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Abstract 

A multibody dynamics formulation has been developed for the purposes of real-time simula­

tion of large scale robotic mechanisms such as excavators. The formulation models the rigid 

body dynamics of any arbitrary tree structured mechanism, although at present the formula­

tion is restricted to single degree of freedom rotational joints. This formulation is an example 

of the orthogonal complement approach, which describes the dynamics by projecting an initial 

description of the primitive equations of motion (the derivatives of translational and angular 

momentum plus the kinematic equations) from angular and translational Cartesian coordinates 

to relative angles. In this thesis the approach was developed from Newtonian and Eulerian 

principles. Novel single cpu algorithms for inertia matrix and force vector formation have been 

implemented. Novel multiprocessor algorithms were implemented for the inertia matrix and the 

force vector on a 2d n("2
+1) 4. n triangular mesh architecture. A feedforward systolic matrix so­

lution technique was also implemented. These algorithms are of 0(n) complexity, and together 

they form a parallel formulation which is more efficient than other parallel formulations in the 

literature for mechanisms with fewer than 15 degrees of freedom. A Caterpillar 215B excavator 

was simulated in real-time using an array of transputers, and teleoperation experiments were 

conducted to verify the formulation. Single cpu simulations of the PUMA 600 and a human 

torso were also conducted. 
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Chapter 1 

Introduction 

1.1 Modeling Multibody Dynamics 

The dynamics of rigid body motion have been derived and analysed since the 18th century. 

Indeed, the field has been so well investigated it is now called classical dynamics. Until the early 

part of this century, dynamicists concentrated on the analytical mechanics of single bodies such 

as tops, in which the motion could be mathematically described in closed form [Whittaker 27]. 

Systems and motions of greater complexity were considered too difficult. The development of 

the computer in the 1950s and 60s, with its ability to numerically integrate, renewed interest in 

the dynamics of more complex multibody systems for which elegant closed form solutions for 

the equations of motion could not be obtained. 

Multibody computer simulations require the equations of motion in the form of an algorithm 

which generates the derivative of the system state from the known previous state. The state 

consists of joint positions and their velocities. The joint variables may be rotational (e.g. 

Euler angles), or translational (e.g. prismatic). The objective of the computer simulation is to 

continuously solve for the derivative variables (generally joint accelerations and joint velocities) 

and numerically integrate over time to determine the new state variables (joint displacements 

and velocities). 

In the fields of space dynamics, mechanism analysis, and vehicle dynamics, the equations of 

motion have been studied extensively. The formulations have steadily increased in capability, 

permitting the analysis and simulation of closed chain (kinematic loop) structures, flexible bod­

ies and advanced control techniques. This greater capability has unfortunately also resulted in 

significantly increased computational complexity (in its crudest sense, the number of multiplies 

and adds as a function of the size of the problem (in this case the number of degrees of freedom 

1 
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n)). In addition, the automatic generation of the equations of motion has become more diffi­

cult. As a consequence, non-real-time simulation has been the norm, although supercomputers 

have trimmed computational delays. Online man-in-the-loop interaction, however, has not been 

possible except for hybrid electromechanical simulators e.g. aircraft training simulators. 

1.1.1 Issues 

There are four major issues in multibody dynamics [Schwertassek 89] which continue to attract 

attention. 

1. The basic issue is the choice of an approach for deriving the equations. This involves 

the principle of mechanics, the choice of state variables, and the description of system 

topology. Conceptual simplicity, efficiency and computational complexity are the main 

criteria for evaluation. 
i 

2. A second issue is the incorporation of other types of dynamic behaviour, including such 

effects as flexibility and friction. These effects are secondary and dominated by the large 

scale rigid body rotations, but they can greatly increase the complexity of the equations 

and may often require much smaller step sizes for the integrator, resulting in greatly 

increased execution time. These characteristics become more important as advances are 

made in control theory, structural mechanics, and materials engineering, all of which will 

require models of light and flexible linkages. 

3. The third issue is the choice of appropriate methods for dealing with closed chains. Con­

straint equations representing closed chain forces can lead to the addition of Lagrange 

multipliers, or to transformations to minimal sets of equations. The presence of Lagrange 

multipliers can lead to numerical instability, and thus coordinate partitioning and other 

reduction techniques have been proposed to stabilise the system and minimise the number 

of equations [Schwertassek 84]. A further problem arises when the closed chains open and 

close over time, leading to system representations which vary in form over time. These 

problems are numerical and theoretical in nature, and can greatly increase the complexity 

of the formulation. 
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4. The fourth issue is real-time simulation. The need for shorter design cycles and man-

in-the-loop simulation capability requires formulations that execute in real-time. Item 

one above approaches this through theoretical considerations. Another approach is to use 

multiple processors to generate and solve the equations. At present this area of research is 

in its infancy, and the issues of algorithm expandability, architectural complexity, and the 

integration of various phases in the computation are still research problems. Questions 

arise as to the most appropriate formulation for multiple processor implementation, and 

the best computer architecture to use. This thesis addresses these last two questions. 

1.1.2 Motivation 

The robotics research group at the U B C Electrical Engineering Department is interested in 

applying telerobotic control techniques to robot linkages such as excavators. A simulator is 

required when experiments in control, sensing, kinematics, and hand controller strategies need 

to be conducted in a controlled setting, before major field tests with real systems begin. This 

thesis is concerned with the design and implementation of a real-time manipulator simulator of 

the Caterpillar 215B, an excavator-type machine. 

1.1.3 Scope 

In addition to excavator-type machines, which are basically four link structures, mechanisms 

with complicated wrists (e.g. the FMS Timberjack feller buncher) and multilegged bodies 

(e.g. the Kaiser Spyder) have also been designed. Robots such as the proposed Special Purpose 

Dextrous Manipulator, designed in Canada for the Mobile Service platform on the space station, 

have multiple chains of links. Modelling these machines efficiently requires formulations of more 

complex multibody systems than single-branch chains. 

One aim of this thesis is to take a step towards the development of an algorithm that accommo­

dates branched (tree-like) systems. Initially only rotational degrees of freedom will be modelled. 

Prismatic (translational) joints are not included here, but are easily modeled ([Kim 86a] and 

Chapter 6). The thesis is limited to the dynamics of rigid body systems, since these large 

links do not flex appreciably. The formulation does not simulate closed chains, but this area of 
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research will be discussed in the chapter on future work. Control issues will not be considered, 

but the dynamics of hydraulic actuation will be briefly considered in chapter 5, when the issue 

of interfacing to actuators and controllers is examined. 

The second aim of this thesis is to implement a real-time simulator for the dynamic equations 

of the Caterpillar 215B. Researchers in robotics have attempted to obtain real-time simulations 

of common robots by concentrating on computational efficiency and limiting the problem to 

simple serial systems (a single open kinematic chain), each joint having only one degree of 

freedom. Often only one phase of the computation is addressed (e.g. inertia matrix, force 

vector, or matrix solver), without consideration of the integration of these different phases of the 

formulation. Even these simplified algorithms have required multiprocessors, since they have are 

too computationally complex for real-time simulation with existing single cpu computers. Our 

approach is also to use a multiprocessor. The computer architecture, however, will implement 

a parallel formulation which is concerned with the integration and efficiency of all phases of the 

simulation. The proposed formulation is evaluated using the computational complexity of the 

dynamics algorithm and the simplicity and efficiency of the multiprocessor architecture as the 

criteria. 

Initially a single cpu formulation will be developed for branched chains. The parallel archi­

tecture, however, is specific for a single chain mechanism. In the discussion on future work, 

modifications for the inclusion of branched systems in the parallel architecture are examined. 

1.2 The Principles of Dynamics 

The dynamics of a multibody system are determined by the kinematics, which describe the 

topology, and the kinetics, which describe the forces. Kinematics is focused on the geometric 

aspects of motion, excluding the forces involved. Link length and rotational or translational 

displacement and velocities are calculated to obtain the end-effector (or some link in between) 

position or velocity in Cartesian coordinates (forward kinematics), or conversely, to determine 

the joint displacements that produce the endpoint position (inverse kinematics). Kinetics is 

concerned with describing the balance of forces that influence body motion, such as gravity, 

actuator moments, and Coriolis forces due to the effects of angular velocity. 
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Together, the kinematics and kinetics completely describe dynamic behaviour through the dif­

ferential equations of motion, in terms of joint variables, structural parameters, and the internal 

and external forces applied to the joints. Examples of the external forces which affect the mo­

tion are the joint torques exerted by the actuators, and forces from the environment such as 

contact forces. 

The dynamics can be obtained from two main approaches: Lagrangian, and Newton-Euler. 

The next two sections outline the fundamentals of these two approaches. Chapter 2 will discuss 

specific examples in greater detail. 

1.2.1 Lagrangian 

The Lagrangian approach requires the designer to select a set of independent state variables 

q which can completely characterize the position and orientation of the system. This set is 

known as the set of generalized coordinates. For a simple manipulator with rotary or prismatic 

joints, relative joint angles and displacements are easy to measure, and thus make a good set 

of coordinates. Another choice is inertially referenced angles and displacements. 

Consider the single chain of n bodies in Fig. 1.1, with one degree of freedom per joint. Assume 

that the generalised coordinates are qi,...qn (measured relative to the previous link, or with 

respect to an inertial frame). The Lagrangian is denned as the difference between the kinetic 

(Ek) and potential (Ep) energy of the system. 

£(q,q) = Ek(q,q)-Ep(q). (1.1) 

The equations of motion are defined as: 

d dC dC . ( . 

d t ^ - d q ~ r F t , = 1 ' - B ( L 2 ) 

where F{ is the force acting in the direction of the coordinate. The Ek of a link i is given by 

Ek(i) = ^rriixjii + iicfjjti;.-. (1.3) 

J, is the link inertia tensor, and i , and tt>, are the 3x1 translational and angular velocity vectors 

of the centre of gravity of the ith body, measured relative to an inertial frame of reference. The 

velocities i , and w, are the Cartesian velocity coordinates of the ith body. The system vector 



Chapter 1. Introduction 6 

B. 

1 / z1 •A 
Figure 1.1: Open loop, fixed base, serial chain manipulator 

[x w] forms a nonminimum set of coordinates which may be reduced to a minimum set when 

the hinge constraints are added. Transformations from Cartesian coordinates to q or q are 

necessary because w (a 3 X 1 vector) is not a minimum representation and is generally not a 

measurable variable (unless it consists of a rotation about a single axis) since it is a function 

of up to three Euler-type angular rotation rates. 

One generalised set of q is rotational displacements (for a system with all rotational joints 

and no translational joints) which may be measured with respect to a global (inertial) frame or 

with respect to an adjacent link (relative). The transformation between [x, «?,-] and any other 

q is 

ii = Bj)q 

Wi = B$q (1.4) 
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where Bj) and Bp* are translational and rotational 3xn Jacobian velocity transformations to 

the system vector q. The Jacobians for q — 0 can be derived from the following kinematic 

velocity and acceleration relations: 

Wi = «;,•_! + Zi$i 

Wi = Wi_i + Wi X Zidi + ZiOi (1.5) 

Xi = x , _ i + - ki 

Xi = + (wi_i x /j_i) - (wi X fcj) 

^ = x , _ ! -|- x + x x - X ki — Wi x x A:,- (1.6) 

where ki is the vector from the centre of gravity of a body to the lower hinge, and /,• is a similar 

vector to the upper hinge on a body (Fig. 1.2). zt is the unit vector describing the axis of 

rotation of the ith hinge, ki, /,, and z, are assumed to be constants when referred to their own 

coordinate frame, but in equations 1.5 and 1.6, they are time varying, as the equations have 

been implicitly referred to a common coordinate frame. 

The system kinetic energy 

can be written as 

Ek = \qTMq 

where M = f l ( m i B T T B T + B R T J i B R ] ) i1-7) 

where M is the n x n inertia tensor for the complete manipulator system. 

The potential energy for the system is due to gravity g, and is 
n 

Ev = Y,m>9Txi- (L8) 

When the Lagrangian is differentiated as per equation 1.2, the equation of motion for the ith. 

link is 
n T I n n 

E MH9j + E E hHkWk + E mi9TB%} = Fi i = 1, .. .n (1.9) 
j=i j=i k=i j=i 

where Fi is the actuator torque, and B^} is the tth column of the B^p matrix appearing as 

a result of the differentiation of Ep with respect to dg,. hijk represents the terms that occur 
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Figure 1.2: Forces and torques on the ith body assuming all rotational joints 

as a result of differentiating M with respect to dq. The first term of equation (1.9) represents 

the moment due to inertia, the second term represents the Coriolis and centrifugal moments, 

and the third term represents the moment due to gravity vector g. The equation describing the 

system is then 

M{q)q=F-h{q,q)-G{BT). (1.10) 

The equations must then be solved for q given that M and BT are functions of q, and h is 

a function of q and q, which are known from the previous time step. F is provided from an 

actuator algorithm. 

The benefit of working with the Lagrangian approach is that the forces of constraint between 

hinges do not have to be considered. The internal forces never explicitly appear in the equations 

because a kinetic energy argument is used to describe the formulation, and the kinematics are 
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used to describe the constraints and transform to generalised coordinates. Although the deriva­

tion of the formulation is elegant, developers of computer codes have not used the complete 

Lagrangian equation for systems of significant complexity due to the computational inefficiency 

of the technique. Ibrahim [Ibrahim 88] and Silver [Silver 82], however, have shown that this is 

not necessarily true, by demonstrating that the principle of mechanics does not greatly influence 

the efficiency of the equations. It is the cost of performing the transformation to different q 

that determines the efficiency of the algorithms. 

1.2.2 Newton-Euler 

The Newton-Euler approach uses Newton's Second Law of Motion and Euler's equation for 

rotational momentum to describe the kinetics of each body. Newton's Second Law, 

F = P = 4(mi) = ml (1.11) 
dV ' v ' 

describes the sum of the translational forces F on a body as equal to the rate of change of 

linear momentum, P. m and x are described as in the previous section. Rotational motion is 

described by Euler's equation for the inertial torque of a body, which describes the time rate 

of change of angular momentum: 

N = L = ^(Jw) = Jw + w x Jw (1.12) 

where L is the angular momentum, N is its derivative or moment, J is the link inertia (relative 

to its own coordinate frame), and w is the body's angular velocity (measured with respect to an 

inertial frame) defined in the previous section. Jw is known as the angular acceleration torque 

and w X Jw is known as the gyroscopic torque. The gyroscopic torque appears because the 

orientation of J varies with time, producing a non-zero time derivative. 

In the Newtonian approach, each link is isolated as a free body, and the forces and torques due 

to gravity, inertia, velocity, and actuation appear in translational and rotational equations as 

a balance of forces or moments (Fig. 1.2). 

The equation describing the translational forces on a link i is (Fig. 1.2): 

m,x, = 7i - 7,-+i + m,-0, (1.13) 
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where the RHS is the sum of the translational forces about link i. 7,- and 7,4.1 are the forces 

applied to link i at the hinge points i and i + 1 by the attached links, which seek to constrain 

the body's motion. 17, is the acceleration vector due to gravity. 

The rotational torques are: 

Li = J{Wi + Wi x JiWi = Ri\i - Ri+i\i+1 + ki x 7, - /, x 7; + 1 + r, - r , + 1 (1-14) 

where is the actuator torque occurring about the axis of motion i. i?,A, (or i2,+iA, +i) are 

moments that act to oppose rotational motion in axes orthogonal to the axis of motion of hinge 

i (or hinge i+ 1). A:, x 7̂  and /, x 7,+i are moments due to the translational hinge forces 7,- and 

7i+i. All terms in (1.13) and (1.14) have been referred to a common coordinate frame. 

The above equations can be written for all the bodies in a system with the differentiated 

state variables x and w. As in the Lagrangian approach, x and w can be projected to a 

different set of states, such as Euler angle accelerations 9 or Euler parameter accelerations qp, 

and may be relatively or inertially measured. For one degree of freedom relative joint angles, 

Wi — f(zi9\, Z2&2, —Zi^i), where z, is the ith axis of rotation. The equations of motion, 1.13 

and 1.14, are then a function of 6, and, due to w, functions of 9 and 9. 

The projection from [i w] to an alternative set of q such as 9 leads to the elimination of 

the internal constraint forces and moments 7 and A. Once the equations for all bodies are 

assembled and the constraint forces and moments are eliminated, the equations must then 

be rearranged to solve for 9. The formulations may be 0(n) computational complexity if 

the projection/elimination of the constraint forces is done recursively from link to link (e.g. 

the algorithms of Featherstone [Featherstone 83], Rodriguez [Rodriguez 88], Bae and Haug 

[Bae 87b], Roberson and Schwertassek [Roberson 88], and Brandl [Brandl 86]). If the projection 

is done as a global transformation, 0(n 2) computational complexity (e.g. Hwang and Haug 

[Hwang 88]), or 0(n 3 ) computational complexity is obtained (e.g. Angeles and M a [Angeles 88], 

Kim and Vanderploeg [Kim 86a], and Hemami [Hemami 82]). 

o 

1.3 Overview of the Thesis 

In the next chapter, Chapter 2, some of the formulations proposed by the research community 

are reviewed. The approaches taken once the Lagrangian or Newtonian primitive equations have 
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been established are examined, and examples of parallel implementations are described. In the 

latter half of Chapter 2, the Newton Euler State Space method [Hemami 82], a formulation 

based on orthogonal complements, is presented. This method is the starting point for the 

development of the parallel formulation presented in this thesis in later chapters. 

In Chapter 3, the equations of motion are reorganised by referring them to body coordinates. 

This change illuminates the recursive nature of the equations, determining the structure of 

the algorithm, which then influences the multiprocessor architecture. The formulation is then 

generalised to branched systems and the equations are shown to be computable in an automated 

manner. Simulations of a PUMA 600 manipulator and a branched six degree of freedom human 

torso are presented to demonstrate the formulation. 

In Chapter 4, a multiprocessor algorithm for calculating the inertia matrix for simple serial 

chains (an open kinematic series of bodies) is obtained. A multiprocessor algorithm for the 

calculation of the driving force/torque vector is also developed which integrates well with the 

inertia matrix algorithm. Chapter 4 also describes the implementation of a parallel feedforward 

systolic matrix equation solver derived by Jainandunsing [Jainandunsing 89]. A parallel systolic 

architecture decomposes a problem into simple parallel tasks which are identical. These tasks 

may be run simultaneously on identical cpus, with intermediate results being passed between 

neighbours in a pipelined manner, analogous to the way blood is pulsed through the body. This 

solver completes the set of parallel algorithms used for the simulator. 

Chapter 5 describes the excavator simulator, including the computer architecture and the inter­

faces to a graphics computer and joystick control. Measurements of relative efficiency between 

single and multiple cpu simulations are given, and a teleoperation experiment is presented to 

demonstrate the usefulness of the simulator. 

Chapter 6 concludes the thesis with a discussion on results and future work. Ideas for extending 

the formulation and the architecture to deal with branched sysytems, multiple degree of freedom 

joints, and closed chains are presented. 



Chapter 2 

Existing Formulations of the Equations of Motion 

In this chapter some of the formulations proposed by the research community are reviewed. 

A brief review of the development of multibody dynamics is presented by pointing out the 

most important characteristics required of a formulation. Following this, some of the most 

relevant approaches will be discussed, and examples of parallel implementations described. 

Finally the Newton Euler State Space method [Hemami 82], a formulation based on orthogonal 

complements, is presented. This method is the starting point for the parallel formulation 

developed in this thesis. 

2.1 A Brief Literature Review 

In this section, a very brief review of the literature is presented. Following this, those formula­

tions most relevant to the thesis objectives are examined in more detail. 

2.1.1 Coordinate selection 

Selecting the principle of mechanics, as discussed in the previous chapter, is just one step in the 

formulation process. The selection of the final generalised coordinates (e.g. relative or inertial, 

minimum or nonminimum set) also greatly influences the final form of the equations of motion. 

Transformations of the initial equations of motion from Cartesian coordinates [w x] to other 

coordinate spaces can reduce the number of equations in the final system to varying degrees, 

and give the user more insight into the mechanics of the formulation. The final equations may 

be easier to derive (but require a larger set of equations and coordinates) or harder to derive 

(but result in a smaller set of equations using a minimum set of coordinates). 

In the 1960s, Roberson and Wittenberg [Roberson 66] and Hooker and Margulies [Hooker 66] 

12 
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developed algorithms for problems in spacecraft dynamics that were implementable on a com­

puter. Newton-Euler principles were used to form the primitive equations for individual bodies, 

and these primitive Cartesian equations were augmented by constraint equations and Lagrange 

multipliers, rather than eliminating the constraint forces by projective transformation. Haug 

[Haug 89] used inertially measured Cartesian generalised coordinates in the DADS software 

package, in which constraint forces were not eliminated, and the coordinates were not reduced 

to other state spaces such as relative angles. This choice generated large numbers of equations, 

but resulted in simpler definitions for constraints and forcing functions. 

Hooker [Hooker 70] and Jerkovsky [Jerkovsky 78] used transformations to relative joint variables 

when it was realised that they were easier to measure, more intuitive, and less prone to numerical 

error. This choice of coordinates resulted in a smaller but more complex set of equations. 

Examples of similar transforms are found in [Hemami 82], [Bae 88a], [Kim 86a], [Angeles 88], 

[Bae 87a], and in the work performed in this thesis. 

2.1.2 Reference point 

When defining the equations of motion for a large system of bodies, both Roberson and Hooker 

used the augmented body approach, which defined a body barycenter as the point of application 

of body forces. The barycenter is the center of gravity of a body which has been augmented by 

point masses at the hinge positions around the body. These point masses are the cumulative 

masses of all the links in branches outboard from each hinge. The augmented body approach 

uses the system center of gravity as the system reference point. He and Goldenberg [He 89] 

have used this technique to computationally simplify the inverse dynamics (calculating the 

desired torques) for single chains. The barycentric approach has generally been supplanted in 

the literature by the direct path method introduced by Ho [Ho 74] and subsequently used by 

Jerkovsky and others. The direct path approach assumes a designated home body as a reference 

point, and then describes a body by relating it to home via the chain of bodies between them. 

This results in simple recursive equations for the kinematics and kinetics in which the point 

of application is at the hinge or the centre of gravity of a body. In this thesis the direct path 

method is used, with the home body being the first body in the chain. 
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2.1.3 Topology 

Another requirement of a computer formulation is a systematic method for specifying the system 

topology. Graph theory, which mathematically expresses the topology as a matrix (or linked 

list) of connectivity, is a popular way of describing the connections and constraints among 

links. Roberson and Wittenberg used graph theory to define the topology of a system using an 

incidence matrix. The incidence matrix can be quite complex if the numbering of the bodies 

and hinges is arbitrary. The simplest incidence matrix uses a strict numbering system related 

to the direct path described by Ho [Ho 74]. In this method each body in a branch is labelled 

from a home body with an ascending integer, and each branch is completely labelled before 

another branch is begun. As a result, the ith row of the incidence matrix has a 1 in the jth 

column if the jtb. body lies on the path between body i and home. Most formulations, including 

the one developed in this thesis, now use some form of matrix or list to describe the topology 

(although roboticists have generally limited their simulations to robots without branches and 

consequently seldom use an incidence matrix). 

2.1.4 Closed chains 

Closed chains present significant problems for researchers due to the difficulty in selecting 

appropriate coordinates among a large initial set (the coordinates produced when closed loops 

are cut). This is because of degrees of freedom which are lost or gained when the system forms 

geometries which cause the hinges to lock during motion . 

Numerous researchers have modeled closed chains, but no method has demonstrated significant 

advantages over others. The augmentation method, using Lagrange multipliers to represent 

the unknown closed chain constraint forces, plus constraint equations to represent the kine­

matic constraints, has been discussed by Nikravesh [Nikravesh 84], Orlandea [Orlandea 77], 

and Wittenberg [Wittenberg 77]. One method is through direct integration and solution of the 

augmented equations (a differential-algebraic set). The problem with this technique is that nu­

merical errors appear due to numerical integration inaccuracies, resulting in constraint equation 

violations. Numerical constraint stabilisation has been used by Baumgarte [Baumgarte 72] and 

Bayo [Bayo 88] to monitor the amount of violation and then numerically dampen the system to 
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minimise the errors. State space reduction techniques have also been developed which minimise 

the number of independent coordinates by partitioning the initial set of coordinates into depen­

dent and independent sets u and v respectively. The constraint equations are then redefined so 

that functions of u coordinates become functions of v coordinates. Coordinates and velocities 

u, v, ii and v can be calculated, followed by the solution to the differential-algebraic equations. 

Separating q into il and v enables the algorithm to control the amount of numerical error. This 

technique was initially proposed by Wehage, Mani and Haug [Wehage 82] [Mani 84]. Kim and 

Vanderploeg [Kim 86b] refined it using QR decomposition of the constraint Jacobian to identify 

the independent coordinates. Another refinement of Mani's technique was made by Park and 

Haug [Park 86], who combined Baumgarte's numerical stabilisation and Mani's partitioning 

technique. This thesis does not consider the problem of closed chains, although in Chapter 6 

an approach developed by Murray and Lovell [Murray 89] is suggested as a logical extension to 

the current thesis work. 

2.1.5 Other characteristics of multibody systems 

Researchers such as Ho, Hughes [Hughes 79], Bodley [Bodley 78], Keat [Keat 83], Kim [Kim 88] 

and Ibrahim [Ibrahim 88] have developed formulations which include such characteristics as flex­

ible links and more sophisticated joint constraints in the context of space dynamics. Vehicle 

dynamics researchers such as Fuhrer [Fuhrer 89], and Rulka [Rulka 90] have developed algo­

rithms for simulating railguided vehicles and automobiles, which need to deal with friction and 

nonlinear wheel-rail forces. Characteristics such as these have not been considered in this thesis 

work as the emphasis has been on the development of the basic rigid body equations as a first 

effort. 

2.1.6 Parallel formulations 

All the formulations described above were developed for single processors. Bae, Kuhl and 

Haug [Bae 88b] and Hwang, Bae and Haug [Hwang 88] developed and implemented parallel 

algorithms on an Alliant FX/8 shared memory multiprocessor. Bae's algorithm is an 0(n) 

computational complexity algorithm which uses one cpu for each topological branch (chain) in 

the system. Hwang's algorithm is an n cpu, 0(n + log2 n) computational complexity, parallel 
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version of an 0(ra2) single cpu algorithm [Bae 88a]. Robotics researchers such as Lee and Chang 

[Lee 88], Fijany and Bejczy [Fijany 89] and Amin-Javaheri and Orin [Amin-Javaheri 88] have 

parallelised single chain linkages using the 0(n3) single cpu algorithm proposed by Orin and 

Walker [Walker 82] as the basis formulation. They derive 0(n + (log2 n"|) (Lee, Amin-Javaheri) 

or O(log2 n) (Fijany) complexity parallel algorithms that use a generalised cube or a hypercube 

computer architecture utilising n cpus. 

This brief survey, which does not reflect the contributions of many other researchers, shows that 

a variety of formulations have been derived. The most popular ones use relative joint coordinates 

as generalised coordinates, and connectivity matrices using the direct path method to describe 

the topology (and as a consequence, to describe the constraint and kinematic relationships). 

Modeling techniques for closed chain constraints and secondary characteristics such as flexibility 

and friction continue to be developed. Research on parallel solutions has only just begun, and 

will continue to evolve as computer hardware and algorithms change. In this thesis relative 

joint angles are used as generalised coordinates and a connectivity matrix is used to describe 

the topology and kinematics. Closed chain constraints are not dealt with, as the emphasis is 

on real-time performance achieved through parallel processing. 

