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ABSTRACT

This thesis is concernea with the problem of identifying and
controlling linear continuous sysfems. Algorithms which are feasible
for real-time digital computations are developed for the design of both
the controller and the identifier.

)

The generalized equation error 1s shown to be applicable to a

mean—squaré method of rapid digital estimation ofilinear systeﬁ para-
meters. Due to the imposed structure of the estimator the manipulation
of high order matrices is avoided. Examples illustrate the effective-
ness of the estimator for a variety of cases dealing with quantization
noise as well as measurements noise; In some cases, this digital identi-
. fier requires the computation of the generalized inverse of a matrix.
A simple algorithm for computing the generalized inverse of 2 matrix is
developed. This algorithm eliminates the need for Gram-Schmidt ortho-
gonalization and its associated (in the interest of accuracy) reortho-
gonalization as new vectors are introduced.

A two-stage estimator is developed for estimating time-invariant
and time-varying parameters in linear systems. During the second stage,
the time~varying parameters are considered as unknown control inputs to
a linear subsystem of known dynamics. For the first stage, the digital
identifier is shown to be effective in identifying the time-invariant

_parameters. Numeroué examples illustrate the effectiveness of the method.

To design a feedback controller a method of successive approxi-
mations for solving the.two point boundary value problem for optimum
constant gain matrices is developed. The method is shown to be compta-

tionally equivalent to a deflected gradient method. Convergence can
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always be achieved by choice of a scalar step-size parameter. An on-

line approximate method is developed which appears‘suitable for systems
whose parameters must be identified. The two point boundary value problem
is replaced by aﬁ algebraic problem, the solution of which gives a sub-
optimal constant gains. The problem of trajectory sensitivity reduction
by augmented state féedback is shown to be well-~posed if constrained
structure of the gain matrices is taken. The simple structure of constant
gain matrices is considered.

Based on the developed identifier and controller, one possible
strategy for optimal adaptive control which is particularly attractive
from an engineering point of view is studied. The strategy is to
identify system parameters at the end of an observation interval and
then to use the parameters to derive an "optimal" control for a sub-
sequent control interval. Two exampleés are considered in order to

illustrate the effectiveness of this strategy.
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1. INTRODUCTION

-An oétimal adaptive control is a control that will cause a plant
to operate in an "optimum" manner without a Priori knowledge about the
constraints on either the magnitude or the rate of variation of the .
plant uncertainties. These uncertainties may be in the plant parameters,
initial conditions, and/or noisy measurements. One possible mathematical
design approach for an adaptive control is to use statistical methods.-
Plant uncertainties are then described by probability density functions.
Such statistical methods are generally not computationally feasible even
when 2 priori knowledge of the statistics of the plant uncertainties exist}
In most practical situations, simplifying assumptions must be introduced
and these detract ponsidetably from the'usefulness of a mathematically
precise statistical approach.

An alternative approach is the optimally sensitive control [1]
where no a priori knowledge of statistical parameters is requifed. However,
the range of plant parameter and/or initial condition variatiomns is
restricted.

This thesis is concerned with the development of an optimally
sensitive feedback control which does not require detailed statistical
data for its realization. However, in order to increase the rangerf
optimal control action, parameter estimation is used. Algorithms which
are feasible for real-time digital computations are developed for the
design of both the ‘controller and the identifier.

Figure (1l.1) illustrates the general structure of the.optimal

adapfive control system which has been developed in this thesis. The



LEAST Sq.
> W <
ESTIMATOR
@ NOISE
A PLANT ) >
: OUTPUT

FEEDBACK
GAINS

Q|

_______ 1 _
SENSITIVITY W-ADJUST/IBLE (==

IDENTIFIER

" DIGITAL
D G

|
|

I

I

|

|

I

I

Y |
I

I

I

I

1

T

I

|

I
I
I
I
|
I
I
|
{
|
I
I
I
1
|
|
I

E

—_——d b o

| IDENTIFIER |

-~ |
MPOSITE
A e K=

TR

1

MODEL _FILTER __,'¢
3 A %
. _—-_—_-——-C :I..:

FIG. (1.1) THE PROPOSED GENERAL OPTIMAL ADAPTIVE SYSTEM.




blocks drawn iﬁ‘dashed lines represent elements which méy not be requiréd
in many practical applications. This optimal adaptive control system can
generally be divided into two main parts; the estimator and the controller.
A detailed discussion of the components which comprise these two parts

together with the thesis layout is considered in the following two sectioms.

1.1 The Estimator

The estimator is used to obtain a '"best' estimate for the unknown
plant parameters and initial conditions. It is also used to obtain a "best"
estimate for the noisy and/or the uﬁmeasured plant state variables.

These estimates are neededlin order to construct a reasonably accurate
deterministic linear model of the plant. A deterministic linear model is
necessary if use is to be made of the powerful tools that have been developed
from optimal control theory. Linear coﬁtinuous models are considered in
this thesis. The choice of linear models is made because of their relative
simplicity from the instrumentation and computation point of view. This
simplicity is largely due to the high degree of development of the theory
of linear systems. Even when the plant is nonlinear, however, the use of
quasilinearization techniques can result in a linearized model of the plant.
Over a fixed period.of time.such a linear.model is4oftenwadquate,to,des—
cribe the dynamic behaviour of a nonlinear plant.

The estimator is composed of four major elements (see Figure

(1.1)). These four elements are:

a- Initial Conditions Estimator

This estimator is a standard linear least-squares estimator which minimizes -



a quadratic error function based on a system of linear algebraic equationms.
It is necessary to obtain a good estimate of the plant initial conditions
since the values of the.controller constant feedback gains depend on initial
conditions. This estimator is used whenever the plant states are conta-
minated by noise and/or some of these states are unmeasurable. A linear
least-squares estimator has been chosen due to its simplicity. Also, no

apriori knowledge of noise statistics is needed.
b - Filter

The filter gives a continuous estimation of the plant states. If some
of the states are unmeasurable then a Luenberger observer is a good
choice to reconstruct the unavailable states. On the other hand a Kalman

filter can be used for best estimation of the noisy states.

¢ - Digital Identifier

A continuous-time parameter identification method that has been extensively
investigated is the parameter-tracking technique [2,3,4]. This is based
on a steepest descent parameter adjustment. These parameter-tracking
identifiers have been largely developed for use with analog computers.
Practical on-line identification, however, requires the use of digital
computers and the discrete version of parameter—tracking introduces
several difficulties. The optimum gain or optimum step~size depends on
the input signals and is difficult to determine on-line [5].

In Chapter 2 a digital identifier is developed which gives
rapid and accurate estimation of the unknown, time-invariant parameters
of the plant. The identifier uses data obtained from augmented input

controls and output states which results in parallel data processing.



A discretized version of the continuous augmented model is used. Digital
simulation results have shown that the identifier developed in this thesis
-has very good rates of convergence. This digital identifier requires
the computation of a matrix inverse which may not exist in some cases.
In such cases a generalized-inverse of a matrix is required. A number
of methods have been proposed for finding the generalized inverse of a
matrix [6, 7, 8]. These ﬁethods generally consist of some combination
of a Gram-Schmidt orthogonalization process, the expansion of products
of matrices, and the solution of sets of linear algebraic equations.
In Chapter 3 an algorithm is developed which replaces these
operations and computes- the generalized inverse from simple recursive
formulas. Inherent in the method is a simple check on the linear inde-

pendency of the column vectors of the matrix.

d - Composite Identifier

A two-stage estimator is developed in Chapter 4. In the first stage the
digital identifier is used to obtain an estimaté for the time-invariant
parameters. In the second stage the unknown time-varying parameters are
considered as control inputs and a linear state regulator quadratic cost
function dynamic optimization problem is formulated. The solution of the
associated two-point boundary-value problem for the optimum control
results in an estimate for the time-varying parameters. This two-stage
identification algorithm is suitable for the cases where only a few of
the unknown parameters of the plant are time-varying. The use of the

complicated techniques developed for the identification of time-varying



parameters is not justified for such cases. The usual approach faken
to identify time-varying parameters is to consider fhem as unknown
augmented states described by differential equations of known form and
then use some form of state estimation[9j. Alternatively, integral-
transforms have been used[lO] to extend the capability of parameter-
tracking system to track time-varying parameters. The implementation
difficulties for such techniques make their use questionable if not

completely unpractical.

1.2 The Controller

In Chapter 5 the'design of a controller with optimum constant
feedback gains is discussed. A method of successive approximations is
developed and it is shown to be equivalent to a deflected gradient des-
cent approach with a variable weighting matrix. This'property i; utilized
to develop an algorithm for off-l1line design studies which results in
rapid convergence. An approximate method is developed to replace the
nonlinear two—point boundary-value problem by an algebraic optimization
problem. This method appears to be suitable for onfline computation of
suboptimum constant feedback gains (see e in Figure (1.1)). Trajectory
sensitivity fumction minimization is an important requiremenpm The in-
troduction of the sensitivity functions in the feedback structure of the
adaptive controller makes it possible to up-date the éonstant feedback
gains less frequently and makes tﬁe plént controller less sensitive to
modelling errors. The sensitivity functions are generated by the sensi-
tivity model shown by f in Figure (1.1). The parameters of the sensitivity
model are ﬁp—dated each time a new estimate of the unknown plant parameters

is made.




In Chapter 6‘a recursive observation-optimization strategy is
described. During a finite observation interval, measurements of the
state are taken and used to determine estimates of the plant parametefs.
The linear model parameters are adjusted according to these-new estimates.
The linear model is used to compute a control strategy which is applied
in a subsequent controllinterval. This scheme seems particularly attractive
for adaptive systems.

In summary, the objective of this thesis is to investigate
practical methods for designing an optimal adaptive control system based
on a reasonably large domain of plant uncerfainties. Emphasis is placed
on techniques which can be implemented on real-time digital process
control computers. To reduce computational requirements, the control
strategy should not. require frequent up—dating. This objective has been
accomplished by developing a rapid digital identifier for continuous-
time systems and by developing simple algorithms for the computation of

optimally sensitive feedback gains.
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2. RAPID DIGITAL IDENTIFICATION OF

LINEAR SYSTEMS

2.1 Introduction

Digifal control of adaptive systems is feasible only if
parameter identification and evaluation of control laws can be per-
formed in real time. To reduce the complexity of the computations,
simplifying assumptions must be made. One feasible method is to identify
the system as an approximate linear system within a given time interval
and then use a linear optimal control [5,11]. For such a control policy
to be effective in an adaptive system the identification should be rapid.
A continuous—time parameter identification method that has been extensively
investigated is the parameter tracking technique [2 3,4]. This is based
on a steepest descent parameter adjustment of a quadratic error function
or a Liapunov function. The error can be taken to be a response or a
generalized equation error. The generalized error approach is attractive
since it results in an exact continuous-time steepest descent adjustment.
Furthermore, by use of state variable filters, it allows considerable
flexibility in the generation of additional input-output signals and
additional equation errors. These signals play an important role in' the
estimator that will be discussed in this Chapter. They are considered
to be the time response of augmented input controls and output states,
These states can be chosen so that the duadratic error function has a
unique minimum in parameter space which then allows very rapid identi-
fication. Practical on-line identification, however, requires the use
of digital computers and the discrete version of parameter tracking

introduces several difficulties.



The optimum gain or step-size depends on the input signals
and is difficult to determine on-~line [5]. Furthermore, a steepest
descent search for a minimum does not generally result in rapid identi-
fication.

A popular method for on-line identification by digital
computers is the mean-square technique. In the linear system case 2all
state variables must be measured and the estimated parameters are biased.
Furthermore, if rapid identification is attempted, difficulties can
arise with ill-conditioned matrices. A digital estimation method is
developed here which can overcome these difficulties by use of augmented
input controls and output stétes. Due to the imposed structure of the
estimator the manipulation of high-order matrices, which is generally

the case in the mean-square approach, is avoided.

2.2 'Problem Formulation

Consider a completely observable and controllable continuous-
time linear system
x=Ax + Bu+w . ‘ (2.1
where x is an n-state vector, u is an m-control vector and w is additive
plant noise. Let T be the sampling interval and let tb’ tl’ tz, ++s be
a set of sampling instants. TFor the moment, to ease the notational

burden, let zl(k) = zl(tk) be the sampled measurement at ty where

zl(t) = x(t) + v(t) (2.2)

and where v(t) is additive measurement noise. (The estimator to be
developed does not require that all states be measured as implied by

(2.2). The general measurement requirements are discussed in Section (2.4)



Let

(t) = £Fz,(0dr, () = {fu (Ddr, (0 = fw(Ddr (2.3)

Zo+1 Yol Yo+l

The vectors Zps Ups (2 z 2), are defined as augmented states and aug-

mented controls, respectively. It is seen from (2.1), (2.2) and (2.3)

that

z, = Azz + Bul + LI (2.4)

where u u, wy 4 v - Av + w. Integrating (2.4) over the interval

A =

A

LSt S e, and letting 2, () &z (£, U () & u,(t), yields

2, (H1) = AZ (k) + BU,(K) + N (k) (2.5)

>

where A 8 I+ TA, B=TB and

t
A rkH1
Ng(k) =1

. [A(ZQ(T) - Zl(tk)) + B(ug(r) - uﬁ(tk)) + wl(r)]dr (2.6)
The discrete set of equations forms the basis for all further discussion.
To ease the notational burden all n(n+m) elements of A and B are consi-

dered unknown. The problem is to estimate A and B from a set of measured

Zl(j), Ul(j) and computed (from (2.3)) augmented states and controls.

Let

Favﬂ

2y (k) ) b

Yz(k) = , c=1. (2.7)

U (k) .

2 '

a

n

b'
L ™

where prime denotes transpose and where aj and bj are the j-th n and m
row vectors of A and B respectively. These rows are ordered into an
(n2 + nm) vector ¢ as shown. Equation (2.5) can then be written as

Zl(k+l) = Gz(k)c + Nl(k) (2.8)
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where -
Yi(k) 0
o2 1% v o = (11 (1)) (2.9
2 . 2 s Bn
0 Ty (k)
L S b J

(Due to the frequent occurrence of matrices of block—diagonal form it is
convenient to introduce a special notation. The first subscript B is
used to indicate that a block diagonal matrix is to be formed from the
vector or matrix within the bracket. The second subscript n indicates
the number of blocks. Note thaf eg(k);is an nx-(n2 + nm) matrix).
Consider the sampling instantsﬂk—N+1, ..oy k, so that N blocks ofldata

are available and let

'zN 4 . = Oyc + (2.10)
Lé(k-N+1) N (k)
where
6 (k-1) 0, (k) Zl(k)
eNé . , 0(k) & , Z(k) & : (2.11)
8 (k-N) 6 . (k) )

n+m
The matrix 6(k) is n(n+m) X n(£+m)‘and the veétor Z(k) is n(n+m) x 1.
The matrix eN_is of dimension nN(n+m) x n(n+m) as can bg seen from
(2.11).

It is seen from (2.7), (2.9) and (2.11) that the measured and

computed augmented states and controls are used to form the matrix 0(k)
and the vector Z(k) at the k—th sampling instant. These quantitites are
evaluated for N sampling instants and are used to form the matrix GN and

the vector ZN' The problem is to determine an estimate of the parameter

vector c given eN and ZN’ where these quantities are related by (2.10).
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The simplest approach is to define the optimum estimate to be the

estimate which minimizes the quadratic form (ZN - GNc)'(ZN - 6,.¢c).

N
The solution is the minimum mean-square (also called least-squares)

estimate [6]

A _ '
c PNeNZN (2.12)
where

-1 ,
PN = (eNeN) (2.13)

Since the basic struéture of all linear mean-square estimators
is the saﬁe it is of interest to compare the estimator (2.12) with pre-
viously proposed estimators [5, 12-16]. Mayne has used the Kalman fiiter
approach. This requires that (2.10) be iﬁterpreted as a measurement
equaticn with eN as a deterministic measurement matrix. This is the
case only if there is no measurement noise and if all states are measured.
A further and very significant difference is in the definition of 6N and

N(k). These investigators take

8, (k-1) N, (k-1)
YOLBE , N & : (2.14)
el(k—n—m) Nl(k—n—m)

(References [2, 13-15]1, furthermore, treat only the scalar measurement
case. Their results do not directly apply to the above case). Since
(see (2.5))

BIZ, G+DN] ()] = EIN (DN} (] # 0 | (2.15)

it follows that the estimate 1is biased.l This has been pointed out pre-
viously [13]. 1In order to eliminate the bias, sufficient time must
elapse between samples. This can make rapid identification difficult.
Even when the bias is small enough to give acceptable identification,

further difficulties can arise with data in the form [2.14]. If a small



sampling interval is chosen to achieve rapid identification there may
not be a significant difference'beéween adjacent rows of 6(k) resulting
in an ill-conditioned matrix. These difficulties tend to be avoided if
data in the fofm (2.10) is used. Some insight into the estimation bias
associated with (2.12)‘can be obtained by considering the noiée samples
Np(j)’ Np(k), (p=1, ..., n+m j # k), as independent. It follows
from this assumption and (2.5) that |

E[Zl(k)Né(k)] =0, &, p=1, .v., n + m) (2.16)

Consequently 6. at sampling time t

1 k A
(2.12) is unbiased when N = 1. From (2.6) it is seen that quantization
noise is an important component of Nl(k) making an analytic investigation
into the dependency of the noise samples intractable. Some general
observations can, however, be made.  Successive integrations performed
on wz(r) not only reduce th; effective amplitude of the noise but also
reduces the correlation between noise éamples Nl(k)’ (L =1, ...,'n + m).
The truth of this statement for a certain class of noise samples is

shown in Section (2.7)., Consequently, for a given k; the quantization
noise terms of (2.6) for different % tend to be uncorrelated. Con-
sequently, little if any difficulty is to be expeétéd with estimation
bias. All examples tried verified this expectation. The essential
difference between the two estimators can be seen from (2.15) and (2.16).
If 2 = 1, sequential data processing must be used. If T is chosen large
to overcome ill-conditioning then quantization noise can become excessive,
The combination of heavy noise and estimation bias (2.15) can result in
failure of the conventional estimator to give acceptable estimation. These
difficulties tend to be avoided if augmented states and augmented controls

are chosen (£ = n + m) so that parallel data processing can be used.

is independent of Np(k) and the estimate

13



Heuristic engineering justifications can also be given for the
use of augmented states and controls in linear system parameter identifi—
cation. If combined parameter estimation and optimal controlAis attempted
signal—to-noise‘problems can arise [12]. Optimal control attempts to
keep state deviations from é zero reference state small which decreases
the signal—to-noise ratio. Integratérs are low-pass filters which improve
signal-to-noise ratio. The data used is then less noisy. Such a situa-
tion has been repérted by Bakke and he suggests using a hybrid identifi-
cation method [16]. Basically his hybrid method is to use data in the
form (2.14) and then replace Y 9

81 by Y Two different estimates

1’ 2> 727
are taken and a decision is then made on the best estimate. However, a

full set of augmented states is not considered, nor is the data combined

in a mean-square sense,

2.3 'Recursive and Block Data Processing

The estimator (2.12) operates in a block data processing mode.
A new estimate is made after every N additional data blocks. Other
processing modes can be used such as the recursive method suggested by

Kishi where old data blocks are deleted and new data‘blocks introduced.

