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Abstract 

Ion channels are aqueous pores in the cell membrane for selected ions to 

flow down their electrochemical gradient. These channels play a prominent 

role in a variety of biological processes in the human body. Determining 

the structure and function of ion channels is of fundamental importance in 

biology. Also, the selective conductivity and specific gating mechanism of 

ion channels have attracted much interest in the area of artificial molecular 

detectors. Ion channel based biosensors are developed to detect molecu

lar species of interest in medical diagnostics, environmental monitoring and 

general bio-hazard detection. This thesis is concerned with statistical tech

niques used to describe ion channel permeation and to develop ion channel 

based biosensors. Brownian dynamics is a popular technique to simulate ion 

channel permeation but is too computationally expensive to run when ionic 

concentration is high. B y fitting binding site statistics of B D simulation to 

a semi-Markov chain, we obtain a simpler model with conduction properties 

that are statistically the same as the simulations. This approach enables the 

use of extrapolation techniques to predict channel conduction when perform

ing the actual simulation is computationally infeasible. Numerical studies 

on the simulation of gramicidin A channels are presented. In a separate 

study, we show the use of statistical modeling and detection techniques as 
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Abstract 

part of a sensitive biosensing platform. A nano-scale biosensor is built by 

incorporating dimeric gramicidin A channels into bilayer membranes of gi

ant unilamellar liposomes. The presence of specific target molecules changes 

the statistics of the biosensor's conduction. B y capturing the change in real 

time, we devise a maximum likelihood detector to detect the presence of 

target molecules. The performance of the biosensor is tested with the addi

tion of various target molecules known to inhibit conduction of gramicidin 

A channels. Experimental results show that the detection performed well 

even when the conductance change was difficult to visualize. The detection 

algorithm provides a sensitive detection system for ongoing development of 

membrane-based biosensors. 

i i i 
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Chapter 1 

Introduction 

Ion channels are aqueous pores in the cell membrane for selected ions to 

now down their electrochemical gradient. The class of ion channels is very 

diverse. In many channels, ion conduction is controlled by a gate, which 

opens and closes in response to electrical and chemical signals. In addi

tion, ion channels are highly selective, allowing only desired ions to pass 

through. Thus ion channels are used to regulate membrane potential as well 

as intracellular and extracellular concentrations of ions. 

Ion channels play a prominent role in a variety of biological processes in 

the human body. In the nervous system, voltage-gated sodium and potas

sium channels open and close co-operatively to propagate nerve impulses, 

also known as action potentials, along the axon. In cardiac muscles, voltage-

gated calcium channels release calcium ions to stimulate contraction of the 

muscles. Not surprisingly, the malfunctioning of ion channels is also the 

cause of many diseases, collectively known as channelopathies. These dis

eases include epilepsy, muscular disorders, cystic fibrosis and diabetes. [3] 

Knowledge of the structure and function of ion channels can help biologists 

understand the cause of and ultimately treat these diseases. Therefore, the 

study of ion channels is of fundamental importance in biology. In 2003, Rod-
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Chapter 1. Introduction 

erick MacKinnon's work in the determination of structure and operation of 

ion channels with crystallographic analyses won him a share of the Nobel 

Prize in Chemistry. [17, 18] 

Ion channels have also attracted much interest in the area of artificial 

molecular detectors. Their selective conductivity and specific gating mech

anisms make ion channels an ideal biological recognition component of a 

biosensor. In addition, ion channels are also highly sensitive; the binding of 

a single target molecule to an ion channel can lead to macroscopic level of 

conduction. As a result, ion channel based biosensors are designed to detect 

molecular species of interest across a wide range of applications that in

clude medical diagnostics, environmental monitoring and general biohazard 

detection. 

This thesis is concerned with statistical techniques used to describe ion 

channel permeation and to develop ion channel based biosensors. First we 

study the statistics of computer-simulated ion channel permeation and pre

dict the channel behaviour in conditions where the simulation approach 

is computationally infeasible. In a separate study, we apply a statistical 

model to describe macroscopic output current recorded from an ion chan

nel membrane-based biosensor. We show that the model, together with our 

detection algorithm, provides a sensitive and accurate biosensing platform. 

The reminder of this chapter is organized as follows. Sec. 1.1 introduces the 

computer simulation approach used to study ion channel permeation. Sec. 

1.2 discusses some considerations for using gated ion channels to develop a 

biosensor. Finally, Sec. 1.3 discusses the organization for the rest of this 

thesis. 

2 



Chapter 1. Introduction 

1.1 Permeation Model of Ion Channel 

A permeation model describes the propagation of individual ions through 

an ion channel. With recent advances in computational power, one popular 

approach is to study the permeation of ion channels with computer simu

lations of channel interactions at an atomic level. These techniques include 

molecular dynamics (MD) and Brownian dynamics (BD). The general phi

losophy is to observe permeation properties of the channel in the simulations 

and to match with electrophysiological measurements. 

In molecular dynamics, each atom in the channel protein, channel water 

and the environment near the channel mouth are modeled explicitly. At 

each discrete time step of the simulation, the forces on each atom are calcu

lated and the location of each atom is adjusted accordingly. This approach 

computes the exact model of the channel, but the computational cost is 

very high, making it infeasible to use molecular dynamics to simulate ion 

conductions. However, molecular dynamics remains a useful tool to study 

different properties of ion channels. [4, 6] 

Brownian dynamics is similar to molecular dynamics in that the move

ment of individual ions are calculated; however, it reduces computational 

complexity by treating water molecules in the channel as a continuum. The 

interaction between ions and the water molecules can be modeled as a ran

dom-force and a frictional force. The charges of channel protein is assumed to 

be rigid. Also, BD simulations can operate at a much slower timescale than 

M D simulations. [39] Typical B D simulations are performed in the order of 

100 fs per time step while MD simulations operate at 1 fs per time step. As 
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Chapter 1. Introduction 

a result, BD has computational complexity several magnitudes lower than 

that of MD and is the preferred technique for simulating conduction events 

to estimate channel current. 

Other theoretical approaches are used to study ion channel permeation. 

Reaction rate theory is based on partitioning of the channel into specific 

energy wells and estimating conductance from the transition probabilities 

between the wells. Poisson-Nernst-Planck theory model both ions and water 

molecules as continua and compute the dynamics using electrodiffusion the

ory and macroscopic electrostatics. These two techniques are not discussed 

in this thesis. For a detailed review of these techniques to model ion channel 

permeation, see [24, 31]. 

1.2 Gated Ion Channel Based Biosensor 

Triggered by recent threats of biological warfare, there is a high demand for 

fast, economical and portable methods to detect the presence of harzardous 

biochemicals. Traditional laboratory techniques such as mass spectrometry 

and polymerase chain reaction (PCR) are not suited for this type of usage. 

One particular type of detector that is gaining popularity is a receptor-based 

sensor that performs biological recognition at the molecular level. Receptor-

based sensor uses complementary molecules that bind to a specific type of 

target molecules and then indicate the result in the form of fluorescence [35], 

surface plasmon resonance [38] or other observable signals. In this part of 

the thesis, we focus on the ion channel based biosensor. 

An ion channel based biosensor is typically built by inserting ion chan-
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Chapter 1. Introduction 

nels into artificial l ipid membranes. The biosensor consists of a receptor 

element engineered to bind to a specific type of target molecules. The suc

cessful binding of the target molecule to the receptor element distorts the 

channel pore. This results in an alteration in the channel's conductance or 

gating mechanism. Detection of this change can be acheived by monitoring 

membrane conductivity, p H levels or intracellular concentration of ions. In 

addition, ion channels are highly sensitive devices and are suitable tools for 

signal amplification. The binding of a single target molecule to the receptor 

system can lead to an open channel current in the order of pico-Amperes. 

1.3 Organization 

The rest of this thesis is organized as follows. Chapter 2 studies some back

ground information in ion channel permeation model and ion channel based 

biosensor. In particular, the technique of simulating ion channel conduction 

with Brownian dynamics is discussed in detail to identify the difficulty in 

running these simulations at high ionic concentration. Also, we summarize 

the development efforts in ion channel based biosensing and use a specific 

example of ion channel based biosensor to illustrate its functional properties. 

In Chapter 3, we introduce a statistical model to capture the binding site 

kinetics of an ion channel in Brownian dynamics simulation. The modeling, 

combined with extrapolation techniques, are used to predict the permeation 

behaviour of Brownian dynamics at high ionic concentration. Finally, in 

Chapter 4, we introduce the use of stochastic modeling and maximum like

lihood detection results as part of a sensitive biosensing platform. 

