t r e s s of d u c t i l e m a t e r i a l i n l b / i n 

u n i a x i a l t e n s i o n 

a, b constants of p r o p o r t i o n a l i t y 
2 

g a c c e l e r a t i o n of g r a v i t y i n / s e c 

h t h i c k n e s s of l i q u i d l u b r i c a n t l a y e r i n 

h(a) a c t i v a t i o n enthalpy BTU 
k s t i f f n e s s of composite c a n t i l e v e r l b / i n 

beam 

k^, kr, l i n e a r l y e l a s t i c s t i f f n e s s c o e f f i c i e n t s l b / i n 

m, n constants of p r o p o r t i o n a l i t y 
2 

p l o c a l s t a t i c p r e s s u r e i n l i q u i d l u b r i - l b / i n 
c ant 

r , r a c t u a l and c r i t i c a l v i s c o u s d i s s i p a t i o n I b - s e c / i n 
c c o e f f i c i e n t s f o r e l a s t i c a l l y - r e s t r a i n e d 

s l i d e r , r e s p e c t i v e l y 

t , t time, and time d u r a t i o n of s t i c k p o r t i o n sec 
s of s t i c k - s l i p c y c l e , r e s p e c t i v e l y 

u v e l o c i t y of l u b r i c a n t i n x d i r e c t i o n i n / s e c 

v v e l o c i t y of lower s u r f a c e i n / s e c 
• • • 

x, x, x displacement, v e l o c i t y , and a c c e l e r a ­
t i o n of s l i d e r , r e s p e c t i v e l y , i n 
plane of f r i c t i o n a l i n t e r f a c e 

y .normal to f r i c t i o n a l i n t e r f a c e 

z c o - o r d i n a t e normal to x-y plane 



D e s c r i p t i o n 

c o n s t a n t s of p r o p o r t i o n a l i t y 

c o e f f i c i e n t o f v i s c o s i t y v a r i a t i o n 
w i t h temperature 

l e n g t h of r e c t a n g u l a r l o a d - c a r r y i n g 
f i l m 

e l a s t i c e x t e n s i o n / d e f l e c t i o n from 
e q u i l i b r i u m l e n g t h / p o s i t i o n and r a t e 
of change of e x t e n s i o n / d e f l e c t i o n , 
r e s p e c t i v e l y 

r a t e of s t r a i n i n u n i a x i a l t e n s i o n 

v i s c o s i t y of l i q u i d l u b r i c a n t 

angular displacement 

width of r e c t a n g u l a r l o a d - c a r r y i n g 
f i l m 

k i n e t i c f r i c t i o n c o e f f i c i e n t and va l u e 
of k i n e t i c f r i c t i o n c o e f f i c i e n t a t 
which t r a n s i t o r y k i n e t i c f r i c t i o n 
curve meets s t a b l e k i n e t i c f r i c t i o n 
curve, r e s p e c t i v e l y 

c o e f f i c i e n t of f r i c t i o n a t i n c e p t i o n o f 
s l i p and r a t e o f change of c o e f f i c i e n t 
of f r i c t i o n a t i n c e p t i o n of s l i p , 
r e s p e c t i v e l y 

thermal c o n d u c t i v i t y 

r a d i a l c o - o r d i n a t e i n c y l i n d r i c a l 
c o - o r d i n a t e system 

compressive s t r e s s r e q u i r e d to produce 
complete p l a s t i c y i e l d i n g over t r u e 
area o f c o n t a c t 

normal s t r e s s a t f r i c t i o n a l i n t e r f a c e , 
W/A 

p l a s t i c shear s t r e n g t h of i n t e r f a c i a l 
j u n c t i o n , F s/A s, and p l a s t i c shear 
s t r e n g t h of b u l k m a t e r i a l , r e s p e c t i v e l y 



x i i 

Symbol D e s c r i p t i o n U n i t s 

x , t t a n g e n t i a l shear s t r e s s a t f r i c t i o n a l 
yx yx i n t e r f a c e , F/A, and r a t e of change of 

t a n g e n t i a l shear s t r e s s a t f r i c t i o n a l 
i n t e r f a c e 

-1 a) . l o a d r a t e v a r i a b l e , x /a sec yx y 
2 

c o e f f i c i e n t of v i s c o s i t y v a r i a t i o n i n / l b 
with p r e s s u r e 

u , u, undamped n a t u r a l frequency of v i b r a t i o n rad/sec 
n and damped n a t u r a l frequency of 

v i b r a t i o n , r e s p e c t i v e l y 



C H A P T E R I 



I. INTRODUCTION 

Boundary f r i c t i o n may be defined as resistance to 

motion which occurs when two s o l i d bodies are i n physical 

contact under the influence of an applied tangential stress. 

The nature of the opposing surfaces i s therefore of para­

mount importance to any discussion of such f r i c t i o n a l 

action. 

No matter how well finished, a l l engineering surfaces 

are extremely rough on a microscopic scale. Thus, when two 

nominally f l a t surfaces are brought together they touch 

only at their extremities, and their f r i c t i o n a l behavior i s 

dominated by the properties of these small regions of contact. 

These microscopic extremities are commonly c a l l e d a s p e r i t i e s . 

Upon considering the present knowledge of physical 

and chemical properties of materials, one might suppose 

the nature of f r i c t i o n a l i n t e r a c t i o n between contacting 

surfaces to be well understood. The converse i s true. Not 

only i s the actual mechanism of f r i c t i o n i n doubt; pre­

d i c t i o n s of boundary f r i c t i o n c o e f f i c i e n t values cannot be 

made, even empirically, with any notable degree of accuracy. 

So many variables a f f e c t f r i c t i o n a l behavior that investigators 

concur only i n that surfaces i n contact meet at opposing 

a s p e r i t i e s , and that these a s p e r i t i e s deform, either 

e l a s t i c a l l y or p l a s t i c a l l y , under load. 
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When one member o f a boundary f r i c t i o n p a i r i s 

e l a s t i c a l l y r e s t r a i n e d , and the oth e r member gi v e n a v e l o c i t y 

r e l a t i v e to the p o i n t o f r e s t r a i n t ( F i g . 1.1.1), o s c i l l a t i o n 

of the e l a s t i c a l l y - r e s t r a i n e d member, commonly c a l l e d 

" f r i c t i o n - i n d u c e d v i b r a t i o n " , f r e q u e n t l y o c c u r s . T h i s 

o s c i l l a t i o n i s of c o n s i d e r a b l e e n g i n e e r i n g i n t e r e s t , i n i t s 

own r i g h t , s i n c e i t c o n s i d e r a b l y i n c r e a s e s wear, and d e t r a c t s 

from the accuracy and r e l i a b i l i t y of mechanisms and measuring 

d e v i c e s . But, f o r purposes of the pr e s e n t study, the 

s i g n i f i c a n c e of such o s c i l l a t i o n i s t h a t i t may be used by ; 

i n v e s t i g a t o r s i n search of g r e a t e r i n s i g h t i n t o the phenomena 

of boundary f r i c t i o n . 

Two forms of f r i c t i o n - i n d u c e d v i b r a t i o n are r e c o g n i z e d 

( F i g . 1.1.2). " S t i c k - s l i p v i b r a t i o n " i s c h a r a c t e r i z e d by a 

saw-tooth form of displacement vs time p l o t , whereas " q u a s i -

harmonic v i b r a t i o n " e x h i b i t s a displacement vs time waveform 

t h a t i s n e a r - s i n u s o i d a l . During s t i c k - s l i p v i b r a t i o n the 

e l a s t i c a l l y - r e s t r a i n e d member " s t i c k s " to the d r i v e n member, 

causing the displacement o f the r e s t r a i n e d member to 

i n c r e a s e u n t i l the r e s t r a i n i n g f o r c e exceeds the maximum 

" s t a t i c " f r i c t i o n f o r c e which the i n t e r f a c i a l s u r f a c e i s 

capable of s u s t a i n i n g . The r e s t r a i n e d member then decreases 

i t s displacement, under the i n f l u e n c e of " k i n e t i c " f r i c t i o n 

f o r c e s , u n t i l i t once again achieves zero v e l o c i t y with 

r e s p e c t to the d r i v e n s u r f a c e . During quasi-harmonic 

. v i b r a t i o n , which occurs a t hi g h e r d r i v e n - s u r f a c e speeds 
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than s t i c k - s l i p v i b r a t i o n , r e l a t i v e v e l o c i t y between the 

surfaces always exceeds zero. 

Both forms of friction-induced v i b r a t i o n have received 

substantial documentation, but usually with the emphasis on 

d e f i n i t i o n of the vibratory behaviour. The f r i c t i o n mechanisms 

causing the v i b r a t i o n , which have general a p p l i c a b i l i t y to 

boundary f r i c t i o n as a whole, are s t i l l inadequately under­

stood, lar g e l y because the presence of the f r i c t i o n a l o s c i l ­

l ations has obscured the form of the f r i c t i o n forces responsible 

for the o s c i l l a t i o n . Further investigation of these physical 

mechanisms of f r i c t i o n was consequently considered attention 

well directed. 

In the course of t h i s study the p l a s t i c deformation 

model of Tabor w i l l be extended to include the e f f e c t of rate 

of appli cation of tangential load, and the r e s u l t s compared 

to s t a t i c f r i c t i o n data c o l l e c t e d by monitoring f r i c t i o n -

induced v i b r a t i o n . The dynamic f r i c t i o n force recordings , 

obtained by monitoring th,e v i b r a t i o n w i l l also be analyzed.. 

Minimized chemical effects w i l l be neglected; the only 

concern of the present inves t i g a t i o n w i l l be the physical 

phenomena relevant to f r i c t i o n of m e t a l l i c surfaces. . 



5 

F i g u r e 1.1.1 Schematic System Required f o r Incidence o f 
F r i c t i o n - I n d u c e d O s c i l l a t i o n 
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Figure 1.1.2 Displacement vs Time Waveforms of the Two 
Forms of Friction-Induced O s c i l l a t i o n (Ko) 



C H A P T E R II 



I I . HISTORICAL BACKGROUND 

Although f r i c t i o n - i n d u c e d v i b r a t i o n i s a very common 

phenomenon, onl y i n r e c e n t years have the f r i c t i o n f o r c e s 

c a u s i n g the v i b r a t i o n been s u b j e c t e d to s e r i o u s i n v e s t i g a t i o n . 

In f a c t , i t was not u n t i l 1930 t h a t an i n v e s t i g a t o r , Thomas 

[1], r e p o r t e d an a n a l y t i c i n v e s t i g a t i o n o f f r i c t i o n - i n d u c e d 

v i b r a t i o n u s i n g g r a p h i c a l techniques. He e r r o n e o u s l y con­

cluded t h a t the phenomenon we p r e s e n t l y c a l l quasi-harmonic 

o s c i l l a t i o n was simply t o t a l l y undamped simple harmonic motion, 

with the s t a t i c f r i c t i o n f o r c e as the i n i t i a l c o n d i t i o n . He 

d i d , however, even assuming a constant v a l u e f o r the k i n e t i c 

f r i c t i o n c o e f f i c i e n t , c o r r e c t l y conclude t h a t s t i c k - s l i p 

o s c i l l a t i o n occurs o n l y i f the i n t e r f a c i a l k i n e t i c f r i c t i o n 

c o e f f i c i e n t i s l e s s than the s t a t i c f r i c t i o n c o e f f i c i e n t , 

and even then, o n l y i f the damping f o r c e s are o f l e s s than 

a c r i t i c a l magnitude. 

Papenhuyzen [2], i n 1938, i n v e s t i g a t i n g the s k i d d i n g 

of automobile t i r e s , was f i r s t to demonstrate t h a t s t i c k - s l i p 

o s c i l l a t i o n and quasi-harmonic o s c i l l a t i o n can occur under 

s i m i l a r f r i c t i o n a l c o n d i t i o n s , but a t d i f f e r e n t v e l o c i t i e s 

of the d r i v e n s u r f a c e . 

f Bowden and Leben [3], i n 1939, r e p o r t e d t h a t s l i d i n g 

v e l o c i t i e s d u r i n g the s l i p p o r t i o n of s t i c k - s l i p o s c i l l a t i o n 

were very h i g h , i n comparison to the d r i v e n s u r f a c e v e l o c i t y , 
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and suggested t h a t l o c a l i z e d welding c o u l d occur a t the 

t e r m i n a t i o n of the s l i p p o r t i o n of a c y c l e as a r e s u l t of 

high-temperature f l a s h e s a t opposing a s p e r i t i e s . T h i s 

s u g g e s t i o n was based on experiments by Bowden and R i d l e r [4] , 

r e p o r t e d i n 1936, i n which i n t e r f a c i a l temperature between 

two metal s u r f a c e s was i n v e s t i g a t e d as a f u n c t i o n of r e l a t i v e 

v e l o c i t y , both w i t h and without the a p p l i c a t i o n of l u b r i c a n t s . 

Peak l o c a l temperatures a t the s u r f a c e were, i n a l l cases,: 

fpund to r i s e w i t h speed, to an upper l i m i t equal numeric­

a l l y to the m e l t i n g p o i n t of the s o f t e r metal. ; 

Bristow [5], i n 1945, s t a t e d t h a t a necessary c o n d i t i o n 

f o r the occurrence of s t i c k - s l i p o s c i l l a t i o n i s the e x i s t e n c e 

of a negative k i n e t i c f r i c t i o n f o r c e vs v e l o c i t y r e l a t i o n s h i p , 

but o f f e r e d no evidence to support t h i s h y p o t h e s i s . He d i d , 

however, demonstrate the e x i s t e n c e of micro-displacement d u r i n g 

the s t i c k p o r t i o n of the c y c l e . 

Dudley and S w i f t [6], i n 1949, r e p o r t e d the develop­

ment of a simple g r a p h i c a l technique f o r determining the 

v i b r a t i o n c y c l e , on the phase plane, from any f r i c t i o n f o r c e 

vs v e l o c i t y curve, and the a p p l i c a t i o n of t h i s technique to 

analyze s t i c k - s l i p v i b r a t i o n . V a r i o u s forms of f r i c t i o n -

f o r c e vs v e l o c i t y curves were e x p l o r e d , w i t h the s t a t i c 

f r i c t i o n c o e f f i c i e n t assumed equal to the k i n e t i c f r i c t i o n f 

c o e f f i c i e n t e x t r a p o l a t e d to zero v e l o c i t y . They e r r o n e o u s l y 

concluded t h a t the amplitude of s t i c k - s l i p v i b r a t i o n should 

i n c r e a s e w i t h d r i v e n - s u r f a c e v e l o c i t y . 
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Bowden and Tabor [7], i n 1950, proposed that m e t a l l i c 

s t a t i c f r i c t i o n i s caused by l o c a l i z e d adhesion, r e s u l t i n g 

from p l a s t i c deformation, of contacting surfaces. The area 

of contact was thereby a function of both normal and tangential 

loading; i t would increase with either form of load. This 

theory, which offered creditable explanations for many observed 

me t a l l i c contact phenomena, was well received. Tabor subse­

quently extended the theory [22] to an impressive mathematical 

treatment of s t a t i c f r i c t i o n , but the known influence of rate 

effects on observed c o e f f i c i e n t s of s t a t i c f r i c t i o n was ; 

s t i l l unexplained. 

Rabinowicz [8], i n 1957, concluded that the amplitude 

of s t i c k - s l i p o s c i l l a t i o n i s governed by the time duration of 

the s t i c k portion of the cycle, and that the amplitude of 

quasi-harmonic o s c i l l a t i o n i s governed by the v e l o c i t y of 

the driven surface. 

Courtney-Pratt and Eisner [9], i n 19 57, showed that 

the growth of actual contact area under the influence of 

increasing tangential load was unaffected by the addition of 

l i q u i d lubricants. The sole e f f e c t of the lubricants was to 

decrease the value of tangential load at which s l i p occurred. 

Potter [10], i n 1962, reported experimental results 

in which, contrary to Dudley and Swift's predictions, the 

amplitude of s t i c k - s l i p v i b r a t i o n decreased with increasing 

v e l o c i t y . 
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Cameron [11], i n 1963, r e p o r t e d an a n a l y s i s of s t i c k -

s l i p o s c i l l a t i o n i n which he assumed a l i n e a r l y n e g ative 

f r i c t i o n f o r c e vs v e l o c i t y r e l a t i o n s h i p ( F i g . 2.1.1). E x p e r i ­

mentally-measured amplitudes were r e p o r t e d i n agreement w i t h 

those p r e d i c t e d by the a n a l y s i s . 

B e l l and Burdekin [12], i n 1966, r e p o r t e d t h a t by 

summation o f e l e c t r i c a l i n s t r u m e n t a t i o n s i g n a l s they were 

able to r e c o r d the i n t e r f a c i a l k i n e t i c f r i c t i o n f o r c e through­

out the d u r a t i o n o f a s t i c k - s l i p c y c l e . Contrary to the 

v a r i o u s assumptions of a l l p r e v i o u s i n v e s t i g a t o r s , they found 

t h a t the f r i c t i o n f o r c e was not a s i n g l e - v a l u e d f u n c t i o n of 

the i n t e r f a c i a l v e l o c i t y ( F i g . 2.1.2). No e x p l a n a t i o n of . 

these r e s u l t s was o f f e r e d . 

Davis [13], i n 1966, r e p o r t e d t h a t the behaviour of 

e l e v e n metals, t e s t e d on a s t e e l d r i v e n s u r f a c e , was s i m i l a r , 

w i t h r e s p e c t to v a r i a t i o n of the c o e f f i c i e n t of s t a t i c f r i c t i o n 

with d r i v e n s u r f a c e v e l o c i t y . 

Johannes [14], i n 1969, demonstrated c o n c l u s i v e l y i 

t h a t the amplitude of s t i c k - s l i p v i b r a t i o n i s not governed 

by the time of c o n t a c t d u r i n g the s t i c k p o r t i o n of the c y c l e , 

a misconception popular w i t h many i n v e s t i g a t o r s a t t h a t time. 

He showed, r a t h e r , u s i n g the experimental data of P o t t e r [10], 

t h a t the c o e f f i c i e n t of s t a t i c f r i c t i o n can be c o r r e l a t e d 

to the r a t e of a p p l i c a t i o n of shear s t r e s s , d i v i d e d by the 

e x i s t i n g normal s t r e s s , a t the i n t e r f a c e . Johannes a l s o -( 

proposed a simple v i s c o - e l a s t i c mathematical model of a s p e r i t y 
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j u n c t i o n growth, but d i d not achieve good c o r r e l a t i o n between 

the model and h i s experimental data. 

