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ABSTRACT 

Due to the fast response, the hvdc lines, when properly con

trolled, are very useful in stabilizing power systems. In this thesis 

dynamic modelling and linear optimal controls for dc/ac parallel power 

systems are Investigated. Beginning with a detailed representation of 

one machine-infinite bus dc/ac parallel power system several reduced 

order models with very good accuracy are developed. They are derived 

mainly through eigenvalue analysis but are compared in detail with the 

high order nonlinear model tests. Linear optimal control schemes, 

comprising excitation and/or dc reference current control signals, are 

designed and tested for two different one machine-infinite bus systems. 

After that a dynamic model for a three-terminal dc line in parallel 

with a delta-connected ac system is developed and again linear optimal 

controls are designed and tested. Two systems are studied; a two machine-

infinite bus system and a three machine system. For each system two 

cases are investigated; two rectifiers and one inverter, or one rectifier 

and two inverters. It is found that in a l l cases the hvdc reference 

current control provides the most effective means in stabilizing large 

power systems. 
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NOMENCLATURE 

linearized system matrices 

ac transmission line coefficients 

synchronous machine coefficients 

dc network coefficients 

common reference frame 

individual machine frame 

exciter voltage 

equivalent ac harmonic fi l t e r admittance 

local load admittance 

synchronous machine inertia constant 

synchronous machine terminal current components 

direct and quadrature damper windings currents 

field current 

shunt capacitor current components 

local load current components 

ac harmonic filter current components 

ac transmission line current components at sending end 

ac transmission line current components at receiving end 

dc current components 

dc reference current 

rectifier and inverter dc currents 

voltage regulator gain and time constant 

rectifier firing circuit gain and time constant 

inverter firing circuit gain and time constant 

current margin 

composite system matrix 

x 



mechanical input 

energy conversion power 

synchronous machine output power 

active and reactive powers transmitted over ac line 

active and reactive power input (output) to rectifier 

(inverter) 

weighing matrices 

armature and field resistances 

direct and quadrature axis damper windings resistances 

ac transmission line parameters 

dc transmission line parameters 

local load resistance 

ac harmonic f i l t e r parameters 

direct and quadrature axis sub transient open circuit 

time cons tants 

direct axis transient open circuit time constant 

optimal control vector 

optimal dc control signal 

optimal excitation control signal 

conventional excitation control signals 

synchronous machine terminal voltage 

terminal voltage dq components 

infinite bus voltage 

synchronous machine reference voltage 

rectifier and inverter dc voltages 

armature leakage reactance 

direct and quadrature axis mutual reactances between 

stator and rotor 

xi 



direct and quadrature axis damper windings reactances 

field reactance 

direct and quadrature axis subtransient reactances 

direct axis transient reactance 

direct and quadrature axis synchronous reactances 

commutation reactance 

shunt capacitor reactance 

state vector and its transpose 

rectifier and inverter delay angles 

inverter's angle of advance (= TT - ct̂.) 

deionization angle of a valve 

synchronous machine torque angle 

angle between terminal voltage and quadrature axis 

speed deviation 

power factor angle for converters 

direct and quadrature axis armature flux linkages 

direct and quadrature axis damper windings flux linkages 

field flux linkage 

synchronous speed ( = 377 rad./sec.) 

x i i 



1. INTRODUCTION 

The use of direct current (dc) goes back to the early days of 

electricity. The first electrical power source, the galvanic battery, 

delivered dc. Indeed the first electric central power station was 

built in New York in 1882^ and supplied dc at 110 volts. One of the 
2 

earliest dc transmission systems, the Thury system in the 1880's , was 

operated with the principle of constant current control which is very 

similar to modern hvdc systems. However, ac soon superseded dc in 

generation, transmission and utilization of electricity because of 

the general flexibility in voltage transformation, high voltage for 

transmission and low voltage for distribution, and the sturdy structure 

of the ac motors and their simple operation. But resurrection of hvdc 

has been witnessed in recent years because of the development of grid-

controlled, multi-electrode, mercury-arc valves which are capable of 
2 

handling large powers at very high voltages . The main problem though, 

is s t i l l the relative costs of ac and dc equipment. The high i n i t i a l 

cost of converting stations for dc has to be weighed against the saving 

in transmission. In general, the longer the transmission distance, the 

more favourable will be the use of hvdc. From 1950 to 1970 eight dc 

links had gone into commercial operation in various parts of the world\ 

with transmission voltages up to 800 kV, rated powers up to 1440 MW, and 

distances up to 850 mil is. 

