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ABSTRACT 

This t h e s i s i s concerned with the problem of i d e n t i f y i n g and 

c o n t r o l l i n g l i n e a r continuous systems. Algorithms which are f e a s i b l e 

f o r real-time d i g i t a l computations are developed f o r the design of both 

the c o n t r o l l e r and the i d e n t i f i e r . 

The generalized equation e r r o r i s shown to be a p p l i c a b l e to a 

mean-square method of rapid d i g i t a l estimation of l i n e a r system para

meters. Due to the imposed structure of the estimator the manipulation 

of high order matrices i s avoided. Examples i l l u s t r a t e the e f f e c t i v e 

ness of the estimator f o r a v a r i e t y of cases dealing with quantization 

noise as w e l l as measurements noise. In some cases, t h i s d i g i t a l i d e n t i 

f i e r requires the computation of the generalized inverse of a matrix. 

A simple algorithm f o r computing the generalized inverse of a matrix i s 

developed. This algorithm eliminates the need f o r Gram-Schmidt ortho-

g o n a l i z a t i o n and i t s associated ( i n the i n t e r e s t of accuracy) reortho-

g o n a l i z a t i o n as new vectors are introduced. 

A two-stage estimator i s developed f o r estimating time-invariant 

and time-varying parameters i n l i n e a r systems. During the second stage, 

the time-varying parameters are considered as unknown control inputs to 

a l i n e a r subsystem of known dynamics. For the f i r s t stage, the d i g i t a l 

i d e n t i f i e r i s shown to be e f f e c t i v e i n i d e n t i f y i n g the time-invariant 

parameters. Numerous examples i l l u s t r a t e the effectiveness of the method. 

To design a feedback c o n t r o l l e r a method of successive approxi

mations f o r s o l v i n g the two point boundary value problem f o r optimum 

constant gain matrices i s developed. The method i s shown to be compta-

t i o n a l l y equivalent to a deflected gradient method. Convergence can 

i i 



always be achieved by choice of a s c a l a r step-size parameter. An on

l i n e approximate method i s developed which appears s u i t a b l e f o r systems 

whose parameters must be i d e n t i f i e d . The two point boundary value problem 

i s replaced by an a l g e b r a i c problem, the s o l u t i o n of which gives a sub-

optimal constant gains. The problem of t r a j e c t o r y s e n s i t i v i t y reduction 

by augmented state feedback i s shown to be well-posed i f constrained 

structure of the gain matrices i s taken. The simple structure of constant 

gain matrices i s considered. 

Based on the developed i d e n t i f i e r and c o n t r o l l e r , one p o s s i b l e 

strategy f o r optimal adaptive c o n t r o l which i s p a r t i c u l a r l y a t t r a c t i v e 

from an engineering point of view i s studied. The strategy i s to 

i d e n t i f y system parameters at the end of an observation i n t e r v a l and 

then to use the parameters to derive an "optimal" c o n t r o l f o r a sub

sequent c o n t r o l i n t e r v a l . Two examples are considered i n order to 

i l l u s t r a t e the e f f e c t i v e n e s s of t h i s strategy. 

i i i 
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1. INTRODUCTION 

An optimal adaptive control i s a control that w i l l cause a plant 

to operate in an "optimum" manner without a Priori knowledge about the 

constraints on either the magnitude or the rate of variation of the 

plant uncertainties. These uncertainties may be in the plant parameters, 

i n i t i a l conditions, and/or noisy measurements. One possible mathematical 

design approach for an adaptive control i s to use s t a t i s t i c a l methods. 

Plant uncertainties are then described by probability density functions. 

Such s t a t i s t i c a l methods are generally not computationally feasible even 

when a priori knowledge of the s t a t i s t i c s of the plant uncertainties exist. 

In most practical situations, simplifying assumptions must be introduced 

and these detract considerably from the usefulness of a mathematically 

precise s t a t i s t i c a l approach. 

An alternative approach is the optimally sensitive control [1] 

where no a priori knowledge of s t a t i s t i c a l parameters is required. However, 

the range of plant parameter and/or i n i t i a l condition variations is 

restricted. 

This thesis is concerned with the development of an optimally 

sensitive feedback control which does not require detailed s t a t i s t i c a l 

data for i t s realization. However, in order to increase the range of 

optimal control action, parameter estimation i s used. Algorithms which 

are feasible for real-time d i g i t a l computations are developed for the 

design of both the controller and the identifier. 

Figure (1.1) i l l u s t r a t e s the general structure of the optimal 

adaptive control system which has been developed in this thesis. The 
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blocks drawn in dashed lines represent elements which may not be required 

in many practical applications. This optimal adaptive control system can 

generally be divided into two main parts; the estimator and the controller. 

A detailed discussion of the components which comprise these two parts 

together with the thesis layout i s considered In the following two sections. 

1.1 The Estimator 

The estimator i s used to obtain a "best" estimate for the unknown 

plant parameters and i n i t i a l conditions. It i s also used to obtain a "best" 

estimate for the noisy and/or the unmeasured plant state variables. 

These estimates are needed i n order to construct a reasonably accurate 

deterministic linear model of the plant. A deterministic linear model i s 

necessary i f use i s to be made of the powerful tools that have been developed 

from optimal control theory. Linear continuous models are considered in 

this thesis. The choice of linear models is made because of their relative 

simplicity from the instrumentation and computation point of view. This 

simplicity is largely due to the high degree of development of the theory 

of linear systems. Even when the plant is nonlinear, however, the use of 

quasilinearization techniques can result in a linearized model of the plant. 

Over a fixed period of time-, such, a linear... model is. of ten. adequate. to. des

cribe the dynamic behaviour of a nonlinear plant. 

The estimator is composed of four major elements (see Figure 

(1.1)). These four elements are: 

a- I n i t i a l Conditions Estimator 

This estimator is a standard linear least-squares estimator which minimizes 
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a quadratic error function based on a system of linear algebraic equations. 

It i s necessary to obtain a good estimate of the plant i n i t i a l conditions 

since the values of the controller constant feedback gains depend on i n i t i a l 

conditions. This estimator is used whenever the plant states are conta

minated by noise and/or some of these states are unmeasurable. A linear 

least-squares estimator has been chosen due to i t s simplicity. Also, no 

apriori knowledge of noise s t a t i s t i c s is needed. 

b - F i l t e r 

The f i l t e r gives a continuous estimation of the plant states. If some 

of the states are unmeasurable then a Luenberger observer i s a good 

choice to reconstruct the unavailable states. On the other hand a Kalman 

f i l t e r can be used for best estimation of the noisy states. 

c - Digital Identifier 

A continuous-time parameter identification method that has been extensively 

investigated i s the parameter-tracking technique [2,3,4], This is based 

on a steepest descent parameter adjustment. These parameter-tracking 

identifiers have been largely developed for use with analog computers. 

Practical on-line identification, however, requires the use of d i g i t a l 

computers and the discrete version of parameter-tracking introduces 

several d i f f i c u l t i e s . The optimum gain or optimum step-size depends on 

the input signals and i s d i f f i c u l t to determine on-line [5]. 

In Chapter 2 a d i g i t a l identifier i s developed which gives 

rapid and accurate estimation of the unknown, time-invariant parameters 

of the plant. The identifier uses data obtained from augmented input 

controls and output states which results in parallel data processing. 
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A discretized version of the continuous augmented model i s used. Digital 

simulation results have shown that the identifier developed in this thesis 

has very good rates of convergence. This d i g i t a l identifier requires 

the computation of a matrix inverse which may not exist in some cases. 

In such cases a generalized-inverse of a matrix is required. A number 7 

of methods have been proposed for finding the generalized inverse of a 

matrix [6, 7, 8], These methods generally consist of some combination 

of a Gram-Schmidt orthogonalization process, the expansion of products 

of matrices, and the solution of sets of linear algebraic equations. 

In Chapter 3 an algorithm i s developed which replaces these 

operations and computes- the generalized inverse from simple recursive 

formulas. Inherent in the method is a simple check on the linear inde

pendency of the column vectors of the matrix. 

d - Composite Identifier 

A two-stage estimator i s developed in Chapter 4. In the f i r s t stage the 

d i g i t a l i d e n t i f i e r i s used to obtain an estimate for the time-invariant 

parameters. In the second stage the unknown time-varying parameters are 

considered as control inputs and a linear state regulator quadratic cost 

function dynamic optimization problem is formulated. The solution of the 

associated two-point boundary-value problem for the optimum control" 

results in an estimate for the time-varying parameters. This two-stage 

identification algorithm is suitable for the cases where only a few of 

the unknown parameters of the plant are time-varying. The use of the 

complicated techniques developed for the identification of time-varying 



parameters is not j u s t i f i e d for such cases. The usual approach taken 

to identify time-varying parameters is to consider them as unknown 

augmented states described by differential equations of known form and 

then use some form of state estimation [9]. Alternatively, integral 

transforms have been used [10] to extend the capability of parameter-

tracking system to track time-varying parameters. The implementation 

d i f f i c u l t i e s for such techniques make their use questionable i f not 

completely unpractical. 

1.2 The Controller 

In Chapter 5 the design of a controller with optimum constant 

feedback gains is discussed. A method of successive approximations is 

developed and i t is shown to be equivalent to a deflected gradient des

cent approach with a variable weighting matrix. This property i s utilized 

to develop an algorithm for off- l i n e design studies which results in 

rapid convergence. An approximate method i s developed to replace the 

nonlinear two-point boundary-value problem by an algebraic optimization 

problem. This method appears to be suitable for on-line computation of 

suboptimum constant feedback gains (see e in Figure (1.1)). Trajectory 

sensitivity function- minimization i s an important requirement... The i n 

troduction of the sensitivity functions in the feedback structure of the 

adaptive controller makes i t possible to up-date the constant feedback 

gains less frequently and makes the plant controller less sensitive to 

modelling errors. The sensitivity functions are generated by the sensi

t i v i t y model shown by f in Figure (1.1). The parameters of the sensitivity 

model are up-dated each time a new estimate of the unknown plant parameters 

is made. 



In Chapter 6 a recursive observation-optimization strategy i s 

described. During a f i n i t e observation Interval, measurements of the 

state are taken and used to determine estimates of the plant parameters. 

The linear model parameters are adjusted according to these new estimates. 

The linear model is used to compute a control strategy which is applied 

in a subsequent control interval. This scheme seems particularly attractive 

for adaptive systems. 

In summary, the objective of this thesis i s to investigate 

practical methods for designing an optimal adaptive control system based 

on a reasonably large domain of plant uncertainties. Emphasis i s placed 

on techniques which can be implemented on real-time d i g i t a l process 

control computers. To reduce computational requirements, the control 

strategy should not require frequent up-dating. This objective has been 

accomplished by developing a rapid d i g i t a l identifier for continuous-

time systems and by developing simple algorithms for the computation of 

optimally sensitive feedback gains. 
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2. RAPID DIGITAL IDENTIFICATION OF 

LINEAR SYSTEMS 

2.1 Introduction 

D ig i ta l control of adaptive systems is feasible only i f 

parameter ident i f icat ion and evaluation of control laws can be per

formed in real time. To reduce the complexity of the computations, 

simplifying assumptions must be made. One feasible method i s to identify 

the system as an approximate l inear system within a given time interval 

and then use a l inear optimal control [5,11], For such a control policy 

to be effect ive in an adaptive system the ident i f icat ion should be rapid. 

A continuous-time parameter ident i f icat ion method that has been extensively 

investigated is the parameter tracking technique [2,3,4]. This is based 

on a steepest descent parameter adjustment of a quadratic error function 

or a Liapunov function. The error can be taken to be a response or a 

generalized equation error. The generalized error approach is attractive 

since i t results in an exact continuous-time steepest descent adjustment. 

Furthermore, by use of state variable f i l t e r s , i t allows considerable 

f l e x i b i l i t y in the generation of additional input-output signals and 

additional- equation errors. These signals play an important:- role- in the 

estimator that w i l l be discussed in this Chapter. They are considered 

to be the time response of augmented input controls and output states. 

These states can be chosen so that the quadratic error function has a 

unique minimum in parameter space which then allows very rapid ident i 

f i ca t ion . Pract ica l on- l ine ident i f i cat ion , however, requires the use 

of d ig i ta l computers and the discrete version of parameter tracking 

introduces several d i f f i c u l t i e s . 
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The optimum gain or step-size depends on the input signals 

and i s d i f f i c u l t to determine on-line [5]. Furthermore, a steepest 

descent search for a minimum does not generally result in rapid identi

fication. 

A popular method for on-line identification by d i g i t a l 

computers i s the mean-square technique. In the linear system case a l l 

state variables must be measured and the estimated parameters are biased. 

Furthermore, i f rapid identification i s attempted, d i f f i c u l t i e s can 

arise with ill-conditioned matrices. A d i g i t a l estimation method i s 

developed here which can overcome these d i f f i c u l t i e s by use of augmented 

input controls and output states. Due to the imposed structure of the 

estimator the manipulation of high-order matrices, which i s generally 

the case in the mean-square approach, i s avoided. 

2.2 Problem Formulation 

Consider a completely observable and controllable continuous-

time linear system 

x = Ax + Bu + w (2.1) 

where x is an n-state vector, u i s an m-control vector and w i s additive 

plant noise. Let T be the sampling interval and let t Q , t^, t^, be 

a set of sampling instants. For the moment, to ease the notational 

burden, let z^(k) = z^(t^) be the sampled measurement at t^ where 

z ^ t ) = x(t) + v(t) (2.2) 

and where v(t) i s additive measurement noise. (The estimator to be 

developed does not require that a l l states be measured as implied by 

(2.2). The general measurement requirements are discussed in Section (2.4) 



Let 

Z i + l ( t ) - fo\^d'> U £ + l ( t ) = i \ ™ * > Wfc) = l \ ^ d ^ <2'3> 

The vectors z^, u^, (£ = 2), are defined as augmented states and aug

mented controls, respectively. It i s seen from (2.1), (2.2) and (2.3) 

that 

z„ = Az„ + Bu„ + w. 
% I I I (2.4) 

A A • 

where u^ = u, ŵ  = v - Av + w. Integrating (2.4) over the interval 

t k = x = t k + 1 and letting Z £(k) = z £(t k>, U £(k) - u £ ( t k ) , yields 
Z£(k+1) = AZ^(k) + BU£(k) + N £(k) (2.5) 

where A = I + TA, B = TB and 

V k ) " [ k + 1t 5( z
£< T) " z £ < t

k
) ) + B ( u J l ( T ) " u £ ( t k } ) + V T ) ] d T ( 2' 6 ) 

k 

The discrete set of equations forms the basis for a l l further discussion. 

To ease the notational burden a l l n(n+m) elements of A and B are consi

dered unknown. The problem is to estimate A and B from a set of measured 

Z^(j)» U-j^(j) and computed (from (2.3)) augmented states and controls. 

Let 

V k )- -
z 4(k) 

A 
c = 

b' 
n 

(2...Z) 

where prime denotes transpose and where a^ and b^ are the j-th n and m 

row vectors of A and B respectively. These rows are ordered into an 
2 

(n + nm) vector c as shown. Equation (2.5) can then be written as 

z £(k+i) = e £ (k)c + N 4(k) (2.8) 



where 

0 

Yj(k) 0 

•Yi(k) 

( Y l ( k ) ) B n (2.9) 

(Due to the frequent occurrence of matrices of block-diagonal form i t i s 

convenient to introduce a special notation. The f i r s t subscript B is 

used to indicate that a block diagonal matrix is to be formed from the 

vector or matrix within the bracket. The second subscript n indicates 
2 

the number of blocks. Note that 9 (k) is an nx(n + nm) matrix). 
JO 

Consider the sampling instants k-N+1, k, so that N blocks of data 

are available and let 

Z £ N̂ 
Z(k) 

Z (k-N+1) 
J 

Tc + 
N(k-l) 

N(k-N) 
(2.10) 

where 

N 

e(k-i) 
K 

• , 6(k) = , Z(k) 
e(k-N) 

n+m 
mm " 

z x(k) 

Zn+m<k> 

(2.11) 

The matrix 9(k) is n(n+m) x n(n+m) and the vector Z(k) is n(n+m) x 1. 

The matrix 6̂  i s of dimension nN(n+m) x n(n+m) as can be seen from 

(2.11). 

It i s seen from (2.7), (2.9) and (2.11) that the measured and 

computed augmented states and controls are used to form the matrix 8(k) 

and the vector Z(k) at the k-th sampling instant. These quantitites are 

evaluated for N sampling instants and are used to form the matrix 9̂  and 

the vector Z^. The problem is to determine an estimate of the parameter 

vector c given 9̂  and Z^, where these quantities are related by (2.10). 



The simplest approach is to define the optimum estimate to be the 

estimate which minimizes the quadratic form (Z^ - 8 ^ 0 )'(Z^ - Q^c). 

The solution i s the minimum mean-square (also called least-squares) 

estimate [6] 

c = PM6*Z.T N N N 

where 

h1 = < w 

(2.12) 

(2.13) 

Since the basic structure of a l l linear mean-square estimators 

i s the same i t i s of interest to compare the estimator (2.12) with pre

viously proposed estimators [5, 12-16]. Mayne has used the Kalman f i l t e r 

approach. This requires that (2.10) be interpreted as a measurement 

equation with 6̂  as a deterministic measurement matrix. This i s the 

case only i f there is no measurement noise and i f a l l states are measured. 

A further and very significant difference is in the definition of 0̂  and 

N(k). These investigators take 

0 0 0 

9 1(k-l) 

01(k-n-m) 
, N(k) 

Nx(k-1) 

N (k-n-m) 
(2.14) 

(References [2, 13-15], furthermore, treat only the scalar measurement 

case. Their results do not directly apply to the above case). Since 

(see (2.5)) 

E[Z 1(j+l)N^(j)] = E[N 1(j)Nj L(j)] •* 0 (2.15) 

i t follows that the estimate i s biased. This has been pointed out pre

viously [13]. In order to eliminate the bias, sufficient time must 

elapse between samples. This can make rapid identification d i f f i c u l t . 

Even when the bias is small enough to give acceptable identification, 

further d i f f i c u l t i e s can arise with data in the form [2.14]. If a small 



sampling interval i s chosen to achieve rapid identification there may 

not be a significant difference between adjacent rows of 6(k) resulting 

in an ill-conditioned matrix. These d i f f i c u l t i e s tend to be avoided i f 

data in the form (2.10) i s used. Some insight into the estimation bias 

associated with (2.12) can be obtained by considering the noise samples 

N^(j), N^(k), (p = 1, ..., n + m; j ̂  k) , as independent. It follows 

from this assumption and (2.5) that 

E[Z 0(k)N'(k)] = 0, (Z, p = 1, .... n + m) (2.16) 

Consequently 6.. at sampling time t, i s independent of N (k) and the estimate 
_L ic p 

(2.12) i s unbiased when N = 1. From (2.6) i t i s seen that quantization 

noise is an important component of N^(k) making an analytic investigation 

into the dependency of the noise samples intractable. Some general 

observations can, however, be made. Successive integrations performed 

on w (T) not only reduce the effective amplitude of the noise but also 

reduces the correlation between noise samples N^(k), (£ ~ 1 , ..., n + m). 

The truth of this statement for a certain class of noise samples i s 

shown in Section (2.7). Consequently, for a given k, the quantization 

noise terms of (2.6) for different I tend to be uncorrelated. Con

sequently, l i t t l e i f any d i f f i c u l t y i s to be expected with estimation 

bias. A l l examples tried verified this expectation. The essential 

difference between the two estimators can be seen from (2.15) and (2.16). 