5 



Chapter 2 

Background 

In this chapter, we study Brownian dynamics, a practical technique used 

to simulate ion channel conduction events, and investigate previous devel

opment efforts in the area of ion channel based biosensor. Through the 

discussion of theories and examples, we hope to motivate the use of statisti

cal techniques to improve our understanding in ion channel permeation and 

to assist the development of sensitive and reliable biosensors. 

Brownian dynamics have been widely used to determine the structure-

function relationship of various ion channels, such as sodium channels [28, 

40], potassium channels [26], calcium channels [14] and gramicidin channels 

[27]. These papers utlize different parameterization and optimization tech

niques to determine various structural properties of ion channels. In [27], the 

authors computed the potential of mean force experienced by a cation in

side gramicidin channel. In [28], the authors parameterized and adaptively 

determined the molecular structure of sodium channels. The general ap

proach in these papers is similar. The structural properties are determined 

by optimizing the fit between experimental current measured patch clamp 

techniques and simulated current estimated from Brownian dynamics. 

Ion channels can perform chemical recognition at a molecular level and 
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Chapter 2. Background 

the opening and closing of channels results in a macroscopic change in the 

conduction level. Thus the use of artificial gated ion channels for biosensing 

is a promising strategy. The majority of the development focuses on improv

ing the sensitivity and stability of the sensor. That has prompted the use of 

a variety of ion channels and membranes to construct artificial biosensors. 

Mult iple studies have shown the use of engineered pores to detect a variety 

of ions [9], proteins [32] and D N A [21]. 

The rest of this chapter is organized as follows. First, in Sec. 2.1 we 

discuss the permeation and conduction properties of gramicidin A (gA) chan

nels. The algorithms presented in C h . 3 and Ch . 4 are based on experi

mental and simulation results of these channels. In Sec. 2.2, we provide 

an overview of Brownian dynamics simulation of an ion channel. In par

ticular, we describe the simulation setup, dynamic equations to determine 

ion movement, and estimation of current using Brownian dynamics. In Sec. 

2.3, we provide a case study of a biosensor developed using gramicidin A 

channels. The specific example is used to identify the major components of 

an ion channel based biosensor and to highlight the development efforts in 

this area. 

2.1 Gramicidin A Channel 

Gramicidin A channels are used in antibotics to increase cation permeabil

ity across the bacterial cell wall, thus destroying the cell's ion gradient. In 

addition to its pharmaceutical use, gramicidin A is important as a model 

ion channel and is often used to test molecular theories of ion channel per-

7 



Chapter 2. Background 

meation. [1] For a recent review of gA channels, see [41]. 

Gramicidin A is a linear polypeptide consisting of fifteen amino acids. 

In its conducting form, two gramicidin A peptides are linked transiently 

by six hydrogen bonds to form a channel, which is 4 A in diameter and 

25 A in length. The chemical structure of gramicidin A dimer is shown in 

Figure 2.1. The gating mechanism of gA channels results from the formation 

and breakdown of peptide bonds. Inside the gA channel exists six water 

molecules. During the permeation of an ion through the gA channel, the 

ion drags the water molecules in single file. The structure of dimerized g A 

channels in a l ipid bilayer has been resolved by N M R studies. [25] 

Figure 2.1: Chemical structure of gramicidin A dimers 
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Chapter 2. Background 

Gramicidin A channels are selective for monovalent cations and imper

meable to divalent cations and anions. NMR experiments [33] and M D 

simulations [5] show that there exists two monovalent binding sites at ap

proximately ± 9A from the center of the gA channel. The cation conduc

tivity of gA channels varies linearly as a function of the bias voltage. The 

single channel current is depends on the cation concentration \S] in the form 

of the Michaelis-Menten curve: 

W [ S ] ( 2 1 ) 

[S}+KS 

where imax and Ks are parameter constants that depend on the cation type 

[20]. 

2 . 2 Brownian Dynamics 

In this section, we summarize the use of Brownian dynamics to estimate 

channel current. Poisson's equations and Langevin's equations are solved 

iteratively to compute the movement of ions. Channel current can be esti

mated by counting ion crossing events. At the end of the chapter, we discuss 

some computational difficulties faced in BD simulations and show a simpler 

statistical approach to study Brownian dynamics. 

The actual Brownian dynamics computer program belongs to the Com

putational Biophysics Group of Research School of Biological Sciences at the 

Australian National University (http://langevin.anu.edu.au/). For more de

tailed analysis on Brownian dynamics simulations, see [22, 23]. 
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Chapter 2. Background 

2.2.1 S imu la t i on Setup 

Our simulation setup consists of two reservoirs TZi and TZ2 connected by 

an ion channel C. A n external potential is applied across the channel. A t 

the start of B D simulation, each reservoir contains N K + ions and N C l ~ 

ions indexed by i = 1,2,...,N and i = N + 1,N + 2,...,2N respectively. 

Let A denote the set of different experimental conditions, which represents 

varying external potentials across the channel and ion concentrations in the 

reservoirs. Let € Ti? and £ Ti? denote the position and velocity 

of ion i at time t. = (x^',y^', z^'), where x[l\ and zf1 are the 

(i) 

Cartesian components of the position vector. The velocity vector ' follows 

a similar construct. 

2.2.2 So lv ing L a n g e v i n Equa t ions for Ion D y n a m i c s 

The position and velocity of each ion evolve according to the Langevin equa

tions. Let X t = (xf1^, xp'' , . . . , X j 2 A ^ ' ) ' denote the positions and V t — 

(v^', vp ' ' , . . . , vp^' ) ' denote the velocities of all 2N ions in our setup. 

4]=4]+ t^ds, (2.2) 
Jo 

For i = 1,2, ...,N, 

m+v t

( i ) = m+v^ - / m+-y+{x®)v®ds 
Jo 

+ [ FJ>](Xs)ds + 2 m +

7

+ ( x f ) ) w f ) (2-3) Jo 

1 0 
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For i — N + 1,N + 2,..., 2N 

m _ 7-(xW)vWd. 

!s + 2 m - 7 - ( x f ) ) w f : (2.4) 

. F ^ ( X t ) is the systematic forces acting on ion i for experimental con

dition A € A. Details about the systematic forces are given in Sec. 2.2.3. 

The frictional coefficient m ± 7 ± ( x i t ) ) = m ± 7 ± = if x£ l ) e K i U R 2 and 

the diffusion coefficient of K+ is D+ = 1.96 x 1CT9 m 2/s in a bulk solution, 

while the diffusion coefficient for Cl~ions is D~ = 2.03 x 10~9 m 2/s. The 

(i) 

process is a 3-dimensional Brownian motion with component-wise in

dependence and can be written as a zero-mean Gaussian random variable 

with a 3 x 3 diagonal covariance matrix. 

2.2.3 So lv ing Poisson 's E q u a t i o n for Sys temat ic Forces 

The systematic forces in (2.3) and (2.4) can be rewritten as: 

where the scalar valued process < _ ^ ( X t ) is the total electric potential expe-

F i i ) ( X t ) = - . « V x W $ i ° ( X t ) (2.5) 

rienced by ion i given the position X t of the 27V ions. The potential < _ ^ ( X t ) 

experienced by each ion i consists of five components: 

* « ( X t ) = < ^ ( X t ) + $ e x t ( x W } + s j w ( x M ) 

+ c _ f > l ( X t ) + C / (x«) (2.6) 
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«£ex t^ x w^ d e n o tes the external potential applied along the z axis of 

the ion channel. $ ^ ( x ^ ) denotes the ion-wall interaction potential, also 

known as the c r / r 9 potential. ^'l{X.t) denotes the inter-ion Coulomb po

tential and ^fR'l(X.t) denotes the short range ion-ion potential. C/(x^) 

denotes the potential of mean force ( P M F ) , which is a smooth function used 

to model the Coulomb interaction between the ion and channel protein as 

well as induction of surface charges at the water-protein interface when the 

ion is near the protein wall. For the simulations discussed in this thesis, we 

have used the P M F that has the best fit to experimental results of gramicidin 

A current measurements. Details of this result can be found in [29]. 

