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ABSTRACT

The design and implementation of the interactive graphics
language IGL is described. This language not only allows the definition
aﬁd display of line drawings but also has full facilities for manipula-
ting, naming, identifying and interacting with such drawings. The lan-
guage has been implemented as an extension to Fortran IV using the XPL
compiler generator system. The experience gained so far in the‘use of
the language has already proven a number of advantages over present-day
graphics systems. The language is readily learned by users with previous
high-level language experience. As no extensiVé testing and documenta-

tion is necessary due to the readability of the program, the time re-

quired for the completion of a project is greatly reduced.
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1. INTRODUCTION

Over the last years, an increasing need has been felt in the
Electrical Engiﬁeering Department at this University for a computer
facility to permit computer aided design.

A first attempt was made in the summer of 1970. A program was
written to enable a user to enter the topology of an electronic circuit
diagram to a PDP-9 computer, using a display screen and light pen as
communication interface [19]. This program had a number of remarkable
features such as an elegant windowing facility and automatic labelling
of elements. It was reasonably well documented and tested and yet
proved to be less useful than hoped for.

The reason was. simple. Some additional features were needed,
some inconsistencies still existed and the intetrfacing to a circuit ana-
.lysis program had not been included. So changes had to be made to the
program and the author was no longer available. The program was written
in assembler and was quite complex. The effort needed for somebody
-else to familiarize himself with the prégramming techniques used was
considerable and the project was never completed.

This example shows clearly that the design of complex software
systems should occur on a more general level if the systems are to be
used by many different users and if they are to be expandable to future
needs. This is particu’arly true in a university environment where a
regular turnover of students using and updating an existing system takes
place.

This thésis describes, after an introduction to the field of

computer graphics, the design and implementation of a high-level



language for interactive graphics, the resulting graphics system, and the

experience gained with it.



2. COMPUTER GRAPHICS, A SHORT SURVEY

Interactive ;echniques are widely used in proBlem solving by
computers. The‘pqrpose of these techniques is to make efficient use
of both man and machine. The computer is used to carry out those actions
that can be specified in advance and human reasoning is called upon to
direct the course of those actions. To be able to dq this, the user must
have a clear understanding éf the state of his computations and he
must have a means of indicating his commands to the‘computer. A graphics
display provides a natural way of‘communicating information to.the user.
Line: drawings and graphs are much easier understood than tabies of num-
bers. Also a ‘graphical input device such as a light pen or joystick
allows the user to transmit his wishes with a maximum of convenience.
This kind of interactive computing is called interactive computer gra-
phics.

The earliestattempt at computer graphics was made in 1962
when Ivan Sutherland implemented the now famous ''Sketchpad'" system on
the TX-2 computer at Lincoln Laboratory at MIT [20]. The publication
of his work triggered research in this field by many others and led
compahies~like General Motors, Boeing . and Lockheed to set up graphics
systems for computer aided design (CAD) [18];

All these systems used expensive display terminals (such as
the IBM 2250) and requi-ed a huge computer. to monitor the interaction.
Their cost effectiveness has been highly disputed and the economic de-
cline in the aerospace industry has caused thé'development of many new
CAD projects to be abandoned.

In the meantime, a new generation of computer hardware has



appeared and with it many new concepts in computer software [2]. The
high cost of computer graphics had been determined by two factors:

- tﬁe high cost of the terminal and main computer hardware

- the high cost of developing the necessary programs.
The cost of computer hardware has decreased sharply over the last decade
and the availability of mini computers and time-sharing systems has
further reduced the cost of interactive computing. Storage tube dis-
plays have eliminated the necessity of continﬁous refreshing of the
display screen and thereby made economical terminals for computer
graphics a reality.

A great effort has been made to match this progress in hard-
wareé with a similar cost cutting progress in software. As the hardware
gets less expensive, the software development costs are becoming an
ever more dominating factor in any versatile computer system. Tﬁe
previous approach where all software was written in assembly language
_ for maximum runtime efficiency is now being overtaken by an effort to
provide the programmer with easy to use computer lapguages that enable
ﬁim to write his programs with a maximum of programming time efficiency.
A number of special purpose languages have recently appeared in the
literature that attempt to make the programming of graphics applications
as easy for the programmer as programming numerical programs in con-
ventional algorithmic languages such as Fortran and Algol. The first
"Graphic Languages' were published in 1968 [5,10,13] and the development
of such languages has since been the subject of a special conference
[8].

The advantage 6f a powerful graphic language is obvious. It

allows the user of a graphics system to write the programs necessary

.



for his special application himself. He can experiment with ideas and
make changes to his programs without having to ;ely on a programmer to
do this work for him. Thus he has control over and can be made respon-
sible for his own graphics programs. What is equally important is the
readability of programs written in giaphic languages. It not only re-
duces the testing and documentation time considerably, but (as most
programs usually end up with inadequate documentation) it allows changes
to be made to the program by consulting just a program listing.

The next chapter will describe the nature of graphic 1anguages
and attempt to identify some of the points that are important to appli-

cations in computer aided design.



3. GRAPHIC LANGUAGES

The variables in graphic languages that are manipulated are
pictures, two—dimensional structures. One of the most difficult pro-
blems in computer graphics is to find a concise description for such
pictures. Even the simplest of two-dimensional drawings contains a
great amount of implicit information. For example, a drawing consisting
of only two lines contains information about the lengths, the positioms,
and the angles of the lines relative to a frame of treference and relative
to each other; also whether they are soiid, dotted, dashed, intersecting,
etc. The more cdmplicated the drawing, the greater the amount of such
implicit information becomes. Even more confusing is the case where
pictures are considered to include grey-levels and raster sizes,
common factors where pictures are digitized for processing. To simplify
.the description, we will look at oﬁly generation, not recognition, of
piétures and consider all pictures to be line drawings consisting of

solid lines of equal thickness.,
3.1 Primitives

The primitives of a language are the cénstants defined in the
language that can be broken down no further. In Fortran these are the
real, integer, and logical constants, in‘a graphic language they are the
basic picture constants. Line drawings consist of lines, or rather line
segments, The dot cén be treated either-as a line segment of length
zero or as a special symbol.

Defining only DOT and LINE as the primitives of a graphic
language is sufficiént, but treating pictures directly at this primitive

level is rather bothersome and so usually some additional primitives



are defined in the language as a help for the programmer. A set could
consist of elementary geometric symbols like: DOT, LINE, SQUARE,
CIRCLE, TRIANGLE, ARC, etc. The representation of the numbers and the
characters of the alphabef are also often defined in the language as
‘picture primitives. Depending on the display hardware other characters

may be included.

3.2 Operators

The‘operators of a language are the symbols that stand for
manipulations to be performed‘on variables and constants. Here our in-
complete understanding of piétures becomes evident. We are able to
define basic mathematical operators like +, -, * for manipulating numbers
without trOuble,'as we are so familiar With using these symbols in cal-
culus where they are well defined. A basic set of operators for pictures,
‘however, is not as easily extracted from gebmetry, the mathematical
discipline which studiesbmanipulation of two dimensional structures.

Even including other relevant disciplines, as Graph Theory and Set
Theory, does not bring us much closer té understanding pictureé yet.
Research is being done in this direction, however [8].

The easiest way of finding a useful set of operators is by
comparing existing graphic languages and picking out features that seem
desirable. As an example we shall consider the proéess of building up
pictures:

One operator should allow us to add subimages together tbvform a
picture. This operation can be done as a superposition of two
pictures or as a concatenation of two pictures.

(a) In the case of superposition some coordinate system must be known



for both subpictures. This leads'to considering each subpicture
to be defined in a "frame'" [10] and superposition involves
superimposing the two frames.

‘b) In the case of concatenation, the pictures must .contain some specially
designated points at which they can be joined together. This
leads to considering each subpicture as having a "head" and a
"tail" and concatenating pictures head to tail only. [13].

Both approaches have their iimitations, in (a) it is difficult
to keep track of what is now connected to what and in (b) each subpicture
is limited to one head and one tail.

Furéher operators should allow us to delete pictures or parts
of pictures, to move pictures, to scale pictures and maybe to display
pictures. As no arithmetic operators, apart from + fpr adding and -
for deieting, seem to apply to pictﬁres in a natural manner,‘most other
‘forms of manipulation are described as functions. Giving these func-
tions mnemonic names makes them easy to remember.

Examples:

SCALE, MOVE TO, ROTATE, WINDOW, DISPLAY ...

or built in constraints like:

PARALLEL, VERTICAL, POINT ON LINE ...

3.3 Assignments

In building bictures it must be possible to givé names to
subpictures, in order to use these names for building up more compli-
cated pictures. Most languages include the aééignment statement in
one way or another. The symbol. used is the same as in arithmetic assign-
ments (=, :=, «). Some published languages use instead a procedure

oriented approach. Instead of assigning a pictorial expression



to a variable, they assign a procedure to a variable. This procedure
is executed whenever the variable is referenced in the program and
causes the corresponding picture to be drawn. The decision for or
agéinst display.procedures will most likely be influenced strongly by the
programming language available for the implementation. Procedufe oriented
languages such as Euler have been used succesfuliy for designing graphic
languages [16] and similar results have been achieved using APL and
APL-1ike structures [4,6]. The reason that the language used for the im-
plementation shows through so strongly iﬁ the design of a graphic language
is the following.

The creation of a complete, versatile computer language can
be a huge task if carried out from bésics; However, if the graphic
language is defined as an extention of an exisfing algorithmic language,
only those constants, operators, and functions that are not already avail—
able need to be included. Features such as, e.g. branching, conditional
and arithmetic statements and the complete I/0 handling facility can
be used directly as defined in the algorithmic language which now takes
the place of "host-language' for the graphics language. Thus a graphics
program is really a mixture of graphics statements and host-language
statements, and the designer of such a language will usually choose his
graphics syntax definitions to fit in with the overall syntax structure

of the host-language.
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4. THE LANGUAGE IGL

The acronym IGL stands for Interactive Graphics Language,

a computer langﬁage for handling line drawings. This language not only
allows the definition and display of line drawings but also has full
facilities for manipulating, naming, identifying and interacting with
such drawings. Through the use of windowing techniques, parts of the
drawing can be magnified for closer inspection or scaled down for
greater display density. Commands are further provided for saving and
restoring drawings on secondary storage.

An applications program written in IGL appears to be a mixture
of statements 'for graphical manipulations and host-language sfatements.
The distinction between the two is made on a card-by-card basis, the
graphical statements having a special character (*) in the first column
of each card. The compilation is executed in two stages: first a
compilation from IGL into host-language, secondly a compilafion of the
host-language info machine language.

Because of its widespread useland support, Fortran IV was
chosen- both as host-language for IGL and as progfamming language for
the routines in the IGL runtime library. This one-language approach
provides almost complete portability from one computer installation

to another.