2.2 Forward Dynamics Algorithms in Detail 

This section discusses several of the most recent formulations, which are divided into three 

types, each a different approach to the transformation of the primitive equations of Chapter 

1. The first approach is known as the composite rigid body method, which uses the Newton 

Euler inverse dynamics method derived by Luh, Walker and Paul [Luh 80], plus a technique for 

calculating the inertia matrix which uses partial sets of links at the open end of the chain as 

composite bodies. The second approach uses recursive kinematic and kinetic equations to form 

the dynamics in 0(n) time, by locally eliminating the hinge constraint forces. Accelerations 

and forces are locally projected from body to body across the joints. The third approach uses 

a global Jacobian velocity transformation to eliminate the hinge forces and project from [w x] 

to 9. This third approach is pursued in later chapters of this thesis. 
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2.2.1 The composite rigid body algorithm 

formulations 

The most commonly used algorithm for single chained robots is the composite rigid body method 

of Walker and Orin [Walker 82] (method 3), derived for a single chain manipulator with one 

degree of freedom joints. The algorithm begins by establishing the Lagrangian form of equation 

1.10 as the final form of the desired equations, in which the coordinates are relative joint angles 

and relative prismatic displacements. The computations required to obtain the elements of the 

matrices in equation 1.10 are then derived from the Newton-Euler inverse dynamics algorithm 

derived by Luh. The RHS of equation 1.10 (excluding F) are forces due to Coriolis, centrifugal 

and gravity effects, and are calculated by artificially setting q to zero in Luh's algorithm. 

Initially, the kinematic equations (1.5) and (1.6) are calculated, except that q\ (equivalent to 

0i) is set to zero and is described through a vector p,, measured from the inertial coordinate 

frame to the hinge point of body i, rather than the centre of gravity of body i. The equations 

are written in a forward spatial recursion: 

Pi = Xi_i + 

Xi = pi — ki 

'ii = pi — Wi X ki — Wi x Wi x ki 

where pi = — x — x u>,_i x (2.1) 

and di = ki — U is the vector from hinge i + 1 to hinge i across body i. In this thesis, equation 

(2.1) has been changed with respect to Luh's original equations to reflect the fact that in the 

notation used in this thesis, the ith coordinate frame is placed at the bottom hinge of link i, 

rather than at the top (in Luh's description). The acceleration due to gravity is the first fink's 

acceleration p\. The total force F, and total moment JV; about a body are then written as in 

equations (1.11) and (1.12). The hinge force / , and hinge moment n, are the force and moment 

exerted on link i by fink i — 1, and are given in a backward recursion as 

fi = Fi + /„ = fe 

ni = ni+1 + Ni - ki x Fi - di x fi+1; nn = ne 

or Ni = n,- - n,+i + fc,- x /,• - /, x (2.2) 
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where the equation for Ni in (2.2) is rearranged to consist of hinge quantites only. /„ and nn 

are equal to the external force or moment at the manipulator tip. Equation (2.2) describes 

the moments and forces about the isolated body. /, is equivalent to 7 , in equations (1.13) and 

(1.14), and n, is the sum of the moments due to i2,A,- + r, (with a single z axis rotation, i?,A, 

is about the x and y axes, while TV is about the z axis). 

The elements of the force vector fv (Coriolis, centrifugal and gravity forces) are projections of 

the moments rii about the hinge axes 2,: 

fv(i) = nfzi i = l,...n (2.3) 

The inertia matrix element Mij from equation (1.9) is calculated using the composite mass 

Mj, composite centre of mass ij, and composite inertia Jj of a series of rigid bodies (a"implies 

a composite variable). A composite rigid body is comprised of the subset of links j to n at the 

free end of the chain, where in this case n (no subscript) represents the number of bodies in 

the chain. The Mj, tj, and Jj can be computed recursively in a backward recursion according 

to the following equations: 

(2.4) 

dj) - rrijkj), (2.5) 

t' = n,...l (2.6) 

Mj = Mj+1 + THj, 

Cj = - i - ( M J + 1 ( c i + 1 

Mj 

and Jj = Jj+i + bj, 

with Mn = mn 

Cn = -K 

Jn = Jn) 

and bj = Mj+1((rjr3)I 

where = CJ+\ + dj - tj 

- —Cj — kj. 

rtf)) + h + m3 {irfr])I - (r*rf)) (2.7) 

(2.8) 

(2.9) 

tj is measured relative to the jfth coordinate frame (at hinge j). 

The calculation of a column j of M requires q to be artificially set to zero in the kinematic 

equations for all links other than j (qj = 1, a unit acceleration). In addition, the joint velocities 

q and gravitational forces are zero. The output of the inverse dynamics algorithm with qj = 1 



Chapter 2. Existing Formulations of the Equations of Motion 19 

and these other quantities set to zero results in the jth column of the inertia matrix Ai. Since 

joint j is the only joint in motion (links j to n are static), the total forces Fj and Nj on the 

composite body are 

Fj = MJ{ZJ x tj) 

(2.10) 

for rotational axes (prismatic joints are considered in Walker's paper but not included here). 

For i < j, Fi and JV, are zero, and /, and n, are computed in a backward recursion as 

ni — rii+i + di x 

and /_,• = Fj, 

rij — Nj + dj x Fj 

i = l,...j - 1; 

when i = j. (2.11) 

For i > j, fi and n, are zero. An element Mij in column j is then calculated by projecting the 

hinge moment n, onto the ith joint axis. Thus for the jth column, when ijj = 1, 

Mij = njzl i<j (2.12) 

where this value of n, must be recalculated for each value of j (each new column of M). Mij for 

a translational joint i can be calculated by projecting the hinge force /, onto z,-. For Walker's 

algorithm, the computational complexity of forming the inertia matrix is 0(n2), of forming the 

RHS is O(n), and of solving for Mq — RHS using Cholesky factorisation and backsubstitution 

is 0(n3) (see Table 2.1). 

Algorithm x + 
Walker [1982] 
Angeles [1988],[1989] 
Brandl [1986] 
Featherstone [1983] (no force) 
Bae [1988a] (no inversion) 

nJ . 27n^ , 577n AQ 
6 ' 2 3 * V 

7f + 21n2 + 5 3 | n 91 
250n - 222 
199n - 198 
3n2 + 186n - 36 

+ 8 n 2 + 1 0 l l n 64 

n 3 + 16n2 + 75n - 90 
220n - 198 
174n - 173 
sni + i i i n _ 7 8 

Table 2.1: Computational Complexity for single chain systems on one cpu 
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parallel implementations 

There have been three parallel implementations of Walker and Orin's forward dynamics al­

gorithm. Lee and Chang [Lee 88] reorganised Walker and Orin's algorithm for an n cpu, 

single-instruction multiple-data (SIMD) multiprocessor by dividing the computation into three 

parallelisable tasks - formation of the inertia matrix, formation of the force vector, and solution 

of the matrix equation. The first two tasks used n cpus, while the matrix solver may use an 

n("2
+1) mesh systolic algorithm or an n cpu set-ordering technique. 

The computation of the force vector is carried out using n cpus connected in a generalised cube 

network [Lee 88]. The 3 x 3 rotation matrices A° which refer a body coordinate system (bcs) 

variable to the inertial frame are calculated by multiplying a cascaded sequence [Ai . . .Aj~ 2 Aj - 1 ] . 

Using the generalised cube network, the A)-1 i = l , . . .n can be calculated all at once on all n 

cpus, followed by 0( [log2 n]) time computation of A°, through the use of the recursive doubling 

algorithm (RDA). The RDA algorithm pairs the computations of the rotation matrices in each 

of log 27i levels e.g. J4JJ4 2, Af.,43,, etc in level 1; followed by A 2 J 4 2 and A\A\ in level 2 etc . 

The inertia J,, axis z,-, and vectors d{ and fc,-, all in body coordinates, are then referred to the 

inertial frame using the A®. This is done in constant time using all n cpus. Recursive kinematic 

equations 1.5, 1.6 and 2.1, and hinge force and moment equations 2.2 can be computed in 

O(|"log2n]) time using the RDA algorithm once they have been referred to the inertial frame. 

The force vector elements, projections of the hinge moments n, onto the rotation axes z;, 

are calculated in constant 0(1) time using all n cpus. The overall complexity for the force 

vector is thus O([log2 n]). The inertia matrix is obtained by first calculating Mj, tj, and Jj in 

O([log2 n~|) computations using the same computer architecture and RDA algorithm as for the 

force vector calculation. The fi and n, (i < j) (equation 2.11), for all j, are obtained in 0(n) 

time, and Mij (i < j), the axis projections of n, for a specific j, are obtained in 0(1) constant 

time. The matrix is solved in 0(n 2) time with n cpus using a set-ordering technique, and in 

O(n) time when an "(n
2

+1) 2d grid and a parallel systolic Cholesky factorisation matrix solving 

algorithm is used. The total complexity for all three dynamics tasks is thus 0(n 2 + n+ [log2 n]) 

for n cpus and 0(n+ [log2 n]) for n+ n("2
+1) cpus (exact complexity polynomials for the parallel 

algorithms given in this chapter are presented in Chapter 4). 

Amin-Javaheri and Orin [Amin-Javaheri 88] developed a similar algorithm to Lee's, but for the 
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inertia matrix alone. As in Lee's work, the algorithm was developed for both n and cpus, 

and could be computed in 0(n + riog2 n~|) time for an n cpu hypercube architecture, 0(n) time 

for a pipelined n cpu architecture, and 0(n) time for mesh architecture. Different 

parallel interpretations of Walker's algorithm were developed in which the calculation of Mij 

was calculated by row or diagonal rather than by column. The most efficient parallel version 

was the column algorithm, implemented on both the pipeline (0(n) time) and the hypercube 

(0(n + flog2nl) time). The hypercube column version was equivalent to Lee and Chang's. 

They also developed a VLSI processor on which the algorithms could be implemented. 

Fijany and Bejczy [Fijany 89] developed an algorithm based on the Composite Rigid Body 

Spatial Inertia algorithm. This algorithm is very similar to Walker's, except that the C j , r!- and 

rj equations in Walker's algorithm are replaced by equations for computing the first and second 

moments of the mass, from which n, and f are easily derived. All equations are referred to the 

inertial frame. Computation of Mj, A°, and first and second moment of mass is accomplished 

in O([log2n~|) time with n cpus. The / , , the n,, the diagonal inertia matrix elements Mn, 

and the off-diagonal elements Mij are calculated in constant time using "(n
2

+1) cpus. Several 

architectures and algorithms were presented by Fijany, but the most efficient used cpus 

in a 2 dimensional mesh to calculate the inertia matrix in O([log2 n]) time. 

2.2.2 Recursive O(n) techniques 

formulations 

The second approach calculates the acceleration vector in 0(n) time by generating the ex­

plicit form of the dynamic equations ie. 6i is obtained without matrix inversion. Vereschagin 

[Vereschagin 74] devised the first 0(n) algorithm by observing that hinge constraint equations 

could be generated recursively and combined with other equations to generate the accelera­

tions. The formulation applied to single chain open systems with prismatic and revolute joints. 

Armstrong [Armstrong 79] independently developed a similar but less efficient formulation for 

systems with spherical joints, which was additionally capable of modeling flexible links. 

Featherstone [Featherstone 83] independently redeveloped Vereschagin's method using different 

initial principles, and introduced the concepts of articulated-body inertias jf and bias forces 
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Pi. Jt and Pi are the inertia and force which relate the applied spatial force /, = [/, n,] to the 

inertially measured absolute Cartesian acceleration a, = [x, tbi] 

fi = Jfhi + Pi (2.13) 

Initially, kinematic equations similar to 1.5 and 1.6 are calculated in a forward recursion to 

obtain values for x, and Si (st- is a 6 x 1 vector describing the ith hinge axis vector Zi and the 

vector denned by (x; + k i ) x Zi, referred to the inertia! frame). Then, articulated-body inertias 

were defined in a backward recursion by Featherstone as 

«/, — Ji + Ji+i 

where j£ — Jn 

ft s-^sT ft 

*t+i *t'+l 
i = n, ...1 (2.14) 

and 

Ji = 
m,x, mil 

Ji — rrii(xi)2 —m,xt-
(2.15) 

Here J, is denned as the spatial inertia matrix relative to the inertial frame (and is not related 

to the composite body inertia), and x, is the skew symmetric matrix of vector x; measured 

from the inertial frame to the centre of gravity of body i. All quantities are referred to the 

inertial frame. The third term in 2.14 locally projects the articulated-body inertia Jt^x about 

the (i + l)th axis s , + i . The bias force P, is defined as 

Pi = + 

where Pn = 0 

Jj+lSj+ljQi+l ~ sJ+1Pj+i) 
n, ...1 (2.16) 

Qi+i is the (i + l)th scalar force vector element, consisting of the actuator torque or force, plus 

the Coriolis, centrifugal, and gravity effects, a, and relative joint accelerations $i can be found 

in a forward recursion 

di 

Oi 

= a,_! + SiOi 

= 0 
Qi - sjjtqj.r - sJP, 

s r ft 5 - . 1 

i = 1, ...n 

(2.17) 

(2.18) 
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The complexity is shown in Table 2.1. Since Featherstone's algorithm appeared in the robotics 

literature, multibody dynamics researchers have applied these concepts to develop their own 

formulations from other basic principles. Bae and Haug [Bae 87a] used variational-vector cal­

culus as the basis for transforming Cartesian equations to relative coordinates and for defining 

the equations of motion. Brandl, Johanni and Otter [Brandl 86], using Newton-Euler princi­

ples, introduced modes of motion and modes of constraint to describe complex hinges. They 

also integrated the calculation of the force vector into their algorithm, whereas Featherstone 

assumed that the force vector Q would be calculated by an inverse dynamics algorithm such 

as Luh's. Rodriguez [Rodriguez 88] derived a linear operator technique, based on recursive es­

timation and Kalman filtering theory, to develop an 0(n) algorithm similar to Featherstone's. 

Rodriguez, like Featherstone, assumed the calculation of the force vector would be done by 

an inverse dynamics algorithm. Brandl's algorithm is the most efficient of all formulations for 

chains with greater than 6 degrees of freedom, regardless of approach (0(n) or otherwise) when 

simulated on a single cpu [Brandl 86] (Table 2.1), and is thus the most efficient algorithm for 

simulating redundant (n > 6) robots with one cpu. 

parallel implementations 

Bae and Haug [Bae 87a] and Rodriguez [Rodriguez 88] have shown that their 0(n) algorithms 

can be parallelised, but only one cpu can be used for each branch in the topology of the system. 

Fijany [Fijany 89] and Lee [Lee 88] have stated that within a single chain, parallelism cannot 

be achieved at the equation level using 0(n) algorithms. Since most robots are single chains, 

parallel versions of 0(n) algorithms are not useful unless more complicated branched robots 

need to be modelled (there is of course an abundance of branched systems outside the robotics 

field). 

2.2.3 Orthogonal complement algorithms 

formulations 

The third approach, which is the most relevant to this thesis, is the orthogonal complement 

method. Orthogonal complement algorithms use a global Jacobian transformation matrix which 
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projects the [w x] derivative state space to a reduced (smaller) independent set of differentiated 

state variables e.g. relative acceleration angles 9. The transformation matrix contains vectors 

which are tangential to the constraint manifold of the system i.e. the vectors are orthogonal to 

the coefficients orienting the hinge constraint forces 7 and A. As a result, the transformation 

matrix eliminates the hinge forces from the primitive equations. 

One example of this transformation matrix approach is the Newton Euler State Space formula­

tion developed by Hemami [Hemami 82]. This 0(n3) algorithm uses a two step transformation 

to eliminate the constraint forces (the translational hinge forces, and the rotational hinge con­

straint torques which are orthogonal to the axes of rotation) from the Newtonian equations of 

motion. The first step removes the translational acceleration coordinate x from the principal 

equations (1.13) and (1.14) by using equation (1.6) (repeated here in (2.19)), 

Xi = x,_i + Wi_i x / t-_i + u;,-_i x u>,-_i x — ibi x ki — Wi x Wi x ki (2.19) 

to derive a matrix which projects the system from x to the inertially measured angular ac­

celeration state w and simultaneously eliminates the translational hinge forces 7 . Following 

this, a second step projects the system from w to either inertially measured [Hemami 82] or 

relatively measured [Buchner 86] Euler angle accelerations 0. This step utilises the angular 

velocity Jacobian from equation (1.4), which is a symbolic version of equation (1.5) (repeated 

here in (2.20)): 

wi = Wi-i + Wi x Z{9i + ZiOi (2.20) 

This reduced derivative state space 0 contains only the rotational degrees of freedom (assuming 

only rotational joints in the system), which are orthogonal to the rotational hinge constraint 

forces A of equation (1.14). As a result of this orthogonality, the A are eliminated by the 

projection and the equations appear in a final form similar to that derived by the Lagrangian 

approach. Note that at this point, translational quantities in (1.13) are referred to and measured 

in inertial (base) coordinates, while rotational quantities in (1.14) are measured and referred 

to relative coordinates. 

Another example of an orthogonal transformation was formulated by Bae, Hwang and Haug 

[Bae 88a] [Hwang 88], who developed a recursive orthogonal complement formulation for closed 

chain systems based on variational vector calculus. Instead of denning a matrix which globally 
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(i.e. system-wide) projects the inertially measured and referred Cartesian derivative state [x w] 

to relative coordinates, they defined a local transformation which acts upon every element in a 

system 'accumulated inertia' matrix. A 6x6 link 'inertia' K{ was denned as an accumulation 

(i to n) of link masses and rotational link inertias measured with respect to the inertial frame. 

K{ = Mi + Ki+1 

Kn = Mn 

mil 

i = n, ...1 

where M, = — 771,2; i 

m,x,- J , - m , ( x , ) 2 

(2.21) 

(2.22) 

/ is a 3x3 unit matrix, and M, is a rearranged version of Featherstone's spatial inertia matrix 

J,. Ki can only be accumulated if x,- and J, are referred to the inertial frame. For a simple open 

chain in which all joints are rotational and each has a single degree of freedom, each element 

of the system inertia matrix Mij is BjKiBj, where 

Bi = (2.23) 
(xi + ki)x Zi 

Zi 

The vector (x, + ki) describes the position of the ith hinge measured relative to and referred 

to the inertial frame. Bi locally projects the accumulated 'inertia' about the rotational axes of 

body i . The computational complexity of forming the inertia matrix plus the force vector is 

given in Table 2.1. The complexity of the matrix solver is excluded as it was not given. Note 

that all quantities must be referred to the inertial frame. 

Kim and Vanderploeg [Kim 86a] developed a formulation for closed chains using the Jacobian 

velocity transformation to relative joint angles proposed by Jerkovsky [Jerkovsky 78]. Although 

the Lagrangian kinetic energy expression is used as the principle for deriving the inertia matrix, 

rather than the Newtonian and Eulerian principles, the final transformation is the same as 

Hemami's. Kim and Vanderploeg also modeled closed chains using Lagrange multipliers and 

constraint Jacobians. Ibrahim [Ibrahim 88] developed a similar formulation to Kim's using 

the kinetic energy expression and a projection matrix. This technique was developed within a 

formulation which included flexible linkages and variable mass deployment. 

Angeles and Ma [Angeles 88] presented a formulation for a serial chain manipulator using Kane's 

approach to produce a natural orthogonal complement to the kinematic constraint equations. 
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This natural orthogonal complement is combined with the Lagrangian kinetic energy expression 

to derive the formulation. The natural orthogonal complement matrix is the same as both 

Hemami's and Kim's final transformations, although an interesting feature of the algorithm is 

the referral of each body's variables to its own coordinates. This feature is exploited in the 

algorithm developed here in Chapter 3 to derive a similar algorithm to Angeles', but based on 

Hemami's method. 

Lilly and Orin have recently developed two algorithms which are related to the orthogonal 

complement concept [Lilly 91]. Lilly/Orin I is similar to those algorithms described above, 

using a recursive definition of the velocity Jacobian for chains of successively longer length 

to identify the system inertia matrix. The algorithm is 0(n3) complexity. Lilly/Orin III is 

similar to Bae, Hwang and Haug's algorithm [Bae 88a] [Hwang 88]. The variables, however, 

are referred to body coordinates. This algorithm is 0(n2) complexity. 

parallel implementations 

Hwang, Bae and Haug [Hwang 88] parallelised their algorithm for an n processor shared bus 

computer architecture. Generally speaking, Hwang's paper does not lend itself to a computa­

tional complexity analysis, as closed chain constraint equations are included (the complexity of 

single chain branches becomes only a small part of the problem). Our estimates of Hwang's al­

gorithm for a single chain (see Chapter 4) indicate that for the inertia matrix, 0((log2 n]) time 

is taken for the computation of the rotational matrices A° (using the RDA algorithm proposed 

by Lee), constant time is taken to refer the link inertias Ji to the inertial frame, O(|fog2n]) 

for calculating x, (referred to the inertial frame) and accumulating Ki, and 0(n) time is taken 

to locally project each accumulated 'inertia' Ki to relative coordinates (i.e. BjKiBj). The 

overall complexity for forming the inertia matrix is thus 0(n + [log2 n~|) using n cpus arranged 

in a hypercube. The architecture for the matrix solver, which is used in the following phase, is 

best suited to a nearest-neighbour 2d systolic mesh. As a result, both the hypercube and mesh 

architectures are theoretically required for implementing the simulator (it must be noted that 

Hwang chose to implement the algorithm on a shared bus, and consequently our estimate is for 

an ideal architecture). Lilly/Orin III has not been parallelised at this time. 

The forward dynamics algorithms proposed by Hemami, Kim and Vanderploeg, Ibrahim, and 
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Angeles are all relatively similar. They have not yet been implemented on a parallel architecture, 

although Hemami and Zheng [Zheng 86] have developed an architecture for inverse dynamics 

using inertially measured coordinates. One of these algorithms would be a logical reference 

point for the development of an alternative parallel formulation. 

2.2.4 The Newton Euler State Space orthogonal complement algorithm 

In this thesis the Newton Euler State Space formulation has been chosen as a possible algorithm 

for parallelisation. In the remainder of this chapter the equations of motion described by 

Hemami are developed using relative rather than inertially measured coordinates. In Chapter 

3 these equations will be made more efficient by referring each body's equations to its own 

coordinate system. 

Consider the n link open chain linkage depicted in Figure 1.1. Each body is numbered B\ 

through Bn, with a home body labelled 1, inertial frame labelled 0 (coincident with joint 1), 

and all other bodies labelled with increasing integer value as the distance along the direct path 

between an arbitrary body and home increases. The hinge on body i nearest to the home body 

and along the direct path is labelled joint i , about which the coordinate rotates. Each of 

the n joints has one degree of rotational freedom and is driven by an ideal rotational torque 

actuator. 

A body coordinate system (bcs) is attached to the centre of gravity of each body. In Hemami's 

formulation, the bcs was aligned with the principal axes of the body. As a result, the body's 

inertia matrix J , referred to it's own coordinates, is d\ag[Jxx, Jyy, Jzz ]. This alignment is 

restrictive since the representation of axes of rotation not aligned with the principal axes is 

difficult. In this thesis, it has been found that a Denavit-Hartenberg-type axis orientation 

is more suitable, especially for single degree of freedom (dof) joints. In such a coordinate 

description (Fig. 2.1) the axis of rotation at joint i is assigned to be the Z{ axis of 6cs, and 

the x,- axis is the common perpendicular between the z,_i and z, axes, pointing in direction 

from z,_i to z,. Although the coordinate origin is drawn at the hinge point in Fig. 2.1, it is 

actually positioned at the centre of gravity of each body in this algorithm since most of the 

body quantities are defined relative to the centre of gravity of each body. It is drawn at the 

hinge since it is easy to graphically identify the direction of the axis of motion zi and the x, 
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axis when the coordinate frame is shown at the hinge. 

28 

Figure 2.1: Body coordinate frames 

For each body, the Newtonian forces and torques acting on the free body are shown as in Fig. 

1.2. 7° 0 represents a vector of translational hinge constraint forces measured in and referred 

to inertial coordinates; AJ, represents rotational constraint torques at joint t, measured in and 

referred to bcsi coordinates, which act in the axes of motion (x, and yi) other than the actual 
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rotational degree of freedom (z,); r/ t represents ideal actuator torques at joint t defined in and 

referred to 6cs,, rotating about axis Z{. Newtonian equations of motion for body i are: 

/«',:,« _ fi i L i ' . j i J _ it: At 0 , ni \t _\i ni+1 \i+l 
J t w t , 0 — Jt,0 T S.t^OVi.O 'i,t+l AOli+l , 0 + • f t i , i / , i , i /1«+l-at'+l,t'+l/Vr-l,«'+l 

+rli-AUiritl+i (2-24) 

m , z ° 0 = mig + 7°o - 7°+i,o (2.25) 

Equation 2.24 describes the torques applied to the ith body in 6cs, coordinates, including 

rotational constraint torques, actuator torques, and moments due to the translational hinge 

constraint forces. (It should be noted that vectors appear in lower case, and matrices appear 

in upper case, or have a ~ over the variable to indicate that a skew-symmetric matrix has been 

created from a vector. The superscript on each variable indicates the bcs to which the variable 

has been referred. The subscripts may have a number of meanings depending on the type of 

variable). 

Parameters not already denned are: 

1. w\0 is the angular acceleration of body i (first subscript) measured with respect to the 

inertial frame 0 (second subscript) and referred to frame i (superscript). 

2. / , ?
0 is the gyroscopic torque — (w\<0 x JiW\0) [Hemami 82]. 

3. R\ t describes those axes (measured with respect to, and referred to, ith coordinates) in 

which the ith body cannot rotate (with one dof (z axis) per joint, R\;, is a 3x2 matrix of 

two unit vectors in the x and y axes). 

4. is the rotation matrix referring a vector in i — 1 to ith coordinates. 

5. is the skew symmetric matrix of vector A;),, measured from the centre of gravity of 

body i to the ith hinge (inboard (see Fig. 1.2)) and referred to the ith coordinate frame. 

6. is the skew symmetric matrix of vector /J^+i, measured from the centre of gravity 

of body i (first subscript) to the outboard hinge i + 1 on body i (second subscript) and 

referred to the ith coordinate frame. 

7. J- is the inertia matrix of a body measured from its centre of gravity (first subscript) and 

referred to its own coordinates (superscript). Because it is not aligned with the principal 

axes, J- is not necessarily diagonal. 
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Equation (2.25) describes the translational forces affecting the centre of gravity (cog) of body 

i in inertially measured and referred coordinates. m,<7 is the force due to gravity, where g is 

[0 0— 9.81]r. Xi is the length vector from the inertial coordinate origin to the cog of body i. 

Given the above equations for n bodies, a matrix equation can be developed to represent the 

entire system: 

Jw = f + Hif + Nt\ + ET 

Mx = g + # 2 7 

J 0 

0 M 

w / Ni 
A + 

E / 
+ 7 + A + 

'x 9 H2 0 0 
(2.26) 

where H\ and H2 are coefficient matrices for the linear constraint forces; N\ is the coefficient 

for the rotational constraint torques; and E relates the actuator torques to the appropriate 

coordinate frames. / and g are vectors describing the system forces generated by the gyroscopic 

torques and gravity respectively, and J and M are block diagonal matrices J = [J\,J2,—J£] 

and M = [mil, m2I, ...TTINI]. An example of these coefficient matrices for a five body chain is 

presented in Appendix A. 

The internal constraint forces 7 and A may be eliminated by multiplying (2.26) by matrices 

which are orthogonal complements of [HT Hj]7 and Ni, respectively. First, £ is redefined as 

a function of w using translational kinematic hinge constraint equations. An equation for the 

ith hinge constraint is illustrated in Fig. 2.2. The constraint and its second derivative, referred 

to inertial coordinates, are: 

^fi + A ^ l l - x l l f i - A l 1 l t l . = 0 (2.27) 

%fl - C i , o + A?(Mfl)%i - A?_1(tB|:1
1

i0)2/::1
1

fI- + 4 % < o - ^zhMzU = o (2.28) 

Equation (2.27) describes the paths through bodies i and i — 1 for getting to the ith joint and 

(2.28) is (2.27) twice differentiated (w is the skew symmetric matrix derived from w). The 

differentiated hinge constraint equation for the whole system is: 

U 'x = Qw + Qw 

x = U-^Qw+U-^Qw 

(2.29) 

(2.30) 
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Figure 2.2: Vectors describing the ith hinge constraint 

Appendix A describes the internal structure of the matrices U,Q,Qw, U 1Q and U 1. 

x can be eliminated from (2.26) by substituting (2.30), resulting in: 

J 0 

0 M 

I / Ni E 0 
w = 

/ 
+ 7 + A + T — 

U~lQ 9 H2 0 0 MU^Qw 
(2.31) 
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Hemami describes [IT {U~lQ)TY a s the orthogonal complement to [HT Hj]T, with the rows 

of [IT {U~^Q)T'^r spanning the tangent space of the kinematic constraint surface. The columns 

of [B~i Hl]T, which are normal to this constraint surface, are orthogonal to the tangent space. 