The systematic forces F ^ ( X j ) are calculated as a function of the ion 

positions. This is done by solving Poisson's equation. By assuming that 

the simulation space can be partitioned into several regions with different 

dielectric constants. Let €j be the dielectric constant of region j and we can 

write the modified Poisson's equation as: 

V 2 $,- = (2.7) 

2.2.4 E s t i m a t i n g B r o w n i a n D y n a m i c s Cur r en t 

The computer simulation of ion channel implements a discretized version of 

the dynamics described in Sec. 2.2.2 and Sec. 2.2.3. Suppose the channel 

model for experimental condition A is simulated for L seconds. At each 

discrete time step, the Langevin's equations in (2.2), (2.3) and (2.4) and 

modified Poisson's equation in (2.7) are solved to compute the movement 

of ions. Two crossing events are of importance to the estimation of channel 
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conductance: 1) forward crossing event, during which an ion crosses from 

7-i to 7_2, and 2) backward crossing event, during which an ion crosses from 

7.2 to TZ\. Let N-jilt-ji2 and be the number of forward and back

ward crossing events respectively. We can compute the Brownian dynamics 

estimate of the single channel current: 

lx = ^ ( ' 

where q+ is the electric charge of a proton, 1.6 x 10~1 9 C. The current 

estimate in (2.8) is based on the random samples observed in the simulation 

and therefore cannot be represented by a closed form expression. 

2.2.5 M o t i v a t i o n for S ta t i s t i ca l M o d e l i n g 

Brownian dynamics is a very useful tool to study the structure-function 

relationship of ion channels. The technique simulates ion channel interaction 

at an atomic level and is computationally tractable to use BD to simulate 

channel crossing events because of a few simplifying assumptions discussed 

in Sec. 1.1. As a result, biophysicists often use BD to estimate single 

channel current at various applied voltages and concentrations and compare 

with experimental patch-clamp measurements. 

Although BD is generally computationally tractable, obtaining an accu

rate current estimates at multiple voltages and concentrations can take a 

very long time. Increasing ionic concentration involves placing additional 

ions in both reservoirs. That has a quadratic effect on the computational 

13 
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complexity of the BD simulations. Fig. 2.2 shows the time required to finish 

1 [is of BD simulation of gramicidin A channel. The simulation is performed 

on the supercomputer cluster on Westgrid (glacier.westgrid.ca). 

25 

0 i i i 1 1 . 1 . 1 
100 200 300 400 500 600 700 800 900 

Reservoir Concentration (mM) 

Figure 2.2: Computing time of 1 [is of Brownian dynamics simulation of 
gramicidin A channel. 

It can be seen that the computing time increases dramatically as more 

ions are included in the simulation. To obtain an accurate estimate of the 

channel current, typical BD simulations of an ion channel last 10 [is to 100 [is 

[11]. Generally it is rare to see BD simulations with reservoir concentrations 

above IM. 

In Chapter 3, we construct a statistical fully-parameterized model to 

characterize ion channel permeation observed in Brownian dynamics. In

stead of modeling movements of all ions in the system, we focus on the 

kinetics of ion activities inside the channel. As a result, the model is a much 

simpler representation of Brownian dynamics and we show that conduction 

14 
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statistics are completely recoverable. One useful application of this model is 

model prediction. We can apply extrapolation techniques to predict channel 

current at conditions where BD simulation is computationally intractable. 

2.3 Previous Work on Ion Channel Biosensor 

To better illustrate the biosensing problem, we investigate previous work 

in the area of ion channel based biosensor. In particular, we describe the 

composition and detection mechanism of the Ion Channel Switch ( ICS™) 

biosensor. [2, 13] The gating mechanism of the novel biosensor exploits the 

association and disassociation probabilities of the gramicidin A dimers. This 

flexible and adaptive sensor can detect a variety of molecules such as growth 

factors, glucose, and DNA strands. [11] 

2.3.1 C o m p o s i t i o n of I C S ™ B i o s e n s o r 

Figure 2.3 shows a diagram of the major components in the ICS™sensor. 

The ICS™biosensor is built by incorporating gramicidin A monomers into a 

tethered lipid bilayer. Because of their chemical and structural stability, gA 

channels are often used in the development of biosensors. The gA monomers 

in the inner leaflet of the bilayer are immobile while the monomers in the 

outer leaflet are free to diffuse. As discussed earlier in the chapter, gA 

molecules can only conduct when two gA monomers dimerize to form a 

channel. Therefore, the conductance of the lipid bilayer arises from random 

diffusion of free-moving monomers that dimerize to tethered monomers in 

the inner leaflet. 

15 
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JKmt 

* km 
Figure 2.3: Components of the ICS™biosensor consists of (a) gold electrode 
and (b) tethered lipid bilayer. (c) Immobile gA monomer is embedded in the 
inner leaflet of the bilayer and (d) free-moving gA monomer embedded in 
the outer leaflet. In this setup, the receptor system, made of (e) streptavidin 
and (f) biotinylated receptor, is used to detect a specific (g) target molecule. 
[11] 
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molecules with matching antibodies. 

(a) (b) 

Figure 2.4: Detection mechanism of ICS™biosensor . (a) When no target 
molecules are present, the gA monomer in the outer leaflet is free to diffuse 
and couple with immobile monomers in the inner leaflet, (b) When target 
molecule is present, the receptor system binds to the target and the attaching 
gA monomer is no longer mobile. [11] 

2.3.3 M o t i v a t i o n for S ta t i s t i ca l De tec t ion 

The above example of a biosensor illustrates how an artificial ion channel 

based system can be designed to detect the presence of target molecules. 

Other ion channel biosensors have employed different gating mechanisms, 

such as channel blockage by molecules or channel distortion using antichan-

nel antibodies. In general, the majority of the research focuses on achieving 

large differences in the biosensor conductance with and without the presence 

of target molecules. Lit t le research has been done on extracting information 

from the biosensor's response using signal processing techniques. 

In Ch . 4, we propose the use of statistical modeling and maximum like

lihood detection algorithms as part of a biosensing platfom. The algorithm 
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offers an automatic approach to analyze the results from the biosensor in 

real-time. This approach eliminates the majority of electrical and mechan

ical interfering effects and offers the ability to enhance the specificity and 

affinity of the biosensor. 
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Chapter 3 

A Simple Statistical Model 

to Characterize Brownian 

Dynamics Permeation of 

Gramicidin A Channels 

Brownian dynamics have been widely used to determine structure and func

tion of various ion channels. The general approach is to optimize the fit 

between the channel current measured with patch clamp techniques and the 

one estimated from BD simulations at various external voltages and ionic 

concentrations. However, as discussed in Sec. 2.2.5, the computational 

complexity of Brownian dynamics makes it computationally intractable to 

perform the simulation at high concentrations. 

We propose a simpler statistical model to characterize ion permeation 

simulated in Brownian dynamics. In particular, we use the simple gramicidin 

A channel to demonstrate the feasibility of this approach. We model only the 

binding site statistics of gA channel with a finite-state semi-Markov process. 

To evaluate the performance of this model, we compare conduction statistics 

19 
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of the proposed model with that obtained from Brownian dynamics simula

tion. The model captures dwell time and transition statistics with a small 

number of parameters and enables us to apply extrapolation techniques to 

predict the behaviour of Brownian Dynamics at high concentrations. 

The rest of this chapter is organized as follows. In Sec. 3.1, we map 

the continuous simulation space into finite states of binding site occupation 

and fit it to a three-state semi-Markov chain (SMC). In Sec. 3.2, we apply 

extrapolation techniques to predict channel current at high concentrations 

where performing the actual simulation is computationally intractable. Fi

nally, numerical results of the modeling and prediction of gA channels are 

presented in Sec. 3.3. 

3.1 Statistical Modeling of Ion Channel 

Permeation 

In this section, we use statistical modeling techniques to capture ion dynam

ics inside the channel. The aim is to develop a simple model that describes 

only the binding site statistics. By mapping the continuous space into dis

crete states of the channel, we construct and estimate a finite-state semi-

Markov chain that is statistically indistinguishable from sample paths of 

actual BD simulations. Statistical validation methods are carefully applied 

at various stages of the modeling to verify goodness-of-fit. 
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3.1.1 F i n i t e State Representa t ion 

A Brownian dynamics simulation is extremely complex, consisting of 2N ions 

each with its own position and velocity vectors. To reduce the dimensionality 

of the space, we choose to only model the occupancy of the binding sites 

in the gramicidin A channel. Figure 3.1 shows the shape of the channel. 

