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ABSTRACT 

The d i s s o l u t i o n of platinum from platinum i r o n a l l o y s i n 

oxygenated hydrochloric acid/sodium chloride solutions has been 

investigated using an autoclave technique. 

The d i s s o l u t i o n rate was found to be dependent on a l l o y 

composition, acid concentration, and oxygen pressure. The d i s s o l u t i o n 

followed t y p i c a l corrosion k i n e t i c s and analysis of the r e s u l t s 

indicated that the cathodic reduction of oxygen was the rate c o n t r o l l i n g 

step i n the d i s s o l u t i o n reaction, at high chloride ion concentrations. 

An apparent a c t i v a t i o n energy of 16.8 k c a l per mold was found for the 

d i s s o l u t i o n of PtFe a l l o y s , and 19 k c a l per mole for pure Pt sheet. 
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INTRODUCTION 

I. General 

The extraction and recovery of platinum and the associated 

metals of the platinum group from ores and i n d u s t r i a l scrap i s of 

increasing importance as world demand grows. Present extraction 

and recovery processes are a l l based on the old and proven aqua regia 

d i s s o l u t i o n as a f i r s t step, followed by c l a s s i c a l chemical 

separations of the various metals. As the aqua regia process i s 

expensive, slow and generally l i m i t e d to a series of batch operations, 

an i n v e s t i g a t i o n into the p o s s i b i l i t i e s of applying modern high-

temperature, high-pressure autoclave techniques to the d i s s o l u t i o n of 

platinum was thought to be i n t e r e s t i n g . This type of processing 

would be generally applicable to both ore concentrates and i n d u s t r i a l 

scrap material, with perhaps a further use i n recovering platinum values 

from low grade deposits not presently economical to e x p l o i t . A general 

review of the mineralogy and e x t r a c t i v e metallurgy of platinum shows 

that the native metal i s most commonly the s t a r t i n g material a v a i l a b l e 

for extraction. The p r i n c i p l e s of m e t a l l i c corrosion should apply to 

the chemical d i s s o l u t i o n of the native platinum, as i t i s a metal or 

metal a l l o y . As part of the introduction to t h i s work then, i t was 

necessary to look at the mineralogy of platinum occurrence, the chemical 
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and e l e c t r o c h e m i c a l c o r r o s i o n of platinum and the commonly used 

recovery processes, as w e l l as reviewing previous attempts at 

d i s s o l v i n g platinum under pressure. 

I I . Mineralogy of Platinum Metal Deposits 

The platinum metals occur mainly as platinum minerals a s s o c i a t e d 

w i t h n i c k e l - c o p p e r s u l f i d e s or copper s u l f i d e s i n lodes, or as 

platinum metal a l l o y s disseminated i n u l t r a b a s i c rock and i n p l a c e r 

deposits derived from these rocks.''" 

( i ) Lode Deposits 

Platinum ores i n lode deposits may be c l a s s i f i e d i n t o three main 

types, according to the r e l a t i v e c o ncentration and form of the contained 

platinum metals. 

In the Sudbury type of d e p o s i t , the platinum metals are produced 

as a by-product i n n i c k e l and copper production. The platinum metals 

are contained i n n i c k e l - c o p p e r , copper or copper-cobalt s u l f i d e s that 

are r e l a t e d to b a s i c or u l t r a b a s i c rocks. In t h i s type of deposit 

there are no n a t i v e platinum metals or a l l o y s . The platinum minerals 

are s p e r r y l i t e ( P t A s 2 ) , michenerite [ ( P t , P d ) ( B i , T e ) ] , f r o o d i t e ( P d B i 2 ) , 

and minor unnamed minerals. 

The Merensky type of deposit c o n s i s t s of platinum-bearing copper-

n i c k e l s u l f i d e s i n which the platinum values are high enough to 

c o n s t i t u t e the p r i n c i p a l ore m i n e r a l . The platinum occurs mainly as 

s p e r r y l i t e and cooperite [ ( P t , N i , P d ) ( S ) ] . i n lenses of p e r i d o t i t e or 

chromite i n the host u l t r a b a s i c rock. Small amounts of n a t i v e platinum 

metal a l l o y s are a l s o present. 
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The t h i r d important type of deposit i s a concentration of native 

platinum metal a l l o y s disseminated i n p e r i d o t i t e s and sometimes i n 

perknites. Most of these deposits are i n dunite which i s commonly 

alter e d to serpentine. This type of deposit i s the source of the 

Uralian placers, the Goodnews Bay deposit, and the Tulameen placers. 

Most of these deposits are e i t h e r too small or too low grade for d i r e c t 

mining, although some high grade concentrations i n masses of chromite 

i n dunite have been found. The Transvaal deposits of p l a t i n i f e r o u s i r o n -

r i c h dunite are mined for platinum occurring i n t h i s way. 

There are also a number of minor platinum metal occurrences, for 

example i n gold ores, i n platinum bearing meteorites and in contact 

metamorphic copper ores. 

( i i ) Placer Deposits 

Platinum placers are a l l u v i a l deposits that contain economic 

amounts of native platinum metal a l l o y s . The two types of a l l o y s may 

be t y p i f i e d as 'platinum' and 'osmiridium' with the two often occurring 

together. 'Platinum' consists mostly of that metal, but contains a l l 

the other platinum metals i n varying amounts. "Osmiridium' consists 

dominantly of i r i d i u m and osmium but also includes ruthenium, rhodium 

and platinum. Both these a l l o y s can also contain base metals such as 

i r o n or copper; ei t h e r as minerals or a l l o y s , i n varying amounts. 

Platinum placers are derived from dunites, s e r p e n t i n i t e , or perknites 

i n which the native platinum metals are very highly disseminated. As i n 

gold placers, the platinum placers are assumed to be close to t h e i r 

bedrock sources i n the absence of extensive g l a c i a t i o n . 



_ 4 -

The major p l a c e r deposit i n B r i t i s h Columbia i s i n the Tulameen 

area near P r i n c e t o n . This s e r i e s of p o s t - g l a c i a l stream and t e r r a c e 

p l a c e r s i s derived from a l a r g e i n t r u s i v e mass of pyroxenite and 

gabbro c o n t a i n i n g two smaller bodies of p e r i d o t i t e . The p e r i d o t i t e i s 

considered a more important source rock than the p y r o x e n i t e . The 

platinum occurs i n these p l a c e r s as s m a l l rounded grains of platinum 

r i c h a l l o y , w i t h small p i t s and some adhering chromite and magnetite. 
2 

Dana has given the composition of the n a t u r a l l y o c c u r r i n g Fe-Pt 

a l l o y s , known as polyxene and f e r r i a n ( f e r r o p l a t i n u m ) . Polyxene 

i s 80-90% platinum and 3-11% i r o n w h i l e f e r r i a n i s about 28% i r o n . 

An assay of two types of platinum found i n the Tulameen P l a c e r deposits 

gave the f o l l o w i n g r e s u l t s : 

Magnetic Non-magnetic 

% Pt 78.4 68.2 

% Fe 7.87 9.8 

The weighted average was 72.0% platinum and 8.6% i r o n . I f the Fe-Pt 

r a t i o i s taken as i n d i c a t i n g an all,oy composition, these assays would 

put tie Fe-Pt a l l o y from the Tulameen area as being somewhere i n between 

FePt and FePt^. These two a l l o y s are i n t e r m e t a l l i c compounds, as shown 

i n the phase diagram Figure 1. These a l l o y s should be more e a s i l y 

d i s s o l v e d than pure Pt and as they occur commonly i n t h i s p a r t i c u l a r 

deposit the i n v e s t i g a t i o n of t h e i r d i s s o l u t i o n p r o p e r t i e s should prove 

of more p r a c t i c a l value than s i m i l a r i n v e s t i g a t i o n s on pure P t . 
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F i g . 1 Phase d i a g r a m o f t h e F e - P t sys tem 
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I I I . Extractive Metallurgy of Platinum 

The extractive metallurgy of platinum i s e s s e n t i a l l y the same 

whether the concentrate i s produced as a by-product i n Cu-Ni 

production or as a primary metal value from placer or lode deposits. 