Ko [15], i n 1969, r e p o r t e d t h a t quasi-harmonic 

o s c i l l a t i o n i s c h a r a c t e r i z e d by the presence of a "humped" 

form of s i n g l e - v a l u e d f r i c t i o n f o r c e vs v e l o c i t y curve ( F i g . 

2.1.3). The i n v e s t i g a t i o n u t i l i z e d an improved v e r s i o n o f 

the e l e c t r o n i c summation techniques of B e l l and Burdekin [12]. 

Green [16], i n 1971, a f t e r s t u d y i n g s t i c k - s l i p 

v i b r a t i o n , r e p o r t e d s e v e r a l i n t e r e s t i n g r e s u l t s . Massive 

s e i z u r e , r a t h e r than s t i c k - s l i p o s c i l l a t i o n , would occur, 

i n a i r , when the major p o r t i o n of s u r f a c e contaminants was 

removed from the f r i c t i o n s u r f a c e s . The e l e c t r i c a l conduc­

t i v i t y between s u r f a c e s was found to i n c r e a s e n o n - l i n e a r l y 

w i t h t a n g e n t i a l l o a d ( F i g . 2.1.4), and no s u b s t a n t i a l i n ­

creases i n c o n d u c t i v i t y were noted i f the a p p l i c a t i o n o f 

t a n g e n t i a l l o a d was a r r e s t e d d u r i n g the s t i c k p o r t i o n of a 

s t i c k - s l i p c y c l e ( F i g . 2.1.5). 

Of p a r t i c u l a r i n t e r e s t to t h i s study i s the d i v e r s i t y 

of r e l a t i o n s h i p s , proposed by former r e s e a r c h e r s , e x p r e s s i n g 

the c o e f f i c i e n t of s t a t i c f r i c t i o n achieved as a function, 

of the time d u r a t i o n o f the s t i c k p o r t i o n o f a s t i c k - s l i p 

c y c l e . The r e l a t i o n s h i p s are of three g e n e r a l forms. j 
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Derjaguin, Push, and T o l s t o i [17] 

= 1 - e s Kosterin and K r a g e l s k i i [18] 

y - y. = at Rabinowicz [8] 
S S Davis [13] 

These relationships are a l l , at best, semi-empirical. The 

formulation proposed by Rabinowicz and Davis predicted 

i n f i n i t e c o e f f i c i e n t s of s t a t i c f r i c t i o n for i n f i n i t e duration 

of the s t i c k portion of a cycle; the other equations, though 

d i s s i m i l a r , predicted an upper asymptote for the s t a t i c 

f r i c t i o n c o e f f i c i e n t . This basic difference in concept has 

endured for several years, because none of these investigators 

c o l l e c t e d data which could prove or disprove the presence of 

this upper asymptote. 

Obviously, the investigation of physical boundary 

f r i c t i o n phenomena applicable to friction-induced o s c i l l a t i o n 

has not, to date, achieved a high l e v e l of so p h i s t i c a t i o n . 

Even which variables are of significance to such phenomena 

i s not c e r t a i n . The purpose of the present study i s , by 

analysis of friction-induced v i b r a t i o n , to improve the 

current comprehension of the operative physical mechanisms 

of s t a t i c and k i n e t i c boundary f r i c t i o n of metals. 
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Figure 2.1.1 Assumed Linearly Negative Kinetic F r i c t i o n 
vs Velocity Relationship of Cameron, with 
Generated Phase Plane Behavioural Trace 
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F i g u r e 2.1.2 K i n e t i c F r i c t i o n v s V e l o c i t y R e l a t i o n s h i p 

R e c o r d e d E x p e r i m e n t a l l y b y B e l l a n d B u r d e k i n , 

w i t h G e n e r a t e d P h a s e P l a n e B e h a v i o u r a l T r a c e 
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Figure 2.1.5 E f f e c t on I n t e r f a c i a l Voltage Drop of Interrupted Tangential Load 
Application (Green) 
Upper Trace: Tangential Load 
Lower Trace: Interfacial Voltage Drop 
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C H A P T E R III 



I I I . THEORY 

3.1 S t a t i c F r i c t i o n 

When two m e t a l l i c surfaces are brought together under 

the influence of an applied normal load, they contact each 

other only at matching as p e r i t i e s (Fig. 3.1.1). Contact i s 

i n i t i a l l y e l a s t i c , but because the re a l area of contact i s a 

very small portion of the apparent area of contact, the de-
f 

forming m e t a l l i c junctions might achieve a state of p l a s t i c i t y 
i. 

under minute loads, r e s u l t i n g i n growth of the junction 

contact area u n t i l the real area of contact i s just s u f f i c i e n t 

to support the applied load. Experimental evidence showing 

the area of contact to be d i r e c t l y proportional to applied 

perpendicular load was, for many years, thought to support 

this concept, proposed by Bowden and Tabor i n 1950 [7]. 

Recently, however, certain investigators have presented anal­

yses demonstrating that this p roportionality of load and 

contact area might also be achieved under cert a i n conditions 

of e l a s t i c contact. The most notable of these analyses was 

performed by Greenwood and Williamson [19], who showed that, 

for an exponential d i s t r i b u t i o n of asperity heights, contact 

area could be proportional to load regardless of the mode,of 

deformation.: For most machined metal surfaces asperity 

^heights have a near-Gaussian d i s t r i b u t i o n ; the Gaussian and 
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deformation 

F i g u r e 3.1.1 Nature of M e t a l l i c Contact a t I n t e r f a c i a l 
J u n c t i o n 



E x p o n e n t i a l d i s t r i b u t i o n s a r e s u f f i c i e n t l y s i m i l a r o v e r m o s t 

o f t h e p r o b a b i l i t y r a n g e t o p e r m i t a p p l i c a t i o n o f t h i s s t u d y 

t o c o n v e n t i o n a l s u r f a c e s . 

T h e f i r s t p o r t i o n o f t h e p r e s e n t i n v e s t i g a t i o n i s 

d e v o t e d t o a n a t t e m p t t o r e s o l v e t h e u n c e r t a i n t y c o n c e r n i n g 

t h e m o d e o f a s p e r i t y d e f o r m a t i o n d u r i n g s t a t i c c o n t a c t t h r o u g h 

d e v e l o p m e n t o f a p l a u s i b l e p l a s t i c d e f o r m a t i o n m o d e l a n d 

c o m p a r i s o n o f i t s p r e d i c t e d b e h a v i o u r w i t h e x p e r i m e n t a l s t a t i c 

f r i c t i o n d a t a . 

U s i n g V o n M i s e s ' y i e l d c r i t e r i o n , 

( s 1 - s 2 ) 2 + ( s 2 - s 3 ) 2 + ( s 3 - s 1 ) 2 

1 
2 (3.1.1) 

w h e r e S ^ , S ^ , a n d a r e t h e p r i n c i p a l s t r e s s e s a n d Y i s t h e 

y i e l d s t r e s s i n u n i a x i a l t e n s i o n . F o r p l a n e ( t w o - d i m e n s i o n a l ) 

s t r e s s 

= s 2
 + s 2 - s±s2 (3.1.2) 

w h e r e 



2 3 

S l 
S2 

a / a 2 
2~ 1 + Tyx ( 3 - 1 ' 3 ) 

i n the co-ordinate system designated i n Figure 3.1.2, and the 

y i e l d c r i t e r i o n may be reduced to 

Y 2 = o2 + 3T 2 . (3.1.4) 
y yx 

No a n a l y t i c solution exists for a r e a l three-dimen­

sional contact, but empirical grounds exi s t [20,21] for 

a l t e r a t i o n of equation 3.1.4 to 

a 2 = a 2 + a x 2 , (3.1.5) 0 y yx ' 

where OQ, the amount of compressive stress required to induce 

p l a s t i c y i e l d i n g over the entire true area of contact i n the 

absence of tangential stress, i s approximately equal to 3Y 

[7]. Greenwood has shown [45] that a should have an approxi­

mate numerical value of 25 by the following reasoning. , 

If a metal, possessing a c r i t i c a l shear strength x ^ , 

can be assumed free of work-hardening, then 

T0 S k °0 (3.1.6) 



- o r d i n a t e System Adopted f o r Development 
Area Growth Eq u a t i o n 



for an a x i a l l y symmetric contact [23] . Substitution i n 

equation 3.1.5 yields 

25 x 2 = a 2 + a x 2
x . (3.1.7) 

I f , as i s the case with clean metals i n vacuum, the growth i n 

the area of contact i s very large, as a r e s u l t of the 

tangential load x , then 0 << x = x_, and a = 25. 
yx y yx u 

Attempts to measure a at the interface of two surfaces 

have resulted i n values of a = 3.3 for indium [20] and a = 12 for 

platinum [9]. Errors inherent i n the methods used for contact 

area measurement would r e s u l t i n conservative values of a, so 

that a numerical value of 25 does not seem unreasonable. So 

as not to be overly r e s t r i c t i v e , a w i l l be assumed to have a 

value between 10 and 25, a range of uncertainty which can 

be r e a d i l y tolerated. As w i l l be demonstrated, the present 

analysis i s f o r t u i t o u s l y i n s e n s i t i v e to v a r i a t i o n of this 

c o e f f i c i e n t . 

Substituting for a and x i n equation 3.1.5 y i e l d s 
y y x 

M2 + • W % = H H + « I I : , (3.1.8) 

where A i s the actual area of contact at the in t e r f a c e , F i s 

the applied tangential load, and W i s the normal load at the 
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interface; algebraic manipulation gives 

W 
2 + aF 2 

1 
2 (3.1 .9) 

a r e s u l t derived by Tabor [22], provided the materials are 

i n a state of equilibrium, a basic assumption of Von Mises 1 

y i e l d c r i t e r i o n . 

develop i n a r e l a t i v e l y short period of time [ 9 ] , a state of 

equilibrium cannot be supposed to e x i s t . A n e l a s t i c i t y , or 

inter n a l damping, of the materials must consequently be 

considered. 

dissipate v i b r a t i o n a l energy [24]. The mechanical model most 

successfully used i n the analysis of int e r n a l f r i c t i o n i s the 

Poynting-Thomson model (Fig. 3.1.3), commonly c a l l e d the 

"standard l i n e a r s o l i d " . For s t r u c t u r a l metals the contribution 

of to the behaviour of the model i s n e g l i g i b l e , except 

at rates of s t r a i n so great that the damper becomes a semi­

r i g i d element. If such extreme rates are not achieved, the 

standard l i n e a r s o l i d i s e f f e c t i v e l y an e l a s t i c element (k^) 

and an energy-dissipating element (r) acting i n p a r a l l e l , 

governed by the approximate equation 

In contacting a s p e r i t i e s , where large shear strains 

A l l s olids display, in varying degree, the a b i l i t y to 

P (3.1.10) 
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I—CE—vW-i 

• — W W W 

F i g u r e 3.1.3 Poynting-Thonison Model f o r A n a l y s i s of 
I n t e r n a l F r i c t i o n a l D i s s i p a t i o n 
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If the standard l i n e a r s o l i d i s i n a state of equilibrium 

(6 = 0), i t s behaviour i s e n t i r e l y governed by the e l a s t i c 

element; i f a state of equilibrium i s not cl o s e l y approximated, 

the contribution to equation 3.1.10 of the energy-dissipating 

element cannot be ignored. 

The s i m i l a r i t y of form of equations 3.1.9 and 3.1.10 

for the condition of equilibrium (6 = 0) i s obvious. If the 

analogy i s to continue aft e r a l t e r i n g equation 3.1.9 to 

include the effects of a n e l a s t i c i t y , the modified equation 

must assume the form ; 

1 
2 . (3.1.11) 

Since d i s s i p a t i o n i s due to deformation of the metal, 

one might reasonably postulate that the amount of d i s s i p a t i o n 

should increase with the volume of metal deformed. The area 

of contact, during indentation hardness t e s t s , has been found 

to be proportional to the progress of a hemispherical e l a s t i c -

p l a s t i c boundary within the test material, for a l l indenters 

except those with a very sharp apex [25]. The damping > 

q o e f f i c i e n t r may, therefore, be expressed as a power function 

of the area of contact. 

r = r (A) = b A n (3.1.12) 

Substituting for r i n equation 3.1.11 y i e l d s the proposed 

general equation of contact area growth under varying 

r A + a 0 A 

2 2 W + aF 
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t a n g e n t i a l l o a d , 

b A n A + a Q A 
2 2 vr + a F 

1 

2 
( 3 . 1 . 1 3 ) 

A l t h o u g h e q u a t i o n 3 . 1 . 1 3 i s o f f i r s t - o r d e r f o r m , n o 

s i m p l e s o l u t i o n e x i s t s f o r t h e v a r i a t i o n o f t h e c o n t a c t a r e a 

A , a s a f u n c t i o n o f t i m e , u n d e r t h e i n f l u e n c e o f a r a m p l o a d 

F = F Q + F t , s u c h a s e x i s t s d u r i n g t h e s t i c k p o r t i o n o f a 

s t i c k - s l i p c y c l e . F o r t u n a t e l y , t h e i n t e r e s t o f t h i s s t u d y i s 

i n t h e a r e a o f c o n t a c t a t t h e i n c e p t i o n o f s l i p , f o r w h i c h , a 

g e n e r a l s o l u t i o n i s n o t r e q u i r e d . 

T h e f r i c t i o n v a l u e a t t h e i n c e p t i o n o f s l i p i s t h e 

p o p u l a r l y - t e r m e d " s t a t i c f r i c t i o n " c o e f f i c i e n t y g . I f g r o s s 

s l i d i n g o f t h e s u r f a c e s i s d e e m e d t o o c c u r a s a r e s u l t o f t h e 

s h e a r i n g o f i n t e r f a c i a l j u n c t i o n s , t h e n 

W 
T . A 

1 s 

W ( 3 . 1 . 1 4 ) 

w h e r e t h e s u b s c r i p t s d e s i g n a t e s v a l u e s a t t h e i n c e p t i o n o f 

s l i p , a n d x^ i s t h e u l t i m a t e s h e a r s t r e n g t h o f t h e i n t e r f a c e . 

E q u a t i o n s 3 . 1 . 1 3 a n d 3 . 1 . 1 4 f o r m a p a i r o f s i m u l t a n e o u s 

d i f f e r e n t i a l e q u a t i o n s . A , a s g i v e n b y e q u a t i o n 3 . 1 . 1 4 , m a y 

s 

b e s u b s t i t u t e d i n t o e q u a t i o n 3 . 1 . 1 3 t o o b t a i n 

n 

A + a 0 x 
2 2 W + aF 

1 

2 
( 3 . 1 . 1 5 ) 



which may be a l g e b r a i c a l l y manipulated to the form 
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A 
r 1 n 1-n -
T . 1 W 
U b 
s _ 

1 + ay - — °0 (3.1.16) 

As a consequence of entrapped contaminants, such as 

lubricant or oxide, the strength of the average i n t e r f a c i a l 

junction formed by ide a l p l a s t i c deformation of a s p e r i t i e s 

may approach, but not equal, the shear strength of the metal 

substrate. Suppose, for example, that 

T I = K T Q , (3.1.17) 

where K i s a constant less than unity. As Tabor points out 

[22], i f T y X
 = T i ' a = 25, and equation 3.1.7 i s assumed to 

describe the l i m i t i n g condition of s t i c k , gross s l i d i n g w i l l 

occur when 

x . 
_ i = . (3.1.18) 
° Y 5(K" 2- 1) 

Substitution into the standard equation for the c o e f f i c i e n t 

of s t a t i c f r i c t i o n y i e l d s 

F x. A , 
y = 1 ? = X_ . (-3.1.19) s W a A c , -2 ., . y s 5 (K - 1) 

Examination of equation 3.1.19 suggests that, i f the i n t e r f a c i a l 

shear strength equals that of the metal substrate, i n f i n i t e 



c o e f f i c i e n t s of s t a t i c f r i c t i o n w i l l be observed. Such i s 

indeed the case w i t h degassed metals a t h i g h temperature i n 

h i g h vacuum [26] , where oxides and o t h e r contaminants are 

absent, i f a n e l a s t i c e f f e c t s are minimized. However, the 

s t a t i c f r i c t i o n c o e f f i c i e n t , as determined by e q u a t i o n 

3.1.19, f a l l s to u n i t y f o r a s m a l l r e d u c t i o n of K to 0.92, 

and to 0.5 i f K i s reduced to 0.85. 

For normal f r i c t i o n a l c o n t a c t s there i s consequently 

j u s t i f i c a t i o n f o r assuming t h a t the behaviour of the i n t e r ­

f a c i a l c o n t a c t s i s dominated by the p r o p e r t i e s of the m e t a l l i c 

s u b s t r a t e s . S p e c i f i c a l l y , the i n t e r f a c i a l u l t i m a t e shear 

s t r e n g t h x^ may be assumed to behave i n a manner not u n l i k e 

the s u b s t r a t e s ' u l t i m a t e shear s t r e n g t h , w i t h r e s p e c t to 

v a r i a t i o n with s t r a i n r a t e . 

I n t r o d u c t i o n of c}>, the r a t i o of r a t e of t a n g e n t i a l 

s t r e s s a p p l i c a t i o n d i v i d e d by normal s t r e s s a g a i n s t which 

Johannes found t h a t e x p e r i m e n t a l l y - d e t e r m i n e d v a l u e s f o r the 

c o e f f i c i e n t of s t a t i c f r i c t i o n c o u l d be c o r r e l a t e d , y i e l d s 

- yx _ j L d_ 
a W dt 
y 

T . A 
1 s 

A 
c 

T . 
W s 

(3.1.20) 

I f the term c o n t a i n i n g x. i s s m a l l i n comparison t o ^ a 

c o n d i t i o n s a t i s f i e d u n l e s s the i n t e r f a c i a l shear s t r e n g t h x. 

e x h i b i t s s t r o n g r a t e dependence, equation 3.1.20 may be 

approximated by the r e l a t i o n s h i p 
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* = A s . (3.1.21) 

The v a l i d i t y o f t h i s approximation w i l l be f u r t h e r d i s c u s s e d 

i n s e c t i o n 5.1. 

S u b s t i t u t i n g f o r A g from equation 3.1,16 g i v e s the 

r e s u l t 

1+n 
T . 