4.1 Syntax

The graphical aspects of the syntax of IGL are based on the
work of F. Nake [14]. In addition to existing types of constants and
variables in the host-language (e.g. integer, real, etc.), the new type

IMAGE is introduced. Image constants are either elements from the set
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{BLANK, DOT, LINE, SQUARE, TRIANGLE, CIRCLE, HALFCIRCLE} or strings of
literals (keyboard chéracters). Image variables are defined with the
aid of the image assignment operation (:=) by image expressions which
are strings of image constants and/or variables joined by diadic image
operators. Image constants and vari;bles are initially defined on the

unit square.as follows:

BLANK  LINE DOT SQUARE  TRIANGLE CIRCLE HCIRCLE

For each use of an image variable, a set 6f attributes is attached de-
fining coordinates, scale, and angle of rotation of the picturé which
the variable represents. These attributes can be redefined with the
use of unary image operators, hence affine transformations such as
translation, scaling, rotation and mirroring can be applied.
For'illustration, the following image assignment statements

“"resistor",

define an image variable to represent the symbol

* HR:= LINE FROM 0,.5 "TO .4,.5 + LINE FROM .4,.5 TO .425,1
* + LINE FROM .425,1 TO .5,0;
* R:= HR + HR VSYM .5;

The right hand sides of both statements employ the diadic image operator
+ (superposition). The first statement defines a temporary image variable
HR by superimposing the image constant LINE three times, each time

modified with the image operator FROM ... TO ... in the desired manner.
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HR R

The second statement defines the variable R as a superposition of HR
and the reflection of HR on the vertical at x = .5, thus completing
the symbol '"resistor".

The numeric operands of image operators may be not only
numeric constants but can be numerical variables of the host-language as
weli. Therefore, complicated pictures can be defined with image assign-
ment stétements imbedded in statements of the host language, e.g.
in loops. For example, the following program éortion:

S = .25%SQRT(2.)

5C = 2.%S

ALPHA = PI/4.

. BRIDGE:= BLANK;
DO 100 I = 1, 4
X1 = .5 + S % SIN(ALPHA)

Yl = .5 - S * COS(ALPHA)

* BRIDGE:= BRIDGE + R AT X1,Y1 SCALE SC,.l1 ANGLE ALPHA;
100 ALPHA = ALPHA + PI/2.
* DISPLAY BRIDGE;

would display a resistor bridge:



ERIDGE

The facilities described above allow the creation and naming
of items called image variables. For most applications, however, an
additional facility is needed to group into logical groupings, items
that do not nebessarily look alike. As an example consider an electronic
circuit diagram. At first glance it may seem to be composed of a limited
set of identical symbols.-'Apart from being in different places in a
circuit, two resistors, e.g., may seem to be duplicates of each other.
A closer examination, however, shows that the leads of the first have
different lengths than fhe leads-of the_second and that the labels differ
from one another. Such details as the length of the leads and the label
are properties of the pictures representing the individual resistors
and must be taken into account. A second category of variables, sub-
scripted image variables, is therefore defined in the syntax. Subscripted
variables names are names of items that are not necessafily»affine trans-
formations of one another, but that are logically members of the same
set. All network elements in a circuit can thus be named, e.g., ELEMENT(I)
‘regardless of whether they are resistors, capacitors etc. Alter-
natively, if this distinction is important, all resistors in a circuit

can be named RESISTOR (I) regardless of the length of their leads or
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the letters in their label.

- Example:
* | RESISTOR (3): = R AT X,Y SCALE S1 + LEAD FROM X1,Yl TO X2,Y2 +
* LEAD FROM X3,Y3 TO . X4,Y4 + 'R' AT X5,Y5 + VALUE(3) AT X6,Y6;
* ' CIRCUIT:= CIRCUIT + RESISTOR(3);

The function VALUE, used in this example, allows the conversion
of an integer value to an image value. A similar function, TEXT, accepts
a variable containing a text string for conversion.

For a more detailed description of the IGL syntax and semantics,
the reader is referred to the IGL Users' Guide in Appendix A of this

thesis.
4.2 Interaction

Describing the interactive process means defining the fesponse
of the system to each input. The response is not only dependent on the
type of input, but also on thé state of the system at the time the input
occurred. W.H. Newman [15] has proposed to treat the system as a finite-
state automaton where the response is determined by the state of the
program as well as by the action. The actions are inputs to the auto-
maton, which cause it to change its state; reactions are the outputs.

The interaction is then best described in the form of a state
diagram, which is used as a guide when writing the prcgram. To facili-
tate this process, the syntax of IGL allows a close corrgspondence be-

. tween the state diagram notation and the formulation in the progrém.
This aspect of the IGL-system is based on the work of P. Boullier et al.

[1]. The program is divided into states which correspond to the states
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in the diagram. For each input (e.g. a hit on a menu symbol on the screen)
a decision is made within the current state of the program.as to which
state is to be executed next. TFor an illustration, see Figure 1.

The division into states also provides a physical segmentation
of the program which can be used for paging or overlaying at computer
installations with insufficient core storage for the entire program,
this will be discussed in greater detail in Chapter 7. Control state-
ments are defined in the language to allow variables to be displayed
on the screen, to turn on the cursor or cross-hairs (which can be posi-
tioned by the user with the help of some graphical input device such as
a joy-stick, tracker ball or light pen) and to detect an interrupt from
the user, signalling that he has chosen an item.on the screen. A special
variable: TIHIT is used in the program to indicate the subscript of the
item last identified on the screen. This subscript éllows the programmer
'to refer to items that arebpointed at by the user when he is interacting

with the program. For example the sequence:

* DISPLAY 'IDENTIFY RESISTOR TO BE DELETED' AT .2,.9;
* . CURSOR ON; WAIT FOR INTERRUPT;
* FOR HIT ON RESISTOR: CIRCUIT:= CIRCUIT - RESISTOR (IHIT);

would prompt the user to select the resistor to be deleted and would

execute the deletion.

4.3 Semantics and Data Structure

The semantics are defined in the routines in the runtime
library that perform the actions specified by the statements written in
the program. The control and interaction routines affect the sequence

of the execution and the communication with the graphics terminal,
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whereas the assignment routines operate oq'a data structure that
represents the current state of the pictorial information. The display
»is derived algorithmically from this structure and no separate display
file is needed. The correspondence between the variable names used in
the program and the locations in the data structure is kept through

a hash-coded directory where all names are stored together with pointers
to the structuré. (For a description of hash-coding see [11]). The

data structuré is implemented as a linked list [9,21] with "brother'-
pointers linking items that are conﬁected by the (+) operator and
"son'-pointers linking downwards through the structure to subitems and
primitives that are used in the definition of items. No "father'-pointers
are.kept linking upwards through the structure, so it would not be
possible to say e.g. in which items the primitive LINE is referenced.
This means that the cursor identification on the screen does not follow
the usual pattern of determining which line is closest to the location
of the cursor and then determining to which item this line belongs.
Instead, the syntax of the identificatibn statement: FOR HIT ON
¢variablename>: <statementlist> END; allows a scan of all items with
the name <variablename>, which are linked by additional "buddy'"-pointers,
to determine whether any of those items were within a tolerance region

(specified by the x and y-scale of the item) around the cursor»lpcatibn.

4.4 System Configuration

Two implementations are used at this university. One runs
under the MTS. timesharing system on an IBM 360/67 with an Adage/10
graphics terminal, Calcomp and line-printer plotters. This system is

used mainly for debugging new programs. The other system runs under
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DOS on a Data General 20k Supernova with a Tektronix 4010 graphics
terminal. Graphics programs can be run on either system without modi-

fication.
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5. IGLCOM, AN IGL COMPILER

IGLCOM,.the IGL compiler used in this.implementation was
written using thé XPL compiler writing system [12].

This is a well doc¢umented and easy to use prograﬁ package writ-
ten in the XPL dialect of PL/I. To build a compiier using the XPL system,
the language syntax in Backus Naur notation (BNF) and the corresponding
semantics in XPL must be supplied. These two user components are pro-
cessed as follows. The syntax is read in, printed, analyzéd_and a
parser is punched out by the XPL program ANALYZER. ANALYZER will check
that the grammar is unambiguous and will attempt to modify the grammar
if that is not the case. The produced parser is in a format that
'ailows it to.be directly inserted into a compiler framework called
SKELETON. SKELETON itself is written in XPL and has two open slots,
one for accepting the parser from ANALYZER and one for acepting the se-
mantics. When these two éomponents have been added, SKELETON can be
compiled by the XPL compiler producing for the input grammar a compiler
in object code. |

The semantics are written as an XPL procedure named SYNTHESIZE.
This procedure is called in SKELETON each time a grammar rule is applied
by the parser for reducing the input string. The number of the parti-
cular rule applied is passed aiong as an argument, In SYNTHESIZE the
output language is generated. If the output is in a high level language,
the output statements will usually consist of calls to semantic routines.
If the output is in assembly language, the actions can be génerated
directly. For passing names from. the iﬁput to the output language,

SYNTHESIZE has access to the contents of the parsing stacks. Pointers
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are kept by SKELETON to show the current sfate of these stacks.
| This automation of the compiler-writing process allows changes
to the language to be carried out easily when needed. The syntax and
the corresponding semantics can be updated independently of one another.
Compilers generated by the XPL system provide good error checking facili-
ties and have proven to be quite efficient.

Complete listings of the IGL syntax description in BNF and

of the SYNTHESIZE routines can be found in Appendix C of this thesis.
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6. IGLRUNLIB, AN IGL RUNTIME LIBRARY

The routines in IGLRUNLIB maintain a datastructure, represen-—

ting the pictorial information created by the executing IGL program,

and handle the communication with the graphics terminal.

6.1 Datastructure

The overall datastructure has been introduced in Chapter 4.

It consists of a linked list of datablocks, addressable through a hash-

coded directory. The directory contains the name,'the location of the

first definition datablock and the locétion of the first datablock that

references that definition for every named item.

fined in the language, are

alteration by the program.,

The primitives, de-

flagged in the directory to prevent their

Datablocks

/ \
A 0\"\
\\\\\\\\gi ~ | Reference

~ to
B__|4] ¢ A

Definition Definition

Directory of of
A B

/7

The datablocks contain the location (xloc, yloc), scaling (xscale,

yscale), rotation (angle), and subscript (tag) of a picture item, ad

three pointers as links to other items.
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xloec, yloc
xscale,yscalg
angle, tag

~—=3 BROTHER A datablock

——>=4 BUDDY

!

SON

The son~pointer links the datablock to its definition block(s) in the
structure. It is a one-way pointer; no pointers link "'sons" back to
"fathers". The datablocks for the primitives have son-pointers that
point to their graphical description in an array of (x,?,ipen) triples.
To distinguisﬁ this pointer from normal son-pointers, a value of 10,000

is added to its correct value.

Example:
T % A:= SQUARE SCALE .1; B:= A ANGLE 45;
N 2
use O 7] B
A N
SQUARE
SQUARE

X
Y
i

SQUARE is here a son of A, who is in turn a son of B.
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The brother pointer links together datablocks that are logi; »
" cally connected by the (4) operator. The end of the link is indicatedwgh
by a zero entry. Brother pointers exist on two levels: 'stronger"
links within the definition of subscripted variables and "weaker" links
within the definition of unsubscripted variables. This allows a two
level hierarchy within a linear list.

Example:
* E(2):= A + B; C:= E(2) + A;

The statement: * GC:= C-E(2); would now cause the deletion of both

of the first two blocks in C, as they areilinked by the stronger links.
The thifd block, however, will be retained as it isulinked by a weaker
link, meaning that although it is part of C, it is not a part of E(2).