If £ = 1, sequential data processing must be used. If T is chosen large 

to overcome ill-conditioning then quantization noise can become excessive. 

The combination of heavy noise and estimation bias (2.15) can result in 

failure of the conventional estimator to give acceptable estimation. These 

d i f f i c u l t i e s tend to be avoided i f augmented states and augmented controls 

are chosen (£ = n + m) so that par a l l e l data processing can be used. 



Heuristic engineering justifications can also be given for the 

use of augmented states and controls in linear system parameter i d e n t i f i 

cation. If combined parameter estimation and optimal control i s attempted 

signal-to-noise problems can arise [12], Optimal control attempts to 

keep state deviations from a zero reference state small which decreases 

the signal-to-noise ratio. Integrators are low-pass f i l t e r s which improve 

signal-to-noise ratio. The data used i s then less noisy. Such a situa

tion has been reported by Bakke and he suggests using a hybrid i d e n t i f i 

cation method [16]. Basically his hybrid method i s to use data in the 

form (2.14) and then replace Y^, 6^ by X^y 82* Two different estimates 

are taken and a decision i s then, made on the best estimate. However, a 

f u l l set of augmented states i s not considered, nor i s the data combined 

in a mean-square sense. 

2.3 Recursive and Block Data Processing 

The estimator (2.12) operates in a block data processing mode. 

A new estimate is made after every N additional data blocks. Other 

processing modes can be used such as the recursive method suggested by 

Kishi where old data blocks are deleted and new data blocks introduced. 

Let, 
9N-R ZN-R 

- N > - X T (2.17) 

- -
9N-R ZN-R 

. z = ' N 
9 

' N 
z R R 

It follows from (2.13) that 

PN' = PN-R + 9R9R (2.18) 

Suppose that a l l quantities in (2.12) are known and i t i s desired to 

determine ^ from these quantities (This amount to determining the 



best estimate when R data blocks are deleted). Making use of (2.18) i t 

follows from ( 2 . 1 2 ) that 

9N-RZN-R - ^ " W -N-R ( 2 " 1 9 ) 

By partitioning ( 2 . 1 2 ) in the manner indicated by ( 2 . 1 7 ) , i t is seen that 

° N = W R + PN6N-RZN-R ( 2 ' 2 0 ) 

substituting (2.19) into (2.20) yields 

C V R " ( I " V R V ^ N " V R V ( 2'2 1> 

With the aid of the identities 

<X " PN 6R 6R )" l pN eR = PN 6R ( I " W i ^ 

<X ~ V R V " 1 = 1 + ( I ~ PN eR 0R ) _ l pN eR eR ( 2 ' 2 2 ) 

( 2 . 2 1 ) can be reduced to the standard from for recursive estimation 

C VR = *N + PN 9R ( I " eR PN 9R ) _ 1 ( V N " ZR> ( 2 ' 2 3 ) 

applying the matrix inversion lemma to (2.18) yields 

PN-R = PN + V i ( I " W R ^ V N ( 2 ' 2 4 ) 

Equation (2.23) gives the best estimate i f the last R data blocks are 

deleted and (2.24) gives the associated P-matrix. 

If R new data blocks are sampled, a new Z and 6 D are available 

and new values of c^ and P^ can be computed. The equations giving these 

values are obtainable from (2.23) and (2.24) by interchanging N with N - R, 

replacing 6_ by -8_ and leaving 0' unchanged. With these changes (2.23) K K is. 

and (2.24) gives the Kalman f i l t e r algorithm (since the measurement matrix 

is a random variable the Kalman f i l t e r is not optimal). The estimators 

proposed in References [ 5 , 12-15] are based on a scalar measurement. The 



bracketed quantity i n (2.24) i s then a scalar and no matrix inversion is 

required. However, many scalar samples are required to estimate the 

parameters within a given confidence interval. This can result in slow 

identification. 

The matrix to be inverted in (2.24) is of dimension Rn(n + m) 

x Rn(n + m). This is a consequence of the use of a vector measurement 

of augmented states. In effect, rapid identification i s attempted by the 

parallel processing of augmented state samples. The price paid for 

parallel processing is in the high order matrix to be inverted i n the 

Kalman f i l t e r algorithm. An alternative recursive approach is therefore 

desirable. 

It follows from (2.9), and (2.14) that 

n+m k-1 

SL=1 J=k-N 

where 

n+m k-1 
QN = £ £ V j ) - Y i ( j ) ( 2 ' 2 6 ) 

1=1 j=k-N 
consequently 

PN = % \ n (2'27) 

Equation (2.27) gives the interesting result that only an (n + m) x 

(n + m) matrix need be inverted to find V^. (In general, to determine 
2 2 2 n + nm parameters, an (n + nm) x (n + nm) matrix has to be inverted). 

The structure of (2.27) allows a recursive algorithm to be developed 

which gives i - 1 1 terms of QN"''. Consider (2.26) and define 

Vn = Y„(k - N), S, = Q_T - V.V' S. = S. - V. V'., I I ' 1 N 1 1 j J-1 J j ' 

S = Q 1 (2.28) n+m N-1 



applying the matrix inversion lemma yields 

s-1 = ( Q l ) - v^p- 1 - Q J 1 + Q" 1 v 1ci 1 + v ^ r ^ o " 1 

(2.29) 

Note that the quantities i n brackets on the right hand side of (2.29) 

are scalars. The set of equations (2.29) define a recursive algorithm 

for finding given Repeating the algorithm R times allows P^^ 

to be expressed in terms of (see (2.27)). This procedure replaces 

(2.24) in the data deletion step. 

Substituting (2.18) into the f i r s t identity in (2.22) yields 

PN-R6R = W 1 " W P " ' <2'30> 

which allows (2.23) to be expressed in the form 

N̂-R " N̂ + P N - R 6 R ( V N " V . ( 2' 3 1 ) 

The data deletion i s performed using (2.29) and (2.31). No matrix i n 

version i s required. Insertion of new data i s performed using (2.29) 

in reverse and by changing (2.31) to the appropriate form. 

2.4 Measurement Requirements 1 

Due to the use of state variable f i l t e r s not a l l states need be 

measured as implied by (2.2). Most systems of the form (2.1) can be 

decomposed into subsystems which have a phase variable structure. Suppose, 

for example, that a subsystem is represented by 

x 3 = a 3x 3 + a 2x 2 + a l X ] L + ... 

x2 = X3 
x x = x 2 (2.32) 



To i d e n t i f y (2.32) i t i s s u f f i c i e n t to generate the complete states of one 

the augmented models. The f i r s t augmented model that can be generated 

completely i s the t h i r d model (Jl = 3) . This i s seen by taking 

Z3 = 

I t i s seen from (2.33) that only x^ need be measured. Any a d d i t i o n a l 

augmented model (l > 3) can be generated using (2.3) and (2.33). 

C x i d T i d x2 

^ ^ x„ dr, dx 0 o o 2 1 2 

ft x„ dr, dx 0 o o 3 1 2 

^ fZ x d r 1 dx„ o o 1 1 2 

•^t x 1 dx, o i l (2.33) 

2.5 Applications 

Example 1. 

Consider the l i n e a r system 

x.̂  = a - | X 2 + a 2 x 1 + u, x^(o) 

X2 X l , x
2(°) 

1.0 

0.0 (2.34) 

where a^ = -2.0, a^ = -3.0, t Q = 0, t ^ = 16., and take I = 4 (see 

The fac t that only two elements need be i d e n t i f i e d r e s u l t s i n some 

s i m p l i f i c a t i o n . The f u l l augmented system i s of the form 

x l "X2 x l " " U l " 

x 3 X4 x3 " a l " U2 
= • + 

X5 X6 x5 U3 

_x8 X7 _U4 _ 

(2.35) 

where x^ = x^, x g = x5» x8 = x7' 



Equation (2.35) i s discretized and expressed in the form of (2.8) by 

appropriate definition of Z^(k), ^ ( k ) an& c ' = ( a p » 

The estimation of c i s performed by a block processing mode 

with R = 1. ( i f no old data i s deleted, the estimation algorithm i s 

essentially the Kalman f i l t e r algorithm). The following sample intervals 

and control are used: (1) T = 0.1, (2) T = 0.2, (3) T = 0.4, (4) T = 1.0 

with the corresponding values of N: (1) N = 21, (2) N = 11, (3) N = 6, 
t 

(4) N = 3. The control u(t) = 0.1 + sin 3t + sin lOt i s taken. Figures 

(2.1) and (2.2) give the results with zero additive measurement noise 

(n^ = o = n 2) . However, discretization of (2.35) introduces quantization 

errors which can be considered as additive correlated quantization noise. 

It i s seen from the figures that identification i s rapid even for large 

quantization noise. Figure (2.3) and (2.4) i l l u s t r a t e the results for 

state dependent noise of the form 

x,(k) 
n.(k) = a. • (-i ) ng., ( i = 1, 2) (2.36) 

m 

where ng^ is a pseudo-random computer generated noise sequence which has 

a maximum amplitude of n . The choice a. = a„ = 0.1, E(ng.) =0. is 
m 1 2 l 

made. Figures (2.5) and (2.6) i l l u s t r a t e the results for the choice 

= 0.1, a 2 = 0.25, E (ng^) = 0.1, E (ng2) =0.14. It is seen from 

these results that the estimator i s insensitive to correlated quanti

zation noise, state dependent measurement noise and to bias in the measure 

ment noise. 

Example 2. 

Consider the linear system (See Reference [3]) 



X i = x 2 , x 3̂ (0) = 1.0 

X2 = a l X l + a 2x 2 + bjU , X 2(0) = 0.0 

where = --2.0, a2 = -1.0, b1 1.0, and take Z = 4. 

system i s of the form 

• 
X2 x l x2 u l 

X4 x 3 x4 " a l " U2 

X6 
= 

X5 x6 _ a2_ 
+ 

U3 
b l 

u
X 8 , X7 X8 

U -
^ U4 _ 

• • • 

(2.37) 

where x_ = x,, x r = x,, x_ = x n. 3 4 5 6' 7 8 
The following sampling intervals are used: 

(1) T = 0.1, (2)- T =• 1.0-. The-cor-responding- values of N are: (1) 

(1) N = 21, (2) N = 3. The value of R is taken as R =1. The i n i t i a l 

parameter estimate is c = 0 and u(t) = 0.1 + sint + sin 3t. 

Figures (2.7), (2.8) and (2.9) give the results for quantization 

noise only. Figures (2.10), (2.11) and (2.12) give the results for 

quantization noise and additive state dependent noise where 

«1 = a2 = 0.1, E ^ g ^ =0, i = 1, 2. 

Comparing these time responses with those obtained in Reference [3] for 

the noise-free case, i t is evident that identification i s more rapid. 

The speed of response of parameter tracking systems seems to be adversly 

effected by the interaction between parameter generating subsystems 

which i s an inherent feature of the steepest descent search procedure 

used. Such subsystems are not required for the method developed here. 

Consequently, in the noise free case, one-step identification i s achieved. 



FIG. (2.2) EXAMPLE 1. ESTIMATION OF WITH QUANTIZATION NOISE 
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FIG. (2.4) EXAMPLE 1. ESTIMATION OF a2 WITH QUANTIZATION AND 
UNBIASED MEASUREMENT NOISE. 
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FIG. (2.61 EXAMPLE!. ESTIMATION OF a2 WITH QUANTIZATION AND 
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FIG.(2.7) EXAMPLE 2. ESTIMATION OF a, WITH QUANTIZATION NOISE. 
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FIG. (2.8) EXAMPLE 2. ESTIMATION OF a2 WITH QUANTIZATION NOISE. 
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FIG. (2.9) EXAMPLE 2. ESTIMATION OF b. WITH QUANTIZATION NOISE. 

FIG. (2.10) EXAMPLE 2. ESTIMATION OF a, WITH QUANTIZATION AND 
UNBIASED MEASUREMENT NOISE. 
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FIG. (2.11) EXAMPLE 2. ESTIMATION OF WITH QUANTIZATION AND 
UNBIASED MEASUREMENT NOISE. 
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FIG. (2.12) EXAMPLE 2. ESTIMATION OF b, WITH QUANTIZATION AND 
UNBIASED MEASUREMENT NOISE. 
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2.6 Comparison with a Limited Memory F i l t e r 

In this section a comparison is made between the proposed 

d i g i t a l i d e n t i f i e r using augmented states (I > 1) and the standard 

limited memory identifier ( I = 1). The standard limited memory identi

f i e r (or f i l t e r ) i s of the type discussed in Section 2.3. The f i l t e r 

operates in a block data processing mode where R old data blocks are 

deleted and R new data blocks introduced resulting in a limited (finite) 

memory f i l t e r . Example 2 i s used to il l u s t r a t e the superiority of the 

augmented state identifier for various values of T and N (R = 1). 

Figures(2.13), (2.14) and (2.15) show the results for the identification 

of the parameters a^, a^ and b^, respectively. It is evident that the 

standard limited memory f i l t e r f a i l s to track the parameters for values 

T = 1., N = 3, R = l and exhibit poor tracking accuracy for values 

T = 0.1, N = 21, R = 1. 

The failure of the standard limited memory f i l t e r to give 

acceptable estimation of the parameters is due to the fact that i t i s not 

an optimal f i l t e r for the proposed identification problem. Consequently, 

excessive quantization noise and correlation between samples, as is the 

case here, can have a serious effect on i t s performance. 

In conclusion i t can be stated that the use of augmented states 

and controls results in a more rapid and accurate identification of 

continuous time linear system parameters than can be achieved by either 

parameter tracking systems or the standard limited memory f i l t e r . 



FIG. (2.13) EXAMPLE 2. ESTIMATION OF a, WITH QUANTIZATION AND UNBIASED 
MEASUREMENT NOISE USING A STANDARD LIMITED MEMORY FILTER. 

FIG (2.14) EXAMPLE 2. ESTIMATION OF o2 WITH QUANTIZATION AND 
UNBIASED MEASUREMENT NOISE USING A STANDARD LIMITED 
MEMORY FILTER. 
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28. 
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16. 

FIG. (2.15) EXAMPLE 2. ESTIMATION OF b, WITH QUANTIZATION AND UNBIASED 
MEASUREMENT NOISE USING A STANDARD LIMITED MEMORY FILTER. 
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2.7 Some S t a t i s t i c a l Properties of the Digital Identifier 

In the previous section, the performance of the d i g i t a l identi

f i e r was evaluated by comparing estimated values with known values. In 

a practical situation, however, the parameters are not known and s t a t i s t i c a l 

means must be used to establish confidence in the estimates. In reference 

[5] Kishi made use of extensive studies made by Linnik [17] to determine 

confidence intervals for parameter estimates in the case of a simple 

single-input single-output system. The relations given by Linnik w i l l 

be used in this section to obtain approximate confidence limits for the 

parameter estimates of the d i g i t a l identifier. However, Linnik's results 

can be applied only i f the different components of the noise vector N 

(see (2.10)) can be represented by a s t a t i s t i c a l noise model. Such a 

task is not an easy one. However, i t w i l l be shown that under certain 

simplifying assumptions i t can be argued that the different noise com

ponents w i l l be uncorrelated. 

2.7.1 Correlation of Noise Samples 

In Section (2.2), i t has been assumed that the noise samples of 

the different models are uncorrelated. Hence, equation (2.16) is assumed 

to be true. In the following, i t w i l l be shown that i f the noise samples 

are uncorrelated then the samples of the integrated noise are also un

correlated. For simplicity, we w i l l consider a single noise component 

in order to prove the validity of the previous statement. 

Consider the noise component n(t) which can be represented by 

the following s t a t i s t i c a l model 



E[n(t)] = 0 
(2.38) 

E[n(t)n(x)] = a e - 0 1 ! ^ ' 

If a i s of i n f i n i t e value then n(t) w i l l be a type of white-noise com

ponent. (In the white-noise case the amplitude a w i l l be equal to i n 

finity ) . For a physical realization of the noise component n(t) i t 

w i l l be assumed that a is a very large but f i n i t e quantity and that a' 

is a very large but f i n i t e quantity and that a is of f i n i t e value. 

Let 

N x(t) = n ( T 1 ) d x 1 (2.39) 

It follows from (2.38) and (2.39) that 

E[N 1(t)n( T)] = E[n(x)n(T 1)]dx 1 1 o 1 1 

= a / t e - a l T - T l ' dx, (2.40) o 1 

To evaluate the above integral we w i l l consider two cases: 

(i) Case 1, x ^ t 

E[N 1(t)n(x)] = a £ e ~ a ( T _ T l ) dx^ 

= a [ e-a(x-t) _ e-ax 
a 

( i i ) Case 2, o sc x «_ t 

T - T U T / \ i r T -a(x-x.) , , ,t -a(x..-x) , E[N,(t)n(x)J = a J e 1 dr, + a f e 1 dx, 1 o 1 x 1 
a -axr ax , a ax r -ax -at, = — e [e — 1J H e [e - e J 
a a 

a r o -ax -a(t-x), , 0 = — [ 2 - e - e ] (2.42) a 
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For fixed time t and a very large value of a, equations (2.41) and (2.42) 

can be approximated by 

f = 0 , x > t 
I (t)n(x)] J 

U ^ , 0 < x < 
E [ N l V W ' n " J ** (2.43) 

As seen from (2.43), the noise components n(t) and N^(t) become un

correlated as a -*- 0 0. 

Using equation (2.41) or (2.42) for the special case where 

x = t yields 

E[N 1(t)n(t)] = f [1 - e" a t] 

= — , for fixed t and a ->• °° 

The following non-dimensional ratio can be used as a measure 

of the degree of correlation of N^(t) and n(t): 

E. I M r(t)q(.t)] r 

= - r , for fixed t, a -> « (2.44) 

at 

Equation (2.44) shows that for fixed t and a large value of a the correlation 

between N^(t) and n(t) samples is much less than the correlation between 

the samples of n(t). This shows clearly the advantage of using the inte

grators in order to generate the augmented states and controls. It i s 

also interesting to study the degree of correlation between the samples 

of N x ( t ) . 

Equation (2.39) yields 

E[N 1(t)N 1(x)] = E[N 1(t)n(x 1)]dx 1 (2.45) 



As before, we have two cases: 

(i) Case 1, x > t 

E l N . W N . d ) ] = f]2 - e a T l - e ~ a ( T " T l ) ] dx, 
1 1 o a 1 

-ax, -a(x-x,) . 
. « [ 2 T l I - £ 

a 1 a a o 
a r o -ax , -at -a(x-t) = — j [2at +e +e - e -1] 
a 
2at = , for fixed t and a -*• 0 0 (2.46) a 

( i i ) Case 2, o < x < t 

E[N (t)N (x)] = / T E[N (x)n(x 1)] dx, + / E[N (x)n(x.)] dx, l i o l l l x l 1 1 

fx a r o -ax -a(x-x 1) 1 , , = J — L2 - e 1 - e 1 ] dx, + o a 1 
rt a r -a(x,-x) -ax, -, , / — Le 1 - e 1] dx, x a 1 

a n ~ a x , ~ a t -a(t-x) = —[2ax + e +e - e -1] 
a 
2ax 

= , for fixed t and a •> 0 0 (2.47) 

For the case x = t equation (2.46) or (2.47) yields 

E[N-2(t)] = ~ [at + e a t - 1] 
a 

= — t (2.48) 
a 

Equations (2.48) and (2.38) yield 

E[N 2(t)] 
—4 a l (2.49) 
tE[n^(t)] a 



Equations (2.46), (2.47), (2.48) and (2.49) show that the correlation 

between the samples of the noise component N^(t) vanishes as a -»• 0 0. 

