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Wall correction theories for two-dimensional airfoils in
wind tunnels wiﬁh-partly open walls are examined. Conventional
wall correction theories are 1inearized iheories, valid only for
small thin models of slight camber at low angles of attack.‘Such

theories are shown to be useless for the prediction of the

reguired wall corrections for 1large models, models ét’high

-angles of attack, or models developing high 1lift.

An exact numerical theory is presented in which it is not
necessary"to‘ make these assumptions.vThe airfoil and any solid
wall sections are represented by surface source and vortex
singulatities as in the method of'A.M;Q.Smith. Aerodynamic 1lift
is determined by‘ numerical integration of the calculated
pressure distributioﬁs around the éirfoil‘contour. The theory
indicates that certain uali configurations will require small or

negligible wall corrections for tests on lifting airfoils.
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I Introduction

The problem of determining the effect of the walls of a
wind tunnel on a model wunder test is an old one, which has
occﬁpied researchers for more than forty years. The problem is
extremely ‘complex Since‘ the effect of thé,tunnel walls is to
alter fhe flow conditions (speed and direction) near' the model
from those that would exist in a corresponding test in free air.
‘At a. given poinf in the flow field these effects are functions
of model size and shape; Any measured quantities; such as flow
speed or aerodynamic forces and moments, must be corfected for
these wall effects. Ideally such corrections could be applied
directly to these measured quantities to predict their values as

" they would be measured in a free-air test environment. -



'IT Conventional Theories for Wall Corrections

—— ————— — —— ——

Glauert(3), ‘Goldétein(u), and Allen and Vincenti (1) used
" singularity image techniques to model the airfoil-wall
interactions., fhe lift-producing characteristics of the airfoil,
the airfoil thickness, and the airfoil wake are associated with
distributions of vortices, doublets, and sources réspectively.
For each type of singularity, a suitable system of “images" is
found in' the tunnel walls, to satisfy the required floﬁ
conditions. at - the walls; for example, a solid wall boundary
requires zerb flow normal to the boundarz; while an open jet
boundary requires a constant pressure along the boundary. It is
very useful if the induced effect of each systeﬁ of images at
the- airfoil can be assumed to be additive; that is, these
individual effects can be superimposed. In terms of the
corresponding -,field-'equations, this requires a 1linearized
theory, valid oﬁly:for small wall effects, that is, for small,

thin, slightly cambered airfoils at low angles of attack.

Woods (12) uses conformal mappings to transform the airfoil
plus walls into a geometrically simple boundary value problem
for uhiéh a solution is known; that is, a funétion of a COmplex
variable whose real and/or iﬁaginary parts are prescribed on
thié boundafy. Woods' technique results in integral equations
for the mapping function; wusuwally numerical techniques are

required for their solutiosn.

Either approach can be formulated 1in terms of the

disturbance flow velocity potentia11¢ , which for incompressible

|

flow satisfies lLaplace's eguation, which is linear.



For a solid boundary which is parallel to the undisturbed
flow -at upstream infinity there 1is <zero flow normal to the

boundary; hence ai‘ié is zero there.

n

For an open jet the linearized condition of constant
pressure at the jet boundary can be expressed via Bernoulli's
egquation as requiring zero streamwise disturbance velocity;

is zero there.

hence=éé
OX

Pot slotted or perforated walls where an "Yequivalent
homogeneous boundaty condition” can be stipﬁlated, (Baldwin et
‘al(2)), a linear combination  of the boundary conditions for

solid walls and for an open jet is used.

_1_In such équivalent homogenedus boundary conditions all
details of the slot or perforation geometry are 1lost; in
particular their orientation (longitudinal or transversé).‘ Only
bulk properties such as fhe porosity or open area ratio. (0OAR)
are preserved. wéod(f1) shows, for example, that the 0JAR for
longitudinal slots would need to be less than 1% to achieve a
boundary condition appreciably different from the open jet case.
In practice, at such a small OAR, real fluid effects would be
important, so a poténtial flow model for the cross-flow would be
invalid. ‘Morebvér, Wood's analysis of this boundary condition
indicates that only cross-flow velocities of order les than .5%
of the mean flow would be in keeping with ihe linearizations

involved in the derivation of this boundary condition.