The buddy pointer links together datablocks that have the

same name. They are essential for access to any item given by name and
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subscript. This access is accomplished as follows: The name is looked
up in the directory, where the location of ‘the first definition and refer-
encing block is found. A sequential search of all blocks with that

name is made by following the buddy pointers. A comparison between thé
stored "tag" in the datablock and the subscript given allows the item

to be identified. As the buddy pointers are linked in a closed ring,

the end of an unsuccessful search is determinéd when returning to the .
first block.

Example:

% C:= E(1) + E(2); D:= E(3);

= | L
brother
™~

E(1) - -2 ,
?1 el
/ | \
\ ‘ l v son \
\ son D '
\ =
N /
\\ E(3) -
~ ] L
buddy
son

6.2 Display Algorithm

For displaying a picture, the information in the data struc-—
ture haé to be transformed into a linear éequence of beam or pen move-
ments on the display device. ?

In the following the terﬁs father, son and brother are de-

fined as shown:
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|

A
B/// - B dis the first son of A

A

A is tﬁe father of B and C

C is B's brother

The algorithm is the following: Starting at the image to be displayed,

the first son (subimage) is taken and the valuation of the father ap-

plied. The wvaluation is the set of attributes: (XLOC, YLOC, XSCALE,

YSCALE, ANGLE). This is carried out repetitively until a primitive

is encountered, the intermediate steps being saved in a push-down stack.

Then the primitive is displayed using the accumulated transformations.
After this, the top item in the push-down stack is popped up

and it is treated as a new starting image. This process is stopped

wheﬁ the stack is empty and all brothers of the original father have

been considered. The process is illustrated by the flowchart in Fig. 2.
In order to be able to apply a father's valuation to his

son we must consider the foliowing:

The valuation involves a SCALING, ROTATION and TRANSLATION of some point

P (X,Y) in a coordinate system. The equations for this transformation

are:
X = (X - 0.5) XSCALE * COSa - (Y - 0.5) YSCALE * SINa + XLOC
¥ = (X - 0.5) XSCALE - SINa + (Y - 0.5) YSCALE * COSa + YLOC
or:
P = [A] * P+ [B] where:

XSCALE - COSa -YSCALE * SINa
[A] =

XSCALE * SINa YSCALE * COSa
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YSCALE *+ SINa -~ XSCALE « COSa
2

XLoc +
[B] =

. + n .
YLOC - XSCALE SIN;A YSCALE COSa

e —

Storing the valuation as ([A], [B]) rather than as (XLOC, YLOC, XSCALE,

YSCALE, a) allows us to apply ome valuation (Af, Bf) to another (AS, BS).

P=A P+B.=A (A,P+B)+B

£ £ £
= A A P+A B +B. =AP+B
> A=A A
B= A, B +B,

For this reason the internal representation of the valuation components

is a sextuplet (A A Bz) rather than the quintuplet

110 2210 Ao B9p0 By

used in the ICL-syntax.

6.3 Terminal Interface

The communication with the graphics terminal takes place on
a logical level, using a coordinate system of 1.0 by 1.0 as defined
in thé language. Keeping this interface on a logical level, rather
than on a physical level, makes it relatively easy to interface to
different terminals.

The logical terminal is assumed to be capable of four things:

erase the screen

move the beam or draw a vector from the current beam position

to location X,Y

display a textstring of n characters, starting at location X,Y

display a cursor on the screen, wait for the user to position

the cursor, return the X,Y coordinates of the cursor, and the
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charactercode of the button pushed by the user to indicate
his interrupt.

The calling sequences are:

it

CALL ERASE IPEN 0: move beam

1]

CALL VECTOR (X,Y,IPEN) IPEN 1: draw vector
CALL DISPS (ITEXT, X,Y,N)
CALL WAITIN

COMMON/CURSOR/IDUMMY, X,Y, KEYHIT

Any other input/output can be programmed using conventional Fortran

WRITE and READ statements.
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7. IMPLEMENTATION OF IGL ON

A DATA GENERAL SUPERNOVA MINICOMPUTER

Althoﬁgh, during the implementatioﬁ phase, every effort was
made to keep the programs hardware independent, it was unavoidable that
the particular computer system used had some influence on the decisions
that were made.

The most far-reaching decision was made in choosing Fortran
as programming language for the runtime library. Although the language
Fortran IV was standardized by ASA in 1964 [7], a combination of practical
considerations and the ambiguities in the published description of the
language have ' led to the present situation, where the Fortran compilers
supplied by computer manufacturers include most (if not all) features
of ASA Fortran and, to make up for any deficiencies, usually offer
added on special features not found in ASA Fortran. The average user
of such a compiler will tend to regard his.particular e#panded subset
of ASA Fortran as the "only Fortran' and distrust any other implementa-
tions of the language. This is particﬁlarly the case.if the implementa-
tion used is the IBM Fortran IV G-level compiler, regarded by many as
the ultimate definition of the Fortran 1anguage.

The runtime library was written in a subset of Fortran common to the
IBM and Data General compilers. These routines can thus be executed on
either computer without modification. This fact does not insure,
however, that these ;outines will execute on any éomputer due to the
above reasons.

Only the roﬁtines that communicate with the grgphics terminal
'differ in the two implementations. The routines for the Tektronix 4010

terminal are written in assembler. They were supplied with the terminal
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and are documented by Tektronix. The rouﬁines for the Adage/10 terminal
are written in Fortran using the UBC AGT:BASIC support package and can
be found in Appendix D of this thesis.

The same restrictions that apply to the runtime library apply
to any user program written in IGL. A program that will execute correctly
on the IBM 360 may not do so on the Supernova. The Users' Guide lists
some of the points to be watched when writing a program, most of which
need not concern us here. There are a few points, though, that are of
more general interest and may apply to a number of computers.

Wordlength - Many third generation computers have followed the exaﬁple
of the IBM 360 system, using a wordlength of 32.bits (4 bytes), divided
into 2 halfwords of l6ybits (2 bytes). Fortran éémpilers on these
machines typically allow integer wordlengths of one word (INTEGER*4)

or of one halfword (INTEGER*Z). For numerical algorithms this fact

is of no great significance as long as it is kept in mind that the
largest allowable INTEGER*2 value is. 32767, which may be quite low for
many problems. More noticeable is the effect on the character handling
capabilities, which in Fortran are linked to the'integer wordlength.
Many minicomputers are organized around a wordlength of 16 bits, which
leaves them with the restriction of allowing only INTEGER*2 values.

The Supernova is an example. To be compatible between the two machines,
only 16 bit integers should be used for qharacter manipulation. These
facts naturally limit the portability of any Fortran program.from one
computer installation to another, but interactive programs especially
are dependent on character handling for evaluating responses and values

typed in by the user.
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Storage ~ 16 bit machines are designed to ﬁse two computer words for
storing a floating point value. One word would not permit sufficient
accuracy. This means that the storage of REAL values uses twice the
amount of space needed for storing the same number of INTEGER values. For
_this reason, all arrays representing the IGL datastructure are stored as
integer values. This is at a cost in accuracy (4-5 versus 7 decimal
places), a cost in conversion for arithmetic operations, and at the
risk of integer overflow if unexpected large values‘should occur,
Another problem in storage on a minicomputer is the very
finite size of the main memory. Designers of operating systems and
pr§grammers of large programs have resorted to yariOus techniques of
using available external storage space (fixed or moving head disk) to
augment the power of the main (core or semiconductor) memory. The
'simplest technique is to keep part of the data used on external storage
and read it in every time it is to be used. Another possibility is to
keep part of the program to be executed on external storage and read it
into the main memorvahen needed; this scheme is generally referred to
as overlaying.
The Data General disk operating system allows up to 6 levels
of overlays and in addition allows chaining of segments. To understand
the difference between these two methods, we consider the following

example.
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1) Routine A A 2) Routine A T
P N A
CALL B
CALL ‘B
. . <____ B "CALLC
END END I
. B
Routine B <E____ C
CALL C -
END C

We assume fhat any_of the routines A-D will fit into the main memory
separately, but no two routines will fit in together. Each routine
is now conéidered a separate program segment. In case 1), the execution
of éegment A must be suspended for segment B to be brought into core.
When B has finished, A can continue. As A, however, would be over-
written by B, it must first be saved.
An.overlay thus involveg}

- saving the current segment A

- loading the needed segment B

~ starting the execution of B.
A return from overlay involves:

- reloading the previous segment A

- restarting the.execution of A at the location where the

execution was suspended.

In case 2), the execution of segment A is finished when segment B is
needed. There is thus no need to save A, and B can be loaded directly.
This process is called chaining.
A chaining involves:

- loading the needed segment B
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- starting the execution of B.
A return from chaining does not exist.

The communication between segments is only possible through
the BLANK COMMON area, the only part of core that is neither saved nor
restored when executing an overlay. (Communication'by saving relevant
data on external storage is of course always possible). The present
version of DOS (rélease 5) will, however (contrary to its description),
store and load all of core, including blank common. This can be pre-
vented by calling the initialization routine INCOM,‘described in Ap-
pendix D.

The .division of an IGL program into states makes an automatic
oveflaying scheme feasible. Each state corresponds to a separate
overlay segment. As no return to a previous state is provided for in
the IGL syntax, segments can be chained. Apart from saving time
(chaining: 3 sec., overlay: 7 sec. in our system), the chaining allows
the execution to proceed at the same level in DOS, thus setting no
1imit to the number of states to be executed. The IGL compiler trans-
lates the goto statement: GOTO STATE n into: CALL CHAIN ('STAT n.SV'),
where n is the number of the state to be executed. (ﬁ =n forn >9,
n=¢n forn < 9).

Because of the limited storage size of 20k words main memory,
it was initially found that the runtime 1ibrary was taking up too much
space, leaving only a miniscule amount for the user program. The solu-
tion has been to move the display and error routines to separate overlay
segments. This is regrettable, as the display routines are called often,
and executing an overlay for each display command causes a very noticeable

pause in the interaction.
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For an analysis of this situation, it is useful to examine
the storage allocation within the main memory and see which parameters
can be varied. With an IGL program executing, the main memory

of the computer is roughly divided up as follows:

Page zero and Fortran addresses 4 Sk
IGL user program 1.5 k *
IGLRUNLIB 4.5k(*)
Fortran runtime library 4 k
DOS stacks 1 k
BLANK COMMON : . 2.5 k *
DOS SYSTEM 6 k

| 20 k

Of these sections, only the starred values are variable, all others
-are fixed, regardless of program size.
What would now be the effect of increasing the memory size
By 4k to 24 k words? The following changes could be made to the
current implementation:
~ The display‘routines are added to the main segment (1.5 k)
- The BLANK COMMON area and user progrém are allowed an additional
2.5 k.
This would mean instant response to a display command, more
data storage and larger (and hopefully more interesting) applications.
The present implementation is éuccessful, in as far as it
proves fhat an IGL system can be implemented and used on a moderately
small ‘machine. For the system to be truly convenient and sufficiently
powerful for real world applications, however, a minimum storage size

of 24 k words is absolutely necessary.



35

8. EXPERIENCE WITH USING THE

IMPLEMENTED IGL SYSTEM

The fiexibility and ease of use make the language IGL ideal
for experimenting with new graphics techniques and ideas. To gain ex-
perience with the system, several applications were programmed by dif-
ferent users. (See Appendix B). First projects were a program for
drawing electronic circuits and a load flow program for the analysis
of power systems t3]. In two 12 week systems lab projects, groups
of fourth year students in this department implemented cdmplete inter-
active systems; one for interactive project scheduling using CPM methods
and one for irteractive nonlinear circuit analysis, [17]. Both systems
run on a minicomputer in this department and interface to analysis
programs on the IBM 360 installation in the Computer -Centre. A voice

.grade data link is used for transmitting data from one computer to
another. The experience gained so far in the use of the language has
already proven a number of advantages over present-day graphics systems.