The shaded regions — z2 < z < —z\ and z\ < z < z2 are the left and 

right binding sites respectively, z = —Z3 and z — z% denote the reservoir-

channel boundaries of the simulation space. "Transition regions" are defined 

in the regions —Z3 < z < —z2, —z\ < z < z\ and z2 < z < Z3 to smooth 

out unimportant events caused by ions bouncing around near the region 

boundaries. Only the z-coordinates are considered because K +ions can only 

pass through the narrow gA channel in single-file. 

-20 -16 -10 -5 0 5 10 1E 20 
Channel Axial Position (Angstroms) 

Figure 3.1: Shape of gramicidin A channel and location of binding sites. 

Figure 3.2 shows a sample path of BD simulated ion movements. Ions 
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inside the channel spend the majority of the time in the monovalent bind

ing sites centered at around ± 9 A . The existence of the binding sites are 

discussed in Sec. 2.1. We argue that since the ions spend negligible time 

elsewhere in the channel, it is sufficient to model the dwell time and transi

tion statistics in the binding site regions. 

0 0.1 0.2 0.3 0.4 0.5 
Time (̂ s) 

Figure 3.2: Sample path of BD-simulated ion movement inside gramicidin 
A channel. The sequence clearly shows the ions spending most of the time 
in the binding sites. The color of the trace is used to differentiate between 
ions currently in the channel and does not belong to the same ion for the 
entire sequence. 

Let C 6 {0,1} and 1Z € {0,1} denote the occupancy of the left and right 

binding site respectively, where 0 indicates an empty binding site and 1 an 

occupied binding site. When an ion is within a transition region, C and TZ 

simply assume their previous values. 

Due to the close proximity of the two binding sites, it is extremely rare 

to have both sites occupied for a long period of time. For example, in Figure 
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3.2, an ion (in red) enters the left binding site at 0.21 us and both binding 

sites are occupied concurrently. However, the presence of the left ion forces 

the right ion (in blue) out of the channel soon after. 

To further illustrate this scenario, we observe the change in potential 

energy when a K + i on is at various locations near the left binding site. In 

Figure 3.3 we plot only the energy due to the P M F and inter-ion Coulomb 

potential. The other three components in (2.6) are ignored for simplicity. 

The presence of an ion at the left binding site reduces the energy well from 

6 kT to 2 kT. 

12 

-6 

-8 
0 2 4 6 8 10 12 

Channel Axial Coordinates (Angstroms) 
14 16 

Figure 3.3: Effect of binding K + i o n on the potential energy of gramicidin A 
channel. 

The energy E is related to the occupation probability p as follows: 

p oc exp(—E) (3.1) 
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Based on the above relationship, the probability of an ion binding to the 

right site is 55 times smaller when the left site is occupied than when it is 

empty. We conclude that the state C = TZ = 1 is very rare and treat it a 

transition state. Let the state space be <S e {00,10,01}, where the first and 

second digit represent £ and TZ respectively. 

3.1.2 Semi M a r k o v M o d e l of Ion C h a n n e l Pe rmea t ion 

In Sec. 3.1.1, we showed the mapping from all the ion positions X t to three 

finite states, representing the occupancy of the binding sites in the channel. 

In Figure 3.4, we plot the finite state mapping of the ion sample paths 

observed in Figure 3.2. 

01 

0.2 0.3 
Time (̂ ts) 

Figure 3.4: Finite state mapping of ion sample paths observed in Fig. 3.2. 
The smoothing technique results in crisp transitions that adequately de
scribes the state of the binding sites. 
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Model ing and Est imation of S M C 

In this section, we introduce the semi-Markov chain, a probabilistic model 

used to capture the transition probabilities and rates of a finite state model. 

SMC, a popular technique used in reliability engineering and lifetime analy

sis, is parameterized by state space <S, transition matrix P and state holding 

time matrix Q. Here is a summary of the binding site kinetics that result 

in a state transition: 

• 00 -> 10 

An ion from the left reservoir binds to the left site. 

• 10 ^ 00 

An ion from the left site enters the left reservoir. 

• 10 -> 01 

(a) An ion from the left site jumps to the right site. 

(b) An ion from the right reservoir binds to the right site and pushes 

the ion at the left site out of the channel. 

• 00 -> 01 

An ion from the right reservoir binds to the right site. 

• 01 -> 00 

An ion from the right site enters the right reservoir. 

• 01 -> 10 

(a) An ion from the right site jumps to the left site. 
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(b) An ion from the left reservoir binds to the left site and pushes the 

ion at the right site out of the channel. 

Note that both 10 —> 01 and 01 —> 10 can result from one of two possible 

processes. For the rest of this chapter, we refer to process (a) as the jumping 

process and process (b) as the pushing process. Let /32 3 denote the proba

bility that 10 —> 01 event is due to the jumping process and (1 — /?23) the 

probability of the pushing process. Similarly, let /33 2 denote the probability 

that the 01 —> 10 event is due to the jumping process and (1 — /332) the 

probability of the pushing process. To simplify the notations, we rewrite 

state 00, 10 and 01 to be state 1, 2 and 3 respectively. Let pij denote the 

transition probability from state i to state j, i, j = 1, 2 and 3. The transition 

matrix P can be written as: 

0 Pl2 P13 

P = P21 0 p 2 3 
(3.2) 

P31 P32 0 

Similarly we can write Q as a matrix of state holding time distributions. 

Q = 

— 9i2 (*) qu (t) 

921 (t) — q£\t) 

931(*) 9 32 (*) — 

(3.3) 
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where qij (t) denote the probability distribution function (PDF) of the state 

holding times from state i to state j, i,j = 1, 2 and 3. The distribu

tions qn(t), 922(0 and 533(t) are undefined because state transitions in a 

semi-Markov model must have different start and end states. The model is 

complicated by the fact that the transitions 10 —> 01 and 01 —> 10 can arise 

from two different processes and therefore possess different PDFs. For the 

transition 10 —> 01, let 923,jump(*) denote the PDF for the jumping process 

and <723,push(£) the PDF for the pushing process. We can write q2l3{t) as: 

fl23, N 923,jumP(i) with probability/323 

923 (*) = \ ( 3 - 4 ) 
I 923,PushM with probability (1 - / 3 2 3 ) 

932,jump (t), 932, PushW and q^{t) can be defined similarly. As a result, 

Q is a 3 x 3 matrix of probability distributions, of which two distributions 

are Bernoulli-modulated. Experimentally we found that the gamma distri

bution provided the best fit to the state holding time distributions. Other 

PDFs considered include exponential, normal, log-normal and Weibull dis

tribution. The gamma distribution is defined as: 

* ( * | a ' 6 ) = & M ^ * a ~ 1 ( r * ' ( 3 ' 5 ) 

where a and b are known as the shape and scale parameter and T(-) is the 

gamma function. The estimation of the holding times as a gamma distribu

tion allows us to model each state holding time distribution with only two 

parameters. Suppose n different transition times of a particular transition 
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are observed in a B D simulation. Let ti be the ith largest state holding time. 

The ordering of the holding times is irrelevant for the estimation but is im

portant for the statistical validation method to be introduced later. The 

maximum-likelihood estimates for the gamma distribution can be computed 

by solving the following set of equations: 

l o ^ _ iogt = </>(a)- log (a) (3.6) 
n 

< 3 - 7 > 

where t is the mean of the random samples and d and b are the maximum 

likelihood estimated shape and scale parameter. 

Statistical Validation of S M C 

The Anderson-Darling statistics is the standard technique used to evaluate 

the goodness of fit in distribution fitting. The Anderson-Darling statistics 

is part of a large class known as the empirical distribution function (EDF) 

statistics, which measures the difference between the estimated distribution 

and the empirical distribution of the random samples: 

1 " 

A2 — -n J2(2i ~ !) l o § Zi + (2n + l- 2i) log (1 - z{) (3.8) 
i 

where Zj = Q(ti\a,b) is the cumulative distribution function (CDF) of the 

estimated gamma distribution. Table 3.1 shows the Anderson-Darling statis-
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tics computed at concentration 100 mM, 400 mM and 800 mM. 