Premultiplying (2.31) by [IT (U~lQ)T) thus eliminates 7 , since it can be shown that H2 = UT 

and H\ = —QT, and so the result is zero. 

A second transformation can be used to eliminate A and project the system to relative joint 

angle acceleration space 0. Kinematic equation 1.5 is used to project w\0 to relative joint angle 

velocities. Equation 1.5 can be written as 

<fi = M-iwt\,o + <,i-i (2-32) 

where u>| is the angular velocity relative to the previous body, but referred to its own 

coordinates. w\ t _ x is related through kinematic differential equations to the joint angle rates 

0{ using the rotational sequence Body-3 xyz [Hughes 86]: 

Wix cos Oiy cos 9iz sin 0iz 0 Oix 

Wiy = — cos 9iy sin 0iz cos 0 Oiy 

sin Oiy 0 1 Oiz 

When limited to a single dof in the z axis, 0,x and 0{y are zero, as 0ix = a, (the twist angle 

constant) and 0iy = 0. Thus if 0i = the above equation simplifies to 

as in equation 1.5. Note that z), is the z axis of the ith body referred to itself. Thus for the 

whole system 

w = CO 

and ii; = CO + CO (2.35) 

where C is described in Appendix A. 0 is the system vector of <?,2 joint rates. Hemami 

[Hemami 82] and Zheng [Zheng 84] projected from w to the state space of inertially measured 

joint angle rates, while Buchner projected to the relatively measured joint rates 0 used here. 

Hemami [Hemami 82] has shown that CTNi — 0, the rows of of CT being orthogonal to the 
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columns of N\. Substituting (2.35) into (2.31) to get a new transform, we get: 

with the final equations < 

CT {U-^QCf 

0 

MU^Qw 

The final form, (2.37), is the same as that developed using the Lagrangian approach. On the 

RHS of (2.37), (U~lQC)T g are the forces of gravity, CTEr are the actuator torques, and the 

remaining terms constitute the centrifugal and Coriolis forces. The LHS coefficient of 0 is the 

inertia matrix. 

The constraint elimination transformation of (2.36) is also Kim's velocity transformation matrix 

[Kim 86a] and Angeles' matrix of twists. In Hemami's method, the transformation is used 

principally to eliminate constraint forces, and secondly to project to relative coordinates, while 

for Kim and Angeles the matrix is used with the kinetic energy expression to project to relative 

coordinates, since the hinge constraint forces do not naturally appear. 

Although equation (2.37) has the same final form as the equations developed using Lagrangian 

techniques, it is important to realise that it is not the principles of physics that determine 

the efficiency of the computation. The procedure and organisation for the formation of the 

transformation matrices play a more significant role. 

2.2.5 D i s c u s s i o n 

In this chapter a number of formulations have been discussed. In general, they form three major 

schools of thought: the 0(n2) composite rigid body method, which is popular in robotics; 0(n) 

local axis projection algorithms; and 0(n2) or 0(n3) orthogonal complement global projection 

algorithms. 

I C 
ce = 

U-lQC 
(2.36) 

f motion: 

J 0 C r -| 

U~lQC 
9 = CT (U-'QCf 

0 M U~lQC 
CT (U-'QCf 

f 

9 

J 
C9 + 

E 

MU-lQ 0 
(2.37) 



Chapter 2. Existing Formulations of the Equations of Motion 34 

Composite rigid body algorithms have been parallelised by several researchers. Parallel 0(ra + 

riog2n]) and O([log2n]) algorithms have been developed for n and 2l2±ll cpu architectures, 

respectively. One drawback of these parallel algorithms is that the architecture developed for 

calculating the matrices is not ideal for solving the matrix equation that follows. 

Recursive 0(n) techniques were originally developed by roboticists, but have since been adopted 

by others. Forces and moments are locally projected onto hinge axes in a recursive manner. 

0(n) algorithms are faster on a single cpu for systems with more than six degrees of freedom, 

but as noted by Fijany, a single chain cannot be parallelised at the equation level using this 

approach (parallel matrix multipliers can be applied, however). 

Orthogonal complement algorithms use a global Jacobian transformation to project from Carte­

sian to other coordinates such as relative joint angles, and eliminate internal constraint forces. 

Bae, Hwang and Haug's algorithm [Bae 88a] is a variation in which the terms are grouped in 

a different manner so that the projection is locally performed on an 'accumulated inertia' ma­

trix Ki. With the exception of Hwang, Bae and Haug's work [Hwang 88] which used a shared 

bus architecture, the orthogonal complement algorithms developed by Hemami, Kim, Ibrahim, 

Angeles and Lilly have not been parallelised. 

In the next chapter, an efficient version of the Newton Euler State Space algorithm is developed, 

and in Chapter 4, a parallel version of this algorithm for a 2 dimensional mesh architecture is 

presented. 



Chapter 3 

Efficient Computation using Body Coordinates 

The thesis has thus far provided an overview of the fundamentals and some current research in 

the area of multibody dynamics. This chapter focuses on the efficiency and complexity of the 

Newton Euler State Space formulation in the context of a single cpu simulation. 

In this chapter each individual equation in (2.37) is referred to its body coordinates, rather 

than the inertial frame used by Kim and Vanderploeg [Kim 86a], or the mixed frames pro­

posed by Hemami (in Hemami's approach i , equations were referred to the inertial frame, and 

ibi equations were referred to body coordinates). It is shown that this leads to a computa­

tionally efficient recursive definition of the matrix elements in which the final transformation 

matrix is the same as the natural orthogonal complement matrix presented by Angeles and Ma 

[Angeles 88]. 

In addition, a connectivity matrix is used to extend the formulation to include branched systems, 

and a novel algorithm to calculate the force vector is presented. The computational complexity 

of the overall formulation, which includes the cost of the inertia matrix, the force vector, and 

the matrix solver, is used as a metric to compare other formulations. 

Finally, two linkages are simulated which demonstrate the correctness of the formulation. A 

PUMA 600 is modeled using joint angle, velocity, and acceleration profiles suggested by Angeles 

and Ma [Angeles 88]. A six degree of freedom model of the human torso is simulated using the 

same profiles to demonstrate the branched algorithm. 

35 
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3.1 Referral of the Equations to Body Coordinates 

3.1.1 Single Chain Algorithm 

In equation (2.30), i , measured with respect to the inertial frame, is also referred to the inertial 

coordinate system. If each element in the x system vector is instead referred to its own bcs, 

(2.30) can be modified to 

hcs = (U^QhcW + (U-lQw)hca (3.1) 

An example of (U~1Q)bcs for a five link single chain is contained in Appendix A. By referring 

(2.30) to body coordinates, the computation of the transformation matrix in equation (2.36), 

now modified to [CT ((U-1 Q)bcsC)T]T', becomes more efficient due to its recursive nature. As 

an example, consider the computation of matrix elements (2,1) and (3,1) in (U~1Q)bcsC: 

[(^-1g)6«c]2ll = 

and d) 

A\z 

A\A\z 

Ajv_j • • • A\z 

— A j d2 \ Z ~f- &2 2^1^ 

= (A^d^A^ 4- k^^A^z 

= ( ^ i ^ i ~l~ ̂2,2) x A\z 

= pl,i x A\z 

= (A?(pia - l\,2) + kl2) x A\z 

where p\ 1 — kl 1 

't.t+i 

(3.2) 

(3.3) 

(3.4) 

where d]+11 is the vector measured across body i from hinge i + 1 to hinge i. p2 a Is the vector 

from the centre of gravity of body 2 to the lower hinge of body 1, in body 2 coordinates. 
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Similarly, element (3,1) is computed thus: 

[{U-lQ)hcsC]^ = -^2^1^2,1 -^2^3,2 ^3,3 0 ' 

Z 

A\z 

A^-.-Alz 

A\A\d\%lz + A%<P3jA]z + kl>zA\A\z 

(•^•2^1^2,1-^2^3 + y4 2 d| 2 A3 + fc^J-A^iZ 

(A3
2A\d\x + A\dla + fcfi3) x A\A\z 

P%,\ x A\A\z 

(Alipli-iy + kl^xAlAlz 

(3.5) 

(3.6) 

In this case is the vector from the centre of gravity of body 3 to the lower hinge of body 1 

(joint 1), in &CS3, while A\A\z can be denned as c\x. 

The (i, j)th term of [U^QbcaC] is therefore 

[(U^Q^C]^ 

or as a system, [(U~1Q)bcaC] 

where pjj 

Ph 

and c\j 

= [pxC] 

- kj- •• A • 2; 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where [p x C] is a symbolic representation. />} • is equivalent in magnitude to the vector 

used by Angeles [Angeles 88] but with a reversed direction, and c\ • is equivalent to Angeles' 

e,j. In this thesis, the order of the cross product is reversed to compensate for the change of 

direction in p1-. The 3xiV matrices for cj— and p\j x cj—, where i = n; j = l,...n; are the 

components of the standard end effector Jacobian. 

In Angeles' method, J and M are factorised to J1J and MTM where M,- = y/mll^xz- In this 

thesis, J and M remain unfactorised. 
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Now that we have efficiently defined (U QbcsC) to be (p X C), equation 2.37 is modified to: 

[CT {P x Cf) 
JC 

M(P x C) 
e = CT (pxCf 

f 
+ 

9bcs 
i- 1 

J E 
C6 + 

M(p x C) 0 

or MO = [HTH]0 = b (3.11) 

In equation (3.11), the ith component of g^ is g\0 — miA'0g, the force due to gravity of each 

body when it is referred to body coordinates. The transformation matrix H = [CT (px C)T] on 

the LHS of (3.11) was developed independently of Angeles' work. Another interesting feature 

of the H matrix is its recursive nature. The matrix can be considered as a series of N 3 x N 

Jacobian matrices, the ith one representing a manipulator with i links. This characteristic was 

also noted by [Lilly 91]. 

3.1.2 Branched systems algorithm 

Consider the branched system shown in Fig. 3.1. The two branches consist of branchl = {1,2,3} 

and branch2 ={1,4,5}. Each new branch starts from the home body (1) and is completely 

labelled out to the tip before a new branch is started. If a branch already has some bodies 

previously labelled, the next unlabelled body is tagged with the lowest unused integer. 

Consider body 1. Joint jl connects body 1 to ground, joint j2 connects body 2 to body 1, and 

joint j4 connects body 4 to body 1. Define l\2 and l\ 4 as the vectors from the cog of body 

1 to the hinge connecting bodies 2 and 4 to 1, referred to bcs\. The / vectors point to hinges 

that are further from the home body. k\ a is the vector from the cog of body 1 to the joint 

connecting body 1 to ground (joint 1), or in the general case the body which is one closer to 

home. Then, define d\x = kxl — l]2 as the vector from joint 2 to joint 1, across body 1, in 

bcs\. In general the vector across body i from joint j to joint i can be defined as = fcjt- — l\j 

where i = prev(j), the body that is one closer than j on the direct path to the home body. 

The orientation of each body's coordinate system (not shown in Fig. 3.1) remains the same as 

for the simple chain (e.g. the X4 axis is parallel to the common perpendicular between the Z\ 
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Figure 3.1: A branched tree of five bodies 

and 24 axes). 

From Fig. 3.1, equations of motion similar to (2.26) may be defined (see Appendix B ) . The 

structure of the matrices differ from the single chain configuration as extra elements arise for 

bodies which have more than one outward body attached (e.g. body 1). 

The elimination of constraint forces proceeds as before, with the statement of kinematic trans­

lational hinge constraint equations, referred to the inertial frame: 

*i ,o + 4 * * 1 , 1 = ° 

T° 4. A°h2 - r° - A0!1 - 0 
X2,Q 1 Ji2K2,2 x l , 0 — v 

x3,0 + -^3*3,3 ~ ^2,0 — -̂ 2^2,3 = ° 

r° 4- A°h4 r ° - A0!1 - f) 
x4,0 + A4K4,4 ~ z l , 0 A l l l , 4 — u 
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T ° _ j_ A°h5 - r ° - A°l4 - 0 (3.12) 

Referring each equation to body coordinates and then differentiating twice yields the branched 

versions of matrices U,U~l,Q and Qw (denned in Appendix B). As in the single chain case, 

the translational constraint forces are eliminated due to the orthogonality between [Hx Hjbcaf 

and [IT ((U~1Q)bcsC)T]T, and the rotational constraints are eliminated by the orthogonality 

between C and N\ [Hemami 82]. 

To automate the derivation of the kinematic constraints and the equations of motion, it is 

necessary to obtain U and f - 1 . This is because the C, (U^Q)^ and (p x C) matrices 

(shown below) have structures identical to Z 7 - 1 . U-1 is a trivially generated connectivity 

matrix describing the bodies that appear along the path between a given body and the home 

body. For example, row 5 in U-1 (in Appendix B) has an I in positions 1, 4, and 5, indicating 

that the path from home to body 5 includes bodies 1, 4 and 5. It is also useful to identify 

adjacent bodies. Considering body 4, the body previous to it in the path is found by searching 

for a -I in the fourth row of U. This occurs in column 1. Once U'1 is generated, Hi and U 

are easily constructed. U and U~x can be incorporated into simple algorithms for determining 

other matrices e.g. the computation of Qw and (p x C). 

As an example of the underlying structure of the matrices, the (U^Q)^ (3N x 3N) and C (3N 

x N), when computed from U~l, Q, and the kinematics equations (1.5) and (1.6) (Appendix 

B), are: 

•^1^2,1 *2,2 ° 

-^2^1^2,1 -^2^3,2 ^3,3 

A\d\x 0 0 

A\A\d\x 0 0 

0 

0 

0 

K4,4 

/ 14"5,4 

0 

0 

0 

0 

K5,5 

,and C = 

z 0 0 0 0 

A\z z 0 0 0 

A\A\z A\z z 0 0 

A\z 0 0 z 0 

A\A\z 0 0 A\z z 
(3.13) 

Post multiplying (U~1Q)bcs by C results in a 3N x N matrix similar to the (p x C) matrix 
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generated in equation 3.8 but with non-zero elements in the same positions as those in U : 

[U^QbcC] = [PxC] = 

Pn x c n 0 0 0 

P\\ X c21 ^22 X c22 ° 0 

P%\ X c31 P32 X c32 ^33 x c33 0 

0 

0 

0 

p\\ x <4i o 

P%\ X C51 0 

0 

0 

P4
44 xc4

44 0 

PS4 X Cg 4 p|5 X c|5 

(3.14) 

Calculating pj • requires knowledge of the path between bodies i and j, which is found in U 

and U-1. 

A recursive algorithm to generate cj—, /?} • and [(U~1)QbcsC]\ j that uses and f/ _ 1 to take 

into account the system topology is: 

for j = 1 to N { 

for t = 1 to N { 

for p = 1 to i 

if ([/,> = -/) K 0 = P; 

ph 

[U-'QbcsC]^ 

} 

} 

c .• = 

z 

K l , l 

U'<3 Ap(i)Cp(i),J 
I < J 

i < j 

(3.15) 

Since U~l and U are trivially generated, arbitrarily branched systems can be modeled in an 

automated manner by utilising this algorithm. 

3.2 Inertia Matrix Calculation and Complexity 

Simulation of the dynamics requires the formation of the terms in (3.11), followed by the linear 

equation solution of MO = 6. In this section the computational complexity of assembling 
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the inertia matrix M for the serial chain algorithm (on one cpu) is estimated. Because the 

complexity of the branched algorithm depends greatly on the system topology, it is not useful 

to estimate the cost of an arbitrarily branched system. 

The inertia matrix in (3.11) is factored into two rectangular matrices, HT = [CT (p x C)T] 

(Nx6N) and 

r JC 

M(p x C) 
H = (3.16) 

which is (6N xN), where (p x C) = U^QbcaC. The algorithm for calculating (3.16) is: 

for j = 1 to N { 

for i = j to N { 

ci,i = z-

c 

ph 

[U-'QbcsC]^ = 

• ™ t - l c « - l , j 

M-x(pth - kid + tij 

Pli x <; 

i > 3 

i > j 

Vrx-

mi(p\,j X Clj) 

The computations in (3.17) can be decomposed into the following phases: 

(3.17) 

1. Forming the rotation matrices A]^ which refer a vector in 6c5,_i to 6cs,: 

cos Bi cos a, sin di sin a,- sin 6i 

— sin di cos ai cos 0, sin a, cos 0, 

0 — sin ai cos a, 

(3.18) 

Assuming the n (sin#,, cos#i) values have been calculated, and sin a,- and cos a,- are 

constants, this phase requires An multiplies and 0 adds for an n-body chain. 
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2. Calculating cj- -, which is the zj • axis referred to fees,- coordinates. Consider the system 

C matrix for a five body chain: 

C = 

z 1 0 0 0 0 

A 2 z 1 z 2 0 0 0 

A>2Z2,2 z3,3 0 0 

Alzl,l A A 7 2  
A2Z2,2 

\4 3 
A3Z3,3 z4,4 0 

A 5 z 1 Ah72 
/i2z2,2 A5?3  

A3Z3,3 z 5 

z5,5 

where cj- = sjj = zand cj-,- = AJ.^J.Jj 

(3.19) 

Each cj- • in equation (3.19) is a matrix-vector product requiring 8x and 54-. The C 

matrix thus requires ("~2Kn~1)(gx,5+), This is because the first diagonal consists only 

of constant zjj vectors, while the second diagonal refers constant z\ vectors to 6cs,-+i, 

which is equivalent to just selecting the last column of the A j + 1 matrix. The other 

diagonals require the computation of (3.19). 

3. Calculating pj- -, the displacement vector from the centre of gravity of body i to the jth 

hinge: 

[U-lQ}bcs = P = 

P\,I o 
P2,l P2,2 

0 

0 

^3,1 p\,2 ^3,3 

0 

0 

0 

PA,\ P4,2 Pi,3 P4,4 

0 

0 

0 

0 

P5,l Ph,2 P\,3 P%,4 P5,5 

(3.20) 

The first diagonal values of the p matrix (i = j) are p{- • = k]^, so no computations are 

necessary. The rest of the elements require (n)(^~1)(8x,ll+). 

^ 4. Multiplying every element in the ith row of the C matrix by J\. 

jir\ . l,...i (3.21) 

The first diagonal, i = j, can be calculated off line as the multiplicands and the results 

are constant, and hence the cost will not be counted here. The rest of the matrix requires 

i2H»z!l(9x,6+). 
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5. Calculating the cross product of c\ • and p\j, and then scaling by the mass mj. 

mi(pij x citj) (3.22) 

The first diagonal can be calculated off line. The cost of the rest of this phase is 

(n)(2
1~1)(9x,3+). Note that we have multiplied by J? and m,, instead of J\ and y/m^ 

This is because the force vector algorithm (to be described later) use C and (p x C) rather 

than JC or M(p x C). 

6. The final phase in the formation of the inertia matrix is to multiply CT by JC and 

(p X C)T by M(p X C) according to: 

Mik = £ ( c j „ ) r • (J/4fc) + (4.. x cj i t .f • ( m ^ x cj)fc)) (3.23) 

Since the inertia matrix M. is symmetric, only half of the matrix needs to be com­

puted. The complexity for this phase is then (^ + ^ + § - n)(6x,5+) - " ( n ~ ^ ( l x , 1+). 

The —n(6x,5+) appears because terms multiplying two first diagonal elements, being 

constants, can be calculated offline. The —n^"2~1^(lx, 1+) term is present because 

rrij{Kp>- • x Cj j) vectors have zeros as their last elements. 

The total computational complexity for forming the inertia matrix is the sum of the previous 

phases' complexities, and is presented in Table 3.1. The algorithm is slightly more efficient than 

Angeles' because some of the terms are calculated off line. The complexity polynomial given 

by Angeles also has minor errors, and these have been corrected in Table 3.1, which presents 

the complexity for a number of single cpu algorithms. Table 3.2 gives data on the costs for 

calculating the inertia matrix for linkages of various size for various inertia matrix algorithms. 

The algorithm Lilly III, developed by Lilly and Orin [Lilly 91] and similar to [Bae 88a], is the 

most efficient in Table 3.2. In this study however, the proposed algorithm will be parallelised 

because it posesses an architecturally attractive computational structure, compared to Hwang's 

parallel formulation discussed earlier. 
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Algorithm force vector inertia matrix solver 
Angeles X 

+ 
105n - 99 
90n - 95 

n 3 + 39n± _ 33n + g 
5n 3 , 29n 2 46n , r 
"f i" + ~ ~ + 0 

n J . 3nJ , 4n 
6, 2 ' 3 

n 3 i 3n 2 i n 
(j t 2 1" 3 

Trrl + 2 1 n 2 + 539n _ g l 

n 3 + 16n2 + 75n - 90 
Proposed X 

+ 
3n2 + 77n - 44 
3n2 + 62n - 43 

n 3 + 39n± _ 49„ + g 
5n 3 i 29n 2 61n , c 

6 "•" 2 3 ~r ° 

n J , 3n J 2n 
6 f 2 3 

HI 4. „ 2 _ 7n 
6 6 

Zgi + 24n 2 + 2 ^ - 3 6 
n 3 + 3 ^ i + sin _ 3 8 

Walker X 

+ 
137n - 22 
l O l n - 11 

12n2 + 56n - 27 
7n2 + 67n - 53 

n J , S n 2 2n 
6; "•" 2 3 

£ + n 2 - I * 

n J i 27V • 577n 4 Q 

6 ' 2 ' 3 ^ 

«3 + 8n2 + 1 0 ^ l n 64 
Brandl X 

+ 
250n - 222 
220n - 198 

Fijany X 

+ 
9 ^ + 2 3

2
l n 181 

4n2 + 88n - 137 
Lilly I X 

+ 
n 3 + 22n2 - 35n + 12 
n 3 + 15n2 - 26n + 10 

Lilly III X 

+ 
25n y | 49n 37 

8n2 + 40n - 48 
He X 

+ 
91n-97 
86n - 96 

Table 3.1: Complexity of Forward Dynamics for One Cpu 

Algorithm 4 5 6 7 
Proposed 
Walker 
Angeles 
Fijany 
Lilly I 
Lilly III 

286x, 209+ 
389x, 327+ 
318x, 229+ 
353 x, 279+ 
288 x, 210+ 
261x, 240+ 

498x, 370+ 
555 x, 457+ 
538 x, 395+ 
509 x, 403+ 
512 x, 380+ 
398x, 352+ 

779 x, 585+ 
741 x, 601+ 
827X, 615+ 

664 x, 535+ 
810x, 610+ 
560 x, 480+ 

1135x, 851+ 
953 x, 759+ 
1191X, 894+ 
848 x, 675+ 
1188x, 906+ 
747 x, 624+ 

Table 3.2: Computational Complexity for Inertia Matrix Assembly for One Cpu 

3.3 Force Vector Calculation and Complexity 

The RHS of equation (3.11), which includes the actuator forces or torques plus the effects of 

Coriolis, centrifugal, and gravitational forces (/„), appears to be computationally expensive 

when calculated according to equation (3.11). It is commonly calculated more efficiently using 

the 0(n) inverse dynamics algorithm proposed by Luh, Walker and Paul [Luh 80] (Chapter 2). 

An 0(n) algorithm which is more efficient than Luh's, proposed by Angeles and Ma [Angeles 89] 

(Table 3.1), uses Kane's generalised force approach. 

In this section a new algorithm based on Angeles' algorithm is proposed. Although the proposed 
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algorithm is of 0(n2) complexity rather than 0(n), it is slightly more efficient than Angeles' for 

systems with six or less degrees of freedom, as it makes use of the HT = [C (p x C)]T matrix, 

which has previously been calculated during the computation of the inertia matrix. In contrast, 

Angeles' algorithm does not make use of the previous inertia matrix calculations. 

Consider a chain of n bodies. Assuming there are no dissipative forces such as friction, the 

equation of torque is [Angeles 89]: 

/« = t [ ( ^ ) T ^ o + (%T™3no ~ 9)] (3-24) 

and are known as the partial velocities, and are the jth 3xn Jacobian row matrices 

found within the C and (p x C) matrices, respectively. The angular momentum derivative Z j 0 

from (1.12), measured with respect to the inertial frame and referred to the jth frame, is: 

The translational acceleration Xj is the acceleration of the Xj vector measured from the inertial 

frame to the centre of gravity of body j. It may be replaced by pj, which as defined here 

includes the effect of the acceleration due to gravity (i.e. pj = Xj — g). Angeles' recursive 

equation for pj is: 

p£o = Al_1(fiZ\fi+qz\fixlll\j+^^ (3-26) 

An efficient algorithm for calculating p\0 and L\0 is [Angeles 89]: 

<o = M-iwtlo + JA (3-27) 

<o = A^wizlfl + w^xzi^ + z i ^ i (3.28) 

Let Wi = <b;i0 + (tZ>;,0)2. (3.29) 

Then #:0 = Ai^Zlo + Wi-tfcl^-Wikli (3.30) 

Equations (3.27) and (3.28) are simply kinematic equation 1.5 referred to body coordinates. 

Equation (3.29) combined with (3.30) is an efficient method of representing (3.26), while (3.31) 

is (1.12) referred to body coordinates. 
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Angeles substituted the 3xn row matrices in C and (p x C) into (3.24) to get: 

and 

t = l,...n 

t = 1, ...n 

(3.32) 

(3.33) 

where (cj,)T = (cjit)TA« and (pj,- x c j „ ) T m J ^ 0 = (cj„-)r(pj,- x mjpji0)- Angeles showed that 

equation (3.33) is computable in a backward recursion in O(n) time (Table 3.1). 

3.3.1 0(n2) force vector algorithm and complexity 

In this section we define a new algorithm for the force vector which makes use of the [CT (p x 

C)T] matrix. Equation (3.24) may also be written as 

fv = cT (pxcy 
L 

mp 
(3.34) 

where [L mp] is the vector of L{ and m^p,, i — 1, ...n. Thus it can be seen that the momentum 

derivatives are related to (3.11) by 

L f 0 J 
= H \ 

f 
+ — 

mp \ 9bcs M(p x C) 
cej (3.35) 

The complexity of computing equation (3.34) is 0(n2) due to the matrix-vector multiplication, 

and requires the initial computation of L and mp from equations (3.27) to (3.31), followed by 

the matrix computation of (3.34). The cost may be estimated as follows: 

1. Calculating w\0 requires (n- l)(8x,6+) using (3.27). w\0 = z\ x0\ is a scalar assignment 

operation. 

2. Calculating w\Q requires the last term in equation (3.28) to be ignored (the 0,- are set to 

zero to exclude the inertial terms). The second term is a cross product which only requires 

2x since has only one nonzero element. Thus the complexity is (n - l)(10x,7+), 

with w\0 = 0. 
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3. Calculating Wi requires (ra - l)(6x,9+), plus lx for W\. 

4. Calculating pi requires (ra — l)(26x,23+), plus 12x,9+ to calculate 

p|0 = -Alg - Wxk\A (3.36) 

where g = [0 0 — 9.81]T. The first term in (3.36) compensates for gravity by adding an 

additional acceleration to that induced by the angular velocity w°0. 

5. Calculating m,p, requires ra(3x). 

6. Calculating X, in (3.31) requires (ra - l)(24x, 18+) plus 15x,10+ for L\fi. 

7. Calculating the matrix-vector product in equation (3.34). The first diagonal elements in 

C are z = [00 1]T, and so no cost is associated with dot products involving these terms. 

The complexity of (3.34) is 

" Y " ~ 1)-(6x,5+) + ra(3x,3+)+ ra(n~1)(l+) = 3ra2(x,+). (3.37) 

(3.38) 

2 
The first term calculates the dot products 

Li 

Ttlipi 

for those computations not involving the first diagonal. The second term adds the com­

putations for [(p\i x cj-,)][m,p,], and the last term describes the operation in which the 

rotational and translational dot products are added together to form the force vector. 