Due to the definition of the éyntax and the semantics, changes
of these are easily incorporated as experience is gained in the.use of
the language. The system has been found far easier to use than the
graphiéal subroutine packages found on most computer installations. The
language is readily learned by users with previous high-level language
experience. As no extensive testing and.documentation is necessary due
to the readability of the program, the time required for the.completion
of a project is greatly reduced. Furthermore, the availability of a
new powerful tool stimulates the imagination of the user to tackle pro-

blems previously considered out of reach.
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9. BIBLIOGRAPHY

Until recently, little interaction has ‘taken place between the
different workefs in the field of Computer Gfaphics. No textbooks exis-
ted on graphics and articles were scattered throughout various publica-
tions such as Communications of the ACM, Computing Surveys, AFIPS con-
ference broceedings etc, |

However, in 1970 a first conference was held on Computer
Graphics at Brunel University. In 1972, the journal ''Computer Graphics
and Image Processiﬁg" appeared and a wofking conference on Graphic
Languages was held by IFIPS at the University of B.C. Finally, an
excellent textbook has appeared in 1973, "Principles of Interactive
Computer Graphics'", by W.H. Newman, that contains the essence of a

way of thinking about computer graphics that was developed over the

last 10 years.
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APPENDIX A: IGL USERS' GUIDE

1. Introduction

IGL is an acronym for Interactive Graphics Language, a com—
puter language for writing programs for han&ling line drawings. This
language not only allows the definition and display of line drawings,
but also has full facilities for manipulating, naming, identifying and
interacting with such drawings.

The IGL system consists of IGLCOM, the IGL compiler, and

IGLRUNLIB, the IGL runtime library.

2. The IGL Language

The'definition of the IGL language has been formally given
in BNF notation, but this definition should not be required reading for
the average user. Instead, this users' guide will attempt to .introduce
the language in a less formal manner, using examples to explain the
ﬁse of IGL statements.

IGL has been implemented as an extension to Fortran IV, allow-
ing the user to mix Fortran IV and IGL statements in the same program.
IGL statements are recognized by the IGL compiler by examining the
first column of each line. The characters {-, 0, 1...9, C, A, X} indi-
cate a Fortran statement, any other character an IGL statement. In all
examples in this manual, the character * will be used to indicate IGL
statements.

The rules for the coding of IGL statements do not follow the
Fortran convention. IGL statements can be written in free format, with
no regard for card boundaries. One rule should be féllowed, however.

Keywords in either Fortran or IGL are considered to be reserved words.
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They cannot be used as variable names and must be written without im-
bedded blanks. Keywords should be separated by at least one blank.
Example: RE_AD, which is legal in IBM Fortran IV is not legal in an

IGL program.

3. Writing an IGL Program

An IGL program is divided up into states, each state corres-
ponds to a logical state in the interaction.

Consider the following example:

A ‘'rubber-band' line can be created by means of a joy-

stick and a push-button in a sequence'of five operations.

1 _press button to turn on cursor;

2) move cursor, using joystick, to starting point of 1iné;

3) press button to fix starfing point;

4) move cursor to end point of line;

5) press button to fix end.point.
A state diagram might look as.seen oﬁ the next page.

Here a feature is added to allow deletion of lines and to
continue drawing lines from the last endﬁoint.f Each of the 5 states
shown represents a different stage in the interaction. This can be

seen by the meaning of the push-button in each state.

in state 2 it means: Fix the starting point of a new line,
and the énd point of the line
in state 4 : Execute a command from the menu
in state 5 ¢ Delete the line that is pointed to
An IGL program that corresponds to this state diagram would look as

follows:
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STATE DIAGRAM

(creating a 'rubber-band' drawing)

@ INITIALISATIONS

press button

store starting and ending

5
: . display prompt

- for deletion

press
button

.add and
display line

delete
line

continue
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QOO %
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*

OAOO »

STATE 1
=== INITIALISATIONS

COMMON X1 ,X2,Y1,Y2,1
NEWLINE®=V'NEW LINE'!; DELETEI=IDELETE!S

43

DRAWINGSSNEWLINE SCALE ,1p,1 AT 1,458 + DELETE SCALFE ¢1,,1 AT 1,15,,6}

1=0
X1=0,
Yi=0,
PAUSE 'PRESS BUTTON!
ERASE SCREENS DISPLAY DRAWINGp GOTO STATE 2;

STATE 2%

END STATE 13

==a STORING STARTING AND ENDING POINY OF A LINE

COMMON X1,X2,Y1,Y2,!1
CURSOR ONj WAIT FOR INTERRUPTy
X1=XHIT :

YLSYHIT
DISPLAY DOT AT Xti,Y1
CURSOR ONj WAIT FOR INTERRUPT}
X22XKIT
Y2=YRIT .
GOTO STATE 3; END STATE 2}

STATE 33
=ee ADDING LIME TO DRAWING

COMMON X1,X2,Y1i,Y2,1
I=1+1}

* LCI):=LINE FROM X1,Y] TO X2,Y23 DISPLAY L(I)s

¥ %

YOO »

* ¥

QOO0 » *

* % = X%

* % % *

DRAWING:=DRAWING + L (1)}
GOTO STATE 4; END STATE 3y

STATE 4:
==o CHOOSING FROM MENU

COMMON X1,X2,YL,Y2,1
CURSOR ON; WAIT FOR INTERRUPT}
FOR HIT ON NEWLINE: GOTO STATE 23 ENDy
FOR HIT ON DELETE: GOTO STATE Sj; END}
Xi{=xe
Yizye
X2=XHIT
Y2=YHIT
GOTO STATE 33 END STATE 4y

STATE S:
=== DELETING A LINE

COMMON X1,X2,Y1,Y2,1

DISPLAY 'CHOOSE LINES TO BE DELETED! AT ,2,,9)

CONTINUE
CURSOR ONj; WAIT FOR INTERRUPT}
FOR HIT ON L1 DRAWING t= DRAWING=L(IHIT);
GOTL
END3; .
ERASE SCREENp DISPLAY DRAWING; GOTO STATE 2
END STATE 5
EQF EQF ECQF



b4

This example shows how the interaction can be programmed in IGL and
already uses most of the statement types to be described below. A
number of points should be noted he?e, however.

~ The program is divided into states of which the first to be
executed must be STATE 1.

-~ Fortran variables can be passed between states‘using BLANK
COMMON only. The length of BLANK COMMON areés must be declared equal
in all states. |

- Fortran statement numbers are local to states.

- All statements in IGL are terminated using a semicolon (;).

Cons tants
There are.two types of image constants in IGL: picture con-
stants and literal constants. Picture constants form the set.{BLANK,

LINE, DOT, SQUARE, TRIANGLE, CIRCLE, HCIRCLE} and are defined as

- LIAOC

BLANK  LINE DOT ' SQUARE  TRIANGLE CIRCLE HCIRCLE

shown below.

Literal constants are textstrings, delimited by quotemarks. They can
have a maximum length of 10 characters.
Functions are provided to convert Fortran values to corres-—

ponding IGL image values.
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VALUE converts an integer value’
TEXT converts an integer variable containing a textstring.
. (The string is assumed to be 10 characters long).
Example:
YDELETE', 'HI, THERE', VALUE (3) or TEXT (ITEXT) are literal
coﬁstants.
Variables
Image variables stand for pictures and/or literals and can
be assigned image values. They are named according to the Fortran
rules for variable names, but can have up to 8 characters.

Example:

DELETE or RESISTOR are legal variable names.

Assignments

' Image variables are assigned values using an assignment -state-

ment. The image assignment operator is the (:=). All values on the

right hand side of the assignment must have been previously defined.
Example:
% DELETE:= 'DELETE'; A:= SQUARE; B:= VALUE (I3);
Modifiers
Constants and variables can be modified, using valuation
modifiers. All affine transformations can be applied. The modifiers

are:

translation: AT x,y

scaling: SCALE xs., ys or SCALE g

rotation: ANGLE alpha
- mirroring: VSYM axis or HSYM axis

(the lower case names stand for Fortran REAL values)
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Any combination of these can be specified and will be applied in the
following order:

| Scaling, rotation, translation, mirroring
As all picture variables are defined within a unit square, it helps

to visualise what happens to this square when the modifiers are applied.

Example:
* A:= TRIANGLE SCALE dx, dy ANGLE alpha AT x,V;
* B:= A VSYM ax;
N\
y 2Ady.
B q
:5 dx
o
‘ B bx
TRIANGLE A B

For line segments, the modifiers as given are akward to use. The follow-
ing can be used:
~FROM %1, x1 TO y2, y2
This corresponds to:
SCALE xs, ys ANGLE alpha AT x,y

SQRT ((X2-X1)2 + (Y2 - Y1)?)

where: XS

1]

¥S = .1 *XS
ALPHA = ARCTAN ((Y2 - Y1)/(X2-X1))* 180/7

X (X1 + x2)/2

Y

(Y1 + Y2)/2
Example:

* HORIZON:= LINE FROM 0,.3 TO 1,.3;
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LINE HORIZON

Note: A trailing decimal point need not be written. No value larger
than 3.0 should be used. (Larger values may produce integer overflow
at runtime). If the scaling factors for X and Y are identical, only one

value need be given.

Example:

% SUN:= CIRCLE SCALE .1;

2 .
N/

CIRCLE SUN

Default values are assigned for any modifiers that are not specified.
The default values are:
SCALE 1,1 ANGLE 0 AT .5,.5
Expressions
The right hand side of an assignment can bé an image expression.
The operators are (+) for superposition and (=) for deletion.
Example:
% SUNSET:= HORIZON + SUN AT .6,.6;
* MOON:= HCIRCLE SCALE .1 + HCIRCLE SCALE .05,.1;

% NIGHT:= SUNSET - SUN + MOON AT .4,.8;
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O c ¢

SUNSET MOON NIGHT

Subscripted variables

It may be useful to assign the same variable name to pictures
that are not affine transformations of one another. Assume that R and

C are defined as follows:

Both may be referred to as ELEMENTS (E):
* E(1):= R; E(2):= C;
* DIAGRAM:= E(L) SCALE dx, dy AT %1,yl + E(2) SCALE dx,dy
AT X2, y2;

or alternatively:

% E(1) := R SCALE dx, dy AT x1, yl;

* E(2):

C SCALE dx, dy AT x2, yl;
* DIAGRAM:= E(1) + E(2);

Identification and Hitarea

An important feature of each picture item is the size of the
area surrounding it which is identified on the screen as being part of

the item. This area is called the hitarea of the item. The size of
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the hitarea is defined by the XSCALE and YSCALE attributes of the item.
This means that the hitarea corresponds to the original unit square

in which the item was defined. A distinction must be made between
item definitions and uses of items:

A definition:

- P:= TRIANGLE SCALE .5;

defines the item P. Every time the item P is referenced in defining
other items, a use of the item P is created. Its hitarea is the size
of the unit square of P, ﬁodified according to the attributes of this
use of P.