There are many other advantages of hvdc transmission. For 

underground and submarine cables dc has lower losses and the problem of 

charging currents is eliminated, thus increasing the current carrying 
3 

capacity of cables . An hvdc line may serve as an asynchronous link to 

1 
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interconnect power networks of different frequencies, as witnessed in 

Japan^, or networks that would be unstable i f ac links were used for the 

interconnection, as in the case of the Eel River project"'. The fast res

ponse of dc links can be utilized in improving the performance of the 

associated ac systems'^ thus suggesting a very powerful tool for 

stabilizing large power systems. 

Considerable amount of work has been done in the field of 

mathematical simulation of hvdc systems. Detailed simulation of con-
7-12 

verter action on digital computers received a lot of attention . The 

simulation of ac system impedance and converter transformers were also 

considered"^'"^. Hybrid computers"'"'' and dc simulators^ were developed 

for the study. Representation of dc links in large ac systems for load 
17-19 

flow studies were also reported . For transient stability studies, 

simpler-models were •obtained-by representing converters en-the basis of 

the average value of their dc voltages^ 

Whereas the ac power control after a disturbance is rather 

slow i f governors are used to control the mechanical input, or lacks 

continuity and smoothness i f capacitor switching or dynamic resistance 

braking is used to control the electrical output, the power control 

over a dc line is quick and smooth by simply controlling the firing 

angles. People have started looking into the use of dc/ac parallel trans-
22—26 

mission for improving stability . The basic control scheme is to regu

late the dc power according to the system stability requirement using signals. 
derived from the frequency differences between the interconnected sys-22 23 tems , the ac voltage drops , a combination of frequency change and 

24 
its integrals , and power angle magnitude or its derivative and several 

25 
other schemes . A l l these controls resulted in improving the stability 
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of dc/ac parallel systems including the case of short outage of dc 

lines. This clearly demonstrates the effectiveness of dc control in 

stabilizing a power system. As for the gains of a l l the control schemes 

mentioned above, they were arrived at experimentally. There is also 
27 

a very recent paper designing a linear optimal control for an hvdc link. 

All existing hvdc links are essentially restricted to two-

terminal lines mainly because of the absence of hvdc circuit breakers. 
28—31 

Since such breakers are being developed , a sizeable number of pub

lications is already available for multi-terminal hvdc system operation 
- n 32-41 and control 

In this thesis the dynamic modelling and linear optimal control 

design for two-terminal as well as multi-terminal hv dc/ac parallel 

power systems are investigated. In Chapter 2 the dynamics of a two-

terminal hv dc/ac parallel system are explained and the system components 

are represented mathematically in detail. This detailed model is 

reduced in order by applying simplifying assumptions and making approxi

mations in Chapter 3. The validity of these assumptions and approxima

tions is tested by eigenvalue analysis and nonlinear disturbance tests. 

In Chapter 4 optimum control theory is employed to design control signals 

for linearized models of dc/ac parallel power systems and the nonlinear 

system responses under disturbance are compared for different control 

schemes. In Chapter 5 the operation and basic control systems for a 

tapped three-terminal dc line superimposed on a delta connected ac 

network are discussed and a dynamic model for the system is constructed-

Finally in Chapter 6 linear optimal control schemes are designed and 

tested for a two machine-infinite bus system as well as a three machine 

system. Both systems are studied for two modes of operation; two 



4 

rectifiers and one inverter, or one rectifier and two inverters. 
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2. BASIC EQUATIONS OF HVDC POWER SYSTEMS 

In this chapter the basic elements of an hvdc system will be 

described and equations describing such a power system will be given. 

2.1 The HVDC Systems 

The main components of an hvdc system are the dc transmission 

lines, the ac power supplies, the converters and controls, the smoothing 

reactors, the ac harmonic filters, and the shunt capacitors. Each con

verter unit consists of six valves in a bridge connection for a six-

pulse operation where valves are connected in pairs to each phase 

terminal, one with the anode and the other with" the cathode as shown in 

Figure 2.1. The output voltage Figure 2.2, has a ripple six times the 

main frequency where each valve carries the fu l l dc current for 120°. 