The complexity for the proposed force vector algorithm is given in Table 3.1. Complexity values 

for multibody systems of various size are given in Table 3.3, which shows that the algorithm 

presented here is more efficient than Angeles and Walker's algorithms for systems of six dof or 

less, but less efficient than He's. For parallel formulations, however, the thesis will demonstrate 

in the next chapter that the algorithm developed here integrates very well with the parallel 

inertia matrix algorithm, making it a good choice for parallel implementation. 

The force vector for a branched system can be calculated if the [CT (pxC)T] matrix is generated 

using equations (3.13) and (3.15), and if the kinematic equations (3.27) and (3.28) take into 

account the branching. 
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dof Proposed Angeles Walker He 
4 312x, 253+ 321 x, 265+ 526 x, 393+ 267 x, 248+ 
5 416 x, 342+ 426 x, 355+ 663 x, 494+ 358 x, 334+ 
6 526x, 437+ 536 x, 445+ 800 x, 595+ 449 x, 420+ 
7 642 x, 538+ 636 x, 535+ 937 x, 696+ 540 x, 506+ 
8 764 x, 645+ 741 x, 625+ 1074x, 797+ 631 x, 592+ 
9 892 x, 758+ 846x, 715+ 1211 x, 898+ 722 x, 678+ 
10 1026x, 877+ 951 x, 805+ 1348 x, 999+ 813 x, 764+ 

Table 3.3: Complexity of single cpu force vector algorithm 

3.4 Equation Solving 

The Cholesky decomposition linear equation solver [Walker 82] was used as the matrix solver 

for the single cpu case, as the inertia matrix is positive definite and symmetric. The complexity 

of the Cholesky algorithm, which consists of a decomposition and subsequent backsubstitution, 

is given by Walker as: 

£ x = n3/6 + 3n2/2 - 2n/3 

= n3/6 + n 2 -7n/6 (3.39) 

3.5 Simulations 

In this section the simulations of two linkages are discussed. Models of a PUMA 600 six degree 

of freedom rotary jointed manipulator, and a six degree of freedom model of the human torso 

(trunk, head, and two upper and lower arms) have been implemented on single cpus. A single 

cpu simulation of the excavator will be presented in Chapter 5. 

The PUMA 600 was chosen as an example of a rotary manipulator which is commonly discussed 

in the literature. In this thesis, profiles of 9, 0, and 9 given by Angeles and Ma [Angeles 88] 

have been used to drive the inverse dynamics algorithm previously developed in this chapter 

in sec. 3.4. Although the desired profiles are relatively slow, and hence may not excite all the 

dynamics of the system, it was necessary to produce results which could be directly compared 

to those existing in the literature. The inverse dynamics then controls the manipulator model 
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Joint a.-(deg) a,(m) Mm) Initial 0, 
1 0 0 0 0 
2 -90 0 -0.149 0 
3 0 0.432 0 0 
4 90 0.02 -0.432 0 
5 -90 0 0 0 
6 90 0 -0.056 0 

Table 3.4: Denavit Hartenberg parameters for the PUMA 600 

in an open loop control mode. All parameters are in metric units, with mass in kg, inertia in 

kg • m 2, length in m, and torque in Nm. 

The human torso was chosen as an example of a branched system. Open loop inverse dynamics 

control was used to simulate joint profiles similar to those used for the PUMA simulation. 

3.5.1 Puma 600 manipulator 

A block diagram of the system appears in Fig. 3.2. The length parameters for the PUMA 

600 are given in Table 3.4 (Denavit Hartenberg parameters [Angeles 1988]) and the mass and 

inertia parameters are given in equations (3.40) to (3.42). Fig. 3.3 is a diagram showing 

inverse dynamics T d PUMA 600 

M0=G(9.e.Td) 

e 
e 
e 

Figure 3.2: Block diagram of the open loop inverse dynamics controlled PUMA 600 dynamics 
simulation 

the Denavit Hartenberg coordinate frames attached to the PUMA. In the coordinate system 

adopted in this thesis (and used in the following equations), joint i is labelled as the lower joint 

on link i. Because the coordinate frame is attached to the centre of gravity, the following 

conversions are required to generate k and / from the Denavit Hartenberg parameters and from 
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Angeles' paper: 
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d) 

V • 

bi+i sin a , + i 

-bi+i cos a , + i 

Ki,i "•+!,« 

resulting in 

and 

7 3 

J3 

J,5 

mi 

m2 

m 3 

7714 

m5 

m 6 

= 10.521, jfcJJ = [0 0.054 0], l\T
2 

= 15.781, k%T
2 = [-0.14 0 0], l2

2
T

3 

= 8.767, ifc3^ = [0 0.197 0], /|J 

= 1.052, k\T
A = [0 0 0.057], 

= 1.052, klf5 = [0 0.007 0], / f r 

= 0.351, 41 = [0 0 0.019]. 

.6 — 

[0 0.203 0] 

[0.292 0 0] 

[0.02 -0.235 0] 

[0 0 0.057] 

[0 -0.049 0] 

5 — 

1.6120 0 0 

0. 0.5091 0 

0 0 1.6120 

3.3768 0 0 

0 0.3009 0 

0 0 3.3768 

0.0735 0 0 

0 0.0735 0 

0 0 0.1273 

7 2 

T4 

7 6 -

0.4898 0 0 

0 8.0783 0 

0 0 8.2672 

0.1810 0 0 

0 0.1810 0 

0 0 0.1273 

0.0071 0 0 

0 0.0071 0 

0 0 0.0141 

(3.40) 

(3.41) 

(3.42) 

integration algorithm 

The simulation used a fourth-order fixed step Runge-Kutta method described by [Press 88]. 

The step size was set at h = 0.01s, and the model was run for 10 seconds of simulation time. 

Desired values of 0j, 0\, and 0& were fed into the inverse dynamics algorithm so that the desired 
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actuation torques rd were available to the PUMA model at every function evaluation (four 

evaluations per step h). 

inverse dynamics 

The 0(n2) inverse dynamics algorithm developed earlier was implemented on one cpu. The 

desired profiles were generated according to the following equations: 

MO = (tw„i - sin(ti»Bt))/2 
MO = (Wn - Wn COS(u>„r))/2 

MO = wl sm(wnt)/2 i'=l,...6 (3.43) 

where wn = 2it/T, (T=10s) and t is the time variable. The torques r,d(i) are calculated in 

correspondence with the four time points required by the integration algorithm- once at f 

(operation [1]), twice at t + h/2 ([2]and [3]), and once at t + h ([4]): 

MO = f(ed(t), ed(t), 9d(t)) [i] 

rid(t + h/2) = f(9d(t + h/2), 9d(t + h/2), 9d(t + h/2)) [2,3] 

M * + h) = f{9d(t + h), 9d(t + h), 9d(t + h)) [4] (3.44) 

where the rd are calculated using the algorithm described in sec. 3.3.1, with 9{ = 9{d included 

in equation (3.28). 

forward dynamics 

The equations for the PUMA model are calculated on a separate cpu. The r,d are read in at 

every function evaluation, and are used as the actuator torques r a and added to the force vector 

fv to get b (fv is calculated using sec. 3.3.1, but 0, is set to zero). The simulation algorithm 

calculates /„ , b and M and then solves for 9. The Runge-Kutta algorithm then integrates 9 to 

get 6 and again to get 9. After four evaluations, the algorithm calculates a weighted response 

for states 9, 9 and 9 at time point t + h (see Chapter 5, section 5.4.1 for an exact description). 
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time (s) 

Figure 3.4: 0d, 0d, 0d profiles for all joints of PUMA 600 model. Overlaid are the 0, 0 and 0 
responses for joint 6. 

simulation results 

Fig. 3.4 shows the desired 0d, 0d, and 0d, and Fig. 3.5 shows the rd (labelled as tql to 

tq6) generated by the inverse dynamics algorithm in response to the desired profiles. The 

simulator response for joint 6 is also shown in Fig. 3.4, and is indistinguishable from the 

desired values. All of the links produce a similar response when overlaid. Fig. 3.6 shows 

the error curves for link 6, which show maximums of -1 x 10_4deg for 0, —5 x 10_ 5deg/s 
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I 

Time (second) Time (second) 

1 

Time ( second) Time ( second) 

Figure 3.5: rd profiles for joints 1 to 6 generated by the inverse dynamics of the P U M A 600 
model 

for 0, and 6 x 1 0 - 5 d e g / s 2 for 9. These results are similar to those obtained by Angeles 

and M a [Angeles 88] (while their errors were similar in magnitude, their step size was larger 
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time (s) 

Figure 3.6: Errors 0d -0,0d- 6, 0d - 0 profiles for joint 6 of PUMA 600 model 

(thus requiring less computations)). Angeles' performance is slightly better (computational 

cost-wise) due to their using the fifth/sixth order DEVERK integration algorithm from IMSL, 

which calculates eight evaluations (rather than four) of the derivative before advancing one step 

h (this gives a better estimate). 

The time taken for 10 seconds of simulation was 71.12 seconds of computer time. This time was 

measured assuming no results were stored and that the stack was initialised within the internal 

R A M of the Inmos T800 transputer (a microprocessor designed for parallel processing). The 

time taken for one evaluation (inertia matrix formation, force vector formation, and matrix 

solution) is 17.2 ms. 

Theoretically, the complexity estimate from Tables 3.2, 3.3 and equation (3.39) for n=6 is 
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1391 x, 1087+ (also shown in Table 3.5 at the end of this chapter). If a multiply and an add 

costs 1 ^s and 0.5 ps respectively in a transputer, the theoretical computation time should have 

been 1.93 ms. Adding the cost of n (sin, cos) calculations at 7/xs each, the total increases to 

2.02 ms. This estimate would meet the maximum evaluation time of 2.5 ms when a fourth 

order Runge Kutta and /i=0.01 are assumed. 

The actual computations are thus 17.2/2.02= 8.5 times slower due to superfluous computations 

required for loop counters and array indexing, external memory fetches for global variables, 

and the cost of entering and leaving subroutines (the cost of saving data on the stack). These 

costs are unavoidable unless the modularity of the formulation is removed by not using indexed 

arrays and by replacing all subroutines with inline code. 

3.5.2 Human torso 

In this model of the torso, the head, trunk and left and right upper and lower arms are assumed 

to have one degree of freedom per joint. Fig. 3.7 describes the structure of the system, including 

the body coordinate systems. The mass and length parameters used by the formulation are: 

[0.15 0 0.15] 

[0 0 0.242] 

lis = [-0.15 0 0.15] 

m2 = 5.0, k%t2 = [0 0.12 0], 

m 3 = 2.8, Jfĉ 3 = [0 0.2 0], /J 4 = [0 - 0.25 0] 

m4 = 1.4, kj4 = [0 0.2 0], 

m s = 2.8, kj5 = [0 - 0.2 0], = [0 0.25 0] 

m6 = 1.4, fcje = [0 - 0.2 0], (3.45) 

J\, the trunk inertia, is obtained from [Khosravi 87] while the rest of the inertia parameters are 

found by approximating each limb as solid cylindrical links with radius r,- and length /, (and 
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for the head, a solid sphere of radius r 2 ) . T h e values are: 

r 2 = 0.12, r 3 = 0.05, r 4 = 0.05, r 5 = 0.05, r 6 = 0.05, 

and / 3 = 0.45, l4 = 0.4, l5 = 0.45, / 6 = 0.4 
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These values only approximate those given by Khosravi, since in his case the arms are modeled 

as one single link, as he was modeling a four link chain performing a somersault. Thus: 

7 5 -
J5 — 

2.7 0 0 2 T 7 1 2 7 ^ 

5 0 0 

0 0.40 0 , «/2 — 0 2m2r| 
5 0 

0 0 2.7 0 0 2m 2r| 
5 

m3(r4 + ft) 
0 7 7 1 3 1 - 3 

2 

0 

0 

0 

m 5 r 5 0 0 

7 4 -

4̂(4 + 5) 
0 

0 

tn<r, 
2 

0 rn4(r-t + fe) 

0 m5Ci- + fe) 0 
-2 

0 0 m 5(^ + i|) 

The twist angles (in degrees) are: 

76 _ 
7716 rt 0 

-2 ll 
0 meC-f + ̂ |) 

0 0 

0 

0 

Mt4+h 
(3.46) 

ai = 0, a 2 = -90, a 3 = 90, a 4 = 0, a 5 = -90, a 6 = 0 (3.47) 

connectivity matrix 

The branched formulation makes use of the following connectivity matrix U~l to describe the 

topology: 
r 1 

1 1 

1 0 1 

1 0 1 1 

1 0 0 0 1 

1 0 0 0 1 1 

c/-x = (3.48) 

integration, inverse dynamics and joint profiles 

The integration algorithm uses the fourth order fixed step Runge-Kutta method employed 

for the PUMA 600 model, except that the step size was set at h = 0.001, as larger values 
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dof Proposed Angeles Walker Brandl 
3 367 x, 277+ 399 x, 306+ 631x, 513+ 528X, 462+ 
4 630 x, 484+ 679 x, 530+ 907 x, 742+ 778 x, 682+ 
5 969 x, 752+ 1029x, 810+ 1208x, 991+ 1028 x, 902+ 
6 1391 x, 1087+ 1456x, 1152+ 1537x, 1261+ 1278 x, 1122+ 
7 1903 x, 1495+ 1967x, 1562+ 1893 x, 1553+ 1528 x, 1342+ 
8 2512 x, 1982+ 2569x, 2046+ 2279 x, 1868+ 1778X, 1562+ 
9 3225 x, 2554+ 3269x, 2610+ 2694 x, 2207+ 2028 x, 1782+ 
10 4049 x, 3217+ 4074 x,3260+ 3141 x, 2571+ 2278 x, 2002+ 
11 4991 x, 3977+ 4991 x,4002+ 3619x, 2961+ 2528 x, 2222+ 
12 6058 x, 4840+ 6027x, 4842+ 4131x, 3378+ 2778x, 2442+ 

Table 3.5: Complexity of complete forward dynamics for single chains on one cpu 

caused instability due to numerical error accumulation, leading to incorrect results. The inverse 

dynamics algorithm is the same as that derived earlier in the chapter, but adapted to suit the 

branched algorithm. The joint angle, velocity and acceleration profiles are similar to those 

suggested by Angeles and Ma for the PUMA 600, except that the period T of the profile is 5 

seconds rather than 10. 

simulation results 

Fig. 3.8 illustrates the 9j, 6d and 0d profiles applied to each of the joints. Fig. 3.9 shows the 

torque profiles produced by the inverse dynamics, and Fig. 3.10 shows the errors between the 

desired and actual angle, velocity, and acceleration profiles for joint six. 

The results of the simulation of joint 6 are overlaid on top of the desired reponses in Fig. 3.8. 

The errors in joint 6 plotted in Fig. 3.10 indicate that the human torso model was simulated 

correctly although instability occurred when simulating long periods of time (approximately 5 

seconds). This is due to the dynamics of the system, as the higher frequency dynamics are not 

adequately modeled by the integrator, due to step sizes that are too large. This problem can 

be overcome with smaller step sizes or more sophisticated integration algorithms. 
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time (s) 

Figure 3.8: Od, &d, &d a nd profiles applied to all joints for human torso model. Uveriaia are uie 
reponses for joint 6. 

3.6 Summary 

This chapter has examined the complexity of the Newton Euler State Space algorithm for for­

ward dynamics when calculated on one cpu. By referring all equations to body coordinates, 

and taking advantage of the fact that the force vector calculation uses results previously cal­

culated from the inertia matrix calculation, efficient algorithms for the inertia matrix and the 

force vector have been presented. The algorithms incorporate a connectivity matrix which 

permits the modeling of branched mechanisms. In the case of a single chain mechanism, the 

transformation matrix [CT (p x C)T] is the same as Angeles and Ma's orthogonal complement 

matrix [Angeles 88]. Buchner [Buchner 86] also referred both the translational and rotational 
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Figure 3.9: TJ profiles for all 6 joints generated by the inverse dynamics for human torso model 

equations to body coordinates, but the equations were not computed in their most efficient 

form. As a result the simple recursive nature of the vector cross product (pjj X c\j) was not 
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Figure 3.10: Errors 9d — 9,9d — 0, 9d — 9 profiles for joint 6 of human torso model 

used. In addition, Buchner did not explore the representation of branched mechanisms. 

The complexity estimates in Tables 3.1 and 3.5 show that when modeling low degree of freedom 

(n < 6) mechanisms on one cpu, such as an excavator or some of the robots in use today, the 

algorithms proposed here are of comparable (although not superior) efficiency to those with 

which we have compared. Table 3.5 lists the number of multiplies and adds for chains of up to 

twelve dof, while Fig. 3.11 graphs the results from Table 3.5, assuming the cost of an add is half 

that of a multiply (the complexity is thus measured in /xs). Fig. 3.11 shows that the proposed 

algorithm (P) is very similar to Angeles' algorithms. Brandl's algorithm (B) eventually becomes 

more efficient due to the 0(n 3) complexity of the matrix solver. 

In the last part of this chapter, the single chain and branched formulations were verified. The 
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formulations were implemented on single cpus and the PUMA 600 and a human torso were 

modeled. Open loop inverse dynamics simulation using joint profiles taken from the literature 

show good agreement with previous results. 

This thesis has thus far established the equations and complexity for the Newton Euler State 

Space formulation when implemented on a single cpu. In the next chapter a parallel version of 

this formulation will be presented which is superior in computational complexity for mechanisms 

with relatively large numbers of links. 
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Figure 3.11: Graph of complexity estimates for formulations in Table 3.5. Algorithms are (A) 
- Angeles, (W) - Walker, (B) - Brandl, and (P) - proposed in thesis 



Chapter 4 

A Parallel Dynamics Algorithm 

In this chapter the algorithms described in Chapter 3 for the inertia matrix, force vector, and 

solver phases are parallelised and integrated together. New parallel algorithms using a two 

dimensional, triangular, Multiple Input Multiple Data (MIMD) cpu array (Fig. 4.1) with a 

systolic/wavefront approach have been developed for the inertia matrix and the force vector 

calculations. The first row in the array, row 0, calculates the force vector b (gravity, Coriolis, 

centrifugal and actuator torques). Simultaneously, rows 1 through n calculate the inertia matrix. 

The leftmost cpu, cpuo,o, connects to the host computer. 

Once this is accomplished, b{ resides in row 0 cpuo,; (i = 1, ..n), and the inertia matrix element 

Aiij = resides in cpu t J. The data is then shuffled to the edge of the array, and the equation 

A49 = 6 is solved using a new feedforward systolic solver derived by [Jainandunsing 89] which 

is more efficient than previous algorithms. 

4.1 Integrating the Inertia Matrix and Force Vector Computations 

The equations of motion derived in the previous chapter can be stated as 

[HTH)9 = H 
L 

+ Ta = fv + Ta (4.1) 
mp 

or M9 = b (4.2) 

where ra is the vector of actuator torques. The calculation of both the inertia matrix M. and 

/„ (rQ is calculated separately) can be divided into two phases: 

66 
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Figure 4.1: The triangular 2d mesh array used to implement the dynamics algorithm 

1. Calculating the 6n x n matrices H and H (H is a component of H), and the 6n x 1 

momentum derivative vector [L mp]T. Row 0 of the array in Fig. 4.1 can be used to 

calculate the derivative vector, while simultaneously rows 1 to n are used to calculate HT 

and H. 

2. Multiplying H and [L mp]T by H1 

In this chapter the M and fv calculations are parallelised so that the computations occur 

in a balanced manner, where both the computations of H and [L mp] finish simultaneously. 
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This is necessary so that phase 2 can proceed in a synchronised manner. Following this, the 

array is reused to solve the matrix equation. This is easy to implement using the homogeneous 

architecture described here, in comparison to the architectures of [Lee 88] and [Fijany 89], which 

require different architectures for the equation formation and for the solver. 

4.2 Parallel Calculation of H 

The calculation of H requires the recursive evaluation of equation (3.17): 

H = 
JC 

M(p x C) 
(4.3) 

The architecture in Fig. 4.1 can be used to compute equation (4.3) in parallel. The following 

notes are descriptions of the calculations carried out using this architecture: 

calculate A\_^ 

In each cpu in row 1 (Fig. 4.2), cpuit,, the rotation matrix AJ_1 is calculated from equation 

(3.18) (operation 1 in Table 4.1). The 0, are assumed to be resident. No communication is 

necessary, and the cost of computing sine and cosine functions (1 of each) are excluded from 

Table 4.1. Note that the Inmos T800 transputer processor can compute the sine and cosine 

functions, and thus it is not necessary for the host computer to send these values (assumed by 

[Lee 88]). 

calculate cj- • and p\j 

Calculation of cj • and pj- • (equations 3.19 and 3.20) proceeds using row 1 as a systolic pipeline, 

in which cj • and then pj • j = 1,...» (operations 2 and 3 in Table 4.1) are alternately calculated 

in cpui)t- (Fig 4.2). Once a cj- • vector is calculated, it is passed eastward (e) for the calculation 

of cj+j • by cpu ĵ+i according to equation (3.19). The vector is also sent southward (s) to the 

lower rows in the mesh in preparation for operations 4 and 5. The communication of c\j (send 
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Figure 4.2: Pipeline computation of A\_:, c|j, and p\ • in cpui>t (row 1) 

east and south; receive west) and the computation of p\; • is assumed to be simultaneous using 

the Inmos T800 transputer or the TMS320C40 as the cpu, as they both have DMA controllers 

for each communication link, enabling simultaneous communication and computation. Note 

that complete overlap is difficult to achieve with current transputer technology (the cpu chosen 
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for implementing these algorithms) as the amount of data to be transmitted is small, resulting 

in a communication setup time that becomes relatively significant. Theoretically, however, 

it has been assumed here that a complete overlap between the multiple communications and 

the computation is achievable. The time taken to send a vector of three 32-bit floating point 

numbers is about 12 microseconds. A matrix-vector product or cross product is considered here 

to be the smallest atom of computation, since the cost is about 12 microseconds (and therefore 

the computation can overlap the communication of a 3 X 1 vector). 

Fig. 4.3 shows the final distribution of elements in the part of the array used to calculate M 

(rows 1 to 4), and Table 4.2 is the schedule for operations 1 to 5 in Table 4.1, for a four link 

chain. Operations 1 to 11 in Table 4.2 represent atomic operation cycles. 
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Figure 4.3: Final distribution of c\j and p\j vectors 
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# operation cost comms cpus 
no. floats 

1 4-1 4x 0 n 
2 i i (n - l)(8x, 5+) 3n n(n+l) 

, 2 
3 (n - l)(8x, 11+) 3n n(n+l) 

2 
4 9x, 6+ 0 n(n+l) 

2 
5 9x, 3+ 0 n(n+l) 

2 

6 iiVKk) n(3x, 2+) 0 n(n+l) 
2 

7 P\M x c{k n(6x, 3+) 0 n(n+l) 
2 

8 (p x C)TM(p x C) n(3x, 2+) 3n n(n+l) 
, 2 v 

9 n(2+) n n(n+l) 
2 

Table 4.1: Computational complexity for parallel H algorithm 

cycle cpu n C P U 1 2 CPU 13 Cpu 14 COSt to CpU 14 

1 A1 4x 
2 C2,2 c3,3 0x,0+ 
3 PL P2,2 P3,3 

4 

P4.4 
0x,0+ 

4 Jlcl,l 
-2 
c 2 , l c3,2 4.3 8x,5+ 

5 m i (Pi.i x cj f l) P2.1 P3.2 
4 

04,3 
8 x , l l + 

6 • 2̂C2,1 c 3, l C4,2 8x,5+ 
7 ™2(P'2,1 X C ^ ) P4.2 8 x , l l + 
8 J3C3,1 c i i 8x,5+ 
9 msipii x 40 8 x , l l + 
10 74.4 

•M C 4 , l 
9x,6+ 

11 m4(p\A x c^) 9x,6+ 

Table 4.2: H computation schedule for row 1 cpus 

calculate J\c\- and m,(p| • X c\j) 

All cpus cpu^, in rows 1 through n calculate equations (3.21) and (3.22) with no communications 

between the cpus (operations 4 and 5 in Table 4.1, and also the last two operations in each 

column of Table 4.2). 

The computational complexity of operations 1 to 5 in Table 4.1 is 

5 
= ( « - l ) ( 1 6 x , 1 6 + ) +(22x,9+) 

5 
]T = (16n + 6)x, (16ra-7)+ (4.4) 
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where the computations and communications of cj j and pj- j synchronise the cycle of computa­

tion, and all communications have been overlapped by computations. 

4.3 Parallel Calculation of [L mp] 

In Chapter 3 an 0(n2) algorithm was presented for calculating the vector /„ of gravitational, 

centrifugal and Coriolis forces. In this section an 0(n) parallel algorithm for /„ is developed 

which integrates well with the parallel H algorithm just presented. The calculation of r0, the 

actuator torques, will not be be discussed until Chapter 5, since they are dependent on the type 

of drive mechanism employed, and can be considered as a separate computational problem. 

From equation (3.34), the generation of /„ reduces to a problem of premultiplying the vector 

[L mp] by H. In this section we calculate [L mp] in a parallel manner. 

Equations (3.27) to (3.31) can be calculated by row 0 in a systolic pipeline. The calculation of 

wiQi ^ioi WiU and p\, computed in cpuo,;, requires w\z\to, wj~j0, and p,_i to be 

sent from the left neighbour cpuo,,_i (h, ki, and p, are simplified forms of / | i t + i , k}fi and pj 0 

used to simplify the notation in Table 4.3). Note that £, = 4- w\0 x a,-, where a,- = J\w\Q 

and bi = Jlw\Q (here 6, is a dummy variable, and is not related to equation 4.2). 

From Table 4.3, the computational complexity is: 

= ( n - l)(18x,13+) + (63x,50+) = (18n + 45)x,(13n + 37)+ (4.5) 
L , m p 

The computational cost of w*i0 and w\Q, (n— l)(18x,13+), synchronises the computation cycle 

and dictates the complexity of the calculation. Although w]*\ Q is calculated two computational 

atoms after w\0 (due to the one atom delay in sending the w\0 vector to cpuo,t+i), the cost of 

sending w\0 to cpu0,,+i is hidden by the computation of u>)i0 in cpu0,i. 

4.4 Parallel Multiplication by HT 

Once the schedules in Tables 4.2 and 4.3 have been completed, both the vector [L mp) and the 

rectangular matrix H must be multiplied by HT. 



Chapter 4. A Parallel Dynamics Algorithm 73 

cycle cost 

to cpuoi 
cpuoi cost 

to cpu 02 
cpu 0 2 CPU 03 CpU04 

1 4x A1 4x A Ai -̂ 3 
2 0x,0+ 
3 0x,0+ 
4 lx Wi 8x,6+ 
5 9x,6+ 10x,7+ wlo 
6 9x,6+ 6x,9+ W2 

7 8x,ll+ Pi 9x,6+ -W2k2 

8 9x,6+ ax = Jlu>l0 9x,6+ w2i2 w3 
< 0 

9 9x,6+ h = Jlw{0 8x,ll+ fa -W3k3 ^4.0 
10 9x,6+ Li,m\p\ 9x,6+ a 2 = ^2^2,0 w3i3 

W4 

11 9x,6+ b2 = J'iw'io fa -W4k4 

12 9x,6+ a3 = J3u>3.0 W4l4 13 b3 = Jgwlo P4 

14 1>Z, a4 = Jiw\Q 

15 64 = J4w\Q 

16 L4,m4p4 

Table 4.3: Schedule for calculating [L mp] 

The atoms of computation which determine the computation cycle in the inertia matrix algo­

rithm, the c|j, p\: • computations (16x,16+) are comparable to their counterparts in the force 

algorithm, the (18x,13-(-) w, and W{ computations. The constant overhead for calculating 

[i mp] (63x,50+), however, is significantly larger than the overhead for H (22x,9+). This 

results in idle time in the inertia matrix cpu array, where the a, j cpus wait for the 6,- cpus until 

both algorithms can proceed with the synchronised multiplication by HT. 