Let,
ON-r Zy-r
= > It | (2.17)
R R
It follows from (2.13) that
B R | .
Py = Pyg + 030 | (2.18)

Suppose that all quantities in (2.12) are known and it is desired to

~

determine CN-R from these quantities (This amount to determining the
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best estimate when R data blocks are deleted). Making use of (2.18) it
follows from (2.12) that

-1 ~
1 - _ At
Ov-r%-r = P~ %R cnr (2.19)

By partitioning (2.12) in the manner indicated by (2.17), it is seen that

~

a— L
cy = PyOxZr * PyON_rZn (2.20)
substituting (2.19) into (2.20) yields
e o= (L -P8'0) e -P o'z ] | (2.21)
N-R N'R'R N N R'R e
With the aid of the identities
(I - P._8'6 )'1P 8! =P 6 (I - 6_P e')“1
N'R'R N'R N'R R'N'R
(I -P06'0) =1+ (x-Pro'o)tpole (2.22)
N R'R N'R'R N'R'R *
=TI+ P06 (I - 6P e')'l )
N.R. R'N'R R
(2.21) can be reduced to the standard from for recursive estimation
= 1 - ' —
¢y = Sy F PyOR (T - 8RO (Bpey = Zp) (2.23)
applying the matrix inversion lemma to (2.18) yields
-1
- t _ '
Puog = By * PO (I = 95P\OR) GRPN (2.24)

Equation (2.23) gives the best estimate if the last R data blocks are
deleted and (2.24) gives the associated P-matrix.

If R new data blocks are sampled, a new Z_, and 6R are available

R

~

and new values of N and P, can be computed. The equations giving these

N
values are obtainable from (2.23) and (2.24) by interchanging N with N - R,
replacing 3 by —SR and leaving eé unchanged. With these changes (2.23)

and (2.24) gives the Kalman filter algorithm (since the measurement matrix

is a random variable the Kalman filter is not optimal). The estimators

proposed in References [5, 12-15] are based on a scalar measurement. The
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bracketed quantity in (2.24) is then a scalar and no matrix inversion is
required; However, many scalar samples are required to estimate the
parameters within a given confidence interval. This can result in slow
identification.

The matrix to be inverted in (2.24) is of dimension Rn(n + m)
len(n + m). This is a consequence of the use of a vector measurement
of augmented states. In effect, rapid identification is attempted by the
parallel processing of augmented state samples. The price paid for
parallel processing is in the ﬁigh order matrix to be inverted in the
Kalman filter algorithm. An alternative recursive apéroach is therefore
desirable.

It follows from (2.9), and (2.14) that

n+m k-1
gle = ¥ Toer()e (i) = (Q) (2.25)
NN ) geen 22 N’Bn
where
A n+tm k-1
Q= 2 z Yz(j)-Yi (1) (2.26)
=1 j=k-N
.consequently
- (o1 ' '
Py = Q7 )4, (2.27)

Equation (2.27) gives the interesting result that only an (n + m) X

(n + m) matrix need be inverted to find PN. (In general, to determine
n2 + nm parameters, an (n2 + nm) X (n2 + nm) matrix has to be inverted).
The structure of (2.27) allows a'recursive algorithm to be developed
which gives Q&il in terms of Q;l. Consider (2.26) and define

A _ ' _ '
Qq - V], S, S8, ) - ViV,

e
>

\'

. Yz(k -N), S

1
A

Sn+m = QN--l

(2.28)
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applying the matrix inversion lemma yields

-1 = - -1 — -1 -1 ' | S B |
S = @y - Vv v+ Qp V(T V) TV Qg
| (2.29)
1 -1 -1 S U R . |
= + ' ' =
Sj Sj-l Sj-l Vj(Il * VjQNVj) Vij—l’ -1 = Spim

Note that the quantities in brackets on the right hand side of (2.29)

are scalars. The set of equations (2.29) define a recursive algorithm

for finding Q;El given Q&l. Repeating the algorithm R times allows PN—R

to be expressed in terms of Pgl‘(see (2.27)). This procedure replaces
(2.24) in the data deletion step.

3}

Substituting (2.18) into the first identity in (2.22) yields

-1
| I 1 _ 1
Py pOn = PyOp(T = 8.P 61) (2.30)

which allows (2.23) to be expressed in the form

A ~

] ' . —
cy-r = SN + PN—RGR(GRCN ZR) 4 (2.31)

The data deletion is performed using (2.29) and (2.31). No matrix in-
version is required. Insertion of new data is performed using (2.29)

in reverse and by changing (2.31) to the appropriate form.

2.4 Measurement Requirements:

Due to the use of state variable filters not all states need be
measured as implied by (2.2). Most systems of the form (2.1) can be
decomposed into subsystems which have a phase variable structure. Suppose,

for example, that a subsystem is represented by

x3 = a3x3 + azxz -+ alxl + ...
X, = x3
X, = X (2.32)

1 2



To identify (2.32) it is sufficient to generate the complete states of one of
the augmented models. The first augmented model that can be generated

completely is the third model (% = 3). This is seen by taking

T, - . p— N -
t .t t .t
£ f X, dTl de é é 3 drl drz
| ft ft st
23 _ X, dt de = o *1 drl (2.33)
ét ét Xq dTl de X
L A L _

It is seen from (2.33) that only Xy need be measured. Any additional

augmented model (% > 3) can be generated using (2.3) and (2.33).

"~ 'Example 1.

Consider the linear system‘

X = a%, + a %y + u, xl(o) = 1.0
Xy = X4 , x,(0) = 0.0 o (2.34)
where a; = -2.0, a, = -3.0, t0 = 0, tf = 16., and take £ = 4 (see

The fact that only two elements need be identified results in some

simplification. The full augmented system is of the form

r . - - -M . i~ T
xl x2 xl U1
' x3 x4 x3 al U2
. = |- + (2.35)
%5 %6 X5 a | Us |
J
x7 x8 x7 U4
where X, = X35 X 5s Xg = X

18



Equation (2.35) is discretized and expressed in the form of (2.8) by
appropriate definition of Zg(k), el(k) and c¢' = (al, az).

The estimation of c is performed by a bloék processing mode
with R = 1. (if no old data is deleted, the estimation algorithm is
essentially the Kalman filter algorithm). The following sample intervals

and control are used: (1) T=0.1, (2) T=10.2, (3) T

0.4, (4) T = 1.0

with the corresponding values of N: (1) N = 21, (2) N
]
(4) N = 3. The control u(t) = 0.1 + sin 3t + sin 10t is taken. Figures

11, (3) N = 6,

(2.1) and (2.2) give the results with zero additive measurement noise

(ni = 0 ='n2). However, discretization of (2.35) introduces quantization
errors which can be considered as additive correlated quantization noise.
. It is seen from the figures that identification is rapid even for large
quantization noise. Figure‘(2.3) and (2.4) illustrate the results for

state dependent noise of the form

' x, (k)
n(k) = o + (=) ng;, (=1, 2) (2.36)
m

where_ngi is a pseudo-random computer generated noise sequence which has

a maximum amplitude of nm.' The choice a; = a,

made. Figures (2.5) and (2.6) illustrate the results for the choice

= 0.1, E(ngi) = 0., is

= 0.1, o, = 0.25, E (ngl) = 0.1, E (hgz) = 0.14, It is seen from

a
1 2
these results that the estimator is insensitive to correlated quanti-
zation noise, state dependent measurement noise and to bias in the measure-
ment noise.

" 'Example 2.

Consider the linear system (See Reference [3])

19
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xi = X, , xl(O) = 1.0
'x; = alxl + a,x, + blu s 'XZ(O) = 0.0
wheré a; = -2.0, a, = -1.0, b1 = 1.0, and‘take £ = 4, The full augmented
system is of the form
5] ¢ =] ]
2 1 2 1
ia X3 X, ay u,
}.{6 = S a, + 0 by » - (2.37)
| *8 | |7 8] |4 ]
where §3 = ka, iS = Xe §7 = Xg.

The following sampling intervals are used:

(l).T -0.1, (2 T = %.0. The-corresponding values of N are: (1)
(1) N =21, (2) N = 3. The value of R is taken as R =.1. The initial
parameter estimate is ¢ = 0 and u(t) = 0.1 + sint + sin 3t.

Figures (2.7), (2.8) and (2.9) give the results for quantization
noise only. Figures (2.10), (2.11) and (2.12) give the results for

quantization noise and additive state dependent noise where

S )

= 0.1, E(ngi) =0, 1=1, 2,

Comparing these time responses with those obtained in Referenée [3] for
the noise-free case, it is evident that identification is more rapid.
The speed of response of parameter tracking systems seems to be adversly
effected by the interaction between parameter generating subsystems
which is an inherent féature of the steepest descent search procedure

used. Such subsystems are not required for the method developed here.

Consequently, in the noise free case, one-step identification is achieved.
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FIG. (2.4) EXAMPLE 1. ESTIMATION OF a, WITH QUANTIZATION AND
UNBIASED MEASUREMENT NOISE.
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FIG.(2.6) EXAMPLE 1. ESTIMATION OF a, WITH QUANTIZATION AND
8IASED MEASUREMENT NOISE,

23



0.4,

00

-1.2L

~1.6|

o 4
~3 4
(-]
© 4
S

-2.0L O ——re
”
@"‘\\ ’

\ ,
v

FiG.(2.7) EXAMPLE 2. ESTIMATION OF

a4,

0.0

a; WITH QUANTIZATION NOISE,

~
N o
W o
& o
e

-081

Or o
~ 4
-
(ry
=

as %, s

~1.2% @ 2 ¢’
. ’

-1.6 v
~2.0}

~24L

FiG.(2.8) EXAMPLE 2. ESTIMATION OF

ay WITH QUANTIZATION NOISE.

24



24

2.0

1.6

1.2

ae.c),/

0.4}

0.0

3
o
b
b
3
=
e

~0.4%

FIG, (2.9) EXAMPLE 2. ESTIMATION OF b, WITH QUANTIZATION NOISE.

04,

-
-

-~
N+
W
ad
o
-]
~N
[+
w

10
-0.4}
a
-0.8L

-20} : - R —

~-2.4] A ’

FIG. (2.10) EXAMPLE 2. ESTIMATION OF a, WITH QUANTIZATION AND
UNBIASED MEASUREMENT NOISE.

25



04,
0-0 v ¥ v L] A LE T L L f
1 2 3 4 5 5 7 8 9 10
-0.4}4
L]
-0.8}

-1.61 v

FiG.(2.11) EXAMPLE 2. ESTIMATION OF a, WITH QUANTIZATION AND

UNBIASED MEASUREMENT NOISE.

24|
2.0,
1.6].
by
: r
120 PN .
HoT i = SN
0.8l ’
0.4}
0.0 'l 1 1 A L 2 4 'y f
1 2 3 2 5 3 7 8 g 10
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In this section a comparison is made between the proposed
digital identifier using augmented states (£ > 1) and the standard
limited memory identifier ( 2 =1). The standard limited memory identi-
fier (or filter) is of fhe type discussed in Section 2.3. The filter
operates in a block data processing mode where R old data blocks are
deleted and R new data blocks introduced resulting in é limited (finite)
memory filter. Exaﬁple 2 is used to illustrate the superiority of the
augmented state identifier for various values of T and N (R = 1).
Figures(2.13); (2.14) and (2.15) show the results for the identification

of the parameters a,, a, and b respectively. It is evident that the

1> 72 1

standard limitéd memory filter fails to track the parameters for values

T=1., N= 3, R=1 and exhibit poor tracking accuracy for values

T=0.1, N=21, R =1,

The failure of the standard limited memory filter to give
acceptable estimation of the parameters is due to the fact that it is not
an optimal filter for the proposed identification problem. Consequently,

excessive quantization noise and correlation between samples, as is the

case here, can have a serious effect on its performance.

In conclusion it can be stated that the use of augmented states

and controls results in a more rapid and accurate identification of
continuous time linear system parameters than can be achieved by either

parameter tracking systems or the standard limited memory filter.
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FIG.(2.13) EXAMPLE 2. ESTIMATION OF a, WITH . QUANTIZATION AND UNBIASED
MEASUREMENT NOISE USING A STANDARD LIMITED MEMORY FILTER.
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FIG (214) EXAMPLE 2 ESTIMATION OF a, WITH QUANTIZATION AND
UNBIASED MEASUREMENT NOISE USING A STANDARD LIMITED
MEMORY FILTER.
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In the previous section, the performance of the digital.identi-
fier was evaluated by comparing estimated values with known values. In
a bractical situation, however, the parameters are not known and statistical
means must be used to establish confidence in the estimates. In refereﬁce
[5] Kishi made use of e#tensive studies made by Linnik [17] to dgtermine
confidence intervals for parameter estimates in the case of a simple
single-input single-output system. The relations given‘by Linnik will
be uéed in this section to obtain approximate confidence limits for the
parameter estimates of the digital identifier. However, Linnik's results
can be applied only if theAdifferent components of the noise vector &
(see (2.10)) can be represented by a statistical noise model. Such a
task is not an easy one. However, it will be shown that under certain

simplifying assumptions it can be argued that the different noise com-

ponents will be uncorrelated.

In Section (2.2), it has been assumed that the noise samples of
the different models are uncofrelated. Hence, equation (2.16) is assumed
to be true. In the following, it will be shown that if the noise samples
are uncorrelated then the samples of the integrated noise are also un-
correlated. For simplicity, we will consider a single noise component
in ofder to prove the validity pf the previous statement.

Consider the noisé component n(t) which can be repreéented by

the following statistical model
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E[n(t)] = 0
(2.38)

E[n(t)n(0)] = ae %l ET]

If o is of infinite value then n(t) will be a type of white-noise com-=

ponent. (In the white-noise case the amplitude a will be equal to in-~

'finity). For a physical realization of the noise component n(t) it

will be assumed that o is a very

is a very large but finite quanti

large but finite quantity and thata:

ty and that a is of finite value.

Let
N () & 4 n(r;)dvy (2.39)
It follows from (2.38) and (2.39) that
E[Nl(t)n(r)] = ét EIn(r)n(Tl)]drl
=alf* ool Ty dr, (2.40)
To evaluafe the above integral we will consider two cases:
(1) Case 1, 1> t
E[N.(t)n(1)] = a st e_a(T-Tl) dr
1 o 1
- s_[e—a(T—t) _ e—aT] (2.41)
(i1) Case 2, o x T 5 t
E[Nl(t)n(T)] =all e-a(T-Tl)'dTl + a {t e—u(Tl—T) dTl
=.% e—ar[ear_ 1] +.§ ear[e—ar - e—at]
=2 - - e, (2.42)



For fixed time t and a very large value of a, equations (2.41) and (2.42)

can be approximated by

[
o
-

>t

E[Nl(t)n(‘r)] { (2.43)

=—,0c<r

A
t

‘As seen from (2.43), the noise components n(t) and Nl(t) become un-
correlated as o + «,
Using equation (2.41) or (2.42) for the special case where

T = t yields

]
Rlp L

E(N, (£)n(t)]
, for fixed t and a +» «

The following non-dimensional ratio can be used as a measure

of the degree of correlation of Nl(t) and n(t):

E(N (£)n() ] at,

5 —[1-¢e
tE[n"(t)] '

, for fixed t, o +> « (2.44)

"

1
at
1
ot

Equation (2.44) shows that for fixed t and a large value of o the correlation
between Nl(t) and n(t) samples is much less than the correlation between

the samples of n(t). This shows clearly the advantage of using the inte-
grators in order to generate the augmented states and controls. It is

also interesting to study the degree ofvcorrelation'between the samples

of Nl(t).