The results of conventional wall correction theories are
shown compared with experiment (Lim(6)) on a 14% thick Clark-Y
airfoil, of four different sizes, in the presence of
longitudinally (streamwise) slotted walls. 1In these .and
subsequent figures, C is the airfoil chord and H 1is the Qind
tunnel test section height, or eqﬁivalent height, for two-
dimensional testing'(FiQure 1. Fiéures 2,3,4,5 are .taken from

Parkinson and Lim (7).

Figure‘z shows the ratio of measured 1lift curve slope m to
its \falue'm° in free air, as a funétion of model size C/H for
longitudinally slotted walls of OAR 0.,5.6,11.1,18.5 and 100%.
The agreement with the theory for 1longitudinal slots is good
only for solid walls; that is, for zero OAR. All other walls
wefe predicted to behave as if they werebalmost completely open.
Thus the theory for longituainaily slotted walls is useless for

predicting the behaviour of a model under actual test.

The same measured ratio of 1lift curve slopes is compared in
Figure 3 with that predicted by porous wall theory (Woods(12)).
This shows that the porosity parameter P (defined in Ref. 7) for
a given wall OAR can be chosen tb produce good agreement. with

the test data.

This result appears in Fiqure 4 to be true also for an
airfoil with slotted flap, but the values of porosity parameter
so obtained were not the same as for the basic airfoil, for the

same wall confiqurations.



Figure 5 portrays the porosity parameter as a function of
the wall OAR, which also depends on the model under test, an

impossible situation for the practical use of porous wall

theory.



IV Formulation of an Exact Theory

What then is needed is an exact (rather than a'linearized)
theory, where the net corrections to measured forces and moments
are achieved directly, rather than additively. The method used
in this investigation is an extension of the surface singularity

distribution theory of A.M.O. Smith (8).

In Smith's mwmethod, the airfoil is represented by a
distribution of soﬁrces and vortices éroundlits perimeter. The
velocities at points in the flow field due to all such soufces
and vortices are calculated directly. The usual flow boundary
condition of zero flow through the airfoil surface is applied
and a finite-velocity Kutta‘condition_is applied at the trailing

edge.

Again f¢»' is the disturbance velocity potential which
satisfies Laplace's egquation, vanishes at infinity, and

satisfies the.appropriate boundary conditions on the airfoil.
The potential at a point P due to a single three-
dimensional source singularity at a point Q is

m .
4m g | : )

¢:’ ..L
P .
where m is the volume flow rate of fluid emitted by the source,
and I;Q is the distance between the points P and Q. The total

potential due to all such sources distributed over an arbitrary

surface S is



$=-[[2Qds
S
(2)
where o (0) is the sohrce strength density, including the factor

1/“#1, of the source element at Q.

Since tha disturbance velocity is the gradient of ¢L the
normal-velocity boundary condition at.a surface can be expressed

as

(3)

where N is the outward surface normal, V»’the undisturbed flow

at upstream infinity, and F the value the normal velocity must
take at the airfoil surface. P is zero for a solid (impermeable)

boundary, but nonzero for suction or blowing there.

Analysis (Swmith(8)) shows that the normal velocity

contributions at P on S by such source elements dS consist of a

"local" tern,

(4)

due to the source element at P, plus a "far field" tern

[l (-
{fan( rIBQ) o(Q)dS | )

due to the summation of all 6ther source elements Q on S. The

resulting boundary condition

(6)

comprises a Fredholm integral equation of the second kind, for

o
2mwo(P)- ‘S/]:% (#Q) o (QdS=-Vpenl +F ;
o

the unknown continuous source strength density distribution



function o|(p) . Existence and uniqueness theorems for such
equations may be found in Kellogg (5). The surface S wmay be
disjoint, but the outward normal vector nust be a continuous

function of position.

In practice an approximating polygonal surface-is wused to
represent a three-dimensional body so‘ that the continuous
distribution of sources becomes a 4succession 6f N finite
distributed source=eléments. The normal-flow boundafy condition

is applied at a single "control point"™ on-each source element.