Minimisation of this idle time can be accomplished by passing some of the [L mp] calculations 

from row 0 to row 1. w\0 and w'i0 can be sent from row 0 to row 1 cpus, where a,- = J-WIQ and 

bi = JiW'iQ (18x,12+) can be calculated, relieving row 0 cpus of this burden. The results are 

then sent back to row 0. Although this requires the communication of vectors a,- and 6,- from 

row 1 to row 0, it is possible to hide this communication cost with computations. Table 4.4 

presents a schedule of some of the communications and computations between cpuo3, cpuo4 and 

cpui4 (// indicates a parallel process, tx() and rx() indicates transmission and reception). The 

table shows that all communications are hidden by computations except in the case of cpuo,4-

Tables 4.5 and 4.6 are the revised versions of Tables 4.2 and 4.3 (excluding communications) 
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C P U 0 3 CpU 0 4 CPU14 

^ r x ( j > 2 ) / / W 3 ^ X ^ ) / / ^ ^ 10 
j*/7tx(W3/3) - -»rx(W 3/3)//-W4*:4//tx(u;J io) - -*™(«'4j0)//n»4(p4.1XC4.l) 11 

c3 = a 3xw;^ 0 ,m3p3//tx(p3) -»• ->rx(fe)//Wy 4//tx(< 0) - - > r x ( ^ 0 ) / / a 4 = y 4
4 ^ 0 12 

X 3 = c3 + 63 p4//rx(a4)<- <-tx(a4)//b4 = 13 
c4 = a4xw4

i0,m4p4//rx(b4) <-tx(64) 14 
L4 — c4 \ 64 15 

Table 4.4: Redistributed computations and communications for [L4 m4p\\ 

c p u u CPU12 CPU13 CPU14 COSt tO CpU 14 

1 4 AJ 4 4x 
2 <r c2,2 c3,3 r 4 

c4,4 0x,0+ 
3 P2.2 A>3,3 P4.4 0x,0+ 
4 c2,l c3,2 c4 , 3 8x,5+ 
5 X Cl.l) P2.1 P3.2 P4.3 8x,ll+ 
6 •7JX.0 «'2 c 2, l c 3 , l A 

c4 , 2 
8x,5+ 

7 m2(P2,l X P3.1 4 
P4,2 

8 x , l l + 
8 «*2 w2,0 J3C3,1 4, 8x,5+ 
9 T2w2  

J2 W2,Q m3(p3,l X 4l) Ph 8x,ll+ 
10 74-4 

''4 c 4 , l 9x,6+ 
11 J 3 w 3,0 m*(p4.1 X C^j) 9x,6+ 
12 9x,6+ 
13 J$W4,0 9x,6+ 

Table 4.5: Revised H computation (row 1) schedule 

when di and 6, are calculated in row 1. 

The complexity for the revised H and [L rnp] algorithms prior to multiplying by H is 

53 = (n-l)(16x,16+) + (40x,21+) (4.6) 
H 

for the H matrix, and 

J2 = ( « - l ) ( 1 8 x , 1 3 + ) + (45x,38+) (4.7) 
L,mp 

for the [L mp] calculation. The H algorithm in Table 4.5 requires each row 1 cpu to transmit 

6, = J\w\Q to their counterpart cpu in row 0 after all computations have ended (operation 14 

in Table 4.4). 
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cost 

to cpuoi 
cpuoi cost 

to CpU02 
CpU 02 CpU 03 cpuo4 

1 4x A1 4x A Al Ai 
2 0x,0+ <o 
3 0x,0+ <o 
4 lx Wi 8x,6+ w'io 
5 9x,6+ 10x,7+ w'io 
6 9x,6+ Wrh 6x,9+ - W2 ^3,0 
7 8x,ll+ Pi 9x,6+ -W2k2 ^3.0 
8 9x,3+ c i , m i p i 9x,6+ W2l2 w3 

<o 
9 3+ L\ = ci + h 8x,ll+ fa -W3k3 ™io 
10 9x,3+ c2,m2fa W3l3 W4 

11 3+ L2 = c2 + b2 fa -W4k4 

12 c 3 , m 3 p 3 W4l4 

13 L3 = c3 + b3 fa 
14 c4,m4p4 

15 L4 = 04 + 64 

Table 4.6: Revised schedule for calculating [L mp] 

4.4.1 Multiplying H and [L mp] by HT 

By reorganising the computations as discussed above, the momentum derivative vector [L mp] 

and the H matrix are completed at approximately the same time. HT = [C (px C)]T can now 

be multiplied simultaneously with H and [L mp). The rectangular matrix JC and the vector 

L are premultipied with CT', and the matrix M(p x C) and vector mp are premultiplied with 

(p x Cf. 

For the inertia matrix calculations, the elements cj- •, (p\j X cj• •), J\c\ j and m,(pjj X c\j) are 

already in cpu.j (Fig. 4.3) and so there is no loading phase. The HTH multiplication can 

be accomplished by systolically sweeping H{j vectors (6x1) left in Table 4.7 according to the 

following algorithm: 

for i = 0 to n 

{ 

1. cpus in columns 1 to n — i calculate dot products with H vector and resident H vectors. 

2. shift scalar dot product result in rows n to n — i up to row above and accumulate 
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3. shift H vectors in columns 1 to ra - i left 

(4. 

where the H vector in cpujjt is [Jjcj k mj(pj k x cj k)]T. Table 4.7 graphically illustrates the first 

four computations of this algorithm. Each matrix element represents a cpu, and the contents 

of each element represent a computation ( - indicates no computation). Note that the grid is 

an + ra triangular mesh, so the cpu in element (col 1, row 2) does not exist. 

Multiplying the momentum derivative vector [L mp] by H requires the [c\j (p\j x c\ j)]T 

vectors to be shifted into row 0 from row 1. This is done as part of the algorithm in equation 

4.8. Table 4.7 shows row 0 [L] appended to the rows calculating H (in computation cycle 0). 

The vectors in the H matrix, Hitk, are then systolically shuffled leftward through the array, 

each computation phase involving dot products and/or accumulations. 

The first four computations (two cycles) of the algorithm are demonstrated in the sequence 

presented in Table 4.7 (only rotational momentum computations cT-(Je) and cT-L are shown). 

Between computation phases (1) and (2) in Table 4.7, the dot products calculated in (1) are 

also passed up from column 4 to column 3 in an accumulative sweep of the dot product results, 

and the Hij (the c}j in Table 4.7) are simultaneously passed left from rows 1 through ra to 

rows 0 through n — 1. Computation cycles (2) and (3), the accumulation (2) and the next 

dot product (3), are then computed as one phase, followed by another communication phase 

between (3) and (4). 

By simply passing H?j — [c\j (p x c\j)]T as 6 x 1 vectors, the communication phases are not 

hidden, as the BJjdot product must be completed before the results can be passed upward 

and accumulated. However, if the dot product computations and the vector communications 

are split up so that cj • and (p\j x cj- •) are sent separately as 3 x 1 vectors, and the dot 

products for each of these vectors are calculated separately, the communications can be hidden 

(although a 3 x 1 vector dot product computation is a less costly atomic action than a 3 x 1 

vector communication). Furthermore, it is possible to partially or completely eliminate the 

communication of H{j by taking advantage of two facts: 
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1. c\j need not be transmitted left by rows 1 to n in Table 4.7 (south to north in Fig. 4.3), 

since it is already present in rows to the left, having passed through during operation 2 

of Table 4.1. Thus, in cpu*,,- while (pj-j x cj j) is being received from the right, the dot 

product partial sum 

Pki,j-i = (cjj_ 1 ) T (^cj ) j t ) + ( p j J _ 1 x c j i i _ 1 f m i ( p j , j t x cjijk) (6x,5+) (4.9) 

is calculated, and the moving sum of other partials TJjti 1 S passed up from below, in the 

next operation, when cj • would normally be sent, (pjj+i x c j J + 1 ) can be sent and 

PkiJ = (c\,jf(Ji4,k) + (/>!,; x cljfmiipi, x <*) (4.10) 

computed. A moving sum ^2ki is one which originates in cpuj ) t l and migrates to cpu,-^ 

after k cycles, accumulating the partial sums pki,j, j = 1, —k relevant to that cpu's matrix 

multiplication at each step. 

Previously in cpu,^, while (pj • xcjj ) was being received, only the cjj(«7*cj k) computation 

(3x,2+) could simultaneously occur since cj — had to be received in the prior communica­

tion. With cj- • now resident, equation (4.9) can be computed at the time that (pj\j X cj-j) 

is transmitted, and the (pj- • x cjj) vectors can be sent at twice the rate since the cj j 

vectors are not interleaved. In fact, the vector transmission is more easily hidden since 

the cost of the dot products in equation 4.9 is (6x,5+), approximately as expensive as a 

3x1 vector communication. 

The calculation of fv can similarly be improved by passing the cj j vector north to row 0 

as it is being produced by row 1 cpus (in operation 3 of Table 4.1). The cj- • vectors will 

thus be present when phase two begins, and only (pj • x cj- •) needs to be passed in. 

2. The communication of (pj• • x cj• •) can also be avoided by noting that the pj • have also 

passed through the array (rows 1 to n) due to operation 3 in Table 4.1 (and may also 

be passed from row 1 cpus to row 0 cpus during operation 3 (in a similar manner to 

c\ j) in note 1 above). However, the cross product (pjj X c\ A (operation 7) must then 

be computed at each cpu before the dot product in the second term of equation 4.9 is 

calculated. 
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T h e computational complexity of the systolic multiplication by H is n ( 6 x , 6 + ) (the extra n 

adds occur due to the accumulating moving sum). 

T h e overall complexity, assuming the cross product result of (pj • x c\j) is passed through the 

array, is then: 

£ = ( n - l ) ( 1 6 x , 1 6 + ) + n ( 6 x , 6 + ) + (40x ,21+) 
M 

= (22n + 24)x , (22n + 5) + (4.11) 

53 = ( « - l ) (18x ,13+) + n ( 6 x , 6 + ) + (45x,38+) 

= (24ra + 27)X, (19n + 25)+ (4.12) 

and if the p\ j X cj j vectors are calculated rather than passed i n , a cost of ra(6x, 5+) is incurred, 

and so the overall cost is: 

= ( n - l ) (16x ,16+) + T i ( 6 x , 6 + ) + n ( 6 x , 3 + ) + (40x,21+) 

M 

= (28n + 24)x , (25n + 5 ) + (4.13) 

= (n- l ) (18x ,13+) + n ( 6 x , 6 + ) + n ( 6 x , 3 + ) + (45x,38+) 
Sv 

= (30ra + 27)x , (22n + 25)+ (4.14) 

T h e communications for operation 9 in Table 4.1 (the accumulation of partial sums by the 

moving sum), represented by the vertical data shift in Table 4.7, must still be performed, but 

the cost is hidden by the dot product computations. T h e cost of the extra cross product p x c, 

done to avoid communicating, is computationally expensive, but may be worthwhile if the cost 

of communication is more than a vector cross product, or if there is difficulty in hiding the 

communications within the computations. 
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row 0 row 1 row 2 row 3 row 4 
col 1 i i J \ c i , i 0 

col 2 Lt J2 c 2,l 7 5 r 5 

J 2 C 2 ,2 

col 3 L3 J3 c 3,l 
73-3 

J3 c 3 , 2 7 3 -3 •/3C3,3 
col 4 U 7 4 r 4 •'4 c4,l 7 4 r 4 

•'4 c4 , 2 •74^4,3 7 4 r 4 

J4 c4,4 

row 0 row 1 row 2 row 3 row 4 
col 1 - ( c i , i ) J Ji c i , i 1 

col 2 - ( C 2,l) J ^ c l l ( C 2 , 2 ) J ^ 2 C 2 , 2 
col 3 - c 3,l) ^ 3 C 3 , 1 ( c 3 , 2 ) ^ 3 C 3 , 2 ( C 3 , 3 ) J J£c3,3 

col 4 - ( c4,l) ^4 C4 ,1 ( c4 , 2 ) J*ci,2 ( c4 , 3 ) ^4 C4 , 3 

row 0 row 1 row 2 row 3 row 4 
col 1 - - 2 

col 2 - - -
col 3 - E l l = ( C 3 , l ) J ^ 3 C 3 , 1 E 2 2 =

4 ^ C ^ ? ^ ^ C 3 . 2 
+(^4 ,2) ^4 C4 ,2 

E 3 3 = (C3j?y J 3 C 3 , 3 

col 4 - - - - -

row 0 row 1 row 2 row 3 row 4 

col 1 ( « i . i ) T i i 

3 

col 2 (c2,,)Ti a ( c2,2)T-7 2 c|,l 

col 3 ( C 3 , 2 ) T ^ 3 c 3 , l ( C 3 , 3 ) T ^ 3 c 3,2 
_ 

col 4 ( C4 , 2) T^4 c4 , l ( C4 , 3) T^4 c4,2 (c\,*)TJ*C*,S _ 

row 0 row 1 row 2 row 3 row 4 
col 1 - - 4 
col 2 - E l l = ( c 2 , l ) i ^2 C2,1 E 2 2 = ( C 2 , 2 ) J -^2C2,2 

+ 

col 3 E 1 0 = « i ) J i 3 E 2 I = ( C 3 , 2 ) J ^ 3 C 3 , 1 E 3 2 = ( C 3 ,3) T < / 3 3 C3 ,2 

+(cj, 3 ) r 7 4
4 ct2 

-

col 4 - - - - -

Table 4.7: First four computations of HTH (rows 1 to 4) and HT[L] (row 0) (rotational 

components only) 
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4.5 Parallel Matrix Solver 

Once the inertia matrix M and the driving vector b (b = fv + ra) have been assembled, the 

system of equations must be solved for 0. An efficient feedforward wavefront matrix solver has 

been implemented for the equation 

M6 = b 

or, using matrix terminology, Ax = b (4-15) 

using a feedforward algorithm proposed by [Jainandunsing 89]. Although Jainandunsing's algo­

rithm is a systolic array, it can be used by the wavefront array employed here (a wavefront cpu 

such as the transputer is activated by the arrival of data, whereas a systolic cpu is synchronised 

by a global controller, and calculates regardless of the presence of data). 

For dense systems of equations (when most elements of A are nonzero), the direct method 

solver is the best method of solution. Direct methods can be divided into backsubstitution and 

feedforward methods. 

factorisation and backsubstitution method 

Backsubstitution methods compute an LU, QR or Cholesky factorisation of the A matrix, fol­

lowed by a backsubstitution to derive the solution vector x. The factorisation is performed by 

premultiplying the A matrix with embeddings of 2x2 rotations, which can be linear, trigono­

metric/orthogonal, or hyperbolic. The multiplication triangularizes A to an upper triangular 

matrix. For the linear rotation, the 2x2 matrix has the form: 

1 0 (4.16) 
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which gives the following N x N embedding: 

©.i(0) 

1 0 

(4.17) 

IN-J 

For an appropriate a . j , the product 0 t J (O)A eliminates the a,j element in the A matrix. A 

cascaded backward series of these embeddings N, . . . i , (JV is the size of the matrix A) produces 

a product 

0(0) = n.,,0,, ,-(0) = (niI10,,N(o))...(n̂10,,2(o)) • (fijl̂ ô)). (4.18) 

When the otij are calculated such that the strictly lower part of A is eliminated, the resulting 

product 0(0) is X - 1 , the inverse of the factor L in the L U factorisation. When 0(0) is multiplied 

with J4, the result is the factor U ie. 

A 

0(O)A 

If 0(0) 

Q(0)A 

LU 

e(0)LU. 

L~lLU = U. 

(4.19) 

Thus, if each cpu in the array has calculated the appropriate a , j = at-j^/ajj^ a n a formed the 

2x2 rotation (a,-ĵ  is the value of element after j successive rotations), then feeding A into 

the systolic array produces U. To solve Ax = b, let y = Ux and A = LU. Then, if 

Ax = 6, 

LUx = b. 

If Ly = b, 

y = L-Xb = 0(0)6 (4.20) 
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From equation (4.19) it can be observed that when b is premultiplied with 0(0) (ie when b is 

also fed into the systolic array), y is obtained, from which x may be calculated through the 

backsubstitution: 

U x — y 

x = U~ly (4.21) 

Once U = O(0)A and y = 0(0)6 are obtained, they are passed to the backsubstitution algo­

rithm, which is architecturally organised as a pipeline. This pipeline calculates the x vector 

in reverse order (xn,...a;i), with y and U fed simultaneously into the end and the side of the 

pipe respectively. Unfortunately, the elements of U, which are produced a column at a time 

starting with column 1, are in the reverse order to that desired by the backsubstitution. As a 

result, a systolic implementation cannot overlap the factorisation and backsubstitution, as the 

factorisation must be completed before the backsubstitution begins. Systolic implementations 

such as Liu and Young's [Liu 83] have a complexity of 3n — 2 cycles for the factorisation, and 

4n — 3 cycles for the backsubstitution (loading, computation, unloading of solution), for a total 

of 7n — 5 cycles [Jainandunsing 89]. Each cycle requires (lx, 1+). 

feedforward method 

Feed forward techniques solve a system using LU factorisation without backsubstitution. Fad-

deev [Faddeev 59] proposed an algorithm which augments the matrix A with an identity matrix 

—IN. The factorisation of the augmented matrix [AT — Iff] which is accomplished by feeding 

A and I into the augmented cpu array, produces 0(0) = (Z') _ 1, which is the inverse of L\ the 

lower factor in the factorisation result [L' U']. When b is also fed into the array after A, it is 

transformed by 0(0)6 = x to the solution vector x. While this algorithm is fast (complexity 3n 

cycles) it requires pivoting to maintain stability, which is difficult to implement for a systolic 

architecture. Additionally, the algorithm requires cpus for processing —/AT, demanding almost 

twice the number of cpus compared to other systolic algorithms. 
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4.5.1 The Jainandunsing feedforward algorithm 

The algorithm proposed by Jainandunsing [Jainandunsing 89] is a feedforward direct procedure 

involving a reorganisation of the backsubstitution into a feedforward sequence, so that the 

sequence of results from the factorisation (which is itself different from the previous algorithm) is 

immediately processed by the new feedforward phase that follows (in fact, the backsubstitution 

has been rephrased as an LU-type factorisation). The factorisation, instead of producing U 

and y starting from column 1 of U, produces [LT U~T] starting from row 1. The feedforward 

algorithm that follows accepts the [LT U~T] values in the order they are generated. Non-

singular matrices are assumed. 

Variations have been developed by Jainandunsing for Cholesky factorisation (hyperbolic rota­

tions) and Q R factorisation (orthogonal trigonometric rotations). Here, we use the L U variation 

because it uses linear rotations, which are cheaper to compute than hyperbolic or trigonometric 

rotations. Although the L U factorisation is susceptible to numerical stability problems due 

to roundoff errors [Jainandunsing 1989], it was chosen because the matrices dealt with in this 

thesis are positive definite and very small in size, for which numerical problems are unlikely to 

occur. The number of cpus required is also reasonable, as apart from the array for the A 

matrix, only one extra row of n cpus is needed (to process the b vector). Thus the architecture 

in Fig. 4.1 is ideal for this solver, since row 0 is already used to calculate 6 while rows 1 through 

n are used to calculate A t . 

If instabilities are likely to occur, the Q R factorisation variation should be chosen. For the QR 

factorisation, the computer architecture remains the same as for the L U factorisation, but the 

linear rotations are replaced by trigonometric rotations. 

factorisation 

Consider the augmented matrix AT IN • ^ matrix is premultiplied by U~T, it will 

be factorised to [LT U~T]. U~T can be defined as a cascaded backward series (N, ...1) of 

embedded rotations in a manner similar to the previous factorisation matrix 0(0). If the 2x2 
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embedding is a premultiplier of the augmented matrix, it is 

4 - i 

1 0 

a 

iN-i 

; i,j = 1,...N-1. (4.22) 

For j= 1, n^ 1^,,! is a cascaded backward series (£//v-i,i)(£0v-2,i)—(^i,i) of rotations which 

zeros the below-diagonal elements of the first column in A T . The appropriate choice of a.j is 

a i i / a i ! i - The resulting matrix is then A7^1). This can be repeated for j = 2, ...JV — 1 where 

a t J = a\ j*/ajJj such, that we get 

( n ^ . x ^ . i v - i ) . . . ^ 1 ^ ) (n^Xa) [AT IN] = [LT U~T] (4.23) 

The above multiplication yields a factorisation in which the rows of [LT U-T] are produced 

in row order starting from row 1. By producing ^LT U~T] in this order, the rows can be 

immmediately sent to the feedforward algorithm. 

b a c k s u b s t i t u t i o n r e d e f i n e d as a fe e d f o r w a r d a l g o r i t h m 

Assume that the factorisation has occurred and the factors |xr U T] are available. Consider 

Ax = b where A = LU. If Ly = b and x = U~xy, then 

[yT i] 
LT 

-bT 

(4.24) 

[yT i] 
u-T 

0T 
= x (4.25) 

The matrix [L — b]T can be reduced to an upper triangular form [RT{0) 0]T in which the last 

row is zero (i.e. the — bT row is zeroed) by applying a sequence of rotations 0(0) = I I ^ G . t O ) 
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where 

0,(0) = (4.26) 

0(0) 

a, 1 

' LT ' R(0) 

-bT 0T 

(4.27) 

-R(O) is an upper triangular remainder matrix equal to TJ. Equations (4.23) and (4.26) both 

produce 0, suggesting that the last row of 0(0) is proportional to k[yT 1], where A; is a scalar 

proportionality constant (k=l for the LU method [Jainandunsing 89]). This allows equation 

(4.24) to be rewritten as 
r U~T 

since the last row of 0(0) is k[yT 1]. Thus, grouping (4.26) and (4.27), 

0(0) = x (4.28) 

R(0) ? 

-bT 0T 0T xT 

0(0) = , (4.29) 
[ -bT 0T \ I 0T xT \ 

where ? implies an unused result, 

interleaving 

Premultiplying the matrix [AT IN] by n^j 1 ^ ! eliminates the first column of the strictly lower 

part of the augmented matrix. The output is the first row of [LT U~T], which is then fed 

directly into the rephrased 'backsubstitution' calculator. This feedforward 'backsubstitution' 

algorithm applies 0i(O) to the just-received first row of [LT U~T] and to the first element of 

vector [—bT 0], causing the first element b\ to be zeroed (the first 0 in the bottom row of the 

result matrix in equation (4.26)). Continued interleaving of the Il^^Uij and 0j(O) eventually 

results in the solution vector xT being produced after 4n cycles, x\ being first after 3n cycles. 

A systolic array for this algorithm is shown in Fig. 4.4. 
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Figure 4.4: Systolic array for solving the matrix equation Ax = b 
integration of formation and solving phases 

The elements of A and b are distributed throughout the array by the inertia matrix and force 

vector algorithms during calculation. The solver algorithm in Fig. 4.4 requires that A and 6 
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be moved to the edges of the array before beginning. Fig. 4.5 shows the movement of the data 

to the cpus of row 1 e.g. A44, A34, A24 and A14 are shifted to cpux4. Similarly, A34, A33, A23 

and A13 are shifted to cpui3. Note that Aij = Aji i.e. A = AT. This data movement phase 

requires n — 1 data shifts, each one moving a single float value. These communications cannot 

be hidden by computations. The b cpus (cpus 01 to 04 in row 0 of Fig. 4.5) are connected not 

w 

row 0 

cpu 00 

row 1 
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row 4 

e w b 2 
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l22 

n n 
e w b 3 

e w 
Ml 

s 
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l23 
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e w °4 
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e « 

111 
s 

n 

24 

34 

*44 

Figure 4.5: Data shifting phase prior to solver 

only to cpus 11, 12, 13 and 14, but also to 44, 34, 24 and 14 respectively through north-to-east 

links (see Fig. 4.5). To derive a simple and efficient data shifting phase that integrates well 



Chapter 4. A Parallel Dynamics Algorithm 88 

with the solver, the 6 (row 0) cpus are aligned as column '5' and placed next to the 4th column 

of cpus, as shown in Fig. 4.4. If this rearranged architecture is not used, an alternative data 

shifting algorithm (bringing the data in row t out to cpu,\i) is twice as long, since the elements 

a,j collected in cpu,4 must be moved to cpu4_,,4 after they are brought to the edge of the array, 

in order to get the data arrangement required in Fig. 4.4. Fig. 4.5 shows how the cpus are 

arranged in a cone-like mesh architecture. 

/* row_id is the row in which this cpu resides in the mesh */ 

for( i = 1; i <= twoN; i++ ) 
{ 

Chanln( northin, (char *)&yold, 4 ) ; 
Chanln( westin, (char *)&xold, 4 ) ; 
if( i == row_id ) alpha = —yold/xold ; 
if( i < row id ) 
{ 

xnew = 0.0 ; 
ynew = 0.0 ; 

} 
else 

{ 
xnew = xold ; 
ynew = yold + alpha*xold ; 

} 
ChanOut( southout, (char *)&ynew, 4 ) ; 
ChanOut( eastout, (char *)&xnew, 4 ) ; 

} (4.30) 

producing and using 0 

The solution vector x = 0 is produced at cpuoo (see Fig. 4.4), and the <?, are redistributed back 

to the 6, cpus (cpuo.i) via the west link of cpuoo to the east link of 64 as they are produced. The 

0i are integrated by each cpu0,,' to obtain 0, (necessary for calculating the angular velocity), 

and integrated again to get 0,-, which is used by the graphics display of the dynamics simulator 

(further discussed in Chapter 5). The 0; has to be fed back along the row 0 pipeline to cpuo,o 

and on to the host or the graphics computer. Each cycle in the systolic algorithm requires 
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(lx,l+) for the rotation (a multiply and accumulate). One -f (equivalent in cost to a x) is 

necessary to calculate Q , J =
 ffljJj/ajj (or aoj = —^Vajj f° r the force vector cpus) once during 

the algorithm for each cpu. The C code for a cpu implementing this solver is given above in 

(4.30). The last value of 0, is produced after An cycles, in contrast to 7n — 5 cycles for the 

previous factorisation and backsubstitution algorithm. The communications of intermediate 

data and the rotation computations cannot be overlapped, and so the communication cost is 

An cycles (passing single floating point values), plus n cycles for the initial data shifting phase 

described earlier. 

4.6 Summary of the Proposed Forward Dynamics Algorithm 

To complete one cycle of the forward dynamics algorithm, it is necessary to 

1. Calculate the force vector fv 

2. Calculate the inertia matrix M 

3. Solve the matrix equation MO = fv + ra. 

This thesis has developed 0(n) multiprocessor algorithms for all three of these phases. The 

n cpus in row 0 and the n{w+*) cpus in rows 1 to n simultaneously calculate [L mp] and H, 

respectively, and then multiply by HT to compute /„ and M. These two phases require a 

2d mesh architecture as data must be passed between nearest neighbours. Following this, the 

elements of reside in cpuo,- and Mij reside in cpu,j. This data is shifted to the edge (row 

1 cpus cpui, and cpuo4) and the system is then solved using a new systolic solver derived by 

[Jainandunsing 89]. The costs associated with each phase of the proposed algorithm are given 

in Table 4.8 for the W (Wong) algorithm. 

4.7 Parallelism in Other Formulations 

In this section a discussion on the parallel formulations mentioned in Chapter 2 is presented 

in which the computational complexity is considered in more detail. The complexities of the 
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/. M solver M 1 

L X 

+ 
87 
15|"log2 n] + 65 

9\Sf-] +31[log2 nl + 116 
S p f H + 28[log2 nl + 3r» + 92 

7n - 5 
7n - 5 

9fZf-] + 31 [log2 nl + 7n + 111 
5 f ^ i i ] + 28flog2 nl + lOn + 87 

cpu n(c) n(c) (m) 
W X 

+ 
24n + 27 
19n +25 

22n +24 
22n +5 

4n+l 
4n 

26n + 25 
26n + 5 

cpu » ( P ) (m) ^ i i + n ( m ) 
A ftS 

cpu 

27n + 99 log2 n - 1 

"(c) 
F X 

+ 

cpu 

48flog2 nl + 102 
63[log2 n] + 66 

SiS+il (m) 
H X 

+ 

cpu 

27[log2 n] + 6n+ 109 
3l[log2 n] + 5n + 92 

» ( P ) 

7n - 5 
7n - 5 

(m) 

27[log2 nl + 13n + 104 
31flog2 nl + 12n + 87 

Table 4.8: Parallel computational complexity 

inertia matrix, force vector, and solver algorithms developed in this thesis are summarised 

in Table 4.8. In the following discussion the communication complexity is discussed but not 

explicitly estimated in the Table. This is because the authors of the various formulations that 

are listed in Table 4.8 either excluded or completely included all communication costs, and 

did not consider the case when some communications could be hidden. Thus, to compare the 

algorithms under similar circumstances, a comparison is made solely on computational costs. 