Platinum metal concentrates derived from Cu-Ni s u l f i d e ores are 

produced from matte anodes as anode slimes. The copper and n i c k e l 

are dissolved e l e c t r o l y t i c a l l y from the anode i n an acid s u l f a t e bath. 

The anode slimes are c o l l e c t e d i n anode bags, .then removed and washed. 

The washed slimes are roasted to remove s u l f u r , ground to - 40 mesh, then 

leached i n hot s u l f u r i c acid to remove r e s i d u a l copper and n i c k e l . 

The r e s i d u a l slimes concentrate i s washed and f i l t e r e d and sent to a 

platinum r e f i n e r y . 

In placer and lode platinum operations the platinum metals are 

concentrated by gravity techniques, usually a dredging operation i n 

placer mines, followed by t a b l i n g . F l o t a t i o n has also been used i n 

some lode operations. The r e s u l t i n g concentrates from e i t h e r type 

of deposit are then sent to the platinum r e f i n e r y . 

Inmost platinum r e f i n e r i e s the steps followed are almost the same; 
3 

the following d e s c r i p t i o n i s of the Engelhard r e f i n e r y process which 

i s probably t y p i c a l of the industry. The bulk concentrate i s f i r s t 

leached i n hot aqua regia. This i s done i n glass l i n e d vessels as 

follows: Five hundred pounds of concentrate are heated to 80°C i n f i v e 

hundred gallons of 5:1 concentrated hydrochloric acid. One hundred 

gallons of n i t r i c acid i s added over a period of eleven hours, then 

the residue i s f i l t e r e d o f f . The s o l u t i o n , which i s r i c h i n 

dissolved platinum, palladium and gold, i s evaporated to drive o f f 
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n i t r a t e s , then r e d i s s o l v e d i n HCl and sent to an ammonium c h l o r i d e 

p r e c i p i t a t i o n . This p r e c i p i t a t e s an impure platinum ammonium c h l o r i d e , 

which i s c a l c i n e d to platinum metal, then r e d i s s o l v e d i n aqua r e g i a and 

r e p r e c i p i t a t e d as pure platinum ammonium c h l o r i d e . This p r e c i p i t a t e 

i s then c a l c i n e d to produce commercial platinum sponge. The s o l u t i o n 

a f t e r the f i r s t p r e c i p i t a t i o n i s t r e a t e d to e x t r a c t the other platinum 

metals, ( i . e . i r i d i u m , osmium, rhodium and ruthenium). 

Most recovery operations f o r scrap platinum e i t h e r i n c a t a l y s t s or 

i n metal form are based on a s i m i l a r procedure. They d i f f e r only i n 

minor d e t a i l s and are a p p l i c a b l e to platinum recovery from c a t a l y s t s , and 

other sources of contained platinum metal. 

IV. L i t e r a t u r e Review on Platinum Corrosion 

( i ) Anodic D i s s o l u t i o n of Platinum 

The extensive use of platinum as an anode i n e l e c t r o l y t i c c e l l s and 

f o r cathodic p r o t e c t i o n i n sea water as w e l l as i t s use i n pol a r o g r a p h i c 

analyses has lead to some i n v e s t i g a t i o n s of c o r r o s i o n under anodic 

c o n d i t i o n s . Even though the platinum has been considered to be " i n e r t " , 

i t i s slowly attacked and e v e n t u a l l y has to be replaced. L l o p i s and 
4 

Sancho found that the anodic c o r r o s i o n of platinum r e q u i r e s high over 

p o t e n t i a l s and can only be s t u d i e d i n the presence of complex-forming 

i o n s . In HCl and c h l o r i d e s o l u t i o n s , platinum d i s s o l v e s as P t C l g at 

the anode. The nature of the platinum surface has some e f f e c t on the 

co r r o s i o n c h a r a c t e r i s t i c s , w i t h p l a t i n i z e d t i t a n i u m anodes being more 

s u s c e p t i b l e than s o l i d platinum anodes. For p l a t i n i z e d t i t a n i u m i n 

sea water,~" consumption r a t e s of from 6-50 mg/Ampere/year have been 
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reported, while under s i m i l a r conditions pure platinum anodes were 

uniformly consumed at a rate of 6-7 mg/ampere/year over a wide range 

of current density. In an e l e c t r o l y s i s c e l l f o r the production of 

sodium hypochlorite f o r sewage treatment platinum consumption rates 
6 

of 5CK100 mg/ampere/year were reported, and could be c o n t r o l l e d by 

c o n t r o l l i n g the anode p o t e n t i a l . The platinum loss was postulated 

to be r e l a t e d to a p o t e n t i a l dependent change i n surface structure, 

corresponding to the formation of platinum oxide. On p l a t i n i z e d titanium 

anodes"' i n a c i d i f i e d chloride solutions, t h i s anodically formed oxide 

dissolved at open c i r c u i t . 

A recent study of the passivation of platinum i n 1-8 M HCl and 

1-5 M NaCl solutions showed rapid corrosion below the passivation p o t e n t i a l . 

This p o t e n t i a l was [H +] independent, thus r u l i n g out d i r e c t oxide 

formation as the cause of passivation. It was concluded that passiva

t i o n i s due to the formation of a series of adsorption complexes, 

with a f i n a l surface of PtO -nHOH. 
x 

4 

In HCl solutions p r i o r to passivation, platinum dissolves to form 

PtClg . The rate of corrosipn increases with temperature, chloride ion 

concentration and a c i d i t y . The a c t i v a t i o n energy for d i s s o l u t i o n was 

found to be 25 Kcal/mole corresponding to a highly i r r e v e r s i b l e step. 

Superimposed a l t e r n a t i n g current increases corrosion by minimizing 

concentration p o l a r i z a t i o n e f f e c t s . 
( i i ) Chemical D i s s o l u t i o n of Platinum 

Platinum i s a very noble metal, and extreme conditions must be 
9 used to dissolve i t chemically. According to the Pourbaix diagram, 
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(Fig. 3) platinum i s stable i n aqueous solutions of a l l pH's, i n the 

absence of complexing agents, except under ce r t a i n very low pH and 

highly o x i d i z i n g conditions. At room temperature platinum i s 

unattacked by water, caustic a l k a l i s and acids and attacked slowly by 

o x i d i z i n g agents, except when complexes are formed. 

The best known and most commonly used reagent for d i s s o l v i n g platinum 

i s aqua regia. This acid combines the o x i d i z i n g power of n i t r i c acid 

with the complexing power of hydrochloric acid and dissolves platinum as 

c h l o r o p l a t i n i c acid, R^PtCl^.. Pure HCl hardly attacks platinum, but 

i f i t contains dissolved chlorine or oxygen the combination of o x i d i z i n g 

and complexing actions w i l l dissolve the metal. 

Some platinum a l l o y s , e s p e c i a l l y those with i r i d i u m , are insoluble 

i n aqua regia, and must be dissolved by some other method. Some 

methods^ which have been used are closed tube fusions with s a l t s , 

closed tube diss o l u t i o n s with HCl and added o x i d i z i n g agents, and 

open boat chlorinations both with and without added s a l t . Fusion 

with base metals followed by acid attack has also been used as a method 

of d i s s o l v i n g r e s i s t a n t platinum metal a l l o y s and i s the basis of the 

c l a s s i c a l f i r e assay techniques. 
11 

Tronev studied the d i s s o l u t i o n of the platinum metals i n 

hydrochloric acid under high a i r pressures. He found that acid concentra

t i o n , p a r t i c l e s i z e of the platinum, over-pressure of a i r and temperature 

were the important variables i n increasing the d i s s o l u t i o n rate. 