Equation (2.39) yields

E[N, (DN (D] = ét E[N, (t)a(r)) ldr, (2.45)
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As before, we have two cases:

(i) Case 1, T >t
E[N, (ON (0] = /5 312 - 7T - 72T 1]
1 1 o. o 1
| -4t -a(t-1,)

_a e "1 e 17 .t

T [ZTl + a o ]o

= éf (20t + e T 4 e—Olt - e~a(T—t) - 1]

a
= 235 , for fixed t and a »> =« (2.46)

(ii) Case 2, o sttt

.

E[Nl(t)Nl(r)] = E[Nl(T)n(Tl)] drl + 4 E[Nl(r)n(Tl)] dt

|
o

1

AN PR T L [T
o o 1

a -a(r,~-1) -
ta, (t,-1) _ oot

{ o 1 1] dTl
= —%{ZaT +e 0T 4 e—at - e_a(t—T) - 1]
o
= %?l , for fixed t and o » = (2.47)
For the case 1 = t equation (2.46) or (2.47) yields
ERNY ()] = 22 [ar + e 7F - 1]
1 2
o
=22 (2.48)
o
Equations (2.48) and (2.38) yield
2
ElN (D],
E-a : (2.49)

tE[nz(t)]
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Equations (2.46), (2.47), (2.48) and (2.49) show that the cérrelation
between the samples of the noise component Ni(t) vanisheé as a +» o, |
Equation (2.49) shows that for fixed t énd large value of o the corre-
lation bétween the samples of Nl(t) is much less than that between the
samples of n(t).

The same analysis can be directly eéxtended to Nz(t) where
No(e) & F N (o) de % 50)
2 o 1Y'1 1 ' )

~ Since the same approach is to be used it is sufficient to summarize the

corresponding results

B[N, (DN, ()] =2 ¢ (2.51)
2 t)] = s (2.52)
EIN, (e)N (e)] .
32 . 1 =-§? (2.53)
£2E[n%(6) ]
EDNG(D]
= (2.54)
t4E[n2(t)] 3atA

Equations (2.51),'(2.52), (2.53) and (2.54) show that the
same conclusions that have been reached for Nl(t) hold for Nz(t). Suc-
cessive integrations of statistically independent noise samples result
in statistically independent noise components. Also, successive inte-
grations of correlated noise samples résult‘in less correlated noise
components. o

The above siﬁplified mathematical treatment shows that the
vindependence property assumed by equation (2.16) is justifiable for

many practical situations where n(t) is usually taken as white noise.
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_Equation (2.16) can now be used to prove the unbiasness property of the
digital identifier.

Equation (2.10) has the form
zy(k + 1) = g (K + N(k) (2.55)
Where the argument value denotes the sampling instant at which the various
vectors and matrices are evaluated. Combining (2.55) and (2.12):

~

Efc]

E[PN(k)eﬁ(k)ZN(k + 1)]

E[Py (k) ey (k) (8 (k) e + N(k))]

c + E[P () eﬂx(k)ﬁ(k)] (2.56)

The elements of PN(k) and GN(k) depend on ZN(k) and Uz(k), L =1, uuy
n + m. Equation (2.55) shows that ZN(k) is only related to ﬁ(k - 1).
Since N(k) is statistically independent of N(k - 1) as shown by the
above analysis, then PN(k) and eN(k) are not statistically dependent on

N(k) and the following relations hold
E[PN(k)elg(k)ﬁ(k)] =0 (2.57)
E[c] = ¢ (2.58)

Equation (2.58) shows that the estimate obtained by using the digital
identifier is unbiased. The results given in figures (2.1)-(2.4) and
(2.7)-(2.12) would not be obtainable if (2.16) did not hold approximately.

Equation (2.58) holds when P_ = (SﬁGN)_l. This case has been referred

N

to by Kishi as the observable case. The case where the inverse (6§6N)—l

does not exist is referred to as the non-observable case. In the non-

observable case an estimate is obtained by use of the equation
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~ I
c =0y 2. (2.59)
where 6§ is the generalized inverse of GN. That is,
6l X = X (2.60)
N'NT T T

It follows from (2.16) and (2.60) that the estimator (2.59) is unbiased.

2.7.2 The Erfor Covariance Matrix

Let

v eNe - Zy : (2.61)

be the error vector representing the difference between a predicted
measurement vector and the measurement vector. For the obzervable case

the above equation can be written in the form (see (2.12))

= v o
V-— (GNPNGN I)ZN (2.6?)
Using equation (2.55) yields
- v N
V = (eNPNeN ;)(BNC + N)
= v o N
= (eNPNeN I)N (2.63)
For the non-observable case the expression for V is
V= (66% - DN (2.64)
N°N :
where use is made of thé.property
6,650 =@ (2.65)
N'N'N N

The error convariance is defined by

Qyy & EIVV'] | (2.66)



Making use of equation (2.63) yields

= E[(8,.P 6! - I)NN'(6. P 6" - I)] (2.67)

Qv N NN N NN -

For the non-observable case using (2.64) yields

Quy = E[(eNe; - I)ﬁﬁ'(eNeé - 1] (2.68)

2.7.3 Estimation of the Confidence-Interval Length

Only the observable case will be studied in this subsection
since for the non-observable case the length of the confidence interval
will depend on the degree of redundancy in the measurements which.

would change from one systém to the other. Equation (2.63) yields

= R N
V= (6 Py - DN (2.63)

The following relations hold for the observable caserv

R(GN) = R(B)}) = R(G&GN) = R(P

N ) = n(n + m) (2.69)

N

where R(+) stands for the rank of the matrix written between the brackets.

Let the matrix YN be defined as

(2.70)
Using the known lemma
R(AB) < min(R(A), R(B)) | , | (2.71)
where A and B are any arbitrary matrices, it follows from (2.70) that;
R(YN) < nn + m (2.72)
Equation (2.70) yields.

t t
GN = (SNGN)YN (2.73)

3.



Hence

Rgeﬁ) = n(n + m) ;:min(R(eﬁeN), R(YN))
< min(n(n + m), R(Y)) (2.74)

Hence

R(YN) > n(n + m) | ' (2.75)
It follows from (2.72) and (2.75) that
R(Yy) = R(Pyoy) = n(n + m) ’ (2.76) -

Let the matrix WN be defined as

A

2 '
wN BNPNGN (2.77)
Then
— {9 aQ
WNON eN (2.78)

It follows from (2.78) that WN is a projection matrix. Using (2.78) and

(2.71) yield

n(n + m) = R(SN)

In

min(R(WN) , R(E)N))
< min(R(Wy), n(n + m)) (2.79)

Hence.

R(WN) > n(n + m) _ ‘ (2.80)
Applying (2.71) to (2.77) it is seen that

R(WN) < n(n + m) (2.81)

It follows from (2.80) and (2.81) that

R(WN) = n(n + m) (2.82)



Considering now the computation of the number of degrees of freedom of
the random vectors ¢ and V, that is (as defined by Linnik [17]) the
number of statistically independent components of é and V. Starting by
computing the degreesAof freedom of the random vector ¢ we will make use
of Theorem 2.3.1 given by Linnik [17] which states that if the vector U
is expressed as |

U = AX (2.83)

and the matrix A is of dimension r X £ with r < & aﬁd R(A) = r then the

random vector U is of r degrees of freedom. From equation (2.12)

¢ =P 8'Z (2.12)

Equation (2.76) yields

R(PNS&) = n(n + m) (2.84)

Applying Theorem 2.3.1 given by Linnik [17] it is readly seen that the
vector ¢ is a random vector of n(n + m) degrees of freedom.
To compute the degrees of freedom of the noise error vector V,

(2.63) is expressed in the form

v

Wy - I)N (2.85)

where WN is given by (2.77).

Let

>

Uy I - WN = ! (2.86)

The matrix wN is idempotent as can be seen from the following

2 _ { Y _
wN = eNPNeN eNPNeN ZWN +1I
=Wy - W +I

]

I- W=y (2.87)
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Accordingly, there exists an orthogonal matrix ¢

(17h)

N such that (see reference

' = ' .
@NWN N DN (2.88)

where the matrix DN is a diagonal one. The matrix @N has the property

that

@&@N = ¢N¢§ = I , (2.89)

The matrix D,, is an idempotent matrix as can be seen from the following

N
D2 = o'W 6 _6'W. o
N T O NN NN N
2
— ]
= olHie
= &' - :
= QNWNQN DN (2.90)
Hence:
i =d.. d.e.,d,.=0 orl (2.91)
11 11 11

The number of d%is equals to unity is given by the rank of the matrix

W

N’ that is, by n(n + m).

From (2.89) it follows that

R(@ﬁ(l - WN)QN)

R(I - WN) =
= R(I - DN)
=n(n +m)(N - 1) . (2.92)

The final result follows from the fact that the total number of diagonal

elements of D is n(n + m)N and of these n(n + m) are equal to unity

N
(see (2.91)). Applying the above result given by (2.92) to (2.85) and
making use of Theorem 2.3.1 [17], it follows that the noiseerror vector

V is a random vector of n(n + m)(N - 1) degrees of freedom.
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From the result reached in the previous statement it is seen

that V'V can be expressed in the form

n(n+m) (N-1) 2
V'V = Y i (2.93)
i=1
Let
qQ Lgre e (2.94)
ccC . .

With & is computed according to (2.12).

The following results given by Kishi [5] and Linnik [17] are
required. If £ and gi are statistically indepeﬁdent Gaussian random
variables‘with Egi distributed as'x? and having m degrees of freedom,

then the t-distribution is formed by the following ratio

-—2f

e —— (2.95)
/e
m
Let (see Appendix IV)
c.-c,
i ' (2.96)
(Qcc)ii

where (Qcc)ii is the i-th element of the main diagonal of the covariance
matrix Qcc and s stands for the i-th element of the vector c. Also

let (see Appendix IV)

m

=n(n + m)(N - 1)
ngi = V'V | (2.97)

Then using (2.96), (2.97) into (2.95) yields

c, = C,
L L

/(@ ). (VV/nln + m (N - 1)

ce’id

(2.98)

t:n(n +m(N - 1) B
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Using the t-distribution it is possible to compute the length of the
interval about the parameter Ei which would include s with a certain

probability. For example, let the assigned probability bé 0.9, then

P{|tn(n + N - 1)] < v} =0.9 (2.99)

where P{-} stands for the.probability density of the expression between
the brackets. The number y can be found from tabulated standard tables

using the number n(n + m) (N ~ 1) as an index. Hence

_ V'V
i~ °i| = Q)4 (o + M - 1)

(2.100)

If the augmented states and controls are not used the denominator
under the square-root sign in (2.100) will be n(N - n - m). Thus
using the augmented states ‘and controls decreases the estimation error
IE. - Cil and results in a better estimation accuracy.

The range 2A of the confidence interval for a probability of

0.9 is given by

. ]
20 = [c, * vy

i Y‘/(Qcc)ii n{n + m) (N - 1) (2.101)

2.8 'Discussion

For the observable case equation (2.12) is used to estimate

the unknown parameters. The matrix PN is recursively computed without

any need to invert a matrix. For the non-observable case the matrix

PN does not exist. Equation (2.59) is to be used instead of (2.12) in

order to estimate the unknown parameters. The generalized matrix inverse

L : . I, -
8. is required. It is desirable to compute 6 in a way similar to that

N N

developed in this Chapter for computing PN in the observable case. This
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. . , I . "
- requires a computation algorithm to evaluate 6 recursively without any

N

need for a matrix inversion.

t

In the next chapter an algorithm will be developed in order to
compute 6£ recursively and no matrix inversion will be needed. This
algorithm is computationally simple and is suitable for real-time compu-
tations.

A simplified version of the algorithm that will be developed in

the next chapter can be used in order to compute P This presents us

N

with another method to compute P Due to the simplicity of this algorithm

N
it can be used for state estimation applications in cases where the plant
is represented by a discrete model. Since the generalized inverse has
numerous applications besides those which occur in state and paramefer

estimation, the important topic of recursive computation of a generalized

matrix inverse is dealt with in the next chapter in a general way.



3. RECURSIVE COMPUTATION OF THE

GENERALIZED INVERSE OF A MATRIX

3.1 Introduction

Because of its value in the solution of minimum norm problems
in finite dimensional spaces, the generalized inverse (or pseudo-inverse)
finds imporpant applications in linear system theory. Applications of
the generalized inverse to estimation and filtering problems are given
in [18], [6], [19]. Applications to control problems are given in [20],
[21]. A number of methods have been proposed for computing the generalized
iﬁverse AI of a matrix A. The metﬁod proposed‘by Ben-Israel et. [22] al.
requires the formation of C = A*A, where A* is the conjugate transpose
of A, and a series expansion of €. The method proposed by Pyle [7]
requires a two-stage Gram—Schmidt‘orthogonalization process and subsequent
solution of sets of linear equations. A simpler algorithm has been pro-
posed by Rust et. gl.'[8]. The algorithm is based on a two stage Gram-
Schmidt orthogonalization process. Unlike the other two methods men-
tioned above, it does not require the generation of powers of matrices
or the solution of sets of linear equations. However, by eliminating
the Gram—-Schmidt orthogonalization process, an even simpler recursive

algorithm can be derived.

Let A be an m x n complex matrix. The generalized inverse of
A, as defined by Penrose [23], is the unique n x m atrix AI which satisfies

the following relations:
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anla = A (3.1)
'AIAAi = AI (3.2)
(aalyx = anl (3.3)
alayx = ala (3.4)

Following Rust et. al., suppose that A can be partitioned into the form

A @9 - - (3.5)

where R is an m X ny matrix with linearly independent columns and S is

an m X n, matrix whose columns are linearly dependent on the columns of

2
R. The following relations hold:

RIR =T (3.6)
RL = (r#R) " lg# | (3.7)
S.= RU (3.8)
v ==Rr's (3.9)

(1 + UU*)'l_RI
AT = : (3.10)

% (1 + vox) "IRT

(In (3.6) and (3.10) I is a unit n, x nl‘matrix). The generalized
inverse is given in partitioned form by (3.10) wﬁere RI and U are given
by (3.7) and (3.9), respectivély. Rust et. al. show that the inverses
in (3.10) can be found by a two stage Gram—-Schmidt orthogonalization .
process (the first stage generates RI). . The possibility of replacing

both orthogonalization stages by a recursive algorithm is considered in

-the next two sections.:
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3.3 Recursive Evaluation of RI

The following relationships are required to develop the recursive

algorithm. Taking the conjugate transpose of (3.1) and using (3.3) yields

asaal = ax ' (3.11)
Let

A= (V,W) B (3.12)

be a partitioning of A where V is composed of linearly independent columns.

Equations (3.7) and (3.11) can be applied to V:

vl = (V*V)'lv* (3.13)

vayyl = yx (3.14)

From (3.1) and the partitioning (3.12) it is seen that

AAYV =V ‘ ' (3.15)

Taking the conjugate transpose of (3.15) and using (3.3) (3.13) and
(3.14) yields

viaal = (v*v)"lv* _— ' (3.16)

Let rj, G=1, ..., nl) denote the linearly independent

columns of R. Consider the partitioning

' B+l

- I A

B = R Ferr?s B 7| (3.17)
: ktl

1 1’ n

where R 4 r., R 2 R, and where the bj's are row vectors. From (3.17)
1

it follows that



I
BBt = Bl * TPt
Applying (3.6) to Rk yields
. -
e = 1

Applying (3.11) to in the partitioned form (3.17) yields
A +1 ,

R [re

o | Bl t TP < |

r T
i+l i+

Partitioning of (3.20) and solving for bk+l gives

-1

= % % -
b (r rk+1(I_ R B

el = i)

Replacing A by Rk+l and V by Rk in (3.16) gives

T I T
RkRk+1Rk+1 = Ry
Substituting (3.18) into (3.22) and using (3.19) yields

Rk(I T TR+l k+l)

Substituting (3.23) into (3.21) gives

I
brtr = M T~ RR.

where
A (r* .1 - r* Ir )~
R R L )

is a scalar.

: . L.
The recursive algorithm for the computation of R™ is based on

(3.

3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.17) (3.23) (3.24) and (3.25). It is desirable, however, to compute

the matrix product RkRi in (3.24) from a recursive formula.

18)

19)

20)

21)

22)

23)

24)

25)

Substituting
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(3.23) and (3.24) into (3.18) yields

i I » 1 I
ReriBirr = BB ¥ 4T - RROz ok (T - RR) (3.26)
Since (see (3.3))

I
I - RRIr L IF=rf,( RkRk)’ (3.27)

it is seen that the second matrix on the right-hand side of (3.26) is

the outer product of two vectors

Summary of the Algorithm for Finding RI

I -1
1 +4 1 = = = % %
1. Initialize. Set k =1, R1 s R1 (RlRl) Ri
2. o = (r* _r - ¥ Ir )_l
© % RS Bl A LR ST D R
brsr = % Fiar T RkRk)
Biy1 = Rk(I = 1P’
I

I 1 I .
RertPiern = Bl ¥ % - BRI T 7 0 - BB

3. k= ktl

4, If k <mn, go to 2.

The above algorithm replaces the first Gram-Schmidt orthogonali-
zation stage of Rust's algorithm, which, in the interest of accuracy,
reorthogonalizes each cblumn after it is first orthogonali;ed. An addi-
tional advantage of the above algorithm is the manner in which A is

partitioned into the form (3.5). In the Gram-Schmidt process, the de-



‘tection of a zero vector after orthogonalizétion (but before normali-~
zation) indicates that the vector being orthogonalized is linearly
dependent on the previous vectors. This vector is consequently moved

into S and the next column vector of A is chosen. 1In the algorithm

presented here, linear dependency is detected when &;il (see (3.25)) is
zero. Since %ol is required in (3.24) no additional computations are

w1 1S zero, the associated

required to test for linear dependency. If a

vector is moved into S and the next column vector of A is chosen.