At least there are always two valves conducting in series. 

From the above description i t is clear that the ac current 

contains lots o-f harmonics inherent in the conversion process. Therefore 

filters are required to reduce the ac voltage and current ripples to an 

acceptable level. For a six-pulse operation the filters generally com

prise branches tuned to 5th, 7th, 11th and 13th harmonics of the supply 

frequency. These are connected either to the primary or tertiary wind-
42 

ings of the converter transformer 

The dc voltage output of a converter bridge is controlled by 

changing the firing angie, a, of the valves. In Figure 2,3 valve 3 

will take over current from valve 1 at b instead of a. This means that 

the current will lag behind the voltage and reactive power must be drawn 

from the supply. For this reason reactive compensation via shunt capa

citors is normally used. In addition, the shunt capacitor banks of the 
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ac harmonic filters also supply a portion of the reactive power re

quired. 

Converter valves should be operated within their current 

ratings. Constant current control is thus.desirable and is usually em-
7 43 

ployed for rectifier bridges ' . This is achieved by comparing the 

actual value of dc current to the desired value and adjusting the firing 

angle a accordingly. For inverter operation each valve must start firing 

at an angle 3 (=Tf-a^) in advance of the voltage zero such that after 

completion of commutation there is s t i l l an angle A available, greater 

than or equal to A q , the deionization angle of the valve, to prevent com

mutation failure. Since voltage and current are liable to considerable 

changes, 3 must be large enough to accommodate such changes. On the 

other hand, the amount of reactive power required by the inverter is 

directly proportional to g, which means that the smaller the angle 3 

the smaller is the reactive power required. These considerations show 

that a compromise has to be made between these two conflicting require

ments. Such a control scheme is termed constant extinction angle con

trol. In addition to this control a current override control is sup

plemented such that i t allows the inverter to take over current control, 

at a reduced value of reference current, in case of a failure of the 

rectifier's current control due to low ac voltage or loss of a converter 

group. In such a case the rectifier will deliver voltage up to its 
capacity with a set to a minimum value of about 5°. K 
2.2 The Overall System 

In this thesis optimal stabilizatin of parallel hvdc-ac 

systems is investigated. For that a dynamic modelling of the system 

is necessary. The model must be fairly accurate to be able to predict 
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the dynamic performance of the system yet not too complicated computa

tion-wise . 

Figure 2.4 shows a general layout of a parallel hvdc-ac system. 

The generator is connected to an infinite system through both ac and dc 

transmission lines. The generator is equipped with a voltage regulator 

and has a local resistive l o a d a t the terminal. The dc line has a 

constant current control at the rectifier end and constant extinction 

angle control with current override at the inverter end. There are 

ac harmonic filters and compensating capacitors at the sending end. 

Fig. 2.4 A Typical DC/AC Parallel Power System 

2.3 Synchronous Machine Equations 

The flux linkages are expressed in terms of per unit reactances 

instead of per-unit inductances. Since x = to L, where CJ = 377 radians/ 
e e 

second, u) will be attached to the p^ equations a l l the time. Also 
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negative reactances instead of negative currents are chosen for the 

generator armature circuit. Thus one has, for the flux linkages 

yq -(x + x„ ) X aq la aq • 
i 
q 

-x (x + x„, ) aq aq £kq 

*d _ ( x a d + x*a> 

-x ad 

-x ad 

x ad âd 

(x j + X., ,) X , 
ad £kd ad 
x ad ( xad + W 

Lkd 

•fd. 

(2.1) 

and for the power 

P = i b , i - ib 1 e d q q d 

2 2 . 2 
V,_ = V , + V t d q 

. 4 4 

(2.1a) 

Then Park's equations of a synchronous machine44 and a voltage regulator 

equation can be arranged in a state variable form to read 

p6 = Au (2.2a) 
0) 

piK, = to r_, ( i,,) r r f d e fd x , fd ad 
(2.2b) 

pE = — [k (V - - v J - E ] x T r ref t x r 

pi|). , = -to r. , i , , r rkd e kd kd (2.2c) 

kq "e rkq *kq 

pip, = to (v, + r i ,) + (to + Aco) ib d e d a d e q (2.2d) 

p^ = to (v + r i ) - (to + Aio) i b , r r q e v q a q v e ' M 
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Equations (2.2a) are the mechanical equations in state variable form, 

where 6 is in radians, Aw in rad./sec, P and P in p.u. and H in 
m e 

seconds. The second equation of (2.2b) describes the voltage regulator 

of the control loop. For simplicity only one time constant is included. 
2.4 Converters and DC Control 