He proposed a mechanism of d i s s o l u t i o n i n v o l v i n g a free chlorine molecule 

produced from the HCl oxygen reaction. 
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-2 0 2 U 6 8 10 12 U 

pH 
F i g . 3. S i m p l i f i e d P o u r b a i x diagram f o r t h e system P t - H ? 0 
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2HC1 + 0 9- HOH + C l 2 

Pt + C l + 2HC1 —*- R \ P t C l , 
-« 2 6 

As the e q u i l i b r i u m i n equation 1 goes to the r i g h t as the temperature 

r i s e s , t h i s mechanism gives an i n c r e a s i n g r a t e x^rith i n c r e a s i n g 

temperature and hence f i t s h i s r e s u l t s . Tronev made no attempt to 

f u r t h e r c h a r a c t e r i z e the d i s s o l u t i o n r e a c t i o n , simply s t a t i n g h i s 

r e s u l t s i n t a b u l a r form. 
12 

Wichers, Schlecht and Gordon developed a closed, tube method 

of d i s s o l v i n g r e f r a c t o r y p l a t i n i f e r o u s m a t e r i a l s . They f e l t that 

temperature could be the c o n t r o l l i n g f a c t o r i n the i n e r t n e s s of i r i d i u m 

and other platinum a l l o y s to aqua r e g i a i n open v e s s e l s . They assumed 

the same type of r e a c t i o n as Tronev, i . e . 

7HC1 + HC10. 4C1„ + 4H o0 

10HC1 + 2HN03 5C1 2 + N 2 + 6H 0 

HCl + NaC10 3 5- C l 2 - + H 20 

They found that some HCl was necessary f o r attack to occur, using L i C l 

as a source of c h l o r i d e i o n . They al s o found a maximum att a c k on 

i r i d o - p l a t i n u m a l l o y s w i t h the f o l l o w i n g mixtures at temperatures 

from 100°C to 150°C. 
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.27 ml HN0 3 + 4.2 g HCl 

.37 g NaC10 3 + 4.2 g HCl 

The authors concluded that the pressure developed, which could go as 

high as 4000 p s i , was unimportant as i t was c o n t r o l l e d by the r e a c t i o n 

mixtures. I n t e r e s t i n g l y enough, they a l s o mention that Tronev's work 

on d i s s o l v i n g platinum under a i r pressure i s equivalent to t h e i r added 

oxidant method of producing c h l o r i n e , w i t h i n c r e a s i n g a i r pressure being 

regarded as i n c r e a s i n g the c h l o r i n e concentration. 

( i i i ) C orrosion Mechanism f o r Platinum i n Oxygenated A c i d C h l o r i d e 

S o l u t i o n s 

(a) Anodic Platinum D i s s o l u t i o n 

L l o p i s ^ has reviewed the l i t e r a t u r e on the anodic d i s s o l u t i o n 

mechanism of platinum i n c h l o r i d e s o l u t i o n s . As mentioned above, Pt 

d i s s o l v e s as P t C l , at the anode below the oxide formation p o t e n t i a l , o 
The mechanism proposed can be expressed i n the form of two consecutive 

r e a c t i o n s : 

Pt + x C l ~ — P t C l ~ X 

x 

P t C l " X - ne" — ^ P t C l - ( x - n ) 

x x 

The f i r s t r e a c t i o n corresponds to s p e c i f i c adsorption of the anions 

on the metal surface w i t h complex formation, the second to i o n i z a t i o n 
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and desorption of the adsorbed complex. The adsorption of h a l i d e ions 

has been shown to depend on the presence of adsorbed oxygen, and v i c e 

versa. However, i t appears that over the range of 0.35 to 0.75 v o l t s , 

Pt d i s p l a y s an e n t i r e l y gas-free s u r f a c e , w i t h adsorption of oxygen 

lea d i n g t o C K i d e formation at p o t e n t i a l s above 1.5 v o l t s . ^ For h y d r o c h l o r i c 

a c i d and NaCl s o l u t i o n s up to 3 M HCl, i t appears that a p o t e n t i a l 

of at l e a s t 1.2 v o l t s i s r e q u i r e d f o r any p a s s i v a t i o n to occur. 

The c h l o r i d e i o n dependence of the Pt d i s s o l u t i o n r a t e was found 

to f o l l o w the rate law: 

- 0 9 
Rate = k [ C l ] U ' y 

which supports a C l one e l e c t r o n t r a n s f e r step at the Pt surface as the 

rate l i m i t i n g step. 

The o v e r a l l e l e c t r o d e h a l f - r e a c t i o n f o r Pt d i s s o l u t i o n at 25°C i n 

c h l o r i d e s o l u t i o n s i s : 

Pt + 6 C l ~ — v P t C l , = + 4e 
6 

E: = 0.72 + 0.015 l o g a ( P t C _ 6
= ) - 0.089 l o g a(Cl") 

and depends only on the a c t i v i t y of P t C l ^ [ a ( P t C l ^ )] and the a c t i v i t y 

of C l " [ a ( C l ~ ) ] at 25°C. 
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(b) Cathodic Reduction Reaction and Eh-pH R e l a t i o n s h i p 

For Pt c o r r o s i o n by oxygen saturated a c i d s o l u t i o n s , the r e d u c t i o n 

of molecular oxygen to water w i l l be the cathodic r e a c t i o n . Therefore 

an o v e r a l l e l e c t r o c h e m i c a l c o r r o s i o n r e a c t i o n f o r the d i s s o l u t i o n would 

be: 

2Pt + 12C1 + 0„ + 4H + — a - 2 P t C l ^ + 4H„0 
I b I 

As both the h a l f r e a c t i o n s are o x i d a t i o n - r e d u c t i o n type of r e a c t i o n s 

we can c a l c u l a t e Eh-pH or Pourbaix type diagrams to represent the 

thermodynamic e q u i l i b r i a of the various species. For the anodic process 

the p o t e n t i a l i s described by: 

E = 0.72 + .015 l o g a P t C l r - .089 l o g aCl 
D 

at 25°C. This p o t e n t i a l i s independent of pH and gives a s t r a i g h t 

h o r i z o n t a l l i n e on a Pourbaix diagram. For higher temperatures various 

methods of c a l c u l a t i o n have been proposed f o r the c o n s t r u c t i o n of 

Eh-pH diagrams. However none have been c a l c u l a t e d f o r the P t - C l - P t C l g 

system. The Eh-pH diagrams f o r the P t - P t C l , and 0 o-H o0„ re a c t i o n s at 
o Z 2. I 

25°C and f o r various 0^ pressures and C l a c t i v i t i e s are shown below 

( F i g . 2). This diagram shows that thermodynamically i t i s p o s s i b l e f o r 

c o r r o s i o n of platinum to occur w i t h the r e d u c t i o n of oxygen to hydrogen 

peroxide as the cathodic r e a c t i o n . 
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V. Theory of Corrosion 

Electrochemical Theory 

The basic premise of the electrochemical theory of corrosion i s 

that the o v e r a l l chemical reaction i s divided i n t o two l a r g e l y 

independent processes. 

1. Anodic d i s s o l u t i o n of metal - the t r a n s f e r of metal into 

s o l u t i o n as hydrated or complexed ions, with the loss of a number 

of electrons to the metal. 

2. Cathodic reduction - the gain of electrons from the metal by 

depolarizers which are atoms, molecu].es or ions i n the s o l u t i o n 

capable of reduction. 

Naturally for the d i f f e r e n t processes to occur independently at 

d i f f e r e n t parts of the surface there must be a heterogeneous surface 

structure. This i s known as the l o c a l c e l l theory. If the corrosion i s 

considered to be analogous to a galvanic c e l l , the anodic and cathodic 

areas on the airface may be due to a number of factors acting together 

or independently. Surface heterogeneties are c l a s s i f i e d as macroscopic, 

microscopic, or submicroscopic. Macro-couples are formed by coupling 

d i f f e r e n t metals, or d i f f e r e n t i a l aeration, and lead to d e f i n i t e areas 

of l o c a l corrosion. Micro-couples may be formed by such things as s o l i d 

s o l u t i o n segregation, grain boundaries and c r y s t a l anisotropy leading 

to microscale corrosion such as intergranular corrosion, s t r u c t u r a l l y 

s e l e c t i v e corrosion and p i t t i n g corrosion. A good basic example i s 

metallographic etching. Submicroscopic corrosion couples e x i s t on metal 

surfaces within groups of atoms and are caused by factors l i k e s u b s t i t u t i o n a l 

impurity atoms, surface topography, and thermal o s c i l l a t i o n s of atoms i n 
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the l a t t i c e . These submicro-couples are very unstable and l e a d to 

uniform surface d i s s o l u t i o n by changing a c e r t a i n p o i n t from anodic to 

cathodic r a p i d l y and f r e q u e n t l y . 