Example:

% PICTURE:= P SCALE .2,.6 AT .7,.6;

/N

TRIANGLE N PICTURE

3

.““p_
. .
L=

The dotted square of size .2 by .6 1is the hitaréa of P. Because P was
defined as a triangle, scaled by a factor %3 the hifarea of all uses of
P will be rectangles double the size of the'triangle displayed.

Note: For hitarea size, the modifiers applied to subscripted variables

3

are cumulative.

Example:
* Q(3):= SQUARE SCALE .5; PICTURE:= Q(3) SCALE .2,.6;

The hitarea for Q(3) is .5°(.2 by .6) = .1 by .3. The reason
for this is that there is only one item Q(3). If it is modified, its

attributes are changed. In constrast, there may appear. many uses of P,
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each with its own hitarea.
Interaction
| Identification on the screen is accomplished as follows:

The statements: CURSOR ON; WAIT FOR INTERRUPT; cause the cursor
(crosshairs) to be displayed on the screen and cause the program to
wait for a key to-be pressed on the keyboard.

When a key is pressed, the X and Y coordinates of the cursor
are stored in the global Fortran variables XHIT and YHIT and the literal
code of the key in KE?HIT. (On the Nova: ASCII code of key in left byte,
right byte = nullion the 360: EBCDIC code of key is left byte,
right bytes = blanks).

The statement:

FOR HIT ON <variable>: <(statement list) END;
allows the user to determine whether the cursor was within the hitarea
of any item named <¢variable)>. 1Is this the case, thé statements in
;statement list> are executed and the subscript of the item hit is stored
in the Fortran variable THIT. .If there was no hit, the program will
Branch to the statement following the END.’ For-statements can be nested
but the nesting has to close within each state. If an unsubscripted
variable is identified on the screen, the variable IHIT contains the
value 0.
Example: . e
FOR HIT ON MENUAREA: |

bl

# FOR HIT ON DELETE: GOTO STATE 5; END:

* FOR HIT ON ROTATE: GOTO STATE 4; END;

* END;
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% :FOR HIT ON E:
% CIRCUIT:= CIRCUIT - E(IHIT);

* END

* CURSOR ON; WAIT FOR INTERRUPT;
% CIRCUIT:= CIRCUIT + NODE SCALE .03 AT XHIT, YHIT;

Attribute functions

The functions XLOC, YLOC, XSCALE, YSCALE, ANGLE and TAG allow
access té the attributes given to any picture item. Note the use of
4the equal sign (=).

Example:
| * X1 = XLOC (ELEMENT (IHIT));
* ANGLE (E(TIHIT)) = ALPHA2;
* TAG (Q(3)) = 4;
The last statement will cause the item previously called Q(3)

to be renamed Q(4). Q(3) now no longer exists.

Jumps

The GOTO STATE n statement is used to transfer control to the
beginning of another state. Within a state, Fortran GOTO's and labels
(statement numbers) should be used.

Example:
* GOTO STATE 2; or GOTO STATE 2;
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Display Statements

A number of commands allow the user control over the graphics

terminal.

A display statement causes an item to be displayed on the screen.

Example:

* DISPLAY CIRCUIT; DISPLAY R AT X1, Y1;

* DISPLAY 'GOOD MORNING' AT .7,.8;
The érase statement: ERASE SCREEN will cause the screen to be erased.
Partial erasure of the screen is not possible.

The Tektronix 4010 screen

The 'unit square is mapped onto the rectangular screen as fol-

lows:
0,1 1.3,1

e e e— e

0,0 1.3,0

The screen is physically addressable by 781 x 1024 points, corresponding
to a 1l x 1.3 ratio. The character size on the screen is fixed (approx.
14 x 22 points). Textstrings are neither scaled nor rotated. Such
values, if given, are ignored for display purposes.

Writing to and‘reading from the terminal can further be pro-
graﬁmed in Fortran. The terminal is addressed as. a teletype (output:
WRITE (10), input: READ (11)). Vectors ecan be drawn on the screen

using the IGL statement: DRAW FROM x1, yl to x2, y2. Such vectors are

not stored in the data structure.
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Example:

C --- DRAW A GRID, RASTER SIZE = .05
DO1I-=1, 21
V=20.5% (I-1)
* DRAW FROM 0, V to 1, V; DRAW FROM V,0 TO V,1;
1 CONTINUE
Windowing
The display command allows a window to be set to show only
part of a picture on the screen.

Example:

# DISPLAY CIRCUIT WITHIN Xt, Y1 DX1, DYl ONTO X2, Y2 DX2, DY2;

(virtual picture) L ///’”///,
i e :
— _
Yl }l—// DX2
] : : X2
DX1 (screen)

Saving and restoring on secondary storage

The statement:
* STORE nm,n;

will cause the complete IGL data structure and in addition a following

w

blank common area of n words to be stored on a disk file with the name
as specified in the variable nm. This file will be created if it does
not already exist. |
The corresponding statement:
# RESTORE nm,n;
will cause the file as specified in nm to be read n and used as the

current data structure.
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Differences between the IBM 360 version and the Data General Supernova

version of IGL

The differences between the two implementations are twofold:

1) The procedure for compiling and running IGL is different.
2) The two Fortran implementations are different.

Procedures for compiling and executing IGL programs

IBM 360 o : Datagen Supernova

First card in program:

* 360 VERSION ’ * NOVA VERSION

Compiling program:

$R ELEC:XPL O

]

ELEC: IGLCOM 2 = -0UT SCARDS = igl-source

SPRINT

igl - listing

" Compiling intermediate Fortran program

SR * FORTRAN SCARDS = -0OUT Transfer -OUT to Supernova,
SPUNCH = igl-object , split up X into individual

programs, one for each state,

or named STATOl...STATn
§R* WATFIV PAR=SIZE=40 FORT STATO1l; FORT STATO2 ...
SCARDS= ~OUT+ELEC:IGLRUNLIB.S RIDR STATOl IGLRUNLIB; ...

Execute Program

$R igl-object+ELEC:IGLRUNLIB 9=plotfile IGLGOs‘
(plots go to plotfile) (interaction through Tek-
or tronix 4010 terminal).

$R igl-object+ELEC:IGLAGTILIB

(interaction through Adage terminal)
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Differences in the Fortran implementation on the IBM 360 and the Data-

gen Supefnova

Below, a list is given of the major variations of Datagen: For-

tran from the IBM Fortran IV definition.

- All variables not stored in COMMON are placed on a run-time
stack. Any program that does not alter COMMON storage is thefeforé a
reentrant program. (Variables in subroutines (or states) are not saved
from one call to the next!)
~ Program units must be ordered as follows:
FUNCTION, SUBROUTINE statement.
—~ Declaration statements. These begin with the keywords COMMON,
COMPL.EX, DIMENSION, DOUBLE, EQULVALENCE, EXTERNAL, INTEGER, |
LOGICAL or REAL.
.~ Statement functions and internal subprograms (FORMAT statements
.and DATA initialization statements may be given in this area).
- Executable statements. (FORMAT statements and DATA initiali-
zations may be given.in this area).
~ Imbedded blanks are significant except when they appear in
the name of a program variable or in the sfatement identifier GOTO (GO
TO) . ¢
- Statement identifiers, operafor names, and names of library
functions are reserved and cannot be used as program variables. .The

reserved names are:



. AND,
.EOT.
.EQ.

. FALSE.,
. GE,

. GT.
LLE,
LT,
.NE,
.NOT.

. OR,

. TRUE.
ABS
ACCEPT
AIMAG
AINT -
ALOG
ALOGI1f
AMAX(
AMAX1
AMINg
AMINI
AMOD

available

ASSIGN

- ATAN.

ATAN2
BACKSPACE
BINARY
BLOCK DATA
DABS
CALL
CCos
CEXP
CLOG
CMPLX
COMMON
COMPILER
COMPLEX
CONJG
CONTINUE
Cos

CSIN
CSQRT
DABS
DAIMAG
DATA

DATAN

DATAN2

DATN2
DBLE
DCABS
DCCOS
DCEXP
DCLOG
DCMPLX
DCOS
DCSIN
DCSQRT
DEXP

DFLOAT

DIM

ITNTNATNY T/
DIMENSION

DLOG
DLOGI1g

. DMAX1

DMINI1
DMOD
DO

DOUBLE PRECISION

DREAL
DSIGN
DSIN
DSQRT
DTAN

'DTANH

ENDFILE
ENTRY
EQUIVALENCE
EXP
EXTERNAL
FLOAT
FORMAT
FUNCTION

- GOTO

IABS

IDIM
IDINT

IF

IFIX

INT
INTEGER
ISIGN |
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LOGICAL
MAX{
MAX1
MINg
MIN1
MOD
PARAMITER
PAUSE
READ
REAL
RETURN
REWIND
SIGN

SIN

SINH
SNGL
SQRT
STOP

" SUBROUTINE

TAN
TANH
TYPE
WRITE

— Names identical to DGC extended assembler mmemonics are not

for use as subprogram names.

— DATA initialization is provided for labeled COMMON only.

- Only COMMON variables can be EQUIVALENCed.

- DATA initialization of labeled COMMON is possible in any

Fortran program or subprogram.

- Subprogram names must be unique within the first five chara-

cters (ANSI standard is six).

. = The characters > and < cannot be used in Hollerith . strings.
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- All integers are of length 2 bYtés

- All reals are length 4 bytes

- Data initialization statements use the null character as fill ‘
character. S Format uses the null character as fill character (A Format
uses the blank character, as on the IBM 360)

- Read and write statements use unit numbers 11 and 10.

Example:
" DATA IA/'A'/ AO.
DATA IA/'A '/ Ao
FORMAT (A1) A
FORMAT (S1) A0

For'complete information on IBM Fortran, consult:
IBM System/360 FORTRAN IV Language, document #C28-6515-7
For Data General Fortran:

DGC FORTRAN IV USER'S MANUAL, #093-000053.
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DELETE
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LISTINGS: IGL-SYNTAX, IGLCOM

(Only routines that differ from the

published XPI description [12] are shown).
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PRODUCTIONS

- «PROGRAM> 2tz <STATES>

<STATES> 1:=2 <STATE>
| <STATES> <STATE>

<STATE> §ﬁ= <STATE HEAD> ¢ <STATEMENTLIST> <8TATE ENDING> 3
<STATE HEAD> 3= STATE <NUMBER>

<STATEMENTLIST> 3= <STATEMENT>

| <STATEMENTLIST> <STATEMENT>
<STATE ENDING> 3= END STATE <NUMBER>
<STATEMENT> 33= <PICTORIAL ASSIGNMENT>
| <NUMERICAL ASSIGNMENT> }
{ <DISPLAY STATEMENT> 3
| <FOR CONSTRUCT> 3
|  <GOTO STATEMENT>
|  <WALT STATEMENT> j
| <TRACKING STATEMENT> 3}
| <ERASE STATEMENT> 3}
|  <PLOT STATEMENT> 3}
| <FILE STATEMENT>
[

<PICTORIAL ASSIGNMENT> $:= <VARIABLE> <REPLACE> <EXPRESSION>
<NUMERICAL ASSIGNMENT> g:= <FORTRAN VARIABLE> = <FORTRANVARIABLE>
<REPLACE> 3= ¢ =

<DISPLAY STATEMENT> 3:= DISPLAY <VIRTUAL IMAGE> ‘
t  DISPLAY <VIRTUAL IMAGE> ONTO <VALUEPAIR> <VALUEPAIR>

<VIRTUAL IMAGE> $:= <IMAGE> '
| <IMAGE> <VALUATION>

<VARTABLES> ' .