(a) 

- 0.154 0.669 
0.994 - 0.608, 0.916 
0.779 0.256, 0.343 -

(b) 
- 0.250 0.506 

1.237 - 0.898, 0.513 
2.054 0.483, 0.219 -

(c) 
- 1.277 0.381 

1.537 - 0.636, 1.717 
0.940 0.727, 0.456 -

Table 3.1: Anderson Darling statistics of holding time distributions at ionic 
concentration (a) 100 mM, (b) 400 mM and (c) 800 mM. The statistics for 
qij(t) are shown in cell (i,j) of each table. Multiple entries exist in cell (2,3) 
and (3,2) because separate statistics are computed for the jumping (left) 
and pushing (right) process. 

It can be seen that the Anderson Darling statistics for most state holding 

time distributions fall below the critical value of 1.092 found in [15]. In fact, 

81% of the transition times satisfied the Anderson-Darling critical value for 

the gamma distribution at 0.01 significance level. Out of all transitions in 

Table 3.1, the holding time distribution < ? 3 i ( £ ) at concentration of 400 mM 

showed the biggest deviation from the gamma distribution. The empirical 

CDF of ( j 3 i (t) and the estimated gamma CDF are compared in Figure. 3.5. 

It can be seen that the estimated gamma CDF followed the empirical CDF 

of the holding times closely even though it failed the Anderson Darling test. 

Thus it is a reasonable approximation to estimate all the holding times as 
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gamma distributions. 

0.9 • 

0.8 -

0.7 • 

0.6 • 

0.5 • 

0.4 • 

0.3 -

0.2 • 

o" 
0 

Figure 3.5: Comparision between E C D F and estimated gamma CDF for 
Qsi{t) at ionic concentration 400 mM. 

Once the transition matrix P and the parameters in the state holding 

time matrix Q are estimated, a Monte-Carlo simulation of the SMC produces 

an estimate of the channel current. 

3.2 Extrapolation Technique for Model 

Prediction 

In this section, we devise an extrapolation procedure that can predict the 

behaviour of Brownian dynamics. In particular, we are interested in predict

ing the channel current at high ionic concentration because BD is intractable 

at that region. It is important to choose a reasonable functional form for the 

extrapolation to reduce the effect of outliers and estimation errors. General 
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extrapolation such as cubic spline leads to overfitting. Here we make two 

reasonable assumptions about the effect of increasing ionic concentrations: 

1. Increasing ionic concentration has a monotonic effect on some tran

sition probabilities and dwell times. For example, an empty binding 

site is likely to be filled quickly when more ions are in the reservoirs. 

Other transitions may be unaffected by concentration. 

2. The effect of increasing ionic concentration saturates at very high con

centrations. 

Linear extrapolation is monotonic but its simple functional form does 

not model saturation very well. Polynomial extrapolation of second order or 

higher is much more flexible but does not guarantee monotonicity. To satisfy 

the above assumptions, we choose the four-parameter logistic function: 

f{x) = A 0 + ^~Al (3.9) 
1 + k e d 

where AQ, A^, k and d are the function parameters. Fig. 3.6 plots an 

example of the logistic function, commonly used in biology and economics. 

In addition to its monotonicity, the logistic function is bounded from above 

or below as x —* oo. The function is flexible enough to model increasing, 

decreasing and constant functions. The effect of increasing ionic concentra

tion on the transition probabilities and state holding times is unknown and 

it seems reasonable to use the logistic function as the basis to extrapolate 

these parameters. 
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X 

Figure 3.6: Example of logistic function, with AQ = 0, A^ = 1, k = 1 and 
d= 1. 
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To perform the model prediction, permeation properties of the gA chan

nel at multiple reservoir concentrations are simulated using Brownian dy

namics. Each set of simulation result is mapped to the three-state semi-

Markov process described in Sec. 3.1.2. The estimated parameters in tran

sition probabilities P and holding time matrix Q are then fitted to the logis

tic function using nonlinear least square methods such as the Gauss-Newton 

method. Finally, the parameters of the predicted model can be extrapolated 

from the fitted logistic function. 

3 . 3 Numerical Results 

In this section, we present some numerical results based on B D simulations of 

the gA channel and evaluate the performance of our modeling and prediction 

techniques. We simulated the ion channel at an external voltage of 100 m V . 

A total of nine independent simuations were performed with the reservoir 

concentration varying from 100 m M to 900 m M , in increments of 100 m M . 

The duration of each simulation is 8 ^s. 

3.3.1 Pa ramete r E s t i m a t i o n for B i n d i n g Site K i n e t i c s 

Table 3.2 shows the estimated transition probabilities, which nicely captures 

statistical changes of the the binding site kinetics at various ionic concen

trations. 

For example, P(l,2) and P(l,3) does not vary with increasing concentra

tion. Wi th concentration in both reservoirs being equal, it is reasonable to 

see that the ratio of ion entry from the left and right reservoir is constant. 
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(a) 

0 0.639 0.361 
0.811 0 0.189 
0.879 0.121 0 

(c) 
0 0.638 0.361 

0.622 0 0.378 
0.616 0.384 0 

(b) 
0 0.639 0.361 

0.715 0 0.285 
0.723 0.277 0 

(d) 
0 0.633 0.367 

0.607 0 0.393 
0.581 0.419 0 

(e) 

0 0.647 0.353 
0.582 0 0.418 
0.527 0.473 0 

Table 3.2: Estimated transition matrices at ionic concentration (a) 100 mM, 
(b) 400 mM, (c) 700 mM, (d) 800 mM and (e) 900 mM. The probability for 
Pij are shown in cell of each table. 

Furthermore, as the concentration increases, it is less likely for an ion in 

the binding site to leave and go back into the reservoir. Consequently, both 

P(2,l) and P(3,l) are monotonically decreasing. 

The effect of increasing concentration on several holding time distribu

tion can be seen in Figure 3.7. In particular, the biggest effect of increasing 

concentration is the decrease in state holding time 912 (0- An e m p t y left 

binding site is filled much more quickly as the left reservoir becomes more 

crowded with ions. 

3.3.2 M o d e l P r e d i c t i o n at H i g h Concen t ra t ion 

To demonstrate the feasibility of our extrapolation technique, we predict 

the channel current at 800 mM and 900 mM, using simulation results from 
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(c) (d) 

Figure 3.7: Estimated state holding time distributions (a) qn{t), (b) 
_23,jump(0) ( c ) _3i(*) and (d) <732, P ush(£) at ionic concentrations of 100 m M , 

400 m M and 700 m M . 

(a) 

0 0.636 0.364 
0.591 0 0.409 

0.601 0.399 0 

(b) 

0 0.636 0.364 

0.568 0 0.432 

0.576 0.424 0 

Table 3.3: Extrapolated transition matrices at ionic concentration (a) 800 
m M and (b) 900 m M . The probability for pij are shown in cell of each 
table. 
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100 mM to 700 mM. This allows us to match BD-simulated and SMC-

extrapolated results at 800 mM and 900 mM and evaluate the performance 

of our model. The first seven BD simulations, at ionic concentration 100 

mM to 700 mM, are estimated and the SMC parameters at each concentra

tion are fitted to the logistic function as a function of concentration. The 

extrapolation is used to determine the SMC parameters at 800 mM and 900 

mM. The extraporated transition matrix is shown in Table 3.3. 

(c) (d) 

Figure 3.8: Comparison between estimated and extrapolated state holding 
time distributions (a) qu{t), (b) q23,jumP(i), (c) 931 (*) and (d) <732,PushW at 
ionic concentrations of 800 mM and 900 mM. 

In Figure 3.8, we compare the extrapolated distribution with results 
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estimated from BD simulations. With the exception of g23, jump (* ) i the ex

trapolated distributions are very similar to the estimated distributions. One 

possible explanation of the poor performance in extrapolating q23tjump{t) is 

the lack of observations of that transition. The 10 —> 01 jumping process is 

one of the rarest transitions in BD simulations of gA channels; therefore, the 

estimation of this process may have higher variance than other transitions. 

The extrapolated SMC model at 800 mM and 900 mM are simulated 

for 1000 independent runs. During each 8 ps run, the ion movements into 

and out of the binding sites are simulated not with Poisson's and Langevin's 

equations, but instead with the extrapolated SMC models. Figure 3.9 shows 

the result of the simulations. 

100 200 300 400 500 600 700 800 900 
Ionic Concentration (mM) 

Figure 3.9: Comparison between SMC-simulated and BD estimated currents 
show similar conduction levels. 