In the case of an u l t r a pure metal w i t h no i m p u r i t i e s or h e t e r o g e n e i t i e s , 

c o r r o s i o n would be impossible by the l o c a l c e l l theory. The theory f o r 

c o r r o s i o n of u l t r a pure metals was f i r s t suggested by Wagner and 
13 

Traud i n 1938. The b a s i s of t h i s theory i s that f o r c o r r o s i o n to 

occur, s p a t i a l l y separated anodic and cathodic areas are not necessary: 

The necessary and s u f f i c i e n t c o n d i t i o n f o r c o r r o s i o n i s that the metal 

d i s s o l u t i o n and some cathodic r e d u c t i o n r e a c t i o n proceed simultaneously 

on the surface. For t h i s to happen the , p o t e n t i a l d i f f e r e n c e across the 

i n t e r f a c e must be more p o s i t i v e than the e q u i l i b r i u m p o t e n t i a l of the 

M-^M11"1" + ne and more negative than the e q u i l i b r i u m p o t e n t i a l of the 
r e d u c t i o n r e a c t i o n A + ne — D i n v o l v i n g a s o l u t i o n species. 

14 

Hoar recognizes three general s i t u a t i o n s of c o r r o s i o n attack. 

1. Base metal - the metal d i s s o l v e s to an etched s u r f a c e , and 

cathodic r e d u c t i o n occurs on the same surface over a p e r i o d of 

time. At any i n s t a n t the number of a c t i v e anode s i t e s ( i . e . K i n k s , 

edges) i s r e l a t i v e l y s m a l l , and these s i t e s are c o n s t a n t l y 

changing and g i v i n g a uniform d i s s o l u t i o n . In t h i s case the whole 

surface acts as anode and cathode so we may take t h e i r r e s p e c t i v e 

areas as being equal. 

2. Metal d i s s o l v i n g i n w e l l defined zones - f o r example at oxygen 

starved areas or at obvious h e t e r o g e n e i t i e s or i n c l u s i o n s . 

3. Metal p i t t i n g - that i s o f t e n due to a p a s s i v a t i n g fUlm and the 

anode area i s n e g l i g i b l e compared to the cathode area. 
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A l l o y Corrosion 

When a homogeneous binary a l l o y i s dissolved, there are two 

possible modes of d i s s o l u t i o n . 

1. Simultaneous d i s s o l u t i o n of the two metals i n the a l l o y , 

2. P r e f e r e n t i a l d i s s o l u t i o n of the le s s noble metal x^ith 

surface enrichment of the noble metal. 

In an a l l o y consisting of a noble metal and an active metal, i n s o l i d 

s o l u t i o n , i t has been found"''"' that there i s a more or less sharp 

increase i n corrosion resistance at a c e r t a i n r a t i o of a l l o y components. 

Normally, t h i s increase i n s t a b i l i t y occurs at an atom r a t i o of n/8 

where n i s an integer from 1-6. For a Cu-Au system i n hot n i t r i c acid 

t h i s occurred at n = 4. The simplest explanation of t h i s phenomenon 

i s surface enrichment, however, i n t e r m e t a l l i c compound formation may 

play a part as w e l l . If an active phase i s f i n e l y dispersed i n a noble 

matrix, i t w i l l be dissolved out and surface enrichment w i l l occur. If 

the active phase i s continuous or i n excess t h i s cannot happen, as a 

small number of noble atoms w i l l probably be detached along with the 

large number of active atoms. Surface enrichment should only occur 

i n d i l u t e heterogeneous a l l o y s , however a homogeneous a l l o y may be 

regarded as a heterogeneous a l l o y i n the f i n e s t possible state of 

dispersion and therefore surface enrichment could oontrol the d i s s o l u t i o n . 

In a binary a l l o y corroding i n a system i n x^hich both components 

can d i s s o l v e , the s i t u a t i o n i s f a r from cle a r . I t i s apparent that the 

corrosion rate of the noble component i s raised while that of the 

less noble component i s lowered. In an i d e a l s i t u a t i o n the corrosion 

p o t e n t i a l x<rould vary between that of the base and noble components 

l i n e a r l y with the composition. As was shown above for the Cu-Au al l o y s 
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t h i s i s not the case, and d e v i a t i o n s are due to s o l i d s t a t e i n t e r a c t i o n s 

and non-ideal s o l u t i o n behavior. Uhlig"'"^ made an attempt to e x p l a i n 

the p a s s i v a t i o n phenomena i n s t a i n l e s s s t e e l s and c o r r o s i o n behavior 

i n some b i n a r y a l l o y s through the use of e l e c t r o n theory. In 

p a r t i c u l a r he r e l a t e d the number of unpaired d e l e c t r o n s to the a b i l i t y 
17 

to adsorb oxygen at the surface. L e i d h e i s e r explained the c o r r o s i o n 

behavior of c e r t a i n s t a i n l e s s s t e e l a l l o y s on the b a s i s of a nearest 

neighbour theory and a rat e c o n t r o l l i n g n u c l e a t i o n step. He proposed 

that a noble metal (slow corroding atom) i s unaffected i n i t s r a t e of 

a c t i v e anode s i t e n u c l e a t i o n , w h i l e the a b i l i t y of a base metal atom 

to nucleate an a c t i v e anode s i t e i s reduced to a n e g l i g i b l e value by 

haying a noble nearest neighbour (or i s unaffected i f i t has a l l the 

same nearest neighbours), thereby reducing the r a t e of d i s s o l u t i o n 

to one c o n t r o l l e d by the noble metal. This theory assumes no 

ord e r i n g and a s t a t i s t i c a l d i s t r i b u t i o n of d i f f e r e n t atoms, a l l o w i n g 

the c a l c u l a t i o n of most l i k e l y nearest neighbours from a p r o b a b i l i t y 

f u n c t i o n . This type of a n a l y s i s could apply to i r o n platinum a l l o y s 

but only i n the d i l u t e platinum r e g i o n . 
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EXPERIMENTAL 

I. Materials and Reagents 

(i) Materials 

The materials used i n t h i s i n v e s t i g a t i o n were pure platinum 

r o l l e d sheet as supplied by Engelhard, p u r i f i e d Armco i r o n powder and 

iro n platinum all o y s made from these two materials. 

( i i ) Reagents 

A l l reagents used were reagent grade. Deionized water was used 

for a l l solutions. The oxygen was cylinder grade, supplied by 

Canadian L i q u i d A i r . 

I I . A l l o y Preparation 

The Armco i r o n powder was reduced under cracked ammonia at 700°C 

for four hours to remove any surface oxide, then cooled under the 

reducing gas. The platinum sheet was cleaned i n aqua regia, washed, 

degreased with acetone, and dried i n an a i r b l a s t . Stoichiometric 

proportions of the two metals, platinum and fr e s h l y reduced i r o n , were 

then weighed in t o a 10 cc r e c r y s t a l l i z e d alumina c r u c i b l e . This 

small c r u c i b l e was then placed i n a tight f i t t i n g graphite susceptor 

c r u c i b l e , and placed i n alumina powder i n a larger c r u c i b l e . The 

crucible assembly was then placed inside a Vycor tube and the metal. 
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melted under a helium atmosphere i n an i n d u c t i o n furnace. A f t e r 

m e l t i n g the metal was w e l l s t i r r e d by magnetic i n d u c t i o n and 

then allowed to c o o l s l o w l y under helium. The r e s u l t i n g a l l o y button 

was then annealed under cracked ammonia at 700°C f o r twelve hours to 

ensure homogenization. A f t e r annealing the samples were cleaned and 

p o l i s h e d by standard m e t a l l o g r a p h i c techniques through 3-0 carborundum 

papers and on the 6 y and 1 p diamond dust wheels. 