Equation (2.49) shows that for fixed t and large value of a the corre

lation between the samples of N^(t) is much less than that between the 

samples of n(t). 

The same analysis can be directly extended to ^ ( t ) where 

N 2(t) = N 1(x 1) dx 1 (2.50) 

Since the same approach is to be used i t is sufficient to summarize the 

corresponding results 

E[N 2(t)N 1(t)] = ^ t 2 (2.51) 

2 a t 3 

E [ N 2 ( t ) ] ~ f o ~ ( 2 " 5 2 ) 

E f r - C t y ^ c t ) ] -
, 9 = (2.53) 

t 3 E [ n 2 ( t ) ] 

E[N 2(t)] 
~ 1 (2.54) 

t 4 E [ n 2 ( t ) ] 3 a t 

Equations (2.51), (2.52), (2.53) and (2.54) show that the 

same conclusions that have been reached for N^(t) hold for N 2 ( t ) . Suc

cessive integrations of s t a t i s t i c a l l y independent noise samples result 

in s t a t i s t i c a l l y independent noise components. Also, successive inte

grations of correlated noise samples result in less correlated noise 

components. 

The above simplified mathematical treatment shows that the 

independence property assumed by equation (2.16) is j u s t i f i a b l e for 

many practical situations where n(t) i s usually taken as white noise. 



Equation (2.16) can now be used to prove the unbiasness property of the 

di g i t a l i d e n t i f i e r . 

Equation (2.10) has the form 

Z N(k + 1) = 6 N(k)c + N(k) (2.55) 

Where the argument value denotes the sampling instant at which the various 

vectors and matrices are evaluated. Combining (2.55) and (2.12): 

E[c] = E[P N(k)9^(k)Z N(k + 1)] 

= E[P N(k)e^(k)(G N(k)c + N(k))] 

= c + E[P N(k)e^(k)N(k)] (2.56) 

The elements of P M(k) and 8 (k) depend on Z (k) and U (k), A = 1, 

n+m. Equation (2,55) shows that Z^(k) is only related to N(k - 1). 

Since N(k) is s t a t i s t i c a l l y independent of N(k - 1) as shown by the 

above analysis, then ^ ( k ) and 6jj(k) a r e not s t a t i s t i c a l l y dependent on 

N(k) and the following relations hold 

E[P N(k)8^(k)N(k)] = 0 (2.57) 

E[£] = c (2.58) 

Equation (2.58) shows that the estimate obtained by using the d i g i t a l 

identifier i s unbiased. The results given in figures (2.1)-(2.4) and 

(2.7)-(2.12) would not be obtainable i f (2.16) did not hold approximately. 

Equation (2.58) holds when 7^ = (9^9^) ^. This case has been referred 

to by Kishi as the observable case. The case where the inverse (9^9^) ̂  

does not exist i s referred to as the non-observable case. In the non-

observable case an estimate i s obtained by use of the equation 



c - 9* Z N ( 2 . 5 9 ) 

where is the generalized inverse of 6 ^ . That i s , 

e ^ e N x = X ( 2 . 6 0 ) 

It follows from ( 2 . 1 6 ) and ( 2 . 6 0 ) that the estimator ( 2 . 5 9 ) is unbiased. 

2 . 7 . 2 The Error Covariance Matrix 

Let 

V = 6 Na - ^ ( 2 . 6 1 ) 

be the error vector representing the difference between a predicted 

measurement vector and the measurement vector. For the observable case 

the above equation can be written in the form (see ( 2 . 1 2 ) ) 

V = <Wi - I ) Z N ( 2 ' 6 2 ) 

Using equation ( 2 . 5 5 ) yields 

( E N P N 6 N " I ) S ( 2 ' 6 3 ) 

For the non-observable case the expression for V i s 

v = ( e N e ^ - I ) N ( 2 . 6 4 ) 

where use i s made of the property 

N N N N 

The error convariance i s defined by 

6*B = fl ( 2 . 6 5 ) 

Q w = E[W»] ( 2 . 6 6 ) 



Making use of equation (2.63) yields 

Q W = E [ ( W N " I ) M ' ( 9 N P N E N " I ) ] ( 2 * 6 7 ) 

For the non-observable case using (2.64) yields 

Q W = E [ ( 6 N 6 N " ^ ' ( V N " I ) ] ( 2 ' 6 8 ) 

2.7.3 Estimation of the Confidence-Interval Length 

Only the observable case w i l l be studied in this subsection 

since for the non-observable case the length of the confidence interval 

w i l l depend on the degree of redundancy in the measurements which, 

would change from one system to the other. Equation (2.63) yields 

V = ( 6 N P N 6 N " I ) S ( 2 > 6 3 ) 

The fol*lowing relations' hold for the observable case:" 

R(8 N) = R(6^) = R(6^6N) = R(PN) = n(n + m) (2.69) 

where R(*) stands for the rank of the matrix written between the brackets. 

Let the matrix Y„ be defined as N 

Y N - P N 6 N ( 2 - 7 0 ) 

Using the known lemma 

R(AB) 4 min(R(A), R(B)) (2.71) 

where A and B are any arbitrary matrices, i t follows from (2.70) that, 

R < V = n ( n + m ) (2.72) 

Equation (2.70) yields 

3N = ( 9 N 9 N ) Y N ( 2 ' 7 3 ) 



Hence 

R(8jJ) = n(n + m) < min(R(6^9N) , R(Y^)) 

< min(n(n.+m), R(Y )) (2.74) 

Hence 

R ( Y N ) > n(n + m) (2.75) 

It follows from (2.72) and (2.75) that 

R ( Y N ) = R(Pn<3N) = N < N + M> < 2' 7 6> 

Let the matrix be defined as N 

" H H W (2-77) 

Then 

WM9M = 9.. (2.78) N N N 

It follows from (2.78) that i s a projection matrix. Using (2.78) and 

(2.71) yield 

n(n + m) = R(8N) < min(R(WN) , R(e^) 

Hence. 

<=min(R(WN), n(n + m)) (2.79) 

R(WN) ^ n(n + m) (2.80) 

Applying (2.71) to (2.77) i t is seen that 

R(WN) 4 n(n + m) (2.81) 

It follows from (2.80) and (2.81) that 

R(WN) = n(n + m) (2.82) 



Considering now the computation of the number of degrees of freedom of 

the random vectors c and V, that i s (as defined by Linnik [17]) the 

number of s t a t i s t i c a l l y independent components of c and V. Starting by 

computing the degrees of freedom of the random vector c we w i l l make use 

of Theorem 2.3.1 given by Linnik [17] which states that i f the vector U 

is expressed as 

and the matrix A is of dimension r * £ with r < Z and R(A) = r then the 

random vector U i s of r degrees of freedom. From equation (2.12) 

£ = P M9'Z M (2 
N N N 

Equation (2.76) yields 

Applying Theorem 2.3.1 given by Linnik [17] i t i s readly seen that the 

vector c i s a random vector of n(n + m) degrees of freedom. 

To compute the degrees of freedom of the noise error vector V, 

(2.63) is expressed in the form 

U = AX (2.83) 

R(P. T 0 ' ) = n(n + m) (2.84) 

V = (WM - I)N (2.85) 

where W is given by (2.77). 

Let 

'N (2.86) 

The matrix is idempotent as can be seen from the following 

= W - 2W + I N N 

= I - N (2.87) 



Accordingly, there exists an orthogonal matrix 0^ such that (see reference 

[17]) 

where the matrix i s a diagonal one. The matrix $^ has the property 

that 

$N*N " V N = 1 ( 2 ' 8 9 ) 

The matrix is an idempotent matrix as can be seen from the following 

N N N N N N N 

N N N 

=z $'w $ = n (2.90) 

Hence: 

d 2 . = d.. i . e . , d . . =0 or 1 (2.91) n i i n 

The number of d ^ s equals to unity is given by the rank of the matrix 

W ,̂ that i s , by n(n + m). 

From (2.89) i t follows that 

R(I - WN) = R(^( I - WN)$N) 

= R d - y 

= n(n + m)(N - 1) (2.92) 

The f i n a l result follows from the fact that the total number of diagonal 

elements of is n(n + m)N and of these n(.n + m) are equal to unity 

(see (2.91)). Applying the above result given by (2.92) to (2.85) and 

making use of Theorem 2.3.1 [17], i t follows that the noise error vector 

V is a random vector of n(n + m)(N - 1) degrees of freedom. 



From the result reached in the previous statement i t is seen 

that V'V can be expressed in the form 

n(n+m)(N-1) 
V'V = I (2.93) 

i=l 
Let 

Q N = E[c c'] (2.94) 

cc 

With c is computed according to (2.12). 

The following results given by Kishi [5] and Linnik [17] are 

required. If £ and E,^ are s t a t i s t i c a l l y independent Gaussian random 
2 2 — variables with distributed as % and having m degrees of freedom, 

then the t-distribution i s formed by the following ratio 

t = g (2.95) 

m 

Let (see Appendix IV) 

c. -c. 
K = 1 1 (2.96) 

/ (Q ).. 
CC IX 

where (Q ).. is the i-th element of the main diagonal of the covariance cc 11 
matrix Q and c. stands for the i-th element of the vector c. Also cc 1 

let (see Appendix IV) 

m = n(n + m)(N - 1) 
.2 

£q = V'V (2.97) 

Then using (2.96), (2.97) into (2.95) yields 

c. - c. 
1 1 (2.98) "n(n + m)(N - 1) ^ ) > > ( v , v / n ( n + m ) ( N _ 1 } 

cc 1 1 
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Using the t -d is t r ibut ion i t i s possible to compute the length of the 

interval about the parameter c. which would include c. with a certain 
i 1 

probabi l i ty . For example, let the assigned probabil ity be 0.9, then 

^ n C n + DCN - 1)1 4 Y > = 0.9 (2.99) 
where P{*} stands for the probabil ity density of the expression between 

the brackets. The number y can be found from tabulated standard tables 

using the number n(n + m)(N - 1) as an index. Hence 

Ic. - c.I = Y / ( Q ).. , , VsYM TT (2.100) 
1 l x1 1 cc i i n(n + m)(N - 1) 

If the augmented states and controls are not used the denominator 

under the square-root sign in (2.100) w i l l be n(N - n - m). Thus 

using the augmented states and controls decreases the estimation error 

| c\ - c^| and results in a better estimation accuracy. 

The range 2A of the confidence interval for a probabil ity of 

0.9 i s given by 

2A = [c. ± YAQ ) . . , . VZ TV (2.101) 
l ' % cc i i n(n + m)(N - 1) 

2.8 Discussion 

For the observable case equation (2.12) i s used to estimate 

the unknown parameters. The matrix P^ is recursively computed without 

any need to invert a matrix. For the non-observable case the matrix 

P^ does not exist . Equation (2.59) i s to be used instead of (2.12) in 

order to estimate the unknown parameters. The generalized matrix inverse 

6^ i s required. It i s desirable to compute Ĝj in a way similar to that 

developed in this Chapter for computing P^ in the observable case. This 



requires a computation algorithm to evaluate 0̂  recursively without any 

need for a matrix inversion. 

In the next chapter an algorithm w i l l be developed in order to 

compute 6* recursively and no matrix inversion w i l l be needed. This 

algorithm i s computationally simple and is suitable for real-time compu

tations . 

A simplified version of the algorithm that w i l l be developed i n 

the next chapter can be used in order to compute P^. This presents us 

with another method to compute P^. Due to the simplicity of this algorithm 

i t can be used for state estimation applications in cases where the plant 

is represented by a discrete model. Since the generalized inverse has 

numerous applications besides those which occur in state and parameter 

estimation, the important topic of recursive computation of a generalized 

matrix inverse i s dealt with in the next chapter in a general way. 



3. RECURSIVE COMPUTATION OF THE 

GENERALIZED INVERSE OF A MATRIX 

3.1 Introduction 

Because of i t s value in the solution of minimum norm problems 

in f i n i t e dimensional spaces, the generalized inverse (or pseudo-inverse) 

finds important applications in linear system theory. Applications of 

the generalized inverse to estimation and f i l t e r i n g problems are given 

in [18], [6], [19]. Applications to control problems are given in [20], 

[21]. A number of methods have been proposed for computing the generalized 

inverse A''" of a matrix A. The method proposed by Ben-Israel et. [22] a l . 

requires the formation of C = A*A, where A* is the conjugate transpose 

of A, and a series expansion of C. The method proposed by Pyle [7] 

requires a two-stage Gram-Schmidt orthogonalization process and subsequent 

solution of sets of linear equations. A simpler algorithm has been pro

posed by Rust et. a l . [8]. The algorithm is based on a two stage Gram-

Schmidt orthogonalization process. Unlike the other two methods men

tioned above, i t does not require the generation of powers of matrices 

or the solution of sets of linear equations. However, by eliminating 

the Gram-Schmidt orthogonalization process, an even simpler recursive 

algorithm can be derived. 

3.2 Properties of the Generalized Inverse 

Let A be an m x n complex matrix. The generalized inverse of 

A, as defined by Penrose [23], is the unique n x m atrix A* which satisfies 

the following relations: 



AA IA 

(AA1) * 

(A1 A)* 

= A 

= AA 

A XA 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Following Rust et. a l . , suppose that A can be partitioned into the form 

A = (R,S) (3,5) 

where R is an m x n^ matrix with l inear ly independent columns and S is 

an m x n 2 matrix whose columns are l inear ly dependent on the columns of 

R. The following relations hold: 

R IR = I 

R1 = (R*R) -1R* 

S -RU 

U = R S 

(I + UU*) 1 R I 

U*(I + uu*)"^ 1 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(In (3.6) and (3.10) I i s a unit n^ x n^ matrix). The generalized 

inverse is given in partit ioned form by (3.10) where ^ and U are given 

by (3.7) and (3.9), respectively. Rust et. a l . show that the inverses 

in (3.10) can be found by a two stage Gram-Schmidt orthogonalization 

process (the f i r s t stage generates R*)• The poss ib i l i t y of replacing 

both orthogonalization stages by a recursive algorithm is considered in 

the next two sections. 



3.3 Recursive Evaluation of R 

The following relationships are required to develop the recursive 

algorithm. Taking the conjugate transpose of (3.1) and using (3.3) yields 

Let 

A*AA = A* 

A = (V,W) 

(3.11) 

(3.12) 

be a partitioning of A where V is composed of linearly independent columns. 

Equations (3.7) and (3.11) can be applied to V: 

v 1 = (V*V) - 1V* 

v * v v = V* 

(3.13) 

(3.14) 

From (3.1) and the partitioning (3.12) i t is seen that 

AA V = V (3.15) 

Taking the conjugate transpose of (3.15) and using (3.3) (3.13) and 

(3.14) yields 

V ^ 1 = (V*V) - 1V* = V 1 (3.16) 

Let r_., (j = 1, n^) denote the linearly independent 

columns of R. Consider the partitioning 

k+1 

k+1 
(3.17) 

where R, = r,, R = R, and where the b.'s are row vectors. From (3.17) 
1 1 n

1 J 
i t follows that 



" W+i + rk+ibk+i (3.18) 

Applying (3.6) to yields 

= I (3.19) 

Applying (3.11) to 8̂ +1 1 1 1 the partitioned form (3.17) yields 

k+1 r* k+1 
(3.20) 

Partitioning of (3.20) and solving for b^-fi gives 

-1 
\ + i = <WW r k + i ( I " Vk+i> (3.21) 

Replacing A by and V by R^ in (3.16) gives 

^W^+l " (3.22) 

Substituting (3.18) into (3.22) and using (3.19) yields 

w = V 1 - WW' (3.23) 

Substituting (3.23) into (3.21) gives 

W = w W 1 - \ v (3.24) 

where 
°k+l = ( r k + l r k + l " r k + l \ < r k + l ) _ 1 (3.25) 

is a scalar. 
The recursive algorithm for the computation of R is based on 

(3.17) (3.23) (3.24) and (3.25). It is desirable, however, to compute 
,1 • the matrix product R̂ k̂. i n (3.24) from a recursive formula. Substituting 



(3.23) and (3.24) into (3.18) yields 

= Vk"+ v i ( i - \ ^ ) r k + i t + i ( i - v £ ( 3 - 2 6 ) 

Since (see (3.3)) 

(3.27) 

i t i s seen that the second matrix on the right-hand side of (3.26) i s 

the outer product of two vectors 

Summary of the Algorithm for Finding R"*" 

I n i t i a l i z e . Set k = 1, R][ = r , R* = (R*R ) - 1R* 

\ + i " ( rk+i rk+i ~ t+A^W - 1 

bk+l = \ + l r k + l ( I " \RJ)  

Bk+1 " ^ ( I " V l W 

v A i = \*i+ v i ( I - A ^ w W 1 -

<+1 

3.. k. = k+1 

k+1 

k+1 

4. If k < n 1 go to 2, 

The above algorithm replaces the f i r s t Gram-Schmidt orthogonali

zation stage of Rust's algorithm, which, in the interest of accuracy, 

reorthogonalizes each column after i t is f i r s t orthogonalized. An addi

tional advantage of the above algorithm is the manner in which A is 

partitioned into the form (3.5). In the Gram-Schmidt process, the de-
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tection of a zero vector after orthogonalization (but before normali

zation) indicates that the vector being orthogonalized i s linearly 

dependent on the previous vectors. This vector i s consequently moved 

into S and the next column vector of A is chosen. In the algorithm 

presented here, linear dependency i s detected when CL ̂  (see (3.25)) i s 
K."t"-L 

zero. Since a^ +^ i s required i n (3.24) no additional computations are 

required to test for linear dependency. If 0^+1 ^ s z e r o » fc^e associated 

vector i s moved into S and the next column vector of A is chosen. 

3.4 Recursive Evaluation of A 

Consider the partitioning 

\ + l . " ( R» Sk+l?' \ + l " 
k+1 

k+1 
(3.28) 

where S. = s n i s the f i r s t column vector of S and S = S. The generalized 1 1 n ? 

I z 

inverse R can be obtained by the recursive algorithm given in Section 

(3.3). Applying (3.10) to A^, i t is seen that 

J 1 

C. = U*B. 
J 11 

(3.29) 

(3.30) 

U. = (U]L, u 2, , u.) = R S. 
. J J 

(3.31) 

where 

D. = (I + U.U*) 
1 11 

(3.32) 

The matrix inversion lemma [9] 



\ l i - \ ' - D k \ + i ( I + " k V A ' W ^ A 1 (3.33) 

is used to develop a recursive formula for B^. Setting j = k, k + 1 in 

(3.29) and using (3.33) gives 

where 

Bk+i= ( I" ViVWk+i^k 

e k + 1 = .(i + ug + 1B kR u k + 1 ) " 

(3.34) 

(3.35) 

The recursive algorithm for the computation of A* given i s 

based on (3.28) (3.30) (3.31) (3.34) and (3.35). 

• Summary of the Algorithm for finding A* 

1. I n i t i a l i z e . Set k = 1, 

B ]. = D'V = [I - (1 + u*u1)~1u1u*]R I 

- 1 

V i • ( I - ek +i\ R \ + i t + i ) B k 
3. 

4. 

5. 

k = k + 1 

If k ^ n^, go to 2, 

C = (R IS )*B n 2 n 2 n 2 

A 1 = A 1 

nv. 

3.5 Examples 

The f i r s t two examples are taken from the l i terature . This 

allows a comparison to be made showing the relat ive simplicity of the 

proposed algorithm. 