At the concentrations lOOnM to 700nM, it is not surprising that the BD-

simulated and SMC-simulated current have similar conduction level. The 
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SMC model was estimated directly from random paths observed in Brown

ian dynamics. The extrapolation at 800 mM and 900 mM also performed 

extremely well. Clearly the SMC-extrapolated exhibits very similar lev

els as the ones estimated with Brownian dynamics. Using the two-sample 

Kolmogorov-Smirnov test, we compare the similarities of the conduction 

distribution simulated in BD and SMC. The Kolmogorov-Smirnov test is 

another type of E D F testing techniques and can be used to test general dis

tributions. The tradeoff for this generality is that the test is less effective 

than other EDF testing techniques designed for specific distributions. [10] 

Out of 1000 independent simuations at the concentration 800 nM, 96.5% 

of the time the Komogorov-Smirnov test requirement were satisfied, with 

an average P-value of 0.5295. At 900 nM, 97.8% of the test passed with 

an average P-value of 0.5069. Thus the hypothesis that the BD-simulated 

and SMC-simulated conduction events share the same distribution cannot 

be rejected. 

At this point, we do not have simulation results beyond ionic concen

tration of 900 mM and therefore cannot test our modeling and prediction 

technique at higher concentrations. We conclude this section with a pre

diction of channel current up to 5 M . These estimates are also obtained by 

simulating the extrapolated model for 1000 independent runs. The extrap

olation results are plotted in Figure 3.10. 

Since there are no BD results to compare with our extrapolated current, 

we compare our results with the Michaelis-Menten kinetics described in 2.1. 

The plot shows that the SMC technique predicts that BD estimated current 

saturates at a lower conduction level than that of the Michaelis-Menten 
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Figure 3.10: Comparison between SMC-extrapolated results and best-fit 
Michaelis-Menten curve. The comparison shows that the SMC extrapolation 
expects the current to saturate at a lower conduction level than that of the 
Michaelis-Menten curve. 

curve. 
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Chapter 4 

Bis-gA Channel Biosensor 

In this chapter, we discuss the construction, statistical modeling and detec

tion algorithm of a new type of ion channel based biosensor. The biosensor 

constructed comprises engineered dimeric gramicidin A (bis-gA) ion chan

nels incorporated into a lipid bilayer membrane, supported over a 1-micron 

diameter opening of a micropipette, which was excised from a giant lipid 

vesicle. In a giant lipid vesicle, covalent dimeric gramicidin A ion chan

nels were incorporated by codispersion with the vesicle forming lipids. This 

type of artificially constructed biosensor mimics the naturally occurring ion 

transport processes of a living cell. The biosensor is constructed by Bruce 

Cornell in AMBRI Ltd. and Donald Martin and his students in the Depart

ment of Medical and Molecular Biosciences in the University of Technology, 

Sydney. 

Having constructed the biosensor, we formulate a stochastic dynamical 

model to capture its experimental behaviour. The engineered dimeric gA 

channels provided the conducting pore for the vesicle membrane, but not 

with the kinetics of the ICS™sensor discussed in Sec. 2.3. Instead, the 

gating mechanism of the dimeric gA ion channels in this biosensor is thought 

to arise from random movement of excess lipid lenses in the liposome that 
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diffuse over the membrane surface and block the conducting channels. In 

experiments we found that a hidden Markov model (HMM), which takes into 

account of the 1/f noise in the biosensor's response, is an adequate model 

for the biosensor currents. 

In the presence of target molecules, the stochastic behaviour of the 

biosensor current changes. By using a sequential maximum likelihood de

tector, we show that the biosensor can be used in real-time target molecule 

detection. We illustrate the use of the biosensor in detecting two types 

of target molecules, methylbenzthonium chloride (MBC) and 2-methyl-4-

tert.-octylphenol (MTOP). The experimental data shows that the detection 

algorithm performed remarkably well even when it was difficult to visually 

identify the model change. Thus the system we present in this chapter 

provides a sensitive platform for the development of artificially constructed 

biosensors that better mimic the function of living cells. 

The remainder of this chapter is organized as follows. Sec. 4.1 de

scribes the construction of the biosensor. Sec. 4.2 presents a hidden Markov 

model to describe the dynamical behaviour of the biosensor. We also present 

model valididation methods to verify the goodness-of-fit of the H M M to the 

biosensor response. In Sec. 4.3, we discuss sequential detection algorithms 

for detecting target molecules in real-time; and finally, in Sec. 4.4 we demon

strate the experimental detection of two target moecules, M B C and MTOP, 

both of which are known to inhibit the conduction of bis-gA channels. 
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4 . 1 Experimental Construction of bis-gA 

Channel Biosensor 

The biosensor considered in this chapter was constructed by incorporating 

bis-gA ion channels into the lipid bilayer membrane of giant unilamellar l i 

posomes and then excising small patches (1 ^im in diameter) of the lipid 

membrane using a patch-clamp micropipette. The bis-gA was synthesized 

at the Ambr i laboratories. Figure 4.1 shows the fluorescence and phase-

contrast image of the optical section through the diameter of the biosensor. 

The solutions and chemicals used for the model biosensor included DL-alpha-

phosphatidylcholine from soybean, cholesterol, chloroform, sucrose, glucose, 

sodium chloride, potassium chloride and 4-(2-Hydroxyethyl)piperazine-l-

ethanesulfonic acid. 

Figure 4.1: (a) Fluorescence image of biosensor's horizontal optical section 
shows the bis-gA channels labelled using fluorescein and identified by the 
green color, (b) Phase-contrast image of the same horizontal slice shows the 
overall shape of the biosensor. 
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Giant unilamellar liposomes were prepared from a standard hydration 

procedure with minor modifications. Bis-gA channels were incorporated 

into lipid membrane patches excised from the giant unilamellar liposomes. 

A patch-clamp pipette with a tip-opening between 0.9 and 1.5 /Ltm was used 

to perform the excision and to record the ionic currents from the model 

biosensor that resulted from the permeation of ions through the bis-gA ion 

channels. The recording from these membrane patches was amplified and 

filtered at 1 kHz (4-pole Bessel) using an Axopatch 200B amplifier (Axon 

Instruments) and sampled online at 10 kHz. Figure 4.2 shows a schematic 

of the experimental setup. 

1 um contact area 
between glass 

micropipette and 
liposome 

Figure 4.2: Block diagram of experimental setup with photo of glass mi
cropipette and liposome 
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4.2 Statistical Modeling and Validation of 

Biosensor Current 

In this section we discuss the use of hidden Markov modeling to describe 

the biosensor response and introduce estimation techniques to extract the 

model parameters. Statistical model validation tests are used to verify the 

goodness-of-fit of the model. 

Suppose a patch clamp experiment is conducted with (TV — 1) gramicidin 

A channels in the biosensor. At discrete time k, each bis-gA channel can 

be either in the "open" or "closed" state and each open channel conducts 

a fixed current. Thus the total current due to all (TV — 1) ion channels at 

any given time can take on one of N possible levels { ^ i , . . . ,PN} and can 

be modeled as a N-st&te Markov chain. Write as p = (u\,..., HN)- Let Ik 

denote the total channel current at discrete time k. Let 

aij = P(Ik = fij\Ik_1=pH),i,je{l,...,N} (4.1) 

denote the transition probabilities of the Markov chain. Also let 

no(i) = P{I1=(H),ie{l,...,N} (4.2) 

denote the initial distribution of the Markov chain. Write A — [aij]N>.N and 

7i"o = b T o W l j v x i - The measured current from the biosensor is a distorted 

version of the signal Ik. The distortion arises from thermal noise as well 

as open channel noise that has its power proportional to the inverse of 

frequency. Thus this is also known as 1/f noise and is discussed in other 
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studies of bis-gA ion channels. [36, 37]. Figure 4.3 shows the power spectral 

density of a typical sequence of biosensor recordings. 

5 0 , — — — — 1 

Figure 4.3: Power spectral density of biosensor response clearly shows the 
1/f noise and anti-aliasing effect. 