I I I . Autoclave Design 

A t i t a n i u m autoclave ( F i g . 4) of 2000 ml c a p a c i t y , manufactured 

by the Parr Instrument company was used f o r the l e a c h i n g experiments. 

This s e r i e s 4500 autoclave as s u p p l i e d had the head, c y l i n d e r and 

inner wetted parts of t i t a n i u m w i t h the e x t e r n a l valves and f i t t i n g s 

of s t a i n l e s s s t e e l . As the leach i n g experiments were to be done i n 

hot a c i d c h l o r i d e s o l u t i o n s the s t a i n l e s s s t e e l sampling tube and 

valve had to be replaced. An a l l t i t a n i u m sampling tube and a T e f l o n -

t i t a n i u m sampling valve were f a b r i c a t e d and f i t t e d . In order to 

pro t e c t the t i t a n i u m c y l i n d e r a t i g h t f i t t i n g g l a s s l i n e r was used, and 

a p r o t e c t i v e glass tube was f i t t e d over the thermowell. 

The rea c t o r contents were s t i r r e d by a l a r g e magnetic s t i r r e r 

bar on the bottom of the g l a s s l i n e r , which was pro t e c t e d w i t h a t h i n 

Teflon sheet. This was found to be the only p r a c t i c a l method of 

s t i r r i n g as the top s t i r r i n g arrangement proved to be s u s c e p t i b l e to 

c o r r o s i o n and leakage. 

The autoclave was heated by a 1500 watt e l e c t r i c heater b u i l t i n t o 

an i n s u l a t e d s t e e l s h e l l . The autoclave s l i d e s i n t o the heater 

and r e s t s on the magnetic s t i r r e r at the bottom. Automatic temperature 
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i g . 4. Schematic diagram o f t h e P a r r a u t o c l a v e and 
the machined T e f l o n sample h o l d e r 
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control was achieved with a Thermistemp temperature c o n t r o l l e r Model 

71 (Yellow Springs Instrument Co., Inc., Yellow Springs, Ohio). The 

thermistor probe was of i r o n constantan and s l i d into the thermistor 

well i n the autoclave. A second thermocouple was used to follow and 

record the temperature v a r i a t i o n . The temperature was controlled to 

within 1°C. 

The pressure gauge used had a 4 1/2" d i a l graduated from 0-1000 p s i 
2 

i n 5 l b / i n . subdivisions. This was connected on the pressure side 

of the gas e x i t tube valve. 

The oxygen cyl i n d e r was connected to the autoclave with high 

pressure woven wire tubing. A check valve was i n s t a l l e d before the 

i n l e t valve on the head of the autoclave to prevent a c c i d e n t a l backflow 

of corrosive gas or l i q u i d . 

The sample tube ins i d e the autoclave was made of Teflon with a 

f r i t t e d glass f i l t e r on the end. The i n t e r n a l pressure forces the 

sample through this tube and out the sampling valve. A'small cold 

water cooler was used on the sampling tube outside the autoclave to 

prevent f l a s h i n g of the high temperature l i q u i d . 

The sample holder (Fig. 4) was constructed of Teflon i n such a 

manner as to maintain a constant surface (area exposed to the s o l u t i o n . 

A Teflon cylinder was machined on one end to provide a r e s t r a i n i n g l i p 

to hold the sample. The sample was pressed against the l i p by a 

threaded rod, the edges being sealed by using a r i n g of soft Teflon 

valve packing on the r e s t r a i n i n g l i p . The sample holder was supported 

on the sample tube i n s i d e the autoclave with the exposed face held at 

an angle to the flow of the s o l u t i o n . This arrangement of sample 

posi t i o n i n g worked very w e l l and gave no evidence of uneven leaching 
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or stagnant pockets of gas on the sample surface. 

IV. A n a l y t i c a l Method 

The d i s s o l u t i o n r a t e of the a l l o y s was followed by determining 

the concentration of Pt (IV) i n s o l u t i o n . A c o l o r i m e t r i c method 

u t i l i z i n g the colored S n ^ ^ - P t chloro-complex was used. The method 

i s described i n d e t a i l by Beamish."^ The optimum concentration range 

i s from 3-25 ppm platinum, however the system conforms to Beer's law 

f a i r l y w e l l up to about 60 ppm. The procedure used was as f o l l o w s . 

A s o l u t i o n 1.0 M i n HCl was prepared. A 15 ml sample a l i q u o t was 

put i n a 25 cc v o l u m e t r i c f l a s k , and 2.5 ml of concentrated HCl was 

added. Then 5 ml of the S n C ^ s o l u t i o n was added and the volume 

d i l u t e d to the mark w i t h de i o n i z e d water. The f l a s k was shaken and 

the colour allowed to develop f o r f i f t e e n minutes. The transmittance 

of the sample was measured at 403 m i l l i m i c r o n s i n a Beckman DU 

spectrophotometer using g l a s s c e l l s . A blank sample was prepared 

from the SnC^ s o l u t i o n and d e i o n i z e d water and used as a reference. 

A standard sample co n t a i n i n g 10 ppm platinum was prepared from 

H^PtClg s o l u t i o n and measured against the reference to c a l i b r a t e the 

transmittance curves.. The platinum content was c a l c u l a t e d from the 

curves using Beer's law. The t o t a l amount of d i s s o l v e d platinum was 

c a l c u l a t e d from the known volume of s o l u t i o n and the concentration 

determined s p e c t r o p h o t o m e t r i c a l l y . The i r o n concentration was checked 
18 

by using an Ortho-phenanthroline method as described by Bath. 
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V. Experimental Procedure 

The a l l o y buttons were p o l i s h e d and mounted i n the sample holder. 

The excess Teflon packing was c a r e f u l l y trimmed away to give a 

c i r c u l a r surface area and the sample holder was washed and mounted on 

the autoclave sample tube. The l e a c h i n g s o l u t i o n was made up by 

adding the proper amounts of reagent grade NaCl and concentrated HCl 

to deionized water and making the t o t a l volume up to 1500 ml. The 

autoclave was then assembled and placed i n s i d e the heating j a c k e t . The 

temperature c o n t r o l l e r was set and the autoclave f l u s h e d through w i t h 

oxygen. When the autoclave reached the d e s i r e d temperature the 

s t i r r e r was s t a r t e d and the oxygen pressure r a i s e d to the desired 

pressure. The oxygen pressure was c o n s t a n t l y maintained at the 

de s i r e d pressure. Samples were taken at r e g u l a r i n t e r v a l s , using 

10 cc to f l u s h the sampling l i n e and keeping a 25 cc sample f o r 

c o l o r i m e t r i c a n a l y s i s . 

At the end of each run, the a l l o y button was removed from the 

sample h o l d e r , washed, d r i e d and examined m i c r o s c o p i c a l l y . Photographs 

were taken a f t e r some runs and e l e c t r o n probe photographs were a l s o 

taken to f u r t h e r r e v e a l surface s t r u c t u r e . 
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RESULTS 

The d i s s o l u t i o n data obtained are presented i n g r a p h i c a l form; 

the numerical r e s u l t s are tabulated i n the appendix. 

The r a t e curves are c a l c u l a t e d from a n a l y t i c a l r e s u l t s and are 

corrected f o r i n i t i a l surface area and r e a c t i o n volume changes due to 

sample removal. 

I. D i s s o l u t i o n of Fe-Pt A l l o y s 

The d i s s o l u t i o n curves are a l l based on the t o t a l amount of 

d i s s o l v e d platinum a f t e r c e r t a i n time i n t e r v a l s . These values were 

then used to c a l c u l a t e the amount of d i s s o l u t i o n per u n i t i n i t i a l surface 

area. A l l the d i s s o l u t i o n curves found were l i n e a r a f t e r a short i n i t i a l 

n o n - l i n e a r p o r t i o n . 