3.4 Recursive Evaluation of AI

Consider the partitioning

I Bk+1 _
Ay = RoSpqnds Ay = c (3.28)
k+1 -
where Sl =8 is the first column vector of S and Sn = §. The generalized
' 2

. I . . . . . .
inverse R~ can be obtained by the recursive algorithm given in Section

(3.3). Applying (3.10) to Aj’ it is seen that

-1_T
B. =D, R 3.29
j 3 ( )
C. = U%B, _ (3.30)
J N .
A : _ .
Uj = (ul, Ugs oo Pj) = R Sj (3.3
where
p. & (1 +u.uw (3.32)
J J 3]

The matrix inversion lemma [9]
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V 5(
-1 -1 -1 o -1 -1 -1
= - % *
k+l Dk Dk uk+l(1 + uk+le uk+1) uk+le : (3.33)

is used to develop a recursive formula for Bk' Setting j = k, k + 1 in

(3.29) and using (3.33) gives _

Bgr = (T = Bryq kRuk+luk+1)B . - (3.34)

where
I l
Bk+1 @+ ug BRw ) (3.35)
The recursive algorithm for the computation of AI given RI is
based on (3.28) (3.30) (3.31) (3.34) and (3.35).

© Summary of the Algorithm for finding AI

1. Initialize. Set k =1,

-1.1 -1 1
= = - * X
Bl Dl R. (1 (1 + ulul) ului]R
_ . -1
2. Bpyq = @+ uE B Ruy)
Bigy = (T = B B R e OBy
3., k=%k+1
4, If k <n,, 80 to 2.
5. ¢ (RISn ) *B
2 ) 5
R Ai- ) 2
2 c
n

3.5 Examples

The first two examples are taken from the literature. This
allows a comparison to be made showing the relative simplicity of the

proposed algorithm,
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Example 1. This example is given in [22]. It is required to compute

the generalized inverse of

1 0 0 -1
Ao |-l 1 0 0 (3.36)
o0 -1 1 0
0 0 -1 1
It is seen that (3.36) has the form (3.5) where
1 0 0 -1
-1 1 o0 | o (3.37)
R=1to 1 1|l 51
0 0 -1 1

The algorithm of Section 3.3 is used to find RI.

Step 1. Initializationm.
1
_ _ |-t I_1 -
R1 =r, =1 5> Rl = 2(1, 1, 0, 0)
0 _
Step 2.
-2
% =3
1
b, = 3(1, 1, -2, 0)
1
B, = 3(2, -1, -1, 0)
2 -1 -1 0
I 11(-1 2 -1 0
RR=311 -1 2 o
0 0 0 0
1 1,2 -1 -1 0
Ryh=3G 1 2 ¢



Step 2. (repeated)

1 1 1 -3

oy =3
37 %
by == (1, 1, 1, -3)
34”’
s <1 B 1 1 -
37% |2 2 -2 -
3 -1 -1 -1
I I 1
R=R;=712 2 -2 -2

I ' :
Having found R, the algorithm of Section (3.4) is used to evaluate AI.
Since S consists of a single column vector 81> only the initialization

stage is required.

-1
I
u, = R's, = -1
1 1 -1
Step 1.
1 3 -3 -1 1
Bl'= 3 I 3 -3 -1
-1 1 3 -3
Step 5
C, = uiB, = -% (3,1, -1, -3)

(3.38)

Example 2. This example is given in [7]. It is required to compute the

generalized inverse of -

>
i
-0 M
=
1
O = b
= O

(3.39)
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It is seen that (3.39) has the form (3.5) where

1 of 1 .1
R= [0 1], S=1-1 0 (3.40)
11 0o 1

The algorithm of Section (3.3)is used to compute RI.

Step 1. TInitialization

1
I 1
Rl=rl= 0 ,Rl=-2—(l,0,l)
1
Step 2.
-2
% =3
1
b2=-§(—l, 2, 1
1
B2=§(2, -1, 1)
I .1 _ 1,2 -1 1
RO=Ry =3 (4 5 7

Having found RI, the algorithm of Section (3.4) is used to evaluate AI.

Step 1. TInitialization

1. 11 . ,
U=RS= [4_ 0] = (ul, u2)
-1

-1 1
= - * ik = =
D 1 ul(l + u ul) u 3 (

N =

2
1 1 1 1

g oLl 01
13001 1

Step 2.



1,30 3
By=15 (L1 5 &)
Step 5.
1,4 -5 -1
= % = e
Cp=UBy =35 (3 o 3
3 0 3
I, _ 1 |-1 5 &
A8 TTS |y 5o (3.41)
3 0 3

Example 3. This example illustrates a case where A does not have the

form (3.5) initially. It is required to compute the generalized inverse

of 1 0 1 0
o l-1 1 0 o0

A=l 1920 (3.42)
0O 0 0 1

Note that the third column of A is the sum of the first two columns.
Generall?, the detection of linear dependency by simple observation is
not possible. The algorithm of Section (3.3) is applied to (3.42).

It is seen from (3.36) that there is no change in the computafion given
in Example 1 until k = 2. At this stage the algorithm gives u; = 0,

hence the third column of A is shifted into S and the last column of A

is chosen. This gives Ay = 1 and
b, = (09 0, 0’ 1)

1,2 -1 -1 0
-3 (

By=3 (4 1 5 ¢
2 -1 -1 0
RT = R§ =-% 1 1 -2 0
O 0 0 3

The interchange of the last two columns of (3.42) is accomplished

by a permutation matrix P given by

5!
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o100
P = 00 0 1 (3.43)
0 0 1 0 '
The algorithm_of Section (3.4) is now used to find Z;' where
A = AP, A = AP (3.44)
The generalized inverse AI is then given by (see [8])
-1 '
Al = PE- - (3.45)
Step 1. Initialization
1
I
u, = R's;, = |1
1 1 0
1 1 -1 0 0
Bl =3 10 1 -1 0
: 0 0 0 3
Step 5.
1
= * = -— —
C1 ulBl 3 (1, 0, -1, 0
1 -1 0 0
I 110 1 -1 0 »
A =310 0o o0 3 (3.46)
1 0 -1 O
The generalized inverse A--I is found frem (3.45) and is
1 -1 0 0
Ir_1/0 1 -1 0
A =311 0o 1 0 (3.47)
0. 00 0 3
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4, TWO-STAGE ESTIMATION OF TIME-~INVARIANT
AND TIME-VARYING PARAMETERS IN

LINEAR SYSTEMS

4.1 Introduction

Because of its importance in system engineering, considerable
effort has been devéted to the problem of estimating the parameters of
systems whose dynamic behaviour can be described by differential equations.
Two distinct methods for estimating time-invariant parameters have been
brought to a high degree of refinement. The parameter tracking method
is based on a éteepest—descent parameter adjustment of a quadratic error
function or a Liapunov funcpioﬁ. The error can be taken to be a response
errof or a generaiized equation error. Detailed descriptions of para-
meter tracking systems are given by Lion [2], Pazera and Pottinger [3],
Rose and Lona [4}. The second method for parameter estimation is based
on optimum filtering. In its simplest form an optimum filter minimizes
a mean-square error cost function subject to a preécribed dynémical
constraint. Detailed descriptions of optimum filters and an ektensive
bibliography are given by Sagé and Melsa [9].

The estimation of time-varying parameters is generally a much
more difficult problem. Parameter tracking syétemé and optimum filters
often give acceptable estimates provided that the parameters vary suffi-
ciently slowly with respect to time. Lessing and Crane [10] héve made
use of integral transforms té extend the capability of parameter tracking
systems to track time-varying parémeters. Practical implementation of

the integral transform approach requires the assumption that. the parameters



~cép be represented by polyqomials of known order. The estimation of
time-varying parameters by optimum filters requires essentially the

same assumption. It is assumed that the parameters are solutions of
differential equations of known form with unknown time-invariant para-
meters. The problem is:then reduced to the estimation of time-invariant
parameters of a higher order augmented system. It is the purpose of
‘this Chapter to develop a compufationally simple and accurate method

fpr estimating time-varying parameters which is not restricted by a

priori assumptions about the dynamical behaviour of the parameters.

Consider the continuous-time linear system

Xp = Axp + Bu, xp(to) = xpo - (4.1)

where xp is an n X 1 dimensional state variable vector and u is anm X 1
dimensional control vector which is a known function of time.
The system matrix A is considered to be decomposable into a

time-invariant component A_ and a time~varying component Av:

f

A=A+ A | ¢4.2)

The most general estimation problem associated with (4.1) is to estimate
xp, A and B given an observed continuous-time measurement vector defined

over an observation interval to Lttt and given complete statistical

f’
information about measurement noise and system noise. However, if emphasis

is placed on computationally simple methods then a less ambitious problem

must be considered. Suppose that B is known and that the state xp is
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measured during the observation interval. The problem to be considered
is the estimation of A given xp and given no information about noise
statistics. The estimation is performed sequentially in two stages.

During the first stage an estimate of the time-~invariant Af is made

given an estimate of AV. During the second stage a new estimate of Av

is made using the estimate of A_ found during the first stage. This

f

section deals with the second stage of identification. Let

>

X - X (4.3)

X, = Afx1 + Bu, xl(to) = xpo (4.4)

It follows from equations (4.1), (4.3) and (4.4) that

z. = Az -+ Avx

1 %% P

it

= ’ 4
Ale + e(xp)g, zl(to) 0 (4.5)

In equation (4.5), a is a vector whose components are the time-varying '
elements of Av'
The equation

Ax = e(xp)g (4.6)

defines a matrix 6 whose elements are linear functions of xp. Let

e

>

h =>g(t)"ig(t‘T) ) (4.7)

In (4.7), X, is defined by (4.4), xp is assumed known (through measurements)



and h.is an approximation to g, with the accuracy of the approximation
depending on the fixed-time increment T. Consider the following quadratic

cost index

. .
1 . > 112 302
J = E‘fto [l]eg - lel Q; + | |n ‘Izlll Qz]dT .(4'8)

where %l and»él are defined by (4.5) where the unknown vector a be re-
placed by an estimate.é. The weighting matrices Q1 and Q2 are taken to
be positive definite. It‘follows from (4.3)-(4.8) that 1lim J = 0 pro-
vided that the time-varying parametef vector a is known zzgctly. Con-
sequently, (4.5) and (4.8) can be used to formulate a problem in optimum
estimation. In the problem formulation the unknown time-varying para-
meter vector is considered to be a control vector for the system des-

cribed by (4.5). The optimum control minimizes J where g and h are

known functions of time.

4.3 Estimation of Av' Algorithm I.

The minimization of J (see (4.8)) subject to the dynamical con-
straint given by (4.5) is a standard problem in optimal control. The

Hamiltonian for this problem is (prime denotes transposition).

H= p'(Agz) + 0(x )a)- 5(g-2))'Q) (g=2))- F(h-A.z -0(x )a) ', (h= 2, -0 (x )a)
(4.9)

The costate equation is

p=-H = -Agp + Q,(g-2)) - ALQ,(h-Acz, ~ Q(XP)Q), p(tp) =0 (4.10)

1

and the gradient condition is
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Hy = 0" (x)[p+ Qph = Agz) ~ 8(x)a)] = 0 (4.11)

Solving (4.11) for the optimum control a yields

a = (9'(xp)Qze(Xp))—le’(xp) p + Qz(h - Ale)] (4.12)

Existence of an optimal control fof the formulated problem
can be viewed as a controllability condition in a function space S of
elements (g, h), where h is either equal to é or an approximation to é.
Taking (4.8) to define the norm, then the system described by (4.5) is
defined to be controllable in S if a control a exists such that the
element (zl - g, él - h) has minimum norm. Satisfaction of this con-

" trollability condition requires the existenée of the matrix inverse in
(4.12).

Equations (4.5), (4.10) and (4.12) constitutes a two-point

-boundary—value problem. Due to the linearity of the equations the

solution is easily found using standard methods. Let
L(x ) & (6" (x)Q,0(x ) M0 (x) (4.13)
P pT72 P P

Substituting (4.12) into (4.5) and (4.10) it is seen that

2, ¢ ! e(xp)L 2,
——] = —~-ﬂ—-_~- e S _ (4.14
* b _
) C2 : Cl. p
where
c. A

L= (@- e(xp) LQ,) Ag

>

— 1
g = @ FAQC

6(XP)LQ2h

- - > emet e —a wae G W e S e ma

Q8 - AgQy(T - 8(x,) 1O (4.15)

e



and where I is the unit matrii. The general solution of (4.14) has the

form
z (t.) z,(t ) y
AE - W(te, t) NI R e - (4.16)
(o) .
p(ty) p(t) Y, -
where
y t
y 812212 7 F ye, o r(o)dr (4.17) .
yZ .to‘

and where y(t, 1) is the state transition matrix for (4.14). It is seen
from (4.16) that y can be found by solving (4.14) taking zl(to) =0 = p(to)
for the initial values. The state transition matrix is found by solving
(4.14) taking w(to, to) =1, r=0.

Substituting the boundary conditions into (4.16) and parti¥

tioning.w(tf, to) in the form

VRS
w(tf, to) = -11—}—22— (4.18)
H
Va1 V92
it is seen that
p(t) = =4+ (4.19)
o 22 Y2 .

The initial costate given by (4.19) in conjunction with—(&.5), (&4.10)
and (4.12) defines the optimal estimate of a over the observation interval
to <t é:tf' The computational procedure will be referred to as algorithm
I. |

Minimization of a cost index of the form éiven by (4.8) subject
to the dynamical constraint of (4.4) has found extensive applications in

state estimation (Sage [11]). There is, however, a fundamental difference

in the problem formulations. In the state estimation formulation, (4.5)
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and (4.8) are'replaced by

¥ =Ax +Bd, % (t) =x (4.20
L= AR+ BG, R () = x (4.20)

- 1 tf “~ o~ 2 3 - 2

J = E-ti [||zp - xp|| Q + ||xp - Axp|| Q}dr (4.21)
The minimization of J subject to the dynamical constraint of (4.20) is

a problem‘in optimum filtering. The problem can be considered as one of
finding an approximation ip to Zp so that the error (Eb - ip) has minimum
norm subject to a cost penalty associated with the norm of the control
effort. The solution of the two-point boundary-value problem defined by
(4.20) and (4.21) can be obtained by invariant imbedding or by use of a
Riccati transformation. Either approach results in the Kalman filter
algarithm.fqr generating.thé.optimal.estimate.ip of the s.ta.te.x.p given.
the measurements Ep over an observation interval tof§=r < t. Comparing
the second terms in the integrands of (4.8) and (4.21) it is seen that
there is a fundamental difference between the state and parameter esti-
mation problems. Tﬁis difference manifests itself analytically in the

controllability condition (the existence of L(xp), see (4.13)) which

does not arise in the solution of the state estimation problem.

4,4 'Estimation of 'a Periodic AV. ‘Algorithm IT.

Several questions arise concerning the estimation accuracy of
algorithm I. The first question concerns the effect of measurement noise
on the optimal estimate. It is seen from (4.7) that h, since it approxi-
mates é, may lose its significance if the data representing g is noisy.

To some extent this loss of significance can be taken into account by



decreasing the absolute value of the elements of the weighting matrix Q2
i(see (4.8)). A second question arises concerning the satisfaction of

the controllability condition. Algoriﬁhm I must be modified if pfactical
answers to the above questions are to be found. When no information is
available about noise statistics there is no unique best method for for-
mulating an estimation problem, since the choice éf a cost index, such

as the quadratic cost index given by (4.8), is an arbitrary one. Con-
sequently, estimation algorithms can only be judged on the basis of
trade—-off between computational complexity and estimation accuracy. With
the above discussioﬁ in mind, an algorithm is developed for estimating

time-varying periodic parameters. Let

A -
Xy =2 = X, (4.22)
X, = Afx2 + e(xllg, Xz(to) 0 €4.23)
It is seen from (4.5) and (4.20) that
X, = Afx3 + 6(x2 + x3)§, x3(t0) =0 . (4.24)

Equationv(4.23) is taken to represent the dynamical constrainf
for the new problem formulation. It is seen from (4.1) and (4.23) that
the dynamics are noise-free. A cost index of the form given by (4.8)
must be specified to complete the problem formulation which is based on
the following assumptions: (1). L(xl).is well-conditioned (see (4.13)).

(2) an estimate a of a is available and an estimate x, of x, can be found

3 3
by solving (4.24) using successive approximations. That is, i3 is defined
by . -
Xq = Afx3 + e(leg, x3(t0) ='0
X, = Ax, + e(xl)g, XZ(to) =0 (4.25)



(3) The cost index is (see (4.8) and (4.22))

-1
T=3

Lt - 2 T .2
¢! [le = %5 - x,[1%; + [|h - %5 - x,[[%Q,0ar  (4.26)

Successive approximations converge if the norm of a is sufficiently
small. This restriction is imposed to achieve convergence in the two-

stage estimation of A_ and Av' (If A_ is known, then the first estimation

£ f

stage is unnecessary; (2.4) could then be used to define i3 and no norm

constraints need be imposed on a). It is always possible to avoid ill-

conditioning oflL(xp) by modifying the values of its time—varyihg elements.

The modifications, however, cannot be arbitrary. They must enter into -
the problem formulations in a mathematically consistent manner. In the
present problem formulation it is seen from (4.22) and (4.26) that L(xp)
is replaced by L(xr)r Equations..(4.23), (4.25) and. (4.26). define.a..two-
point boundary—vaiue problem for the optimum estimate.