1 
,,n , n W b y 

s 
/ 1 + ay - — °0 

x7 
(3 .1.22) 

an e q u a t i o n d e s c r i b i n g tfye l o c u s o f y , the c o e f f i c i e n t of 

s t a t i c f r i c t i o n , as a f u n c t i o n of <j>, the lo a d r a t e v a r i a b l e . 

Examination of equation 3.1.22 w i l l r e v e a l t h a t , as the l o a d 

r a t e v a r i a b l e <$> approaches zero, the s t a t i c f r i c t i o n c o e f f i c ­

i e n t y must approach i n f i n i t y , the i n t e r f a c i a l shear s t r e n g t h 

x^ must approach zero, o r the p a r e n t h e s i z e d term must approach 

zero. In the presence of a l u b r i c a n t y cannot approach 
s 

i n f i n i t y . The i n t e r f a c i a l shear s t r e s s x^ may approach zero, 

due to m e t a l l i c creep c o n s i d e r a t i o n s , as <f> approaches zero, 

but c e r t a i n l y the two e f f e c t s are not p r o p o r t i o n a t e f o r any 

reasonable v a l u e of the s u p e r s c r i p t n; t h a t i s to say, tj) 

must be v i r t u a l l y zero before a s u b s t a n t i a l drop i n from 

common value s i s observed [27]. The i n e s c a p a b l e c o n c l u s i o n 

i s t h a t e q u a t i o n 3.1.22 can be s a t i s f i e d f o r a l l <j>, over . 



which s t i c k - s l i p o s c i l l a t i o n o c c u r s , o n l y i f the p a r e n t h e s i z e d 

term equals zero a t 4> = 0. There f o r e 

1 + ay' 
+ a 

cj) = 0 

( 3 . 1 . 2 3 ) 

<j) = 0 

Both Von M i s e s 1 c r i t e r i o n and the l e s s exact maximum-

s h e a r - s t r e s s theory show c l e a r l y t h a t T Q , the s t r e n g t h o f 

the d u c t i l e s u b s t r a t e i n pure shear, i s p r o p o r t i o n a l to C Q . 

S i n c e , f o r reasons a l r e a d y d i s c u s s e d , x^ may be c o n s i d e r e d 

approximately p r o p o r t i o n a l to x Q , i t l o g i c a l l y f o l l o w s t h a t 

the r a t i o °"Q/ t^ w i l l remain approximately c o n s t a n t , and i n ­

dependent of <f>. 

Use o f t h i s constancy permits rearrangement of equation 

3 . 1 . 2 2 to the a l t e r n a t e form 

1+n 

r 7n, n W b y s 
1+n 1 + ay' °0 

77 ^s i 
( 3 . 1 . 2 4 ) 

C o n s i d e r a t i o n o f the nature o f the s u b s t r a t e t e n s i l e s t r e n g t h 

O Q , a t the i n c e p t i o n of s l i p , remains. 

The s i m p l e s t s o l u t i o n of equation 3 . 1 . 2 4 r e s u l t s from 

assuming O Q and, t h e r e f o r e , x^, to be a co n s t a n t . As data 

from Nadai and Majoine [ 2 7 ] , presented i n F i g u r e 3 . 1 . 4 , shows, 
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LTrfXT OF STRAIN RATE ON ULTIMATE STRESS 
OF MILD STEEL AT VARIOUS TEMPERATURES 

IQ-» IQ-« io» HT« KT' I W O* I0» 
HATE Of STRAIN PCR SECOND 

E F F E C T OP STRAIN R A T E ON ULTIMATE STRESS OF MILD 
S T E E L AT VARIOUS TEMPERATURES 

EFFECT OF STRAIN RATE ON ULTIMATE 
STRESS OF PURE COPPER AT VARIOUS 
TEMPERATURES 

E F F E C T OF STRAIN R A T E ON ULTIMATE STRESS OF PURF; 
COPPER AT VARIOUS TEMPERATURES 

Figure 3.1.4 E f f e c t of S t r a i n Rate on Ultimate Tensile 
Strength of Mild Steel and Copper (Nadai 
and Majoine) 
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t h i s c o n d i t i o n o f constancy i s approximately s a t i s f i e d , over 

a l a r g e range of s t r a i n r a t e , by m i l d s t e e l a t room tempera­

t u r e . Most metals, u n f o r t u n a t e l y , have l e s s convenient 

behaviour. Copper, f o r example, a t room temperature appears 

to f o l l o w a r e l a t i o n s h i p of the form 

O Q = K e M ( 3 . 1 . 2 5 ) 

a t f r a c t u r e . Brass, whose l a t t i c e s t r u c t u r e i s unchanged from 

t h a t o f copper by the a d d i t i o n o f z i n c , and whose major 

component i s copper, might be expected to a l s o e x h i b i t be­

h a v i o u r d e s c r i b e d by equation 3 . 1 . 2 5 . C o n s i d e r a t i o n of the 

e f f e c t of r a t e dependence of on e quation 3 . 1 . 2 4 w i l l be 

d e f e r r e d u n t i l s e c t i o n 5 . 1 , where i n d i v i d u a l f r i c t i o n a l 

examples are d i s c u s s e d . 
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3.2 K i n e t i c Boundary F r i c t i o n 

S e c t i o n 3.1 was devoted to o r i g i n a l development o f 

an equation p r e d i c t i n g the v a r i a t i o n i n the s t a t i c f r i c t i o n 

c o e f f i c i e n t w i t h r a t e of l o a d i n g . In c o n t r a s t , t h i s s e c t i o n 

w i l l be concerned wi t h the b a s i c concepts r e q u i r e d f o r the 

d i s c u s s i o n of k i n e t i c r e s u l t s from the p r e s e n t study. 

The s i m p l e s t form of f r i c t i o n , under s t e a d y - s t a t e 

c o n d i t i o n s of s l i d i n g , c o n s i s t s of a r e t a r d a t i o n f o r c e , t o t a l l y 

independent of r e l a t i v e v e l o c i t y between s u r f a c e s , c a l l e d 

Coulombic f r i c t i o n . An example of a Coulombic f r i c t i o n f o r c e 

t r a c e on the phase plane, together w i t h a generated b e h a v i o u r a l 

t r a c e f o r a spring-mass system, s u b j e c t to t h i s f r i c t i o n f o r c e 

i n f r e e v i b r a t i o n , may be found i n F i g u r e 3.2.1. Coulombic 

f r i c t i o n i s approximated i n many i n s t a n c e s of nominally un-

l u b r i c a t e d c o n t a c t of harder metals [28,29]. The e x p r e s s i o n 

"nominally u n l u b r i c a t e d " , r a t h e r than " u n l u b r i c a t e d " , i s used 

because crude l u b r i c a t i o n i s i n h e r e n t i n the presence of most 

m e t a l l i c o x i d e s . 

C o n t r a r y to i t s proven minimal e f f e c t on the governing 

mechanism of s t a t i c f r i c t i o n [9], i n which i t s s o l e f u n c t i o n 

appears to be the d e c r e a s i n g of the i n t e r f a c i a l shear s t r e n g t h , 

the presence of a l i q u i d l u b r i c a n t , even without chemical 

boundary l u b r i c a t i o n a d d i t i v e s , may have a profound e f f e c t 

on the observed f r i c t i o n a l behaviour under k i n e t i c c o n d i t i o n s . 

These chemical a d d i t i v e s are normally l o n g - c h a i n p o l a r 

molecules, which a t t a c h by one end to the metal s u r f a c e , or 



F i g u r e 3.2.1 Free V i b r a t i o n , of. a L i n e a r Spring-Mass System S u b j e c t t o Simple 
Forms of P r i c t i o n 
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compounds (organic or inorganic) which react with m e t a l l i c 

oxides to form a f i l m of low shear strength. Chemical 

additives which do not appreciably a f f e c t the l u b r i c a n t 

v i s c o s i t y have no e f f e c t on f r i c t i o n a l behaviour u n t i l 

opposing surfaces are s u f f i c i e n t l y close that the thickness 

of an additive layer i s a substantial portion of the gap 

between surfaces. If the surfaces do not achieve such close 

proximity, or i f chemical action between the lubricant and 

surfaces i s n e g l i g i b l e , f r i c t i o n a l behaviour i s governed by 

the viscous properties of the l u b r i c a n t . 

Linear viscous f r i c t i o n i s a simple form of energy 

d i s s i p a t i o n associated with the presence of a Newtonian f l u i d 

between two p a r a l l e l , plane surfaces. A Newtonian f l u i d i s 

a viscous f l u i d i n which the rate of shear i s d i r e c t l y 

proportional to the applied shear stress, as expressed by 

the equation 

x n ~ . (3.2.1) 
yx dy 

If two plane surfaces are separated by a Newtonian f l u i d layer 

of constant thickness, the v a r i a t i o n i n tangential f r i c t i o n 

force with r e l a t i v e v e l o c i t y of the surfaces i s l i n e a r . 

Figure 3.2.1 shows an example of l i n e a r l y viscous d i s s i p a t i o n 

action, together with a generated free v i b r a t i o n behavioural 

trace, on the phase plane. 

Another important e f f e c t associated with f l u i d v i s c o s i t y 



i s that of a squeeze f i l m . As examination of Appendix III 

w i l l reveal, a plane surface with a c i r c u l a r periphery, 

which approaches another, p a r a l l e l plane surface from which 

i t i s separated by a Newtonian l i q u i d of invariant v i s c o s i t y , 

has a load-bearing capacity 

M 3 ^4 1 dh , _ - „. 
N f = " 2 M R ' J d t ' (2.2.2) 

where h i s the gap between surfaces. The rate of change of 
dh 

the surface gap, -j^-, i s very small, for any normal load N f, 

i f the surface separation i s small. Note p a r t i c u l a r l y that 

equation 3.2.2, derived for the case of p a r a l l e l surfaces, 

i s applicable whether or not r e l a t i v e motion, and a consequent 

viscous tangential retardation force, exists between the 

surfaces i n t h e i r own plane. 

F u l l hydrodynamic l u b r i c a t i o n r e s u l t s from the pumping 

of a viscous f l u i d through a converging gap between s o l i d 

surfaces. These s o l i d surfaces do not touch, and f l u i d 

pressures are usually s u f f i c i e n t l y low that surface p r o f i l e s 

remain e s s e n t i a l l y unaltered. Observed f r i c t i o n a l resistance 

to motion of one surface tangential to the other i s a conse­

quence of the energy expended i n overcoming viscous drag. 

Hydrodynamic analysis t r a d i t i o n a l l y considers bearing surfaces 

smooth, requiring that they be non-parallel i n order to 

generate load-carrying pressures i n the l u b r i c a n t . However, 
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the generation of hydrodynamic l i f t between closely-spaced 

p a r a l l e l surfaces i s well documented, i f not well understood 

[30]. Explanations advanced for this phenomenon have included 

thermal expansion of the lubricant, thermal deformation of 

the surfaces, and hydrodynamic l i f t , on a microscopic scale, 

as a consequence of surface rugosity. 

If hydrodynamic l i f t i s to occur as a consequence of 

surface rugosity l o c a l i z e d load-carrying pressures may be very 

much greater than the mean l i q u i d pressure between the surfaces. 

The r i g i d i t y of surfaces normally assumed i n hydrodynamic 

analysis becomes a questionable supposition. Of d e f i n i t e 

i n t e r e s t , then, i s the f i e l d of study c a l l e d elastohydro-

dyanmic l u b r i c a t i o n . Elastohydrodynamic l u b r i c a t i o n analysis 

was developed because of the inadequacy of c l a s s i c a l hydro-

dynamic analysis to explain the occurrence of e f f e c t i v e 

hydrodynamic l u b r i c a t i o n i n extreme-pressure point and l i n e 

contacts, the transmission of forces between gear teeth being 

one example. Elastohydrodynamic theory i s distinguished 

from c l a s s i c a l hydrodynamics by s p e c i f i c a t i o n of the lubricant 

f i l m thickness as a function of the e l a s t i c properties of the 

load-bearing s o l i d surfaces, as well as of the applied load, 

lubricant v i s c o s i t y , and i n i t i a l surface geometry. Elas t o ­

hydrodynamic theory, i n i t s simplest form, requires simultaneous 

solution of equations of hydrodynamics and e l a s t i c i t y . 

Exact a n a l y t i c solutions are not usually achieved . 

for even the simplest cases of elastohydrodynamic l u b r i c a t i o n . 



41 

Consider, therefore, the increased d i f f i c u l t y of solution as 

changes i n lubricant v i s c o s i t y due to pressure, temperature, 

and shear rate s e n s i t i v i t y are included i n the equations. 

Numerical techniques, u t i l i z i n g d i g i t a l computer f a c i l i t i e s , 

are normally employed. One of these numerical solutions, 

v e r i f i e d experimentally [31], for the very simple case of two 

c y l i n d r i c a l r o l l e r s with i d e n t i c a l surface v e l o c i t i e s i n 

the contact zone, i s displayed i n Figure 3.2.2, together with 

comparable solutions for purely e l a s t i c and c l a s s i c a l hydro-

dynamic cases. 

The elastohydrodynamic l u b r i c a t i o n property that i s 

of special i n t e r e s t to the present study i s the generation 

of f r i c t i o n forces when the opposing surfaces possess a non­

zero tangential r e l a t i v e v e l o c i t y . A family of experimentally-

obtained curves, displaying the v a r i a t i o n of f r i c t i o n force 

with r e l a t i v e v e l o c i t y of the surfaces for the case of p a r a l l e l 

c y l i n d r i c a l r o l l e r s , i s presented i n Figure 3.2.3. The 

lubricant employed was a commercial mineral turbine o i l , 

B r i t i s h Admiralty s p e c i f i c a t i o n OM 100, and the r o l l e r s were 

hardened s t e e l , diameter 3 inches. The i n i t i a l r i s e i n 

f r i c t i o n force with r e l a t i v e v e l o c i t y i s consistent with the 

properties of an isoviscous Newtonian lubricant; but as r e l ­

ative v e l o c i t y increases, f r i c t i o n forces become increasingly 

less than those predicted from isoviscous considerations, to 

the extent that measured f r i c t i o n force decreases with 

increasing r e l a t i v e v e l o c i t y at high r e l a t i v e v e l o c i t y values. 



Martin conditions—rigid solids, isoviscous lubricant 

Hertzian conditions—dry contact, elastic solids. 

ilrnln 

Elastohydrodynamic conditions—elastic solids, Newtonian 
lubricant 

F i g u r e 3.2.2 R o l l i n g Contact C o n d i t i o n s [42] 
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F i g u r e 3.2.3 Elastohydrodynamic F r i c t i o n Force vs V e l o c i t y 
Curves [43] 
U = 400 cm/sec. Normal loads (10 dynes/cm)--
A:203 B:15, C:7.5. Values of u at U = 400 
cm/sec shown at right of curves 



Experts i n the f i e l d c r e d i t t h i s r e d u c t i o n i n f r i c t i o n f o r c e 

to v i s c o s i t y decreases r e s u l t i n g from thermal e f f e c t s o f 

v i s c o u s l y - g e n e r a t e d heat. 

Crook [32] has developed, i n e x p l a i n i n g the curves 

of F i g u r e 3.2.3, an approximate r e l a t i o n s h i p o f the form 

F 
X 

n u A 

mm 
(3.2.3) 

A 

X 

n 

V i n 

l e n g t h of r e c t a n g u l a r l o a d - c a r r y i n g f i l m 

width of r e c t a n g u l a r l o a d - c a r r y i n g f i l m 

mean e f f e c t i v e l i q u i d v i s c o s i t y 

minimum f i l m t h i c k n e s s ( F i g . 3.2.2) 

i n which the mean e f f e c t i v e l i q u i d v i s c o s i t y i s i t s e l f expressed 

by an approximate h e a t - t r a n s f e r r e l a t i o n s h i p 

Y U- A A 
+ 2 In U + In 

n s Y 

2? f -I 

(3.2.4) 

thermal c o n d u c t i v i t y of l u b r i c a n t 

l u b r i c a n t v i s c o s i t y a t temperature o f bounding 
f r i c t i o n s u r f a c e s 

Y T - T 

P - P, 

In 

In 

c o e f f i c i e n t of l u b r i c a n t 
v i s c o s i t y v a r i a t i o n w i t h 
temperature 

c o e f f i c i e n t o f l u b r i c a n t 
v i s c o s i t y v a r i a t i o n with 
p r e s s u r e . 



In standard elastohydrodynamic s i t u a t i o n s h . i s a 
m m 

f u n c t i o n o f mean s u r f a c e speed, l u b r i c a n t p r o p e r t i e s , and 

l o a d . I f , however, f o r boundary l u b r i c a t i o n s i t u a t i o n s a 

n e a r l y constant, s u b s t a n t i a l p o r t i o n of the normal l o a d i s 

demonstrably supported by a s p e r i t y c o n t a c t , ^- m^ n i s , f o r 

p r a c t i c a l purposes, approximately c o n s t a n t . A s p e r i t y c o n t a c t 

does not mean t h a t h . n e c e s s a r i l y assumes the v a l u e zero, 
m m J 

as equation 3.2.3 might suggest. That e q u a t i o n , d e r i v e d 

from a two-dimensional model, makes no allowance f o r l a t e r a l 

flow of l u b r i c a n t , which must occur a t any p o i n t of c o n t a c t 

between the s u r f a c e s . When attempting to apply e q u a t i o n 

3.2.3 to such circumstances the v a r i a b l e h . can no lon g e r 
m m ^ 

be i n t e r p r e t e d as t r u e minimum c l e a r a n c e ; i t must i n s t e a d 

assume some e f f e c t i v e p o s i t i v e v a l u e determined by summation 

of elastohydrodynamic e f f e c t s over the t o t a l l o a d - b e a r i n g 

f i l m . 