Techniques for simulating converter action in detail are 
7-12 

available . For transient stability studies a simple model may be 
20 21 

achieved by representing the converters by their average dc voltages ' 

This method will be used throughout this thesis. The average dc voltages 

for the rectifier and inverter bridges respectively are 
V,, = v cos OL. - — x I_. (2.3) R rr t R TT co R 

T7 3/3 3 _ VT = v cos a_ x I T I TT O I TT C O 1 
where a and a are the firing angles of the dc control. 

R I 

The constant current control for the rectifier bridge and the 

constant extinction angle control with current override for the inverter 

bridge are described as follows. 
KR 

. . C O S aR = v~- ( I r e f " V + C O S aRs 
1 2 cos a T = -cos A + — (—x I T + e _) (2.4) I o V Q co I cl 

where C L is the steady state value of O L and e T is the current override Rs J R cl 
control signal and is restricted to positive values. 

e T = KT ( k I . - I_) 0 (2.4a) cl I ref I 

Equations (2.3) describe a continuous relation between the dc voltage, 

the firing angles, and the dc current. Since a change in the firing angle 
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following a commutation does not affect the average output voltage 

immediately, not until the end of the normal conduction period, and a 

change in converter current does not cause an instant change in voltage, 

time lags must be incorporated into the transfer functions for a tran

sient study. Thus equations (2.3) may be rewritten 

3/3 3 T t 
VT> =

 V_ C O S ar> X I ' 

R TT t R TT CO R 
w 3 y /3 3 _,• VT = v cos a T x I' 
I Tf O I Ti CO I 

(2.5) 

where 

P*R ' f " XR) 

P cos a R = ^ [ K R ( I R E F " I.R)/vt + cos a R s - cos a R] 

p cos aT = ±- [-cos a ; - cos A Q + ( - | ^ + e ^ / v j 

(2.6a) 

(2.6b) 

A single time constant is incorporated into each control loop of the 

dc system. 

2.5 Transmission Lines 

Both ac and dc lines are represented by equivalent T-sections 

as shown in Figure 2.5. For long transmission lines more than one 

section can be used i f more accuracy is required. The dc line is re

presented by 
to 

P XR = 3T <VR ~ V c " R V ' P V c = "e X c ( IR " V ( 2 ' 7 ) 

J_i 

to 

P 1 ! ^ ( V I + V c " R V 
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For the ac line let 

i = i , + j i , v 85 v, + j v d J q d J q (2.8a) 

The ac line in Park's d-q coordinates may be represented by 

pi . = — (v - v - r i ,) - (co + Aco) i ,. v qA q qc qA e dA 

to 
pi,. = — (v, - v, - r i,.) + (to + Ato) i . r dA x „ d dc dA e qA 

pi „ = •- (v cos 6 - v - r i ) - ( lo + Au) i r qB x^ o qc qB e dB 
to 

PAdB = < v
0
 S i n 6 " Vdc - r ldB ) + (u,e + A u ) V (2.8) 

pv = to x (i + i ) - (to + Ato) v r qc e c qA qB' v e ' dc 

pv, = to x (i + i ) + (to + Aw) v r dc e c dA dB e qc 

To relate the dc current to the ac reference frame a second 

set of axes, d' and q', is defined such that the q' axis coincides con

tinuously with the hypotenuse of the right triangle formed by the two 

components of the synchronous generator terminal voltage, v^ and v , 

as shown in Figure 2.6. The angle between the two sets of axes, 6 , is 
K 

given by 

& = arc tan (—) K v (2.9) 

and the rectifier current .1̂  may be resolved into two components, I, 
K a 

and Iq, in the ac reference frame. 

2/3 sin6 cos6 K K 

cos6 -sin6 K K. 