Let T be the length of a sampling interval and let t_. - to = NT

f

be a fixed estimation interval. At the end tf of‘an estimation interval

a new measurement sequence is taken over an observation interval

tf <t éztf + 2T. That is, the next estimation interval is to + 2T < t £

(N + 2)T (see Fig. (4.1)).

OBSERVATION INTERVAL
FOR NEW MEASUREMENTS

~}-

[ Suiudliudibuiid
. H N
' olr NT(1+NJT : ts

ESTIMATION INTERVAL

OPERATION PERIOD

FI1G. (4.1) THE RECURSIVE O0BSERVATION - ESTIMATION
INTERVALS.
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In.order to solve Eqn. (4.25) over this interval it is necessary
to extrapolate éﬁt). This can be done in a variety of ways; One method
is to fit a polynomial to sampled values_é(t0 + kT),‘k =0, ..., N, and
to use the polynomial approximation for extrapolafion. .Alternatively, ,
if it is known that the length of the estimation interval NT is greater
than the smallest period of the periodic components of é} then the known
periodicity of_é can be used for extrapolation. The following is a
summary of Algorithm IT:

1. A measurement sequence g(tO + kT), h(t0 + kT) and an estimate
éﬂto + kT) over an estimation interval k = 0, ..., N are assumed known.
Take a new measurement sequence over an observation interval k = N, ...,
N + 2 and define a over this interval by extrapolation.

2. Solve fhe two-point boundary-value problem associated with the
new estimation interval for a new estimate (Eﬁuations (4.23), (4.25) and

(4.26)). The two steps of the algorithm are repeated recursively.

4.5 'Estimdtion of d Periodic Av. Algorithm III.

Algorithm II makes reéursive use of measurement data and pre-
vaious estimates. It is based on the solution of an optimization problem’
hévingmthe,noise free.dyﬁamics.of.(éa23) and. a. cost index given by (4.26)
where i3 is generated in a smoothed form by integrating (4.25). Conse—v
quently, it can be anticipated that algorithm II Will be superior to
algorithm I if measurement noise is présent. There is no guarantee,
however, that the controllability condition is satisfied. That is,

L(xl) may be ill-conditioned. As mentioned in the previous section, one

method for overcoming ill-conditioning is to modify the time-varying

elements of L by modifying the problem formulation.



Let El be an estimate of zl and let

X, =.Afx2 + e(xl + 21)2, x2(to) =0 | (4.27)

represent the dynamics associated with a third problem formulation. The

cost index is taken to have the quadratic form (see (4.8)).

-t
Tradd [1g - =117 + ||h - x,[|"0,)dr (4.28)

Comparing (4.27), (4.28) with (4.5), (4.8) it is seen that El should be

chosen so that x, approximates z

9 (Ideally, in the noise-free case

1.
and when L(xp) is well-conditioned, then the cﬂoice El =z, can be made.

This results in x, = z, and Algorithm III degenerates into Algorithm I).

2 1

If L(x,) is ill-conditioned Algorithm IT will fail. This ill-conditioning

can be overcome in Algorithm IIT provided El is chosen so that L(xl + 51)

is well-conditioned. A further constraint is imposed on El by the require-
ment that the two-stage estimation procedure converges. This requiremént,
which was discussed in the previous section, led to the use of successive
approximations and the assumption that the norm of a must be sufficiently
small., It is evident that El is constrained by several conflicting re-
quirements. Some sort of mathematically tractable approach must be taken.
which accounts for the variqus trade-offs associated with ill-conditioning,
dynamical approximations and two-stage convergence.

Solving (4.5) by successive épproximations using z. = 0 as an

1

initializing function and an estimate a gives

.
X

9 Afx2 + e\xl)i, XZ(to) 0

X

3 Afx3 + e(gl.+ XZ)E’ x3(to) =0 (4.29)

AY
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for the next two approximating functions. Let z, be defined by

1

z, = ax, + Bi

1 9 (4.30)

3
The general structure given by (4.30) allows the trade-offs mentioned
above to be investigated as a function of two scalar parameters a and B.

The choice o = 0, B = 1 results in z, being defined by successive approxi-

1
mations given by (4.29). Numerous algorithms for the solution of linear
algebraic equations are given in [24]. Abramov's method for accelerated
_convergence results wheﬁ a =2, B=-1. (The justification for using

these algorithms is easily seen by the discretization and subsequent
rearrangement of (4.5) into a linear algebraic equation).

Algorithm III is based on the solution of the two-point boundary-
value problem defined by (4.27), (4.28), (4.29) and (4.30). The scalar
parameters a‘and,B,can.bemdetermined by numerical. experimentation. or. they
can be chosen on the basis of successive approximations (¢ = 0, B =.1) or
Abramov's method (o = 2, B = -1). |
4.6 Two-Stage Estimation of A

£ and A,'

During the first stage an estimate of A_ is found given an

f
estimate of Av' Three different algorithms have been developed in the
previous sections for the second stage during which an estimate of AV is

found given an estimate of A The two stages are performed sequentially.

£
Together they comprise a composite estimator for A. For reasons of

simplicity, the discussion is limited to the development of a first stage
algorithm which is associated with second stage Algorithm I. The modifi-

cations required if second stage Algorithm II or III is used are straight-

forward.
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Equétion (4.4) defines the dynamics associated with the first
stage of estimation. If X, were available through measurements, (4.4)

could be discretized and Af estimated by use of standard minimum mean-

square error estimation procedures. However, x, is not directly available.

1
Furthermore, a two-stage estimation is proposed and the interaction
between stages must be accounted for if a convergent sequence of esti-
mates is to be obtained,

Chapter 2 has suggested augmeﬁting (4.4) by additional states
and controls to reduce the effect of quantization noise which is intro-
duced by discretization., It is shown that the use of augmented states

and controls results in rapid convergence of the estimates. The augmented

states and controls are defined by successive integrations of (4.4):

vi = Ay v By
. xp(to), i=1
yi(to) =
0 , 1i>1 (4.31)
A £
=z f =
Vi =5 Yi194T vy T X
A ot . _ '
uy —,g ui_ldT, U =u (4.32)

For composite estimation of~ A, successive integrations has  the beneficial
effect of'reducing the influence of the time-varying components of'AV on
the augmented states. The augmented system of equations (4.31) are dis-
cretized and rearranged into a set of iinear algebraic equations. The
optimum estimate for Af if taken to be the solution with minimum mean-
square error (For details see Chapter 2).

In the case of composite estimation the above procedure must

be slightly modified since x, is not directly available. Consequently,

1



X, must be estimated from existing data. From (4.3) and (4.5) it is

1

seen that

(4.33)

where

z. = A_z + e(xp)i, _zl(to) = 0 (4.34)

In (4.34), Af and_é are estimates of Af and a respectively. The first

stage of estimation consists of a minimum mean-square error solution of

the discretized equations (4.31) using (4.33) and (4.34) to define X .
The new estimate of Af is used in place of the old estimate

provided that it results in improved prediction of the state of the sys-

tem. The following cost index can be used as a basis for making this

decision:

Hx, - %) - %) | %, | (4.35)

In (4.35), Q3 is a positive definite weighting matrix. The rate of -

change of J, between estimation intervals is useful in making decisions

1
concerning the displacement length (2T) of the observation interval. The

displacement can be increased when the rate of decrease of J, goes below

1
a preset threshold.

4.7 ’Examgleg

In all examples the following computational procedures were
adopted., The two-point boundary-value problem was solved using a fourth-
- order Runge-Kutta method with an integration step-size of 0.025, The
time-varying estimates a(t) were generated in the computer by storing

the values at grid points and taking a piecewise constant approximation



a(t)=a(t +kT), kT < t <(k + 1)T). In the case of algorithms II and III,.
o SN

extrapolation of é_was performed using a very simple constant approxi-

mations, éﬂtf + kT) =_é(tf), k=0, ..., , and the initializiﬁg

functions for successive approximations were taken to be identically zero.

4.7.1 Example 1.

Consider a first order system

f

x = ~(1 + b sinwt)x + u (4.36)

where the control u is taken to be a step function of magnitude equal to
3 and x(0) = 0 with

T = 0.025, & = 4, N = 80 (4.37)

The TYength of the whiole operation period for all the examples
is taken to be 10 seconds. The iength of the estimation interval, as
seen from (4.37) is NT = 2 seconds and the same has been considered for
all the subsequent.examples. The magimum percentage errbr of the estimaté
of a(t) = b sin wt for different b and w values are given in Table

(4.1). Table (4.2) shows the results when a(t) is a square wave:

> 0.5,.. 0 £ t.< 0.5
a(t) =
-0.5, 0.5 <t < 1.0 (4.38)

In the case of algorithms II and III, two estimation intervals were re-
quired to obtain the results given in the tables. Algorithm ITI was tried
with successive approximations (a = 0, B = 1) and Abramov's method

(@ =2, B =-1).
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4.7.2 Example 2.

Consider the second order system

x. = =(1 + b131n wlt)x2 + uy

x, = -(2 + b2 sin wzt)x1 - X, + u, (4.39)

where uy is taken to be a step function of magnitude equal to 2 and

1, t >3 ' (4.40)

In addition to (4.37) the following values are used: xl(O) =0 = XZ(O),
=3, w, = 2. Table (4.3) gives the maximum per-
centage estimation errors for the parameters al(t) = bl sin wlt and

a2(t) = b2 sin w

2t, respectively. In the case of algorithms II and III,

two estimation intervals were used.

4.7.3 Example 3.

Consider the third order system

X, = (1 + b1 sin wlt) x2'+ uy
%2 = -(2 + b2 sin wzt) Xq = X, + u, .
X3 = -3+ a3(£))x; - 2x5 + uq (4.41)

where the controls uy and ug are taken to be step functions of magnitudes

0.1 and 0.5, respectively and where
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t, t<3 : ’
u2 = .
1, £>3 (4.42)

The parameter a3(t) is periodic and given by

1, 0<t<0.25

A

a3(t) ={
-1, 0.25 <t <0.5 (4.43)

In addition to (4.37) the following values are used: xl(O) = x2(0) =

x3(0) =0, b, = 0.3, b, = 0.5, w, = 3., wy = 2. Table (4.4) gives the

2

maximum percentage estimation errors. In the case of algorithms II

1

and III , four estimation intervals were used.

4.7.4 Example 4.

Thennext»twopexaﬁples~illustrate~the-composite two~stage. -
estimator. In both examples the first-stage of estimation was initialized
by taking.é = 0 as the initial estimate for a and only one set of aug-
mented states and controls was used (i = 1, 2, see (4.31) and (4.32)).

Consider the second order system

]
I

(1 +b, sin w t)x2 + u

1 1 1

ke
|

= (b2.sin wzt)xl,+ a3x2,+ u, | (4.44).

where the controls uy and u, are taken to be step functions of magnitude

equal to 2. and 3., respectively. In (4.37), £ is taken equal to two and

the following values are used: xl(O) = x2(0) =0, b1 = 0.3, b2 = -0,5,

=1, w, = 2, a3A= 1. After two estimation intervals the maximum per-

| 2

centage estimation error for a; was 1.2% and after ten estimation in-

tervals, the maximum percentage estimation errors for a, and ay were 1.8%



and 1.0%, respectively.‘

4.7.5 Example 5.

Consider the second order system-

(1 + bl sin wlt)x + u

*1 7 27 M
X, = ay%, + agx, + u, ‘ (4.45)
where bl = 0.4, a, = -2, a; = -1, w; = 2 and where all remaining data is

the same as in Example 4. After the second estimation interval, the

10 @ and a. were 0.9%, 0.4%

maximum percentage estimation errors for a 29 3

and 0.3%, respectively.

4.7.6 Example 6.

In the previous exémples the measurements were noise-free;
Example 1 has been tried with zero mean gaussian measurement noise with
pnity standard deviation and the random noise generator has been randomly
initialized. A peak r.m.s. signal to noise ratio of 10 was taken. The
following values were chosen: b = 0.4, w=1, a =2, B =.—l. The maximum
percentage estimation errors for algorithms. I, IT and IIL were 6%,..3.2%
and 2%, respectively. In the case of algorithmvaI and ITII, seven and
four estimation intervals were used, respectively.

The examples show that the pfoposed algorithms and the two-
stage estimation method can give accurate estimates of linear system
parameters. If the measurements are noise free, Algoritﬁm I gives the
most accurate estimates. In the case of measurement noise, Algorithms

IT and IIT give better estimates. In the above examples, no problem



was encountered with ill-conditioning in any of the above cases.
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b bl 0.5 1.0 I 0.25%
I 3.0 0.6 % | 0.75% I 1.0 %
3.0 1.0% | 1.5% o(_;zzﬁ:_] 0.8 %
I —7
2.0 0.7% | 0.85% il 1 06823%
s 3.0 0.9% | 1.0% TABLE (4.2)
«=2, B==1]| ¥ 9% | 1.0% -
we0aer | 30 | 093%| 095%
TABLE (4.1)
at a2 a; a, dy
I 0.6% | 0.1% I 12% | 16% | 0.5%
T 1.0% { 0.3% I 2.0% 20%. 1 0.4.%
o(ﬂmﬂ:_, 0.9% | 0.25% 0@2% 1.75% 1 2.0% | 0.45%
weo oy | 091% | 0.28% | | s | 168% | 22% | 05%
TABLE (4.3) TABLE (4.4)




5. OPTIMUM CONSTANT FEEDBACK GAINS FOR
LINEAR SYSTEMS AND THE PROBLEM OF

TRAJECTORY SENSITIVITY REDUCTION

5.1 Introduction

The optimum solution of the linear state regulator proBlem
with quadratic cost has assumed a central position in the development
of modern control theory. The optimum gain, however, is in general
time-varying and this has severely restricted practical applications.
Practical considerations generally specify constant or piece-wise con-
stant feedback gains. Considerable effort has gone into the development
of design procedures for constant feedback gains and in the design of
specific optimal controllers [25-29].

There are, however, computational'as well as practical diffi-
culties associated with optimum constént gains. Specifying a constant
gain results in a constrained optimization problem and the solution of
the associated two point boundary value problem is generally more diffi-
cult. Furthermore, the optimum constant gain depends on the initial
conditions. One method that has been proposed to overcome these diffi-

culties is to introduce the trace of a cost matrix which then allows ini-

tial conditions to be eliminated in the problem formulation by arbitrarily

assuming a uniform distribution of initial states over a sphere [25-27].
From a design standpoint, however, it is important to investi-

~gate the effect of initial conditions on optimum feedback gains before

computing average suboptimum gains. Furthermore, in many practical situ-

ations, state trajectories are controlled, and the effect of initial
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conitions.on optimum gains can become important. This occurs, for example, -
in certain schemes for combined estimation and control. During a finite
observation interval, measurements of the state are taken and used to
determine paraméter estimates of a linear model. The linear model is
used to compute a control strategy which is applied in a subsequent control
interval [11], [5]. This scheme seems particularly attractive for adaptive
systems. Its practical implementation; however, requires an on-line
computational algorithm for determining optimal or suboptimal gains.
Trajectory sensitivity minimization is an important practical
problem that has received considerable attention [30-37]. A widely
adopted method is based on augmenting the state vector with the sensi-
tivity vector and formulating a linear state regulator‘problem for the
augmented state. However, if time-varying gains are permitted, the
problem is ill-posed L35rh38J. A well-posed. trajectory sensitivity miniv
"mization problem requires that the gain be constrained to be time~invariant.
In general, the sensitivity vector is affected by initial
conditions. Consequently, if feedback is to minimize trajectory sensi-
tivity, -the effect bf initial conditions on the optimum constant gain
must be evaluated. It may be possible to choose a suboptimal average gain.
A unified treatment of several problem formulations dealing
with time-varying gains and constant gains is presented. Extensive"use.
is made of the known results for the linear state-regulator problem to
develop a simple algorithm which results in rapid convergence. An
approximate method is developed to repléce the nonlinear two point
boundary value problem by an algebraic optimization problem. This method
appears to be suitablé for on-line computation oflsuboptimum constant

feedback gains.
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5.2. Problem Formulation
Consider a linear timé—varying system

x = Ax + Bu, x(0) = x_ . | (5.1)

where the state x and the control u are n x 1 and m X 1 vectors, res-
pectively. The optimal control which minimizes the quadratic cost

index (prime denotes transposition)

ftf

1
Jo = 2 o

o (x'le + u'Ru}dt, (5.2)

~where Ql is positive semidefinite and R positive definite, is given in

feedback form by

u = —Rm1

]
B le. (S.?)

The time-varying gain matrix Kl is found by solving a matrix Riccati

differential equation and has the property that Kl = Ki. To ease the

notational burden, argument values of functions are omitted when they
appear unessential and only one parameter q in the matrix A is considered

e e A A 9x
to have a significant effect on sensitivity. Let z = Sa-represent the-

closed~loop trajectory sensitivity vector. A feedback structure of the

form

1

u = -R "B (le + Kzz) : (5.4)

is postulated, where Kl = Ki and K2 = Ké. This specific structure is

postulated because it resembles the feedback structure of the optimal
control resulting from solving the state linear regulator problem

(see (5.3)). Substituting (5.4) into (5.1) and neglecting the second-
> A .

X R . J X X
order sensitivity function —5 yields

9q
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s - A - -0
z = 3q x + (A FKl)z, z(0) =0 (5.5)
where F & BR_lB'. By defining an augmented vector y' = (x', z'), (5.1)

and (5.5) can bé combined into a composite vector differential equation

y = (A - FR)y = Cy, y(0) =y, (5.6)
where
' A 0 F O K, K X
— A = A - Al 1 T2
A S , F & , K 2 . Y, = ° (5.7)
3A . _
T A - TR, 0 0 K, K, 0

Equation (5.6) represents (5.1) and (5.5) when R, =X This constraint

1 1
is relaxed in (5.6) in order to obtain a unified treatment of the
linear and nonlinear formulations.