During t h i s study the l o a d and l o a d - b e a r i n g f i l m area 

and shape were u n a l t e r e d . I f , as a d d i t i o n a l c o n d i t i o n s , one 
assumes h . and n constant, Crook's f r i c t i o n a l r e l a t i o n -min s 
sh i p s may be reduced to the form 

F = U In U (3.2.5) 

which w i l l e x h i b i t a maximum a t some v a l u e of r e l a t i v e v e l o c i t y 

determined by the con s t a n t b. T h i s maximum i s r e l e v a n t to 

d i s c u s s i o n of quasi-harmonic o s c i l l a t i o n , which w i l l f o l l o w 

i n s e c t i o n 5.2. 
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Having reviewed the f o r e g o i n g concepts o f l u b r i c a t e d 

k i n e t i c f r i c t i o n , i t i s apparent t h a t even a c h e m i c a l l y 

i n e r t l i q u i d l u b r i c a n t can c o n t r i b u t e to or dominate the 

boundary f r i c t i o n behaviour of m e t a l l i c s u r f a c e s by p u r e l y 

v i s c o u s a c t i o n . The e f f e c t s of chemical a c t i o n between 

l u b r i c a n t and s u r f a c e s add to the e f f e c t s of v i s c o u s a c t i o n , 

making a n a l y s i s of a complex s i t u a t i o n even more i n v o l v e d . 

Chemical e f f e c t s have consequently, as much as p o s s i b l e , 

been e l i m i n a t e d from the p r e s e n t i n v e s t i g a t i o n so as to permit 

a more c e r t a i n a n a l y s i s of the p h y s i c a l f r i c t i o n mechanisms 

i n v o l v e d . 



C H A P T E R I V 



IV. APPARATUS AND EXPERIMENTAL PROCEDURE 

4.1 Apparatus 

Because a certa i n portion of r e l a t i v e l y high-speed 

investigation was anticipated, the use of a linear-motion 

f r i c t i o n apparatus, of inherently limited track length, was 

discarded i n favour cf a rotary-motion apparatus, i n which 

the track length can be made e f f e c t i v e l y i n f i n i t e . The 

apparatus used by Ko [15], which required minimal modification 

to s u i t i t for the present study, was u t i l i z e d . A schematic 

diagram of this apparatus, as employed, may be found i n 

Figure 4.1.1. 

The f r i c t i o n couple consisted of a rotating s t e e l 

disc, of diameter 4 inches, on which rested a s l i d e r of 

diameter 3/8 inch. The s l i d e r was pressed into a hemispher­

i c a l mount, which provided a means of i n i t i a l alignment of 

the s l i d e r with the disc surface. Load application and 

e l a s t i c r e s t r a i n t of the s l i d e r were provided by a compound 

cantilever beam passing across the disc, in order that the 

curvature of the s l i d e r path was i n the same sense as that 

of the f r i c t i o n track on the di s c . Applying load, as well 

as r e s t r a i n t , by means of the beam permitted independent 

v a r i a t i o n of load and the frequency of free v i b r a t i o n of 

the system. A compound, rather than simple, beam was used 



F i g u r e 4.1.1 Schematic Diagram of Experimental System 
VO 
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i n o r d e r t h a t f o r c e a p p l i c a t i o n c o u l d be a t the p r o j e c t e d 

n e u t r a l a x i s of the more e l a s t i c p o r t i o n of the beam, 

e l i m i n a t i n g u n d e s i r a b l e t o r s i o n a l e f f e c t s i n the beam due to 

f r i c t i o n f o r c e s a t the i n t e r f a c e . To minimize t o r s i o n a l 

e f f e c t s due to dynamic imbalance, l e a d weights were atta c h e d 

to the end o f the beam i n such a f a s h i o n as to a l s o p l a c e 

the c e n t e r of g r a v i t y of the v i b r a t i n g mass on the f o r e - , 

mentioned n e u t r a l a x i s . 

The " f i x e d " end of the c a n t i l e v e r beam was clamped 

to a r i g i d s t e e l s h a f t mounted i n s e l f - a l i g n i n g p i l l o w - b l o c k 

b e a r i n g s . These b e a r i n g s were end-loaded to e l i m i n a t e s l a c k , 

and mounted f i r m l y to an aluminum s h e l l . T h i s s h e l l , and 

the base on which i t r e s t e d , were both h e a v i l y weighted w i t h 

l e a d , so as to reduce, as much as p o s s i b l e , the n a t u r a l 

frequency of v i b r a t i o n of the f r i c t i o n mechanism's s u p p o r t i n g 

s t r u c t u r e . T h i s r e d u c t i o n i n the s u p p o r t i n g s t r u c t u r e ' s 

n a t u r a l frequency i s o l a t e d the f r i c t i o n mechanism from 

e x t e r n a l v i b r a t i o n to which i t would be most s e n s i t i v e by 

l o c a t i n g these "no i s e " f r e q u e n c i e s w e l l i n t o the s t r o n g l y -

a t t e n u a t e d p o r t i o n of the s t r u c t u r e ' s t r a n s m i s s i b i l i t y 

spectrum. Such p r e c a u t i o n s were e x e r c i s e d because s e v e r a l 

i n v e s t i g a t o r s , the most no t a b l e among them being Fridman 

and Levesque [33], have found t h a t the a p p l i c a t i o n of e x t e r n a l 

f r e q u e n c i e s to a f r i c t i o n s u r f a c e s u b s t a n t i a l l y decreases the 

observed va l u e s of s t a t i c f r i c t i o n . 
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The drive t r a i n u t i l i z e d a 100:1 double-worm speed 

reducer immediately preceding the driven s t e e l d i s c . This 

reducer, as a r e s u l t of i t s sequential double-worm construction, 

negated the transmission of torque v a r i a t i o n s , at the f r i c t i o n 

surface, back to i t s power input shaft. That th i s input 

shaft exhibited a non-fluctuating reaction torque was 

esse n t i a l to obtaining a uniform driven-surface v e l o c i t y , 

since the remainder of the power transmission system consisted 

of j o i n t l e s s , s o f t rubber O-rings. 

The e l a s t i c i t y of these O-rings (manufactured for use 

as seals) made a d i r e c t , motor-to-disc, b e l t type of power 

transmission system impractical. Unfortunately, more common 

modes of power transmission were even more impractical. Spur 

gears generate v i b r a t i o n as a consequence of the meshing of 

teeth; conventional drive belts have j o i n t s , which generate 

force impulses when passing over drive pulleys. A drive 

t r a i n consisting solely of worm reducers would generate l i t t l e 

noise, but would be both clumsy and costly, as well as provid­

ing an excellent noise path from the motor to the f r i c t i o n 

surface. The hybrid system, O-rings d r i v i n g a worm reducer, 

which provided uniform surface speeds, good noise i s o l a t i o n , 

and extreme f l e x i b i l i t y , was employed very successfully. 

The O-ring portion of the drive t r a i n was, i n 

r e a l i t y , a dual system. One portion of this system consisted 

simply of a variable-speed 3/16 hp. d.c. motor d i r e c t l y 

d r i v i n g the worm reducer through a single O-ring. This part 



of the system, though not s t r i c t l y necessary, was convenient 

for the production of the higher surface speeds employed i n 

this i n v e s t i g a t i o n . The other portion of the dual system 

consisted of a 1 hp. variable-speed d.c. motor dr i v i n g the 

worm reducer through a noise-free, m u l t i - r a t i o speed reducer, 

constructed of O-rings and pulleys, possessing a maximum 
4 

reduction c a p a b i l i t y of 10 . 

Surface speeds at the f r i c t i o n track radius ranged 

from 3 x 10 ^ in/sec. to 12 in/sec. Higher speeds could have 

been re a d i l y achieved, but were not required. Photographs 

of the system may be found i n Figures 4.1.2 and 4.1.3. 

System parameters may be found i n Appendix I. 

4.2 Measurement of F r i c t i o n Forces 

Measurement of f r i c t i o n forces between the s l i d e r and 

the disc was required under dynamic conditions, when the 

s l i d e r and beam would be subject to non-negligible acceleration 

forces. Simple measurement of beam displacement, a procedure 

commonly employed in the past for both s t a t i c and dynamic 

investigations, would have been inadequate for obtaining such 

information because i t ignores these important i n e r t i a l 

forces. The e l e c t r i c a l summation methods of B e l l and 

Burdekin [12] were consequently employed. 

The equation of motion of the s l i d e r may be written 

i n the form 







Mx + r x + k x = F (4.2.1) 

where M i s the equivalent mass of the s l i d e r and i t s support­

ing structure, and F i s the f r i c t i o n force experienced by 

the s l i d e r at i t s i n t e r f a c i a l surface. Rearranging t h i s 

equation to the form 

•• r • k 
1 x M X M X 

p l a i n l y i l l u s t r a t e s that, i f the viscous d i s s i p a t i o n term 
r • 
J-J x i s of n e g l i g i b l e magnitude, with respect to the other 

terms, a scaled measure of the f r i c t i o n force may be obtained 

from the summation of the s l i d e r acceleration and the 

displacement signals, properly scaled. 

Examination of Appendix I w i l l confirm that ^ i s four 

orders of magnitude smaller than — . From phase plane 

analysis, and the knowledge that motion of the s l i d e r with 

respect to the f r i c t i o n surface i s performed under energy-
d i s s i p a t i n g conditions, maximum v e l o c i t y x i s less than r ^ ' 1 max 
the maximum displacement x mul t i p l i e d by the natural 

max c J 

frequency of vi b r a t i o n of the s l i d e r and i t s supporting 

structure, to (Appendix I I ) . The damping term i s therefore 

two orders of magnitude less than the displacement term, , 

with respect to th e i r i n d i v i d u a l maxima, and may consequently 

be assumed to make a n e g l i g i b l e contribution to the equation 

i F M (4.2.2) 



56 

of motion, permitting equation 4.2.2 to be rewritten i n the 

form 

x + £ x = i P (4.2.3) 
M M 

V e c t o r i a l summation of the acceleration and displacement was 

achieved by transmitting the two signals to the oscilloscope 

d i f f e r e n t i a l a mplifier. 

The accuracy of a l l f r i c t i o n measurements was r e s t r i c t e d 

to that of the p r i n c i p a l data recording instrument, an 

o s c i l l o s c o p e . A more precise recording device would have 

been of no advantage because the instrument signals exhibited 

a superimposed high-frequency mechanical noise component, most 

prominent on the acceleration signal and l e a s t prominent on 

the displacement s i g n a l . The noise signals were most pronounced 

during quasi-harmonic o s c i l l a t i o n and following the inception 

of s l i p . Possible explanations for t h i s unwanted noise 

generation include v i b r a t i o n of portions of the cantilever 

beam's support structure and v i b r a t i o n of the beam i n non-, 

fundamental modes. 

4.3 Instrumentation 

a. Displacement 

Two 350 ohm s t r a i n gages were mounted at the root of 

the cantilever beam, where bending moments in the beam were 

at a maximum. These gages, together with two i d e n t i c a l gages 



57 

used f o r temperature compensation purposes, were employed i n 

a four-arm b r i d g e c i r c u i t . B ridge output was a m p l i f i e d by 

an e l e c t r o n i c u n i t s i m i l a r to E l l i s A s s o c i a t e s 1 B r i d g e 

A m p l i f i e r Meter, model BAM-1. 

b. V e l o c i t y 

An e l e c t r o m a g n e t i c t r a n s d u c e r , c o n s i s t i n g o f a c o i l 

of enamelled wire p o s i t i o n e d i n a constant magnetic f i e l d , was 

s i t u a t e d such t h a t , d u r i n g beam v i b r a t i o n , the conductors 

moved t r a n s v e r s e l y to the d i r e c t i o n of the f i x e d magnetic 

f i e l d . Generated v o l t a g e was consequently p r o p o r t i o n a l to 

the instantaneous v e l o c i t y of the c o i l . This v o l t a g e s i g n a l 

was attenuated by a v a r i a b l e - o u t p u t v o l t a g e d i v i d e r c i r c u i t 

b e f o r e t r a n s m i s s i o n to the r e c o r d i n g instruments. D e t a i l s 

of the tra n s d u c e r may be found i n F i g u r e 4.3.1. 

c. A c c e l e r a t i o n 

A s e l f - c o n t a i n e d servo accelerometer, K i s t l e r model 

305A, was mounted on the specimen h o l d e r . D i r e c t t r a n s m i s s i o n 

of the a c c e l e r a t i o n s i g n a l to the r e c o r d i n g instruments was 

p o s s i b l e because a 3 0 v o l t d.c. power source y i e l d e d a maximum 

accelerometer v o l t a g e of ±5 v o l t s . The l e v e l of a c c e l e r a t i o n 

corresponding to maximum s i g n a l , which c o u l d be a l t e r e d by 

changing an e x t e r n a l r e s i s t o r , was s e t a t 50 g, y i e l d i n g a 

s e n s i t i v i t y of 0.1 v o l t / g . Maximum r e s o l u t i o n o f the 
— 7 — 6 instrument was b e t t e r than 5 x 10 v o l t s , or 5 x 10 g. 
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d. Recording Instruments 

Instruments used for recording data were a Brush 

dual channel r e c t i l i n e a r oscillograph, Mark. 842, and a 

Tektronix dual beam storage oscilloscope, Model 564. The 

oscilloscope was equipped with a dual-beam d i f f e r e n t i a l 

amplifier, Type 3A3, a single-beam d i f f e r e n t i a l amplifier, 

Type 2A63, and a time-base amplifier, Type 2B67. The s i n g l e -

beam d i f f e r e n t i a l amplifier and the time-base amplifier were 

used interchangeably. The oscilloscope was modified so as to 

permit control of i t s beam-blanking c i r c u i t by an external 

voltage s i g n a l . 

e. One-Cycle Sequential-Triggering C i r c u i t 

Control of the oscilloscope's beam-blanking c i r c u i t 

was performed by an external c i r c u i t , s i m i l a r i n function to 

that used by Ko [15], constructed to permit the recording of 

a single cycle of v i b r a t i o n . This c i r c u i t was, i n turn, con­

t r o l l e d by the displacement s i g n a l . 

The one-cycle c i r c u i t , which may be found i n Figure 

4.3.2, e s s e n t i a l l y consisted of three relays surrounded 

by accessory c i r c u i t r y . The f i r s t and t h i r d relays were 

tripped by a given l e v e l of negative displacement signal to, 

respectively, unblank and reblank the oscilloscope beam. The 

second relay, tripped by a preset p o s i t i v e displacement signal 

l e v e l , served as an interlock, preventing "machine-gunning" 

of the f i r s t and t h i r d relays on the same negative displace-



Figure 4.3.2 Spot-Triggering and Sequential-Triggering C i r c u i t r y 
o 
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ment s i g n a l . This t r i o of relays was energized by a key 

relay; a l l four relays were simultaneously reset by a manually-

transmitted voltage s i g n a l . 

f. Spot Triggering 

To minimize inconsistency of results due to possible 

non-uniformity of the driven disc's surface, recorded data, 

throughout the duration of a t e s t , was obtained from a very 

r e s t r i c t e d portion of the disc's f r i c t i o n track. A l i g h t -

discriminating r e s i s t o r (LDR) was used to signal the key i 

relay, i n the one-cycle sequential-triggering c i r c u i t , of the 

a r r i v a l of t h i s predetermined portion of the f r i c t i o n track 

at the s l i d e r ' s l o c a t i o n . Details of the spot-triggering 

c i r c u i t r y are included as an i n t e g r a l part of the sequential-

tr i g g e r i n g c i r c u i t presented i n Figure 4.3.2. Each time a' 

f l a g , which could be fixed at any desired point on the disc's 

circumference, moved between a l i g h t source and the LDR a 

voltage pulse was transmitted to the key relay. If the 

relays had been previously reset the key relay would activate 

the b l a n k i n g - c i r c u i t control relays, r e s u l t i n g i n the record­

ing of information over the duration of the succeeding cycle. 

The advantage of using a LDR t r i g g e r i n g system, rather 

than a simpler, mechanical t r i g g e r , lay i n the f a c t that no 

triggering-force reactions were experienced by the drive 

t r a i n . Mechanical devices, even those as e f f o r t l e s s i n 

operation as microswitches, had switching reactions which 

appeared as non-negligible acceleration signals. Any such 



acceleration spike could i n i t i a t e s l i p , i f the f r i c t i o n 

surfaces were approaching the l i m i t i n g conditions of s t i c k , 

and/or have a transient e f f e c t of s u f f i c i e n t duration to 

a f f e c t the recorded data. 

g. Speed Determination 

Belt stretch, and possible b e l t slippage, rendered 

i n d i r e c t measurement of f r i c t i o n disc speed, at some remote 

portion of the d r i v e t r a i n , t o t a l l y unfeasible. The reasons 

negating use of a mechanical spot-triggering device made 

employment of a mechanically-driven speed indicator equally 

unwise. A displacement in d i c a t i n g device, consisting of a 

precisely-machined strobe disc separating a l i g h t source and 

a LDR, was consequently constructed. The strobe disc was 

mounted on the shaft driving the f r i c t i o n d i s c , and the l i g h t 

source-LDR combination fixed to the apparatus frame. Signals 

from the LDR were registered by a counter operating i n 

conjunction with an elapsed-time indicator. Error i n speed 

determination, greatest at higher speeds, was less than 

±2%. 

4.4 Specimens 

As a consequence of the work of Davis [13] , the t e s t ­

ing of a range of d i f f e r e n t metals was deemed unnecessary. 

The i n i t i a l intention was, therefore, to test only one f r i c t i o n 

p a i r . A steel-on-steel f r i c t i o n couple was chosen. But when 



unique and in t e r e s t i n g r e s u l t s were obtained, outside the 

range of load rate encompassed by Davis' experiments, i t 

became prudent to confirm the s i m i l a r i t y of action of d i f f e r ­

ent metals over this extended range, so as to avoid the 

p o s s i b i l i t y of drawing general conclusions from anomalous 

behaviour. Confirmatory tests were performed using unleaded 

brass s l i d i n g on s t e e l , another common i n d u s t r i a l p a i r . 

The 3 / 8 inch diameter s l i d e r s and the 4 inch diameter 

s t e e l disc, whose periphery formed the f r i c t i o n path, were 

i n i t i a l l y prepared by grinding and lapping. F i n a l preparation 

consisted of wearing the specimens and f r i c t i o n disc, i n the 

presence of the lubricant used during testing, u n t i l t h e i r 

surfaces were as conformal as was thought possible under 

those conditions. The applied lubricant was exchanged < 

p e r i o d i c a l l y throughout the duration of this f i n a l prepara­

tion, i n order to remove wear debris and ensure the presence 

of fresh o i l at the beginning of a test. The wear-in process 

was considered complete when i t s external evidence, the 

observed values of the c o e f f i c i e n t of s t a t i c f r i c t i o n , which 

increased during the wear-in process, appeared to reach an 

upper l i m i t , and when t h i s upper l i m i t existed over the 

entire periphery of the dis c . 