It should also be noted that the complexity estimates in Table 4.8 are not exactly as presented 

in the relevant papers cited. It has been necessary to assume that extra cpus are available to 

compute the force vector values, so that this cost is masked by the inertia matrix. Additionally, 

in cases where only the inertia matrix formation is discussed, Liu's systolic solver has been 

assumed to calculate the matrix solution. 

In Table 4.8, (p), (c), and (m) indicate pipe, cube and mesh architectures respectively. L, W, 

A, F, and H refer to the Lee [Lee 88], Wong (this thesis), Amin-Javaheri [Amin-Javaheri 88], 

Fijany[Fijany 89], and Hwang [Hwang 88] formulations, while cpu refers to the number of cpus 

used. 



Chapter 4. A Parallel Dynamics Algorithm 91 

4.7.1 Lee and Chang 

Lee and Chang [Lee 88] implemented their composite rigid body based force vector and inertia 

matrix algorithms on an n processor generalised cube network architecture. The force vector 

was computed in 0( [log2 n]) time and the inertia matrix algorithm in 0(n + riog2 n] ) time. To 

achieve this, the recursive doubling algorithm (RDA), which is used for many of the calculations 

(e.g. calculating the rotational matrices A 0 , the composite centre of mass c,-, and the composite 

body inertia J{ (z = l,...n)), computes each variable in O(|log2n]) time. It is implemented 

using the generalised cube as a |log2 ra] stage switching network for distributing the intermediate 

matrix data among the cpus (Fig. 4.6). The RDA algorithm computes A 0 in O(|log2ra]) 

I 
N 
P 
U 
T 

O 
U 
T 
P 
U 
T 

STAGE 

Figure 4.6: Generalised cube network topology for n = 8. Adapted from [Lee 88] 

time by subdividing the computations into pairs of matrix-matrix multiply operations over 

[log2 n] stages. To hide the communications cost of sending or receiving A\ matrices, Aj 

must be divided into three 3x1 vectors, each sent one at a time so that the matrix-matrix 
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multiply can be computed as three matrix-vector multiplies. This only hides two of the three 

vectors, but the beginning of the next matrix-matrix computation can begin while the last 

result vector is being transmitted. This method of hiding communications also applies to 

the computation of J,-. Another instance of the RDA algorithm, however, the recursive vector 

addition of the composite body centre of mass c, (a 3 x 1 vector), cannot overlap communications 

with computations since the complete vector result (a computation 'atom') must be computed 

before being communicated to the next stage. 

Lee's n("2
+1) mesh algorithm, which uses an n cpu cube architecture for the inertia matrix and 

an w(n+1) systolic mesh to solve the matrix equation, is presented in Table 4.8 as formulation 

(L). Lee uses Liu and Young's systolic Cholesky solver algorithm [Liu 83]. In (L) we assume 

that an extra n cpus is available to calculate the force vector simultaneously with the inertia 

matrix n cpu pipeline. Thus, Lee's architecture requires 2n cpus to form M and /„, each 

n forming a generalised cube network, followed by an mesh to solve the equations. 

The complexity of Lee's formulation is presented in Table 4.8. Note that we have assumed 

Jainandunsing's complexity estimate of 7n — 5 cycles for Liu's systolic Cholesky factorisation 

(plus backsubstitution) algorithm. Lee's inertia matrix complexity has an added 3(n — 1) 

additions which were left out in Lee's complexity polynomial (equation 25 in his algorithm). 

The last column of the table is the sum of the inertia matrix and solver complexities, since it 

is assumed that the force vector complexity is approximately the same as the inertia matrix 

complexity, and is therefore hidden when calculated simultaneously. 

4.7.2 Amin-Javaheri and Orin 

Amin-Javaheri and Orin [Amin-Javaheri 88] developed a number of parallel algorithms for the 

inertia matrix, the most efficient of which used a hypercube architecture. The composite body 

variables c,, J, and Af were calculated in O([log2n]) time using the RDA algorithm and the 

architecture of Fig. 4.7. To reduce the communication delay in the RDA algorithm, com­

putations are duplicated by source and destination cpus so that the data for the next level of 

computation is at most only one hop from its destination. By doing this, the computational 
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Figure 4.7: N=8 processor cube configuration. Adapted from Amin-Javaheri 1988. 

complexity is not increased (the cpus would be idle otherwise), but the communication com­

plexity is minimised to 2[log2n] time rather than the ]T),ti2"' i cost normally incurred by 

the hypercube (e.g. if (5,8) in Fig. 4.7 were to be calculated only in cpu 5, it would have to be 

passed to cpus 1,2,3 and 4 in three hops). Data has to be passed bidirectionally, so there is a 

factor of 2 in the communication cost (assuming only one bidirectional link between any pair 

of cpus). Once the fjj and njj of equation 2.8 have been calculated (see Fig. 4.7), /,-,_,- and n,j 
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(i < j), and column j of the inertia matrix are calculated by the jth cpu in 0(n) time without 

any further communications. 

A direct comparison of computational complexity is difficult with Amin-Javaheri's algorithm 

since the cost is not given as a function of multiplies and adds. The computational complexity 

polynomial (A) in Table 4.8 gives the number of 1 ps cycles. Since Amin-Javaheri and Lee have 

very similar algorithms, it is expected that Lee's complexity is also representative of Amin-

Javaheri's algorithm (e.g. assuming multiplies and adds are 1 ps each, for n = 8 the compute 

times are 473 cycles for Lee and 512 cycles for Amin-Javaheri, which are very close). 

4.7.3 Fijany and Bejczy 

Fijany, like Amin-Javaheri, presented an algorithm for just the inertia matrix [Fijany 89]. He 

used the RDA in a similar manner to Lee and Amin-Javaheri to compute the A 0 and other 

composite body variables in O([log2n]) time. Following this, Fijany computed the inertia 

matrix terms in O([log2 n] + 1) rather than the 0(n) time of Lee, by using the RDA algorithm 

to compute P,j, the vector from hinge i to hinge j. P,j is used in the Composite Rigid-

Body Spatial algorithm (but not in the Composite Body algorithm) according to the following 

equations: 

for i = n, ...1 

for j = i — 1, ...1 

Pij = P W + Pj+1J (4.31) 

Mj,i = zf(m + P^ x ft) (4.32) 

The computational complexity of equations (4.31) and (4.32) is O([log2 n\) on a hypercube and 

0(1) on an n("2
+1) mesh, respectively. 

The complete algorithm is mapped to a 2d n^"2
+1^ nearest neighbour mesh. By choosing this 

architecture, the RDA communication cost increases to 0(Y^f2 2 , _ 1), as the data must be 

passed from neighbour to neighbour in order to imitate the hypercube structure. This increases 
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the communication cost of the RDA by 150% [Fijany 89], but the communication architecture 

can be reused for matrix solving (whereas the n cpu hypercube architecture does not implement 

a systolic solver as efficiently as a mesh architecture). 

4.7.4 Hwang, Bae, Haug and Kuhl 

The orthogonal complement algorithm proposed by Bae [Bae 88a] has been implemented on 

an Alliant FX/8 multiprocessor, an n cpu shared memory bus architecture. Because the for­

mulation deals with closed loop constraints, which require the identification of dependent and 

independent coordinates and the maintenance of constraints, the computations are much more 

complex than those for an open loop chain. As a consequence, the computational complexity 

polynomial was not given by Hwang and Bae [Hwang 88]. 

To directly compare the Hwang's algorithm we have estimated the performance of the algorithm 

for a single open chain in Table 4.9, making a number of assumptions. To take advantage of the 

fact that the variables are all referred to the inertial frame (and therefore A 0 must be calculated) 

we have assumed a hypercube architecture and the RDA algorithm for calculating A 0 and Ki. 

An "("+*) mesh has been added to solve the matrix systolically using Liu's algorithm, and the 

force vector is assumed to be simultaneously calculated on another n cpu cube (and therefore 

will not be counted in the complexity estimate). Table 4.9 presents the operations described in 

Chapter 2. 

The calculation of A 0 , x ° 0 and A', are performed using the RDA algorithm. Operation 10, 

Ki = 2~J?=i M{, requires that Mi be sent to neighbouring cpus. Only 10 values need to be sent 

in each direction for each data transfer of operation 10 because of the symmetry in M,-. It is 

possible to reduce the computations of operation 12 to (6x,5+) by distributing the (Bj Ki) 

and Bj vectors throughout the mesh. This, however, would require a complex algorithm to 

distribute the vectors, followed by another phase in which the inertia matrix elements must be 

brought to the edge of the mesh before the solver can begin. It is thus not worth the extra 

cost in communications to do this unless data communications becomes much cheaper, and so 
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# operation cost comms 
no. floats 

cpus 

1 AU 4x 0 n 

2 A°i riog2nl(27x,18+) 6[log2nl n 

3 APJA? 36x,24+ 0 n 

4 ... — AO 1 _ AOKi . 
v* — A t - l l i - l , i At Kt,i 18x,15+ 3 n 

5 xi,0 ~ Xi-\,0 + V* 3riog2nl + 6flog2n] n 

6 3x 0 n 

7 rni(xlo)2 6x,3+ 0 n 

8 J? " ™.(*?,o)2 9+ 0 n 

9 6x,8+ 0 n 

10 10flog2 n l + 20riog2 n] n 

11 BjKi 36x,30+ 0 n 

12 (Bj K~i)Bj n(6x,5+) 6(ra - 1) n 

13 M-1 (7n-5)x,+ 7ra-5 n(n+l) 
2 

Table 4.9: Estimated computational complexity for Hwang's algorithm 

operation 12 is assumed to be executed by the n cpu cube architecture in 0(n) complexity. 

4.7.5 Complexity Comparison 

Fig. 4.8 is a plot of the computational complexity for forming the inertia matrix alone (an + 

is 0.5 /is, half of the cost of a x, using an Inmos T800 transputer). The performance of the 

proposed 0(n) inertia matrix algorithm (W) is linear. The algorithm is more efficient at lower 

degrees of freedom than the other algorithms in Table 4.8. The exact crossover point is sensitive 

to assumptions made about the cost of implementation for each method. The implementation 

assumptions used in Section 4.7 indicate that the proposed algorithm is more efficient for up to 

13 degrees of freedom (excluding communication costs). When the computational cost of the 

solver is added to the cost of the inertia matrix algorithm (Fig. 4.9), W apeears to be more 

efficient for chains of up to 15 degrees of freedom. It is assumed in algorithm W that the Jw 

and Jw computations are executed by row 1 cpus in algorithm W, and so their cost is included 

in the M estimate. Algorithm F is included in the figure by adding the complexity of Liu's 

solver. 
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Figure 4.8: Computational complexity for the parallel algorithms of Table 4.8, assuming only 
M is calculated. L - Lee, F - Fijany, H - Hwang, W - Wong (proposed algorithm). 
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Figure 4.9: Computational complexity for the parallel algorithms of Table 4.8, including M 
and feedforward solver. L - Lee, F - Fijany, H - Hwang, W - Wong (proposed algorithm). 
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4.8 Summary 

The orthogonal complement formulation derived in Chapter 3 has been parallelised. New 

parallel algorithms for the inertia matrix and the force vector have been developed, producing 

0(n) parallel algorithms for single chain mechanisms which are conceptually very simple. 

The proposed algorithms map onto a 2d + n nearest-neighbour mesh architecture (an 

extra cpu is used to connect to the host). The connections are wrapped around to form a 3d 

cone-like architecture (this aids in the data shifting phase of the algorithm, when data must be 

routed to the edge of the array in preparation for the matrix solver). The algorithms make full 

use of the computational resources i.e. the pipeline used by the force vector algorithm and the 

triangular mesh used by the inertia matrix algorithm are reused by the systolic matrix solver. 

The systolic feedforward solver is very efficient, and does not require the storage and reordering 

of the intermediate results between factorisation and backsubstitution phases, which is required 

by the algorithm proposed by Liu. 

In comparison to other parallel dynamics formulations, which are of 0( flog2 n]) or 0( [log2 n] + 

n) complexity, the proposed 0(n) formulation is more efficient for mechanisms of 15 degrees 

of freedom or less (this will vary, however, depending on the assumptions made for each of the 

implementations). The O([log2 n] + n) algorithms are less efficient for low numbers of degrees 

of freedom because of the high initial cost of calculating the rotation matrices that refer each 

body's variables to the inertial frame. The proposed formulation uses nearest-neighbour com­

munications routing, which makes expansion of the architecture to accomodate larger n very 

simple. The O(flog2n] + n) algorithm proposed by Lee and Amin-Javaheri uses a hypercube 

architecture, which is not amenable to VLSI integration, and requires relatively complex com­

munication strategies to minimise the communication cost (this not only includes redundant 

computations in source and destination cpus, as discussed before, but also includes the addition 

of extra communication links when n > 16). The 0(|"log2n"|) algorithm proposed by Fijany 

uses a mesh architecture, but extra communication costs are incurred when the RDA algorithm 

is implemented. One drawback of the formulation proposed here is that the HT multiplication 
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phase in the inertia matrix and force vector algorithms requires data to be sent in the reverse 

direction (west to east and north to south) compared to that of the previous phase (when [L mp] 

and [C p x C] were calculated) (east to west and south to north). This means bidirectional 

links are necessary, in place of the simple unidirectional links which have been proposed by the 

designers of VLSI systolic arrays. 



Chapter 5 

The Real-Time Excavator Simulator 

5.1 The U B C Teleoperation Project 

This chapter describes the development of the real-time simulator for a Caterpillar 215B heavy-

duty excavator. The 215B is typically used in primary industries such as forestry, mining, 

and construction. The objective of the UBC teleoperation project is to convert this type of 

machine, with minimum changes, to a semi-automated, human-supervisory control system. The 

simulator developed in this thesis is a fundamental part of this effort. Semi-automated control 

uses both human supervision and efficient robotic power for tasks in which these characteristics 

can simplify operations, such as tree harvesting and materials handling. Present operation 

of excavators and other similar hydraulic equipment is heavily influenced by the skill and 

smoothness of the human operator. Computerised joystick control can improve the ergonomics 

of the present lever per joint arrangement by, for example, having the joystick mapped to 

Cartesian-like workspace (the world coordinates are inertially measured x,y, and z) rather 

than joint space. The operator thus controls the end effector of the excavator, letting the 

computer calculate the control signals needed to achieve the desired endpoint motion. This 

design change can improve the ease of use, which should decrease the time necessary to attain 

a high level of skill, and simplify the low level decision making required from the operator. 

The excavator is modeled as a large system consisting of two subsystems - a complex hydraulic 

actuation system, and a rigid multibody mechanism. The multibody dynamics is represented as 

a four link mechanism forming a single chain, with each link having one rotary degree of freedom. 

Although most heavy-duty manipulators use piston hydraulics with a complex arrangement of 

coupled hoses and pressure sources, for this thesis we have simulated simple rotary hydraulics. 

101 
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This is because the true actuation dynamics are highly nonlinear and interconnected, with a 

mixture of fast and slowly changing state variables, causing the system to be mathematically 

stiff and inefficient. Overcoming the problem of stiffness, so that the integration technique for 

the hydraulics can be matched to the integration algorithm used by the multibody dynamics, is 

a thesis topic outside the scope of this thesis. Another participant in the project has simulated 

the true hydraulics equations [Sepehri 90], and this work is currently being integrated into the 

simulator. 

As the excavator is a single chain mechanism, the 0(n) parallel algorithms developed in Chapter 

4 are suitable for the simulator. In the next section, the mechanism is described based on 

information obtained from the specifications of the Caterpillar 215B and from [Sepehri 90]. 

The discussion then focuses on the hardware requirements necessary for the simulator, as de­

termined by the algorithms of Chapter 4 and by the computer architecture needed to integrate 

other components of the simulator, such as the graphics display and the controller. 

Next, the implementation of the simulator is discussed. This includes the organisation of a 

parallel fixed stepsize Runge Kutta integration algorithm, the development of equations for 

simple rotary hydraulic actuators, and the organisation of the input and output between the 

dynamics simulator and the display and joystick devices. 

Following this, some experiments will be presented which demonstrate the operation of the 

simulator, and its use in experiments on joint and resolved mode joystick control. A timing 

and complexity comparison is made between single and multiple cpu versions of the simulator 

as a measure of the effectiveness of the implementation. 

5.2 A Description of the Caterpillar 215B 

The Caterpillar 215B is a tracked excavation mechanism with four rotary links named the cab, 

boom, stick and bucket (Fig. 5.1). The cab sits upon the base and swivels about a vertical axis. 

The operator sits within the cab, controlling the excavator with a pair of two degree of freedom 

joysticks. Each degree of freedom controls one link. The boom is the anatomical equivalent to 
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the upper arm of the human body; it rotates about a horizontal axis and provides the ability 

to lift the bucket. The stick is analogous to the forearm, and is used with the boom when 

reaching. The bucket is the end link which is used to dig or carry the load, and is analogous to 

the human hand. Both the stick and the bucket also rotate about horizontal axes. 

Figure 5.1: Initial coordinate arrangement for Caterpillar 215B and resolved mode parameters 

Fig. 5.1 is a diagram showing the coordinate frames attached to the mechanism in its initial 
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position. The coordinate frames are attached to the centre of gravity of each body. The 

cab, boom, stick, and bucket are labelled links 1 to 4, respectively. The parameters used for 

the simulation are in metric units of kg for mass, m for length, kg • m2 for inertia, and deg for 

angle: 

mi = 8031, ^ = [-1.05 0.04 -0.5], /£ 2 = [0.35 -0.12 0.5] 

m2 = 1830, k{2 = [-2.3 - 0.2 0], /£ 3 = [2.9 - 0.2 0] 

m 3 = 688, A;33 = [-0.9 - 0.1 0], = [0.9 - 0.1 0] 

m4 = 512, kj4 = [-0.5 - 0.5 0] 

The twist angles are Q\ = 0, a 2 = 90, a 3 = 0, and a4 = 0, and the inertia matrices are: 

8000 0 0 

0 8000 0 

- 0 0 15700 

T2 -

I3 -J3 — 

10 0 0 

0 600 0 

0 0 600 

7 4 

i J4 

100 0 0 

0 15400 0 

0 0 15400 

130 0 0 

0 130 0 

0 0 130 

4 _ 

5.3 Architecture and Hardware Considerations 

Robot systems often have many diverse tasks that can run in parallel, such as the dynamics (in­

ertia matrix and force vector formation), the inverse kinematics, control algorithms, and sensor 

fusion algorithms (e.g. image understanding and touch sensing). Although some tasks such as 

image processing operate well using an SIMD (Single Instruction, Multiple Data) architecture, 

the simultaneous operation of many of the above tasks necessitates an MIMD (Multiple Instruc­

tion, Multiple Data) approach, so that different computational structures can be accomodated. 

As an example, image processing and dynamics are two tasks that can run in parallel, but may 

be processed by different computational units. Expandability, connectivity and global access 

to sensors are also important considerations. Expandability is an issue because mechanisms 
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with other topologies will eventually be simulated. Connectivity must be considered so that 

communication latency is minimised. 

These requirements have directed our choice of computer architecture to a crossbar+bus based 

multiprocessor system. The crossbar, a 2d mesh of switches providing a non-conflicting path 

between any pair of processors, has a high data bandwidth for local task computations in 

which cpus are interconnected by the crossbar to perform a common task. The bus provides a 

path between clusters (each cluster forming around a small crossbar network and performing 

a different task e.g. dynamics). The architecture chosen for this project consists of a 32 bit 

global VME bus using a SUN 3/280 work station as the file-serving host running UNIX. A 

cluster of cpus made up of thirty four Inmos T800 transputers is connected together in a 2d 

mesh and to the host by a crossbar network. The crossbar is used to imitate the mesh as it has 

great flexibility in connectivity and can adopt architectures that are suited to many tasks. By 

forming a mesh the expansion to larger n is easily accomplished by adding new columns of n 

cpus. 

For the excavator simulation, the crossbar forms a cluster of fourteen transputers configured as 

a 2d triangular mesh (Fig. 5.2). Transputer cpuo,o connects the mesh to both the host and to 

another transputer which controls the spool response. The control transputer also connects to 

the display and joystick subsystems. 

A Silicon Graphics IRIS 4D70GT is used to present a real time, hidden-surface-removed display 

of the external environment as viewed through the front window of the excavator cab. The 

IRIS is connected to the control transputer via an RS232C cable, which is then converted to 

the RS422 standard for the transputer link. Two joysticks are connected by an A/D board to 

the IRIS. In normal operation (JOINT mode), each joystick has two degrees of freedom, while 

in Cartesian-like endpoint control, one joystick has three degrees of freedom and the other has 

one. Data from the joysticks is read by the IRIS computer and sent on the RS232C/RS422 link 

to the control transputer. Data is also passed from the mesh via cpuo,o through the control cpu 

to the IRIS. 
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VME 

cpu 

cluster 

Figure 5.2: Computer architecture for the excavator simulator 

5.4 Implementation of the Simulator 

5.4.1 Multibody dynamics and distributed Runge Kutta 

In Fig. 5.2, row 0 is used to calculate the force vector fv (3.27 to 3.31, and 3.34), and rows 1 

through n (n=4) are used to calculate the inertia matrix (3.17). cpurj,o provides a link to the 
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# row 0 rows 1 to n 

Do j = 1 to 4 { 

1 Calculate actuator torque r a no activity 

2 Calculate [L mp] (eqs. 3.27 to 3.31 sec. 4.3) Calculate [JC M(p x C)] (eq. 3.17, sec. 4.2)) 

3 Multiply by RT to get /„ (eq. 4.8, sec. 4.4.1) Multiply by BT to get M (eq. 4.8, sec. 4.4.1) 

4 Move b = /„ + r a to cpuo,4 (Fig. 4.5) Move Mij to cpui,,- (Fig. 4.5) 

5 Solve for 8, results reside in cpuo.o (Fig. 4.4) Solve for 9 (Fig. 4.4) 

6 Move 8i from cpuo.o to cpuo,; no activity 

7 

} 

Integrate di to get 8 and 8 (5.1), 
and then transmit 8i from cpuo,; to cpui.i. 

no activity 
Receive 8i from cpuo,; 

8 Send 9i from cpuo.i to cpuo.o and then to IRIS no activity 

9 Send Xi from control cpu to cpuo.o and then to cpuo,; no activity 

Table 5.1: Tasks required for the dynamics simulation 

host for program development, down loading, and data storage. 

Table 5.1 lists the tasks performed by row 0, and rows 1 through 4. Tasks 1 to 7 are evaluated 

in a loop four times, and then the 8 are sent out to the display in task 8. The spool valve 

openings x, calculated by the control transputer from the joystick data, are sent to cpuo,o and 

on to the array (tasks 8 and 9). 

The calculation of the actuator torques ra will be discussed later. Tasks 2 and 3 use the 

algorithms described in sections 4.2, 4.3, and 4.4 of Chapter 4 to derive Al and /„. In this 

implementation of A l , the cross product (p\j x cjj) is calculated by each cpu before the dot 

product (method 2 in section 4.3), since the cost of communications using transputers is not 

small. Task 4 is the data shifting phase discussed in section 4.5 and shown in Fig. 4.5, which 

moves the elements of b and Af to the edge of the array. Task 5 uses the Jainandunsing systolic 

solver algorithm to calculate 6. Task 6 redistributes the since the values are resident in 

cpuo,o after the solver has finished. 
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Task 7, the Runge Kutta integration algorithm, is distributed among the cpus of row 0. The 

differential state vector y for link i resides in cpuo.i, and consists of four variables: 0,, 0,-, and 

the input and output differential pressures p,n(i) a n £ l Pout(i) ° f the rotary hydraulic actuator. 

At the end of task 6 in Table 5.1, the 0, are available in cpu t )o. The fourth order fixed step-

size Runge Kutta algorithm presented by Press [Press 88] is then used to determine the new 

y = [0, 0, Pm(i) Pout(t')]- This is done by evaluating tasks 1 to 7 four times, each time calculating 

a new y from an updated state y for a partial step across the interval h — 0.01. At the end of 

the fourth evaluation, a weighted average of the four estimates of y is used to obtain the true 

y over the interval h. The Runge Kutta algorithm for each link is exactly the same as for the 

single cpu algorithm, except that it only applies to the states related to link i. Given an initial 

state y, the algorithm is: 

derivative(y, yx); 

for(i = 0;i < 4 ; i + +) 

yt[i] = y[i] + f 

derivative(yt, yt); 

for(i = 0; i < 4; i + +) 

vt[*\ = y[i\ + iyt[i\, 

derivative(yt, y m ) ; 

for(i = 0;i < 4 ; i + +) 

{ 

yt[i] = y[i] + hym[i}\ 

ym[i\ = yt[i] + j m M ; 

} 

derivative(yt, yt); 
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for(i = 0; i < 4; i + +) 

»[*'] = »[«] + £(»*[»] + »[*] + 2^mW); 

(5.1) 

The derivative(y, y) function calculates y from y. Task 8 is an output operation occurring once 

every step h if the state vectors y and y are recorded in a file, or once every ^jth of a second 

(5/i in this simulation) if the 6{ is sent to the display computer. To send this data out, the 0,-

is passed out from row 0 cpus to cpuo.o, and then either sent out to the IRIS for display or to 

the host for storage. In task 9 x, is sent to cpun,o from the control transputer. 

5.4.2 The actuators 

The actuators simulated in this thesis are simple rotary hydraulic ones, actuated independently 

through a valve controlled, hydraulic pressure system. 

The voltages v calculated by the control cpu from the joystick commands c are converted to 

spool openings x by adding a centre deadband of d = ± 0.005 cm and limiting the range to 

± 0.05 cm (Fig. 5.3). The x values are sent to cpuo,o, and each cpu in row 0 (operation 1 of 

Table 5.1) reads x,-. A negative sign for x, indicates a reversal of the flow, which would cause 

the link to rotate in the reverse direction. Then, the previous time step's pressure p,n and pOXit 

are limited between Pe (the drain tank pressure) and Ps (the tank pressure). The flows are 

then calculated as follows: 

<Ps- Pin, 

'Pin - Pe, 

'Pout ~ -Pe; 

else Qout - kjx • \/Ps- pout; (5.2) 

where kj is the valve coefficient. The actuator torque ra for the link is then 

Ta = (Pin ~ Pout)^-G - Pm0 (5.3) 



Chapter 5. The Real-Time Excavator Simulator 110 

deadband 

Figure 5.3: Voltage (v) to spool (x) relationship with deadband 

where G is the gear ratio of the actuator, Dm is a motor constant, the value 8 is the imperial-to-

metric unit conversion factor, and (3M is a velocity damping constant inherent in the actuator. 

ra is added to / „ to get the force vector b. 

The differential pressures are proportional to the valve flows Q, the link velocity, and the 

hydraulic compliance and may be described as follows: 

Pin = (Qin-dDmG)(3v; 

Pout = (BDmG — Qout)Pv] (5.4) 

Thus, given the pressures and the values of the spool displacements, it is possible to calculate 

the flows, the actuator torques, and the differential pressures. Table 5.2 gives the parameter 

data for the simulation. 
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range/value 
Pe (psi) 0.0 
x (cm) ± 0.05 
d (cm) ± 0.005 
kf 26 
Dm 0.7 
Pv 1000 

cab boom stick bucket 
Ps (psi) 4000 7000 4000 4000 
G 307 545 220 250 

An 100000 100000 30000 100 

Table 5.2: Parameters used in excavator simulation 

5.4.3 T h e display and joystick interface 

The joysticks and the display are interfaced to the dynamics computations by the control 

transputer and cpun,o- These cpus control the updating of the display and the actuation of the 

simulator. Fig. 5.4 and the following sections describe the procedures involved in the interface 

routines between the IRIS, the control transputer, and cpuo,o-

the IRIS 

The IRIS displays the view from the cab of the excavator every ^ t h of a second using 0, data 

received from the interfacing cpus (cpun,n and the control transputer). It also samples the 

joysticks and then sends this data to the control transputer. 