COS<J> R 

sin<j> R 

where 
, A TT R 

cos<p = — — — 
R 3/3 v t 

(2.10) 



r *l 
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Vr 

Xl 

'U 

'B 
Xr 
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I 
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•f 

Fig. 2.5 Equivalent T-sections for Transmission Lines 

Fig. 2.6 Resolving I 

into d-q components 
R CO 



14 

2.6 AC Harmonic Filters, Shunt Capacitors and Local Load 

Four parallel filter branches tuned for 5th, 7th, 11th and 13th 

harmonics are considered. Each branch is represented by 

1 2. 
P i T {pv. - (w +Ao))v - R... pi,,.. + 2(to + A t i ) ) L , . pi -dfj L f j r d e q fj ̂  dfj e f] K qfj 

[— (to +Au)2 L - . ] i , c . + [L £. pAco + (ai +Ato)R j r.] i ,..} (2.11) 
c fj e f j J dfj fj ̂  e f j J qfj J 

2 1 P i c . ~ -z {pv + (to +Aw)v, - 2(a) +Au))L_ pi,,. - R,-. pi r. -qfj L f
 r q e d e. fj F dfj fj qfj 

[L.. pAco + (u +Au))R,.]i... - [— (w +Ato) 2 . ] i ..} 
fj e f j J dfj l c f j e f j J qfj 

j = 5, 7, 11, 13 

Next the shunt capacitors may be represented by 
pv, = to x i , + (to +Ato) v d e c c d e q (2.12) 

pv = co x i - (to +Ato) v, q e c cq e d 

where 

Xcd xd "̂dA " 1df • 1dA ~ Id (2.13) 

i = i - i . - i . - i - I cq q qA qf q£ q 

Finally the local load currents are given by 
— -

i 
v d 

i \ V. q_ 
(2.14) 

2.7 State Variables 

Equations (2.2), (2.6), (2.7), (2.8), (2.11) and (2.12) form 

a complete set of state equations for the system under study. The 

state variables are 
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** = (&>^>*fd> V*kd'V*d'V V W IR'II' C° SV C O S Q r 1dA' 

iqA' 1dB' V'^c'V'^fS'^dfS' ±qf 5 ? ? ± q f 5 ' ±df 7 ' P l d f 7' ̂ 7 ' 

P lqf7' idfll» P ± d f l l ' iaflV P i q f l l ! l d f i 3 ' p i d f l 3 ' ±qfl3' p i q f l 3 ' V 

The system is of the 39th order. The auxilliary algebraic equations 

are given in (2.1a), (2.4a), (2.5), (2.9), (2.10), (2.13) and (2.14). 

The current solutions of equations (2.1) are: 
- -
i 
q 

—y Y ^kq yaq 
• *q 

Xkq ~yaq yq£ % q 

*d " ydfk y df y dk *d 

Akd = " ydf y df£ ~ Y d£ • *kd 

ifd "ydk " y d£ y dk£ 

(2.15) 

where 
— — 

^ q 
I 

X + X „ , 
aq £kq 

yaq ~ \ 
X 
aq 

_ yq^_ x +x„ aq £a 

A , = (x +x„ ) (x +x„. ) - x 1 aq £a aq £kq aq 

ydfk Xad ^Afd^Akd^ + x£fdX£kd 
ydf xad x£fd 
ydk 

1 
A 2 

xad X£kd 
ydf£ xad ( x£fd + x£a ) + x£fdX£a 
yd£ Xad X£a 
ydk£ Xad ( x£kd + X£a ) + x£kdX£a 

(2.16) 
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A~ = x JX„ (x. r, + x„. ,) + x.,, x., , (x , + xn ) 2 ad Jla lid Ikd ifd Ikd ad la" 

These equations form the base of the dynamic modelling of hvdc systems 

which will be developed in the next chapter. 
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. 3. DYNAMIC MODELLING AND ORDER REDUCTION 

The mathematical model constructed in the previous chapter 

has 39 state variables which describe the system dynamics in great detail 

Such complexity presents a very difficult problem in digital computation. 

In this chapter the order reduction of the system model is achieved throu 

engineering approximations with the aid of eigenvalue analysis. The 

validity of the low order models is established through tests on the 

nonlinear models with disturbances. 