Incorporation of a wear-in process was a d i s t i n c t 

departure from the procedure of nearly a l l former i n v e s t i ­

gators of s t i c k - s l i p o s c i l l a t i o n , who have used f r e s h l y -

prepared (ground or lapped) surfaces for th e i r tests. Wearing-



i n of the surfaces, though tedious, offered c e r t a i n d e f i n i t e 

advantages. F r i c t i o n conditions were known to be very uniform 

over the e n t i r e f r i c t i o n track, and to remain stable through­

out the duration of a t e s t . Uniformity of conditions, as 

evidenced by observed f r i c t i o n values, i s very unusual i n 

the case of freshly-prepared surfaces, and r e p e a t a b i l i t y of 

r e s u l t s i s impossible to achieve unless the surfaces are 

r e f i n i s h e d a f t e r each t r a v e r s a l . A d d i t i o n a l l y , i n d u s t r i a l 

f r i c t i o n surfaces are most commonly well run-in; numerical 

r e s u l t s from run-in surfaces have, therefore, greater 

a p p l i c a b i l i t y . 

Details of specimen surface parameters may be found i n 

Appendix V. 

4 . 5 Testing Procedure 

Correct scaling of instrumentation signals (Appendix 

IV) was performed p r i o r to the wearing-in of f r i c t i o n surfaces. 

Immediately upon completion of the wear-in process data con­

cerning v a r i a t i o n of f r i c t i o n a l properties with tangential 

load rate was recorded, with load rate application altered i n 

a systematic manner. Afj:er the desired speed range had been 

scanned i n this fashion, additional data recordings were made 

at the i n i t i a l load rates, i n order to ensure that f r i c t i o n a l 

conditions had not suffered any detectable change. At the 

completion of a test scaling of instrumentation signals was 
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checked to v e r i f y s t a b i l i t y of the instrumentation over the 

duration of the running-in and t e s t i n g . 

I t i s of p a r t i c u l a r s i g n i f i c a n c e to the conformability 

of the f r i c t i o n a l surfaces that the s l i d e r was not removed 

from the f r i c t i o n path, nor was i t s o r i e n t a t i o n i n any way. 

disturbed, from the beginning of the wear-in process to the 

completion of a t e s t . 

The major portion of the data was c o l l e c t e d by photo­

graphing oscilloscope traces. Normal load at the interface 

was, i n a l l cases, 21.1 pounds. 

4.6 Lubricant 

Repeated traversals of the f r i c t i o n track made use 

of a lubricant mandatory i f severe scoring of the surfaces 

was to be avoided. Chemical action between this lubricant 

and the m e t a l l i c surfaces was to be avoided, since such action 

could d i s t o r t r e s u l t s and obscure the physical mechanisms of 

boundary f r i c t i o n . A d d i t i o n a l l y , minimal viscous e f f e c t 

during periods of r e l a t i v e motion was desired, since s t i c k -

s l i p o s c i l l a t i o n does not occur i f dynamic energy d i s s i p a t i o n 

exceeds a c r i t i c a l l e v e l . Greater dynamic energy d i s s i p a t i o n 

results i n more rapid decay, on the phase plane, of the 

s l i d e r ' s phasor amplitude. For persistence of o s c i l l a t i o n 

the s l i d e r must, afte r s l i p , at a lesser displacement re-

achieve the v e l o c i t y of the other surface. Consequently, 

at any driven surface v e l o c i t y v some c r i t i c a l amount of 
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energy d i s s i p a t i o n w i l l e x i s t beyond which the phasor's decay 

rate i s too rapid to permit i t to again a t t a i n the v e l o c i t y 

v, r e s u l t i n g i n the continued decay of the s l i d e r ' s phasor 

to zero amplitude, a state corresponding to non-oscillatory 

motion of the s l i d e r over the driven surface. 

The f r i c t i o n surface, during a l l data runs, was flooded 

with Liquid Petrolatum (light) B.P., a medicinal-grade napthenic 

hydrocarbon, or "white mineral o i l " . This o i l does not, i n 

pure form, contain any polar groups, and was therefore, at 

le a s t nominally, i n e r t with respect to the meta l l i c f r i c t i o n 

surfaces. Measured v i s c o s i t y was 120 SSU at 80°F; for purposes 

of comparison, o i l rated at SAE 5W has a kinematic v i s c o s i t y 

of approximately 200 SSU at 80°F. 

To further avoid undesirable chemical e f f e c t s , lapping 

of f r i c t i o n surfaces was performed with a paste made of Liquid 

Petrolatum and alum powder. No l i q u i d , other than the l u b r i ­

cant, was permitted to contact the surfaces subsequent to 

the commencement of the lapping procedure. Chemical effects 

a r i s i n g from oxidation of the lubricant could not be eliminated, 

but the r e p e a t a b i l i t y of the results at the i n i t i a t i o n and. 

termination of each test suggests that lubricant oxidation, 

over the period of the few days required for the performance 

of a test, was not a s i g n i f i c a n t ' f a c t o r . 



C H A P T E R V 



V. DISCUSSION OF RESULTS 

5.1 S t a t i c F r i c t i o n 

Two photomicrographs, o f f e r i n g clear evidence of 

simultaneous s o l i d contact and r e l a t i v e motion between 

opposing f r i c t i o n surfaces, are presented i n Figure 5.1.1. 

Confirmatory surface roughness measurements may be found i n 

Appendix V. That such s o l i d contact exists i n the absence 

of r e l a t i v e motion between surfaces l o g i c a l l y follows, since 

hydrodynamic ef f e c t s can only increase with r e l a t i v e v e l o c i t y . 

The assumption of a solid-contact model for the s t i c k portion 

of a s t i c k - s l i p cycle i s therefore vindicated, provided, as 

indicated by the re s u l t s of Courtney-Pratt and Eisner [9], 

the portion of the load supported by squeeze f i l m e f f e cts i s 

of a lesser order of magnitude than the portion supported 

by s o l i d contact. 

Experimental data showing the v a r i a t i o n of the co-

e f f i c i e n t of s t a t i c f r i c t i o n with the load rate variable <j> 

i s presented, for the steel-on-steel f r i c t i o n couple, i n 

Figure 5.1.2, together with curves defined by the derived 

equation 3.1.24. Included i n Figure 5.1.2, for comparison 

purposes, i s data obtained by Potter [10] for a nominally 

unlubricated steel-on-steel f r i c t i o n couple using a l i n e a r , 

rather than rotary, apparatus. 
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(a) SLIDER SURFACE 

(b) DISC SURFACE 

Figure 5.1.1 Post-Test Photomicrographs of S l i d e r Surface 
and F r i c t i o n Disc Surface (Steel-on-Steel), X 7 5 

Directional wear markings are -plain on both 
surfaces. Pre-test lapped surface f i n i s h is 
evident in right-hand upper corner of 
F r i c t i o n Disc Surface photomicrograph 
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In the derivation of equation 3.1.24 the term 
A 

S " jj-p- was assumed n e g l i g i b l y small compared to the load 

rate variable <j>: t h i s assumption must now be v e r i f i e d . 

The postulated mechanism of asperity deformation and 

area growth, p l a s t i c deformation r e s u l t i n g from application of 

a ramp form of tangential load (in combination with a constant 

normal load), permits the assumption that the rate of s t r a i n 

i n an asperity i s approximately proportional to the load rate 

variable cj). A further assumption that s t r a i n at s l i p (fracture) 

i s approximately 1 i n / i n , both i n the present inves t i g a t i o n 

and i n the t e n s i l e experiments of Nadai and Majoine [27], i n 

combination with time of s t i c k data from the present i n v e s t i -

gation,' y i e l d s the r e s u l t that $ and the t e n s i l e s t r a i n rate 

e, as presented i n Figure 3.1.4, are of the same order of 

magnitude. In other words, data from Nadai and Majoine, for 

a given magnitude of e, should be applicable to an approximately 

equivalent magnitude of cj). 
A y s 

The r a t i o i s i d e n t i c a l to — • Both quantities 

in this second r a t i o are r e a d i l y obtained from data. The time 

derivative may be approximately calculated, again assuming 

fracture s t r a i n to be 1 i n / i n , by computing T Q . In the,load 
-4 1 -1 A s • 

rate ranqe e = 10 to 10 sec pr- x. can be shown, for raild 
s t e e l , to be at least two orders of magnitude less than the 

corresponding s t r a i n rate e. Hence, over the same range of 
A 

ct, the term ~ T i s also two orders of magnitude less than w i 
i t s corresponding load rate $. The i n i t i a l assumption, 



72 
A s * * 
^— i s negligibly small i n comparison to |, i s consequently 

j u s t i f i e d for low-strength s t e e l . 

In the f i t t i n g of equation 3.1.24 to the experimental 

data, the s t a t i c f r i c t i o n c o e f f i c i e n t at zero load rate 

^s | _ g was assumed to be the value of the apparent upper 

asymptote, y =0.55. Substitution i n equation 3.1.22 yi e l d s 

25 
(5.1.1) 

10 

The experimentally-deduced value of a o / / x i ^ s obviously strongly 

influenced by the assumed value of a. Interestingly, because 

the constant K i n equation 3.1.16 should not be subst a n t i a l l y 

less than unity, comparison of equations 3.1.6 and 5.1.1 

favours choosing a to be approximately 25, r e i n f o r c i n g the 

conclusions of Greenwood [45]. 

For purposes of thi s study, the value of a, though 

valuable i f i t could be prec i s e l y determined, i s not of 

paramount importance. Examination of Figure 5.1.2 w i l l reveal 

that a change of a, within a fe a s i b l e range, has only a minor 

e f f e c t on the p r o f i l e of the s t a t i c f r i c t i o n response curve. 

A change i n a does, however, s h i f t the response curve to 

ri g h t or l e f t on the logarithmic load rate axis, necessitating 

a compensating change i n the location parameter a^~*n/V}nb ; 

determination of this parameter i s , therefore, contingent 

upon knowing the value of a. 

a + 3.36 5.3, 

3.7, a 

a = 



The upper l i m i t of the power index, n = 1.5, would 

correspond to uniform deformation throughout the volume 

of material within the e l a s t i c - p l a s t i c boundary. The lower 

l i m i t , n = 1.0, would correspond to uniform deformation along 

some front advancing with the boundary of the contact; such 

a front might occur at the e l a s t i c - p l a s t i c boundary i f the 

p l a s t i c material was restrained i n the d i r e c t i o n normal to 

the free surface. Examination of Figure 5.1.3 w i l l reveal 

that n might be expected to have an e f f e c t i v e value equal to 

neither of these two l i m i t s , but rather, some intermediate 

value. Although determination of n could be of si g n i f i c a n c e 

to further understanding of the area growth phenomena, the 

i n s e n s i t i v i t y of the response curve p r o f i l e to changes i n n, 

as well as i n a , together with the scatter of the experimental 

data, prevents any statement more conclusive than that the 

previously-stated l i m i t s appear consistent with the available 

information. 

Var i a t i o n i n n, unfortunately, also causes l a t e r a l , 

s h i f t s i n the s t a t i c f r i c t i o n response curve. Determination 

of the value of the location parameter o^+n/Vlnh i s consequently 

doubly d i f f i c u l t , since i t r e l i e s on accurate knowledge of 

both n and a . 

Before terminating discussion of the information 

presented i n Figure 5.1.2, i t i s s i g n i f i c a n t to the general 

a p p l i c a b i l i t y of the present theory that the s t a t i c f r i c t i o n 

response curve p r o f i l e of equation 3.1.24 f i t s the data of 



Figure 5.1.3 Zone of Deformation beneath a Longitudinal Wedge Indentation [44] 
Note hemispherical contour of elastic-plastic boundary and non­
uniform nature of deformation within boundary 



Potter, which exhibits both a wide range of s t a t i c f r i c t i o n 

values and the f i r s t indications of an upper asymptote, 

as capably as i t does data c o l l e c t e d during t h i s study, i f 

the l i m i t i n g s t a t i c f r i c t i o n value ^s ^ _ Q i s reduced to 

0.50. The a b i l i t y of equation 3.1.24 to describe these data 

sets reinforces the i n i t i a l supposition that, during s t i c k , 

s o l i d contact i s the dominant load-bearing mechanism, and the 

consequent omission of squeeze-film effects from the a n a l y t i c a l 

model. The quantity of l i q u i d l ubricant displaced by the 

decrease i n mean surface separation during s t i c k must conse­

quently have experienced very l i t t l e d i f f i c u l t y i n exiting' 

the i n t e r f a c i a l zone, at the rates required, through the flow 

passages between asperity contacts. 

During the testing of brass on s t e e l , m e t a l l i c transfer 

from the brass s l i d e r to the s t e e l disc occurred, as evidenced 

by the photomicrograph presented i n Figure 5.1.4. No evidence 

of material transfer from the s t e e l disc to the brass s l i d e r 

was detectable. One might consequently expect f r i c t i o n a l , 

behaviour to be dominated by the more ph y s i c a l l y active of; 

the two metals, brass. 

That brass was, i n f a c t , the more ph y s i c a l l y active 

of the two surfaces i s worthy of note. I f , for whatever 

reason, a contact junction should possess an ultimate shear 

strength i n excess of that of either metal matrix, fracture 

w i l l occur, not at the i n t e r f a c i a l junction, but i n the weaker 

matrix. Transfer might have been expected from the s t e e l , 
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DISC SURFACE 

Figure 5.1 .4 Post-Test Photomicrograph of F r i c t i o n Disc 
Surface (Brass-on-Steel), X250 
M e t a l l i c transfer of brass to the st'eel 
f r i c t i o n disc surface is evident 
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the weaker of the two materials at room temperature (steel 

55 kpsi UTS, brass 75 kpsi UTS, approximately), to the brass. 

That transfer occurred i n an inverse manner suggests that, 

at the time of shear, the strength of the brass at the points 

of transfer was less than that of the s t e e l . Perhaps thermal 

e f f e c t s , such as were reported by Bowden and Ridler [4 ] , 

would provide an explanation for this apparent reversal of 

r e l a t i v e strengths. The brass material, as received and 

employed, was highly cold-worked; heat generated at the i n t e r ­

f a c i a l surfaces, whether during s t i c k or s l i p , might well 

have p a r t i a l l y annealed the relevant surface portions of the 

brass specimen, r e s u l t i n g i n l o c a l regions wherein the shear 

Strength of the brass was less than that of the s t e e l or the 

i n t e r f a c i a l junction. Conversely, cold-working of the surface 

of the annealed s t e e l might have s u f f i c i e n t l y increased i t s 

shear strength, i n these surface regions, so that the e f f e c ­

t i v e shear strength of the s t e e l exceeded that of the cold-

worked brass. Whatever the explanation, the properties of 

the brass surface may be expected to govern the observed 

f r i c t i o n a l behaviour. f 

S p e c i f i c data on the fracture strength of brass, 

under conditions of varied stress rate, or even varied s t r a i n 

rate, has not been located. The most v a l i d comparative data 

available i s that presented, for copper, i n Figure 3.1.3. 

As has been stated, the response of the ultimate strength of 

brass to varying s t r a i n rate might, i n the absence of better 
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information, be assumed described by equation 3.1.25, but 

the rate of shearing s t r a i n i n an asperity junction i s unknown, 

precluding d i r e c t use of thi s equation. 

The metal at the asperity junction i s , for the postu­

lated mechanism, marginally p l a s t i c . For this condition of 

p l a s t i c i t y the rate of shearing s t r a i n , at the inte r f a c e , may 

be considered proportional to the rate of horizontal load 

application, at lea s t as a f i r s t approximation, so that 

m 

C Q = . K <j> . (5,1.2) 

Substitution of equation 5.1.2 into equation 3.1.23 

resu l t s i n the graphical plots exhibited i n Figure 5.1.5/ 

together with the data obtained for v a r i a t i o n of s t a t i c 

f r i c t i o n c o e f f i c i e n t with^ load rate. The p l o t for which m 

equals zero (a^ = constant) i s quite inadequate to describe 

the data, whereas, i f m i s of the order 0.1 a very respectable 

matching of derived plo t and data i s achieved. 

Examination of Figure 3.1.3 w i l l reveal that, for 

copper, the power index m has a value of the order of .02,. 

approximately o n e - f i f t h of the value required to match the 

p r o f i l e of equation 3.1.24 to that of.the data for the brass-

on-steel f r i c t i o n p a i r . This difference i n magnitude i s not 

beyond c r e d i b i l i t y when one considers how d r a s t i c a l l y the 

physical properties of a metal can change when i t i s alloyed. 



F i g u r e 5.1.5 V a r i a t i o n . o f the C o e f f i c i e n t of S t a t i c F r i c t i o n w i t h Load Rate 
V a r i a b l e <J>, Bra s s - o n - S t e e l 
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S p e c i f i c a l l y , t h e d i f f e r e n c e i n m a g n i t u d e o f t h e power i n d e x 

m c o u l d be a t t r i b u t e d t o t h e f a c t t h a t d i s l o c a t i o n movement 

- i n b r a s s , w h i c h has s u b s t i t u t i o n a l z i n c atoms i n a c o p p e r 

l a t t i c e , i s more r e s t r i c t e d t h a n d i s l o c a t i o n movement i n p u r e 

c o p p e r . 

F o r t h e c o p p e r d a t a p r e s e n t e d i n F i g u r e 3.1.4, t h e 
A s • 

t e r m ^ — x^ i n e q u a t i o n 3.1.20 c a n be shown t o be, t h r o u g h o u t 

t h e r a n g e o f l o a d r a t e s s p a n n e d by t h i s i n v e s t i g a t i o n , t h r e e 

o r d e r s o f m a g n i t u d e s m a l l e r t h a n t h e l o a d r a t e v a r i a b l e <j). 

The a s s u m p t i o n s and method o f a n a l y s i s a r e i d e n t i c a l t o t h o s e 

e mployed i n d e t e r m i n i n g t h e r e l a t i v e m a g n i t u d e o f t h o s e terms 

f o r t h e c a s e o f s t e e l - o n - s t e e l f r i c t i o n a l c o n t a c t . The 

d i f f e r e n c e i n m a g n i t u d e o f t h e power i n d i c e s m, f o r c o p p e r 

and b r a s s , i n d i c a t e s t h a t , f o r b r a s s , <J> w o u l d be o n l y two 
A 

o r d e r s o f m a g n i t u d e g r e a t e r t h a n ~ x . , b u t t h a t d i f f e r e n c e 

W i A 
i s s t i l l e n t i r e l y a d e q u a t e f o r a s s u r a n c e t h a t _JLx. i s 

W i 

n e g l i g i b l e t h r o u g h o u t t h e e x p e r i m e n t a l l o a d r a n g e . T h i s 

a s s u m p t i o n i s t h e r e f o r e v a l i d a t e d f o r t h e b r a s s - o n - s t e e l , as 

w e l l as t h e s t e e l - o n - s t e e l , f r i c t i o n p a i r . 