The IRIS first reads the joysticks, obtaining four values. In JOINT mode, when each degree 

of freedom in the joystick represents a link rotation, the values represent angular velocity 

commands 0t- for the cab, boom, stick, and bucket links. In RESOLVED mode, the values 

represent the linear velocity commands along the radius axis (in a radial direction from the 

cab), the arc axis (tangential to the arc motion made by the end effector), in the z axis (in a 

Cartesian sense, the up-down motion of the end effector), and the angular velocity command 

of the bucket relative to the inertial frame (the ground plane). 

The velocity commands c (linear or rotational) are sent from the IRIS to the control trans­

puter through the RS232C line at 9600 baud. The control transputer runs an interrupt driven 
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buffering routine for receiving the data. 

The IRIS then waits for the new values of 0, determined by the transputer array to be sent 

back from the control transputer. The are sent from cpuo,o to the control transputer which 

then sends these values on to the IRIS. Since the IRIS receives the angles using an interrupt 

driven buffer routine, the reception of the angles and the transmission of the joystick values 

can be accomplished simultaneously. 

the control transputer 

Once all four velocity command values have been received, the control transputer calculates 

the voltages (v). If the simulator is in JOINT mode, the commands are 8d, and so the voltage 

for each link is calculated using a PD controller according to the following equation: 

v = kv(8d -8) + kv(8d - 8). (5.5) 

The proportional gains kp and differential gains kv for each link of the excavator were chosen 

by trial and error to give a response similar to that obtained when the same PD controller was 

used on the excavator. The values chosen are given in the Table 5.3. 

If the simulator is in RESOLVED mode, the commands are linear, and so the inverse kinematics 

are calculated first to get the desired 8d. Once the 9d are obtained the same PD controller used 

in JOINT mode is used. The simulator 0 values are estimated by a simple differentiation of the 

9 data sent from cpuo,o (this data can easily be read from the transputer array if desired, but 

the communication costs would increase). The 8d values are estimated by a simple one step 

integration using the previously estimated value of 8d and 8d. When u, has been calculated, it 

is transformed to the spool value a;, according to Fig. 5.3 and sent on to cpuo,o-

When the angles for the next time instant have been calculated by the array, the data is sent 

from cpuo,o to the control transputer. 
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cabin boom stick bucket 
kp 2.0 3.0 2.0 2.0 
k 1.0 2.0 1.0 1.0 

Table 5.3: kp and kv for PD actuator spool control 

the interface transputer cpuo.o 

The interface transputer cpuo,o, acts as the gateway between the display, the joysticks, the 

spool transputer, and the dynamics simulator. Initially it receives 0{ data from the cpus in row 

0 through its east link in a pipelined manner. After all four values of 0{ have been collected 

they are sent through the south link to the control transputer and on to the IRIS, where they 

are used to display the excavator. 

5.5 Excavator Simulations 

5.5.1 Timing measurements 

Single cpu implementation 

A single cpu simulation of the excavator was initially performed as a reference from which to 

compare the parallel simulation. The graphics and joystick subsystems were disabled so that 

the dynamics computations alone were measured. One cycle, which is comprised of inertia 

matrix formation (equations 3.17 and 3.23), force vector formation (equations 3.27 to 3.31 and 

3.38), simple actuator calculation (equations 5.2 to 5.4), and matrix solution (sec. 3.4), was 

taken as the best indicator of real-time performance. Results were not stored in a file and the 

stack pointer of the T800 was initialised to lie in the internal RAM so that all stack operations 

were faster than if the stack were in external memory. 

The results, given in Table 5.4, show that the theoretical and actual implementation percentages 

for each phase of the computation are very close, indicating that the complexity estimates are 

relatively correct. Note that the solver was more expensive in practice because an LU solver 

was actually chosen rather than the Cholesky solver since it was a proven and readily available 
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IRIS 
initialization 

C O N T R O L 
C P U 0 , 0 

send 0 

display 9 

* read © 
initialize control 
send 9 — r e a d 0 

send 8 to array 

simulation loop 
Do Forever 
{ get 6 from array - r -

' read joystick c 
send joystick c —• 
read 0 ^ 

display 6 

} 

read 9 * 
•"* send 9 
^ read joystick c 

calc 
calc v 
calc x 
send spool x 

send 9 

' read spool x 
send x to array 

r -

1 

Figure 5.4: The algorithm organisation between cpuo,o, the control transputer and the IRIS 

subroutine. The implementation is a factor of 7.83 times slower than theoretical expectations 

(the theoretical estimate was made based on the multiply and add times of the transputer). It 

is suspected that the extra costs are due to array indexing and subroutine calls, as described 

in Chapter 3, section 3.5.1. 

Overhead costs in computations 

Since the actual computational costs exceed the theoretical costs by a factor of 6, it is worth­

while to investigate the source of these delays. The single cpu excavator simulation was used 
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to time various routines. T h e algorithm in equation (3.17) for calculating H: 

for j = 1 to N { 

for i = j to N { 

[U-lQbcsC}itj 

PU = 
ci ^ i - l C . - l , j t -1 

-1,. 

t -1 

ph x <i 

i > j 

i > j 

HI; = 

} 

Pr1 

} 
was t imed. T h e cost of an inner loop (calculating H\j) was found to be 275 /JS , in comparison 

to a theoretical minimum of 46.5 ps (a factor of 5.9 times slower). T h e operations involved 

in the loop can be found in the table below. T h e overall cost of calculating H was 2260 ps 

(including the cost of calculating A]^), while the theoretical estimate from equations (3.18) to 

(3.22) is 319.5 ps (n = 4). Thus the overall cost is 7.1 times slower for this phase. 

T h e actual cost for a matrix-vector multiply operation was found to be 65 ps, a factor of 

5.4 times slower than the theoretical estimate of 12 /is. It was found that if the 9 multiplies 

and 6 adds required were calculated using normal variable names (i.e. a r r a y O O rather than 

Operation A c t u a l time (ms) % Theory ( x , + ) Theory (ms) % 
inertia matrix 3.01 41.28 286 x,2094- 0.391 42.1 
force vector 3.38 46.41 312x,253+ 0.439 47.26 
actuator 0.35 4.50 44x,24+ 0.056 6.03 
solver 0.56 7.74 32x,22+ 0.043 4.6 
T o t a l 1 cpu 7.28 100.0 674 x,5084- 0.929 100.0 

Total + n cpus 1.353 100.0 143x,115+ 200.5/xs 100.0 

Table 5.4: Theoretical and real t iming estimates of one cycle of simulation on one cpu and the 
multiprocessor ( n(" 2

+ 1) -j. n cpus). 
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operation type x,+ Theory (ps) Actual (/is) 

t2 = A\_x • tl 

p\j = n + kU 

m,- • f 3 

vec subtract 
mat-vec multiply 
vec add 
mat-vec multiply 
mat-vec multiply 
cross product 
scalar-vec 

3-
9x,6+ 

3+ 
9x,6+ 
9x,6+ 
6x,3+ 

3x 

1.5 
12 
1.5 
12 
12 
7.5 
3 

18 
63 
18 
65 
63 
14 
34 

Table 5.5: Timing estimates for calculating H 

array[0][0] ) the cost was 14 ps, very close to the 12 ps estimate. When indexing was added 

(array[0][0]), the cost rose to 21 ps, due to the extra instructions the microprocessor has to 

perform to calculate the indexes into array. When the array value was addressed as a vector 

(necessary in order to write a general matrix-vector function that can deal with variable size 

arrays), explicit integer indexing in the subroutine was necessary to obtain the array element 

addresses. As a result the cost rose to 56 ps. The cost of calling the subroutine (saving the 

state on the stack, and returning the state when finished) was found to be 9 ̂ xs. 

From this investigation, it can be seen that cost reduction can be accomplished by making 

the matrix-vector functions very specific with respect to the size of the arrays used (e.g. 3x3 

matrices). This will reduce the cost of this particular function by 66 %. Direct addressing of 

array elements is very efficient but the resulting code is very specific and not reusable. Similarly, 

removing the subroutine structure is not a good solution as the software will lose its generality 

and also become extremely difficult to debug. 

Parallel cpu implementation 

The parallel implementation was timed for one cycle, but information for each phase was un­

obtainable due to the difficulty of extracting times from individual cpus without a global clock 

as a reference. Another problem is the fact that the transputer array was fully connected into 

a cone mesh, and as a consequence no links were free to connect to the host and provide timing 

data. From Table 5.4 it can be seen that the overall time taken was 1.353 ms. This time is 
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within the period required for real-time operation (2.5 ms for a stepsize of h = 0.01 s and a 

fourth order Runge Kutta). The parallel implementation is a factor of 6.75 times slower than 

theoretical expectations would indicate, again due to arrays, subroutine calls, and in the parallel 

case, the cost of communications. 

The single/parallel speedup factor was in practice 7.28/1.353= 5.38. Theoretically, this factor 

was (674x,508+)/(143x,115+)= 4.63. Interestingly, the actual speedup is better than the 

theoretical speedup in spite of the fact that communications costs were accounted for. Note 

that in this first implementation, it was decided that explicit (and therefore non-overlapped) 

communications should be used to simplify the programming and debugging. As a result, no 

communication costs are hidden. One explanation for the greater speedup factor is that there 

were fewer subroutine calls and smaller arrays than in the single cpu case. It appears that the 

cost of subroutine calls and array indexing is at least as costly as communications. 

Note that the addition of the IRIS and joystick subsystems slowed down the system so that 

when the cost of moving data back and forth was included, the time per cycle was increased 

to approximately 2.1 ms. This is due primarily to the slowness in the RS232C communication 

protocol. Real-time was achieved in spite of this, however, and the simulator is successfully 

running as a man-in-the-loop system. 

5.5.2 JOINT and RESOLVED mode experiments 

Two experiments were performed using the parallel simulator as a substitute for the excavator. 

The concept of resolved mode teleoperated control was compared to joint mode control. In 

both cases PD control was used to control the spool value x to approach some desired motion. 

The experiment was designed by R. Frenette, a staff engineer. The following two subsections 

outline the results. 
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JOINT mode control 

In joint mode control a profile of desired angular velocities 0d for each link is specified from a file 

(rather than read from the joysticks) and fed into the control transputer. The control transputer 

calculates the appropriate x to achieve 6d and then feeds x into the array. The resulting values 

of desired and actual 9 and 0, and v and x are recorded by the control transputer. Figs. 5.5, 

5.6, and 5.7 show the appropriate plots for the cabin, boom, stick, and bucket. 

Fig. 5.5 shows the desired and actual 0. A steady state error is present due to the lack of an 

integrator in the PD controller and the deadband in the spool. Note that there is a steady 

state error in the beginning of the simulation for the boom and stick due to the force of gravity. 

Gravity loading decreases the actual angle (dotted line) because the link reacts to gravity, 

pulling the link downward, while the pressure in the hydraulic line is still building up from its 

initial value of zero. This results in an initial decrease in the angle. Once the line pressure has 

built up, the link has a steady state error. This initial error is not present in the cabin because 

its rotational axis is orthogonal to gravity. It is not present in the bucket plot because the 

bucket has a much smaller gravity load due to its smaller mass and a smaller inertia due to its 

shape, and as a consequence there is a smaller drop in the angle due to the lack of pressure in 

the lines. All plots in Fig. 5.5 show a steady state lag at the end of the simulation as the line 

pressures have already built up to their normal values. This particular error can be eliminated 

by adding integral control. 

Fig 5.6 shows the joint velocities for each of the links. The cabin demonstrates no oscillation at 

the start since it is orthogonal to gravity and is thus immune to the initial lack of pressure. At 

the end of the simulation, the velocity of the cabin oscillates due to the inertia of the machine. 

The inertia causes an overshoot followed by a reaction from the spool, resulting in an oscillatory 

response. The boom and stick oscillates initially due to gravity loading and the initial lack of 

pressure. At the end of the simulation the boom and stick velocities are smooth because the 

deadband in the spool causes the boom and stick spools to be closed. The bucket velocity has 

a small initial oscillation due to gravity. 
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Time (second) Time (second) 

Figure 5.5: JOINT mode 6 response in the simulator. 

Fig. 5.7 shows the spool (x) and voltage (v, dotted) plots. The v curves are the desired drive 

voltages, and the x curves include the deadband in the response. The boom v attempts to give 

a positive drive voltage, but only a zero value of x is produced, because of the deadband. At the 

end of the simulation, a negative v is desired to close the steady state error, but the deadband 

causes x to be zero, which results in a zero 6. 

These plots have not yet been compared to those of the excavator, but initial subjective re­

sponses from users of the complete simulator (including the joystick and graphics) indicate that 

the simulator reponse is felt to be realistic. 
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Figure 5.6: JOINT mode 6 response in the simulator. 
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Figure 5.7: JOINT mode v and x response in the simulator. 
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RESOLVED mode control 

In RESOLVED mode, the desired profile represents the linear velocity commands along the 

radius axis, the arc axis, the z axis, and the angular velocity of the bucket relative to the 

ground. The setup was similar to the JOINT mode experiment except that inverse kinematics 

calculations were necessary to derive the 0d from the linear velocity values. The experiment 

required an initial 5 seconds of no movement followed by 5 seconds in which the cabin rotated 

15 degrees and the end effector moved from a radius of 5m to 6.5m at constant radial velocity 

while maintaining its original height above the ground. The bucket was required to maintain 

its angle. The last 5s required all links to maintain their positions. Figs. 5.8, 5.9, and 5.10 

show the link reponses. 

Fig. 5.8 shows the joint angle reponse. The desired cabin angle (continuous line) is linear. The 

cabin response shows a significant lag. To maintain a constant end effector height, the boom 

and stick show a nonlinear joint angle response. As with the JOINT mode experiment, the 

boom and stick have an initial gravity loading response which when coupled with the lack of 

initial pressure causes the boom and stick to sag. At the end of the simulation, however, there 

is a lag due to the deadband in the spool. 

Fig. 5.9 shows the desired and actual integrals of the linear velocity curves. The radius, the 

cabin rotation, and the bucket behave in a similar manner to the results of the JOINT mode 

experiment, with their initial gravity loads and line pressure buildup responses, followed by 

final steady state lags. The Z curve indicating the height of the end effector shows an initial 

sag when the boom and stick sag, followed by a positive error due to the boom and stick lag 

response. The bucket sags initially due to the initial pressure, but eventually lags the desired 

response. 

Fig. 5.10 shows the desired v (dotted) and actual x (continuous) curves. As in the JOINT 

mode, the deadband in the x response has a large effect because it causes the spool to remain 

closed when the link has a steady state error and prevents a reduction in this error by the control 

algorithm. As the boom and stick extend, the spool opens wider to drive the link faster. This 
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Figure 5 . 8 : R E S O L V E D mode 6 response in the simulator, 

is required to make the link travel at a constant radial velocity. 
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Figure 5.9: R E S O L V E D mode radius, cabin rotation, height, and bucket rotation responses in 
the simulator. 
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Figure 5.10: RESOLVED mode v and x response in the simulator. 



Chapter 5. The Real-Time Excavator Simulator 126 

5.6 Summary 

In this chapter we have described an implementation of the excavator simulator. The complete 

computer architecture with joysticks, graphics, and simple actuators has been outlined. The 

formulation and computer architecture suggested in Chapters 3 and 4 were used to produce a 

system that met the real-time objective. 

Theoretical parallel time cost versus the actual parallel implementation cost showed the imple­

mentation was 6.75 times slower than expected. It is speculated that this inadequacy is due to 

array indexing and subroutine calls. 

A theoretical speedup of 4.63 was estimated for the parallel simulation over the single cpu simu­

lation, while in practice a factor of 5.38 was achieved. There were less subroutine calls and array 

index calculations in the parallel implementation than in the single cpu implementation, and it 

is assumed that this produced the better than expected parallel/single cpu speedup. This was 

in spite of the extra costs incurred by the parallel implementation due to link communications. 

Finally, JOINT mode and RESOLVED mode simulations were carried out to demonstrate 

the usefulness of the simulator and to help design the joystick controller. The results have 

been helpful in tuning the controls, and have been implemented on the excavator. Subjective 

observations have indicated that the behaviour of the simulator is close to the excavator, even 

though the true hydraulic system was not simulated. Future experiments, however, will require 

a more accurate model of the hydraulics. 



Chapter 6 

Conclusions and Further Work 

6.1 Summary of the Thesis 

A multibody dynamics formulation has been developed for the purposes of real-time simulation 

of large scale robotic mechanisms such as excavators. The formulation models the rigid body 

dynamics of any arbitrary tree structured mechanism (excluding the actuator dynamics, which 

have been examined in other theses [Sepehri 90]). It is limited at present to single degree 

of freedom rotational joints, although later in this chapter, the extension to multi-degree of 

freedom rotational and prismatic joints is described. Closed chains are also not included in the 

present formulation, but are discussed later in this chapter. 

The Newton Euler State Space method developed by Hemami [1982] is used as the basis for 

the formulation. This method is an example of the orthogonal complement approach, which 

describes the dynamics by projecting an initial description of the primitive equations of mo­

tion (the derivatives of translational and angular momentum, and the kinematic equations) 

from angular and translational Cartesian coordinates w and x to coordinates such as relative 

Euler angle accelerations 6, using a Jacobian velocity transform. The primitive equations are 

described using Newton's and Euler's equations for momentum derivatives. The internal con­

straint forces and torques in the hinges are also eliminated by this projection. Other examples 

of the orthogonal complement approach use the Lagrangian and kinetic energy to justify the 

projection [Angeles 1988], [Kim 1986]. 

Hemami [Hemami 82] initially developed the method using mixed coordinates. The transla­

tional forces were referred to the inertial frame and the rotational equations were referred to 

the body coordinate frame. By referring all equations to body coordinates, an efficient 0(n3) 

127 
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algorithm was developed in this thesis for inertia matrix formation. Buchner [Buchner 86] also 

referred his translational force equations to body coordinates, but the equations were not devel­

oped to the recursive vector cross product form (pj • Xc\ •). As a consequence, the equations were 

computationally less efficient. The recursive nature of the kinematic and momentum derivative 

equations has been used in this thesis to derive a single cpu algorithm which is similar to An­

geles' algorithm when defined for a single chain. The algorithm is relatively efficient, although 

other algorithms [Lilly 91] are better for single cpu implementation. This technique of referring 

each equation to body coordinates was developed independently from Angeles and Ma [1988], 

who used the body-referred Jacobian transform equations for the dynamics of a single chain. 

Their work was developed using the Lagrangian approach and Kane's equations to identify the 

equivalent projection matrix. The work in this thesis has been developed using Newton-Euler 

principles, as proposed by Hemami and Buchner, but it continues those developments until the 

very efficient recursive cross product form is established. In addition, the single cpu algorithm 

models tree structured mechanisms by adding a connectivity matrix to describe the topology 

of the mechanism. 

A new 0(n2) single cpu algorithm for the force vector has been developed which has its origins 

in the 0(n) algorithm developed by Angeles, Ma and Rojas [1989]. The algorithm makes use 

of matrix calculations performed by the inertia matrix algorithm. The algorithm defines the 

force vector calculation as the multiplication of the HT projection matrix with the momentum 

derivative vector. As a consequence of using the H matrix (already calculated in the inertia 

matrix algorithm), this force vector algorithm is only useful when the forward dynamics are 

calculated. Simulations of the PUMA 600 manipulator and the human torso (with a head and 

two arms) using open loop inverse dynamics control appeared in Chapter 3 as examples of the 

veracity of the formulation. 

The need for real-time simulation has led to the development of a parallel formulation (Chapter 

4) derived from the single cpu algorithms from Chapter 3. Multiprocessor algorithms were 

developed for inertia matrix formation, force vector formation, matrix solution, and a fourth 

order fixed step size Runge Kutta integration routine. These algorithms are of 0(n) complexity, 
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and together they form a parallel formulation which is more efficient (Figs. 4.8 and 4.9) than 

the parallel formulations with which we have compared (given the implementation assumptions 

stated in section 4.7) The spatially recursive equations for calculating the vectors and forces 

required in the dynamics naturally suggest a pipeline approach for the computational archi­

tecture. This is most easily seen in the computations of row 0 and row 1 of the computer 

architecture. 

The inertia matrix algorithm uses a 2d "("+*) triangular nearest neighbour architecture, as 

all data communication in the algorithm is between nearest neighbours. The force vector 

algorithm uses an n cpu pipeline, and shares data with the inertia matrix cpu array. The matrix 

solver is a feedforward systolic algorithm [Jainandunsing 89] that calculates the solution in 4n 

cycles, compared to 7n — 5 cycles using Liu and Young's systolic Cholesky factorisation plus 

backsubstitution method [Liu 83]. The feedforward solver requires "("+*) + n cpus arranged in 

a triangular nearest neighbour array. A good fit is thus accomplished between the topologies 

necessary for equation formation and matrix solution, enabling a smooth integration between 

the formation and solving phases. 

The proposed algorithms have been implemented on a computer architecture consisting of a 

host cpu which controls a cluster of Inmos T800 transputers interconnected by a crossbar 

network. Both the formulation and the computer architecture are relatively general in nature, 

permitting more complex mechanisms to be modeled and other types of robotic tasks to be 

computed. A Caterpillar 215B excavator was simulated in real-time using fourteen transputers 

connected in a triangular, 2d nearest neighbour grid network. Another transputer was used to 

interface between the grid, the host computer, and the control transputer which modelled the 

spool valves of the actuators. The control transputer connected the interface transputer to the 

graphical display computer and the joysticks (Fig. 5.2). 

Single cpu and multiple cpu implementations were developed for the excavator. Simulations 

testing joint mode and resolved mode joystick control were successfully performed. Timing 

measurements of the excavator simulations showed that the parallel implementation was able 

to perform in real-time and that there was a significant speedup relative to the single cpu 
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implementation. 

6.2 Concluding Remarks 

At the beginning of this thesis the objective and scope of the study as well as the measures by 

which its success could be evaluated were stated. The objective was to develop and implement 

a real-time simulator for the Caterpillar 215B excavator. The scope extended beyond this 

objective to include a relatively general formulation which would permit implementations of 

more complex multibody systems. Initial limitations were to exclude closed chain mechanisms 

and model only single degree of freedom rotational joints. A parallel computer architecture was 

deemed the best methodology for achieving real-time speed. 

The thesis work can be divided into two tasks - the theoretical distribution of the computations, 

and the implementation of the theoretical distribution on a computer architecture. Two criteria 

were chosen to evaluate these tasks - computational complexity, an objective measure that can 

be used to compare the theoretical computational costs of other formulations; and the quality 

of the implementation, a subjective analysis of the computational architecture examining its 

expandability, homogeneity, efficiency, and how closely the computer architecture matches the 

ideal computational architecture. 

The recursive form of the equations for calculating the momentum derivative and kinematics 

dictates the theoretical distribution of the computations, naturally suggesting a pipeline/mesh 

architecture. In the case of 0(n + [log2 n\) formulations, the referral of the coordinates to the 

inertial frame destroys this data dependence, enabling these formulations to use the recursive 

doubling algorithm to get an efficient algorithm. We have shown, however, that the overhead in 

referring the equations to the inertial frame results in high initial costs, making our formulation 

more efficient for systems with moderate numbers of degrees of freedom. 

The ideal architecture has been directly implemented using the transputer array (whereas 

[Fijany 89] chose a mesh even though a hypercube was ideal). A direct implementation has 
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enabled us to make conclusions about the theoretical distributed architecture. Since the im­

plementation architecture is a mesh, it can be easily expanded to model robots with varying 

numbers of links by adding a new column of cpus for each new degree of freedom. As the imple­

mentation architecture's structure is homogeneous, the architecture does not need to change as 

the formulation moves from the equation formation phase to the solving phase, thus obviating 

the need for using either reconfigurable architectures or two separate architectures. 

The implementation using Inmos T800 transputers has produced some useful information about 

tightly coupled mutiprocessor arrays. Timing measurements show that real-time performance is 

achievable for the excavator simulator in spite of the large overhead incurred due to subroutine 

calls and array index calculations (a factor of 6 slower). Inline code and direct array element 

addressing can solve this, but would do so with a loss of generality in the software. The commu­

nication costs can be quite significant and it is desirable to minimise the delays by overlapping 

the communications with computations (although discussed, in this first implementation the 

overlap technique was not used). 

6.3 Contributions to the Literature 

The thesis has contributed to the literature in both of the areas described in the last sec­

tion. On the topic of equation development and the theoretical distribution of computations, a 

contribution has been made: 

— in the development of an efficient recursive set of equations for generating the cross product 

form of the projection matrix using body coordinates, from Newton-Euler rather than 

Lagrangian principles. 

— in deriving an efficient single cpu 0(n3) formulation of the inertia matrix for both single 

chain and tree structured mechanisms. 

— in deriving an efficient single cpu 0(n2) formulation of the force vector for both single chain 

and tree structured mechanisms, which must be used in the context of a forward dynamics 

algorithm as it uses results from the formation of the inertia matrix. 
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— in deriving an 0(n) mesh structured multiprocessor formulation of the inertia matrix for 

single chain mechanisms. 

— in deriving an 0(n) pipeline multiprocessor formulation of the force vector for single chain 

mechanisms. The inertia matrix, force vector and solver algorithms together are more 

efficient than other algorithms for up to fifteen degrees of freedom (the relative efficiencies 

will depend on the details of the various implementations). 

The real-time implementation of the simulator has led to the following innovative aspects: 

— the development of a flexible computer architecture that is able to compute the dynamics as 

well as other tasks. 

— the development of a computational architecture which succesfully integrates the equation 

formation and solving phases. 

— the development of a complete real-time simulation facility for the UBC Teleoperation Lab­

oratory. 

— an implementation of Jainandunsing's feedforward systolic solver. 

6.4 Topics Requiring Further Exploration 

In this thesis we have developed a new parallel formulation for rigid body dynamics. Although 

the model is limited to rigid bodies with a single degree of rotational freedom, it is a foundation 

upon which more complex behaviour can be added. The following sections consider some areas 

of further research that would be logical extensions: multiple degree of freedom joints, a parallel 

architecture for branched mechanisms, closed chain models, and actuators and friction. 

6.4.1 Multiple degree of freedom joints 

Joints with more than one degree of freedom per joint can be included by modifying the Jacobian 

velocity transformation vector Hij = [c|- • p\jXc\j], which is a 6x 1 vector relating the Cartesian 
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jth joint type size 
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Translational joint 
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Table 6.1: Hij for various types of joints 

velocity vector [u>; i,] to the rotational coordinate The Hij used throughout the thesis 

represents the Jacobian vector for a tj, which is a single degree of freedom rotational joint. Kim 

and Vanderploeg [Kim 86a] have derived the Hij for other types of joints. Table 6.1 contains 

a modified form of Kim's matrices in which the Hij have been referred to the ith coordinate 

frame, so that the terms are applicable to the algorithms presented in this thesis. Note that we 

have denned c ) ^ = A'zj, cj-^ = A'jrj and c\^x = A)x3^ where z, y, and x are unit axes in 

the jth coordinate frame and Aj is a function of the appropriate 6Xiy< o r z . 

In the computation of M for single degree of freedom joints, the Hij vectors are elements of 

the [p x C] and [C] matrices. For more complex joints, the development of the C and p x C 

matrices proceed with the matrices from Table 6.1 as the new Hij. This can be shown by 

developing new kinematic equations for the angular velocity, originally described in Chapter 1. 

These equations must be modified to include more than one degree of freedom in the joint. As 

an example, consider a body i in which the ith joint has rotational degrees of freedom in y and 

z axes. The angular velocity kinematics are: 

Mfi = M-iwtlo + Wi/z + vfr/y (6-1) 
<o = ^ L i ^ i Z l + w.-.o x "̂tf,-/, + wj>0 x yji9,-/v + ar'd'.y, + y5«i/lf (6.2) 
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The A\_x matrices must also be redefined to include the sequence of 0,/ y and 0,y2 rotations. 

Once the w and w vectors have been calculated, the L, mp and W vectors or matrices, used 

for calculating the force vector, are calculated in the same manner as in Chapter 3. 