Example 1. This example is given in [22]. It i s required to compute 

the generalized inverse of 

A = 

It i s seen that (3.36) has the form (3.5) where 

1 0 0 -1 
-1 1 0 0 
0 -1 1 0 
0 0 -1 1 

(3.36) 

R = 
1 0 0 

-1 1 0 
0 -1 1 
0 0 -1 

s = 
(3.37) 

The algorithm of Section 3.3 is used to find R 

Step 1. I n i t i a l i z a t i o n . 

Step 2, 

R l " r l 

1 
-1 
0 
0 

a2 = 3 

R* = |(1, -1, 0, 0) 

b 0 = ±(1, 1, -2, 0) 

B, |(2, -1, -1, 0) 

R2 R2 
1 
3 

2 
-1 
-1 
0 

-1 
2 
-1 
0 

-1 0 
-1 0 
2 0 
0 0 



Step 2. (repeated) 

b„ = f (1, 1, 1, -3) 

= 1 f3 -1 -1 - l ) 
" 4 [2 2 - 2 - 2 J 

R = R = 
3 -1 -1 -1 
2 2 - 2 - 2 
1 1 1 - 3 

Having found R*, the algorithm of Section (3.4) is used to evaluate A*. 

Since S consists of a single column vector s^, only the i n i t i a l i z a t i o n 

stage i s required. 

u i " R I S I = 

-1 
-1 
-1 

Step 1. 

• i - i 
3 - 3 - 1 1 
1 3 - 3 - 1 

- 1 1 3 - 3 

Step 5 

C l = U P l - | ( 3, 1, -1, -3) 

A 1 = 1 A l 8 

3 -3 
1 3 
-1 1 
-3 -1 

-1 1 
-3 -1 
3 -3 
1 3 

(3.38) 

Example 2. This example is given in [7]. It is required to compute the 

generalized inverse of 

1 0 1 1 
0 1 - 1 0 
1 1 0 1 

(3.39) 



It i s seen that (3.39) has the form (3.5) where 
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1 0 1 l " 
R = 0 1 , s = -1 0 

1 1 0 1 
(3.40) 

The algorithm of Section (3.3) i s used to compute R*. 

Step 1. I n i t i a l i z a t i o n 

Step 2. 

R l " r l , RJ = \ (1, 0, 1) 

0 U = 
2 
3 

f (-1, 2, 1) 

B2 = 

R1 = 

f (2, -1, 1) 

1 = 1 , 2 -1 1 
2 3 K-l 2 V 

Having found R̂ , the algorithm of Section (3.4) is used to evaluate A*, 

Step 1. I n i t i a l i z a t i o n 

U = ( u p u 2 ) 

D"1 = I - u l ( l + u j u ^ u * 3 v l 2J 

1 3 [0 1 IJ 

Step 2. 



B = - i - ( 3 ° 3 ) 2 15 v - l 5 h} 

Step 5. 

C2 = U* B2 - T5 (3 "o 

A2 " 15 

3 
-1 
4 
3 

0 
5 
-5 
0 

3 
4 
-1 
3 

(3.41) 

Example 3. This example illustrates a case where A does not have the 

form (3.5) i n i t i a l l y . It i s required to compute the generalized inverse 

of 

A = 
1 0 1 0 
-1 1 0 0 
0 -1 -1 0 
0 0 0 1 

(3.42) 

Note that the third column of A is the sum of the f i r s t two columns. 

Generally, the detection of linear dependency by simple observation is 

not possible. The algorithm of Section (3.3) is applied to (3.42). 

It i s seen from (3.36) that there i s no change in the computation given 

in Example 1 unt i l k = 2. At this stage the algorithm gives = 0, 

hence the third column of A is shifted into S and the last column of A 

is chosen. This gives = 1 and 

b 3 = (0, 0, 0, 1) 

1 (2 -1 -1 0 
3 3 1 1 -2 cr 

2 - 1 - 1 0 
1 1-2 0 
0 0 0 3 

The interchange of the last two columns of (3.42) is accomplished 

by a permutation matrix P given by 
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1 0 0 0 
0 1 0 0 
0 0 0 1 
0 0 1 0 

(3.43) 

The algorithm of Section (3.4) is now used to find A*' where 

A = AP, A = AP (3.44) 

The generalized inverse A''" is then given by (see [8]) 

A 1 = PA1 (3.45) 

Step 1. I n i t i a l i z a t i o n 

u^ = R s^ = 

1 -1 0 0 
0 1 -1 0 
0 0 0 3 

Step 5. 

U1 B1 = I ( 1» °» _ 1 ' 0 ) 

A 1 1 
3 

-1 
1 
0 
0 

0 0 
-1 0 
0 3 
-1 0 

(3.46) 

The generalized- inverse A-̂  is- found- from (-3-. 45) and- is-

A = 
-1 
1 
0 
0 

0 0 
-1 0 
1 0 
0 3 

(3.47) 



4. TWO-STAGE ESTIMATION OF TIME-INVARIANT 

AND TIME-VARYING PARAMETERS IN 

LINEAR SYSTEMS 

4.1 Introduction 

Because of i t s importance in system engineering, considerable 

effort has been devoted to the problem of estimating the parameters of 

systems whose dynamic behaviour can be described by differential equations. 

Two distinct methods for estimating time-invariant parameters have been 

brought to a high degree of refinement. The parameter tracking method 

is based on a steepest-descent parameter adjustment of a quadratic error 

function or a Liapunov function. The error can be taken to be a response 

error or a generalized equation error. Detailed descriptions of para

meter tracking systems are given by Lion [2], Pazera and Pottinger [3], 

Rose and Lona [4]. The second method for parameter estimation is based 

on optimum f i l t e r i n g . In i t s simplest form an optimum f i l t e r minimizes 

a mean-square error cost function subject to a prescribed dynamical 

constraint. Detailed descriptions of optimum f i l t e r s and an extensive 

bibliography are given by Sage and Melsa [9]. 

The estimation of time-varying parameters is generally a much 

more d i f f i c u l t problem. Parameter tracking systems and optimum f i l t e r s 

often give acceptable estimates provided that the parameters vary s u f f i 

ciently slowly with respect to time. Lessing and Crane [10] have made 

use of integral transforms to extend the capability of parameter tracking 

systems to track time-varying parameters. Practical implementation of 

the integral transform approach requires the assumption that the parameters 



can be represented by polynomials of known order. The estimation of 

time-varying parameters by optimum f i l t e r s requires essentially the 

same assumption. It is assumed that the parameters are solutions of 

differential equations of known form with unknown time-invariant para

meters. The problem i s then reduced to the estimation of time-invariant 

parameters of a higher order augmented system. It i s the purpose of 

this Chapter to develop a computationally simple and accurate method 

for estimating time-varying parameters which is not restricted by a 

p r i o r i assumptions about the dynamical behaviour of the parameters. 

4.2 Problem Formulation 

Consider the continuous-time linear system 

x = Ax + Bu, x (t ) = x (4.1) p p p o po 

where x i s an n x 1 dimensional state variable vector and u is an m x 1 
P 

dimensional control vector which i s a known function of time. 

The system matrix A i s considered to be decomposable into a 

time-invariant component A^ and a time-varying component A^: 

A =• A f + A v (-4.2) 

The most general estimation problem associated with (4.1) is to estimate 

x , A and B given an observed continuous-time measurement vector defined 
P 

over an observation interval t 4 t <_ t^, and given complete s t a t i s t i c a l 

information about measurement noise and system noise. However, i f emphasis 

is placed on computationally simple methods then a less ambitious problem 

must be considered. Suppose that B i s known and that the state x^ is 
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measured during the observation interval. The problem to be considered 

is the estimation of A given x^ and given no information about noise 

s t a t i s t i c s . The estimation is performed sequentially in two stages. 

During the f i r s t stage an estimate of the time-invariant A^ is made 

given an estimate of A^. During the second stage a new estimate of A^ 

is made using the estimate of A^ found during the f i r s t stage. This 

section deals with the second stage of identification. Let 

z. = x - x, (4.3) 1 p 1 

x, = A.x. + Bu, x.(t ) = x (4.4) 1 f 1 1 o po 

It follows from equations (4.1), (4.3) and (4.4) that 

z., = A.Z.. + A x 1 f 1 v p 

= A.z, .+ 6(x )a, z,(t ) = 0 (4.5) t l p — 1 o 

In equation (4.5), a i s a vector whose components are the time-varying 

elements of A . 
v 

The equation 

A x = 0(x )a (4.6) v p p -

defines a matrix 0 whose elements are linear functions of x . Let 
P 

g = x p - x x 

h A g(t) - Tg(t-T) ( 4 > y ) 

In (4.7), x^ is defined by (4.4), x^ is assumed known (through measurements) 



and h. is an approximation to g, with the accuracy of the approximation 

depending on the fixed-time increment T. Consider the following quadratic 

cost index 

J = j f l f

o [ | | g - ^ 1 l | 2 Q 1 + l l h - ^||" 2Q 2]dT (4.8) 

where z^ and are defined by (4.5) where the unknown vector a. be re

placed by an estimate a_. The weighting matrices and are taken to 

be positive definite. It follows from (4.3)-(4.8) that lim J = 0 pro-
T->0 

vided that the time-varying parameter vector c i is known exactly. Con

sequently, (4.5) and (4.8) can be used to formulate a problem in optimum 

estimation. In the problem formulation the unknown time-varying para

meter vector i s considered to be a control vector for the system des

cribed by (4.5). The optimum control minimizes J where g and h are 

known functions of time. 

4.3 Estimation of A^. Algorithm I. 

The minimization of J (see (4.8)) subject to the dynamical con

straint given by (4.5) is a standard problem in optimal control. The 

Hamiltonian for this problem is (prime denotes transposition). 

H = p ' C A ^ + 6(x )a)- -|(g-z 1)'Q 1(g-z 1)- j(h-A f z±-Q (x ) a) ' Q 2(h-A f z.j-6 (x ) a) 

(4.9) 

The costate equation is 

p = -Hz = -A^p + Q 1(g-z 1) - A^Q 2(h-A f Z ; L - 6(x p)a), p(t f) = 0 (4.10) 

and the gradient condition i s 



60 

H = 9' (x )[p+ Q,(h - A,z - G(x )a)] = 0 (4.11) a p L r 1 p — 

Solving (4.11) for the optimum control a yields 

a = (9»(x )Q29(x )) V(xp)[p + Q2(h - A fz^ ] (4.12) 

Existence of an optimal control for the formulated problem 

can be viewed as a contro l lab i l i t y condition in a function space S of 

elements (g, h) , where h i s either equal to g or an approximation to g. 

Taking (4.8) to define the norm, then the system described by (4.5) is 

defined to be controllable in S i f a control ji exists such that the 

element (ẑ  - g, ẑ  - h) has minimum norm. Satisfaction of this con

t r o l l a b i l i t y condition requires the existence of the matrix inverse in 

(4.12). 

Equations (4.5), (4.10) and (4.12) constitutes a two-point 

boundary-value problem. Due to the l inear i ty of the equations the 

solution i s easi ly found using standard methods. Let 

L(x p) ^ (6'(xp)Q26(xp)) V(xp) (4.13) 

Substituting (4.12) into (4.5) and (4.10) i t is seen that 

where 

C. I 9(x )L 

- r ' 
4 

+ r (4.14 

C± = (I - 6(x ) LQ2) A f 

C 2 = - Q l + A ' Q ^ 

9(xp)LQ2h 

Q 1 § - A^Q2(I - 0(x ) LQJh (4.15) 
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and where I is the unit matrix. The general solution of (4.14) has the 

form 

where 

P(t f) 
- *(t f, tQ) + 

p(t c) y2 

A 
y = 

L y2 J 

A t f 
= / 1 iKt, T) r(x)dx 

fco 

(4.16) 

(4.17) 

and where i|;(t, x) is the state transition matrix for (4.14). It is seen 

from (4.16) that y can be found by solving (4.14) taking z^(t Q) = 0 = p(t Q) 

for the i n i t i a l values. The state transition matrix is found by solving 

(4.14) taking -Kt , t ) = I, r = 0. 

Substituting the boundary conditions into (4.16) and part i 

tioning ^(t^,, t ) in the form 

i t i s seen that 

* ( t f , t Q ) = "*11 |*12 (4.18) * ( t f , t Q ) = 
*21 j*22 

(4.18) 
*21 j*22 

p(t Q) - .-1 
-*22 y2 (4.19) 

The i n i t i a l costate given-by (4.19) in conjunction with (4.5), (4.10)' 

and (4.12) defines the optimal estimate of a. over the observation interval 

t Q <̂  t ^ t^. The computational procedure w i l l be referred to as algorithm 

I. 

Minimization of a cost index of the form given by (4.8) subject 

to the dynamical constraint of (4.4) has found extensive applications in 

state estimation (Sage [11]). There i s , however, a fundamental difference 

in the problem formulations. In the state estimation formulation, (4.5) 



and (4.8) are replaced by 

x = Ax + Bu, x (t ) = x (4.20) P P P o po 

~J = 1 t / t f [ l l * p - * P M 2 q 1 +
 l l * p - % \ \ 2 ^ <4-21> 

The minimization of J subject to the dynamical constraint of (4.20) is 

a problem in optimum f i l t e r i n g . The problem can be considered as one of 

finding an approximation x to z so that the error (z - x ) has minimum 
P P P P 

norm subject to a cost penalty associated with the norm of the control 

effort. The solution of the two-point boundary-value problem defined by 

(4.20) and (4.21) can be obtained by invariant imbedding or by use of a 

Riccati transformation. Either approach results in the Kalman f i l t e r 

algorithm, for generating, the. optimal, estimate, x^ of the state. x p given. 

the measurements z over an observation interval t < T < t. Comparing 
p o = = 

the second terms in the integrands of (4.8) and (4.21) i t i s seen that 

there i s a fundamental difference between the state and parameter e s t i 

mation problems. This difference manifests i t s e l f analytically in the 

controllability condition (the existence of L(x p), see (4.13)) which 

does not arise in the solution of the state estimation problem. 

4.4 Estimation of a Periodic A . Algorithm II. 
, v S 

Several questions arise concerning the estimation accuracy of 

algorithm I. The f i r s t question concerns the effect of measurement noise 

on the optimal estimate. It i s seen from (4.7) that h, since i t approxi-

mates g, may lose i t s significance i f the data representing g is noisy. 

To some extent this loss of significance can be taken into account by 



decreasing the absolute value of the elements of the weighting matrix Q 2 

(see (4.8)). A second question arises concerning the satisfaction of 

the controllability condition. Algorithm I must be modified i f practical 

answers to the above questions are to be found. When no information i s 

available about noise s t a t i s t i c s there is no unique best method for for

mulating an estimation problem, since the choice of a cost index, such 

as the quadratic cost index given by (4.8), i s an arbitrary one. Con

sequently, estimation algorithms can only be judged on the basis of 

trade-off between computational complexity and estimation accuracy. With 

the above discussion in mind, an algorithm is developed for estimating 

time-varying periodic parameters. Let 

x 3 = z - x 2 (4.22) 

x 2 =-Afx-2 ••+ e(-x̂ );a., x- 2(t Q) = 0* * (4.2-3) 

It i s seen from (4.5) and (4.20) that 

X3 = A f X 3 + 9 ( x 2 + X3 )-' X 3 ( t o ) = 0 (4.24) 

Equation (4.23) i s taken to represent the dynamical constraint 

for the new problem formulation. It i s seen from (4.1) and (4.23) that 

the dynamics are noise-free. A cost index of the form given by (4.8) 

must be specified to complete the problem formulation which i s based on 

the following assumptions: (1). L(x^) is well-conditioned (see (4.13)). 

(2) an estimate I of a is available and an estimate x^ of x^ can be found 

by solving (4.24) using successive approximations. That i s , x^ is defined 

x 3 = A fx 3 + Q(x 2)a, x 3 ( t 0 ) = 0 

• 
x 0 = A j L + 0(x.)a, x_(t ) = 0 (4.25) 

Z J. I. 1 — I o 



(3) The cost index i s (see (4.8) and (4.22)) 

3 - X
2 H 2 q 1 + M H " X

3 " X
2 H \ ] D T (4.26) 

o 

Successive approximations converge i f the norm of a is sufficiently 

small. This restriction is imposed to achieve convergence in the two-

stage estimation of A., and A . (If A., is known, then the f i r s t estimation 
f v f 

stage is unnecessary; (2.4) could then be used to define x^ and no norm 

constraints need be imposed on a). It is always possible to avoid i l l -

conditioning of L( Xp) by modifying the values of i t s time-varying elements. 

The modifications, however, cannot be arbitrary. They must enter into 

the problem formulations in a mathematically consistent manner. In the 

present problem formulation i t i s seen from (4.22) and (4.26) that L(x^) 

is replaced by- L ( X j - ) . . Equations- (4. 23) , (4..25). and. (4..26). define-a--two-

point boundary-value problem for the optimum estimate. 

be a fixed estimation interval. At the end t^ of an estimation interval 

a new measurement sequence i s taken over an observation interval 

t, < t < t f + HT. That i s , the next estimation interval is t + £T < t < 

Let T be the length of a sampling interval and let t,. - t = NT 

o 
(N + £)T (see Fig. (4.1)) . 

•OBSERVATION INTERVAL 
FOR NEW MEASUREMENTS 

0IT NT(UN)T h 

H a = H 
ESTIMATION INTERVAL 

OPERATION PERIOD 

flG.(4.l) THE RECURSIVE OBSERVATION - ESTIMATION 
INTERVALS. 



In order to solve Eqn. (4.25) over this interval i t is necessary 

to extrapolate a^(t) . This can be done in a variety of ways. One method 

is to f i t a polynomial to sampled values j i ( t o + kT) , k = 0, N, and 

to use the polynomial approximation for extrapolation. ..Alternatively, , 

i f i t i s known that the length of the estimation interval NT is greater 

than the smallest period of the periodic components of a_, then the known 

periodicity of a_ can be used for extrapolation. The following is a 

summary of Algorithm II: 

1. A measurement sequence g ( t Q + kT), h ( t Q + kT) and an estimate 

a_(tQ + kT) over an estimation interval k = 0, N are assumed known. 

Take a new measurement sequence over an observation interval k = N, 

N + I and define a_ over this interval by extrapolation. 

2. Solve the two-point boundary-value problem associated with the 

new estimation interval for a new estimate (Equations (4.23)*, (4.25) and 

(4.26)). The two steps of the algorithm are repeated recursively. 

4.5 Estimation of a Periodic A^. Algorithm III. 

Algorithm II makes recursive use of measurement data and pre-

vaious estimates. It i s based on the solution of an optimization problem 

having.-the noise free, dynamics, of. (4.. 23). and a cost index given by (4.26) 

where x^ is generated in a smoothed form by integrating (4.25). Conse

quently, i t can be anticipated that algorithm II w i l l be superior to 

algorithm I i f measurement noise is present. There is no guarantee, 

however, that the controllability condition i s satisfied. That i s , 

L(x^) may be ill-conditioned. As mentioned in the previous section, one 

method for overcoming ill-conditioning i s to modify the time-varying 

elements of L by modifying the problem formulation. 



Let z^ be an estimate of z^ and let 

X2 = A f X 2 + 9 ( x l + V - ' x 2 ( t o J = ° (4.27) 

represent the dynamics associated with a third problem formulation. The 

cost index i s taken to have the quadratic form (see (4.8)). 

J = \ t / t f [||g - * 2 \ \ \ + ||h - x 2|| 2Q 2 ] d T (4.28) 
o 

Comparing (4.27), (4.28) with (4.5), (4.8) i t i s seen that z^ should be 

chosen so that x 2 approximates z^. (Ideally, in the noise-free case 

and when L(x ) is well-conditioned, then the choice z, = z, can be made. 
P 1 1 

This results in x 2 = z^ and Algorithm III degenerates into Algorithm I). 