A t low frequencies, the 1/f noise process is evident as the power spectrum 

decreases at a rate of -10 dB/dec. The effect of the anti-aliasing filter causes 

a sharp cutoff at approximately 1 kHz. To model this correlated noise pro

cess, we can use an auto-regressive (AR) Gaussian process that comprises 

white Gaussian noise process Wk filtered by an all-pole filter. We represent 

the filter with transfer function H(q~1), where q~l denotes the unit delay 

operator: 

•401 

10000 1000 100 
Frequency (Hz) 

10 

Yk = Ik + (4.3) tffcr1) 
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or equivalently 

Hiq-^Yk = H{q-l)Ik + Wk (4.4) 

where 

H(q-1) = 1 + hxq'1 + ... + hMq~M (4.5) 

The model in (4.4) can be rewritten as: 

h r Y f c = h T I k + Wk (4.6) 

where Y k = {Yk, F/b-i, • • •, Yk-M)T and I k = (h, h-i, • • •, 4 - M ) T - Let 

h = (1, hi,..., / I M ) T - The standard algorithm to estimate the model pa

rameters in (4.6) is the expectation-maximization (EM) algorithm, which 

will be explained in detail in Sec. 4.2.1. The key point is that the E M 

algorithm involves computing the marginal probabilities of the state space 

P(Ik). The size of the state space increases exponentially with M. This 

leads to huge complexity issues because 1/f noise is a long memory process 

and modeling it requires choosing the filter order, M, to be large. 

To alleviate the computational complexity, we adjust the model so that 

the size of the state space is indepedent of the filter order M. We observe 

that in our current setup, the gating mechanism of the bis-gA channels is 

a much slower process relative to the sampling rate and most of the power 

spectrum of the channel resides in low frequencies. Therefore, we argue that 
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we can redefine the response of the noisy observation as: 

Y k = I k + W k (47) 

and closely approximate the behaviour of the gramicidin channels with our 

model in (4.7), provided that the filter i J (g _ 1 ) has unity DC gain. We apply 

model validation methods in Sec. 4.2.1 to evaluate the performance of our 

model. 

It is convenient to model the noise corrupting the state of the biosensor 

as state dependent noise - that is the noise variance at any given time instant 

is dependent on the state of the biosensor at that time instant. Let o\ be the 

variance of state i, i — (1,..., N). Write o2 = (cr 2,..., o\f). As a result, the 

observations can be formulated as a hidden Markov model sequence. Let 

9 = (A, TT, u, a2, h) be the H M M that characterizes the output measured 

current from the biosensor. 

4.2.1 Pa ramete r E s t i m a t i o n for Biosensor C u r r e n t 

Given an observation sequence {Yk} of length T, we define Lk(9) as the 

log-likelihood of our model at discrete time k. The estimation of the model 

0 involves processing {Yk} through a H M M maximum likelihood estimator 

(MLE). The system in (4.7) can be rewritten as: 

h T Y f c = Ik + Wk (4.8) 

This formulation is analogous to a standard H M M , except that the ob-
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servation sequence is modulated by a finite impulse response (FIR) filter. 

As mentioned earlier, the E M algorithm is an iterative procedure that solves 

for local maximum of the likelihood function. The E-step uses the forward-

backward recursions to compute the forward probability ak and backward 

probability f3k: 

ak{i) = P(Y1,Y2,...,Yk,Ik = m\0) 

Pki}) = P{Yk+i, Yk+2,..., YT, h = m\0) 

and evaluates the log-likelihood 

k N N 

+ £ £ £ C t ( M ' ) l o g K - ) (4.9) 
t=l 1=1 j=l 

where the probabilities ^ k and ( k can be computed from the forward and 

backward probabilities. The M-step maximizes the log-likelihood with re

spect to the model parameters as follows: 

Efc=iCfc (» . j ) 

ELi7fcW 
E L i 7 f c ( i ) ( h r Y k - w ) 2 

ELi7fc(«) 
ELi7fc(Qh r Y k 

ELi7fc(») 
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The coefficients of the filter H{q~l) can also be estimated by taking first-

order derivatives of the likelihood function. Alternatively, the estimation 

can be implemented with the Yule-Walker type equations. For details about 

H M M estimation and the E M algorithm, please see [12, 16, 30, 34]. 

4.2.2 S ta t i s t i ca l V a l i d a t i o n of Biosensor M o d e l 

Statistical model validation is of key importance for the biosensor since, 

once a satisfactory stochastic model is determined, an appropriate molec

ular detection algorithm can be constructed. In Sec. 4.2.1, we discussed 

model estimation techniques with the assumption that the N-state hidden 

Markov model with an AR filter is an approriate model for our biosensor 

measurements. In this section, we need to statistically validate that assump

tion. Model validation can be done by analyzing the autocorrelations of the 

residuals, which are generated via a H M M one-step predictor: 

N N M 

e/c|fc-i = V f c -^2Y^aiJak-i{i)^j - ^ K Y k _ n (4.10) 
1=1 J = l 71=1 

The lag-/ autocorrelation function of the residual is defined as: 

r ( 0 _ O ' - * - ^ - ) ( 4 . n ) 
Efc=i (e/c -e ) 2 

where e is the mean of the residual process. The residuals of an adequately 

fitted model should be uncorrelated and the autocorrelation should approach 

0 as T —> oo. Rather than examining the autocorrelation at each lag /, 
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the standard procedure is to compute the Ljung-Box Q-statistic defined in 

(4.12), which computes the cumulative sum of autocorrelations at the first L 

lags. The Ljung-Box test is used as a portmanteau lack of fit test for model 

adequacy. [7] 

i=i v ' 

It is shown in [8] that for an adequate model, the Q-statistics of the 

residual is approximately distributed as x2(^)- We report on the validity of 

the model on the biosensor experimental data in Sec. 4.4. 

4 . 3 T a r g e t M o l e c u l e D e t e c t i o n A l g o r i t h m 

After the design and validation of the dynamical models, in this section we 

discuss algorithms for the detection of analytes that are known to change the 

statistics of bis-gA channel conductance. M B C and M T O P are two analytes 

that are known to inhibit conductance of bis-gA channels. The chemical 

structure of M B C and M T O P are shown in Figure 4.4 and 4.5 respectively. 

The interaction of M B C and M T O P with gA channels is described in the 

manuscript [19]. 

(4.12) 
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i " 3 i V A 1 + 3 _jr~\ 

C h ^ - C - C H j - C ^ V O C H , Ch-12 OCH, C H , - N - C H , y 
CH, C H 3 H 

C H 3 C l -

Figure 4.4: Chemical structure of Methylbenzthonium Chloride 

H 3 C C H 3 

Figure 4.5: Chemical structure of 2-Methyl-4-tert.-octylphenol 

Given a measured sequence observed in an unknown condition, the de

tection problem involves the identification of the condition that most likely 

contributes to the biosensor's response. This is a model classification prob

lem and can be solved by comparing the likelihood of each known model. 

Let Y = (Y\,..., Yp) be a sequence of observed responses of the biosensor 

and let 0 = . . . , 6 M) denote the set of model parameters that charac

terizes the biosensor's response for known conditions. It is assumed that at 

each time point k, the sequence Y behaves according to one of M possible 

models in 0. 

The model parameters 0 are estimated and the log-likelihood at each time 

point Lh can be computed from (4.9). To make the detection more robust 

to nonstationary disturbances and outliers in the measurements, we apply a 
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geometric moving-aver age filter to the log-likelihood. Let p be the forgetting 

factor, 0 < p < 1. Define the filtered likelihood of model 9 at time k: 

LAB) forfc = l 
Sk(9) ={ (4.13) 

(1 - p)Sk-! + pLk{9) for 2 < k < T 

The filtered likelihood is a weighted sum of the likelihood of the entire 

sequence {Y\,... ,Yk}, with higher weights on the recent observations. The 

apriori probabilities of each model is generally unknown, so we devise a 

maximum-likelihood detector which picks the most likely model at time k 

given the measured sequence {Yi,..., Yk}: 

c9fc = argmax(5fc(0)) (4.14) 

where 9k is the maximum likelihood detection of the model at time k. 

4 . 4 E x p e r i m e n t a l R e s u l t s o f B i o s e n s o r 

Here we report on the goodness-of-fit of the dynamical model and the per

formance of the detection algorithm on experimental data. We recorded 

output from the biosensor by measuring the activity of the bis-gA ion chan

nels that were incorporated into the small lipid membrane patches excised 

from unilamellar giant liposomes. Bis-gA ion channels were incorporated 

into the unilamellar giant liposomes at a concentration of 1/100 from a 66 

nM stock solution. We used 0.5 M KC1 solution in the recording pipette 
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with the micro-particles suspended in a 0.5 M NaCl solution. 