<IMAGE> 3= .
{  <VARIABLE> WITHIN <VALUEPAIR> <VALUEPAIR>
{ <STRING>

<FOR CONSTRUCT> 1tt= <FOR STATEMENT> 1 <STATEMENTLIST> <END STATEMENT>
<FOR STATEMENT> t:= FOR HIT ON <VARIABLE>

<END STATEMENT> $t= END



33
34

35
36
38
39
40

41
4e

43

44

64

<GUTQ STATEMENT> ::= GOTO STATE <NUMBER>
| GO TO STATE <NUMBER>

<WAIT STATEMENT> 3= WAIT FOR INTERRUPT

<TRACKING STATEMENT> 11 CURSOR ON

| READ CURSOR <VALUEPAIR>
I READ KEY <FORTRAN VARIABLE>

<ERASE STATEMENT> ::= ERASE SCREEN

<PLOT STATEMEN1> ti= PLOT <COMPONENTPAIR>

<FILE STATEMENT> t:= STORE <FORTRAN VARIABLE>
1l RESTORE <FORTRAN VARIABLE>

<EXPRESSION> 33z  <PRIMARY>
| <EXPRESSION> <DIADIC OPERATOR> <PRIMARY>

<DIADIC OPERATOR> 3= +
|

»

<PRIMARY> s31=  <VALUATFD VARTABLE>
I <VALUATED VARIABLE> <UNARY OPERATOR>

<UNARY OPERATOR> $1= VSYM <FORTRAN VARIABLE>
| HSYM <FORTRAN VARIABLE>

<VALUATED VARIABLE>» t:= <ITEM> <VALUATION>
' | <ITEM>

<ITEM> st1= <VARIABLE>
. . | <STRING>

i VALUE ( <FORTRAN VARIABLE> )
I TEXT ( <FORTRAN VARIABLE> )

<VARIABLE> 3= <IDENTIFIER>
' I  <TAGGED VARIABLE>

<TAGGED VARIABLE> $:= <IDENTIFIER> ( <FORTRAN VARIABLE> )

<FORTRAN VARIABLE>» ¢ <IDENTIFIER>

| <NUMBER>
I <COORDINATE FUNCTION>

<CODRDINATE FUNCTION> 133 <FUNCTIONHEAD> <VARIABLE> )

<FUNCTIONHEAD> 3 <FUNCTIONNAME> (

<FUNCTIONNAME> 1t XLoc ,
YLocC $ .
XSCALE :

YSCALE

ANGLE

TAG

<VALUATION>

<COMPUNENTS>
<COMPONENTPAIR>

<COMPONENTS> 33z <COMPONENT>
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| <COMPONENTS> <COMPONENT>

AT <VALUEPAIR>

SCALE <VALUEPAIR>

SCALE <«FORTRAN VARIABLE>»
" ANGLE <FORTRAN VARIABLE>

TAG <FORTRAN VARIABLE>»

<COMPONENT>

ve
e

<COMPONENTPAIR> 1tz FROM <VALUEPAIR> TQ <VALUEPAIR>

<VALUEPAIR> t:= <FORTRAN VARIABLE> , <FORTRAN VARIABLE>
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CARD IMAGE HANDLING PROCEDURE 3L *,
GET._CARD:
PROCEDURE ¢
/% DOES ALL CARD READING AND LISTING x/

DECLARE I FIXED, (TENMP, TEMPO, REST) CHARACTER, READING BIT(1);
DECLARE FIRST..CARD BIT(1) INITIAL (TRUE)s
READ: BUFFER = INPUT:
IF LENGTH(BUFFER) = 0 THEN
D03 /% SIGNAL FOR EOF x/
CALL ERROR ('EOF MISSING OR COMMENT STARTING IN COLUMN 1,.1,1)
BUFFER = PAD ('x /*xVi/x x/ EOF;ENDEQFY, 80);
END

ELSE CARD.LCOUNTY = CARDLCOUNT + 13 /% USED TO PRINT ON LISTING */
/% QUTPUT FIRST LINE BFEFORE FIRST CARD */ .
IF FIRSTLCARD=TRUE THEN DOy
FIRSTL_CARD=FALSE: END;
/% ELIMIMATE FORTRAN CARDS %/
00 J=0 TO 13; :
IF BYTE(BUFFER,0)=BYTE(! C0123456789XAt,J) THEN
D0
IF CONTROL(BYTE('Mt)) THEN OUTPUT=BUFFER}
ELSE IF CONTROL(BYTE(iLY)) THEN
QUTPUT = 1.FDRMAT (CARDLCOUNT,4) 1]} Ll JBUFFERY-
QUTPUT(2)=BUFFER: .
GOTO READ; : R o
END? : S ‘
END;
IF MARGINLCHOP > ¢ THEN
DO; /% THE MARGIN CONTROL FROM DOLLAR | #/
I = LENGTH(RUFFER) = MARGINLCHQP}
REST = SUBSTR(BUFFER, Iy
BUFFER = SUBSTR(BUFFER, 0, 1)}
END3
ELLSE REST = 1t
S=SUBSTR(BUFFER,0,1);
BUFFER=SUBSTR(BUFFER,1)3
TEXT = BUFFER?
TEXTLLIMIT = LENGTH(TEXT) =~ {3
IF CONIROL(BYTEC(YM')) THEN OUTPUT = S| IBUFFER}
ELSE IF CONTROL(BYTEC(C'L')) THEN
QUTPUT = I.FORMAT (CARD.COUNT, 4) |1{? 11 8 I} BUFFER It REST}
CP = 03 €,

END GET.CARD)
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PROCEDURE} /*x KEEP A LLIST OF FORTRAN VARIABLES USED x/

END ADDLFORTRANLVAR}

RES

END

PAD.

END
£X0

END
SYN

/%

ET:

PROCEDURE s /* RESET VALUATION TO DEFAULT VALUES =/

LOC="1,5,,5%;
SCALE::'&'IX"

ANGLE='0,1
TAG:IO!;
RETURN;
RESET};

83

PROCEDURE /% PAD VARIABLENAME WITH BLANKS %/

I=LENGTH(VAR(MP)

)t

IF I>8 THEN VAR(MP)=SUBSTR(VAR(MP),0,8))

IF I<8 THEN
DO;
S=SUBSTR(!

VAR(MP)=VAR(MP) 115y

ENDg

RETURN)

PADLS
uts

ty1)s

PROCEDURE(VARTYPE,PRCODE,EXCODE)}
DECLARF(VARTYPE,PRCODE ,EEXCODE) FIXED}

DECLARE FILEOUT LITERALLY U QuUTRUT(2) =11 CALL
* 1

DECLARE CONTINUATION LITERALLY
IF EXCODE=3 THEN FILEOUT

DO CASE VARTYPE;

I [

t
TOUTPUT (2] =1t NN

TASSIG(!IIVAR(MP=2)1I1) 1}

FILEQUT 'PRIMACYIIPRCODENIY,YIIEXCODEVIY, VEIVAR(MPY Y, M1 ILOCHY

AR

SCALELL!,

VETANGLET LY, P EITAGHL Y)Y Y

FILEQUT 'PRIMS(!'{|IPRCODEII!, VIHEXCODEII Y, THILQCTIEE, Y PE)IVAR(MP

FILEOUT 'PRIMCC'IIPRCODEYI!,
FILEOUT 'PRIMSC'IIPRCODELII! o VIIEXCODEL IV IILOCTI Y, Y I FVAR(MP) |

END}
CALL RESET
RETURN;
EXOUT;
THESTZE:

PROCEDURE (PRODUCTION_NUMBER) ¢
DECLARE PRODUCTION_NUMBER FIXED}

DECLARE LABELLSTACK (100) CHARACTER , LP FIXED INITIAL (0);
DECLARE CARDNOLSTACK(100) FIXED: .

DECLARE STMINDO FIXED INITTAL (1000)' '

PECLARE UNARY_OP CHARACTERS
DECLARE (MNUMLVALUE,VARTYPE,FTYPE) FIXED;
DECLARE IMLVALUE FIXED;
DECLARE (EXCODE,PRCODE) FIXED)
DECLARE (FNAME,VARNAME,VARTAG) CHARACTER}
DO CASE PRODUCTION.NUMBER?}
$ /* CASE 0 IS A DUMMY a/

<PROGRAM> &=
IF MP=z2 THEN

<STATES>

*/

PIVEXCODETI S, P HILOCH T, Y VAR(MP) |

——— A



DOy

CALL STACK..LUMP)

END;
ELSE DOy

IF LP==0 THEN DD T=1 TO LPs
CALL ERROR(VTUNMATCHED FOR=STATEMENT,

ENDy

COMPILING=FALSE}

END;
/* <STATES> =
7

<STATE> */

/% <STATES> 1= <STATES> <STATE> ®/

]

VAR(MPPL1+2) I I 'DON''T MATCH,1,0)

/% <STATE HEAD>
DOy

STATE <NUMBER>» x/

IF CONTROL(BYTEC!ID')) THEN

ouTPUT (2) =t

QUTPUT (2)=1C

OUTPUT (2)=t
QUTPUT (2)=!

 VARCHP)=VAR(MPP1)}

END:

/% <STATEMENTLIST>

!
/% <STATEMENTLIST>

SUBROUTINE STAT!113y

CALL ERROR('EOF AT INVALID POINT!,1)

LINE: V1 iCARDNOLSTACK(LP), 1)

/% <STATE> 11z <STATE HEAD> 1 <STATEMENTLIST2 4STATE ENDING> j
IF VAR(MP)==VAR (MPP142) THEM CALL ERROR('LABEL- | IVAR(MP)|[!

IF LENGTH(VAR(SP)) = | THEN S='0!{IVAR(SP)}
ELSE S=VAR(SP)3

macaw STATE VI {VAR(MPPLY| ]!

LOGICAL HITON!:
COMMON IDUMMY(3376)!

$¢= <STATEMENT> */

H

t:= <STATEMENTLIST> <STATEMENT>

: .
/7% "<STATE ENDING> st= END STATE <NUMBER>

DO}

VAR(MP)=VAR(SP)

DUTPUT(2)='C

comue END STATE '|IVAR(SP)|I! mmowualy

IF CONTROL(BYTE('D')) THEN

UTPUT (2)=!
ouUTPUT (2)=1
EJECT..PAGE?
OQUTPUT=!

DOUBLE.SPACE;
CARD_COUNT=0;

END;

/* <STATEMENT>
’

/% <STATEMENT>

H

/*  <STATEMENT>
H

/*  <STATEMENT>
!

/% <STATEMENT>

H
/* <STATEMENT>

!

/% <STATEMENT>
!

/% <STATEMENT>

!