If L(x^) i s ill-conditioned Algorithm II w i l l f a i l . This ill-conditioning 

can be overcome in Algorithm III provided z^ i s chosen so that L(x^ + z^) 

is well-conditioned. A further constraint i s imposed on z^ by the require

ment that the two-stage estimation procedure converges. This requirement, 

which was discussed in the previous section, led to the use of successive 

approximations and the assumption that the norm of a_ must be sufficiently 

small. It i s evident that z^ i s constrained by several conflicting re

quirements. Some sort. of. mathematically tractable, approach must be taken, 

which accounts for the various trade-offs associated with ill-conditioning, 

dynamical approximations and two-stage convergence. 

Solving (4.5) by successive approximations using z^ = 0 as an 

i n i t i a l i z i n g function and an estimate a. gives 

x 2 - A fx 2 + 6( X L)I , x 2 ( t Q ) = 0 

x„ = A.x„ + 9(x. + x 0)a, x 0 ( t ) = 0 (4.29) 
J 1 J 1 Z — J O 
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for the next two approximating functions. Let z^ be defined by 

z1 = ax 2 + 3x 3 (4.30) 

The general structure given by (4.30) allows the trade-offs mentioned 

above to be investigated as a function of two scalar parameters a and $. 

The choice a = 0, B = 1 results in z^ being defined by successive approxi

mations given by (4.29). Numerous algorithms for the solution of linear 

algebraic equations are given in [24]. Abramov's method for accelerated 

convergence results when a = 2, 3 = -1. (The j u s t i f i c a t i o n for using 

these algorithms is easily seen by the discretization and subsequent 

rearrangement of (4.5) into a linear algebraic equation). 

Algorithm III is based on the solution of the two-point boundary-

value problem defined by (4.27), (4.28), (4.29) and (4.30). The scalar 

parameters a. and p can. be. determined by numerical. experimentation., or, they 

can be chosen on the basis of successive approximations (a = 0, 3 ='. 1) or 

Abramov's method (a = 2, 3 = -1). 

4.6 TwO-Stage Estimation of A^ and A^. 

During the f i r s t stage an estimate of A^ i s found given an 

estimate of A^. Three different algorithms have been developed in the 

previous sections for the second stage during which an estimate of A^ is 

found given an estimate of A^. The two stages are performed sequentially. 

Together they comprise a composite estimator for A. For reasons of 

simplicity, the discussion is limited to the development of a f i r s t stage 

algorithm which i s associated with second stage Algorithm I. The modifi

cations required i f second stage Algorithm II or III is used are straight

forward. 



Equation (4.4) defines the dynamics associated with the f i r s t 

stage of estimation. If x^ were available through measurements, (4.4) 

could be discretized and estimated by use of standard minimum mean-

square error estimation procedures. However, x^ is not directly available. 

Furthermore, a two-stage estimation is proposed and the interaction 

between stages must be accounted for i f a convergent sequence of e s t i 

mates is to be obtained. 

Chapter 2 has suggested augmenting (4.4) by additional states 

and controls to reduce the effect of quantization noise which i s intro

duced by discretization. It i s shown that the use of augmented states 

and controls results in rapid convergence of the estimates. The augmented 

states and controls are defined by successive integrations of (4.4): 

y. = Ay. + B u. 
Jx fx i 

y i ( t o ) = i 

1 I 0 , i > 1 (4.31) 
A ft A 

y i = o y i - l d T > y l = X l 

u. = •/"t u. ^dx, u, = u (4.32) l o i - l 1 

For' composite estimation" of" A, successive - integrations has' the beneficial 

effect of reducing the influence of the time-varying components of A^ on 

the augmented states. The augmented system of equations (4.31) are dis

cretized and rearranged into a set of linear algebraic equations. The 

optimum estimate for A^ i f taken to be the solution with minimum mean-

square error (For details see Chapter 2). 

In the case of composite estimation the above procedure must 

be sli g h t l y modified since x^ is not directly available. Consequently, 



x^ must be estimated from existing data. From (4.3) and (4.5) i t is 

seen that 

XJL = x p - (4.33) 
where 

z- = A cz, + 9(x )a, z.(t ) = 0 (4.34) 1 f l p —' 1 o 

In (4.34), and a. are estimates of Â  and a_ respectively. The f i r s t 

stage of estimation consists of a minimum mean-square error solution of 

the discretized equations (4.31) using (4.33) and (4.34) to define x^. 

The new estimate of Â  i s used in place of the old estimate 

provided that i t results in improved prediction of the state of the sys

tem. The following cost index can be used as a basis for making this 

decision: 

J l = I t / f ' l * l ' x p " X l " SiM2Q3d"T ( 4 ' 3 5 ) 

In (4.35), is a positive definite weighting matrix. The rate of-

change of between estimation intervals i s useful in making decisions 

concerning the displacement length (£T) of the observation interval. The 

displacement can be increased when the rate of decrease of goes below 

a preset threshold. 

4.7 Examples 

In a l l examples the following computational procedures were 

adopted. The two-point boundary-value problem was solved using a fourth-

order Runge-Kutta method with an integration step-size of 0.025. The 

time-varying estimates a.(t) were generated in the computer by storing 

the values at grid points and taking a piecewise constant approximation 
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a(t)=a(t Q+kT), kT < t<(k + 1)T). In the case of algorithms II and III, 

extrapolation of _a was performed using a very simple constant approxi

mations, _a(t^ + kT) = a_(t^) , k = 0, , and the i n i t i a l i z i n g 

functions for successive approximations were taken to be identically zero. 

4.7.1 Example 1. 

Consider a f i r s t order system 

x = -(1 + b sino)t)x + u (4.36) 

where the control u i s taken to be a step function of magnitude equal to 

3 and x(0) = 0 with 

T = 0.025, I = 4, N = 80 (4.37) 

The length of the whole operation period for a l l the examples 

is taken to be 10 seconds. The length of the estimation interval, as 

seen from (4.37) is NT = 2 seconds and the same has been considered for 

a l l the subsequent examples. The maximum percentage error of the estimate 

of a(t) = b sin wt for different b and w values are given in Table 

(4.1). Table (4.2) shows the results when a(t) i s a square wave: 

f 0.5,. 0 < L< 0..5. 
a(t) =\ 

L-0.5, 0.5 4 t < 1.0 (4.38) 

In the case of algorithms II and III, two estimation intervals were re

quired to obtain the results given in the tables. Algorithm III was tried 

with successive approximations (a = 0, 6=1) and Abramov's method 

(a = 2, g = -1). 



4.7.2 Example 2. 

Consider the second order system 

x^ = -(1 + b^sin io^t)x 2 + u^ 

x 2 = -(2 + t>2 sin o) 2t)x 1 - x 2 + u 2 (4.39) 

where i s taken to be a step function of magnitude equal to 2 and 

{t , 0 < t < 

1 , t > 

0 < t <_ 3 

3 (4.40) 

In addition to (4.37) the following values are used: x^(0) = 0 = x 2 ( 0 ) , 

b^ = 0.4, b 2 = 0.6, cô  = 3, = 2. Table (4.3) gives the maximum per

centage estimation errors for the parameters a^(t) = b^ sin cô t and 

a 2(t) = b 2 sin o)2t, respectively. In the case of algorithms II and III, 

two estimation intervals were used. 

4.7.3 Example 3. 

Consider the third order system 

x^ = (1 + b^ sin to^t) x 2 + u^ 

x 2 = -(2 + b 2 sin ui^t) x 3 - x 2 4- u 2 

x 3 = -(3 + a 3 ( t ) ) x 1 - 2x 3 + u 3 (4.41) 

where the controls u^ and u 3 are taken to be step functions of magnitudes 

0.1 and 0.5, respectively and where 



f t , t < 

" 2 = l l . « > 

3 

3 (4.42) 

The parameter ^ ( t ) i s periodic and given by 

a 3 ( t ) -
1 , 0 < t < 0.25 

U l , 0.25 < t <_0.5 (4.43) 

In addition to (4.37) the following values are used: x^(0) = ̂ ( 0 ) = 

x 3(0) = 0, b± = 0.3, b 2 = 0.5, o>1 = 3., OJ2 = 2. Table (4.4) gives the 

maximum percentage estimation errors. In the case of algorithms II 

and III , four estimation intervals were used. 

4.7.4 Example 4. 

The next two- examples i l l u s t r a t e the composite two-stage 

estimator. In both examples the first-stage of estimation was i n i t i a l i z e d 

by taking a. = 0 as the i n i t i a l estimate for c i and only one set of aug

mented states and controls was used ( i = 1, 2, see (4.31) and (4.32)). 

Consider the second order system 

x^ = (1 + b^ sin to^t)x 2 + u^ 

x 2 = (b-2- sin o)2t.)x1- + a2x2 + U2 (4.-44)-

where the controls u^ and u 2 are taken to be step functions of magnitude 

equal to 2. and 3., respectively. In (4.37), £ is taken equal to two and 

the following values are used: x^(0) = = »̂ ̂ 1 = 0.3, t>2 = -0.5, 

co^ = 1, c o 2 = 2, a 3 = 1. After two estimation intervals the maximum per

centage estimation error for a^ was 1.2% and after ten estimation i n 

tervals, the maximum percentage estimation errors for a 2 and a 3 were 1.8% 
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and 1.0%, respectively. 

4.7.5 Example 5. 

Consider the second order system 

x^ = (1 + sin ui^t)x^ + 

X2 = a 2 X l + a3 X2 + U2 (4-45) 

where b^ = 0.4, a^ = -2, a^ = -1, cô  = 2 and where a l l remaining data i s 

the same as in Example 4. After the second estimation interval, the 

maximum percentage estimation errors for a^, a^, and a^ were 0.9%, 0.4% 

and 0.3%, respectively. 

4.7.6 Example 6. 

In the previous examples the measurements were noise-free. 

Example 1 has been tried with zero mean gaussian measurement noise with 

unity standard deviation and the random noise generator has been randomly 

i n i t i a l i z e d . A peak r.m.s. signal to noise ratio of 10 was taken. The 

following values were chosen: b = 0.4, co = 1, a = 2, (3 = -1. The maximum 

percentage estimation errors for algorithms. I.,.. II and. III. were 6%., 3.2% 

and 2%, respectively. In the case of algorithms II and III, seven and 

four estimation intervals were used, respectively. 

The examples show that the proposed algorithms and the two-

stage estimation method can give accurate estimates of linear system 

parameters. If the measurements are noise free, Algorithm I gives the 

most accurate estimates. In the case of measurement noise, Algorithms 

II and III give better estimates. In the above examples, no problem 
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was encountered with ill-conditioning in any of the above cases. 
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b 

1 W 0.5 1.0 1 
/ 0.6 % 0.75% 

JT 
3-0 10 % 15 % 

JT 
2.0 0.7% 0.85% 

777 
°(=2, 3=-1 

3.0 0.9 % 1.0% 

777 
3.0 0.93% 0.95% 

TABLE (4.1) 

TABLE (4.2) 

TABLE (4.3) TABLE (4.4) 



5. OPTIMUM CONSTANT FEEDBACK GAINS FOR 

LINEAR SYSTEMS AND THE PROBLEM OF 

TRAJECTORY SENSITIVITY REDUCTION 

5.1 Introduction 

The optimum solution of the linear state regulator problem 

with quadratic cost has assumed a central position in the development 

of modern control theory. The optimum gain, however, is in general 

time-varying and this has severely restricted practical applications. 

Practical considerations generally specify constant or piece-wise con

stant feedback gains. Considerable effort has gone into the development 

of design procedures for constant feedback gains and in the design of 

specific optimal controllers [25-29]. 

There are, however, computational as well as practical d i f f i 

culties associated with optimum constant gains. Specifying a constant 

gain results in a constrained optimization problem and the solution of 

the associated two point boundary value problem is generally more d i f f i 

cult. Furthermore, the optimum constant gain depends on the i n i t i a l 

conditions. One method that has been proposed to overcome these d i f f i 

culties i s to introduce the trace of a cost matrix which then allows i n i 

t i a l conditions to be eliminated in the problem formulation by arb i t r a r i l y 

assuming a uniform distribution of i n i t i a l states over a sphere [25-27]. 

From a design standpoint, however, i t is important to investi

gate the effect of i n i t i a l conditions on optimum feedback gains before 

computing average suboptimum gains. Furthermore, in many practical s i t u 

ations, state trajectories are controlled, and the effect of i n i t i a l 



conitions on optimum gains can become important. This occurs, for example, 

in certain schemes for combined estimation and control. During a f i n i t e 

observation interval, measurements of the state are taken and used to 

determine parameter estimates of a linear model. The linear model is 

used to compute a control strategy which i s applied in a subsequent control 

interval [11], [5]. This scheme seems particularly attractive for adaptive 

systems. Its practical implementation, however, requires an on-line 

computational algorithm for determining optimal or suboptimal gains. 

Trajectory sensitivity minimization i s an important practical 

problem that has received considerable attention [30-37], A widely 

adopted method i s based on augmenting the state vector with the sensi

t i v i t y vector and formulating a linear state regulator problem for the 

augmented state. However, i f time-varying gains are permitted, the 

problem, i s ill-posed [35, 38]. A well-posed, traj.ectory. sensitivity mini

mization problem requires that the gain be constrained to be time-invariant. 

In general, the sensitivity vector is affected by i n i t i a l 

conditions. Consequently, i f feedback i s to minimize trajectory sensi

t i v i t y , the effect of i n i t i a l conditions on the optimum constant gain 

must be evaluated. It may be possible to choose a suboptimal average gain. 

A unified treatment of several problem formulations dealing 

with time-varying gains and constant gains is presented. Extensive" use 

is made of the known results for the linear state regulator problem to 

develop a simple algorithm which results in rapid convergence. An 

approximate method is developed to replace the nonlinear two point 

boundary value problem by an algebraic optimization problem. This method 

appears to be suitable for on-line computation of suboptimum constant 

feedback gains. 



5.2 Problem Formulation 

Consider a linear time-varying system 

x = Ax + Bu, x(0) = X q (5.1) 

where the state x and the control u are n x 1 and m x 1 vectors, res

pectively. The optimal control which minimizes the quadratic cost 

index (prime denotes transposition) 

1 t f J = ± / (x'Q-x + u'Ru)dt, (5.2) o 2 o 1 

where i s positive semidefinite and R positive definite, i s given in 

feedback form by 

u = -R •''B'K.jX. (5.3) 

The time-varying gain matrix is found by solving a matrix Riccati 

di f f e r e n t i a l equation and has the property that = K|. To ease the 

notational burden, argument values of functions are omitted when they 

appear unessential and only one parameter q in the matrix A is considered 

to have a significant effect on sensitivity. Let z = represent the 
d q 

closed-loop trajectory sensitivity vector. A feedback structure of the 

form 

u = -R-1B'(K x + K 2z) (5.4) 

is postulated, where = K| and = K^. This specific structure is 

postulated because i t resembles the feedback structure of the optimal 

control resulting from solving the state linear regulator problem 

(see (5.3)). Substituting (5.4) into (5.1) and neglecting the second
s ' 

order sensitivity function —j yields 
9 q 



z = 1̂  x + (A - F K j z , z(0) = 0 3q J. 
(5.5) 

where F = BR "*"B'. By defining an augmented vector y' = (x', z'), (5.1) 

and (5.5) can be combined into a composite vector differential equation 

y = (A - FK)y = Cy, y(0) = y r 

where 

(5.6) 

A = 

3q 1 J 

F 0 

0 0 

- A 
, K = 

K l K2 

L K2 K3 
' yo = 

x 
(5.7) 

Equation (5.6) represents (5.1) and (5.5) when = K^. This constraint 

i s relaxed in (5.6) i n order to obtain a unified treatment of the 

linear and nonlinear formulations. 

The design objective i s to choose gain matrices and so 

that (5.2) i s minimized subject to the additional constraint that the 

feedback (5.4) reduces, in some sense, the closed-loop trajectory 

sensitivity vector z. A mathematically tractable approach that has 

been widely adopted in sensitivity studies i s to neglect second-order 

sensitivity terms so that (5.6) i s valid and to introduce a cost index 

J ( K r K, t f) = j / f y'(Q + KFK)y dt (5.8) 

where Q is an augmented positive semidefinite weighting matrix [32-38], 

The optimum gain matrix minimizes (5.8) subject to the differential 

constraint (5.6). It w i l l be seen that the sensitivity problem formu

lated by (5.6) and (5.8) i s well-posed only i f the gain matrices are 

constant. 

The argument l i s t in the cost index (5.8) is used to distinguish 



between different problem formulations. Let I(K^, K, t^) and I(K^, K, t ^ ) , 

where i s arbitrary, represent the linear and nonlinear formulations, 

respectively (If (5.6) i s rewritten i n the form y = Ay + Fu, then for the 

linear formulation the matrices A and F are completely known and inde

pendent of K^. This results in linear dynamic constraints. For the 

nonlinear formulation the parametric matrix A depends on the unknown gain 

matrix K^. This results in nonlinear dynamic constraints). The Hamiltonian 

for either formulation i s 

H = p'Cy - |- y'(Q + KFK)y (5.9) 

where the costate vector p i s defined by 

p = -C»p + (Q + KFK)y, p(t f) = p f = 0 (5.10) 

Gradient matrices (see Appendix III) are used to derive the gradient 

condition for a minimum. In order to use gradient matrices a l l matrix 

elements must be independent and cannot be constrained by the symmetry 

condition K = K'. 

This is easily accomplished by taking K = K + K', where K is a 

matrix with arbitrary elements. In order to introduce a compact notation 

which proves useful in subsequent discussions, i t is assumed that F is 

time-invariant. The gradient condition for the linear formulation 

I(K^, K, t^) can then be expressed in the form (see Appendix V) 

8J(K K,t ) t 
i — — = / J - _ - 5 - d t = $ KF + FK$ +F$ +<S> F = 0 

3K o 3K yy yy py yp 
(5.11) 

where 
$ k y v » dt (5.12) yv o J 
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(Equation (5.11) remains valid in the general case of time-varying F 

provided that KF and F are moved under the respective integral signs. 

Keeping this in mind, i t is seen that the form (5.11) is actually not a 

restriction but rather a notational convenience). 

The gradient condition for the nonlinear formulation I(K^, 

K, t^) differs from (5.11) in an additional term which arises from the 

dependency of A on K^. Let p' = (p|, pp be a partitioning of the 

costate vector which corresponds to the partitioning of y and let K^ = 

L + L', where L i s arbitrary. The additional term which is associated 

with K^ i s 

a t f 
~ f Tr(-FK l Zp!)dt = F$ + $ F 3L o 1 r2 p z zp„ (5.13) 

Introducing the augmented matrix 

E = 
F$ + $ F ' 0 

P 2z Z p2 ! 
0 1 0 

(5.14) 

allows the gradient condition for the nonlinear formulation to be ex

pressed in the form 

8K " = E + $ KF + FKo + F'f + $ F = 0 yy yy py yp (5.15) 

Minimizing J(K^, K, t^) is a constrained optimization problem. Conse

quently 

J(K*, K*, t f ) = J(K 1 } K, t f ) (5.16) 

where K* i s the optimum gain matrix for the nonlinear formulation. If 

K^ = K*, i t is seen from (5.16) that the minimum for the linear formulation 
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is achieved when K = K*. The condition E* = 0, which is satisfied when 

F$ + $ F = 0 (5.17) p 2z zp 2 

is an optimality condition. It i s interesting to note that i f time-

varying gains are permitted, the optimality condition (5.17) becomes a 

singularity condition which i s impossible to satisfy [32, 37]. This 

indicates that the sensitivity problem formulated with time-varying 

gains is ill-posed and cannot, in general, meet the design objectives. 