Thus the resulting exact inteqral equation reduces to a set
of N simultaneous linear algebraic equations for the strengths

of N finite surface source elements.
‘Defining the linear operatot
. . 5 ,Iv
A [ (D
)i an. r ]
5 Y

the boundary cohditign applied at the i-th control point

(7)

' %Aj,q =—Vw°ﬁi + E
j=l A | (8)

indicates'Aﬁ to be the normal velocity induced at control point

*i' by a unit strength source element at 'j'. Hence Auils 2w

for all i=1,2,...N.

For a two-dimensional airfoil +this approximating surface
becomes a polygonal c¢ylinder. A Kutta condition is applied at
the two control points adjacent to the +trailing edge = this

fixes the net circulation about the airfoil.

With respect to Cartesian axes xjfand yd fixed to the j-th



source element (Figure 6), the integration of a two-dimensional
line source into a two-dimensional distributed source element

produces at a point 'i' velocity components

a—‘éjl =l0g { xj ASJ )2+ yjz}

X T OX; ) (9)

and

—4’1 =2tan __y’_A_s,__

(10)

where XJ and Yj| are the distances from the j-th to the"i-th

%

element- the j-th element has 1ength AS,L

With reference to Cartesian "wind axes" X and Y, (X is in
the wind direction), the j-th source element is inclined at an

angle 8j/to the X-axis. Thus

g Aji=vyjcos(8,-8,)—ijsin(Gi-Gj) \ (11)
and its orthogonal partner ‘
BjiivijOS(ei-ej)+Vyl5in(ei_ej) | (12)
are the normal  and tangential disturbance velocities

respectively at control point 'i' due to a unit strength source

element at 'j°*.

Corresponding expressions for the veloéity components due
to a disfributed vortex element of circulation strength density
‘7«3% can be obtained. Then the normal and tangential velocities
ét éontrol point *'i?* due to all N source and vortex elements and

the uniform approach flow U are
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N N
Vn;= Z%Ajioj ;Zl By % —Using,
j: -

(13)
and
N N .
V:fj‘_Zl Byoj +3 Awtic+Ucost;
. o (1)
Hence the normal-£low boundary condition becomes, for zero

it

(15)
at all N control points, while the finite-velocity Kutta

condition becomes

Vispoer = Viower o

at the two control‘bbints adjacent to the airfoil trailing edge.

In practice, all vortex elements on a closed body requiring

a Kutta condition are chosen of equal strength 7|, so the flow
about an N-sided polygonal airfoil requires the solution of N+1

,'OEL... UN%and 7\‘. Usually the

ejuations in the N+1 unknouns 9

solution is obtained directly by the method of Gauss-
elimination, although indirect iterative procedures are also

possible._

In the present investigation, the above method of‘
distributed singularities is extended to include mulfiple-
element airfoils in the presence of so0lid or slotted wind tunnel
walls. On solid wall sections, only the zero normal-velocity
condition applies, hence only source elements are applied there.

On airfoil-shaped bodies with Kutta conditions applied at their



11

individual trailing edges, both source and vortex elements are
required. Thus for the two~dimensional configuration of
Figure 7, the system of N+M equations to be solved is composed

of the N equations

M f«ﬂ :
Z/-‘mcr, -ZKZB,N UsmB; i=1,2,N"

k=l m=| (17)

prescribing zero normal velocities, and the ¥ equations
N ' M F%()
§$Bjus+ B ) +k};n>"‘m-$AmUs+ Am_ ) =-Ulcosf + cosf,_ )

s:l,2,-.- ‘M

- (18)
for the M bodies with Kutta conditions at their trailing edges. .
The subscripts U and L indicate the control points on the upper.

and lower surfaces of an airfoil section, at the trailing edge.

THus there are:
-a total of § source elements distributed over the
airfoils and solid'wq}ls.
-a.total 5f M bodies requiring Kutta conditions.