I n summary, two d u c t i l e m e t a l s , b r a s s and s t e e l , have 

b e e n t e s t e d u n d e r b o u n d a r y f r i c t i o n c o n d i t i o n s on a s t e e l 

s u r f a c e . B o t h m a t e r i a l c o m b i n a t i o n s showed d e f i n i t e u p p e r 

l i m i t s o f s t a t i c f r i c t i o n i n t h e p r e s e n c e o f a l u b r i c a n t , 

and t h e b e h a v i o u r o f b o t h f r i c t i o n p a i r s , when s u b j e c t e d t o 

v a r i e d r a t e s o f t a n g e n t i a l s t r e s s a p p l i c a t i o n , a p p e a r s 

a d e q u a t e l y d e s c r i b e d by t h e d e v e l o p e d e q u a t i o n 3.1.24. 
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5.2 Kine t i c Boundary F r i c t i o n 

a. S l i p 

The established form of the f r i c t i o n force curve 

during s l i p , , as determined by B e l l and Burdekin [12], i s 

represented schematically i n Figure 2.1.2. The maximum value 

of f r i c t i o n force, which determines the c o e f f i c i e n t of s t a t i c 

f r i c t i o n , corresponds to conditions at the incidence of s l i p . 

Once s l i p was i n i t i a t e d , the f r i c t i o n force magnitude f e l l 

while r e l a t i v e surface v e l o c i t y increased to a maximum; as 

the r e l a t i v e v e l o c i t y decreased from maximum to zero, the * 

f r i c t i o n force remained univalued. 

The form of f r i c t i o n force trace reported by B e l l and 

Burdekin has been recorded during the course of thi s study, 

and a representative data recording of thi s type, for the 

steel-on-steel f r i c t i o n pair, may be found i n Figure 5.2.1. 

The lower surface v e l o c i t y during generation of thi s record-
-2 

ing was 2.8 x 10 in/sec; the achieved c o e f f i c i e n t of s t a t i c 

f r i c t i o n was 0.26. This form of trace i s not, however, 

invariant. As the lower surface v e l o c i t y was reduced, i n 

order to achieve greater c o e f f i c i e n t s of s t a t i c f r i c t i o n , the 

phase plane displacement and f r i c t i o n traces a l t e r e d pro­

gressively to the forms displayed i n Figure 5.2.2. Unlike 

the traces displayed i n Figure 5.2.1, these recordings were 

made sequentially; s t a t i c f r i c t i o n values achieved d i f f e r e d 

s l i g h t l y , but there i s no doubt concerning the r e p e a t a b i l i t y 

and mutual compatibility of the f r i c t i o n force and d i s ­

placement traces. 
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X 

Figure 5.2.1 Recorded Half-Cycle S t i c k - S l i p Phase Plane 
Traces 



X F 

F i g u r e 5.2.2 Recorded M u l t i - C y c l e S t i c k - S l i p Phase Plane Traces ( S t e e l - o n -
S t e e l , 10 0 mv/div) CO 
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S e v e r a l s i g n i f i c a n t o b s e r v a t i o n s r e s u l t from examin­

a t i o n of the t r a c e s of F i g u r e 5.2.2. T r a d i t i o n a l s t i c k - s l i p 

theory p o s t u l a t e s t h a t the s l i p p o r t i o n of the displacement 

t r a c e should be a h a l f - c y c l e because the s u r f a c e s would r e ­

a t t a c h as soon as t h e i r r e l a t i v e v e l o c i t y f e l l t o z e r o . 

This re-attachment was supposed to occur because the r e s t o r i n g 

f o r c e a t the time when the s u r f a c e v e l o c i t i e s matched, a f t e r 

an e n e r g y - d i s s i p a t i n g h a l f - c y c l e , should be l e s s than t h a t 

r e q u i r e d to overcome s t a t i c f r i c t i o n . T h i s e x p l a n a t i o n , 

which ignores r a t e e f f e c t s , i s somewhat o v e r s i m p l i f i e d ; i t 

i s sometimes a p p l i c a b l e , but F i g u r e 5.2.2 p l a i n l y shows t h a t 

i t s a p p l i c a t i o n i s f a r from u n i v e r s a l , s i n c e the r e s t o r i n g , 

f o r c e a t the end of two c y c l e s , which corresponds to a 

f r i c t i o n a l c o e f f i c i e n t of 0.12, s t i l l exceeds i n magnitude 

the f o r c e s f a v o r i n g re-attachment. 

Perhaps the most s i g n i f i c a n t r e v e l a t i o n of F i g u r e 

5.2.2 i s t h a t the upper p o r t i o n of B e l l and Burdekin's d u a l -

valued f r i c t i o n curve i s a t r a n s i e n t which e x i s t s o n l y b e f o r e 

the system achieves s t a b l e s l i p c o n d i t i o n s , as d e f i n e d by 

the lower p o r t i o n of the f r i c t i o n curve. T h i s s t a b l e lower 

p o r t i o n of the f r i c t i o n curve t r a d i t i o n a l l y e x h i b i t s a 

Coulombic form, but t h a t of F i g u r e 5.2.2 shows both Coulombic 

and v i s c o u s c h a r a c t e r i s t i c s , s u g g e s t i n g t h a t both mechanisms 

of f r i c t i o n are a c t i v e . S p e c i f i c a l l y , the curve suggests 

the presence of both s o l i d - c o n t a c t and v i s c o u s modes of energy 

d i s s i p a t i o n . That the s u r f a c e s should have s o l i d c o n t a c t 
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has been demonstrated by the c o n d u c t i v i t y s t u d i e s o f Green 

[16]; t h a t v i s c o u s e f f e c t s should be added t o the s o l i d - c o n t a c t 

e f f e c t s i n the presence of a l i q u i d l u b r i c a n t i s not un­

expected . 

The v a l u e of the observed f r i c t i o n f o r c e a t zero 

r e l a t i v e v e l o c i t y , where v i s c o u s drag i s zero, corresponds to 

a f r i c t i o n c o e f f i c i e n t o f approximately 0.03. S t e e l - o n - s t e e l 

c o n t a c t s , u s i n g m i l d s t e e l , have been found t o have a minimum 

k i n e t i c f r i c t i o n c o e f f i c i e n t , a t low speeds and i n the presence 

o f h i g h l y e f f e c t i v e boundary l u b r i c a n t s , o f 0.053 [34]. 

Because the l u b r i c a n t used i n t h i s study was chosen f o r i t s 

poor boundary l u b r i c a t i o n p r o p e r t i e s , some p h y s i c a l mechanism 

other than s o l i d c o n t a c t was o b v i o u s l y r e s p o n s i b l e f o r the 

r e d u c t i o n of the k i n e t i c f r i c t i o n to the l e v e l observed, a 

r e d u c t i o n which c o u l d occur only i f some p o r t i o n of the normal 

l o a d was not supported by s o l i d c o n t a c t . That p a r t of the 

normal l o a d was supported by the v i s c o u s l i q u i d f i l m , even 

a t zero r e l a t i v e v e l o c i t y , appears i n e s c a p a b l e . 

The e x i s t e n c e of a l o a d - b e a r i n g squeeze f i l m a t the 

primary matching, a f t e r s l i p i n i t i a t i o n , of s u r f a c e v e l o c i t i e s 

suggests t h a t t h i s f i l m must have been e s t a b l i s h e d d u r i n g 

the f i r s t h a l f - c y c l e o f s l i p . That l u b r i c a n t i s pr e s e n t 

between the s u r f a c e s d u r i n g the t e r m i n a l stages of s t i c k , 

i n t e r s p e r s e d i n the f r e e volume between a s p e r i t y c o n t a c t s , 

i s c e r t a i n , but because the i n t e r f a c i a l gap i s g r e a t e r (area 

of c o n t a c t s m a l l e r ) d u r i n g s l i p than d u r i n g s t i c k , t h i s 
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residual volume of lubricant i s i n s u f f i c i e n t to form the 

viscous squeeze f i l m observed during s l i p . An additional 

volume of lubricant, greater than that to be expected i f the 

normal load was e n t i r e l y supported by s o l i d contact, c o l l e c t e d 

between the f r i c t i o n surfaces during the f i r s t h a l f - c y c l e of 

s l i p . The source of this additional lubricant i s no mystery, 

since the f r i c t i o n surface over which the s l i d e r moved was 

flooded with o i l . The source of the l i f t i n g forces experienced 

by the f l a t s l i d e r i s less obvious. Hydrodynamic l i f t , which 

nominally requires the existence of a convergent surface gap, 

would i n i t i a l l y appear to be inoperative, i n t h i s i n v e s t i ­

gation, as a r e s u l t of the carefully-maintained p a r a l l e l i s m 

of the s l i d e r and disc faces. Recall, though, that hydro-

dynamic l i f t does exi s t |n just such cases, and i s c e r t a i n l y 

the most pla u s i b l e source of l i f t i n g forces under the 

experimental conditions of this study. 

If present during the f i r s t h a l f - c y c l e of s l i p , 

hydrodynamic l i f t must also have been present during the 

remainder of s l i p . The s t a b i l i t y of Figure 5.2.2, for a 

duration of two cycles, would suggest that the l i f t i s due to 

surface rugosity, and not to a transit o r y thermal expansion 

of the lubricant or short _term thermal deformation of the 

surfaces. Although i n s u f f i c i e n t to form a squeeze f i l m , 

the residual lubricant between the surfaces during s t i c k 

would be s u f f i c i e n t to generate hydrodynamic l i f t between 

closely approaching a s p e r i t i e s , since such l i f t generation 
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requires only lubricant i n the microscopic regions of con-

vergency. Such l i f t would e f f e c t the entrance of more 

lubricant beneath the s l i d e r , allowing the continuation of 

the process to a state of equilibrium. Note also that the 

magnitude of f r i c t i o n values over the stable portion of the 

f r i c t i o n force trace was reduced i f the s l i d e r t r a v e l l e d a 

greater distance over the lower surface.before stable 

conditions were achieved, a fa c t compatible with the concept 

that hydrodynamic l i f t causes the establishment of an 

increasingly thicker f l u i d f i l m during the transient portion 

of s l i p . 

In order to further investigate t r a n s i t o r y character­

i s t i c s of s l i p , t r a n s i t i o n curves recorded at a variety of 

lower surface v e l o c i t i e s were graphically compared. The 

curves were normalized with respect to the value of f r i c t i o n 

at which they met the stable k i n e t i c f r i c t i o n curve, i n order 

that only t r a n s i t o r y behaviour might be studied, and plotted 

as functions of time, r e l a t i v e v e l o c i t y , and displacement of 

the s l i d e r with respect to the lower surface. These p l o t s , 

which may be found i n Figures 5.2.3 to 5.2.5, suggested strongly 

that distance t r a v e l l e d by the s l i d e r was the dominant variable 

governing the rate of decay of the transitory k i n e t i c f r i c t i o n . 

Further confirmation of t h i s finding was provided by increas­

ing the system's natural frequency of v i b r a t i o n to 152 rad/sec 

by removing the lead weights from the end of the beam. Un­

desirable dynamic imbalance and reduction of v i b r a t i n g mass 



Figure 5.2.3 Normalized Transitory Kinetic F r i c t i o n vs Time (Steel-on-
Steel, w, =102 rad/sec) 



Figure 5.2.4 Normalized Transitory Kinetic F r i c t i o n vs Relative V e l o c i t y m 

(Steel-on-Steel, co^ = 102 rad/sec) u> 



Figure 5.2.5 Normalized Transitory Kinetic F r i c t i o n vs Relative Displacement 
(Steel-on-Steel, cu, = 10 2 rad/sec) o 



concentration resulted i n imperfect phase lags between the 

instrumentation signals, as well as introducing the p o s s i b i l i t y 

of non-parallel dynamic orien t a t i o n of the f r i c t i o n surfaces, 

but the information gained provided valuable support for the 

findings of the graphical t r a n s i t o r y p l o t s . Comparison of 

the f r i c t i o n force curve (Fig. 5.2.6) with that presented i n 

F i g u r e 5.2.1 again indicates, despite small out-of-phase 

ef f e c t s evident i n the recording of a s l i g h t l y p o s i t i v e 

v e l o c i t y during the f i r s t quarter-cycle of s l i p , that there 

i s l i t t l e basis for considering the rate of decay of the 

t r a n s i t i o n to be d i r e c t l y governed by either v e l o c i t y or time. 

The recorded curves of f r i c t i o n force versus displacement, 

however, show s t a r t l i n g s i m i l a r i t y for the two natural f r e ­

quencies. This s i m i l a r i t y , together with the s i m i l a r i t y of 

the normalized f r i c t i o n curves of Figure 5.2.5, forces the 

assertion that the decay rate of the t r a n s i t o r y portion of 

the k i n e t i c f r i c t i o n curve i s apparently governed by the 

distance t r a v e l l e d by the s l i d e r over the lower surface. 

The distance t r a v e l l e d at the termination of the 

transient portion of the s l i p cycle i s many orders of magnitude 

greater than the size of any p r a c t i c a l asperity. The t r a n s i t i o n 

cannot, therefore, correspond to progressive fracture of the 

asperity contacts formed during s t i c k , as former investigators 

have suggested. Remember, however, that the s l i d e r and i t s 

supporting structure possess i n e r t i a i n the normal, as well as 

tangential, plane and that the s t r a i n during s t i c k i s such 
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t h a t the ce n t e r o f mass of the s l i d e r i s d i s p l a c e d toward 

the lower s u r f a c e . T h i s i n e r t i a , w i t h r e s p e c t t o pe r p e n d i c ­

u l a r movement, ensures t h a t although the a s p e r i t y j u n c t i o n s 

formed d u r i n g s t i c k might a l l have f r a c t u r e d , the area of 

c o n t a c t a t the i n c e p t i o n of s l i p cannot be i n s t a n t a n e o u s l y 

reduced, d e s p i t e the encouragement of such area r e d u c t i o n by 

the decreased t o t a l s u r f a c e s t r e s s and the growing f l u i d f i l m . 

U n f o r t u n a t e l y , the t r a n s i t i o n a l decay r a t e cannot be c o r r e l ­

ated w i t h time, as i t would be i f i n e r t i a normal to the s u r f a c e 

dominated the behaviour; removing the l e a d weights from the 

end of the beam a l t e r e d the system's moment of i n e r t i a f o r 

t h a t plane by l e s s than 3%. The i n t e r a c t i o n o f f o r c e s d u r i n g 

t h i s important p o r t i o n of the s l i p c y c l e i s o b v i o u s l y complex, 

and would be worthy of much c l o s e r a t t e n t i o n than the scope 

of t h i s study p e r m i t s . 

In summary, the s l i p p o r t i o n of the s t i c k - s l i p c y c l e 

begins when, d u r i n g s t i c k , the a p p l i e d t a n g e n t i a l shear s t r e s s 

exceeds the f r a c t u r e s t r e n g t h of the r e a l c o n t a c t a r e a . S l i p 

p r ogresses through a complex t r a n s i t o r y regime, c o r r e l a t a b l e 

with r e l a t i v e displacement of the s u r f a c e s , d u r i n g which the 

area o f c o n t a c t i s d r a s t i c a l l y reduced and, i n the presence 

of a l i q u i d l u b r i c a n t , a l o a d - b e a r i n g f l u i d f i l m i s e s t a b l i s h e d 

by hydrodynamic a c t i o n on a m i c r o s c o p i c s c a l e . The t r a n s i t o r y 

s l i p c o n d i t i o n decays t o a s t a b l e s t a t e of s l i p wherein the 

normal l o a d i s supported p a r t i a l l y by s o l i d c o n t a c t , p a r t i a l l y 

by the f l u i d f i l m . Because e f f e c t i v e s u r f a c e s e p a r a t i o n i s 



of the order of the height of a surface asperity, squeeze 

f i l m e f f e c t s assure the persistence of th i s f l u i d f i l m f or 

the short periods (milliseconds) when hydrodynamic l i f t i s 

ne g l i g i b l e due to inadequate r e l a t i v e v e l o c i t y . The s l i p 

portion of a vibratory cycle terminates at the f i r s t matching 

of surface v e l o c i t i e s a f t e r f r i c t i o n a l energy d i s s i p a t i o n 

has reduced the corresponding displacement, whether p o s i t i v e 

or negative, s u f f i c i e n t l y that the sum of the forces favouring 

reattachment of the surfaces exceeds the e l a s t i c restoration 

force. Upon reattachment of the surfaces another period of 

s t i c k commences. If the v e l o c i t y of the driven surface i s 

s u f f i c i e n t l y great that the forces favouring reattachment do 

not exceed the e l a s t i c restoration force before the maximum 

pos i t i v e v e l o c i t y of the o s c i l l a t i n g surface becomes less 

than the driven surface v e l o c i t y , reattachment cannot occur, 

and s t i c k - s l i p o s c i l l a t i o n disappears. Non-oscillatory s l i d i n g 

of the elastically-mounted surface, at a fixed displacement 

proportional to the magnitude of the k i n e t i c t r a c t i o n forces, 

ensues. 

b. Quasi-Harmonic O s c i l l a t i o n 

S l i p and quasi-harmonic motion are d i s t i n c t i v e e n t i t i e s 

because, although the f r i c t i o n forces encountered during s l i p 

are e n t i r e l y d i s s i p a t i v e , dynamic f r i c t i o n forces causing 

quasi-harmonic o s c i l l a t i o n are not. The "humped" form of 

f r i c t i o n force vs v e l o c i t y curve reported by Ko [15] to be 

c h a r a c t e r i s t i c of quasi-harmonic o s c i l l a t i o n , one form being 
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that shown i n Figure 2.1.3, may be energy-additive, energy-

d i s s i p a t i v e , or both (Appendix I I ) , depending on the v e l o c i t y 

of the driven surface. 

An example of a humped f r i c t i o n curve, together with 

a generated behavioural trace, i s presented on the phase 

plane i n Figure 5.2.7. 