The design objective is to ghoose gain matrices Kl and K2 so
that (5.2) is minimized subject to the additional constraint that - the
feedback (5.4) reduces, in some sense, the closed-loop trajectory
sensitivity vector z. A mathematically tractable approach that has
been widely adopted in sensitivity studies is to neglect second-order

sensitivity terms so that (5.6) is valid and to introduce a cost index

t

IRy, R, t) = %-é fy@+ &Ry & (5.8)

£

where Q is an augmented positive semidefinite weighting matrix [32—381.
The optimum gain matrix minimizes'(5.8)vsubject to the differential
constraint (5.6). It will be seen that the sensitivity problem formu-
lated by (5.6) and (5.8) is well-posed only if the gain matrices are
constant.

The argument list in the cost index (5.8) is used to distinguish



8

between different problem formulations. Let I(K K, tf) and I(K

l) Il’

where K1 is arbitrary, represént the linear and nonlinear formulations,

K, ),

respectively (If (5.6) is rewfitten in the form § = Ky'+ Fg, then for the
linear formulation the matrices A and F are completely knoﬁn'and inde-
pendent of Kl' This results inilinear dynamic constraints. For the
nonlinear formulation the parametric matrix A depends on the unknown gain

matrix Kl. This results in nonlinear dynamic constraints). The Hamiltonian

for either formulation is
H = p'Cy - %;y'(Q + Kfﬁ)y‘ (5.9)
where the costate vector p is defined by
p=-C'p + (Q+KFR)y, p(t)) = Pg = 0 (5.10)

Gradient matrices (see Appendix IIi) are used to derive the gradient
condition for a minimum. In order to use gradient matrices all matrix
elements must be independent»and cannot_be constrained by the symmetry
condition K = K'.

This is easily accomplished by taking K = K + K', where K is a
matrix with arbitrary elements. 1In order to introduce a compact notation
which proves useful in subsequent discussions, it is assumed that F is
time-invariant. The gradient condition for the linear-formulétion

I(Kl, K, tf) can then be expressed in the form (see Appendix V)

,,aJ(Kl,_K,tf) t

K : K dt ® KF + FK® + F@py + @pr 0
(5.11)
where
il st '
—_— yv' dt (5.12)
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" (Equation (5.11) remains valid.in the general case of time-varying F
provided that KF aﬁd F are moved under the respective integral signs.
Keeping this in mind, it is seen that the form (5.11) is actually not a
restriction but rather a notational convenience).

The gradient condition for the nonlinear formulation I(Kl’
K, tf) differs from (S.li) in_an additional term which arises from the
dependency of A on Kl' Lét p' = (pi, pé) be a partitioning of the
costate vector which corresponds to the partitioning of y and lét K, =

1

L + L', where L is arbitrary. The additional term which is associated

with Kl is

t. -

-2 f Tr(FR zpt)dt = Fo  +4 F (5.13)
oL o 1752 P, zp, . )
Introducing the augmented matrix
POt O Flo
gl 22 2 ——-{ (5.14)
0 1 0|

allows the gradient condition for the nonlinear formulation to be ex-

pressed in the form

aJ(Kl,K,t )

L —E+o6 RF+FRo +Fo  +6 F=0 (5.15)
oK vy vy Py ypP
Minimizing J(Kl, K, tf) is a constrained optimization problem. Conse-
- quently

J(RE, Bx, t) = Iy, Ky ) (5.16)

f

where K* is the optimum gain matrix for the nonlinear formulation. If

K1 = Ki, it is seen from (5.16) that the minimum for the linear formulation



is achieved when K = K*. The condition E¥ = 0, which is satisfied when

F@p +e¢ F=0 ‘ (5.17)

is an optimality condifion. It is interesting to note thét if time-
varying gains are perﬁitted, the optimaiity condition (5.17) becomes a
singularity'pondition which is impossible to satisfy [32, 37]. This
indicates that the sensitivity problem formulated with time-varying
gains is ill-posed and cannot, in general, meet the design objectives.
Equations (5.11) and (5.15) can be simplified and unified by

introducing a matrix S defined by

FS¢ + 6 SF=-F6 -~-¢ F -E (5.18)
vy vy Py yP

(Several methods are available for solving an equation of the form (5.18)

for 5. See Appendix II).. Substituting (5.18) into (5.15) yields

3 (K K, ) o
——=0_ (K -S)F+FK -5 =0 5.19
Y& gy ) ( Yo o (5.19)

Equations (5.6), (5.10) and (5.19) define a nonlinear two-
point boundary value problem which must be solved in order to determine

the optimum gain matrix.

5.3 Unified Treatment of Different Formulations

Because it is a constrained optimization problem, the computation
of optimum constant gain matrices is generally more difficult than the
computation of unconstrained time-varying gains. It is only in the

special case of time-invariant systems and infinite t_. that the problems

f
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are computationally equivalent. From an eﬁgineefing point of view,
however, constant gain matrices are easier to implement and therefore
preferable, despite the possible computational difficulties. It is
evidently desirable to'retain the éomparative.computational simplicity

of the unconstrained time-varying gain case, as far as this is possible.
This requires developing a uﬁified treatment for the various formulations
and then making maximum use of the known results for the linear state
regulator problem with time-varying gain and quadratic cost.

Substituting the Riccati transformation

p = -Sy (5.20)
into (5.10) and using (5.6) yields-

S+ SC+ C'S = -0 - KFK, Sp =0 (5.21)

Consider the general case of a time-varying system with time-varying
gains. In the linear formulation I(Kl, K, tf), E = 0. Substituting
(5.20) into (5.18) yields

t

! £ FGE - 9)yy' + y9' G - s)Pde = 0 (5.22)

Equation (5.22) is satisfied when S =S and (5.19) is satisfied when

K =S =S. Substituting this- constraint into (5.2L). giveswthefstandard

matrix Riccati differential equation for the optimum time-varying gain.
In the case of a constant gain matrix the above procedure must

be modified. Heuristic considerations indicate that some sort of time

average of S should result in a good suboptimum constant géin (For a

time-invariant system, the steady-state solution of (5.21),_taking

K =S5, often gives a good suboptimum result).



The correcﬁ time avefage to use is given by (5.22). ‘Replacing
Sy by p, (5.22) can be solved for § by use of Kronecker products
(See Appendix III). The vector representation (§)V of the matrix S
satisfies the linear equation

T F 1(8 o 7 + ] . R
[qayy QF+FQ® <1>yy](s)V (F<1>py opr)V (5.23)

A method of successive approximations could be considered for
solving the two-point boundary value problem. Using a nominal gain
K = Kl’ (5.6) is integratéd in the forwafd direction and (5.16) in the
backward direction. Equation (5.23) can then be solved for S and (5.19)

used to determine the gain increment. The updated gain is

K2 =35 (5.24)

and the procedure is repeated iteratively. While successive approximations
seems straightforward, they generally féil to converge in the case of
nonlinear two-point boundary value problems. The special structure of

the formulated problem, however, allows some insight to be obtained

concerning the convergence of successive approximations.,

5.4 Gradient Descent and Successive Approximations

aJ . .
Let (tSK)v and (SE)V be the vector representations for a matrix
gain increment and the gradient matrix, respectively. The incremental

cost associated with 8K is given by

8J

500 G,

~(8K) W (S - K)v | (5.25)
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where

A - v
W= F+F : .
(<I>yy ® 'Y <I>yy) (? 26)

is positive semidefinite (see Appendix III). Consequently, if

K=w@ -8, 0<w=1 (5.27)
then

It
o

63 = w(@ -ROWE - B 2 (5.28)

The gain is updated by
Kk+1 = Kk + w(Sk - Kk) (5.29)

where the subscript k is used ﬁo indicate an iteration stage. For the
problem formulation under discussion, successive approximations (5.24)

is a special case (w = 1) of gradient descent (5.29) with a weighting
matrix (5.26). Consequently, the proposed successive approximations
method is equivalent to a deflected gradient method. In the case bf
quadratic cost indices it is known that some deflected gradient methods
(such as conjugate gradients) result in significantly improved convergence
rates. Having established the property that (5.24) is a deflected
gradient descent, it is of interest to see whether it has the properties
of improved convergence, such as quadratic convergence. It is known that
successive approximations results in quadratic convergence in fhe_case

of unconstrained time-varying gaiﬁs. Quadratic convergence can be proven
by considering (5.21) for two successive iterations. Introducing

A

ASk = Sk+1 - Sk’ the linear matrix differential equation for ASk can be

solved using standard procedures, giving
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t. = = (== -
8 (0) = [T gy (T O Ry = RIF(Gyy = Ky (1, 0)dr +

£tf b (OO LRy 'vsk)f(ik "~ Rea) B = R F®R = 50y, (1,00de
o - | (5.30)
In (5.30) wk(t, 1) is the state—transitién matrix of (5.6) at the k-th
iteration stage. It is easily shown that the cost inde# at stage k is
given by J =-% yéSkyo. The incremental cost AJ 4 J - J is found

k k k+1 k

from (5.30) and can be expressed in the form

—AJk = Tr[@yy(k)(ﬁk+l - Ek)f(ﬁk+l - Kk)] + Tr[(%%)k(ﬁk ~ Kk+i)] ‘(5'31)
where

Ad. éft : ' z _ o ST _ ' :
Rk = o F WiernViern e = SOF + FlGy = Sy 1dr (5.32)

and where the notation ny(k) is used to indicate that (5.12) is evaluated
at stage k. The gradient condition (5.19) can be obtained from (5.31)

by noting that Tr[(A + A')B] = 0 for arbitrary symmetric matrix B only
when A + A' = 0. Equating (5.32) to zero yields (5.19).

The remarkable properties of the case with unconstrainéd time-
varying gain are seen from (5.32). By setting Kk+l = Sk’ (5.32) vanishes
and the decrease in cost (5.31) is quadratic [38]. This is accomplishe&'
by solving (5.21) .using successive appfoximatiqns. The same quadratic
convérgenée would result in the case of constant gain if Ek+l coula bé
chosen to make (5.32) vanish. In principle this may be possible.
However, Vit depends on Kk+1' Consequently,lany attempt to satisfy the.

a3

condition (AK k- 0 would result in poor convergence.

It is reasonable to look for an approximation by replacing



Vi1 in (5.32) by yk. Let (%%)k fepresent the matrix arising from this

substitution. It is seen that
& =6 (0® . - S)F+F®. - §)6 (k) (5:33)
ARk Syt Ky — 5y K1 ™ 5%y ‘

where §k is defined by (5.22) evaluated at stage k. It follows from

(5.33) that (%%)k =0 if Ek+l is determined by successive approximations

(set w =1 in (5.29)). Since C%%)k is an approximation to (%%)k it is
reasonable to anticipate that successive approximations results in rapid
convergence. A rigorous préof of quadratic convergence would require
showing that the second term of (5.31) is either never negative or, if it
is negative for a certain gainvséquence, that its absolute value is less
than a fixed fraction of thé first term, which for Rk+l #lﬁk, is always
positive. From a practical point of view such a proof is not essential.
If the choice w = 1 should happen to result in divergence, then a choice
W < 1 can be made which will always give a coﬁvergent sequence (see (5.28)).
The proposed computational algorithm is the following. Choose
a nominal K= K,. Integrate (5.6) in the forward direction and (5.10) in

1

the backward direction. Solve (5.18) for S, and update the gain by

k
use of (5.29). The rate of convergence is controlled by w. Computationally,
the proposed method is similar to the conventional steepest descent
procedure. The. essential. difference is in the use of a variable weighting'
matrix (5.26) to give a deflected.gradient. The associated change in the
gain matrix is actually given by the simple successive approximations
formula (5.29).

Limited computational experience ;o'date indicates that this

variable gradient deflection allows a large step (w = 1) to be taken

resulting in rapid convergence.
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Note that the linear and nonlinear formulations of the sensi-
tivity problem are treated in a unified manner. This arises from the
fact that in.boph formulations a nominal gain K is chosen to perform
the computations.

The above algorithm is suitable for off-line design studies.
Since the optimum constant gain depends on initial conditions, there is
a problem of practicalen—line implementatidn, A method for eliminating
initial conditions and deriving suboptimal feedback control laws is
given in [39]. A method which is suitable for combined on-line esti-

mation and control is discussed in Section (5.6).

5.5 Optimum Constant Gain: Trajectory Sensitivity Reduction

Because of its engineering importance, open-loop and closed-loop
system sensitivities have been extensively investigated
(see Reference [32] for a bibliography). However, for the closed-loop
sensitivity formulation given by (5.6) and (5.8), a paradox arises if
unconstrained time-varying gains are permitted. This paradox has been
discussed in the literature but.its effect on sensitivity reduction
does not seem to have been fully.aﬁpreciated [33, 37]. A simple

example can be used to illustrate- the paradox. Coensider-

X = -ax + u, x(0) = X (5.34)
z = -X - az - aKlz, z(0) =0 ' (5.35)
u = —le - Kzz =0 (5.36)
1l o, 2 2 2
1y )
J 7 5 (x~ + sz + Ru7)dt (5.37)



89

and -suppose that Qz'and R are both chosen large compared to unity. This
would seem a reasonable choice to make in order to keep both sensitivity
and control effort small. The optimum time—varying gains, however,
satisfy the constrainti(5.36) and are infinite.' This can be séen by

taking K1 + + o in (5.35). Equatioms (5.34)—(5.37) then yield.

o S
z === %= 0 (5.38)
1
K, = KZ | (5.39)
2 1 SN
~ 1
J =73 | _ (5.40)

The optimum (iﬁfinite) gain can resul£ in a very significant smaller cost
than that associated with other suboptimal (but physically realizable)
gains (see [37]). It is eyident? however, that minimization of (5.37)
has not succeeded in the design objective, which is to decrease system
sensitivity. The system (5.34) with thé optimum contrbl (5.36) operates
open-loop. The same difficulty is experienced with a general n-th order
system (see (5.1), (5.4) and (5.5)). The sensitivity problem defined by
(5.6) and (S.é) is consequently ill-posed if unconstrained time-varying
gains are permitted. From both a computational and an engineering point
of view the simplest constraint is that of time-invariant gainsf It is
interesting to note that this choice was made by Kreindler in his design
studies which dealt exclusively with linear time-invariant systems and

tf = + o [3], It seems natural to choose constant gains in this case.
However, if tf is finite and/or the system is time-varying, then the

choice of constant gains is not obvious.
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5.6 On-Line Computation of Gains

From an engineering point of view a very attractive feasible
on-line adaptive control scheme is to identify a process as a linear
time-invariant system of the form (5.1) over a finite observaﬁion interval
énd then apply a control of the form (5.3) over a subsequent finite
control interval. In such a combined estimation énd_control scheme it
is often important to reduce:the system sensitivity to incorrect parameter
estimates. It is, however, not generally computationally feasibielto
solve a nonlinear two-point boundary value problem on-line.

Some form of suboptimal control must be introduced. It is
known that the éteady—state solution of the matrix Riccati equation
(take K = S in (5.21)) often results in a good suboptimal control. With

this in mind let

P=-My-Ny+e - (5.41)

where M and N are constant matrices. Substituting (5.41) into (5.10)

and choosing M to be defined by

MC + C'M = -Q - K F K, (5.42)
which is the steady - state form of (5.21) gives

e + C'le = =(NC' + C'N)y, e, = M+ Ny, (5.43)

Il

For reasons of notational convenience the linear formulation I(Kl’ , b

is discussed. Substituting (5.41) into (5.11) yields

F(S-M-Mo6 +¢ (S-M-NF=-Fo -0 F 5.44)
( ) vy yy( ) ey ye (



The decomposition (5.41) does not uniquely define N and e. Consider the
poséibility of defining N in terms of observational data so that the
right hand side of (5.44) has a negligible effect on S. The updated gain,

as given by (5.24), is then

§;K2=M+N , (5.45)

It is seen from (5.43) that e is "small'" when N and e_ are "small,

f

Begides the obvious trade-offs involved in keeping N and e_. simultaneously

f
"small", there is also the requirement for on-line computation using

observational data. The following cost index accounts for the various

factors which enter into an "optimal" decomposition (5.41):

t

Al £, 1.y : ' 1 '
Je 2 3 é (e + C'e) Wl(e + C'e)dt + 5> ¢ erf (5.46)

In (5.46) Wl and W2 are positive definite Weighting matrices. Sustituting
(5.43) into (5.46) it is seen that Je is an algebraic function of N,
ny and yfy%. Setting N = L + L', where L is arbitrary, allows gradient

matrices to be used to determine the minimum. This yields

oJe _ ' -
5 = TC' + CT + WZ(M + My, + wf(M + MW, =0 (5.47)
where
t2wse +0 s
17 yy yy 1
s & ne + ¢'N
A ' :

Equation (5.47) can be-solved for N by use of Kronecker products. It is

seen that
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), = 6,

il

(D), = 6,(8)

(TC' + CT)v = G3(T)v

[G1G2G3 + (;4](1\1)v = -<;4(1~¢)v (5.49)
where

c. 2c@r+ImcC =¢!