M

-a total of ZR(k) vortex elements dlstrlbuted over the
‘ k=t
airfoils; the k-th such body has R(k) source elements and R (k)

equal-strength vortex elements distributed over it.

o

~-N unknown source strength densities o5
-¥ unknown vortex strength densities X%

-N+M equations in the N+M unknowns

CARRE R {2 AT
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Av program written in FORTRAN for use on the>UBC ‘IBM 360/67
computer is used to construct the matrices Aﬁ{ and LB”, given
the coordinates, lengths and orientations of the source and
vortex elements on the airfoil and walls. These mpatrices are
then ﬁsed to assemble the coefficients of the unknowns in.the
N+M equations. Typically N+M is of ordér 300 to 400, hence the
ﬁatrices ﬁ;‘ and  Bﬁ{ each contain more than 100é0b0 nonzero,
uonsymmetrié entries; The total computational capacity of the
360/67 1is bhly 250,000 entries, hence such large matrices must
be partitiohed for computation and témporary | storage on
auxiliary devices; for example, on magnetic tapes or discs. The

matrices Aj

and BﬁL describe the relative geometry of the
source and vorte#leleménts; that is,their relative position and
orientation. These matrices must bé recalculated for each change
in relative geometry.
The systeh of equations to be solved is written
ClLi%  +Cp 0p  +#Cy Oy +Cny %+ +Cnami?m =4

Cl'zc] +C2'20'2 +e-e +CN,26N +CN‘|’|,2>T +--- +CN+M,27M ‘ = dz

CNOi +Cono2 +-+CyNON  +CNuNTT  + - +CnamNM = dy

C,N#O +CoNuT2 +- - +Cy Oy +Cnai et + +OnempeiTh = O (9

1

CiN+MTT +CoNeMT2* ** +ONNTMONF CNat oM T+ + OnemNsm M = Onem |

l

where the matrix (huiand the column vector & in the system

C(O’ ;7)=d

H
o1

are assenbled from the matrices [ﬁ fand Bﬁfby means of
: i
]
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equations (17) and (18); that is,

Aji j=1,2,-N; i=1,2,~N
Rik) :
_.ng—:IBmi ) k=1,2,-M; j=N+k; i=,2,-*N -
Ci= 1 : ‘ 20)
BjU5+ BjLs ]=|,2,'-~N; 5=|,2,"‘M', i=N+s
m=$AmU's+ A"‘Ls) k= |,2,--~M-,j=ka.' s=1,2,°-M; i=N+s.

and - o
Usin§; i=1,2,--N
Q=‘ |
-Ucos ~Ucos8 _  s=1,2,-M;i=N+s (21),
S S
The summations
' S $8
A X, B Usm@
i el b (22)
and . T '
M Rk)
ZBJ, ]+;Z_l);ZAm,+ Ucos8,
(23)

provide the net normal and tangential velocities at control
points 'i' due to all sources and vortices 'j'. At all control

' l
points on solid surfaces, \Q% is zero, and the local pressure

|

coefficient ACp is calculated from \Ql
: ] Vi t |
Coy= -(U) 1

The resulting values of Co.
[

around  the airfoil contour to determine the 1ift, drag, and -

(25)

may be 1integrated numerically
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pitching moment coefficients, from the expressions

- |
CLT- -'Ezi:cpiAXi
‘_|
CDT'E;CPiij
! - |
CM°T= —C_ZEi:Cpi(xi Ax;* ¥, 0y) '
- (26)
where
ax; = ASinOSQi \, Ay, =4S; Sin9i
IR | (27)

and summations are  performed clockwise around the polygonal

contours.

Resultant velocities may also be calculated at points in
the flow field not on the airfoil or walls, so that streamlines

throughout the flow field may be drawn as isoclines.
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VI Results

The agreement of pressure distributions calculated by
Smith's method, for airfoils in free air, with two-dimensional
tests is well established (Smith(8)). Figure 8 shows a
comparison of calculated pressure distributions for a 14% thick
Clark-Y airfoil in free air and in the presence of solid walls.

The walls, for this size model, produce 30% higher lift.

Figure 9 shows a comparison of an experimentally determined .
pressure distribution for an NACA 23012 airfoil with flap
(Wenzinger et al(10)), with calculated pressure distributions
for the same ai:foil in free air and in the presence of solid

‘walls. Experimentally, the potential flow free-air pressures are.

not achieved because of boundary layer effects.

For both the above airfoils, an important observation is
that the undersurface pressure does not change much in the
presence of so0lid .walls; hence the upper or suction surface

provides most of the increased lift.

The 1ift coefficients are reported in terms of the 1lift
|
coeff1c1ent CLT developed by the airfoil in the tunnel and CLF%

developed in free air. : -

!