( i ) A t y p i c a l d i s s o l u t i o n curve f o r an Fe-Pt a l l o y i s given i n 

F i g . 5. As noted above the curve i s l i n e a r , apart from a s l i g h t 

i n i t i a l curvature. This curvature may be due to p o l i s h i n g e f f e c t s on the 

surface or to a d e f i c i e n c y i n the a n a l y t i c a l technique at low platinum 

concentrations. 

( i i ) The curves i n F i g . 6 compare the le a c h i n g rates f o r Pt sheet, 

Fe-Pt, and Fe^Pt a l l o y s . The curves f o r the Pt sheet, Fe-Pt and Pt^Fe 

are again l i n e a r , however, no platinum d i s s o l v e d from a Fe^Pt a l l o y , 

and the r e s u l t s were not plotted.' 
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( i i i ) The e f f e c t of temperature on the l e a c h i n g r a t e of FePt 

i s given i n F i g . 7. The ra t e increased w i t h temperature as expected. 

An Arrhenius type p l o t of t h i s data i s presented i n F i g . 8 from which 

an apparent a c t i v a t i o n energy f o r d i s s o l u t i o n of 16 kcal/mole i s 

found. This high an apparent a c t i v a t i o n energy would i n d i c a t e 
19 

chemical c o n t r o l r a t h e r than d i f f u s i o n c o n t r o l . 

( i v ) A s e r i e s of curves showing the temperature e f f e c t on the 

leach i n g r a t e of pure platinum sheet i s given i n F i g . 9. As f o r the 

Fe-Pt a l l o y an Arrhenius p l o t of t h i s data i s given i n F i g . 10. An 

apparent a c t i v a t i o n energy of 20 kcal/mole i s found, again i n d i c a t i n g 

chemical c o n t r o l . 

I I . E f f e c t of A c i d Concentration 
+ 

The e f f e c t of v a r y i n g the H concentration at a constant C l - i o n 

concentration (3 M) on the d i s s o l u t i o n of Pt from Fe-Pt a l l o y i s 

given i n F i g . 11. The a c i d c oncentration was l i m i t e d to 3 M because 

of the danger of autoclave c o r r o s i o n . A p l o t of the r a t e of d i s s o l u t i o n 

versus a c i d concentration i s given i n F i g . 12. This i s a curve, however 
+ 2 

a p l o t of r a t e of d i s s o l u t i o n versus [H ] ( F i g . 12) i s l i n e a r . 

I I I . E f f e c t of Oxygen Pressure 

The e f f e c t of oxygen pressure on the r a t e of d i s s o l u t i o n of 

Fe-Pt a l l o y i n 2 M HCl at 150°C i s given i n F i g . 13. A l l the curves 

are again l i n e a r , and the ra t e increases w i t h i n c r e a s i n g 0^ p a r t i a l 

pressure. A p l o t of 0^ p a r t i a l pressure versus d i s s o l u t i o n rate 

( F i g . 14) i s a l s o l i n e a r . As the s o l u b i l i t y of 0 i n aqueous s o l u t i o n s 



i s p r o p o r t i o n a l to pressure, t h i s p l o t t h e r e f o r e gives the 

v a r i a t i o n i n r e a c t i o n rate ( d i s s o l u t i o n rate) as a f u n c t i o n of 0^ 

concentration as w e l l as pressure. 

IV. E f f e c t of C h l o r i d e Ion Concentration 

The e f f e c t of i n c r e a s i n g the c h l o r i d e i o n concentration through 

the a d d i t i o n of NaCl to 2 M HCl s o l u t i o n i s shown i n F i g . 15. Increased 

C l i o n leads to an increase i n r a t e , but a s a t u r a t i o n type of curve 

i s obtained when a r a t e versus ( C l ) p l o t ( F i g . 16) i s made. 

Estimate of Err o r s i n Results 

The c a l c u l a t e d e r r o r i n the raw data used to ob t a i n d i s s o l u t i o n 

rates i s ± 5%. This i s composed of a t I I accuracy i n a n a l y t i c a l 

r e s u l t s and a ± 4% e r r o r i n the c a l c u l a t e d surface area of the sample. 

The a c t u a l e r r o r s i n the derived r a t e values are than ± 5% plus an 

e r r o r i n c u r r e d i n drawing a s t r a i g h t l i n e through the s c a t t e r e d experimental 

p o i n t s . Repeated experiments gave i d e n t i c a l r a t e s of d i s s o l u t i o n , 

using the l i n e drawing technique. 



- 28 -

1 2 3 • k 5 6 

TIME (hrs.) 
F i g . 5. A t y p i c a l d i s s o l u t i o n c u r v e f o r P t - F e a l l o y a t 700 

p s i g 09, 2 M HCl and 150°C 
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F i g . 6 C o m p a r a t i v e D i s s o l u t i o n r a t e s f o r P t F e , Pt3Fe and Pt 
s h e e t under s i m i l a r l e a c h i n g c o n d i t i o n s . 
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TIME (hrs.) 

F i g . 7. The e f f e c t o f t e m p e r a t u r e on the d i s s o l u t i o n r a t e o f 
P t F e a l l o y a t 1 M HCl and 700 p s i g 0 ? 
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F i g . 8. A r r h e n i u s p l o t f o r the d i s s o l u t i o n o f P t F e a l l o y 
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2 k 6 8 

TIME (hrs.) 

F i g . 9. The e f f e c t o f t e m p e r a t u r e on the d i s s o l u t i o n r a t e o f pure Pt 
s h e e t a t 2 M HCl and 700 p s i g 09 
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F i g . 10 A r r h e n i u s p l o t f o r the d i s s o l u t i o n o f Pt s h e e t 



- 34 -

[ H + ] (M.) 
F i g . 11. The e f f e c t o f HCl c o n c e n t r a t i o n on the d i s s o l u t i o n 

r a t e o f P t F e a l l o y a t 3 M t o t a l C l c o n c e n t r a t i o n , 150°C 
and 500 p s i g 0g  

2 M 6 8 10 

[ H + ] 2 (M2) 
+ 2 

F i g . 12. D i s s o l u t i o n r a t e v s . [H ] f o r PtFe a l l o y 
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TIME (hrs.) 
F i g . 13. The e f f e c t o f oxygen p r e s s u r e on the d i s s o l u t i o n r a t e 

o f P t F e a l l o y a t 150°C and 2 M HCl 



OXYGEN PRESSURE (p.ai.) 
F i g . 14. D i s s o l u t i o n r a t e v s . p0 9 f o r P t F e a l l o y d i s s o l u t i o n 
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r. i i i i i , i 
1 2 3 L 5 

TIME (hrs.) 
F i g . 15. The e f f e c t o f [ C l - ] on the d i s s o l u t i o n r a t e o f P t F e 

a l l o y a t 500 p s i g 0 9 - a n d 2 M HCl 
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I I I— I J 1 1 1 1 L. 

2.0 2.5 3.0 

TOTAL Cf (M.) 

F i g . 16. D i s s o l u t i o n r a t e v s . t o t a l C l " c o n c e n t r a t i o n f o r P t F e a l l o y 



- 39 -

DISCUSSION 

I. L i n e a r D i s s o l u t i o n Curves 

In a l l instances i n t h i s study, the d i s s o l u t i o n r a t e of the 

platinum from both pure Pt and Fe-Pt a l l o y s was l i n e a r w i t h time. 

Mic r o s c o p i c examination of the surface showed general uniform c o r r o s i o n 

( F i g . 17) w i t h some p r e f e r e n t i a l g r a i n boundary c o r r o s i o n . However, 

e l e c t r o n microprobe a n a l y s i s of the leached surface showed no 

p r e f e r e n t i a l d i s s o l u t i o n of Fe from the Fe-Pt a l l o y s at greater than 

50 at % Pt. Therefore i n the f o l l o w i n g d i s c u s s i o n i t i s assumed 

that the a l l o y d i s s o l v e d uniformly over the exposed p o r t i o n of the 

sample, w i t h Fe and Pt d i s s o l v i n g at the same r a t e . The l i n e a r 
21 

rat e s of c o r r o s i o n i n d i c a t e that the surface area of the specimen 

remained e s s e n t i a l l y constant over the duration of the leachi n g e x p e r i 

ments and aLso that the reactant concentrations remained unchanged. 