1 3

c.2s Qu +w ® o

2 vy 1 1 yy

A
G, = wf® W, + w2® Ve (5.50)

Efficient algorithms are availsble for evaluating (5.50) [40]. The
solution of (5.49) for N involves one matrix inversion. The system
parameters. in. the. C.matrix. are. determined. by the. identifier from. ob~
servational data. The matrices ¢yy and wf can be found by a forward
integration of (5.6). Alternatively, it may be possible to use measured
states or state estimates to evaluate these matfices. The gain compu-
tation (5.45) is then an algebraic problem and replaces the two—po&nt
boundary value problem;

On-line use of (5.42), (5.49) and (5.45) to update the gain
is computationally equivalent to solving these equations by successive
approximations. The first iteration must result in an improved sub-
optimum gain. It is desirable, but no essential, that successive itera-
tions result in a convergent suboptimum sequence,

Since Wl and W2 are arbitrary positive definite weighting

matrices, it is not possible to reach general conclusions concerning

the convergence of successive approximations. It is easy to show, how-
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ever, that given a nominal ﬁ, weighting matrices exist which result
in one-step convergence. Suppose that the optimum gain K* is determined
by off-line computations. - Equa£ion (5.42) can be solved for M. Lét
(see (5.45)) N - K* - M and take Wl = I. Equation (5.47) is a Liapunov

type equation which can be solved for a positive definite W With the

9
weighting matrices so defined there is one-step convergence to the
optimum gain. It should therefore be possible to choose weighting.
matrices so that the first iteration results in an improved suboptimum
gain for small variations about nominal parameter values. If the system
is time-invariant and if N is small in the sense that terms involving
products of the elements of N can be neglected, then it is seen by sub-
stituting (5.45) into (5.42) that M is the steady—statg gain., In this

case (5.42) can be solved for. the steady-state gain and N evaluated by

(5vb4b) .

5.7 Examples

To give a non-trivial illustration of the successive approxi—
mations as well as the approximation method discussed in Section (5.6)
tf should be chosen smaller than the settling time of the open-loop
response for the nominal gain, and the nominal gain should differ signi-

ficantly from the optimum gain. These requirements are satisfied in the

case of the second order system

x; = -qx, tu, xl(O) = 1.0 (5.51)
X, = %X , x2(0) = -1.0

1,2 .2, 2
Jo =3 A .(Xl + 3x2 + u7)dt
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by taking q = 1, tg = 2.0, and Kl = (-10, 10). (The syétem is an oscillator
fof u = 0 and is unstable for the chosen nominal gain).

Successive approximationé ((5.6), (5.10), (5.23) and (5.24))
required eight iteratiéns to converge. .No attempt was made to determine
weighting matrices which would result in rapid convergence for the on-line
approximation method ((5.42), (5;49) and (5.45)). An arbitrary choice
Wl = W2 = I was made. Six iterations were required. The results are

the following:

1. Successive approximations

Kl** = (-1.06, - .215), Jo** = 1,518
2. On-line approximaﬁion method.
Kl** = (-1.713, - .952), JO** = 1.565 (5.52)

The minimum cost for unconstrained time-varying gain is Jﬁ = 1.503.
It is seen that both methods give very_good suboptimél constant gains,
The increases are only 1% and 4% for case (1) and (2), respectively.

To illustrate the sensitivity problém consider (5.51) to be

augmented by (5.5) and take

(22

2 v
1 + zz)dt + Jo (5.53)

A comparison is made with Lee's et al. method which uses a
time-varying gain and the choice tf = 10 is made. The following results

are obtained

(a) Lee's method [35] (augmented state feedback; t = t )
o

= - - . - %X = 4
u 2x1 l.5x2 + .25z1 .522, J* = 1.94 | (5754)
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(b) Constant gain (augmented state feedback)

u = —6.8xlv- 6.6x2 + 4.66zi + 2022, J* = 1,70 (5.55)

(e) Constant gain (Non-augmented state feedback)

u = -1.812x, - 1.22x), J = 2.04 | (5.56)

2)
Figures (5.1)-(5.3) illustrate the improvements that result by
use of constant gain and augmented state feedback. The magnitude of the '
control is smaller, the cost index is smaller and there is a significant
reduction in trajectory sensitivity. That the design objec£i§e of tra-
jectory sensitivity reduction is achieved can be seen by comparing the
sensitivity fﬁnctions of case (b) and case (c) (case (c¢) is based on

(5.51) taking t,. = 10).

£
The»optimality«coﬂdition-(Swll) was checked and gave- (-.0002,
© .0004). It should be noted that Lee's method uses a time-varying gain
which is a suboptimum solution of an ill-posed sensitivity problem.

(The gain values given in (5.54) are for t = to). It is therefore not
surprising that an éptimum constant gain can give significantly better

results. Note that increasing t_ from 2 to 10 and using sensitivity

f

augmentation does not result in an appreciable increase in the cost index
(compare (5.55) and (5.52).
The convergence of successive approximation (5.29) was investi-

gated by choosing

K, = (-1.5, -1.0), K, = (0.1, -0.5) (5.57)

as the initial gain. This choice is significantly different from the

optimum gain (see (5.55)). Only five iterations were required to converge



to the optimum.

The following example is used to illustraté the on-line approxi-
mation method when it is applied to a realistic system of moderate complexity.
Figure (5.4) illustrates a block diagram for the feedback control of a

power generator connected to an infinite bus [41]. The matrices in (5.1) are

" 0.0 1.0 0.0 0.0 ] 0.0 ]
-0.676 -.25 25.0 0.0 - | o.0
A= . , B = (5.58) .
0.0 0.0 -2.0 2.0 0.0
0.0 -0.06 0.0 -2.0J 2.0 j -

The components of- the state vector represent the following

variables; x, = power angle deviation, x, = angular frequency deviation,

1 2

Xg = mechanical power deviation, X, = governor position variation, u =
governor position control. The initial state is taken to be xé = (0.,
3.0, 2.0, 0.0) and in (5.2) and (5.46) the choice Ql = Wl = W2 = I and

R = 1 is made., The choice tf = 1 sec. is made to accentuate cbnvergence
problems, in case they should exist.

The minimum cost using the optimum time-varying gain S(t) (see
(5.21)) is J* = 33,215. Successive approximations for the optimum con-

stant gain is initialized using K = S(0). The results for the cases

(a) K=M, (b) K=M+ N, are as follows.

K= 1 2 3 4
(a) J = 45.404 39.167 36.636 36,121 (5.59)
(b) J = 38.035 36.267 35.601 34.682

(a) u* = —.66x1 - 1.22X2 —8.44x3 ~3.35x4

(b) u¥ = -.069x, --1.47x, -10.67x, -5.47x, (5.60)
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The.suboptimal choice K = M in case (a) amounts to taking the
solution of the infinite time case for the constant gain. It is known
that (5.42) converges quadratically to the optimum gain for the infinite
time case. The suboptimum choice K = M 4+ N in case (b) is based on the
approximation technique discussed in Section (5.6). It is seen to have

a quadratic-type convergence and results in a smaller cost index than for
case (a). In fact, the first iteration results in a significant decrease.
A one-step improvement of this kind could be of practical significance in

an on-line application.
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6. OPTIMAL ADAPTIVE CONTROL

6.1 Introduction

In this chapter we wili discuss one possible strategy for optimal
adaptive control which is particularly attracti&e from an engineering
point of view. The strategy is to identify system parameters at the end
of an observation interval and then to use the parameters to derive an
"optimal" control for a subsequent control interval. This chépter develops
one version of this strategy which is based on the identifiers and optimum

controls developed in Chapters 2, and 5.

6.2 Optimum Control During the First énd'Subsequent Optimization Intervals

The particular optimization technique to be used during the
“first optimization interval is of importance since the initial information
about the system is usually insufficient to derive a good control. If
parameter estimates are poor then the optimum constant gains may not be
sufficiently close to the correct values. The problem of éonvergence can
become serious during the first optimization interval. Hence, it is re-
commended to use the successive approximations method with a step size
constant w < 1 (see equation (5.27)).

Figures (6.1-a, b, ¢, d) show the time intervals associated
with a recursive observation-optimization stratégy which would be suitable
for the optimal adaptive systems. The system is considered to start

operating at time tO and to terminate its operation at time t In Figureé

£
(6.1-a, ..., d) (T) is the length of the sampling interval. The length

of each observation interval is (NT) seconds and the start of the i-th
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observation interval is denoted by the.instang (tz). The displacement
between two successive observation intervals is (rT) seconds (see Fig.
(6.1-b)) where r is an integer number. The length of each optimizétion
interval is (TC) seconds and the start of the i-th optimization interval
is denoted by the instant (tg) (see Fig's (6.1-c, d)). The displacement
between two successive optimization intervals is (&T) seconds. The para-.
meter £ is a multiple of r, i.e., £ = mr. The value of m need not be

the séme for every two successive optimization intervals. The choice of
the parameter (m) is based on the rate of variation of certain perfor-
mance indices to be subsequently discussed (see subsection(6.3.4)).

During the initialization interval (to-NT st to) special input test
signals can be used to drive the system. Measurements of the input and
output at successive sampling instants are used to determine initial
estimates of the unknown parameters of the system. The chcice of the
initial conditions at the start of the initialization interval (t' = tO—NT)
is completely arbitrary. At the end of each observation‘interval new
estimates of the plant parameters are computed. At the beginning of each
optimization interval new estimates of the "optimum'" constant gains are
made using the latest estimates of the plant unknown parameters. These

new gains are used for the coming control interval of 2T seconds.

6.3 Examples

In this section a linear, coﬁtinuous sysgem with time-invariant
parameters is considered. Some of the sysfem parameters are unknown
and an optimal adaptive control is computed for.the system. The recursive
observation-optimization strategy described in the previous section is

followed. The identification of the unknown parameters is performed using

10!



the digital identifier developed in Chapter 2. The number of augmented
~sets of states for Examples 1 and'2 are one and two, respectively. The
test inputs used during the initialization interval are taken to be step-
functions with unity magnitgde,_in both examples. The initial conditions
at the stért of the initialization interval are taken to be ideﬁtically
zeré in both Example 1 and 2. |

It should be noted that use of a digital identifier results in
quantization noise. ~ Consequently, even ﬁhough the examples treat déter—
ministic cases, the system models are perturbed by quantization noise.
This noise also affects the value of the bptimum constant feedback gains
which are computed using the idenﬁified parameters; It should be further
noted that the optimum constant gains depend on the system state at the
start of an optimizétion interval. The examples illustrate convergence

of the proposed adaptive-strategy in the presence of quantization noise.

6.3.2 Example 1

The syétem considered in this example'is represented by the
dynamic model
xl.=‘alx2 + u

2 =~ a"le . ' . (6. l)

where the nominal values for a; and a, are ~1.0 and 1.0, respectively.
The initial conditions are xl(O) = XZ(O)'= 1.0. The essential parameters

of the recursive observation-optimization strategy (see Figs. (6.1-a, ...,

d)) are taken to be:

0.2, t, = 10., t_ =0., r=2=2, N=10

T = NI'=2.0 - O (6.2)

T

10
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It is required to compute the optimum constant feedback gains

K. and K2 such that the performance index

1
c .
2+t : :
1 i 2, 2 2 , ’

Ji =3 [c (xl +x, +u )dt (6.3)
t.
i

is minimized using the new estimates of'al'and a, which are obtained at -

the end of the i- th observation intexval. The optimum constant gains
are computed using the successive approximations method developed in
Section (5.2) with w = 1. The optimum solution is assumed to be obtained
when the inequality

AlJi - J§_1| <107 - (6.4)

is satisfied, where J? is the value of Ji at the end of the k~th iteration.
The time t; (see Fig.'s (6.1-c, d)) denotes the beginning of the i-th.
optimization interval. During the first optimization interval the initial
guess for the feedback gains Kl aﬁd Kz is taken to be Kl = K2 = =10,

For the subsequent optimization intervals, the initial guess for the i-th
optimization interval is taken to be the optimum values obtained for the
(i-1)-th optimization inﬁerval. The stopping rule (6.4) was satisfied
after six iterations for the first optimization interval. No more than

two iterations were required to satisfy the stopping rule givén By'(6;4)

for the subsequent optimization intervals., The performance index of the

optimal adaptive system is taken to be

25
J* = § AJ% (6.5)
a . i
i=1

where the optimum value of J; {see (6.3)) is denoted by J? and AJ? is
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the value.of J? for an integration interval s <t < t; + 0.4. Since

the optimum constant gains computed at the start of the i-th optimization
“interval are only used for a period of (2T) seconds starting from the
instant tg, then Jz as given by (6.5) is the total operation cost. For

the sake of comparison the optimum value of the performance index

10 2

1y 2, 2 |
Jo =35 (xI + X, + u7)dt | (6.6)

is computed using (6.1) with a

1 and a, being equal to their respective

nominal values and the control feedback gains are taken to be the optimal
time-varying gains. The optimum value of Jo is found to be 2.046 while
the value of Jgi(see (6.5)) is equal to 2.202, i.e., the increase in the
performance index value does not exceed 8%7 Figures (6.2) and (6.3) show

- that the identification errors do not exceed 5%.

6.3.3 Example 2

The system considered in this example is represented by the

dynamical model

x1 = a1x1_+ 2u
x2 = azx3 + 2u
Xy = 3%, = u 6.7)

where the nominal values for ajs 2y and ay are -1.0, 2.0, and -2.0,
respectively. The initial éonditions are xl(O) = XZ(O) = x3(0) = 1.0.

The essential parameteré of the recursive observation-optimization strategy
are as given by (6.2). It is required to compute the optimum constant

gainSKl, K2 and K3 such that the performance index



i 2 -2
(xl + x

2
2 +Ix

3 + u2)dt (6-8)
is minimized during the i-th optimization interval. The optimum solution
is assumed to be obtained when the inequality (6;4) is satisfied.

In this example, using the successive approximations method
with w = 1 (see equation (5.27)) during the first optimization interval
results in a diverging Sequencg of iterations. Thus w is taken to be 0.1

and the initial guess for the feedback gains are taken to be K, = -1,

1

K2 = -2, and K3 = -3, Twenty iterations are required to satisfy the stopping
rule (see (6.4)). For the subsequent optimization intervals, the initial
guess for the i-th optimization interval is taken to be the optimum

values obtained fér the (i-1)-th optimization interval. No more than

two iterations. are required to satisfy (6.4) for the subsequent optimi-

zation intervals and w is taken equal to unity. For the sake of comparison

the optimum value of the performance index

_ 1 .10 ,.2 2 2 2
Jo =3 é (xl + X, + Xy + u7)dt | (6.9)‘
is cdmputed using (6.7) with ajs 2y, and ay being equal to their respective

nominal values and the control feedback gains are time-varying. The
optimum value, Jg, of Jo was found to be 0.655 while the value of Jg
(see (6.5)) was equal to 0.705, that is, the increase in the performance
index value dées not exceed 7.5%. Figures (6.6), (6.7), and (6.8) show
. a

the identification results for the unknown parameters a , and a

1’ 72 3’

respectively. The maximum identification errors do not exceed 5%.
The rapid rate of identification is evident in both this example

and the previous one since all the unknown parameters have been identified
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‘to a good degree of accuracy after only one observation interval.

In Figures (6.4), and (6.5), the piece-wise constant curves
which are drawn as solid lines represent the optimum constant gain‘Kf
and K%, respectively. The parameters a, and a, (see (6.1)) are updated
at the end of each observation interval and a new estimate of the feed-
back gains is made at the start of fhe following optimization interval.

Since the optiﬁum values of the constant feedback gains dépend on the
plant state at the start of the optimization interval, these optimum
values are not constant during the whole operation period (see Figure
(6.1-a)). The curves drawn as dashed lines in Figures (6.4), and (6.5)
represent the optimum time-varying feedback gains &1’ and ﬁz respectively,
These gains minimize the performance index given by equation (6.6) subject
to the dynamical constraints'given by (6.1) with a; and a, being equal to
their respective nominal values.

Figures (6.9), (6.10), and (6.11) show the optimum feedback gains
Ki,'K% and<K§, respectively. The curves drawn as solid lines represent
the optimum éonstant gains. The parameters él’ ays and a, (see (6.7)) are
updated at the end of each observation interval and a new estimate of the
feedback gains is made at the start of the following optimization interval.
The optimum constant gains are not constant along the whole operation
period but unlike the situation in Example 1 the feedback gains for
Example 2 (see Figures (6.9), (6.10), (6.11)) change less frequently.
The curves drawn as dashed lines in Figures (6.9), (6.10), and (6.11)
represent the optimum time-varying feedback gains il’ iz, and is,respectively.
These gains minimize the performance index given by equation (6.9) subject

to the dynamical constraints given by (6.7) with ars 25, and a, being equal

to their respective nominal values.



The recursive observation-optimization strategy described in
Section (6.2) is characterized by its flexibility. This flexibility is
due to the fact that it is possible to adjust the disélacement distance
(LT) between the successive optimization intervals (see Figures (6.1-b,
c, d)) accofding to the behaviour of the system under consideration. The
shortest time‘interval during which the gains remain conséant is equal to
(2rT) in Example 1 (see Figures (6.4), (6.5)) and equal to (ArT) in -
Example 2 (see Figures (6.9), (6.10), (6.11)). Hence, using &£ = 2r and
4r for Examples 1 and 2, respectively, results in a satisfactory pefformance
with less computational effort. The value of % used in both Example 1
and 2 was & = r,

In the following discussion two performance indices will be
discussed. These performance indices can be used to decide whether or
not it is necessary to update the identified parameters and/or the con- -

stant feedback gains at the end of each observation interval.