Figure 10 shows the variation of CLT with angle of attack
aifor models of differing C/H. For small nmodels, the lift
curves are concave downward as is usual, while for large models

they are concave upward.

The ratio of lift coefficients is shown in Figure 11 as a
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function of model size, for three angles of attack. The
corresponding prediction of <conventional solid wall theory’
(Roods (12)), which is independent of angle of attack, agrees

well with the test data (Lim(6)).

The very 1large corrections for large airfoils developing
high lift,'shown in the above results, prompted a search for a
wall configuration that would exhibit the known cancelling
effects of partly 5pen, partly closed walls, and which would

therefore‘provide negligible or small wall corrections.

The first configuration investigated was aiset of multiple
airfoils in an otherwise uniform stream of infinite extent
(Figure 12). This configuration might be used to represent a
two-dimensional tunnel with transversely (spanwise) slotted
walls. With airfoil-shaped transverse slats, no flow separation
would o¢cur at the slats, as each winglet would be operating in
an unstalled cond}tion; with a Kutta condition applied at its

trailing edge.

Consider the limiting lower streamline AB, which enters the
tunnel near the entrance to the test section. Physically, this
lower streamline is a shear layer, idealized as a free
streamline, at constant zero reférence pressure, which brings
turbulent mixing into the tunnel, closé to the airfoil, an
undesirable effect. But the corresponding streamiihe in the
nultiple airfoil-infinite stream -representatidn is hot a free
streamline, but merely one of the infinite stream. Thus, ih this
representation, the pressure 1is not zero on  this lower

streamline, and errors would be introduced in representing the
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flow in this manner; in particular, close to the underside of

the airfoil.

Similarly the upper limiting streamline cannot be cqrréctly
represented easily, but since this streamline is separated from
the airfoil by the intervening slats with their boundary
conditions impressed on the flow, the errors in incofrect
pressure and location in the representation of this streamline

should have only secondary effects on the main airfoil.

With only one slotted wall, Figure 13, it should still be
possibla to produce the <cancelling effects of partly open,.
partly closed walls, since the upper slotted wall is adjacent to
the suction side of the airfoil, where most df the increased
.lift is developed. Hence a combination‘of a transversely slotted
upper wall with a solid lowver wall .was envisaged as an
effectively correction-free test configuration, for a lifting

airfoil.

-

This configuration should be accurately represented by two-
dimensional potential fldw theory, since the flow angles at the
wall slats should be small enough that these winglets will be
anstalled, and the upper shear layer will re-enter the tunnel
only well downstream of the airfoil.

An investigation of this configuration followed.
of -20°

For the Clark-Y, at an angle Qpgge , Figure 14 shows

the ratio of lift coefficients as'a function'df model size for a
50% and 75% OAR upper wall. Also shown are the curves for two

solid walls, and for the airfoil in ground effect.
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For the same airfoil at the same angle of attack; the ratio
of 1lift coefficients in Figqgure 15 1is shown as a function of
upper wall OAR, for a range of model sizes. An upper wall of
zero OAR corresponds to two solid walls; 100% OAR corresponds to
the airfoil in ground effect. Where the ratio of 1ift
coefficients is unity,-there is zero net wall correction;v this

occurs for this airfoil at approximately 70% OAR.

The pressure distribution for the Clark-Y at an ;mne.df
20° for such a zero correction configuration of 70% OAR,; with
model size‘ C/ﬁ of .72, appears in Figure 16 along with the
corresponding pressure distribution for free air. The net 1ift
is the same in both cases. Although there is less suction over

the forward upper surface, there is increased suction over the

rearward portion of the airfoil.

Similarbresults are shown in Figure 17 for the same airfoil
but at a different Quge |O0f 12°. Again a slotted upper wall of
70% OAR should provide a relatively correction-free test
configuration., Comparison is also made with the theory fér a
circular arc airfoil in ground effect (Tomotiké et al(9)) of
similar 5.3% camber, but at an admmiof 5° . The agreement is

. : |

favourable.

Results obtained for the NACA 23012 with flap were similar. -
Figure 18 indicates that a transversely slotted wupper wall of
70% OAR with a solid lower wall provides a relatively

correction-free test configuration.