Equations (5.11) and (5.15) can be simplified and unified by 

introducing a matrix S defined by 

FS$ + $ SF = -F$ - $ F - E (5.18) 
yy yy py yp 

(Several methods are available for solving an equation of the form (5.18) 

for S. See Appendix II). Substituting (5.18) into (5.15) yields 

9J(K K,t ) 
\ v = $ (K - S)F + F(K - S)$ =0 (5.19) 
9K yy yy 

Equations (5.6), (5.10) and (5.19) define a nonlinear two-

point boundary value problem which must be solved in order to determine 

the optimum gain matrix. 

5.3 Unified Treatment of Different Formulations 

Because i t is a constrained optimization problem, the computation 

of optimum constant gain matrices is generally more d i f f i c u l t than the 

computation of unconstrained time-varying gains. It is only in the 

special case of time-invariant systems and i n f i n i t e tf that the problems 



are computationally equivalent. From an engineering point of view, 

however, constant gain matrices are easier to implement and therefore 

preferable, despite the possible computational d i f f i c u l t i e s . It i s 

evidently desirable to retain the comparative computational simplicity 

of the unconstrained time-varying gain case, as far as this i s possible. 

This requires developing a unified treatment for the various formulations 

and then making maximum use of the known results for the linear state 

regulator problem with time-varying gain and quadratic cost. 

Substituting the Riccati transformation 

p = -Sy (5.20) 

into (5.10) and using (5.6) yields ' 

S* + SC + C'S = -Q - KFK, S = 0 (5.21) 

Consider the general case of a time-varying system with time-varying 

gains. In the linear formulation I(K^, K, t^), E = 0. Substituting 

(5.20) into (5.18) yields 

t f 

/ (F(S - S)yy' + yy'(S - S)F)dt = 0 (5.22) 

Equation (5.22) i s satisfied when S = S and (5.19) i s satisfied when 

K - S =• S. Substituting this- constraint into (5.21)- gives- the- standard 

matrix Riccati d i f f e r e n t i a l equation for the optimum time-varying gain. 

In the case of a constant gain matrix the above procedure must 

be modified. Heuristic considerations indicate that some sort of time 

average of S should result in a good suboptimum constant gain (For a 

time-invariant system, the steady-state solution of (5.21), taking 

K = S, often gives a good suboptimum result). 



The correct time average to use is given by (5.22). Replacing 

Sy by p, (5.22) can be solved for S by use of Kronecker products 

(See Appendix III). The vector representation (S) of the matrix S 

satisfies the linear equation 

(5.23) 

A method of successive approximations could be considered for 

solving the two-point boundary value problem. Using a nominal gain 

K = K̂ , (5.6) is integrated in the forward direction and (5.16) in the 

backward direction. Equation (5.23) can then be solved for S and (5.19) 

used to determine the gain increment. The updated gain i s 

and the procedure is repeated iteratively. While successive approximations' 

seems straightforward, they generally f a i l to converge in the case of 

nonlinear two-point boundary value problems. The special structure of 

the formulated problem, however, allows some insight to be obtained 

concerning the convergence of successive approximations. 

5.4 Gradient Descent and Successive Approximations 

3 J Let (6K) and (—) be the vector representations for a matrix v 3K v 

gain increment and the gradient matrix, respectively. The incremental 

cost associated with 6K is given by 

(5.24) 

(5.25) 



where 
(5.26) 

is positive semidefinite (see Appendix III). Consequently, i f 

6K = w(S - K), 0 < w = 1 (5.27) 
then 

5J = -w(S - K)'W(S - K) = 0 (5.28) 

The gain i s updated by 

\+l " \ + W (\ " V (5.29) 

where the subscript k i s used to indicate an iteration stage. For the 

problem formulation under discussion, successive approximations (5.24) 

is a special case (w = 1) of. gradient descent (5.29) with a weighting 

matrix (5.26). Consequently, the proposed successive approximations 

method i s equivalent to a deflected gradient method. In the case of 

quadratic cost indices i t is.known that some deflected gradient methods 

(such as conjugate gradients) result in significantly improved convergence 

rates. Having established the property that (5.24) is a deflected 

gradient descent, i t i s of interest to see whether i t has the properties 

of improved convergence, such as quadratic convergence. It i s known that 

successive approximations results in quadratic convergence in the case 

of unconstrained time-varying gains. Quadratic convergence can be proven 

by considering (5.21) for two successive iterations. Introducing 

k+1 S, , the linear matrix dif f e r e n t i a l equation for AS, can be 

solved using standard procedures, giving 



-AS k(0) o / f c f K + ± ( T , 0 ) ^ - - V ^ C t , 0)dx + 

Cf * k + l ( T > ° ) C ( \ + l ~ ~ W + ( \ " \ + l ) F " ( \ + l " S k ) ] W ( T ' ° ) d T 

(5.30) ' 

In (5.30) ^ ( t , x) i s the state-transition matrix of (5.6) at the k-th 

iteration stage. It i s easily shown that the cost index at stage k i s 

given by J , = — y'S.y . The incremental cost AJ, = J , , , - J , is found k 2 o k o k k+1 k 
from (5.30) and can be expressed in the form 

- A J k - T r t l y y C k K K ^ - \)H\+± ~ VI + T r K ^ ) ^ - K ^ ) ] (5.31) 

where 

- Cf [Wk+i(\+i - V F + F(\+i - VWk+i^ (5-32) 

and where the notation $ (k) is used to indicate that (5.12) i s evaluated 
yy 

at stage k. The gradient condition (5.19) can be obtained from (5.31) 

by noting that Tr[(A + A')B] = 0 for arbitrary symmetric matrix B only 

when A + A' =0. Equating (5.32) to zero yields (5.19). 

The remarkable properties of the case with unconstrained time-

varying gain are seen from (5.32). By setting K k +^ = S k > (5.32) vanishes 

and the decrease in cost (5.31) i s quadratic [38]. This is accomplished 

by solving (5.21) .using successive approximations. The same quadratic 

convergence would result in the case of constant gain i f could be 

chosen to make (5.32) vanish. In principle this may be possible. 

However, y^-^ depends on K̂ -̂ * Consequently, any attempt to satisfy the 

condition ( ^ ) ^ = 0 would result in poor convergence. 

It i s reasonable to look for an approximation by replacing 
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y^ +^ in (5.32) by y^. Let (^r)^ represent the matrix arising from this 

substitution. It i s seen that 

<M>k • V k ) (V-l " V F +
 f ( \ + l " V $ y y ( k > ( 5 i 3 3 ) 

where S^ is defined by (5.22) evaluated at stage k. It follows from 

(5.33) that (^O^ = 0 i f i s determined by successive approximations 

(set w = 1 in (5.29)). Since (7^). i s an approximation to (7^), i t i s 

reasonable to anticipate that successive approximations results in rapid 

convergence. A rigorous proof of quadratic convergence would require 

shoxtfing that the second term of (5.31) is either never negative or, i f i t 

i s negative for a certain gain sequence, that i t s absolute value is less 

than a fixed fraction of the f i r s t term, which for Kjc+-^ f1 is always 

positive. From a practical point of view such a proof i s not essential. 

If the choice w = 1 should happen to result in divergence, then a choice 

w < 1 can be made which w i l l always give a convergent sequence (see (5.28)). 

The proposed computational algorithm is the following. Choose 

a nominal K = K^. Integrate (5.6) in the forward direction and (5.10) in 

the backward direction. Solve (5.18) for S^ and update the gain by 

use of (5.29). The rate of convergence i s controlled by w. Computationally, 

the proposed method i s similar to the conventional steepest descent 

procedure. The. essential, difference i s in the use. of a variable weighting 

matrix (5.26) to give a deflected gradient. The associated change in the 

gain matrix i s actually given by the simple successive approximations 

formula (5.29). 

Limited computational experience to date indicates that this 

variable gradient deflection allows a large step (w = 1) to be taken 

resulting in rapid convergence. 



Note that the linear and nonlinear formulations of the sensi

t i v i t y problem are treated in a unified manner. This arises from the 

fact that in both formulations a nominal gain K is chosen to perform 

the computations. 

The above algorithm is suitable for off-line design studies. 

Since the optimum constant gain depends on i n i t i a l conditions, there i s 

a problem of practical on-line implementation. A method for eliminating 

i n i t i a l conditions and deriving suboptimal feedback control laws is 

given in.[39]. A method which is suitable for combined on-line e s t i 

mation and control is discussed in Section (5.6). 

5.5 Optimum Constant Gain: Trajectory Sensitivity Reduction 

Because of i t s engineering importance, open-loop and closed-loop 

system sensitivities have been extensively investigated 

(see Reference [32] for a bibliography). However, for the closed-loop 

sensitivity formulation given by (5.6) and (5.8), a paradox arises i f 

unconstrained time-varying gains are permitted. This paradox has been 

discussed in the literature but i t s effect on sensitivity reduction 

does not seem to have been f u l l y appreciated [33, 37]. A simple 

example can be- used to illustrate- the paradox. Consider-

x = -ax + u, x(0) = x (5.34) 
o 

z = -x - az - aKjZ, z(0) = 0 (5.35) 

u = -Hi K - K 2z = 0 (5.36) 

J = -| /°°(x2 + Q 2z 2 + Ru 2)dt (5.37) 



and suppose that and R are both chosen large compared to unity. This 

would seem a reasonable choice to make in order to keep both sensitivity 

and control effort small. The optimum time-varying gains, however, 

satisfy the constraint (5.36) and are i n f i n i t e . This can be seen by 

taking K -> + » i n (5.35). Equations (5.34)-(5.37) then yield. 

1 
aK x = 0 (5.38) 

K 2 = K 2 (5.39) 

(5.40) 

The optimum (infinite) gain can result in a very significant smaller cost 

than that associated with other suboptimal (but physically realizable) 

gains (see [37]). It i s evident, however, that minimization of (5.37) 

has not succeeded in the design objective, which i s to decrease system 

sensitivity. The system (5.34) with the optimum control (5.36) operates 

open-loop. The same d i f f i c u l t y i s experienced with a general n-th order 

system (see (5.1), (5.4) and (5.5)). The sensitivity problem defined by 

(5.6) and (5.8) i s consequently ill-posed i f unconstrained time-varying 

gains are permitted. From both a computational and an engineering point 

of view the simplest constraint i s that of time-invariant gains. It i s 

interesting to note that this choice was made by Kreindler in his design 

studies which dealt exclusively with linear time-invariant systems and 

t^ = + <» [3]. It seems natural to choose constant gains in this case. 

However, i f t^ i s f i n i t e and/or the system is time-varying, then the 

choice of constant gains i s not obvious. 
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5.6 On-Line Computation of Gains 

From an engineering point of view a very attractive feasible 

on-line adaptive control scheme is to identify a process as a linear 

time-invariant system of the form (5.1) over a f i n i t e observation interval 

and then apply a control of the form (5.3) over a subsequent f i n i t e 

control interval. In such a combined estimation and control scheme i t 

is often important to reduce the system sensitivity to incorrect parameter 

estimates. It i s , however, not generally computationally feasible to 

solve a nonlinear two-point boundary value problem on-line. 

Some form of suboptimal control must be introduced. It i s 

known that the steady-state solution of the matrix Riccati equation 

(take K = S in (5.21)) often results in a good suboptimal control. With 

this in mind let 

P = -My - Ny + e (5.41) 

where M and N are constant matrices. Substituting (5.41) into (5.10) 

and choosing M to be defined by 

MC + CM = -Q - K F K , (5.42) 

which is the steady - state form of (5.21) gives 

e + C e = -(NC + CN)y, e f = (M + N)y f (5.43) 
A 

For reasons of notational convenience the linear formulation I(K^, K, t^) 

is discussed. Substituting (5.41) into (5.11) yields 

F(S - M - N)$ + $ (S - M - N)F = -F$ - $ F (5.44) yy yy ey ye 



The decomposition (5.41) does not uniquely define N and e. Consider the 

possib i l i t y of defining N in terms of observational data so that the 

right hand side of (5.44) has a negligible effect on S. The updated gain, 

as given by (5.24), i s then 

S = K 2 = M + N (5.45) 

It i s seen from (5.43) that e i s "small" when N and e^ are "small". 

Besides the obvious trade-offs involved in keeping N and e^ simultaneously 

"small", there i s also the requirement for on-line computation using 

observational data. The following cost index accounts for the various 

factors which enter into an "optimal" decomposition (5.41): 

Je = ̂  / f (e + C'e)*W. (e + C'e)dt + ̂  e/W.e. (5.46) 
2 o 1 2 r 2 f 

In (5.46) Ŵ  and are positive definite weighting matrices. Sustituting 

(5.43) into (5.46) i t i s seen that Je is an algebraic function of N, 

$ and y^y1^' Setting N = L + L', where L is arbitrary, allows gradient 

matrices to be used to determine the minimum. This yields 

1̂ - = TC1 + CT + W0(M + N)i|) + iK(M + N)W_ = 0 (5.47) oL 2 t r 2 

where 

T = W1S$ + $ SW, 1 yy yy 1 

S = NC + C'N 

<J>f = y fy^ (5.48) 

Equation (5.47) can be solved for N by use of Kronecker products. It i s 

seen that 



(S) = G. (N) v 1 v 

( T ) v = G 2(S) v 

where 

(TC* + CT) = G.(T) v 3 v 

[ G1 G2 G3 + G 4 ] ( N ) v = ~ G 4 ( M ) v ( 5 * 4 9 ) 

G 1 = C , © I + I © C ' =G 3 

2 yy 1 1 yy 

G 4 = <|»f ® W2 + W2 O ^ f (5.50) 

Efficient algorithms are available for evaluating (5.50) [40]. The 

solution of (5.49) for N involves one matrix inversion. The system 

parameters... in. the. C. matrix- are- determined, by the identifier from, ob.-

servational data. The matrices $ and i i , can be found by a forward 
yy f 

integration of (5.6). Alternatively, i t may be possible to use measured 

states or state estimates to evaluate these matrices. The gain compu

tation (5.45) i s then an algebraic problem and replaces the two-point 

boundary value problem. 

On-line use of (5.42), (5.49) and (5.45) to update the gain 

is computationally equivalent to solving these equations by successive 

approximations. The f i r s t iteration must result in an improved sub-

optimum gain. It i s desirable, but no essential, that successive ite r a 

tions result in a convergent suboptimum sequence. 

Since and W2 are arbitrary positive definite weighting 

matrices, i t is not possible to reach general conclusions concerning 

the convergence of successive approximations. It i s easy to show, how-



ever, that given a nominal K, weighting matrices exist which result 

in one-step convergence. Suppose that the optimum gain K* is determined 

by off-line computations. Equation (5.42) can be solved for M. Let 

(see (5.45)) N = K* - M and take Ŵ  = I. Equation (5.47) is a Liapunov 

type equation which can be solved for a positive definite l ^ . With the 

weighting matrices so defined o there is one-step convergence to the 

optimum gain. It should therefore be possible to choose weighting, 

matrices so that the f i r s t iteration results in an improved suboptimum 

gain for small variations about nominal parameter values. If the system 

is time-invariant and i f N is small in the sense that terms involving 

products of the elements of N can be neglected, then i t is seen by sub

stituting (5.45) into (5.42) that M is the steady-state gain. In this 

case (5.42) can be solved for the steady-state gain and N evaluated by 

(5.44). 

5.7 Examples 

To give a non-trivial i l l u s t r a t i o n of the successive approxi

mations as well as the approximation method discussed in Section (5.6) 

t^ should be chosen smaller than the settling time of the open-loop 

response for the nominal gain, and the nominal gain should dif f e r signi

ficantly from the optimum gain. These requirements are satisfied in the 

case of the second order system 

C l = " q X2 + U ' xl(°) = 1 , 0 (5.51) 
x 2 = x x , x 2(0) = -1.0 

t 
J = \ f f (x 2 + 3x 2 + u 2)dt o I o 1 2. 
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by taking q = 1, tf = 2.0, and = (-10, 10). (The system i s an oscillator 

for u = 0 and is unstable for the chosen nominal gain). 

Successive approximations ((5.6), (5.10), (5.23) and (5.24)) 

required eight iterations to converge. No attempt was made to determine 

weighting matrices which would result in rapid convergence for the on-line 

approximation method ((5.42), (5.49) and (5.45)). An arbitrary choice 

= W2 = I was made. Six iterations were required. The results are 

the following: 

1. Successive approximations 

K̂ ** = (-1.06, - .215), J ** = 1.518 

2. On-line approximation method. 

K ** = (-1.713, - .952), J q * * = 1.565 (5.52) 

The minimum cost for unconstrained time-varying gain i s J * = 1.503. 

It i s seen that both methods give very good suboptimal constant gains. 

The increases are only 1% and 4% for case (1) and (2), respectively. 

To i l l u s t r a t e the sensitivity problem consider (5.51) to be 

augmented by (5.5) and take 

J = 5 ftf ( z 2 + z 2)dt + J (5.53) o 1 2 o 

A comparison i s made with Lee's et a l . method which uses a 

time-varying gain and the choice t^ = 10 is made. The following results 

are obtained 

(a) Lee's method [35] (augmented state feedback; t = t ) 

u = -2x± - 1.5x2 + .25z1 - .5z 2, J * = 1.94 (5.54) 



(b) Constant gain (augmented state feedback) 

u = - 6 . 8 x i - 6.6x 2 + 4.66Z;L + 20z 2 > J * = 1.70 (5.55) 

(c) Constant gain (Non-augmented state feedback) 

u = -1.812X - 1.22x2, J = 2.04 (5.56) 

Figures (5.1)-(5.3) i l l u s t r a t e the improvements that result by-

use of constant gain and augmented state feedback. The magnitude of the 

control is smaller, the cost index is smaller and there is a significant 

reduction in trajectory sensitivity. That the design objective of tra

jectory sensitivity reduction is achieved can be seen by comparing the 

sensitivity functions of case (b) and case (c) (case (c) is based on 

(5.51) taking t f = 10). 

The optimality condition (5.17) was checked and gave (-.0002, 

.0004). It should be noted that Lee's method uses a time-varying gain 

which i s a suboptimum solution of an ill-posed sensitivity problem. 

(The gain values given in (5.54) are for t = t ). It is therefore not 

surprising that an optimum constant gain can give significantly better 

results. Note that increasing t^ from 2 to 10 and using sensitivity 

augmentation does not result in an appreciable increase in the cost index 

(compare (5.55) and (5.52). 

The convergence of successive approximation (5.29) was investi

gated by choosing 

K± = (-1.5, -1.0), K 2 = (-0.1, -0.5) (5.57) 

as the i n i t i a l gain. This choice is significantly different from the 

optimum gain (see (5.55)). Only five iterations were required to converge 



to the optimum. 

The following example is used to i l l us t ra te the on- l ine approxi

mation method when i t i s applied to a rea l i s t i c system of moderate complexity. 

Figure (5.4) i l lus t ra tes a block diagram for the feedback control of a 

power generator connected to an in f in i te bus [41]. The matrices in (5.1) are 

A = 

0.0 1.0 0.0 0.0 

-0.676 -.25 25.0 0.0 

0.0 0.0 -2.0 2.0 

0.0 -0.06 0.0 -2.0 

, B = 

0.0 

0.0 

0.0 

2.0 

(5.58) 

The components of the state vector represent the following 

variables; x^ = power angle deviation, x 2 = angular frequency deviation, 

x^ = mechanical power deviation, x̂  = governor position variat ion, u = 

governor posit ion control . The i n i t i a l state is taken to be x^ = (0. , 

3.0, 2.0, 0.0) and in (5.2) and (5.46) the choice Q± = W = W2 = I and 

R = 1 i s made. The choice t^ = 1 sec. i s made to accentuate convergence 

problems, in case they should exist . 