Inherent i n the balancing of additive and d i s s i p a t i v e 

energy effects to achieve a stable, quasi-harmonic l i m i t 

cycle i s the necessity for the zero axis of absolute v e l o c i t y 

of the driven surface to f a l l i n the immediate v i c i n i t y of 

the "hump" of the curve. If this hump and the zero v e l o c i t y 

axis are too widely separated the d i s s i p a t i v e and additive 

energy e f f e c t s w i l l not balance, negating the achievement of 

a stable l i m i t cycle. A related point of sign i f i c a n c e i s 

that the p o s i t i v e l y and negatively sloped portions of the 

f r i c t i o n - v e l o c i t y curve need not have the r e l a t i v e positions 

i l l u s t r a t e d i n Figure 3.3.1 for achievement of a stable l i m i t 

cycle. I f , instead, the f r i c t i o n - v e l o c i t y curve has a 

minimum, rather than maximum, value i n the v i c i n i t y of the 

zero v e l o c i t y axis, due to reversal of the r e l a t i v e positions 

of the sloped portions of the curve, a stable l i m i t cycle i s 

s t i l l achieved. The sole c r i t e r i o n for the endurance of such 

a l i m i t cycle i s that the cycle must encompass balanced 

proportions of energy-additive and energy-dissipative zones 

on the f r i c t i o n - v e l o c i t y curve. 
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F i g u r e 5.2.7 One Form of Quasi-Harmonic F r i c t i o n F orce 
Phase Plane Trace, w i t h Generated D i s p l a c e ­
ment B e h a v i o u r a l Curve 
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Ko has proven t h a t the form of the f r i c t i o n f o r c e vs 

v e l o c i t y curve recorded d u r i n g quasi-harmonic o s c i l l a t i o n may 

be e i t h e r convex upward or convex downward. This b a s i c change 

i n f r i c t i o n curve p r o f i l e was accomplished simply by changing 

l u b r i c a n t s . Other r e s e a r c h e r s have found t h a t s i m i l a r d r a s t i c 

changes can be made i n the n o n - v i b r a t p r y boundary f r i c t i o n 

f o r c e vs v e l o c i t y curve simply by changing the a d d i t i v e s i n an 

otherwise homogeneous base o i l [35,36]. I t i s of importance 

t h a t h i g h l y - r e f i n e d m i n e r a l o i l has been found to e x h i b i t only 

a convex upward primary i n f l e c t i o n , s i m i l a r to the example o f 

F i g u r e 5.2.7, both i n the work of Ko and i n the present study. 

The i n v e r t e d , convex downward form of the f r i c t i o n f o r c e vs 

v e l o c i t y curve would t h e r e f o r e appear to r e s u l t from the 

presence of o i l a d d i t i v e s . 

A r e p r e s e n t a t i v e s e t of quasi-harmonic displacement 

and f r i c t i o n f o r c e phase plane t r a c e s , recorded d u r i n g the 

p r e s e n t study, may be found i n F i g u r e 5.2.8. Included are 

zero r e f e r e n c e l i n e s f o r displacement and f o r c e , s i n c e l o c a t ­

i n g zero f o r both curves a t the o r i g i n of the o s c i l l o s c o p e 

g r i d , as was done f o r a l l s t i c k - s l i p r e c o r d i n g s , would have 

r e s u l t e d i n a p a r t i a l o v e r l a y of the t r a c e s . 

The s t r i k i n g resemblance of the quasi-harmonic f r i c t i o n 

f o r c e curve to Crook's p l o t s of elastohydrodynamic k i n e t i c 

f r i c t i o n c o e f f i c i e n t versus v e l o c i t y ( F i g . 3.2.3) i s immediately 

apparent. T h i s resemblance i s h a r d l y s t a r t l i n g ; the l u b r i c a n t s 

were s i m i l a r , and l o c a l p r e s s u r e s a t the l o a d - b e a r i n g extrem-
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F i g u r e 5.2.8 Recorded Quasi-Harmonic Phase Plane Traces 
( S t e e l - o n - S t e e l , 50 mv/div, to , = 102 rad/ s e c , 
v = 5.3 i n / s e c ) 



i t i e s of the quasi-harmonic boundary f r i c t i o n surfaces were 

of the same order as the f i l m pressures of Crook's experiments. 

Important differences do, however, e x i s t i n the r e s u l t s . The 

near-horizontal portion of the quasi-harmonic f r i c t i o n force 

curve corresponds to a k i n e t i c f r i c t i o n c o e f f i c i e n t of 

approximately 0.15, with the force curve maximum occurring 

at a r e l a t i v e surface v e l o c i t y of 1 in/sec. The near-horizontal 

portions of the elastohydrodynamic k i n e t i c f r i c t i o n curves 

have an approximate c o e f f i c i e n t magnitude of 0.03, with maxima 

occurring at 20 in/sec. 

The most s i g n i f i c a n t of the differences between the 

f r i c t i o n curves of the two studies i s t h e i r c o e f f i c i e n t 

magnitude r a t i o of 5. The elastohydrodynamic f r i c t i o n curves 

of Crook have magnitudes which suggest l i t t l e , i f any, s o l i d 

contact between opposing surfaces. Hydrodynamic l u b r i c a t i o n 

i s also apparent i n the way that the f r i c t i o n forces approach 

zero with r e l a t i v e v e l o c i t y . These hydrodynamic conditions 

resulted from the maintenance of high surface v e l o c i t y , during 

a l l t e s t s , on at lea s t one surface, i n conjunction with the 

obvious l i q u i d wedge e f f e c t of p a r a l l e l cylinders with surface 

v e l o c i t i e s , i n the load-bearing region, of the same sense. 

The magnitude of the quasi-harmonic f r i c t i o n c o e f f i c i e n t s , 

however, together with the d i s t i n c t l y p o s i t i v e f r i c t i o n force 

as r e l a t i v e v e l o c i t y approaches zero [14], indicates that 

the majority of the load i s supported by s o l i d contact during 

this form of vib r a t i o n , and that the e f f e c t i v e minimum clearance 
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h . f o r quasi-harmonic o s c i l l a t i o n i s much l e s s than i t s min ^ 
elastohydrodynamic c o u n t e r p a r t . The v a r i a t i o n i n the q u a s i -

harmonic k i n e t i c c o e f f i c i e n t o f f r i c t i o n would appear to be 

the r e s u l t o f a minor p o r t i o n of elastohydrodynamic a c t i o n 

superimposed on the dominant s o l i d c o n t a c t e f f e c t s . 

A t any g i v e n v e l o c i t y , an i n c r e a s e i n the c o e f f i c i e n t 

of f r i c t i o n r e s u l t s i n g r e a t e r heat g e n e r a t i o n . How much 

the l u b r i c a n t v i s c o s i t y i s a f f e c t e d by the i n c r e a s e d r a t e o f 

heat g e n e r a t i o n depends g r e a t l y on the a b i l i t y o f the f r i c t i o n 

s u r f a c e s to conduct the heat away from the l u b r i c a n t , but one 

can c o n f i d e n t l y s t a t e t h a t , s i n c e the maximum of an e l a s t o ­

hydrodynamic f r i c t i o n curve i s f i x e d by v i s c o u s temperature 

e f f e c t s , t h i s maximum w i l l occur a t a lower s u r f a c e v e l o c i t y 

f o r i n c r e a s e d f r i c t i o n c o e f f i c i e n t magnitudes. F r i c t i o n 

f o r c e s r e s u l t i n g from simultaneous v i s c o u s and m e t a l l i c sources 

are much h i g h e r , w i t h p r o p o r t i o n a t e l y g r e a t e r heat g e n e r a t i o n , 

than those caused by v i s c o u s sources a l o n e . The occurrence 

of the f r i c t i o n f o r c e peak a t a s u r f a c e v e l o c i t y , i n q u a s i -

harmonic o s c i l l a t i o n , one-twentieth t h a t a t which i t o c c u r r e d 

i n Crook's i n v e s t i g a t i o n i s thus c o n s i s t e n t w i t h the concept 

t h a t the quasi-harmonic f r i c t i o n curve i s the r e s u l t of 

superimposed elastohydrodynamic and m e t a l l i c c o n t a c t e f f e c t s . 

To summarize, i t i s p o s s i b l e t h a t the form of f r i c t i o n 

f o r c e vs v e l o c i t y r e l a t i o n s h i p found to cause quasi-harmonic 

o s c i l l a t i o n when u s i n g h i g h l y r e f i n e d m i n e r a l o i l s as l u b r i ­

cants r e s u l t s from the s u p e r p o s i t i o n o f s o l i d c o n t a c t and > 
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elastohydrodynamic f r i c t i o n f o r c e vs v e l o c i t y c h a r a c t e r i s t i c 

curves to y i e l d the r e q u i r e d "humped" form of f r i c t i o n a l 

behaviour, w i t h the maximum de s i g n a t e d as the "hump" a t t r i ­

b u t a b l e , i n the absence o f chemical l u b r i c a n t a d d i t i v e s , to 

v a r i a t i o n i n l u b r i c a n t v i s c o s i t y as a consequence of thermal 

s e n s i t i v i t y . 

c. Quasi-Steady V i s c o u s Thermal E f f e c t s 

The s i m i l a r i t i e s i n the observed f r i c t i o n a l c h a r a c t e r ­

i s t i c s o f elastohydrodynamic l u b r i c a t i o n and the v i s c o u s 

c o n t r i b u t i o n to quasi-harmonic behaviour have been o u t l i n e d , 

and the observed d i f f e r e n c e s r e s o l v e d by c o n s i d e r a t i o n o f the 

e f f e c t t h a t superimposed m e t a l l i c s o l i d c o n t a c t would have 

on the elastohydrodynamic f r i c t i o n curve. One apparent anomaly 

i s y e t unexplained. I f , indeed, the maximum of the q u a s i -

harmonic f r i c t i o n f o r c e curve, which occurs a t a r e l a t i v e 

v e l o c i t y o f 1 i n / s e c , i s caused by thermal v a r i a t i o n o f 

l u b r i c a n t v i s c o s i t y , as i s t h a t of elastohydrodynamic l u b r i ­

c a t i o n , why i s th e r e no s i m i l a r maximum i n the s t a b l e f r i c t i o n 

curve of s l i p , d u r i n g which s u r f a c e v e l o c i t i e s g r e a t l y exceed 

1 i n / s e c ? 

Comparison of the r e s u l t s d i s p l a y e d i n F i g u r e s 5.2.1, 

5.2.2, and 5.2.8 r e v e a l s t h a t , as the lower s u r f a c e v e l o c i t y 

v, the average r e l a t i v e speed of the two f r i c t i o n s u r f a c e s , 

i s i n c r e a s e d , n o n - t r a n s i e n t f r i c t i o n c o e f f i c i e n t magnitudes 

i n c r e a s e from values s u g g e s t i n g l i t t l e s o l i d c o n t a c t t o valu e s 

i n d i c a t i n g predominant m e t a l l i c c o n t a c t . For the p h y s i c a l 
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system of t h i s i n v e s t i g a t i o n the t r e n d means p r o g r e s s i v e l y 

l e s s v i s c o u s a c t i o n w i t h i n c r e a s i n g average speed. The reason 

f o r t h i s e f f e c t might be found i n the work of Bowden and 

R i d l e r [4] and of Jaeger [ 3 7 ] , who has performed a thermo­

dynamic a n a l y s i s o f the s u r f a c e temperatures to be expected 

a t a s p e r i t y c o n t a c t s under k i n e t i c c o n d i t i o n s . Jaeger's 

a n a l y s i s , which ign o r e d the thermal c a p a c i t y o f any l u b r i c a n t 

p r e sent, y i e l d e d the r e s u l t 

y k v N s g b 

i . 9 J A 1 / 2 [ i . i s2b + 0.7 e ^ / V 2 ] 

(5.2.1) 

where 

N g = normal l o a d c a r r i e d by s o l i d c o n t a c t 

g = a c c e l e r a t i o n of g r a v i t y 

T^ ~ temperature a t i n f i n i t y 

J = work e q u i v a l e n t of heat 

^ 1 ' ^2 = thermal c o n d u c t i v i t i e s of s l i d e r and lower 
s u r f a c e , r e s p e c t i v e l y 

b = a r a t i o of m a t e r i a l c onstants o f the s l i d e r . 

For a g i v e n p a i r o f f r i c t i o n s u r f a c e s t h i s e q u a t i o n may be 

reduced to 

XT V 2 
^k V N s 

T - T = K . (5.2.2) 
1/2... 1/4 a + v ' N ' 

OO 

s 
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Jaeger's r e s u l t s , derived for non-oscillatory s l i d i n g con­

d i t i o n s , may not be d i r e c t l y applied to the present study, 

but general trends would s t i l l be analagous. Note that, for 

the present study, the average temperature of an asperity 

contact would therefore have increased with both driven 

surface v e l o c i t y and the proportion of normal load supported 

by s o l i d contact, which i t s e l f increased with driven surface 

v e l o c i t y . Peak temperatures achieved can be very high [4,37]; 

the average temperature of the continuously-exposed upper 

surface, and with i t the average temperature of the lubricant 

i n the load-bearing region, could increase s u b s t a n t i a l l y with 

driven surface v e l o c i t y , providing an explanation for the 

observed quasi-steady v i s c o s i t y decreases. 

Consider now the e f f e c t of increased surface tempera­

tures on the elastohydrodynamic f r i c t i o n a l t r a c t i o n curve 

(Figure 3.2.2). The conditions for which Crook's a n a l y t i c a l 

expression, equation 3.2.4, was derived are not s a t i s f i e d i n 

t h i s i n vestigation, preventing an appeal to that established 

r e s u l t . Heat was not generated exclusively i n the lubricant, 

as i n the elastohydrodynamic case; the lubricant may even 

have contributed to the pooling, rather than heating, of the 

s o l i d surfaces. One can only again point out that the 

decrease i n elastohydrodynamic f r i c t i o n force with increasing 

r e l a t i v e surface v e l o c i t i e s i s attributed to a thermal 

decrease i n lubricant v i s c o s i t y . That the maximum of an 

elastohydrodynamic f r i c t i o n force curve would occur at a 
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lower s u r f a c e v e l o c i t y f o r i n c r e a s e d o v e r a l l o p e r a t i n g 

temperatures t h e r e f o r e o f f e r s an e x p l a n a t i o n f o r the appear­

ance of such a maximum onl y w i t h the h i g h d r i v e n s u r f a c e 

v e l o c i t i e s of quasi-harmonic o s c i l l a t i o n . 



C H A P T E R VI 



V I . CONCLUSION 

The i n t e r e s t of the p r e s e n t study was the i n f l u e n c e 

of r a t e e f f e c t s on s t a t i c and dynamic boundary f r i c t i o n . An 

equation p r e d i c t i n g the v a r i a t i o n i n the observed c o e f f i c i e n t 

of s t a t i c f r i c t i o n w i t h l o a d r a t e was developed from con­

s i d e r a t i o n o f p l a s t i c flow, and the p r e d i c t e d behaviour com­

pared to e x p e r i m e n t a l l y - o b t a i n e d data. The dynamic f r i c t i o n a l 

a c t i o n encountered d u r i n g quasi-harmonic o s c i l l a t i o n and 

du r i n g the s l i p p o r t i o n o f the s t i c k - s l i p v i b r a t i o n c y c l e was 

recor d e d and analyzed. In every case r a t e e f f e c t s were found 

to determine o r profoundly i n f l u e n c e the observed f r i c t i o n a l 

behaviour. In s p e c i f i c d e t a i l , the f o l l o w i n g c o n c l u s i o n s 

may be l i s t e d : 

1. The assumption of a p l a s t i c deformation model, f o r the 

growth i n c o n t a c t area of opposing s u r f a c e s s u b j e c t to 

normal and t a n g e n t i a l l o a d i n g , p e r m i t t e d development of 

an e q u a t i o n p r e d i c t i n g the v a r i a t i o n of the c o e f f i c i e n t 

of s t a t i c f r i c t i o n w i t h r a t e o f s t r e s s a p p l i c a t i o n . 

W i t h i n the l i m i t s of s c a t t e r of experimental data, the 

p r o f i l e of the equation's p l o t t e d curve matches the 

p r o f i l e of the p l o t t e d d ata. The c o m p a t i b i l i t y of these 

p r o f i l e s suggests s t r o n g l y t h a t p l a s t i c deformation i s 

indeed the governing mechanism of c o n t a c t area growth 

between metal s u r f a c e s . 
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2. The e x i s t e n c e of an upper asymptote f o r s t a t i c f r i c t i o n 

o f m e t a l l i c s u r f a c e s f a t slow r a t e s of l o a d i n g and i n 

the presence of a l u b r i c a n t , has been proven. 

3. The k i n e t i c f r i c t i o n f o r c e vs v e l o c i t y curve f o r s t i c k -

s l i p o s c i l l a t i o n o f m e t a l l i c s u r f a c e s has been proven to 

c o n s i s t of two regimes, t r a n s i e n t and s t e a d y - s t a t e . 

4 . Decay o f the t r a n s i e n t p o r t i o n of the s t i c k - s l i p f r i c t i o n 

vs v e l o c i t y curve to the s t e a d y - s t a t e k i n e t i c f r i c t i o n 

curve appears to be governed by the d i s t a n c e t r a v e l l e d , 

subsequent to the i n c e p t i o n of s l i p , by one s u r f a c e over 

the o t h e r . 

5. The s t e a d y - s t a t e p o r t i o n of the k i n e t i c f r i c t i o n curve 

f o r s l i p e x h i b i t s d e f i n i t e c h a r a c t e r i s t i c s o f both 

v i s c o u s and m e t a l l i c s o l i d - c o n t a c t behaviour. 

6 . The v i s c o u s c o n t r i b u t i o n to the dynamic f r i c t i o n a l 

behaviour became i n c r e a s i n g l y s m a l l e r as the average 

r e l a t i v e v e l o c i t y of the f r i c t i o n s u r f a c e s i n c r e a s e d , 

a p p a r e n t l y because the temperature of the l u b r i c a n t 

i n the l o a d - b e a r i n g i n t e r f a c i a l r e g i o n i n c r e a s e d , and 

i t s v i s c o s i t y decreased, as average s u r f a c e v e l o c i t y 

i n c r e a s e d . 