.
1

*
a

u

t

RETURN!;
END Ty

INTERACTIVE GRAPHICS COMPILER

<PICTORIAL ASSIGNMENT> 3

<NUMERICAL ASSIGNMENT>

<DISPLAY STATEMENT> 3

<FOR CONSTRUCT> 3/

<GOTO STATEMENT> 3

<KAIT STATEMENT>

<TRACKING STATEMENT> 3

<ERASE STATEMENT> ;

*x/
*/

*/

*/

*/

x/

*/
*/

(FEB 73 VERSION) 1}
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160
161
162
163
164
165
166
167
168
169
170
171

173
174
175
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/% <STATEMENT> $3= <PLOT STATEMENT> ;3 = */

/% <STATEMENT> t1= <FILE STATEHENT> ) */

/% <STATEMENT> g1z 3 x/ '

/% <PICTORIAL ASSIGNMENT> $:= <VARIABLE> <REPLACE> <EXPRESSION> %/

<FORTRAN VARIABLE> = <FORTRAN VARIABLE>

/%x  <NUMERICAL ASSIGNMENT> gi=
1) THEN DO}

IF BYTE(VAR(MP)) = BYTE(!
KZLENGTH(VAR(MP)) =9
VAR (MP)=SUBSTR(VAR(MP),8,K)

FILEOUT JCHCHOR(CYVITVAR(MP)Y LI, PEIVAR(SPYII) !

END; i
ELSE oUTPUT(2)=! PIIVAR(MPY 1Y = Y[ IVAR(SP)}
/* <REPLACE> 3= § = x/
1
/* <DISPLAY STATEMENT> tp:= DISPLAY <VIRTUAL IMAGE> *x/
DO

DO CASE IM.VALUE}S
FILEOUT 'DISPLCYIIVARCSPIII Y,V HILOCHEY, VITSCALELI Y, VEFANGLET L) 4y

DO
IF LENGTH(VAR(SP)Y)>S50 THEN VAR(SP)=SUBSTR(VAR(SP),0,50)%
FILEOUT 'DISPS(YTYIIVAR(SPYI|IY),;
CONTINUATION LOCIEV, "1 ILENGTH(VAR(SP))I 1)1y
END} :
ENDS
CALL RESET:

END;

%/

/% <DISPLAY STATEMENT> s:= DISPLAY <VIRTUAL IMAGE> ONTO <VALUEPAIR> <VALUEPAIR

®/
IF IMLVALUE=0 THEN DO
FILEQUT 'DISPOCYHIIVARCMPY I I IVARCMP+2)HET, VEIVARISPYIIN) 1y
END;
/% <VIRTUAL IMAGE> $31= <IMAGE> =/

H
/* <VIRTUAL IMAGE> t:= <IMAGE> <VALUATION> %/
H
/% <IMAGE> 3
IMLVALUE=OQS
/% <IMAGE> 3
DO
S=VAR(SP=1)1 11,V IVAR(SP)}
FILEQUT FWITHINCYEISIIT)Y
IM_VALUE=O;
END)
/* <IMAGE> t:= <STRING> #n/
IM_VALUE=1{:
/% <FOR STATEMENT> t:= FOR HIT ON <VARIABLE> %/

1= <VARIABLE> %/

:5 <VARIABLE> WITHIN <VALUEPAIR> <VALUEPAIR> %/

DOy
QUTPUT(2)=10' | ILABEL.STACK(LPY 11! CONTINUE}S,
LP=LP=1} :
END;
/% <FOR CONSTRUCT> ¢:= <FOR STATEMENT> ¢t <STATEMENTLIST> <END STATEMENT>
DO
LP=LP+1{y

STMINO=STMTINO+!

LABEL..STACK(LPY=STNTNO}

CARDNUOLSTACK(LP)=CARDLCOUNTY )

QUTPUT(2) =1 IF(NOT, HITONC' TIVAR(MPPLI42)1 1)) GOTO 0t}
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LABELLSTACK(LP)}
END3}
/*x <END STATEMENT> st= END a/
’ .
/x  <GOTO STATEMENT> $:= GOTO STATE <NUMBER> */
00} o
IF LENGTH(VAR(SP)) = 1 THEN VAR(SP)='0'{IVAR(SP)}
IF CONTROL(BYTE(!'D'!)) THEN

QUTPUT ()=t CALL STAT!'IIVAR(SP);

ELSE

FILEOUT YCHAIN(STAT!'IIVAR(SP)I1I11,8V)!}s
END3}

/% <GOTO STATEMENT> $t= GO TO STATE <NUMBER> ®/
DOy
IF LENGTH(VAR(SP)) = { THEN VAR(SP)=10!'j|VAR(SP)}
IF CONTROL(BYTE('D')) THEN

QUTPUT(2) =t CALL STAT!'I|IVAR(SP)}

ELSE

FILEQUT 'CHAIN(STATMIIVAR(SPY1I1,8V)Hy
END

/% <WAIT STATEMENT> 1= WALT FOR INTERRUPT */
FILEOUT 'WAITING;

/x  <TRACKING STATEMENT> :i= CURSOR ON x/
FILEOUT 'CURSORt;

/* <TRACKING STATEMENT> iz READ CURSQOR <FDORTRAN PAIR> x/

- FILEOUT 'RDCURC'IIVAR(SPYLI'Y) T :

/* <TRACKING STATEMENT> 8= READ KEY <FORTRAN VARIABLE> - */
FILEQUT 'RDKEYC(UIIVAR(SPYIIY) '

/* <ERASE STATEMENT> :1:= ERASE SCREEN x/

FILEOUT 'ERASE!;
/%  <PLOT STATEMENT>
FILEOUT 'DRAW('IILO

H LOT <COMPONENTPATR> */
¢

7*x <FILE STATEMENT> 3
R

4]
TV UESCALEL Y, VILANGLETL Y)Y
STORE <FORTRAN VARIABLE> =&/
FILEOUT 'SAVE('{IvA Yrityisg
/% <FILE STATEMENT> RESTORE <FORTRAN VARIABLE> =/
FILEQUT 'RESTOR(YIIVAR(SPYI|t) !
/% <EXPRESSION> $3= <PRIMARY> */
DO
EXCODE=3}
CALL EXOUY(VARTYPE,PRCODE,EXCODE)}
END3S
/* <EXPRESSION> t:z= <EXPRESSION> <DIADIC OPERATOR> <PRIMARY>
DO
VAR(MP)=VAR(SP)
CALL EXQUT(VARTYPE,PRCODE,EXCODE)}

[
(sp
A

ENDy¢
/% <DIADIC OPERATOR> 13= + *x/
EXCQDE=1;
/* <DIADIC OPERATOR> 3t= = */
EXCODE=2;
/% <PRIMARY> ::= <VALUATED VARIABLE> */ i
PRCODF=0
/%  <PRIMARY> i1z <VALUATED VARIABLE> <UNARY OPERATOR> */
DO: .
FILEQUT TYUNARY ('] IUNARYOPI 1)1
PRCODE=1}
ENDy
/% <UNARY OPERATQOR> s:= VSYM <FORTRAN VARIABLE> x/

UNARY_OP='1, 11 {VAR(SP);
/% <UNARY OPERATOR> pi= HSYH <FORTRAN VARIABLE> x/

*/
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236 UNARY_OP=12, Y [ IVAR(SP)

2387 /% <VALUATED VARIABLE> $:= <IJTEM> <VALUATION> */
238 :

239 /*  <VALUATED VARTABLE> 8= <ITEM> */

2UD H

ey /*  <ITLEM> sei= <VARIABLE> x/

242 VARTYPE=1?

eu3 /%  <ITEM> 1= <STRING> x/

244 DOy

245 I=LENGTH(VAR(MP) )

246 IF I »16 THEN VAR(MP)IZSUBSTR(VAR(MP)Y,0,16})}§
247 IF 1<ti6 THEN DO

248 S=SURSTR( tyI)s

249 VAR(HP)=VAR(MP) IS

250 END3 .

251 VARTYPE=2?

252 END g

253 /*  <SITEM> $¢= VALUE ( <FORTRAN VARIABLE> ) %/
254 DOy

255 VARTYPE=Z:

256 VAR(MPI=VAR(HMPPL+1)

257 END 3

258 /% <ITEM> 11z TEXT ( <FORTRAN VARIABLE> ) */
259 DO

260 VARTYPE=4:

261 VARCMPI=VAR(MPPL+1 )

262 END:

263 /* <VARIABLE> 3= <IDENTIFIER> *x/

264 DO;

265 CALL PAD.LY

266 VARNAME=VAR(NP ) §

267 VARTAG=1Y(Q 1

268 : VAR(MP)Y=! ' U [ JVARNAME [ Y Y1, V| [VARTAG)

269 END

270 /* <VARIABLE> (3= <TAGGED VARTIABLE> */

271 !

272 /* <TAGGED VARIABLE> si1= <IOENTIFIER> ( <FORTRAN VARIABLE> ) */
273 nDo;

274 CALL PAD.Sy

275 VARNAME=VAR(MP) 3

276 VARTAG=VAR(MPP1+1)}

277 K=LENGTH(VARTAG) =1y

278 IF BYTE(VARTAG,K) = BYTE(!,') THEN

279 VARTAG=SUBSTR(VARTAG,0,K)}

2890 VAR(MP) =t EVEIVARNAME LTV YT, V| VARTAGS

F81 END3

282 /% <FORTRAN VARIABLE> $i= <IDENTIFIER> *x/

283 CALL ADD_FORTRANLVAR}

284 /* <FORTRAN VARIABLE> 31tz <NUMBER> *x/

285 /% CHECKX FOR DECIMAL D007 IN NUMBER =%/

286 bO;

287 K=03;

288 DD I=0 TO LENGTH(VAR(SP))~=1i}

289 IF BYTE(VAR(SP),I)=BYTE (', 1) THEN K=l

2990 END:

291 IF K=0 THEN VAR(SP)=VAR(SP)I1I',1;

292 ENDy ‘
293 /% <FORTRAN VARIABLE>» ¢:= <COORDINATE FUNCTION> */
294 IF FTYPE = 6 THEN VAR(MP)z=! ITAGFNC!'HIVAR(MPIIIY) Y

29 ELSE



296
297
298
299
300
301
302
503
204
305
306
307
308
309
310
314t
312
313
314
315
316
317
318
319
320
321
$22
323
324
325
326
327
328
329
330
334
332
333
334
335
336
337
338
339
340
341
342
343
344
348
346
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VAR(MPY=! CORFUNCTIIVAR(MPYI 1),

/* <COORDINATE FUNCTION> 2= <FUNCTIONHLAD> <VARIABLE> ) *x/
TF FIYRE = & THEN VAR(MP)=VAR(MPPL)s ELSE
VAR(MPYSFTIYPEL I, VI HIVAR(MPPL)

/* <FUNCTIONHEAD> $iz= <FUNCTIONNAME> ( x/
H
/* <FUNCTIONNAME> 2:= XLOC *x/
FTYPE =13
/% <FUNCTIONNAME> 3= YLOC x/
FTYYPF =23
/*  <FUNCTTIONNAMED> 3tz XSCALE */
FTYPE =3;
/* <FUNCTIONNAME> p3= YSCALE x/
FTYPE =4
/¥  <FUNCTIONNAME> pt= ANGLE */
FTYPE =53
/* <FUNCTIONNAME> 3:= TAG «/
FTYPE=6;
/%  <SVALUATION> 2¢= <COMPONENTS> %/
}
/% <VALUATION> 3= <COMPONENTPAIR> */
)
/% <COMPONENTS> ¢$im= <COMPONENT> x/
H
/* <COMPONENTS> tt= <COMPONENTS> <COMPONENT> */
H
/% <COMPONENT> ti= AT <VALUEPAIR> *x/

LOC=VAR(SP):
/% <COMPONENT> 5= SCALE <VALUEPAIR> */
SCALE=VAR(SP)
/*  <COMPONENT> $i= SCALE <FORTRAN VARIABLE> #/
SCALE=VAR(SPIT Iyt HIVAR(SE)
7%  <COMPONENT> 3= ANGLE <FORTRAN VARIABLE> *x/
ANGLE=VAR(SP);
/* <COMPONENT> pt= TAG <FORTRAN VARIABLE> %/
DOy
TAG=VAR(SP)}
KeLENGTH(TAG)=1;
IF BYTE(TAG,K) = BYTEC(!',') THEN
TAG=SUBSTR(TAG,0,K);
END}
/% <COMPONENTPAIR> $3= FROM <VALUEPAIR> TO <VALUEPAIR> */
DO
LOC=YAR(MPP1)}
SCALE=VAR(SP)}
ANGLE=1=999 1}
END}
/% <VALUEPAIRS> 3= <FORTRAN VARIABLE> , <FORTRAN VARIABLE> */
VAR(MP)ISVAR(MPY I I, LI IVAR(SP)
ENDy
END SYNTHESL1Z2E



APPENDIX D

Device Dependent Support Routines:

Supernova:

Adage /[10:

INCOM, RETUR, OVERL, CHAIN.