4.4.1 M o d e l E s t i m a t i o n and V a l i d a t i o n for Biosensor 

We recorded the biosensor response at an applied voltage of 50 mV and an 

amplifer gain of 200. Figure 4.6 shows a three-second recording of biosensor 

response. 

ii 1 . 1 , , 1 
0 0.5 1 1.5 2 2.5 3 

Time (s) 

Figure 4.6: Experimental measurement of biosensor response was recorded 
at an applied voltage of 50 mV and an amplifer gain of 200. The giant 
liposome was constructed from P C with 10% cholesterol in chloroform. 

Notice that the bis-gA current measurements obtained here are more 

noisy compared to the ones obtained from a solvent sealed black lipid mem

brane (BLM). The quality is typical of patch clamp recordings in which a 

membrane patch is captured on the tip of a 1 fim pipette. The seal obtained 

using the patch clamp technique is generally poorer than that obtained 

from a B L M , resulting a worse signal-to-noise ratio for the measurements. 
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Transition 
Probabilit ies 

Conductance Level 
(PA) 

Variance 
( P A ) 2 

0.9964 0.0036 5.831 0.513 
0.0006 0.9994 3.057 0.371 

Table 4.1: Maximum Likelihood Estimation of H M M parameters of the 
biosensor recording in Figure 4.6. 

A further potential difficulty is the possibility of multiple lipid layers being 

present in the patch as compared to the B L M geometry which is thinned to 

a single bilayer. When recording from multiple lipid membrane stacks the 

signal-to-noise ratio of the individual conduction events is reduced by noise 

arising from the complex impedance of the series elements. 

We fitted the sequence with two-state H M M and a 12~th order AR filter. 

The model parameters were estimated with the M L E and listed in Table 

4.1. The most likely conductance level sequence is extracted from the H M M 

procedure and plotted in Figure 4.7. 

To verify that the two-state H M M outlined in Table 4.1 provides suf

ficient statistics to model the response of the biosensor, we computed the 

Q-statistics of the residuals, using (4.10) through (4.12). It can be seen in 

Figure 4.8 that for the first 13 lags, the Q-statistics are below the critical 

values of the chi-square distribution at 0.05 significance level. Therefore, 

the hypothesis that the residual is a white process cannot be rejected. It 

is interesting to note that the estimated state levels, at approximately 3 

pA and 6 pA, are rather large compared to single channel measurement of 

channel current at a low applied voltage. One plausible explanation for this 

observation is that the activity of some of the bis-gA channels are correlated. 

In other words, the level switch from 3 pA to 6 pA may be contributed by 
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0 0.5 1 1.5 2 2.5 3 

Time (s) 

Figure 4.7: Maximum likelihood estimate of biosensor conductance was ex
tracted from the forward-backward procedure in the H M M estimation algo
rithm. 

90 

Lags 

Figure 4.8: Q-statistics of residuals are plotted against the critical values 
of the Ljung-Box test at significance level of 0.05. For the first 13 lags, the 
Q-statistics are below the critical values and the hypothesis that the residual 
is a white process cannot be rejected. Thus the proposed two-state H M M 
is an adequate model for the biosensor current. 
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several coupled channels opening at the same time. 

4.4.2 R e a l - T i m e De tec t ion of Target Molecu les 

In this section we illustrate the performance of the algorithm in detecting the 

presence of target molecules in real-time. We present experimental results of 

the biosensor in detecting two analytes, M B C and M T O P . Both compounds 

are known to inhibit conduction of the bis-gA channels. Patch-clamp exper

iments are conducted with and without M B C in the bath solution. Let 

9\ = with M B C in the bath solution 

#2 = with no M B C in the bath solution 

110 

Time (s) 

Figure 4.9: Biosensor's response to addition of M B C at fc = 57.828 seconds. 

To simulate the addition of M B C into the bath solution, we merged 

together sequences recorded with and without M B C . The merged sequence 

is plotted in Figure 4.9. Assuming a four-state H M M , the parameters of 9\ 
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and #2 are estimated with the E M algorithm. 

The filtered likelihood of each model is shown in Figure 4.10. Since 

the stochastic model successfully captures the dependencies in the biosen

sor's response, the detection algorithm quickly and accurately estimates the 

model switching point. The detection trace in Figure 4.11 indicates a switch 

in the most likely model from 9\ to 62 at k — 59.865 seconds, approximately 

0.2 seconds after M B C is added. 

Time (s) 

Figure 4.10: Filtered likelihoods for estimated models of MBC, with p = 
0.0001. 

In the second example, we test the algorithm's performance in identifying 

the concentration of M T O P in the bath solution. Let 

01 = no M T O P in the bath solution 

02 = 50 uM M T O P in the bath solution 

03 = 100 uM M T O P in the bath solution 

We simulated the change in concentration of M T O P by merging channel 
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Figure 4.11: Maximum likelihood detection of M B C is generated using 
the likelihoods in Figure 4.10. While it is difficult to visually identity the 
transition from the recordings, the detection algorithm detected a model 
change shortly after M B C was added to the solution. 

12 

Time (s) 

Figure 4.12: Biosensor's response to various concentrations of M T O P . 50 
/ / M of M T O P was added to the bath solution every 50 seconds. 
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recordings independent from the training sequences. The merged sequence 

is plotted in Figure 4.12. The parameters of Q\, 62 and #3 were estimated 

offline with the E M algorithm. The filtered likelihood and the detection 

trace are plotted in Figure 4.13 and Figure 4.14 respectively. The algorithm 

identified the correct concentration of M T O P 98.1% of the time. 

2.4 

2.2 

50 |iM 

- 100 uM -

""0 50 100 150 
Time (s) 

Figure 4.13: Filtered likelihoods for estimated models of M T O P , with p — 
0.0001. 
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e,| 1 u 

0 50 100 150 
Time (s) 

Figure 4.14: Maximum likelihood detection of M T O P generated using the 
likelihoods in Figure 4.13, showing the most likely condition. The algorithm 
detected the correct model 98.1% of the time. 
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Chapter 5 

Conclusion and Extensions 

This thesis is concerned with the statistical modeling and application of 

gramicidin A ion channels. In particular, we have addressed two important 

issues in the area of ion channel permeation and ion channel based biosen

sor. Brownian dynamics is a practical technique to simulate ion channel 

conduction but it suffers from huge computational complexity at high ionic 

concentration. We proposed the use of a finite-state semi-Markov model 

to describe the binding site kinetics of gramicidin A channels. We extrapo

lated the model parameters with the logistic function and used the results to 

predict the channel current at high ionic concentrations. Numerical results 

showed that the technique correctly predicted the channel current and con

duction event distribution. In future work, we will use the same modeling 

and extrapolation technique to study single channel current as a function of 

applied voltage. 

In a separate study, we developed stochastic modeling and detection 

algorithms as part of an ion channel based bionsensing platform that can 

automatically detect a variety of target molecules. The conduction of an 

ion channel biosensor can be modeled by an AR-modulated hidden Markov 

model. The presence of specific target molecules distorts the channels in 

61 



Chapter 5. Conclusion and Extensions 

the biosensor, thus changing the statistics of the biosensor's conduction. 

We devise a real-time maximum likelihood detector to capture the change 

and detect the presence of target molecules. The algorithm is tested on a 

biosensor built by incorporating dimeric gramicidin A channels into bilayer 

membranes of giant unilamellar liposomes. The performance of the biosensor 

is tested with addition of M B C and MTOP, both known to inhibit conduc

tion of gramicidin A channels. Experimental results show that the detection 

performed well even when the change in the conduction level was difficult to 

visualize. The detection algorithm provides the sensitive detection system 

for ongoing development of membrane-based biosensors. In future work, we 

will construct a more robust biosensor by incorporating bis-gA channels into 

a B L M , where we can observe the activity of a single bis-gA channel and 

investigate in more detail biological properties of the bis-gA channels. 
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Appendix A 

List of Acronyms 

A R Auto-regressive 
BD Brownian dynamics 
bis-gA dimeric gramicidin A 
B L M black lipid membrane 
CDF cumulative distribution function 
E D F empirical distribution function 
E M expectation-maximization 
FIR finite impulse response 
gA gramicidin A 
H M M hidden Markov model 
I C S ™ Ion Channel Switch 
M B C methylbenzthonium chloride 
MD Molecular dynamics 
M L E maximum likelihood estimator 
M T O P 2-methyl-4-tert .-octylphenol 
NMR nuclear magnetic resonance 
PCR polymerase chain reaction 
PDF probability distribution function 
P M F potential of mean force 
SMC semi-Markov chain 