The minimum cost using the optimum time-varying gain S(t) (see 

(5.21)) is J* = 33.215. Successive approximations for the optimum con

stant gain i s i n i t i a l i z e d using K = S(0). The results for the cases 

(a) K = M, (b) K = M + N, are as follows. 

k = 1 2 3 4 

(a) J = 45.404 39.167 36.636 36.121 

(b) J = 38.035 36.267 35.601 34.682 

(a) u* = -.66x± - 1.22x2 -8.44x3 -3.35x4 

(b) u* = -.069x -1.47x2 -10.67x3 -5.47x4 

(5.59) 

(5.60) 



The suboptimal choice K = M in case (a) amounts to taking the 

solution of the i n f i n i t e time case for the constant gain. It is known 

that (5.42) converges quadratically to the optimum gain for the i n f i n i t e 

time case. The suboptimum choice K = M + N in case (b) is based on the 

approximation technique discussed in Section (5.6). It is seen to have 

a quadratic-type convergence and results in a smaller cost index than for 

case (a). In fact, the f i r s t iteration results i n a significant decrease. 

A one-step improvement of this kind could be of practical significance in 

an on-line application. 
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6. OPTIMAL ADAPTIVE CONTROL 

6.1 Introduction 

In this chapter we w i l l discuss one possible strategy for optimal 

adaptive control which is particularly attractive from an engineering 

point of view. The strategy is to identify system parameters at the end 

of an observation interval and then to use the parameters to derive an 

"optimal" control for a subsequent control interval. This chapter develops 

one version of this strategy which is based on the identifiers and optimum 

controls developed in Chapters 2, and 5. 

6.2 Optimum Control During the First and Subsequent Optimization Intervals 

The particular optimization technique to be used during the 

f i r s t optimization interval i s of importance since the i n i t i a l information 

about the system is usually insufficient to derive a good control. If 

parameter estimates are poor then the optimum constant gains may not be 

sufficiently close to the correct values. The problem of convergence can 

become serious during the f i r s t optimization interval. Hence, i t i s re

commended to use the successive approximations method with a step size 

constant w < 1 (see equation (5.27)). 

Figures (6.1-a, b, c, d) show the time intervals associated 

with a recursive observation-optimization strategy which would be suitable 

for the optimal adaptive systems. The system is considered to start 

operating at time t and to terminate i t s operation at time t^. In Figures 

(6.1-a, d) (T) is the length of the sampling interval. The length 

of each observation interval i s (NT) seconds and the start of the i-th 
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observation interval i s denoted by the instant ( t ^ ) . The displacement 

between two successive observation intervals is (rT) seconds (see Fig. 

(6.1-b)) where r i s an integer number. The length of each optimization 

interval i s (T ) seconds and the start of the i-th optimization interval 

is denoted by the instant (t^) (see Fig's (6.1-c, d)). The displacement 

between two successive optimization intervals i s (&T) seconds. The para-, 

meter I is a multiple of r, i.e., I = mr. The value of m need not be 

the same for every two successive optimization intervals. The choice of 

the parameter (m) is based on the rate of variation of certain perfor

mance indices to be subsequently discussed (see subsection(6.3.4)). 

During the i n i t i a l i z a t i o n interval (tQ-NT < t < t ) special input test 

signals can be used to drive the system. Measurements of the input and 

output at successive sampling instants are used to determine i n i t i a l 

estimates of the unknown parameters of the system. The choice of the 

i n i t i a l conditions at the start of the i n i t i a l i z a t i o n interval (t = t -NT) 
o 

is completely arbitrary. At the end of each observation interval new 

estimates of the plant parameters are computed. At the beginning of each 

optimization interval new estimates of the "optimum" constant gains are 

made using the latest estimates of the plant unknown parameters. These 

new gains are used for the coming control interval of IT seconds. 

6.3 Examples 

In this section a linear, continuous system with time-invariant 

parameters i s considered. Some of the system parameters are unknown 

and an optimal adaptive control i s computed for the system. The recursive 

observation-optimization strategy described in the previous section i s 

followed. The identification of the unknown parameters i s performed using 



the d i g i t a l identifier developed in Chapter 2. The number of augmented 

sets of states for Examples 1 and 2 are one and two, respectively. The 

test inputs used during the i n i t i a l i z a t i o n interval are taken to be step 

functions with unity magnitude, in both examples. The i n i t i a l conditions 

at the start of the i n i t i a l i z a t i o n interval are taken to be identically 

zero i n both Example 1 and 2. 

It should be noted that use of a d i g i t a l identifier results in 

quantization noise. Consequently, even though the examples treat deter

ministic cases, the system models are perturbed by quantization noise. 

This noise also affects the value of the optimum constant feedback gains 

which are computed using the identified parameters. It should be further 

noted that the optimum constant gains depend on the system state at the 

start of an optimization interval. The examples i l l u s t r a t e convergence 

of" the proposed" adaptive"strategy in the presence of quantization noise. 

6.3.2 Example 1 

The system considered in this example is represented by the 

dynamic model 

X l = a l x 2 + U 

x 2 =- a^x^ (6-. 1) 

where the nominal values for a^ and a^ are -1.0 and 1.0, respectively. 

The i n i t i a l conditions are x^CO) = ^ ( 0 ) = 1.0. The essential parameters 

of the recursive observation-optimization strategy (see Figs. (6.1-a, 

d)) are taken to be: 

T = 0.2, t, = 10., t = 0., r = I = 2, N = 10 
f o 

T = NT = 2.0 (6.2) 



It i s required to compute the optimum constant feedback gains 

and such that the performance index 

2+t? 
J. = \ f 1 (x 2 + x 2 + u 2)dt (6.3) 

l L • C 1 L 
I 

is minimized using the new estimates of a^ and a^ which are obtained at 

the end of the i - th observation interval. The optimum constant gains 

are computed using the successive approximations method developed in 

Section (5.2) with w = 1. The optimum solution i s assumed to be obtained 

when the inequality 

' J i " J i _ 1 | = 1 0 " 5 ' ( 6 , 4 ) 

is satisfied, where J. is the value of J. at the end of the k-th iteration. 
l l 

The time t^ (see Fig.'s (6.1-c, d)) denotes the beginning of the i-th, 

optimization interval. During the f i r s t optimization interval the i n i t i a l 

guess for the feedback gains and is taken to be = Y.^ = -10. 

For the subsequent optimization intervals, the i n i t i a l guess for the i-th 

optimization interval i s taken to be the optimum values obtained for the 

( i - l ) - t h optimization interval. The stopping rule (6.4) was satisfied 

after six iterations for the f i r s t optimization interval. No more than 

two iterations were required to satisfy the stopping rule given by (6^4) 

for the subsequent optimization intervals. The performance index of the 

optimal adaptive system i s taken to be 

25 
J* = E AJ* (6.5) 

• a i=l 1 

whe re the optimum value of J^ (see (6.3)) is denoted by J* and AJ* is 
i i 



the value of J * for an integration interval t^ < t < t^ + 0.4. Since 

the optimum constant gains computed at the start of the i-th optimization 

interval are only used for a period of (JIT) seconds starting from the 
c 

instant t., then J * as given by (6.5) is the total operation cost. For 
X cL 

the sake of comparison the optimum value of the performance index 

J = \ f (x2. + xl + u 2)dt (6.6) o I o 1 l 

i s computed using (6.1) with a^ and a^ being equal to their respective 

nominal values and the control feedback gains are taken to be the optimal 

time-varying gains. The optimum value of J q is found to be 2.046 while 

the value of J * (see (6.5)) i s equal to 2.202, i.e., the increase in the 

performance index value does not exceed 8%. Figures (6.2) and (6.3) show 

that the identification errors do not exceed 5%. 

6.3.3 Example 2 

The system considered in this example i s represented by the 

dynamical model 

x^ = a^c^ + 2u 

x 2 = a 2x 3 + 2u 

x 3 = a 3x 2 - u (6.7) 

where the nominal values for a^, a 2, and a 3 are -1.0, 2.0, and -2.0, 

respectively. The i n i t i a l conditions are x^(0) = x 2(0) = x^(0) = 1.0. 

The essential parameters of the recursive observation-optimization strategy 

are as given by (6.2). It i s required to compute the optimum constant 

gainsK , K 2 and K 3 such that the performance index 



108 

2+t° 
J . = | J 1 (x 2

 + x 2
 + 4 + u 2)dt (6.8) 

i 

i s minimized during the i-th optimization interval. The optimum solution 

is assumed to be obtained when the inequality (6.4) is satisfied. 

In this example, using the successive approximations method 

with w = 1 (see equation (5.27)) during the f i r s t optimization interval 

results in a diverging sequence of iterations. Thus w i s taken to be 0.1 

and the i n i t i a l guess for the feedback gains are taken to be = -1, 

= -2, and = -3. Twenty iterations are required to satisfy the stopping 

rule (see (6.4)). For the subsequent optimization intervals, the i n i t i a l 

guess for the i-th optimization interval i s taken to be the optimum 

values obtained for the ( i - l ) - t h optimization interval. No more than 

two iterations, are required to satisfy. (6.4) for the subsequent optimi

zation intervals and w i s taken equal to unity. For the sake of comparison 

the optimum value of the performance index 

1 10 2 2 2 2 J = i / 1 U (xf + x^ + x^ + u )dt (6.9) o 2 o 1 2 3 « 

is computed using (6.7) with a^, a^, and a^ being equal to their respective 

nominal values and the control feedback gains are time-varying. The 

optimum value, J*. of J was found to be 0.655 while the value of J* ^ ' o o a 

(see (6.5)) was equal to 0.705, that i s , the increase in the performance 

index value does not exceed 7.5%. Figures (6.6), (6.7), and (6.8) show 

the identification results for the unknown parameters a^, a^, and a^, 

respectively. The maximum identification errors do not exceed 5%. 

The rapid rate of identification i s evident in both this example 

and the previous one since a l l the unknown parameters have been identified 
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to a good degree of accuracy after only one observation interval . 

In Figures (6.4), and (6.5), the piece-wise constant curves 

which are drawn as sol id l ines represent the optimum constant gain K* 

and K*, respectively. The parameters a^, and (see (6.1)) are updated 

at the end of each observation interval and a new estimate of the feed

back gains is made at the start of the following optimization interval . 

Since the optimum values of the constant feedback gains depend on the 

plant state at the start of the optimization interval , these optimum 

values are not constant during the whole operation period (see Figure 

(6.1-a)) . The curves drawn as dashed l ines in Figures (6.4), and (6.5) 

represent the optimum time-varying feedback gains K̂ , and respectively. 

These gains minimize the performance index given by equation (6.6) subject 

to the dynamical constraints given by (6.1) with a^ and a^ being equal to 

their respective nominal values. 

Figures (6.9), (6.10), and (6.11) show the optimum feedback gains 

K*, K* and K*, respectively. The curves drawn as sol id l ines represent 

the optimum constant gains. The parameters a^, a^, and a^ (see (6.7)) are 

updated at the end of each observation interval and a new estimate of the 

feedback gains i s made at the start of the following optimization interval . 

The optimum constant gains are not constant along the whole operation 

period but unlike the situation in Example 1 the feedback gains for 

Example 2 (see Figures (6.9), (6.10), (6.11)) change less frequently. 

The curves draxm as dashed l ines in Figures (6.9), (6.10), and (6.11) 

represent the optimum time-varying feedback gains K̂ , K̂ , and respectively. 

These gains minimize the performance index given by equation (6.9) subject 

to the dynamical constraints given by (6.7) with a^, a^, and a^ being equal 

to their respective nominal values. 



110 

The recursive observation-optimization strategy described in 

Section (6.2) is characterized by i t s f l e x i b i l i t y . This f l e x i b i l i t y is 

due to the fact that i t i s possible to adjust the displacement distance 

(£T) between the successive optimization intervals (see Figures (6.1-b, 

c, d)) according to the behaviour of the system under consideration. The 

shortest time interval during which the gains remain constant is equal to 

(2rT) in Example 1 (see Figures (6.4), (6.5)) and equal to (4rT) in 

Example 2 (see Figures (6.9), (6.10), (6.11)). Hence, using I = 2r and 

4r for Examples 1 and 2, respectively, results in a satisfactory performance 

with less computational e f for t . The value of % used in both Example 1 

and 2 was % = r. 

In the following discussion two performance indices w i l l be 

discussed. These performance indices can be used to decide whether or 

not i t is necessary to update the identif ied parameters and/or the con

stant feedback gains at the end of each observation interval . 

6.3.4 Discussion 

The following performance index can be used to reach decisions 

concerning the necessity for updating model parameters: 

NT 

1 2 o p m p m 

In Eqn. (6.10) Q is a posit ive definite weighting matrix, x p 

i s the measured plant state during the latest observation interva l , and 

x i s the corresponding model state during the same interval using the m 

latest ident i f ied values of the plant unknown parameters. 



The following performance index can be used together with 

given by (6.10) to reach decisions concerning the necessity for updating 

feedback gains: 

x'(t?)x (t?) - x * ( t C ..)x (t? ) 
j = P 1 P 1 P X- X P ^ (6.11) 

In Eqn. (6.11), x (t^) I s t n e plant state at the start of the 

i-th optimization interval (the present interval), and x (t^- -j) is the 

plant state at the start of the ( i - l ) - t h optimization interval. 

The assignment of values for the upper bounds of and J^y 

respectively, would depend upon the degree of familiarity with the par t i 

cular system under investigation (as can be seen from Figures (6.4), 

(6.5), (6.9), (6.10), and (6.11)). Taking IT = 2rT would be a reasonable 

choice for the system considered in Example 1. For Example 2 taking 

£T = 4rT would be a reasonable choice. Parameter or gain updating would 

be performed whenever or exceeded their respective bounds. 
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7. CONCLUSIONS 

In Chapter 2 the generalized equation error has been shown to 

be applicable to a mean-square method of rapid d i g i t a l estimation of 

linear system parameters. Due to the imposed structure of the estimator 

the manipulation of high order matrices is avoided. The matrices used 

by the estimator have a block diagonal structure. Consequently only the 

lower order matrix within a block need be considered. 

It has been shown that the matrix can be recursively evaluated 

and that matrix inversions are not required. Examples i l l u s t r a t e the 

effectiveness of the estimator for a variety of cases dealing with quanti

zation noise as well as measurements noise. 

In Chapter 3 a simple algorithm for computing the generalized 

inverse of a matrix has been developed. The advantage of this algorithm 

over other methods is that i t eliminates the need for Gram-Schmidt ortho

gonalization and i t s associated (in the interest of accuracy) reorthogon-

alization as new vectors are introduced. Inherent in the method i s a 

very simple check on the linear dependence of the different matrix columns. 

In Chapter 4 a two-stage method for estimating, time-invariant 

and time-varying parameters in linear systems has been developed. During 

the second stage, the time-varying parameters are considered as unknown 

control inputs to a linear subsystem of known dynamics. This method for 

estimating time-varying parameters is computationally simple in that the 

estimates are obtained by the solution of a linear two-point boundary-

value problem. Standard methods of solution result in one-step convergence 

A method of stage and control augmentation in conjunction with d i s c r e t i -



zation and mean-square error minimization has been shown to be effective 

for the f i r s t stage of estimation. This approach reduces undesirable 

coupling between the two-stages which could result in convergence problems. 

Numerous examples i l l u s t r a t e the effectiveness of the method. 

In Chapter 5 method of successive approximations for solving 

the two point boundary-value problem for optimum constant gain matrices 

has been developed. 

The method i s shown to be computationally equivalent to a de

flected gradient method. Convergence can always be achieved by choice 

of a scalar step-size parameter. Rapid convergence is important in off

line design studies when the effect of various weighting matrices on 

optimal control performance i s investigated. A close relationship be

tween successive approximations and the solution technique for the linear 

time invariant case with i n f i n i t e t^ is exploited so that in many cases 

rapid convergence is achieved. 

The problem of trajectory sensitivity reduction by augmented 

state feedback is shown to be well-posed i f gain matrices are constrained 

to be constant. The problem of on-line implementation of a constant 

gain matrix whose elements depend on i n i t i a l conditions i s discussed. 

The simplest approach is to take a weighted average of the computed 

optimum gain matrices. This results in an average suboptimal linear 

feedback control law. A second approach is to introduce nonlinear feed

back control [ 3 9 ] . 

An on-line approximate method is developed which appears 

suitable for systems whose parameters must be identified. The two point 

boundary-value problem i s replaced by an algebraic problem, the solution 

of which gives a suboptimal constant gain. It does not appear feasible 



to give a formal proof of convergence or a proof of improved response. 

By proper choice of weighting matrices, however, i t does seem possible 

to achieve an improvement with the f i r s t iteration. Examples and para

meter values were chosen to deliberately accentuate situations where 

convergence problems could arise. No d i f f i c u l t i e s , however, were en

countered and rapid convergence was achieved in a l l cases investigated. 

A natural development of the present research i s to augment 

the sensitivity vector with the sensitivity functions with respect to 

the i n i t i a l conditions. This w i l l reduce the sensitivity of the optimum 

constant gains with respect to the state of the plant at the start of 

the optimization interval. Accordingly, the optimum constant gains w i l l 

be updated less frequently. 

Further research is needed concerning the "best" choice of 

the constrained structure of the feedback gains. One possibility has 

been investigated in this thesis where the gains are taken to be time-

invariant. A more general choice i s to use specific time-varying gains. 

Let the feedback gains be constrained by the specific structure K(t) = 

FG(t), where the time-varying matrix G(t) is to be specified before 

starting the optimization process. The time-invariant gain matrix F i s 

to be computed according to the algorithm developed in Chapter 5. The 

problem i s how to choose G(t) systematically such that the resulting 

time-varying gain matrix K(t) is "optimum". A specific time-varying 

gain could result in better results concerning sensitivity function 

reduction. 



APPENDIX I 

INITIAL CONDITIONS LINEAR LEAST-SQUARES ESTIMATOR 

The values of the optimum constant feedback gains as computed 

by the algorithm developed in Chapter 5 depend on the plant state at the 

start of the optimization interval. Accordingly, a good estimate of the 

plant i n i t i a l conditions is required. In a noise free situation, i t may 

be possible to obtain the i n i t i a l conditions by measuring the state of 

the plant. However, i f the measurements of the plant state are conta

minated by noise then an i n i t i a l conditions estimator i s required. One 

possible choice of such an estimator is the linear least-squares one. 

This estimator does not require a p r i o r i knowledge about the noise 

st a t i s t i c s and is characterized by i t s simplicity. 

Considering-the- i-ttv optimization interval (see Figures- 6vl-a, 

b, c, d), the instant (t^) indicates the start of this interval as well 

as the completion of the i-th observation interval. 
c c Let the plant be represented (for t^ - NT < t < t^) by 

x = A ±x + B ± u (1.1) 

where A^, and are the identified values of the plant parameteric 

matrices A, and B, respectively. These values are obtained according to 

the measurements taken during the i~th observation interval. The second 

term on the right hand side of equation (1.1) can be expressed as 

B.u = -F.K j X (1.2) 
1 1 i 

where the definition of the matrix F. is as given in Chapter 5 (F = BR "*"B') 



and represent the piecewise constant optimum feedback gain matrix 

being used during the i-th observation interval. 