AGTLIB (programmed by H. Rydzik).
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$S/R TO CHANGE VALUE OF #NMAXS
$TO POINT TO YHE BOTTCH OF BLANK COMMON AREA
$7T0 CALL ¢ CALL iwcoOH

+TITL 1nconm

« NREL

ENT Incon

+EXTD +CPYL, «FRET
JEXTH ERROR

H
FSez0
H
FS.
IRCOMe  JSR O.CPYL H
LDA @,CSIZE s GET SIZE OF BLANK COMMON AREA
NEG B,06 sliAKE DECREWMENT
«SYSTIA H -
JMEMI H
JNP @.EROR H
JSR ®.FRET s ZRETURN TO CALLING PROGRAM
s
«EROR: ERROR H
1
SIZEe pogalD $COMMON SIZE
H
+END

+5/R TO RETURH FROM OVERLAY SEGMENT
sT0 CALL ¢ CALL RETUR
’ JTITL  RETUR

" NREL

"ENT  RETUR,ERROR

k4

RETURt SYSTH
+RTN

ERRORe +SYSTHM

’ «ERTH

Jp .

.o WO 9O ve W

+END



$S/R TO OVERLAY FORTRAN PROGRAMS

$TO CALL ¢

[3
L4

CALL OVERL ('HAME OF SECGMEHT')

JTITL OVERL
o WREL
fENT OVERL
o EXTD +CPYL , JFRET
<EXTH ERROR
$
TEXT=~167
FSezl
H
FS.
OVERL: JSR @,CPYL $GET POINTER TO HAME
LDA B, TEXT,SsMAKE BYTE POINTER
HOVZL 8,0 s1N ACO
Sup 1o sCLEAR AC!
o SYSTH sCALL IN SECGMENT
+EXEC H
JIP @.EROR H
JSR @.FRET sRETURN TO CALLING PROGRAIl!

'ERORt  ERROR
:

+EHD

[
L

$S/R TO CHAIN OVERLAY SEGMENT

370 CALL @

L

CALL CHAIN (°*NAME OF SEGMENT")

«TITL CHAIN
+NREL
JENT CHAIN
+LCXTD .CPYL,.FRET
+EXTH ERROR
H
TEXT=~167
FSe=1
4
- Fs,
CHAIN: JSR @.CPYL sGET POINTER TO NAME
LhA 2,TEXT,3:FORM BYTE POINTER IN ACO
MOVZL e,0 H
SUBZR byl $SET AC1 BIT @
«SYSTH H
JMP @.EROR H
JSR @.FRET s LRETURN TO CALLING PROGRAM

"EROR: ERROR
END

H
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Ca==INTERACTIVE ADAGE PACKAGF FOR PIEKF!S IGL SYSTEMew=
Cmm=DBJECT DECK CONTAINS  SCONTINUE WITH AGT¢BASIC THERERY
CONCATENATION OF THAT FILE 15 NOT REGUIRED ===
SUBROUTINE  WATTIN
C  PROVIDFS THE INTERACTION = READS KEYBOARD AND CROSSHAIR LOCATION
LOGICAL FLAG /.TRUE,/

INTEGER PLOT/!PLOT!/,YES/IY 1/
COMMON/CURSOR/IHIT, XHIT, YHIT ;KEYHIT
REAL D(6)
IF (FLAG) WRITE(6,30)
30 FORMAT(! A KEYBQARD ENTRY OF PLOT WILL AUTOMATICALLY!/

*1 COPY THE DISPLAY AS A PLOTFILE ON LOGICAL UNIT 9,17/
%1 UNSPECIFIED LOGICAL UNIT PUTS PLOTFILE IN  =PLOT#,!)
FLAG= ,FALSE,
1 CALL AGTMUV(Y925,1,37)
CALL, DISPLAYS READY MESSAGE ON SCREEN
READ(S,10)KEYHIT
10 FORMAT (A4)
CALL AGTMOV(5888,1,37)
CALL DISPLAYS WAIT! HMESSAGE ON SCREEN
Creeh KEYBOARD ENTRY OF PLOT WILL AUTOMATICALLY
COPY THE DISPLAY AS A PLOTFILE ON LOGICAL UNIT Q4===-
IF(KEYRIT,EQ,PLOT) GO 10 100
CALL DIALS(D)
XHIT=(D(d4)+1,)2512,/780,
YHIT=(D(1)+1,0%512./780,
RETURN
100 NFILAG=0
WRITEC(6,20) '
20 FORMAT (Y 1,118 THIS T0O BE THE LAST PLOT?!)
READ(S,21)IREPLY
cl FORMAT (AL)
IF(IREPLY.ER,YESINFLAG=Y
CALL SAVE(NFLAG)
G0 T0 1§
END
c------.---.--H-ﬂ-ﬂﬁp--—-—
SUBROUTINE ERASE
c ERASES SCREEN AND INITIALIZES THE TERMINAL
INTEGER DISP(t112)
LOGICAL FLAG/.FALSE,/
COMMON/POQINTR/NV
IF(FLAG) GO TO 200
FLAG=,TRUE,
CALL AGTCVTI(DISP(1),0,4,0,,0,1)

CALL GENERATES AN EOQOF CONDITION TQ KEEP STORED MESSAGES FROM BEING DISPLAYED

CREATE MESSAGES
CALL AGTEXT(=S,r7erles'WALITLIV,0,,5,DIS5P(2),NVD)
DO 100 J=33,38
100 BISP(J)=0
CALL AGTEXT(=S,:74214)'READY,0,,5,DISP(39),NVD)
CREATE BLANK MESSAGE
DO 3500 J=V6,112
300 DI3SP(J)=0
200 CALL AGTDSP(DISP(1),112,5887, ,TRUE,,0)
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56 CALL AGTHMOV(S888,1,37)

57 CALLS wAIT] KESSAGE

58 NYz=37

59 RETURN

60 END

61 L P 0o @« v 0 @ o & = m & @ @ « & & &6 9 @ @ @ @ o n
62 SURROUTINE VECTOR(XY,Y!1,IDRAW)

63 C DRAWS A VECTOR FROM PREVIOUS POSITION TO NEW Xi,Y1 WITH PEN
64 C UP OR DOwN (IDRAW=0 OR 1Y)

65 LOGICAL FLAG/ TRUE,/

66 INTEGER OISR

67 COMMON/POINTR/NY

68 IF (FLAG) CALL CHECK

69 LAG—.FALSL,

70 X=xX1

71 Y=yt

72 CALL TSCALE(X,Y)

73 NV=NV+1§

74 CREATE VECTOR AND SEND 70 AGT

75 CALL AGTCVT(DISP,X,Y,IDRAW,0)

76 CALL AGTODSP(DISP,1,NV,y FALSE, 0]}

77 RETURN

78 END

79 C P = & w »w m =m w o m a2 & % & @D o e owow oW
80 SUBROUTINE DISPS(IS,Xt,YL{,NC)

a1 C THIS ROUTINE DYNAMICALLY ALLOCATES SUFFICIENT STORAGE FOR DSTEXT,
82 CALLS DSTEXT, THEN DROPS STORAGE IMMEDIATELY,

83 EXTERNAL DSTEXT

84 LOGICAL FLAG/,TRUE/

8s INTEGER*2 1S8(1)

86 IF(FLAG) CALL CHECK

87 FLAG= (FALSE,

88 ’ N=NC%x1{0

89 CALL GSPACE(PDISP,N*4)

90 CALL CALLER(DSTEXT,)PDISP,IPTR(N),IPTR(IS),IPTR(X{),IPTR(YL),
91 1IPTR(NC))

92 CALL FSPACE(PDISP)

93 RETURN

94 END

95 C = @ w &8 @& @ = @ @ = =% @ & « =& &0 = " 0 8w W moE W W Eow oW oE W
96 SUBROUTINE DSTEXT(DISP,N,1G8,X1,Y1,NC)

97 C DISPLAYS A CHARACTER STRING OF NC CHARACTERS AT Xi,Yt
98 INTEGER DISP(N)Y,I16%x2(1)

99 COMMON/POINTR/NY
100 NVYaNY+!
101 X=X1
102 Y=Y1
103 CALL TSCALE(X,Y)

104 CALL AGTEXT(X Y s78./2%6,,18,0,,NC,DISP(1),NVG)
105 IF (NVG,EQ.Q) GO TO 100

106 CALL AGTDSP(DISP(1),NVG,NV,4FALSE,/0)

107 100 NVINVINVG=L

108 RETURN

109 END

110 C @ @ & w @ ¢« & & ¢ » & @ % 7 " ® @& @E M =B ww
11 SUBROUTINE TSCALE(X,Y)

{112 c LIMITS X AND Y VALUES AND SCALES FROM IGL TO AGT
113 IF(X,LT1,0,) X=0,

114 IF(X,GT,1024,/780,) X=1024,/780,

1ts IF(YLT40,) Y=0,



116
117
118
119
120
121
122
123
§24
125
126
127
128
129
130
1314
132
133
134
139
136
137
138
139
140
141

C

C

E)

78

IF({Y,GT,1,) Y=1%,
X=XATRO /51 ,2=10,
YeY*780,/51,2=10,
RETURN
END
e W o T W M M @ BB w S M W T W M N O B W W & ™ -
SUBROUTINE SAVE(NFLAG)
READS THU BUFFER AT THE AGT AND SENDS DISPLAYED IMAGE YO LOGICAL UNIT 9,
COMMON/POTINTR/ZMNY ~
CALL AGTHOV(5962,1,37)

CALLS BLANK MESSAGE

CALL ASPLOT({10,,NV)
CALL AGTHOV(5888,1,37)

CALLS WAIT| MESSAGE

o

c
C

IF(NFLAG,EQ,1) CALL PLOTND
RETURN
END
W g W m W W m O W W M B W W W S R W M I S gr N M a8 R e B W
SURKOUTINE CHECK
ENSURES THAT ERASE HAS BEEN CALLED BEFORE VECTOR AND DISPS TQ
INITIALLZE SCREEN,
LOGICAL FLAG/,TRUE,/
IF(FLAG) CALL ERASE
FLAG=,FALSE,
RETURN
END