3.1 Reduction Techniques 

Numerical techniques for reducing high order systems to low 
45-47 

order equivalents are available . But the identity of a l l the para

meters will be lost in the process of reduction. In this thesis the 
•o 

reduction will be approached by engineering approximations instead. 
Again there are two approaches for the approximation. The 

47 

first is called the state variable grouping technique , which may be 

called linear approximation technique, by which the nonlinear system 

equations are linearized first and then the system equations order is 

reduced in possibly several steps. At each step the state variables x 

are separated into two groups, x^ and y.^* associated^ with large and 

small time constants respectively. The linearized system equations are 

written in a partitioned form as follows: 

x„ 

A l l A12 

A A 21 22 
(3.1) 

Neglecting the small time constants or the fast and short-lived trans

ients by setting equal to zero, is given by 
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= -A, -1 A, (3.2) x 2 22 

which is then substituted back into (3.1) to give 

1 [ A11 A12 A22 
-1 (3.3) 

The order of the system is thus reduced by the number of state variables 

in According to this procedure several linear models will be ob

tained, but there is only one high order nonlinear model for the system. 

technique by which a l l the time derivatives as well as speed deviation 

terms in the nonlinear differential equations to be eliminated are set 

equal to zero at each step. This is equivalent to a static representation 

of the system components for these equations to be eliminated. The 

resulting algebraic equations are then solved and substituted back into 

the rest of the nonlinear differential equations before linearization 

for linear optimal control design or eigenvalue analysis. The advantage 

of this approach is that for each linearized model there is one original 

nonlinear model. This is the approach to be followed in this chapter. 

3.2 Reduced Models 

presented. For the procedure, i t is chosen th&t the ac harmonic fi l t e r 

dynamics shall be eliminated first since i t consists of the largest num

ber of equations. The next group are the ac transmission lines and 

machine stator windings, and so on. The details are: 

STEP 1: Neglecting the ac harmonic fi l t e r dynamics of equations (2.11) 

Another approach may be called the nonlinear approximation 

In the following the models resulting from reductions will be 

the model is reduced from the 39th to the 23rd order. The 

resulting algebraic equations are: 



19 

"df 

qf 

G f B £ 

-Bf G f v 

where 

= I 
3 ( R f / + x f/) 

(3.4) 

"R 

f i e fj & Cj.. J J e fj 
j = 5, 7, 11, 13 (3.5) 

STEP 2: Neglecting the ac transmission line dynamics the system's order 

is reduced to 17. Equations (2.8) are replaced by 

idA _ a i "a2 a3 a4 v sin6 o 

V a2 a i ~% a3 v cosS o 

idB a3 a i "a2 Vd 

V = ~a4 a3 a2 
a l V 

_q 

Vdc X 
c 

(a2-a^) x c (ai+a3) •x 
c 

( a2- a4 } X 
c 

( a l + a 3 } 

V 
qc 

-X 
c 

( a l + a 3 ) x c (a 2-a 4) -x 
c 

(a 1 +a 3) X 
c 

(a 2-a 4) 

where 
"a. 

1_ 
A , 

2rx c(x £ - xc) 

x
c ^ " x / + 2 x i x

c > 
r [ r 2 + (x £ - x c ) 2 + x c

2] 

(x£ ' xc ) + X£2 " 2 Vc } 

4r 2 (x £ - x c ) 2 + (r 2 - x/ + Ix^)1 

(3.6) 

(3.7) 

STEP 3:. Neglecting the transformer voltages and voltages due to speed 

deviation generated in the armature windings of the synchronous 



20 

machine a 15th order model is achieved. Equations (2.2d) are 

replaced by 

( 1 + r a ^ q W 

2 2 
ra ykq ydk ra ykq Ydf ra yaq r y 1 a kq 

L" ra ydk " ra ydf aJ aq df k ra ydfk. 