Substituting (1.2) into (1.1) yields 

x = (A. - F.K.)x i 1 1 
(1.3) 

The transition matrix i^(t^, x) of the dynamic system represented by (1.3) 

can be obtained by solving the following matrix differential equation 

<L = -(A. - F .K. ) ' ii; iKt?, t?) = I 
r \ x l l T T 1 1 

(1.4) 

at 

Let X j , represent the noisy measurements of the plant-state 
C /s 

t = t^ - KT, and let x^ be an estimate of x^ defined by 

*K = *K x ( t i > (1.5) 

where x(t^) is the estimate of x(t^) which minimizes the quadratic error 

function 

e = - r (x - x ) ' (x - x ) 2 a a a a (1.6) 

where 

* K - * < ^ ' i " 1 ^ X a = (1.7) 

The state vector x is given by 
a b J 

x = ij, x(t?) a a l (1.8) 

where 

N 

(1.9) 



The value of x(t^) which minimizes the error function e given by (1.6) 

i s known to be 

x(t C) = W fJ ' V x , (1.10) 
1 a a a a 

Equation (I.10) gives the best estimate of the plant state at 

t = t^ which i s the i n i t i a l condition for the i-th optimization interval 

(the present interval). These i n i t i a l conditions are required in order 

to compute new values for the optimum constant feedback gains. 



APPENDIX II 

ANALYTICAL SOLUTION FOR THE LIAPUNOV MATRIX EQUATION [42] 

This algorithm i s characterized by i t s simplicity since no 

matrix inversion i s needed and the solution i s obtained in a closed form 

and not in a numerical or iterative way. 

Consider the matrix equation 

S'X + XS = -Q (II.1) 

where S, X and Q are a l l of dimension (n x n) 

Let 

A k k - i S, = Z X.S (II.2) 
k i=0 1 

where the parameters X^(i = 0, n-l) are the coefficients of the 

chracteristic equation of the matrix S. These parameters can be computed 

easily using Faddeev's method. 

X. = - ~ Tr[SS. . ] , S. = SS. . + X.I, i = 1, n 
1 x i - l ' l i - l x ' ' ' 

X Q = 1 

S Q = I, S = 0 (II.3) 

The last relation is used as a check. 

We may write down the solution to equation (II.1) as 

1 2 n " 2 k k-l X = j j - i E A (S, -S) E s ; Q ( - l ) k *S (II.4) 
(-l)nR(S, -S) k=0 K 1 £=0 % k % 
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where: 

R(S, -S) = ( - l ) n 2 n T°- H 2(S) 
n 

(II.5) 

H n(S) = A, A 1 o 

A A A0 Ai A 3 2 1 o 

0 

0 

n (II.6) 

The determinant H (S) is known as the Hurwiz determinant, 

r o AK+1(S, - S ) 
k odd 

_ H (S) 
l» 2 n —7 G, (S) k even 

A k n 
(II.7) 

where Ĝ , for k even, is the (- + l ) t h . Cofactor of the f i r s t column 

of H (S). n 
Hence equation (II,. 4) can be written in a simplified form as 

X = 1 n _ 1 2 1 I 
E G2±(S) E (-iyS\QSn4 2*^ (S) i=0 n £,=0 2i-£ (II.8) 

From (II.8) i t is clear that the condition for a unique solution i s H (S) ^ 0 

which- is equivalent, to. the condition, that, the dynamical system. (X = SX) 

is asymptotically stable. 

For the non-trivial case where the matrix Q is symmetrical, 

the term 

2 1 I 
E (-D S;QS 
A=O 

(II.9) 
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w i l l be symmetrical and since G„.(S) and H (S) are scalers, X i s also 
J - 2 i n 

symmetrical and we need only to solve n(n + l)/2 entries of X instead 

2 
of n . Thus for this case we have 

X U = - r T - i VG (S )Z <-!>*<SjQS ) ' (11.10) 
1 1 2N H (S) 1=0 L Si=0 % l X % U 

where i s the upper triangle of X and (s1pQS2i-X?]J i s t r i e u P P e r triangle 

for (SlQS„. „•) for the case i = £, while for i ̂  I i t is a triangular 

matrix with i t s main diagonal equal to twice the main diagonal of 

(SlQS ) and every element ( i , j) is equal to the sum of the corresponding 

element ( i , j) in the upper triangle of ( S£Q s
2 i_ £) P l u s the ( i + 1, j - 1) 

element in the lower triangle. 
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APPENDIX III 

The trace properties and gradient matrices used in deriving 

the gradient conditions are the following [43], 

Tr[AB] = Tr[BA], Tr[AB f] = Tr[BA 1] 

Tr[AKB] = A'B' 

Tr[AK'B] = BA 

Tr[AKBK] = A'K'B' + B'K'A' 
d K 

Tr[AK'BK'] = BK'A + AK'B 
dK. 

^ TrfAKBK'] = A'KB' + AKB (III.l) 
dK 

The following properties of Kronecker matrix products have 

been u t i l i z e d in the algebraic manipulation of matrix equations [44], 

(AB) v = ( 1 0 A) (B) v = (B' © I) (A) v 

(A ® B) (C © D) = (AC) © (BD) 

(A + B) ® (C + D) = A ® C + A ® D + B ® C + B ® D (III. 2) 

If Aj,, i = 1, .. ., n, and u , j = 1, n, are the eigenvalues 

of A and B, respectively, then u .̂ are the eigenvalues of A@ B. 

Because of the partitioning (5.7) of F, the eigenvalues of F 

can be found from the eigenvalues of F. Consider the following eigenvalue 

equations: 



Fz. = X.z. 
x x x 

(111,3) 
$ V. = U .V. 
yy J i i 

It i s seen from the defining equations for F and $ that (see (5.5) and 

(5.12)) 

(B'z.)'R 1 (B'z.) = X iz i' z. = 0 (III.4) 

2 
/ (v.'y) dt = u.v.'v. = 0 
o 1 111 

The matrix W is therefore positive semi-definite. Since ("ĵ ) = W(S - K)^ 

i t follows that the equality sign in (5.28) holds only when the gradient 

condition is satisfied. 
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APPENDIX IV 

The confidence interval length deduced in Subsection(2.7.3) 

(see (2.101)) is based on the assumptions that the random vector (c - c) 

is normally distributed and that the random vector V is s t a t i s t i c a l l y 
r. 

independent of (c - c) and i s normally distributed. Also the random 
2 

variable V'V i s assumed to be distributed as % . 

The above mentioned assumptions can only be ju s t i f i e d i f the 

matrix 6̂  (see (2.11)) is deterministic. In the following we w i l l prove 

the above assumptions for the case where 6̂  i s a deterministic quantity: 

Using (2.12) and (2.38) yields 

c - c = P M0'Z M - c N N N 

= PN 6N ( 6N C + N ) " C 

= PN6^N (IV.1) 

where, for convenience, the random vector N is taken to be normally 

distributed with E[N] = 0 and E[N N'] =1. It follows directly from 

(IV.1) that (c - c) i s a normally distributed random vector. 

Using (2.63) and(EV.l) yields . 

E[(c - c ) V ] = E[PN0^NN'(6NPN6^ - I)] 

= PN 6N ( 9N PN eN ~ I } 

=0 (IV.2) 

Thus the random vectors (c - c) and V are s t a t i s t i c a l l y inde

pendent. The vector V is normally distributed as can directly be seen 

from (2.63) where 
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V = ( 0N PN N " I ) S = ( WN " ^ ( 2 ' 6 3 ) 

Since 8JJ and P^ are deterministic matrices then V is normally distributed 

as N . 

Using (2.63), (2.64), and (2.65) yields 

W = N'(WN - D*(WN - I)N 

= N'(WN - I) 2N 

= N r(I - WN)N (IV.3) 

Considering the orthogonal matrix <J>̂  (see (2.66)), equation 

(IV.3) can be written as 

V'V = N$ $'(I - W )$ $'N 
V V V N V V N N 

N'$N(I - D N)^N 

= EyJ (IV.4) 

where y. is a linear combination of a l l the elements of the random vector 

(the matrix (I - D^) is a diagonal one with the main diagonal 

elements being equal to 1 or 0 (see (2.69))). Thus the random vector y^ 

is distributed as the vector $' N. The vector $'N is distributed as 
N N 

the random vector N which i s a direct result of Fisher's Theorem [17]. 

Accordingly, the random vector i s normally distributed like N and 
2 2 Ey^ i s distributed as % . The above proofs are based on a deterministic 

0 ^ . If 0 ^ i s a random variable, i t i s no longer possible to prove that 

the random vectors (c - c) and V are normally distributed along with the 

assumption that VrV i s distributed i s % . There appears to be no mathe

matically tractable approach to derive confidence intervals in the case 
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where 0^ contains quantization noise. To retain the basic simplicity of 

Equation (2.101) the following procedure i s suggested. In equations 

(IV.1 - 4 ) , i t i s possible to replace Z N(k) by Z N(k) where ^ N(k) is 

obtained by use of the best estimate c at stage k, that i s by use of 

(see (2.10)). 

z N = ? N ; dv.5) 

The "smoothed" values 0^ of 0^ are used in equations (IV.1-4). Since 

the randomness in 6^ tends to be eliminated, i t seems ju s t i f i a b l e to 

consider 0^ as a deterministic quantity. 



APPENDIX V 

The gradient condition as given by equation (5.11) can be 

derived as follows: 

Let H denotes the Hamiltonian, then using (5.6) and (5.9) yields 

H = p'(A - F(K + K'))y - | y » ( Q + (K + K')F(K + K'))y (V.l) 

= p'Ay - p'FKy - p'FK'y - | y'Qy - | y'KFKy 

- j y'KFK'y - -| y'K'FKy - j y 'K'FK'y 

Using (III . l) the Hamiltonian can be written as 

H = p'Ay - TrfFKyp'] - Tr[FK'yp'] - ~ y'Qy - |- Tr[yy'KFK] 

- | Tr[yy'KFK'] - | Tr[FKyy'K'] - |- Tr[yy'K'FK'] (V.2) 

The following gradient matrix operations are required 

g | Tr[FKyp'] = F(py') 

^ Tr[FK'yp'] = (yp')F 

" \ ~k T r t y y ' K f K ] = " f ( yy ' )K 'F - \ FK' (yy') 

- \ g| Tr[yy'KFK'] = -(yy')KF 

- T r [FKyy 'K ' ] = -FK(yy') ( v . 3 ) 

" \ a! T r [ y y ' K ' f K ' ] = - \ ^ ' ( y y ' ) - f (yy ' )K 'F 

The above operations allow ~ to be written as 
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where 

3H 1 1 

— = - F(py») - (yp')p - |( y y«) K'F - -| FK»(yy*) - (yy')KF 

- FK(yy') - | FK'(yy') - | (yy')K'F 

= - F(py') - (yp')F - (yy*)K'F - FK'(yy') - (yy')KF 

- FK(yy«) 

= - F(py') - (yp*)F - (yy')(K + K')F - F(K + K ,)(yy') 

= - F(py') - (yp')F - (yy')KF - FK(yy*) (V.4) 

K = K + K? 

From (V.4) and for time-invariant F and K equation (V.4) gives 

t a H _ t t t t 
£ - 9K = F / py'dt + / yp'dt F + / yy'dt K F + F K / yy'dt = 0 

0 0 0 o 

(V.5) 

Using the definition 

A t 
& = / yv'dt y v J 

O 

Equation (V.5) can be written as 

t gxr _ _ _ 

/ - -r^r = F<£> + $ F + $ KF + FK $ =0 (V.6) 
q 9K py yp yy yy 

This completes the proof of equation (5.11). 



132 

REFERENCES 

1. P. V. Kokotovic', J. B. Cruz, Jr., J. E. Heller and P. Sannuti, 
"Synthesis of Optimally Sensitive Systems", Proc. I.E.E.E., Vol. 56, 
No. 8, August, 1968. 

2. Lion, P., "Rapid Identification of Linear and Nonlinear Systems", 
Joint Automatic Control Conference, August, 1966, pp. 605-615. 

3. Pazde ra, J., and Pottinger, H., "Linear System Identification Via 
Liapunov Design Techniques", Joint Automatic Control Conference, 
August,1969, pp. 795-801. 

4. Rose, R., and Lona, G., "An Approximate Steepest Descent Method for 
Parameter Identification", Joint Automatic Control Conference, 
August, 1969, pp. 483-487. 

5. Kishi, F. H., "On-Line Computer Control Techniques and Their Appli
cation to Re-entry Aerospace Vehicle Control", C. T. Leondes, ed. 
Advances in Control Systems Theory arid Applications, Vol. 1, 
Academic Press, New York, 1964. 

6. C. Price, "The Matrix Pseudo-Inverse and Minimal Variance Estimates',' 
SIAM Rev. 6, 1964, pp. 115-120. 

7. L. D. Pyle, "Generalized Inverse Computations Using the Gradient 
Projection Method", Journal of ACM, 11, 1964, pp. 422-428. 

8. B. Rust, W. R. Burrus, C. Schneeberger, "A Simple Algorithm for 
Computing the Generalized Inverse of a Matrix", Journal of ACM, 9, 
1966, pp. 381-387. 

9. Sage, A., and Melsa, J., Systems Identification, Academic Press, 
1971. 

10. H. C. Lessing and D. F. Crane, "The Use of Integral Transforms in 
the Estimation of Time Variable Parameters", NASA Techn. Note, 
NASA TN D-5194, May 1969. 

11. Sage, A. P., Optimum Systems Control, Prentice-Hall, Inc., 1968, 
pp. 507. 

12. Mayne, D. 0., "Optimal Non-Stationary Estimation of the Parameters 
of a Linear System with Gaussian Inputs", Journal of Electronics  
and Control, Vol. 14, 1963, pp. 101--112. 

13. Lee, R. C. K., Optimal Estimation and Control, M.I.T. Press, 
Cambridge, Mass., 1964. 

14. Lee, R. C. K., and Ho, Y. C , "Identification of Linear Dynamic 
Systems", Information arid Control, Vol. 8, No. 1, February, 1965. 



15. Leathrum, J., "On-Line Recursive Estimation", Joint Automatic 
Control Conference, August, 1969, pp. 173-178. 

16. Bakke, R., "Case Study in the Paper-Making Industry", Case Studies 
in System Control, 1968, pp. 113-192. 

17. Y. V. Linnik, Method of Least Squares and the Principles of the  
Theory of Observation, Pergamon, New York, 1961. 

18. M. Aoki, Optimization of Stochastic Systems, Academic Press, 1967, 
pp. 318-324. 

19. B. J. Prochaska, "Applications of Generalized Inverses to E s t i 
mation i n a Dynamic System", JACC, 1971, pp. 820-829. 

20. D. Luenberger, Optimization by Vector Space Methods 9 John Wiley 
and Sons, 1969. 

21. J. S. Meditch, "A Class of Suboptimal Linear Controls", Trans, on 
Automatic Control, July 1966, pp. 433-439. 

22. A. Ben-Israel, A. Charnes, "Contributions to the Theory of Genera
lized Inverses", SIAM Rev. 11, 1963, pp. 667-699. 

23. R. Penrose, "A Generalized Inverse for Matrices", Proc. Cambridge 
Philosophical Society, 51, 1955, pp. 406-413. 

24. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear  
Algebra, W. H. Freeman and Co., 1963, 

25. D. L. Kleinman and M. Athans, "The Design of Suboptimal Linear Time-
varying Systems", I.E.E.E. Trans., Automatic Control, Vol. AC-13, 
pp. 150-159, April 1968. 

26. D. L. Kleinman, T. Fortmann and M. Athans, "On the Design of Linear 
Systems with Piecewise Constant Feedback Gains", I.E.E.E. Trans., 
Automatic Control, Vol. AC-13, pp. 354-361, August 1968. 

27. W. Levine and M. Athans, "On the Determination of the Optimal 
Constant. Output. Feedback..Gains for Linear Multivar.iab.le.. Systems", 
I.E.E.E. Trans., Automatic Control, Vol. AC-15, pp. 44-48, February 
1970. 

28. M. M. Newmann, "Specific. Optimal Control of the Linear Regulator 
Using a Dynamical Controller Based on the Minimal-Order Luenberger 
Observer", Intern. J. Control, Vol. 12, pp. 33-48, No. 1, 1970. 

29. R. L. Kosut, "Suboptimal Control of Linear Time-Invariant Systems 
Subject to Control Structure Constraints", Proc. JACC, pp. 820-828, 
1970. 

30. T. Hendericks and H. D'angelo, "An Optimal Fixed Control Structure 
Design with Minimal Sensitivity for a Large Electric Booster", Proc. 
of the 5th Annual Allerton Conference, pp. 142-148, 1967. 

http://Multivar.iab.le


134 

31. E. Kreindler, "On Minimization of the Trajectory Sensitivity", 
Intern. J. Control, Vol. 8, No. 1, pp. 89-96, 1968. 

32. E. Kreindler, "Synthesis of Flight Control Systems Subject to 
Vehicle Parameters Variations", Grumman Aircraft Engg. Corp., 
Bethpage, N. Y., Techn. Rept. AFFDL-TR-66-209, April 1967. 

33. E. Kreindler, "Formulation of the Minimum Trajectory Sensitivity 
Problems", I.E.E.E. Trans., Automatic Control, Vol. AC-14, pp. 
206-207, April 1969. 

34. J. F. Cassidy Jr. and I. Lee, "On the Optimal Feedback Control of a 
Large Launch Vehicle to Reduce Trajectory Sensitivity", Proc. of 
1967 JACC, pp. 587-595. 

35. H. J. Dougherty, I. Lee and P. M. DeRusso, "Synthesis of Optimal 
Feedback Control Systems Subject to Parameter Variations", 1967 
Proc. JACC, pp. .125-133. 

36. P. Sannuti and J. B. Cruz Jr., "A Note on Trajectory Sensitivity of 
Optimal Control Systems", I.E.E.E. Trans., Automatic Control, Vol. 
AC-13, pp. 111-112, February 1968. 

37. A. J. Bradt, "Sensitivity Functions in the Design of Optimal 
Controllers", I.E.E.E. Trans., Automatic Control, Vol. AC-13, 
pp. 110-111, February 1968. 

38. D. L. Kleinman, "On an Iterative Technique for Riccati Equation 
Computations", I.E.E.E. Trans., Automatic Control, Vol. AC-13, . 
pp. 114-115, February 1968. 

39. A. G. Longmuir and E. V. Bohn, "The Synthesis of Suboptimal Feed
back Control Laws", I.E.E.E. Trans., Automatic Control, Vol. AC-12, 
pp. 755-758, December 1967. 

40. C. F. Chen and L. S. Shiek, "A Note on Expanding PA + A'P = -Q", 
I.E.E.E. Trans., Automatic Control, Vol. AC-13, pp. 122-123, 
February 1968. 

41. I i . K. Kirchmayer, Economic Control of Interconnected Systems , 
New York, John Wiley and Sons, 1959. 

42. P. Mueller, "Solution of the Matrix Equations AX + XB = -Q and 
S'X + XS = -Q*", SIAM J. Appl. Math., Vol. 18, No. 3 pp. 682-687, 
May 1970. 

43. M. Athans and F. C. Schweppe, "Gradient Matrices and Matrix 
Calculations", M.I.T. Lincolin Lab., Lexington Mass. Techn. Note 
1965-53, November 1965. 

44. H. Neudecker, "A Note on Kronecker Matrix Products and Matrix 
Equation Systems", SIAM J. Appl. Math., Vol. 17, No. 3, pp. 
603-606, May 1969. 