The s m a l l amounts of Pt d i s s o l v e d i n a l l cases tend to support these 

assumptions, as not enough would d i s s o l v e to appreciably change the 

surface. 

I I . A c t i v a t i o n Energies and S t i r r i n g E f f e c t s 

The apparent a c t i v a t i o n energies f o r the d i s s o l u t i o n of Pt from 

both Fe-Pt a l l o y s (15.6 kcal/mole) and pure Pt sheet (19.8 kcal/mole) 
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19 are high enough that i t appears the r e a c t i o n i s chemically c o n t r o l l e d . 

A two f o l d i n c r e a s e i n the s t i r r i n g rate had no e f f e c t on the rate 

of Pt d i s s o l u t i o n , t h e r e f o r e chemical r e a c t i o n c o n t r o l i s d e f i n i t e l y 

i n d i c a t e d . The chemical r e a c t i o n which i s rate c o n t r o l l i n g must occur 

at the surface, as the rate i s dependent on i n i t i a l surface area. 

The a c t i v a t i o n energies of both the cathodic r e d u c t i o n r e a c t i o n 

and the anodic d i s s o l u t i o n of Pt i n c h l o r i d e s o l u t i o n are close to the 

values found f o r d i s s o l u t i o n of Pt i n the autoclave. 

The a c t i v a t i o n energy f o r oxygen re d u c t i o n at a platinum surface 

i s i i the neighborhood of 20-25 kcal/mole. This value i s found by using 
-10 2 

the magnitude of the exchange current d e n s i t y ( 10 amps/cm ) and 

c a l c u l a t i n g the a c t i v a t i o n energy by a m o d i f i c a t i o n of the T a f e l equation. 

The a c t i v a t i o n energy f o r the anodic d i s s o l u t i o n o f Pt i n a l l s o l u t i o n s 

was found to be 20 kcal/mole.^ The decrease i n a c t i v a t i o n energy f o r 

the d i s s o l u t i o n of the Fe-Pt a l l o y i s probably an e f f e c t of lowering 

the corrosion p o t e n t i a l and/or p r o v i d i n g more e a s i l y corrodable s i t e s 

at the surface. 

I I I . K i n e t i c A n a l v s i s . 
23 

The k i n e t i c s of c o r r o s i o n of metals has been presented by Habashi 

i n the f o l l o w i n g f a s h i o n . 

For the cathodic h a l f - r e a c t i o n , when f i r s t - o r d e r k i n e t i c s are 

fol l o w e d , the rate law i s : 

V = k A [D] c c c 
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where V = the reaction v e l o c i t y c 
k = the cathodic v e l o c i t y constant c 
A = the surface area of the cathodic zone c 
[D] = concentration of the depolarizer. 

S i m i l a r l y , the rate law for the anodic h a l f - r e a c t i o n i s given by: 

V = k A [C] a a a 

where V = the reaction v e l o c i t y a J 

k = the anodic v e l o c i t y constant 
a . 

A = the surface area of the anodic zone a 
[C] = concentration of complexing agent. 

At the steady state, the rate of the cathodic reaction i s equal 

to the rate of the anodic reaction; and t h i s rate i s equal to the 

corrosion rate, i'*e. 

V = k A [D] = k A [C] c c a a 

however since A = A + A where A i s the t o t a l surface areaavailable 
c a 

for corrosion, the rate equation can be written: 

k k A[D][C] 
V = C 3 

k [D] + k [C] 
c a 

At a r e l a t i v e l y low concentration of D and a high C concentration 

the rate equation s i m p l i f i e s to 
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V = k A[D] c 

i n d i c a t i n g a c a t h o d i c a l l y c o n t r o l l e d c o r r o s i o n r e a c t i o n . S i m i l a r l y 

at a high concentration of D and a low concentration of C, the 

rate equation becomes: 

V = k A[C] a 

and the c o r r o s i o n i s a n o d i c a l l y c o n t r o l l e d . 

For metal c o r r o s i o n i n a c i d oxygenated s o l u t i o n s the cathodic 

r e d u c t i o n of oxygen i s the most l i k e l y ' d e p o l a r i z a t i o n ' r e a c t i o n . 
24 

Hoare has reviewed the l i t e r a t u r e on the oxygen r e d u c t i o n r e a c t i o n 

at platinum e l e c t r o d e s . This r e a c t i o n i s g e n e r a l l y b e l i e v e d to occur 

i n two steps both i n v o l v i n g a 2-el e c t r o n t r a n s f e r . The f i r s t step i s : 

0 2 + 2H + + 2e — H 2 0 2 

followed by a second c a t a l y t i c step on the surface: 

H 20 2 + 2H + + 2e »- 2H 20 

The r e a c t i o n mechanism f o r the f i r s t step i s b e l i e v e d to be as f o l l o w s , 

w i t h the f i r s t one-electron t r a n s f e r r e a c t i o n i n v o l v i n g adsorbed 

molecular oxygen being r a t e determining: 
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° 2 ( s o l n ) ° 2(ads) 

+e slow 
2(ads) ( 0 2 ) ~ a d s 

( 0 2 ) ads + H + — ( H 0 2 ) ads 

( H 0 2 ) ads + e — ^ - ( H 0 2 > ads 

( H 0 o ) ~ ads + H + — * ~ ( H o 0 o ) ads 

a f t e r which the adsorbed peroxide molecule e i t h e r desorbs or rea c t s 

f u r t h e r . The second r e a c t i o n step i s b e l i e v e d to be c a t a l y z e d 

somehow by the surface and a d e t a i l e d mechanism has not yet been 

proposed. However, the r a t e of t h i s second r e a c t i o n has been found 

to be an order of magnitude l a r g e r than the f i r s t r e a c t i o n r a t e . 

Hoare a l s o noted that on a l l o y s of P t , the same o v e r a l l r e a c t i o n 

mechanism i s observed, however the rates are g e n e r a l l y enhanced, due 

to a b e t t e r e l e c t r o n t r a n s f e r , an improvement i n c a t a l y t i c a b i l i t y , 

or a decrease i n i n h i b i t i n g anion adsorption. In t h i s case, tak i n g 

the f i r s t r e d u c t i o n r e a c t i o n to H 2 0 2 as being the r a t e c o n t r o l l i n g 

step, we get: 

0 2 + 2 H + + 2 e — 5 - H 0 2 

Under the co n d i t i o n s f o r determining the oxygen dependence of the 

d i s s o l u t i o n r e a c t i o n , the H 2 ° 2 c o n c ? e n t r a t : ' - o n ^ s regarded as being 
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s m a l l as i t i s a q u i c k l y reduced intermediate. 

The e f f e c t of c h l o r i d e i o n concentration on the d i s s o l u t i o n r a t e 

of the PtFe a l l o y i s given i n F i g s . 15 and 16. As shown i n F i g . 16 

i t i s apparent that there i s no increase i n d i s s o l u t i o n r a t e w i t h 

i n c r e a s i n g c h l o r i d e i o n concentration above 2 M. This leads to the 

c o n c l u s i o n that the d i s s o l u t i o n r e a c t i o n i s i n f a c t c a t h o d i c a l l y 

c o n t r o l l e d , and therefore only the oxygen pressure and h y d r o c h l o r i c 

a c i d concentration w i l l have an e f f e c t on the d i s s o l u t i o n r a t e . As 

the s i t u a t i o n i s one where the concentration of complexing agent ( C l ) 

i s high w i t h respect to the d e p o l a r i z e r (O^JH" 1") ; according to the 

k i n e t i c d e r i v a t i o n given above, the o v e r a l l d i s s o l u t i o n r a t e should 

correspond to a r a t e law of the form: 

V = k A[D] 
c 

where V i s the d i s s o l u t i o n r a t e , k i s a cathodic r a t e constant, A 

i s the surface area and [D] i s the concentration of d e p o l a r i z e r . 