!
Tha relative error in C,_ |for a 70% upper wall OAR is shown
Ly
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in Figure 19 for the Clark-Y airfoil at four angles of attack
and the NACA 23012 airfoil with flap. The relative error at this

OAR is less than 3%, except for extremely large models.

Table 1 outlines the details of all configurations tested.
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VII Conclusion

An extension of the two-dimensional potential fldw thoery
based on theb surface singularity distribution procedure has
shown that a relatively correction-free wind tunnel test
configuration for lifting airfoils can be achieved for a wide
range in model sizes by wutilizing a 70% open area ratio
transversely (spanuisé) slotted upper wall, in conjunction Qith
a solid 1lower wall. Small or mnegligible correcgions can be
achieved for a wide range of angles of attack, and for different
models, tha£ is, single airfoils or airfoil-flap combinations. A
program of expasrimental verification of these results should be
undertaken. Where the wall corrections;are not negligible but
small, a 1linearized perturbation theory baéed on this

configuration might be developed.
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Figure 2. Comparison of longitudinally slotted wall

lift theory with data for Clark-Y airfoil.
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Figure 3. Comparison of porous-wall 1lift theory with
data for Clark-Y airfoil tested between

longitudinally slotted walls.



CLARK-Y 14% + SLOT
+SLOTTED FLAP

LONGITUDINAL SLOTS

SOLID

O]

(0]
Aé ]
D (-]
v
: 4
THEORY OAR% P EXPT
! . 33
2 18.5 67
3 296 .54
4 100 @
2 4 6 .8 10
C .
H
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tested between longitudinally slotted walls.
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Figure 6.

Geometry and notation for Smith's method.
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Figure 7.
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Source and vortex distributions for a two-

dimensional airfoil between solid walls,
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Figure 8. Pressure distributions for Clark-Y airfoil.
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Figure 9. Pressure distributions tor NACA 23012 airfoil.
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Figure 13, Streamlines for an airfoil between transversely slotted

~upper and solid lower walls,
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Figure 14. Variation of 1ift coefficient ratio with wall

geometry for Clark-Y airfoil.
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Variation of lift coefficient ratio with upper

wall open-area ratio for Clark-Y airfoil.
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Figure 16. Pressure distribution for Clark-Y airfoil in

correction-free lift test configurationm.
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geometry tor Clark-Y airfoil.
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NSA  WALL CONFIGURATION

50
50

50

50
50
50
50
50
50
S0
50
50
50
50
50
50
50
50
50
50
50
50
50

Solid
Solid
Solid
Solid
Solid
Solid
Solid
Solid
Solid

Solid

Solid
Solid
Solid
Selid
Solid

Solid

Solid
Solid
Solid
Solid
Solid
Solid
Solid

NSU
50
50
50
50
50
50
50
50
100
100
100
100
100
50
50
50
50
50
50
50
50
50
50

Table 1.
NSL NSLAT c/C

50
50
50
50
50
50
50
50
100
100
100
100
100

50
50
50
50
50
50
50
50
50

Configurations Tested
NSS OAR NWC

6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3

- O O O

6.3
6.3
6.3
6.3
6.3
6.3
6.3

6.3

6.3
603

CLF -

3.091
3.091
3.091
3.091
3.091
3.091
.091
.091
.188
.188
.188
.188
.188
.955
.955
.955
.955
1.955
. 7635
.7635
.7635
.7635
.7635

= o o NN RN W W

CLT
5.360
4,416
4.121
3.785
3.378
3.242
3.149
3.100
3.475
2.982
2.622
2.372
2.225
3.065
2.648
2.337
2,119
1.990
1.115
.988

. 889

.818

775

CLT/CLF
1.734
1.428
1.333
1.224
1.092
1.049
1.020
1.003
1.585
1.360
1.195
1.080
1.015
1.567
1.355
1.195
1.083
1.018
1.460
1.293
1.163
1.071
1.013

0y



AT
c-Y
c-Y
c-Y
Cc-Y
C-Y
Cc-Y

c-Y
C-Y
c-Y
c-Y
C-Y
Cc-Y
Cc-Y
Cc-Y
Cc-Y

c-Y

Cc-Y

C-Y
c-Y
c-Y
c-Y
c-Y
Cc-Y

C-Y
c-Y
C~Y

o

-6.2
-6.2
-6.2
-6.2

-6.2
20

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

NSA WALL CONFIGURATION

Solid
Solid
Solid
Solid

Solid
T.S.U.S.