6.3.4 Discussion

The following performance index can be used to reach decisions

concerning the necessity for updating model parameters:

NT

3, = —;—(f) () = %) Q0 - x)dt T (6.10)

In Eqn. (6.10) Q is a positive definite weighting matrix, xp
is the measured plant state during the latest observation interval, and
X is the corresponding model state during the same interval using the

latest identified values of the plant unknown parameters.
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The following performance index can be used together with Jl

given by (6.10) to reach decisions concerning the necessity for updating
feedback gains:

1 7.C c _‘ 1s.C c »
3 xp(ti)xp(ti') : Xp(ti-‘-l)’xp(ti—l) 61D

17.C c
Xp(ti—l)xp(ti—l)

In Eqn. (6.11), Xp(t§> is the plant state at the start of the
i-th optimization interval (the present interval), and Xp(t§41) is the
plant state at the start of the (i-1)-th optimization interval.

The assignment of valués for the upper bounds of Jl and J2’
respectively, would depend upon thé degree of familiarity with the parti-
cular system under investigation (as can be seen from Figures (6.4),
(6.5), (6.9), (6.10), and (6.11)). Taking AT = 2rT would be a reasonable
choice for the system considered in Example 1. For Example 2 taking
T = 4T would be a reasonable choice. Parameter or gain updating would

be performed whenever Jl or J2 exceeded their respective bounds.
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7. CONCLUSIONS

In Chapter 2Athe-generalized equation error has been shown to
be applicable to a mean-square method of rapid digital estimation of
linear system parameters. Due to the impoééd structure of the estimator
the manipulation of high order matrices is avoided. The matrices used
by the estimator have a block diagonal structure. Consequently only the
lower order matrix within a block need be cénsidered.

It has been shown that the matrix can be fecursively evaluated
and that matrix inversions.are not required. Examples illustrate the
effectiveness of the estimator for a variety of cases dealing with quanti-
zation_noise as well as measurements noise.

‘In Chapter 3 a simple algorithm for computing the generalized
inverse of a matrix has been developed.- The advantage of this algorithm
over other methods is that it eliminates the need for Gram-Schmidt ortho-
gonalization and its associated (in tﬁe interest of accuracy) reorthogon-
alization as new vectors are introduced. Inherent in the method'is a
very simple check on the linear dependence of the different matrix columns.

In Chapter 4 a two-stage method for estimating time-invariant
and time-varying parameters in linear systems has been developéd. During
the second stage, the time-varying parameters are considered és unknown
control inputs to a linear subsystem of known dynamics. This method for
estimating time-varying parameters is computationally simple in that the
estimates are obtained by the solution of a linear two-point boundary-
value problem. Standard methods of solution result in one-step convergence.

A method of stage and control augmentation in conjunction with discreti-



zation and mean-square error minimization has been shown to be effective,
for the first stage of estimation. This approach reduces undesirable
coupling between the two—stages'which could result in convergence problems.
Numerous examplés illustrate the effectiveness of the method.

In Chapter 5 method of succeésive approximations for solving
the two point boundary-value problem for optimum consfant gain matrices
has been developed.

The method is shown to be computationally equivalent to a de-
flected gradient method. Convergence can always be achieved by choice
of a scalar step-size parameter. Rapid convergence is important in off-
line design studies when the effect of various weighting matrices on
optimal control performance is investigated. A close relationship be-
tween successive approximations and the solution technique for the linear

- time invariant” case with infinite tf is exploited so that in many cases
rapid convergence is achieved,

The problem of trajectory sensitivity reduction by augmented
state feedback is shown to be well-posed if gain matrices are constrained
to be constant. The problem of on-line implementation of a constant
gain matrix whose elements depend on initial conditions is discussed.
~ The simplest approach is to take a welghted average of the computed
optimum gain matrices. .This results in an average suboptimal linear
feedback control law. A second approach is to introduce nonlinear feed-
back control [39].

An on-line approximate method is developed which appears
suitable for systems whose parameters must be identified. The two point

boundary-value problem is replaced by an algebraic problem, the solution

of which gives a suboptimal constant gain. It does not appear feasible
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to give a formal proof of convergence or a proof of improved response.
By proper choice of weighting matrices, however, it does seem possible
toeachieVe an improvement with the first iteration.' Examples and para-
meter values were chosen to deliberately accentuate situations where
convergence problems could arise, No difficulties, however, were en-
countered and rapid convergence was achieved in all cases investigated.
A natural development of the present research is to augment

the sensitivity vector with the sensitivity functions with respect to
the initial conditions. This will reduce the sensitivity of the optimum
constant gains with respect to the state of the plant at the start of
the optimization interval. Accordingly, the optimum constant gains will
be updated less frequently.

| Further fesearch is needed concerning the "best' choice of
the constrained structure of the feedback gains. One possibility has
been investigated in this thesis where the gains are taken to be time-
invariant. A more general choice is to use specific time-varying gains.
Let the feedback gains be constrained by the specific structure K(t) =
FG(t), where the time-varying matrix G(t) is to be specified before
. starting the optimization process. The time-invariant gain matrix F is
to be computed according to the algorithm developed in Chapter 5. The
problem is how to choose G(t) systematically such that the resulting
time-varying gain matrix K(t) is "optimum". A specific time-varying
gain could result in better results concerning sensitivity function

reduction.
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APPENDIX I

INITIAL CONDITIONS LINEAR LEAST-SQUARES ESTIMATOR

The values of the optimum constant feedback‘gains as computed
by the algorithm developed in Chapter 5 depend on thé plant state at the
start of the optimization interval. Accordingly, a good estimate of the

“plant initial conditions is required. In a noise free situation, it may
be possible to obtain the initial conditions by measuring the state of
the plant. However, if the measureﬁents of the plant state are conta-
minated by noise then an initial conditions estimator is required. One
possible choice of such an estimator is the linear least-squares one.
This estimator does not require a priori knowledge about the noise
statistics and is characterized by its simplicity.

Considering- the i-~th optimization interval (see Figures 6.1l-a,
b, ¢, d), the instant (tg) indicates the start of this interval as well
as the cbmpletion of the i-th observation interval.

Let the plant be represented (for t; -NT <t < tz) by

X = Aix + Bi u (I.1)

where Ai’ and Bi are the identified values of the plant parameteric
matrices A, and B, respectively. These values are obtained according to
the measurements taken during the i-~th observation interval. The 'second

term on the right hand side of equation (I.1l) can be expressed as

Biu = -FiKix (1.2)

vhere the definition of the matrix Fi is as given in Chapter 5 (F = BR—lB')
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and Ki répresent the piecewise constant optimum feedback gain matrix
being used during the i-th observation interval,

Substituting (I.2) into (I.1) yields

X = (Ai - FiKi)x 4 (1.3)

The transition matrix w(tz, 1) of the dynamic system represented by (I.3)

can be obtained by solving the following matrix differential equation

s c .cy _ .
P = —(A:.L - FiKi)'lP w(ti, ti) =1 (I.4)

Let x, represent the noisy measurements of the plant-gtate
Xy rep y

at t = t; - KT, and let ﬁK be an estimate of Xy defined by
R = b X(t) (1.5)
i O SR ]

A, Cy L . c R .
where x(ti) is the estimate of X(ti) which minimizes the quadratic error

function
__:_L_, s ves
e =73 (xa xa) (xa xa) {(1.6)
where
A c I %
ll‘lK = lJ)(ti! ti - KT)’ Xa = a:o- (1.7)
The state vector X is given by
x_ = 9 %(t) (1.8)
a a i
where
Y
Y- &L (1.9)
a .
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The value of x(ti) which minimizes the error fuhction e given by (1.6)

is known to be

AL Cy ' -1, -
2D = WL v ) Tex, (1.10)

Equation (I.10) gives the best estimate of the plant state at
t = ti which is the initial condition for the i-th optimization interval
(the present interval). These initial conditions are required in order

to compute new values for the optimum .constant feedback gains.
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APPENDIX II

ANALYTICAL SOLUTION FOR THE LIAPUNOV MATRIX EQUATION [42]

This algorithm is characterized by its simplicity since no
matrix inversion is needed and the solution is obtained in a closed form
and not in a numerical or iterative way.

Consider the matrix equation

S'X + XS = —-Q ‘ (11.1)

where S, X and Q are all of dimension (n X n)

Let
.S ' (11.2)
where the parameters Ai(i =0, ..., n-1) are the coefficients of the

chracteristic equation of the matrix S. These parameters can be computed

easily using Faddeev's method.

1 _ o
A, = - Ixlss, 1, s, =88, +AI, i=1,...,n
Ag = 1
S, = I, S_=0 o | (I1.3)

The last relation is used as a check.
We may write down the solution to equation (II.1l) as
2n-2 k

X = — 1 I 8,405, -8) 2 SéQ(—l)k—zsk_
(-1'R(S, -S) k=0 2=0

9 (11.4)
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where:
A "Xo 2 '
R(S, -8) = (-1)"2" - B (8) -~ (II1.5)
- "n
A

.Hn(s) - vkl- lo 0

Ay Ay Ay A 0
0 cee Ay (11.6)

The determinant Hn(S) is known as the Hurwiz determinant,

0 _ k odd

ne

beap S5 —S) i)
n-1 n

2 A
-'n

Gk(S) k even _ (I1.7)

where Gk’ for k even, is the (%-+ 1)th. Cofactor of the first column
of Hn(S).

Hence equation (IIL.4) can be written in a simplified form as

n-1 21

1 Lo
I G, (8) I (~1)7s;0s

X = —= ,
2" (s) =0 2=0 21-4

(11.8)

From (II1.8) it is clear that the condition for a unique solution is Hn(S) # 0
which is equivalent. to. the condition that.the dynamical system,(i = SX)
is asymptotically stable.
For the non-trivial case where the matrix Q is symmetrical,
the term
2i

5 (-1)“siqs
=0

pig (11.9)
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will be symmetrical and since GZi(S) and Hn(S) are scalers, X is also
symmetrical and we need only to solve n(n + 1)/2 entries of X instead
of nz. Thus for this case we have

1 n-1 i

I L o
T e iy a2 (5495,3-)y (II.10)
n

where XU is the upper.triangle of X and (SiQS is the upper triangle

2i—2)U
for (SEQSZi—l) for the case i = £, while for 1 # & it is a triangular

matrix with its main diagonal equal to twice the main diagoﬁal of

(SiQSZi—z) and every element (i, j) is equal to the sum of the corresponding

element (i, j) in the upper triangle of <S£QSZi—2) plus the (i + 1, j - 1)

element in the lower triangle.
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APPENDIX III

The trace properties and gradient matrices used in deriving

the gradient conditions are the following [43].

Tr[AB] = Tr[BA], Tr[AB'] = Tr[BA']

2 - ATR?

K Tr[AKB] = A'B'

2 Tr[AK'B] = BA

3K ~

= Tr[AKBK] = A'K'B' + B'K'A’

<& Tr[AK'BK'] = BK'A + AK'B

=% Tr[AKBK'] = A'RB' + AKB (TII.1)

The following properties of Kronecker matrix products have

been utilized in the algebraic manipulation of matrix equations [44],
= = '
AB)_ = I®A B, = (G QD (1),

(A®@B) (C®D) = (AC) ® (BD)

(A+B)®(C+D)=A®C+A®D+B®C+1§®D (111.2)

If_li, i=1, ..., n, and uj, j=1, ..., n, are the eigenvélues
of A and B, respectively, then_ki uj afe the eigenvalues of A Q® B.

Because of the partitioning (5.7)>of F, the eigenvalues of F
can be found frdm the eigenvalues of F. Consider the following eigenvalue

equations:



12

(111, 3)

It is seen_from the defining equations for F and @yy‘that (see (5.5) and

(5.12))
(B'z )'R'1 (B2,) = A,z,' z, =0 ’ (III.4)
i i T MNP A .
te , .
S (v,'y)dt = u,v.'v, =0
"o J 7 11 1
The matrix W is therefore positive semi-definite. Since (%% v o W(g-- K)v,

it follows that the equality sign in (5.28) holds only when the gradient

condition is satisfied.
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APPENDIX IV

The confidence interval length deduced in Subsection(2.7.3)
(see (2.101)) is based on thé assumptions that the random vector (E - c)
is normally distributed and that the random vector V is statistically
independent of (é -~ ¢) and is normally distributed. Also the random
variable V'V is assumed to be distributed as %2.

The above mentioned assumptions can only‘be justified if the
matrix 0y (see (2.11)) is deterministic. In the foliowing we will prove
the above assumptions for fhe case where 6, is a deterministic quantity:

N
Using (2.12) and (2.38) yields

It

PO Z_ - ¢

A_ \
R 1 Vi

= t - -
= PNeN(eNC + N) c

= PNeﬁN ' (Iv.1)

where, for convenience, the random vector N is taken to be normally
distributed with E[N] = 0 and E[N N'] = 1. 1It followsldirectly from
(Iv.1) that (¢ - c) is a normally distributed random vector.

Using (2.63) and (IV.1) yields

E[P. 0 N (0.P. 6" — I)]

E[(E - c)V"] NN N° NN

Vo rNnt T _
APNeN E[NN ](eNPNeN I)

1]

1¢ T
PNeN(eNPNeN )

=0 (Iv.2)

Thus the random vectors (¢ - ¢) and V are statistically inde-
pendent. The vector V is normally distributed as can directly be seen

from (2.63) whefe



= L. ~= —.~
V= (ONPN N I)N (WN I)N (2.63)

Since N and PN are deterministic matrices then V is normally distributed

as N,

Using (2.63), (2.64), and (2.65) yields

ty = N - ' _ N
v'v Nj(WN 1) (WN I)N
= N! _
= N (WN N
= ﬁf(I - WN)ﬁ (1v.3)

Considering the orthogonal matrix oy (see (2.66)), equation

(IV.3) can be written as

1 .= 1 - 1
V'V N@NQN(I WN)QNQNN

~

N

=N @N(I' - D)%

a
N

N
2

= Zyi (iv.4)
where s is a linear combination of all the elements of the random vector
@&ﬁ (the matfix (I - DN) is a diagonal one with the main diagonal
elements being équal to 1 or 0 (see (2.69))). Thus the fandom vector y,
is distributed as the vector @& ﬁ. The véctor @&ﬁ is distributed as
the random vector N which is a direct result of Fisher's Theorem [17].
Accordingly, the random vectof v is normally distributed like & and
Zyi is distributed as X?. The above proofs are based on a deterministic
GN. If eN is a random variable, it is no longer possible to prove‘that
the random vectors (; - ¢) and V are normally distributed along with the

2

assumption that V'V is distributed is %“. There appears to be no mathe-

matically tractable approach to derive confidence intervals in the case
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where 6N contains qﬁantization noise. To retain the basic simplicity of
Equation (2.101) the following procedure is suggested. In equations
(IV.1 - 4), it is possible to replace ZN(k) by zﬁ(k) where z&(k) is

obtained by use of the best estimate c at stage k, that is by use of

(see (2.10)).

ZN = BNc (1IV.5)

The "smoothed" values 6N of GN are used in equations (IV.1-4). Since

the randomness in SN tends to be eliminated, it seems justifiable to

consider §N as a deterministic quantity,
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APPENDIX V

The éradient conditionAas given by equation (5.11) can be

derived as follows:

Let H denotes the Hamiltonian, then using (5.6) and (5.9) yields

H

' - FR+ Ky - 3y @+ K+ KDFE + K"y

p'By - p'Fiy - p'FK'y - 2 y'0y - 5 y'KFKy

l-y'KFK'y - l-y'K'i‘Ky - 1-y'K'FK'y
2 2 2 :

Using (III.1) the Hamiltonian can be written as

LYY o ' TR Ve ! 11"‘1> 1R7&7
H=p'Ay - Tr[FKyp'] - Tr[IK'yp'] - 5 y'Qy ~ 5 Trlyy'KFK]
1 TwER! 1 7 et 1 Tytopet
- E-Tr[yy KFK'] - E-Tr[FKyy K'] - §-Tr[yy K'FK']
The.following gradient matrix operations are required

_3 - 1 P .v
g Lr[FKyp'] = F(py")

_3_ T lunt!l = "Wy
sx [rlFK'yp'] = (yp")F
19 'RF = 1 YK'F - L= '
- 5 3¢ Lrlyy'KFK] = - S(yyDK'F - 5 FK'(yy")
- L2 Ty kFR'] = ~(yyOKF
2 3K _
- %22 Tr[FRyy'K'] = -FK(yy")
2 3K
‘l.Ji IRVERY] = — 1 50 1y l_ I\ 1R
- 53¢ Trlyy'K'FK'] = - 5 FK'(yy") - S(yy")K'F
. JH .
The above operations allow - to be written as

oK

(v.1)

(v.2)

(v.3)
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OH - - = 1 - - =
s =~ Flpy") - (yp")F - 5(yy"IK'F - 3 FR'(yy') - (yy')KF

=t

|

FK(yy') - -% FK'(yy') - % (yy"K'F

F(py') -~ (yp")F - (yy")K'F - FK'(yy') - (yy")KF
- FK(yy")

= - Floy") = p")F - (3y") K + KDF - FK + K") (yy")

Flpy") - (yp")F - (yy")RF - FR(yy') ' (V4)

where

K

K + K!

From (V.4) and for time-invariant F and K equation (V.4) gives

t t t t t

£ - %%-= F/ py'dt +/ yp'dt F + S yy'dt KF + FK S/ yy'dt = 0
o o o o
(v.5)
Using the definition
t
] v A [ yv'dt
y o .
Equation (V.5) can be written as
toam - - S — '
S - — = Fod + & F+ ® KF + FK o =0 (V.6)
° oK Py yp vy vy :

This completes the proof of equation (5.11).
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