, [ * £ d *kd kq v, v ] d qJ (3.8) 

STEP 4: Representing the dc transmission line by its static impedance 

yields a 12th order model. Equations (2.7) become 

^ ' k ( VR + V 

V c - 2 <VR " V 

X I - XR 

(3.9) 

STEP 5: Dynamics of the shunt capacitor of equations (2.12) are neglected 

to give a 10th order model. The capacitor currents are thus 

given by 

(3.10) 

STEP 6: The damper winding effects of equation (2.2c) are neglected. The 

resulting model is of the 8th order. The resulting auxilliary 

i , - V 
cd 

= _JL_ q 
i i c V cq d 

equations are 

1 
A, 

>. 4 

x ,[r +x„ (x +x„ )] r x ,x0J., ad1 a la aq la a ad Ifd xad x£fd ( xaq + x£ 

-r x ,x a ad aq 

[*fd Vd V q ] 

-x [x 3x n +xn£,(x ,+x„ )] r x (x ,+x„r, aq 1 ad la £fdv ad la 1 a aq ad Ifd 

(3.11) 

A, = r (x ,+x.̂ .j) + (x +x„ ) [x ,x. + x.,.(x , + x. ) 1 4 a v ad Ifdy v aq la 1 ad la lfdK ad la J 
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STEP 7: The small time constants of equation (2.6a) are neglected and 

a 6th order model is obtained. The resulting equations are 

IR= h 
V = I I I 

(3.12) 

STEP 8: Neglecting firing circuits dynamics of equation (2.6b) a 4th 

order model is obtained and the new algebraic equations are 

R ref 

1 2 cosaT = — (— x I_ + e _) - cosA I v ^/j co I cl o 

(3.13) 

STEP 9: Representing the voltage regulator by a static gain and neglec

ting the field flux decay of equation (2.2b) yields a 2nd order 

model with the new auxilliary equations 

E 
_ x 

ad 

E = K (V , - v j (3.14) x r ref t 

The steps thus chosen at this stage are, indeed, a matter of 

convenience, not because of the order of importance of their eigenvalues-

Of course a l l nonlinear differential equations which are not to be e l i 

minated are kept intact at each step. 

3.3 Initial Conditions of a Parallel AC/DC Power System 

For this thesis study the i n i t i a l conditions assumed are the 

synchronous machine's terminal voltage v , the infinite bus voltage V Q , 

the power transmitted over the ac lines P , and that over the dc line 
cLC 

P, , and the minimum extinction angle for the inverter A • Other i n i t i a l dc o 
conditions, such as the reactive power over the ac line Q and that 

r ac 
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drawn by the rectifier Q^c» and other synchronous machine i n i t i a l con

ditions are to be determined. 

Since the active and reactive powers transmitted over the ac 

line may be given by 

P 
ac 

"ac 

1dA XqA 

XqA . "̂dA 

— — 
V , d 
V 

(3.15) 

Substituting for i ^ and i from (3.6) into (3.15) and solving for 

sin6 and cos6 yields 

sin6 

coscl 
v (a -a0) o 1 I 

a l a2 

"a2 a l 

ac 
2 " a3 

ac 
~2 ~ a4 

Q P ac 
-~2 + a4 v 

ac 
~2 " a3 v 

q 

(3.16) 

But 
2 2 2 2 2 

Pac + <*ac = V t <1dA + V > 

2 2 2 2 2 2 2 = v t {(a 1 +a2 ) V q + (a 3 +a^ )vfc + 2V Q [ ( a ^ a ^ - a ^ a ^ (vdsin6+vqcos<5) + 

(a.a.+a0a )(v sin6-v ,cos6)]} i. H £ 5 q d (3.17) 

Substituting (3.16) into (3.17) and solving for Q gives 
3 C 

Q = a.v 2 + \v [(a 2+a 2)v 2 - a„ v + 2aJ? ] - P 1 

^ac 4 t — i t 1 2 o 3 t 3 acJ ac (3.18) 

To determine the dc reactive power Q ĉ the rectifier voltage 

V has to be determined fir s t . From (3.12) and (3.13) one has 
K 

I =1 = I' = I 1 

R I R I 

* , 2 R cosctT = -cosA + — x — I o ^ co v o 
(3.19) 

Substituting (3.19) into (2.5) gives 

3/3 3 V T = v cosA -\ x I„ I -no o IT co R (3.20) 
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From (3.9) and (3.20) 

3/3 3 V D = v cosA + (2R - - x ) I_ R ir o o TT co R (3.21) 

But 

P = — V I dc 3 R R (3.22) 

Solving (3.21) and (3.22) for V_, yields 

V P = T^Jr v cosA^ + 1| (-^ v cosA) 2 + 12 P_ (R - ~ x )] 'R 2L
 TT o 

,3/3 
TT "O dc 2TT co 

(3.23) 

Since 

cos $ u VR 
R 3/3 V t 

(3.24) 