T.S.U.S.
T.S.U.S.
T.S.U.S.
.S5.U.S.
.5.0.S.
«5.U.S.
.5.U.S.
.S.U.S.
.5.U.5.
T.S.U.S.
G.E.
G.E.
G.E.
G.E.
G.E.
G.E.
G.E.
G.E.
T.5.U.S.
T.5.U.S.

H =3 B3 3 3 13

- T.S5.U.S.

T.5.U.S.
T.S.U.S.

L.
L.

L.

L.
L.
L.

L.
L.
L.
L.
L.

NSU NSL NSLAT c/C

50
50
50
50
50

50
50
50
50
50
80
80
80
80
80
80
80
80
80
80
80
100
100
100
100
100

100

100
100
80
80
80
80

" 80

15
15
15
15
15
15
15
15
15
15
15

15
15
15
15
15

.12
.12
.12
.12
.12
.12
.06
.06
.06
.06
.06

.072
.072
.072
.072
072

t/c

.33
.33
.33
.33
.33
.33

.33

.33

.33
.33
.33
.33
.33

NSS OAR NWC

O W W VW W YW VW W v Vv v )

O W O W WO

.75
.75
.75

6.3
6.3
6.3
6.3
6.3
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4

(= B N e A N e AT~ A AR A A

(98]
~

3.4
3.4
3.4
3.4

C/H CLF

1.0
.8
.6
.4
.2

1.0

.72

o O N &~ O

.72

=8

.0415
.0415
L0415
L0415
L0415
3.091
3.091
3.091
3.091
3.001
3.091
3.091
3.091
3.091
3.091

4 3.091

. 39
.19

3.091
3.091
3.091
3.091
3.091
3.091
3.091
3.091
3.091
3.091
3.091
3.001
3.091

CLT CLT/CLF

-.020
-.013
-.004
.0049
.0116

3.

3.524
3.465
3.348
3.218
3.131
3.062
3.037
3.033
3.035
3.063
2.676
2
2
2
2

733

.762
.811
.919
2.983
3,045
3.085
3,170
3.092
3.078
3.087
3.098

-1.39
-.903
-.290
.338
.80
1.219
1.140
1.121
1.083
1.041
1.013
.991
.983
.981
.982
.991
.866
.884

.894 .

.909
944
.965
.985
.998
1.026
1.0
.996
.599
1.002

1%



AF

C-Y
C-Y
Cc-Y
C-Y
c-Y
c-Y
C-Y
c-Y
C-Y
c-Y

C-Y
C-Y
C-Y
C-Y
C-Y
C-Y
C-Y
c-Y
c-Y

Cc-Y
C-Y
C-Y
C-Y

12
12
12
12
12
12
12
12
12
12
12
12
12

12

12
12
12
12
12
12
12
12
12

12

NSA WALL CONFIGURATION

50
50

50"

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

T.S5.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
T.S5.U.S.L.

T.S.U.S.L.

T.S.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
T.S.U.S.L.

 T.S.U.S.L.

T.5.U.S.L.
T.5.U.S.L.
T.S.U.S.L.
T.5.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
T.S.U.S.L.
G.E.
C.E.
C.E.
G.E.
G.E.

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
100
100
100
100
100

NSU NSL NSLAT

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

c/C
12
.12
12
.12
.12
.12
.12
.06
.06
.06
.06
.06
.06
.072
.072
.072
.072
.072

.072

.072

t/e
.33

.33
.33
.33
.33
.33
.33
.33
.33
.33
.33
.33
.33
.33
.33

.33

.33
.33
.33
.33

NSS O0AR

O O WO W WO W WO VO W W W WO W W WOV W v v v

NWC
3.4

3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4

3.4

3.4
3.4
3.4
3.4
3.4
3.4
3.4

D O N

C/H

CLF
2.188

9 2.188

2.188

6 2.188

.45
.26

1.0

.6
.45
.26
.16
.09
1.0

.45
.26
.16
.09

S
N &~ O 0 O

2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188
2.188

CLT
2.617

2.537
2.463
2.343
2.276
2.221
2.199
2.234
2.179
2.178
2.187
2.189
2.188
2.284
2.233
2.200
2.190
2.192
2.190
2.188
2.060
2.068
2.087
2.121
2,170