Consider a single chain with n links and n joints, some of which have multiple degrees of 

freedom. The total number of degrees of freedom in the system is m (n < m) due to the 

extra degrees of freedom. Including these types of joints in the parallel formulation requires 

a re-examination of the distribution of the computations. One issue that must be considered 

is the timing of the pipelined sequence of operations. It may be necessary to add a number 

of cpus for each extra degree of freedom in the system if the time delay for any operation in 

the pipeline is to remain comparable to the other operations occurring simultaneously. A first 

examination of the problem indicates that for each extra degree of freedom, a row of n — i cpus 

would be added next to the ith row for the computation of H, and a column of i cpus would 

be added next to the zth column for the HTH computation. To compute the inertia matrix, 

it may be necessary to start with an array of m("+1) cpus, some of which will be idle during 

different phases of the computation. 

6.4.2 A parallel architecture for the branched formulation 

To simulate branched topologies with the multiprocessor mesh, it is necessary to examine the 

single cpu algorithm developed in Chapter 3. From equation 3.14, 

z 0 0 0 0 

A\z z 0 0 0 

A^A\z A\z z 0 0 

A\z 0 0 z 0 

A\A\z 0 0 A\z z 

where the C matrix (as well as the pxC matrix) shows the same structure as the connectivity 

matrix U~l. One can imagine each row of the C matrix being produced by one of the row 1 

cpus in the inertia matrix array. The pipeline in row 1 is broken up, however, since cpui^, 

calculating A\z, does not make use of any terms produced by the cpu in front of it in the 
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pipeline (the third row in the C matrix). It receives its input vector from cpu^i since body 4 

is connected to body 1 in the topological description. The pipeline must be altered to provide 

an extra link from cpuij to cpui^. The pipeline of cpus in the torque calculator (row 0 of the 

mesh) must also be altered to provide this connection. As a general rule, it is necessary for 

rows 0 and 1 to conform to the topology of the mechanism. 

Another consideration is the requirement for the HTH calculation and the systolic solver to use 

a full triangular nearest neighbour architecture. Connections must be provided between cpu,,3 

and cput)4 in order that the terms may be accumulated in the HTH computation, and so that 

the systolic matric solver can perform its embedded rotations. Thus even the cpus which would 

contain 0 in the C matrix computation need to be present. 

It is possible to use the existing network topology to pass the data in rows 0 and 1, but this 

would require some cpus to transmit data destined for other cpus which are not relevant to their 

own operations, and this would cause difficulties in the timing of operations. A better solution 

would be to provide an extra common bus between rows 0 and 1 so that data that is not destined 

for an adjacent cpu can be routed via this bus to its destination. This would only be necessary 

during the [C p X C] computation phase in row 1 cpus, and the [L mp] computation for row 

0 cpus. After this, the nearest neighbour connections would be used for the subsequent phases. 

At present this connectivity is not provided in the existing computational architecture, but it 

should not be difficult to implement, as no extra communication links are required from the 

transputer. The communication links across rows 0 and 1 need to be connected to a common 

bus such as the VME bus itself, or perhaps the secondary serial S-bus. Fig. 6.1 illustrates the 

architecture for a four body branched system. Note that the bus provides the path for cpus &i 

and an to connect to 63 and 013. 

6.4.3 Closed chains 

The simulation of closed chain mechanisms can involve both analytical and numerical methods. 

The primary problem is the selection or identification of the set of independent coordinates 
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Figure 6.1: Architecture for branched four body system 

that are used to describe the system. This problem is exacerbated when joints lock together 

or separate, causing a time varying topology in which the variables belonging to the set of 

independent coordinates change membership with time. Initially the loops in the closed chain 

system are cut to form a tree topology. The independent coordinates are then selected, and 

the constraints forces which close the loops are added to make the motion of the tree system 

consistent with the closed chain system. 
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Murray and Lovell [1989], Ibrahim [Ibrahim 1988] and others have approached the problem by 

using a tree structure as the initial representation of the closed chain mechanism (loops are cut 

to form a tree). The inertia matrix and force vector for the tree are developed, using a set of 

independent coordinates representing the tree. A reduction of this set of coordinates is then 

made, so that the remaining subset of coordinates can represent the closed loop structure (there 

are less degrees of freedom in a closed loop system). The reduced set of coordinates may often 

be chosen by a logical examination of the topology, followed by the formation of the constraint 

equations used to close the loops in the tree structure (in order to be equivalent to the original 

closed chain system). In cases when the appropriate coordinates are not obvious, they may be 

found numerically (e.g. QR decomposition of a matrix representing the system constraints). 

Once the reduced set of coordinates is identified, a projection matrix is formed which projects 

from the set representing the tree to a subset representing the closed chain. 

The following equations describe the approach Murray and Gilbert used to formulate the closed 

chain dynamics of an arbitrary mechanism. Following this, we discuss how this method might 

be incorporated into the algorithms of Chapter 3. 

Consider a closed chain mechanism with m rigid bodies (one degree of freedom (dof) per joint) 

with n true dof (some of the dof are constrained by the closed loops, and are immobile, so 

n < m). The n one dof joints are driven by n actuator torques r, producing an n X 1 vector 

of joint displacements q. An open chain equivalent system (ignoring the constraint forces for 

now) has m dof and m X 1 joint displacements qr, one for each body. The equations of motion 

for this open chain system are (relating them to Chapters 2 and 3): 

where MT is the tree mechanism system inertia matrix and Hr is the force vector of Coriolis, 

centrifugal and gravity forces. To equate the open chain model to the closed chain model, the 

virtual work done must be equal, and so 

According to D'Alembert's principle, no net work can be done by the applied and actuating 

Tr = MT{qr)qT + Hr(qT,qr) (6.4) 

SqTr = SqTrr (6.5) 
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forces for any virtual displacement consistent with the constraints, and so as the set of q is 

changed to qr, r changes to rr in order that the system virtual work remains the same. Murray 

shows that qT is a function of q, and more specifically, that the Jacobian from this relationship 

can be defined as 

qr = f(q) (6.6) 

qT = Gq (6.7) 

Equation 6.7 represents the transformation from the open loop coordinate set to the closed loop 

subset. G is the m x n Jacobian constraint matrix describing the forces necessary to close the 

tree structured mechanism so that it is equivalent to the closed chain mechanism. 

Substituting Gq for qr in the equation of virtual work, it is possible to show that 

r = GTrr (6.8) 

The equations of motion can be rearranged to yield 

r = GT[Mr(qr)qT + Hr(qr,qr)} (6.9) 

The time derivative of qT is 

qr = Gq + Gq (6.10) 

The equation of motion can then be rewritten as 

T = GT[Mr(f(q))(Gq-rGq)-rHr(f(q),Gq)] (6.11) 

= Mcq+Hc (6.12) 

where 

Me = GTMr(f(q))G (6.13) 

Hc = GTMr(f(q))Gq + GTHT(f(q),Gq) (6.14) 

In the above development, we assume collocated links (all measured joint coordinates are also ac­

tuated), whereas Murray and Gilbert also consider non-collocated manipulators. Non-collocated 
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manipulators would project the system to yet another set of coordinates, say qm, which would 

produce a non-symmetric inertia matrix, as equations 6.6 and 6.9 would be functions of qm and 

Gm. 

If it is possible to measure all the qr and qr from the tree structured system, then Mr{qT) is 

obtained from the equations of Chapter 3, and so Mc can be computed as 

Me = GTHTMHG (6.15) 

where H is from Chapter 3 and M is the square matrix of Js and mis. Once G is computed, 

P = HG replaces H as the pre and post multiplier matrix transformation in the inertia matrix 

algorithm. The computation of Hc is more complicated due to the presence of the Gq term 

in 6.10. Gilbert proposes to calculate Hc from a closed chain inverse dynamics algorithm by 

setting q to zero in a similar way to the open loop inverse dynamics algorithm described by 

Walker and Orin [Walker 1982]. 

The incorporation of the above procedure into the algorithms developed in Chapters 2, 3, and 

4 requires a number of issues to be addressed. These include the computation of Hc, the 

computation of G (which requires the identification of q), and the parallel computation of P 

and its effect on the computer architecture. Since the final size of the inertia matrix is n X n, 

the number of cpus used in the calculation of the open loop Mr ( ^ ± H ) is more than that 

required by the systolic solver phase cpus). It is thus necessary to find the best way to 

compute P so that, if possible, only n(n
2

+1) cpus are needed for all phases of the computation. 

6.4.4 Actuators and friction effects 

Currently, the hydraulic actuators are modeled as simple rotary actuators which are not coupled 

to each other. As a consequence, actuator i's equations are calculated in cput>o. Once a 

distributed version of the true actuation equations is developed, these can be calculated in row 

0 cpus, or another row of cpus can be added on top of row 0. Friction terms, may be a function 

of the velocity 0, (e.g. viscous friction) or a function of reaction forces /„ and inertial terms. 

Viscous friction may be independently computed because each term is a function of only local 
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information (e.g. the 0, variables are produced by row 0 cpus, and so they will be readily 

available for the friction computations). T h e resulting friction vector can simply be added to 

the b vector. D r y friction is more complex and involves the redistribution of variables produced 

by other cpus in the pipeline. 
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Single Chain Dynamics 

T h e matrices describing the equations of motion are (for a five body fixed chain): 

U = 

2̂-̂ 2,2 0 0 0 

0 ^2,2 '•̂ 3̂ 3,3 0 0 

0 0 -#3,3 —A^R4
 4 0 ;J = 

0 0 0 #4,4 

0 0 0 0 -#5,5 

I 0 0 0 0 m\I 

-I / 0 0 0 m2I 

0 --J / 0 0 ;M = nisi 

0 0 -I / 0 mil 

0 0 0 --J 

4 

m5I 

Qw = 

Q = 

+ ^ i « o ) 2 * i \ i 

+ ^o(^,0)2^33,3 

-^(*3 3,0) 2^,4 + W*U)2kU 
-A°4(wifl)%5 + A°6{wlfl)*kifi _ 

Al'klr 0 0 

—•'̂•1̂1,2 A2k22 0 

;/ = 

W,0 x Jfw{fl m i g 

wlo x J2w20 m 2 g 

X J^W^Q ;g = m 3 g 

w4,0 x Jfwio m 4 g 

w!,0 m 5 g 

0 — ̂ 2̂ 2,3 ^3^,3 

0 

0 

0 --̂ 3^3,4 -^4^4,4 

-A°JU 

0 

0 

0 

0 

A°M,s 
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u-1 = 

C = 

7 0 0 0 0 
7 / 0 0 0 
7 / 7 0 0 
/ / / 
I I I 

z 0 
z 

A\z A\z 

A\z 

I 0 
/ / 
0 
0 
z 

\E = 

I -A\ 

0 
0 
0 
0 

0 
0 
0 

0 0 
0 0 
0 0 

A\z A\z A\Z Z 0 
A\z A\z A\z A\z z 

o o 

A\h\2 0 
A\d\x A\d\2 - ^ 3 ^ 3 

; / / 2 = 

0 0 0 
A2 0 0 

I 0 
0 I -Ai 

0 0 I 

- / 0 0 
/ - / 0 
0 / - / 

0 0 / 

0 0 0 
0 
0 
0 

A\d\^ A2d32 A3d\3 At\kA^ 

0 
0 
0 
0 

A°Atl A%d\2 A%d\3 A°4diA Afklf 

A n algorithm for calculating [(t7 - 1Qtu)i>c s], is 

0 
0 
0 

[(U-xQw)bc3 ]i = [(U-lQw)bcs] i - i + {w\ -1 x2ii-
-1 ,0 / ' i --1 

-l,t 

~k\A 0 0 0 0 

-^1^2,1 ^2,2 0 0 0 
A\d2X A2 d\2 ^ 3 , 3 0 0 
A\d\-y A2d32 ^ 3 " 4 , 3 K4,4 0 
A\d\t-y A\d\2 •^4^5,4 ^ 5 , 5 

7/i = -QT. 

i = l , . . . n (A.l) 



Appendix B 

Branched Chain Dynamics 

The following matrices are the coefficients for the multibody system represented in Fig. 3.1. 

< i -^#2,2 0 -A\R\<4 0 

i V i = 

E = 

U = 

Q = 

o 
o 
0 

0 
-A1 

A2 

I 

-I 

#2,2 ~ - ^ 3 ^ 3 , 3 

0 

0 

0 

#3,3 

0 

0 

0 

0 

0 

0 

0 -A\ 

I 

0 

0 

0 

0 0 

1 0 

- A 2 0 

0 

I 

0 

0 -I I 

- 1 0 0 

0 0 

0 0 

0 0 

1 0 

0 0 0 - 7 / 

Afk\a 0 
_AOJI 40L2 

AV1,2 A2K2,2 

0 -A%ll 

0 

0 0 

0 

0 

0 

#4,4 —AiRlj 

0 #1,5 

w\fi x Jlw\fl 

w2fl X ^2 W 2 , 0 

™3,0 X ^ 3 ^ 3 , 0 

J4w4fl 

;/ = 

W 4,0 

Qw = 

0 

0 

5,0 x J5 wl,0 

+ A ° « 0 ) 2 * i \ i 

- ^ « o ) 2 < i \ 2 + A°2(wi0m2 

~A°2{wl 0) 2> 2
) 3 + A§(«>! ) 0) 2*3 3,3 

- ^ K o ) 2 < ! , 4 + ^ « 0 ) 2 ^ 4 

0 0 

7 7 l 2 g 

" l 3 g 

m 4 g 

m 5 g 

2'2,3 - ^ 3 K 3 , 3 

0 

0 

0 

0 

/ 1 4 K 4 , 4 

0 

0 

0 

AO 75 j O p 
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7 0 0 0 0 

7 7 0 0 0 

U-1 = 7 7 7 0 0 

7 0 0 7 0 

7 0 0 7 7 

; H2 = UT, 771 = - Q 3 



Bibliography 

[Amin-Javaheri 88] M. Amin-Javaheri and D.E. Orin, Systolic Architectures for the Manipula­
tor Inertia Matrix. IEEE Trans. Systems, Man, and Cybernetics, Vol. 18, 
No. 6, November/December 1988, pp 939-951. 

[Angeles 88] J. Angeles and O. Ma, Dynamic Simulation of n-Axis Serial Robotic Ma­
nipulators using a Natural Orthogonal Complement. Int. J. Robotics Res., 
Vol. 7, No. 5, October 1988, pp 32-47. 

[Angeles 89] J. Angeles, 0. Ma, and A. Rojas, An Algorithm for the Inverse Dynamics 
of n-Axis General Manipulators Using Kane's Equations. Computers Math. 
Applic. Vol. 17, No. 12, 1989, pp 1545-1561. 

[Armstrong 79] W.W. Armstrong, Recursive Solution to the Equations of Motion of an n-
Link Manipulator. Proc. 5th World Congress on the Theory of Machines 
and Mechanisms, Vol. 2, 1979, pp 1343-1346. 

[Bae 87a] D.S. Bae and E.J. Haug, A Recursive Formulation for Constrained Mechan­
ical System Dynamics Part I: Open Loop Systems. Mechanics of Structures 
and Machines, vol. 15, 1987, pp 359-382. 

[Bae 87b] D.S. Bae and E.J. Haug, A Recursive Formulation for Constrained Mechan­
ical System Dynamics Part II: Closed Loop Systems. Mechanics of Struc­
tures and Machines, vol. 15, 1987, pp 481-506. 

[Bae 88a] D.S. Bae, R.S. Hwang, and E.J. Haug, A Recursive Formulation for Real-
Time Dynamic Simulation. Advances in Design Automation, DE-Vol. 14, 
ASME Design and Automation Conference, September 1988. 

[Bae 88b] D.S. Bae, J.G. Kuhl, and E.J. Haug, A Recursive Formulation for Con­
strained Mechanical System Dynamics Part III: Parallel Processor Imple­
mentation. Mechanisms, Structures and Machines, 16 (2), 1988. 

[Baumgarte 72] J. Baumgarte, Stabilisation of Constraints and Integrals of Motion in Dy­
namic Systems. Computer Methods in Applied Mechanics and Engineering, 
1, 1972, pp 1-16. 

[Bayo 88] E. Bayo, J. Garcia de Jalon, and M.A. Serna, A Modified Lagrangian For­
mulation for the Dynamic Analysis of Constrained Mechanical Systems. 
Computer Methods in Applied Mechanics and Engineering, 71, 1988, pp 
183-195. 

[Bodley 78] C. Bodley, A. Devers, A. Park, and H. Frisch, A Digital Computer Program 
for Dynamic Interaction Simulation of Controls and Structures (DISCOS). 
NASA Technical paper 1219, May 1978. 

145 



Bibliography 146 

[Brandl 86] 

[Buchner 86] 

[Faddeev 59] 

[Featherstone 83] 

[Fijany 89] 

[Fuhrer 89] 

[Haug 89] 

[He 89] 

[Hemami 82] 

[Ho 74] 

[Hooker 66] 

[Hooker 70] 

[Hooker 73] • 

H. Brandl, R. Johanni, and M. Otter, A Very Efficient Algortihm for the 
Simulation of Robots and Similar Multibody Systems Without Inversion of 
the Mass Matrix. IFAC/IFIP/IMACS International Symposium on the The­
ory of Robots, Vienna, 1986. 
H.J. Buchner, Control of Robot Manipulators on Task Oriented Surfaces 
by Nonlinear Decoupling Feedback and Compensation of Certain Classes 
of Disturbances. PhD Thesis, Department of Electrical Engineering, Ohio 
State University, 1986. 
V.N. Faddeev, Computational Methods of Linear Algebra. Dover, New York, 
1959. 
R. Featherstone, The Calculation of Robot Dynamics using Articulated-
Body Inertias. Int. J. Robotics Res., Vol. 1, No. 1, pp 13-30, Spring 1983. 

A. Fijany and A. Bejczy, A Class of Parallel Algorithms for the Compu­
tation of the Manipulator Inertia Matrix. IEEE Trans. Robotics and Au­
tomation, Vol. RA-5, No. 5, October 1989, pp 600-615. 
C. Fuhrer, B. Leimkuhler, Stabilized Differential-Algebraic Formulation of 
the Equations of Motion of Constrained Mechanical Systems. NATO Ad­
vanced Research Workshop on Real-Time Integration Methods for Mechan­
ical System Simulation, Snowbird, Utah, August 1989. 
E.J. Haug, Computer-Aided Kinematics and Dynamics of Mechanical Sys­
tems Vol. I: Basic Methods. Allyn and Bacon, Massachusetts, 1989. 

X. He, and A.A. Goldenberg, An Algorithm for Efficient Computation of 
Dynamics of Robotic Manipulators. Advanced Robotics: 1989, Proceed­
ings of the 4th International Conference on Advanced Robotics, Columbus, 
Ohio, June 13-15, 1989. 

H. Hemami, A State Space Model for Interconnected Rigid Bodies. IEEE 
Transactions on Automatic Control, Vol. AC-27, No. 2, April 1982, pp 
376-382. 
J. Ho, The Direct Path Method for Deriving the Dynamic Equations of a 
Multibody Flexible Spacecraft with a Topological Tree Configuration. AIAA 
Mechanics and Control of Flight Conference, paper no. 74-786, California 
1974. 
W.W. Hooker and G. Margulies, The Dynamical Attitude Equations for an 
n-Body Satellite. J. Astronautical Sciences, 12 (1965), pp 123-128. 

W.W. Hooker, A Set of r Dynamical Attitude Equations for an Arbitrary 
n-Body Satellite having r Rotational Degrees of Freedom. AIAA Journal, 
Vol. 8, No. 7, July 1970, pp 1205-1207. 
W.W. Hooker, Equations of Attitude Motion of a Topological Tree of Bodies, 
The Terminal Members of which may be Flexible. Technical Report LMSC-
D354938, November 1973, Lockheed Missiles and Space Company, Palo 
Alto, California. 



Bibliography 147 

[Hughes 79] 

[Hughes 86] 

[Hwang 88] 

[Ibrahim 88] 

[Jainandunsing 89] 

[Jerkovsky 78] 

[Keat 83] 

[Khosravi 87] 

[Kim 86a] 

[Kim 86b] 

[Kim 88] 

[Lee 88] 

[Lilly 91] 

[Liu 83] 

P.C. Hughes, Dynamics of a Chain of Flexible Bodies. J. of the Astronau-
tical Sciences, Vol. 27, 1979, pp 359-380. 

P.C. Hughes, Spacecraft Attitude Dynamics. John Wiley and Sons, New 
York,1986. 

R.S. Hwang, D.S. Bae, and E.J. Haug, Parallel Processing for Real-Time 
Dynamic System Simulation. Advances in Design Automation, DE-Vol. 14, 
ASME Design and Automation Conference, September 1988. 

A. E. Ibrahim, Mathematical Modelling of Flexible Multibody Dynamics with 
Application to Orbiting Systems. PhD Thesis, Department of Mechanical 
Engineering, University of British Columbia, April 1988. 

K. Jainandunsing and E.F. Deprettere, A New Class of Parallel Algorithms 
for Solving Systems of Linear Equations. SIAM J. Scientific and Statistical 
Computing, Vol. 10, No. 5, September 1989, pp 880-912. 

W. Jerkovsky, The Structure of Multibody Dynamics Equations. J. of Guid­
ance and Control, Vol. 1, No. 3, May-June 1978, pp 173-182. 

J. Keat, Dynamic Equations of Multibody Systems with Application to Space 
Structure Deployment. PhD Thesis, MIT, 1983. 

B. Khosravi, S. Yurkovich, and H. Hemami, Control of a Four-Link Biped in 
a Back Somersault Maneuver. IEEE Trans. Systems, Man, and Cybernetics, 
Vol. SMC-17, No. 2, March/April, 1987. 

S.S. Kim and M.J. Vanderploeg, A General and Efficient Method for Dy­
namic Analysis of Mechanical Systems using Velocity Transformations. 
ASME Journal of Mechanisms, Transmissions and Automation in Design, 
Vol. 108, June 1986, pp 176-182. 

S.S. Kim and M.J. Vanderploeg, QR Decomposition for State Space Repre­
sentation for Constrained Mechanical Dynamic Systems. ASME J. Mecha­
nisms, Transmissions and Automation in Design, Vol. 108, June 1986, pp 
183-188. 

S.S. Kim and E.J. Haug, A Recursive Formulation for Flexible Multibody 
Dynamics Part I: Open Loop Systems. Computer Methods in Applied Me­
chanics and Engineering, 71, 1988, pp 293-314. 

C. S.G. Lee and P.R. Chang, Efficient Parallel Algorithms for Robot Forward 
Dynamics Computation. IEEE Trans. Systems, Man, and Cybernetics, Vol. 
SMC-18, No. 2, March/April 1988, pp 238-251. 

K.W. Lilly and D.E. Orin, Alternate Formulations of the Manipulator In­
ertia Matrix. The Int. J. Robotics Res., Vol. 10, No. 1, February 1991. 

P.S. Liu and T.Y. Young, VLSI Array Design Under Constraint of Limited 
I/O Bandwidth. IEEE Trans. Computers, Vol. C-32, No. 12, December 
1983, pp 1160-1170. 



Bibliography 148 

[Luh 80] 

[Mani 84] 

[Murray 89] 

[Nikravesh 84] 

[Orlandea 77] 

[Park 86] 

[Press 88] 

[Roberson 66] 

[Roberson 88] 

[Rodriguez 87] 

[Rodriguez 88] 

[Rulka 90] 

[Schwertassek 84] 

[Schwertassek 89] 

J.Y.S. Luh, M.W. Walker, and R.P. Paul, On-line Computational Scheme 
for Mechanical Manipulators. ASME J. Dynamical Systems, Measurement 
and Control. Vol. 102, No. 2, June 1980, pp 69-76. 
N.K. Mani and E.J. Haug, Use of Singular Valued Decomposition for Anal­
ysis and Optimization of Mechanical System Dynamics. Technical Report 
84-13, University of Iowa, Iowa City, August 1984. 

J.J. Murray and G.H. Lovell, Dynamic Modeling of Closed-Chain Robotic 
Manipulators and Implications for Trajectory Control. IEEE Trans. 
Robotics and Automation, Vol. RA-5, No. 4, August 1989. 

P.E. Nikravesh, Some Methods for the Dynamic Analysis of Constrained 
Mechanical Systems: A Survey. Computer Aided Analysis and Optimiza­
tion of Mechanical System Dynamics, ed. E.J. Haug. Springer Verlag, Hei­
delberg, 1984. 

N. Orlandea, M.A. Chace, and D.A. Calahan, A Sparsity Oriented Approach 
to Dynamic Analysis and Design of Mechanical Systems, Part I and II. 
ASME J. Engr. Indust., Vol. 99, August 1977, pp 773-784. 

T.W. Park and E.J. Haug, A Hybrid Numerical Integration Method for 
Machine Dynamic Simulation ASME J. Mechanisms, Transmissions and 
Automation in Design, Vol. 108, 1966, pp 211-216. 

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical 
Recipes in C. Cambridge University Press, Cambridge 1988. 

R.E. Roberson and J. Wittenberg, A Dynamic Formalism for an Arbitrary 
Number of Interconnected Rigid Bodies, with Reference to the Problem of 
Satellite Attitude Control. Proc. 3rd Congress IFAC (London 1966), Vol. 1, 
Book 3, Paper 46D. Butterworth, London. 

R.E. Roberson and R. Schwertassek, Dynamics of Multibody Systems. 
Springer Verlag, Berlin, 1988. 

G. Rodriguez, Kalman Filtering, Smoothing, and Recursive Robot Arm For­
ward and Inverse Dynamics. IEEE Journal of Robotics and Automation, 
Vol. RA-3, No. 6, December 1987. 

G. Rodriguez, Recursive Mass Matrix Factorization and Inversion. JPL 
publication 88-11, March 15, 1988. 

W. Rulka, SIMPACK, a Computer Program for Simulations of Large-
Motion Multibody Systems, in Handbook of Multibody Systems, W. 
Schiehlen (ed.) Springer-Verlag, Berlin, 1990. 

R. Schwertassek and R.E. Roberson, A State Space Dynamical Representa­
tion for Multibody Mechanical Systems Part II: Systems with Closed Loops. 
Acta Mechanica 51, 1984, pp 15-29. 

R. Schwertassek and W. Rulka, Aspects of Efficient and Reliable Multibody 
System Simulation. Unpublished paper, 1989. 



Bibliography 

[Sepehri 90] 

[Silver 82] 

[Vereschagin 74] 

[Walker 82] 

[Wehage 82] 

[Whittaker 27] 

[Wittenberg 77] 

[Zheng 84] 

[Zheng 86] 

149 

N. Sepehri, Dynamic Simulation and Control of Teleoperated Heavy-Duty 
Hydraulic Manipulators. PhD Thesis, Department of Mechanical Engineer­
ing, University of British Columbia, 1990. 
W.M. Silver, On the Equivalence of Lagrangian and Newton Euler Dynam­
ics for Manipulators. Int. J. Robotics Res., Vol. 1, 1982, pp 118-128. 

A.F. Vereschagin, Computer Simulation of the Dynamics of Complicated 
Mechanisms of Robot-Manipulators. Engineering Cybernetics, No. 6, 1974, 
pp 65-70. 

M.W. Walker and D.E. Orin, Efficient Dynamic Computer Simulation of 
Robotic Mechanisms. ASME J. Dynamical Systems, Measurement and Con­
trol. Vol. 104, 1982, pp 205-211. 

R.A. Wehage and E.J. Haug, Generalised Coordinate Partitioning for 
Dimension Reduction in the Analysis of Constrained Dynamic Systems. 
ASME J. Mechanical Design, Vol. 104, 1982, pp 247-255. 

E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and 
Rigid Bodies. Cambridge University Press, Cambridge, 1927. 

J. Wittenberg, Dynamics of Systems of Rigid Bodies. Teubner Stuttgart, 
Germany, 1977. 

Y.F. Zheng, Modeling, Control and Computer Simulation of a Three Dimen­
sional Robotic System with Application to Biped Locomtion. PhD Thesis, 
Department of Electrical Engineering, Ohio State University, 1984. 

Y.F. Zheng and H. Hemami, Computation of Multibody Dynamics by a 
Multiprocessor Scheme. IEEE Trans. Systems, Man, and Cybernetics, Vol. 
SMC-16, No. 1, Jan. 1986, pp 102-110. 