The e f f e c t of oxygen pressure on the d i s s o l u t i o n r a t e , determined 

at a constant h y d r o c h l o r i c a c i d concentration of 2 M i s shown i n F i g s . 

13 and 14. The p l o t of d i s s o l u t i o n r a t e vs. pO^ ( F i g . 14) shows a 

l i n e a r dependence of the r a t e on the oxygen pressure. As oxygen 

f o l l o w s Henry's law i n t h i s temperature and pressure range, t h i s 

dependence i s equivalent to a l i n e a r dependence on the 0^ concentration 
2 

i n s o l u t i o n . As the d i s s o l u t i o n r a t e i s given i n mg dissolved/cm /hour 

we can w r i t e a s p e c i f i c r a t e expression. 

V = k c ' P 0 2 (1) 
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where V i s the d i s s o l u t i o n r a t e per u n i t area and k ' i s a rate 
c 

constant d e s c r i b i n g the l i n e a r dependence of the d i s s o l u t i o n r a t e on 

oxygen pressure. Therefore, f o r the s p e c i f i c c o n d i t i o n s of high 

(> 2 M) c h l o r i d e i o n concentration and a constant a c i d c o n c e n t r a t i o n , 

the d i s s o l u t i o n r a t e f o l l o w s standard c o r r o s i o n k i n e t i c s . The numerical 

value of fie late constant i s : 

2 

k • = 0.00517 mg/cm hr p s i 

and the rate law i s : 

V = 0.00517 p 0 2 mg/cm2 hr 

The e f f e c t of the a c i d concentration on the d i s s o l u t i o n r a t e i s 

more complex. The a c i d dependence of the ra t e was determined at high 

(3 M) t o t a l c h l o r i d e i o n concentration and at constant oxygen pressure. 

As shown i n F i g . 11, the rate dependence on the a c i d concentration i s 
2 

no n - l i n e a r . However, a p l o t of ( a c i d concentration) vs. d i s s o l u t i o n 

rate ( F i g . 12) i s l i n e a r over a region from 1.0 M HCl to 3.0 M HCl 

Below 1 M HCl the rate drops o f f sharply and should become zero at 

zero a c i d concentration. 

Therefore over the region from 1' M HCl to 3 M HCl a ra t e law f o r 

the d i s s o l u t i o n may be w r i t t e n : V = k c" ( [ H + ] 2 + C) (2) 
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where V = d i s s o l u t i o n r a t e 

k " = r a t e constant c 
[H +] = a c i d concentration 

C = i n t e g r a t i o n constant. 

+ 2 
Numerically, k^" i s the slope of the Rate vs. [H ] curve and ^c"C i s 
the zero i n t e r c e p t of the s t r a i g h t l i n e e x t r a p o l a t e d to zero. At 

+ 
constant [H ] the r a t e law was found to be: 

V = V P°2 

there f o r e f o r a s i t u a t i o n where both the a c i d concentration and pC^ 

are changing, the r a t e law w i l l be: 

V = k '"(k " [ H + ] 2 + k "C)p0 o (3) c c c z 

which s i m p l i f i e s to 

V = k c [ H + ] 2 p 0 2 + k cCp0 2 (4) 

where k = k '"k " c c c 

Therefore k i s a r a t e constant f o r the o v e r a l l cathodic r e a c t i o n i n c 
the r a t e law (4) which i s v a l i d i n the region 1 M < [H +] < 3 M. 

The anodic h a l f r e a c t i o n of'the d i s s o l u t i o n was not rat e c o n t r o l l i n g 

under the experimental conditions used i n the autoclave, t h e r e f o r e , no 

experimental data are a v a i l a b l e f o r c a l c u l a t i n g a rat e constant f o r 
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the anodic h a l f reaction or the o v e r a l l d i s s o l u t i o n reaction. 
8 — 

Chemodanov et a l . have shown that at low C l concentrations, from 

about 0.01 to 0.5 M, the rate dependence of the anodic Pt d i s s o l u t i o n 

on chloride ion concentration i n a c i d s o l u t i o n i s of the form 

- 0 9 V = k A[C1 ] , y 

a 

where k i s an anodic rate constant, A i s the surface area and [Cl ] a 

i s the c h l o r i d ion concentration. If this dependence on chloride ion 

i s v a l i d for the d i s s o l u t i o n from PtFe a l l o y s , a rate law describing the 

o v e r a l l d i s s o l u t i o n rate would have the form: 

[k [H +] 2p0. + k CpO.]k [ C l " ] 0 ' 9 

•y C C Z 3 

(k [ H + ] 2
P o 9 + k c Po 9) + k r c i " ] 0 - 9 

C _- C Z cl 

i n a region where both the anodic and cathodic reactions are rate 

c o n t r o l l i n g to some extent. In the d i s s o l u t i o n experiments done i n the 

autoclave this region was not studied, therefore, no-numerical values 

for the rate constants or experimental evidence for the v a l i d i t y of 

the proposed rate law i s a v a i l a b l e . 
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CONCLUSIONS 

1. Platinum-iron a l l o y s at platinum concentrations of 50 atom 

percent or greater dissolve homogeneously i n oxygenated 

hydrochloric acid solutions. 

2. The rate of platinum d i s s o l u t i o n from platinum-iron a l l o y s 

follows corrosion k i n e t i c s at chloride ion concentrations greater 

than 2 M, with the rate c o n t r o l l i n g step being cathodic 

oxygen reduction. The rate i s dependent on acid concentration, 

temperature, oxygen pressure and a l l o y composition. 



SUGGESTIONS FOR FURTHER WORK 

An i n v e s t i g a t i o n of the d i s s o l u t i o n rate under anodic corrosion 

control would add to the d e t a i l of the d i s s o l u t i o n mechanism. 

This work would have to be done using an electrochemical 

technique, as the corrosion problems i n the autoclave are 

serious. 

A series of experiments on other PtFe a l l o y s at concentrations 

both below 50 atom percent and i n a s o l i d s o l u t i o n regime 

rather than at i n t e r m e t a l l i c compound compositions could lead to 

better understanding of both a l l o y corrosion and the de-alloying 

type of phenomena. 
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TABLE 1. A l l o y Comparison 

A l l o y p 0 2 [HC1]/M D i s s o l u t i o n r a t e 
2 

(mg/cm /hr) 

Pt 700 p s i g 2 1.4 

P t 3 F e 600 p s i g 3 1.9 

PtFe 700 p s i g 2 2.9 

TABLE 2. E f f e c t of Temperature on D i s s o l u t i o n Rate 

A l l o y Temperature (°C) D i s s o l u t i o n r a t e 

Pt-Fe 130 

141 

150 

170 

0.40 

0.675 

1.10 

2.20 

(1 M HCl 
700 psig) 

Pt 140 

150 

170 

0.90 

1.40 

4.60 

(2 M HCl 
700 psig) 
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TABLE 3. E f f e c t of [H ] on D i s s o l u t i o n Rate of Fe-Pt 

[H +] (M) D i s s o l u t i o n r a t e 

0.5 1.85 

1.0 2.185 

1.6 2.33 

2.5 2.70 

3 2.97 

TABLE 4. E f f e c t of Oxygen 
T = 150°C 

+ 
Pressure on D i s s o l u t i o n Rate [H ] = 2 M, 

p 0 2 ( P s i ) D i s s o l u t i o n r a t e 
2 

(mg/cm /hr) 

170 0.75 

270 1.80 

470 2.40 

670 3.25 

870 4.45 
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TABLE 5.' E f f e c t of Ch l o r i d e Ion on D i s s o l u t i o n Rate. 

[H +] = 2 M, p0 2 = 500 p s i g 

T o t a l [ C l ~ ] (M) D i s s o l u t i o n rate 
2 

(mg/cm /hr) 

2.0 

2.2 

2.4 

2.485 

2.8 

3.0 

3.1 

3.9 

3.9 

3.9 

3.9 

4.2 