CLT/CLF
1.195

1.158
1.124
1.070
1.040
1.013
1.003
1.021
.996
.994
.998
1.001
1.000
1.044
1.021
1.006
1.001
1.002
1.001
1.000
.940
.945
.954
.968
.990

(A
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NSA - WALL CONFIGURATTON NSU NSL NSLAT ¢/C t/c NSS OAR NWC C/H CLF CLT CLT/CLF

C-Y 6 50 T.S.U.5.L. - 8 15 .072 .33 9 .7 3.4 1.0 1.483 1.557 1.050
cC-Y 6 50 T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4 .6 1.483 1.495 1.008
C-Y 6 50 T.$.U.S.L. - 80 15 .072 .33 9 .7 3.4 .45 1.483 1.485 1.002
cC-Y 6 50 T.$.U.S.L. - 80 15 .072 .33 9 .7 3.4 .26 1.483 1.484 1.001
c-Y 6 50 T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4 .16 1.483 1.483 1.000
C-Y 6 50 T.5.U.S.L. - 80 15 .072 .33 9 .7 3.4 .09 1.483 1.482 1.000
C-Y 0 50 T.S.U.S.L. ' - 80 15 .072 .33 9 .7 3.4 1.0 .7535 .772 1.C01
c-Y 0 50 T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4 .6 .7635 .758 .992
cC-Y 0 50 T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4 .45 .7635 .757 .992
cC-Y 0 50 T.5.U.S.L. - 80 15 .072 .33 9 .7 3.4 .26 .7635 .761 .996
C-Y 0 50 T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4 .16 .7635 .762 .998
cC-Y 0 50 T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4 .09 .7635 .762 .998

23012 8-20 61=46+35 Solid 100 100 - - - - - 6 1.0 2.442 3.300 1.392
23012 8-20 81 Solid 100 100 - - - - - 6 .8 2.442 3,009 1.233
23012 8-20 81 Solid 100 160 -~ .- - - - 6 .6 2.442 2,770 1.135
23012 8-20 81 Solid 100 100 - = - - - - 6 .4 2.442 2,587 1.061
23012 £-20 81 Solid - 100 100 - - - - - 6 .2 2.442 2,472 1.012
23012 8-20 81 G.E. - 100 - - - - - 6 1.0 2.442 2,176 .892
23012 8-20 K1 G.E. - 100 - - - - - 6 .8 2.442 2.212 .905
23012 8-20 481 G.E. - 100 - - - = =6 .6 2.462 2.261 .926
23012 8-20 81 ’ G.E. - 1m0 - - - - - 6 .4 2,442 2,330 .955
23012 8-20 81 GLE. - we - - - - - Y6 .2 2,442 2,413 ,988

£y



AF
23012
23012
23012
23012
23012‘
23012

8-20
8-20
8-20
8-20
8-20
8-20

81

81
81
81
81

NSA WALL CONFIGURATION NSU NSL NSLAT c¢/C t/c NSS OAR NWC
T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4
T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4
T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4
T.S.U.S.L - 80 15 .072 .33 9 .7 3.4
T.S.U.S.L. - 80 15 .072 .33 9 .7 3.4
T.S.U.S.L.v - 80 15 .072 .33 9 .7 3.4

81

AF - Airfoil configuration.

o - Angle of attack-degrees.

NSA -

T.S.U.

Number of source and vortex elements on airfoil.

S.L. - Transversely slotted upper and solid lower walls.

G.E. - Airfoil in ground effect.

NSU -
NSL -
NSLAT
c/C -
t/c -
NSS -
NWC -

Number of source elements on upper solid wall.
Number of source elements on lower solid wall.
~ Number of airfoil-shaped slats.

Slat chord : airfoill chord ratio.

Slat thickness : chord ratio.

Number of source and vortex elements per slat.

Total extent of wall in airfoil chords.

C/H CLF
1.0 2.442

.8 2.442

45 2.442
.26 2.442
.19 2.442
.09 2.442

NN NN NN

CLT CLT/CLF

413 .988
.402  .984
.416  .989
<439 .999
.443 1.000
.442 1.000
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