7. Comparison of r e c o r d e d k i n e t i c f r i c t i o n vs r e l a t i v e 

v e l o c i t y curves from quasi-harmonic o s c i l l a t i o n and 

elastohydrodynamic l u b r i c a t i o n i n v e s t i g a t i o n s i n d i c a t e s 
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t h a t the observed f r i c t i o n a l behaviour c a u s i n g q u a s i -

harmonic o s c i l l a t i o n i s the r e s u l t of superimposed 

m e t a l l i c s o l i d - c o n t a c t and elastohydrodynamic e f f e c t s . 

8. N o n - o s c i l l a t o r y s l i p and quasi-harmonic o s c i l l a t i o n 

would t h e r e f o r e , i n a p h y s i c a l system, appear to be 

d i s t i n c t e n t i t i e s only because, i n the case of q u a s i -

harmonic o s c i l l a t i o n , instantaneous v i s c o u s thermal 

e f f e c t s are s u f f i c i e n t l y severe to cause a "humped" 

form of f r i c t i o n f o r c e vs r e l a t i v e v e l o c i t y curve. 



A P P E N D I C E S 



APPENDIX I 

SYSTEM PARAMETERS 

A l . 1 System S t i f f n e s s 

For the composite beam of F i g u r e A l . l , which a p p r o x i ­

mates the c a n t i l e v e r beam employed i n the experimental system, 

d e f l e c t i o n and s l o p e a t p t . a due to a f o r c e P a c t i n g a t 

p t . b are [38] 

1 P L 1 
3 E l H 

+ 2 V l 

1 P L 1 
E 1 I 1 

3 ^2 
2 L, 

1 P L 1 
2 E 1 I 1 

P L 2 L 1  
E 1 I 1 

1 P L 1 
3 E 1 I 1 L 2 2 L l L 2 

D e f l e c t i o n a t p t . b due t o a f o r c e P a c t i n g a t p t . b i s , f o r 

small d e f l e c t i o n s , 

6 + a 
1 P L 2 

9 a L 2 + 3 ETT 2 2 

1 P L 1 
3 E l I x 

2 i 
J2. 
2 

J l J 

1 _ 
3 E 

P L ; 

2 I2 



I l l 

* 

b < i b 

* 
m 

* 

\ 1 
L 2 ^ 

L, - rtf E, = 30 x IO6 % 2 I. = 1.30 x IO"3 In4 

L 2 = 53/8" E 2 10 x |0 6 l b/ i n2 I2 = 3.38 x id" 2 In4 

m. 0.48 lb 
g 

m 1.90 lb 
9 

F i g u r e A l . l A p p r o x i m a t i o n o f C o m p o s i t e B e a m E m p l o y e d f o r 

A n a l y s i s o f B e a m P r o p e r t i e s 
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The s t i f f n e s s of the composite cantilever beam was therefore 

estimated to be 

k = ^- = 
L 3 

1 L l 
3 E ^ 1 + 3 ~ + 3 -

L l L 

2 i 

'A 
2 

3 E„I 2 2 

-1 

64 ±*> 
i n 

The undamped natural frequency of the system may be estimated 

from the equation [39] 

n 

- 1 3 3ra. k 
m 

2 1 - b 
280 m 

110 rad 
sec 

Measured values of system s t i f f n e s s and frequency of free 

v i b r a t i o n were, respectively, 

59.2 lb 
i n 102 rad 

sec 

Al.2 System Damping 

The equation of motion for a l i n e a r system i n free 

v i b r a t i o n i s 

Mx + r x + k x = 0 
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A solution for this d i f f e r e n t i a l equation i s [40] 

x = x„ e s i n (oo,t + 0) 0 d . 

where x^ i s the i n i t i a l condition. If the time axis i s 

oriented such that maximum positi v e displacement peaks occur 
TT 

when (w^t + 0) = (1 + 4 n) , then for these displacement 

peaks 

where T i s the period of one cycle of v i b r a t i o n , and conse­

quently 

2M , X0 r = In — nT x n 

Measurement of vi b r a t i o n amplitudes several cycles apart w i l l 

therefore y i e l d the value of the lin e a r damping c o e f f i c i e n t , 

but the value of M, the equivalent mass of the system, must 

f i r s t be determined by use of the equation 

Combination of the two previous equations y i e l d s 
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M = 
1 I n X ° HT l n X~ n 

T2 

enabling the determination of M d i r e c t l y , since a l l variables 

on the right-hand side of the equation were found by measure­

ments performed on the system. 

Recorded curves of displacement versus time were 

found to be only s l i g h t l y non-linear, with an averaged decay 

c o e f f i c i e n t 

1 x0 -1 — In — = 0.87 sec nT x n 

Substitution i n the previous equations y i e l d s 

M 5.70 x 10 -3 lb-sec" 2.20 lb 
xn 

o no i n ~ 2 l b - S e C 
r = 0.99 x 10 i •. in 

For purposes of comparison, the c r i t i c a l damping c o e f f i c i e n t 

and the undamped natural frequency of the vibratory system 

are, respectively, 

= 2 (k M , , , lb-sec l.ib : , in 

to n ]j M 102 rad 
sec 



APPENDIX I I 

PHASE PLANE ANALYSIS OF VIBRATORY MOTION 

The p o p u l a r l y - d e s i g n a t e d "phase p l a n e " i s a p l o t o f 

a d i f f e r e n t i a l equation's z e r o t h d e r i v a t i v e of the dependent 

v a r i a b l e versus the f i r s t d e r i v a t i v e o f the dependent 

v a r i a b l e . . The c h i e f advantage of employing such a p l o t i s 

t h a t i n the case of autonomous second-order d i f f e r e n t i a l 

e q u a t i o ns, i n which the independent v a r i a b l e found i n the. 

denominator of a d e r i v a t i v e (eg. time) appears o n l y i n the 

denominator of a d e r i v a t i v e , t h i s independent v a r i a b l e i s 

not e x p l i c i t l y expressed on the phase plane; r a t h e r , the 

i n t e r a c t i o n of the z e r o t h and f i r s t d e r i v a t i v e s of the 

dependent v a r i a b l e i s e x p l o r e d . A l e s s e r b e n e f i t d e r i v e d 

i s t h a t c o n v e r s i o n of a second-order equation t o phase 

plane form reduces i t to s i m p l e r , f i r s t - o r d e r , form. 

Consider, f o r example, the d i f f e r e n t i a l equation 

governing the motion of a mass r e s t r a i n e d by an i d e a l 

s p r i n g . 

M x + k x = (J 

Conversion of the eq u a t i o n to phase plane form i s accomplished 

through use of the f o l l o w i n g i d e n t i t y . 
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d , • > dx dx • dx 
X = d t ( x ) = dx" d t = X dx" 

S u b s t i t u t i o n i n the equation of motion y i e l d s 

dx + k x _ Q 

dx M x 

which may be i n t e g r a t e d by s e p a r a t i o n o f v a r i a b l e s to o b t a i n 

the s o l u t i o n 

2 , M • 2 . . x + j- x = cons t a n t k 

where the v a l u e o f the constant i s determined by i n i t i a l 

c o n d i t i o n s . T h i s s o l u t i o n , i f p l o t t e d on x and x co-
r k i V 2 
M o r d i n a t e s , i s o b v i o u s l y an e l l i p s e . However, s i n c e 

d e f i n e s the n a t u r a l frequency o f v i b r a t i o n o f the system, 

the s o l u t i o n becomes a c i r c l e when p l o t t e d on the normalized 

c o - o r d i n a t e s x and — 
n 

I n c l u s i o n of a v i s c o u s damping term i n the equ a t i o n 

of motion g i v e s i t the form 

M x + r x + k x = 0 , 

which when converted to phase plane form becomes 
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with the viscous damping c o e f f i c i e n t serving as a negative 

forcing function. The solution of t h i s equation i s a 

c i r c u l a r , decaying s p i r a l when plotted on normalized phase 

plane co-ordinates. Of p a r t i c u l a r i n t e r e s t i s the l i n e 

c a l l e d the "zero i s o c l i n e " , defined by the simultaneous 

v a l i d i t y of the phase plane form of the equation of motion 

and the condition 

$k = o 
dx U 

For the case of free v i b r a t i o n with viscous damping the zero 

i s o c l i n e i s a s t r a i g h t l i n e through the o r i g i n , with slope 

r when plotted on the normalized phase plane. 

Generally the zero i s o c l i n e i s a l i n e which i s neither 

st r a i g h t nor passing through the o r i g i n . Its importance l i e s 

i n the f a c t that the phase plane behavioural curve described 

by the equation of motion can be r e a d i l y generated, by 

graphical means, from the zero i s o c l i n e [41]. An example 

of a phase plane curve, for the case of free v i b r a t i o n with 

viscous damping, generated graphically from the zero 

i s o c l i n e , i s shown i n Figure A2.1. 

A l i n e drawn through the i n t e r s e c t i o n of the zero• 

i s o c l i n e and the zero v e l o c i t y axis, perpendicular to the 

zero v e l o c i t y axis, subdivides the phase plane into energy-

additive and energy-dissipative quadrants. For the axes 

presented i n t h i s study, any portion of the zero i s o c l i n e 



F i g u r e A2.1 Viscously-Damped Free V i b r a t i o n on Pha 
Plane 
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i n the r i g h t upper or l e f t lower e n e r g y - t r a n s f e r quadrants 

i s d i s s i p a t i v e ; any p o r t i o n of the zero i s o c l i n e i n the 

l e f t upper or r i g h t lower quadrants i s e n e r g y - a d d i t i v e . The 

phase plane example of F i g u r e A2.1 d i s p l a y s a zero i s o c l i n e 

which i s e n t i r e l y e n e r g y - d i s s i p a t i v e , because t h i s i s o c l i n e 

i s t o t a l l y c o n t a i n e d i n the upper r i g h t and lower l e f t energy-

t r a n s f e r quadrants. 

For the p r e s e n t study, as c o n s u l t a t i o n of e quation 

4.2.3 w i l l show, the z e r p i s o c l i n e was the graph of the 

f r i c t i o n f o r c e e x p e r i e n c e d by the s l i d e r a t the f r i c t i o n 

i n t e r f a c e , d i v i d e d by the system s t i f f n e s s , p l o t t e d as a 

f u n c t i o n of — . Simultaneous r e c o r d i n g of the zero 
n 

i s o c l i n e and the phase plane b e h a v i o u r a l t r a c e t h e r e f o r e 

p e r m i t t e d the v a l i d i t y of the r e c o r d e d f r i c t i o n curves to 

be t e s t e d ( F i g . A2.2). More important, r e c o r d i n g data i n 

phase plane form has the advantage t h a t the s l i p p o r t i o n of 

a s t i c k - s l i p c y c l e has c o n s i s t e n t l y e x c e l l e n t r e s o l u t i o n of 

d e t a i l on the phase pl a n e . As a consequence of t e c h n i c a l 

d i f f i c u l t i e s , such r e s o l u t i o n i s v i r t u a l l y u n a t t a i n a b l e i n 

the time domain. 



F i g u r e A2.2 Comparison of Recorded and G r a p h i c a l l y Generated Phase Plane 
B e h a v i o u r a l Traces 
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VISCOUS SQUEEZE FILM ANALYSIS 

Consider the g e n e r a l form of Reynolds' equation, 

3_ 
3x 

h 33p 
n 3x 

9_ 
3z 

h 39p 
ri 3z 

, r t 3 h . , , 9U . , 0 dh 6 U ~— + 6 h T T — + 12 - T - r -9x 9x d t 

where the c o - o r d i n a t e s are as d e f i n e d i n F i g u r e A3.1. For 

p a r a l l e l s u r f a c e s separated by a c o n s t a n t - v i s c o s i t y f l u i d , 

so t h a t h and n are independent o f x and z, 

a 2 a 2 

9x 2 9 z 2 

12n dh 
, 3 d t 

For convenience, s i n c e i n t h i s stuay a c i r c u l a r s l i d e r f a ce 
2 

was employed, the L a p l a c i a n o p e r a t o r V may be expressed i n 

c y l i n d r i c a l c o - o r d i n a t e s , so t h a t the e q u a t i o n i n orthogonal 

components i s a l t e r e d to 

1 9_ 
P 9P 

i E 
9p 2 S O 2 

p 90 

i 2 

9y 
12n dh 
, 3 d t 

3 2 9 2p 
The q u a n t i t i e s — a n d — § • may be equated to zero from con-

30^ 9y^ 
s i d e r a t i o n s of symmetry and t h i n - f i l m approximations, respec-
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F i g u r e A3.1 Squeeze F i l m A n a l y s i s Co-ordinates 
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t i v e l y , leaving the r e l a t i o n s h i p 

1 d_ 
P dp dp 

12n dh 
h 3 dt 

Integrating twice, and solving for the boundary conditions 

p = 0 , 

a ? - ». 

p = R 

p = 0 

y i e l d s 

3n , 2 n2. dh 
P = J T ( p ~ dt 

Integrating the pressure d i s t r i b u t i o n over the surface area 

of the s l i d e r r esults i n an expression for the normal load 

supported by f l u i d pressure, 

N, 

p=0 

p=R 

p • 2irp dp 3 ^ n 4 1 dh 
2 i r n R * 73 dt h 

Note that the form of t h i s expression i s such that, for a 

constant normal load, the rate of decrease of the f i l m 

thickness diminishes with the t h i r d power of the f i l m thick-



ness. For plane s u r f a c e s the f i l m t h i c k n e s s can be reduced 

to zero o n l y as time or normal l o a d assumes an i n f i n i t e 

v a l u e . Real s u r f a c e s , which are not p l a n a r , cannot reduce 

the mean f i l m t h i c k n e s s to zero, but the l o a d - b e a r i n g 

c a p a c i t y of the f i l m i s s t i l l governed by the e x p r e s s i o n f o r 

i f the p l a n a r f i l m t h i c k n e s s h i s r e p l a c e d by i t s 

e f f e c t i v e c o u n t e r p a r t . 
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CALIBRATION AND SCALING OF DISPLACEMENT, 

VELOCITY, AND FRICTION FORCE SIGNALS 

A4.1 Scaling of Displacement and Velocit y Signals 

The accelerometer employed was a commercial unit with 

a fixed output voltage equal to 0.1 vol t s per u n i t gravity. 

This output, which was re a d i l y checked at any time, was used 

as a standard c a l i b r a t i o n reference for the displacement and 

ve l o c i t y s i g n a l s . 

The displacement signal was scaled simply by subject­

ing the cantilever beam, complete with a l l instrumentation, 

s l i d e r , and s l i d e r mount, to conditions of free v i b r a t i o n , 

and adjusting the magnitude of the displacement signal u n t i l , 

at zero v e l o c i t y , the sum of the displacement and acceleration 

signals equaled zero. Because the viscous damping e f f e c t 

was so small, t h i s procedure resulted i n the summed signal 

taking the form of a str a i g h t l i n e whose slope, on the face 

of an oscilloscope, was indistinguishable from that of the 

zero displacement. 

Upon achieving the proper magnitude of displacement 

si g n a l , the v e l o c i t y signal strength was adjusted u n t i l the 

system's phase plane trace, as recorded by an oscilloscope, 

was a c i r c u l a r , as opposed to e l l i p s o i d a l , s p i r a l . That the 
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t r a c e was a m u l t i - c y c l e s p i r a l , r a t h e r than a r e p e t i t i v e 

loop, i s due to the s m a l l amount of n e a r - l i n e a r v i s c o u s 

damping p r e s e n t under c o n d i t i o n s o f f r e e v i b r a t i o n . 

A4.2 C a l i b r a t i o n of Displacement, V e l o c i t y , and F r i c t i o n  
Force S i g n a l s 

A f t e r the displacement s i g n a l was p r o p e r l y s c a l e d a 

depth micrometer was r i g i d l y mounted w i t h i t s s p i n d l e i n the 

h o r i z o n t a l plane and p e r p e n d i c u l a r to the s i d e of the s l i d e r 

mount. V o l t a g e output from the s t r a i n gage b r i d g e was p l o t t e d 

a g a i n s t displacements imposed at the s l i d e r mount by the 

micrometer to o b t a i n a c a l i b r a t i o n curve ( F i g . A4.1). De­

f l e c t i o n s r e c o r d e d on the o s c i l l o s c o p e were then r e a d i l y 

converted to s l i d e r d i s placements. 

V e l o c i t y c a l i b r a t i o n was i n h e r e n t i n the adjustment 

of v e l o c i t y s i g n a l s t r e n g t h to achieve a c i r c u l a r form of 

phase plane t r a c e i n f r e e v i b r a t i o n . One l i n e a r u n i t on 

the " v e l o c i t y " a x i s i s then equal to the displacement r e p r e ­

sented by t h a t u n i t on the displacement a x i s m u l t i p l i e d by 

the n a t u r a l frequency of v i b r a t i o n of the system, w . 

C a l i b r a t i o n of the o s c i l l o s c o p e f r i c t i o n f o r c e t r a c e 

was a simple matter of m u l t i p l y i n g the o s c i l l o s c o p e d i s ­

placement c a l i b r a t i o n by the system s t i f f n e s s k. 
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Figure A4.1 C a l i b r a t i o n Curves for Composite Beam and 
Scaled Displacement Amplifier 



APPENDIX V 

FRICTION SURFACE PARAMETERS 

Surface Roughness 

Surface Roughness Along 
D i r e c t i o n a l Marks 

Roughness Across 
Di r e c t i o n a l Marks 

Lapped Surface 
Measurements 

Steel S l i d e r 18 y i n . CLA Lapped Surface 
Measurements 

Steel Disc 18 y i n . CLA 

Post-Test 
Measurements 

Steel S l i d e r 1-l^j- yin. CLA 3 y i n . CLA Post-Test 
Measurements 

Steel Disc 13 y i n . CLA 14 y i n . CLA 

(Measurements made with Talysurf 4 equipment) 
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Surface Composition and Hardness 

Composition and C o n d i t i o n 
I n d e n t a t i o n 
Hardness 

( ~ n d i a . b a l l ) 

S t e e l D i s c m i l d s t e e l , AISI C1020 
f u l l y annealed B r i n e l l 120 

S t e e l S l i d e r a l l o y s t e e l (C 1.05%, Mn 0.20%, 
S i 0.20%) as d e l i v e r e d B r i n e l l 235 

Brass S l i d e r unleaded brass (Cu 70%, Zn 30%) 
as d e l i v e r e d B r i n e l l 165 
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