Thus 

Q, = P, tan $_ %dc dc R (3.25) 

Next the synchronous machine i n i t i a l conditions can be deter

mined as follows. The active and reactive powers of the synchronous 

machine are given by 

P = P + P . + v 2 (G, + |-) ac dc t f RL 

^ = V + Q d c
 + v t 2 < B

f - h 
c 

(3.26) 

Next equations (2.15), (3.8) and (3.11) are combined to give 

•fd 

C l C2 C3 

-c„ c4 "C5 

•c6 "c7 c8 

C9 "c6 c10 

"c10 ~c8 c l l 

(3.27) 
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where 

~ c l ~ r [x , x + x (x + x. )] a ad &a £fd ad la 

C2 (x + x. ) [x ,x„ + x„-, (x ̂  + x. )] aq la L ad la Ifd v ad la J 

C3 
2 

r X j 
a ad 

c4 r (x , + x„,.,) (x + x„ ) a v ad ilfd aq la 

C5 
1 

r x , (x + x. ) 
a ad aq la 

C6 " A4 r (x , + x. £ J) a ad ilfd 

C7 (x , + X n J-j) (x + x. ) ad ilfd aq >la 

C8 x , (x + X. ) ad v aq Jta 

C9 x ,x, + x„.. 3 (x , + x. ) ad Jta ilfd v ad >la 

C10 
r X A 
a ad 

_C11_ 
2 r + (x , + x„ ) (x + x. ) _ a ad la aq la _ 

and A. is 4 defined in equation (3.11). Substituting 

(3.28) 

P = v , i , + v i and solving for \b. , gives d d q q & r f d 6 

fd 
P + c 6 vfc + (c 7-c 9) v dv q  

( c8 Vd + C10 V 
(3.29) 

Substituting (3.27) and (3.29) into 

Q = v i , - v,i q d d q 

and solving for v^ gives 

[ r a P + ( xaq + x£a> Q + v t ' ]  

V<*~ « xaq + x * a ) P " r a Q ] 

Substituting (3.31) into (2.1a) gives 

(3.30) 

(3.31) 
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v
d ~ ,| o 2 2 2 2 4 <3'32> 

K + ( xaq + X.a ) J <P +Q > + 2 v t I r a ? + < Xaq + X*a ) (^ + V t 

Thus v d can be calculated from (3.32), from (3.31) and i ^ f d from (3.29). 

Finally the torque angle 6 can be determined from (3.6) to read 

. ( a 2 a 4 " a l 3 3 ) v d " ( a i a 4 + a 2 a 3 ) v q + *1 ±dA + a2 *qA „ „, o = arc tan ; r ;—; r — 3 : ; : (3.33; 
( a l a 4 + a 2 a 3 ) v d + ( a 2 a 4 " a l a 3 ) v q " a2 xdA + "l/qA 

where the ac transmission line currents i , . and i , are determined from 
dA qA 

(2.13) after i , and i , i . . , and i I_, I, and I .and i , and i are d q' df qf R d q' cd cq 
determined from (3.27), (3.4), (3.22), (2.10) and (3.10) respectively. 

The rectifier and inverter firing angles are determined from 

(2.5) and (3.13) respectively. 

3.4 System Data 

^The*sysit-eiiv'sirudied "has 'the "fo'l-lowing data, a l l "in per "unit 

except for angles in degrees and inertia constant and time constants 

in seconds. Most data are taken from reference 20. The rest are assumed. 

Synchronous machine and voltage regulator 

r 0.005 r,, 0.00055 r. , 0.02 r, 0.04 
a fd kd kq 

x«.a °- 1 x£fd °- 1 XJlkd °' 1 X«,kq °'2 

x , 1.0 x 0.7 H 3 sec. k 20.0 T 2.0 sec. ad aq r r 

AC and DC transmission lines 

r 0.0784 x„ 0.52 x 5.556 
JI c 

R 0.2792 X. 18.112 X 20.28 x 0.432 L c co 
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AC harmonic filters, local load, and shunt capacitor 

r f 5 0.065 r f 0.OB92 r f l l 0.062 r f l 3 0.0704 

L,_ 0.00862 L,_ 0.00862 L,,,-- 0.00332 L..- 0.00332 r5 f7 f l l fl3 

c„ 0.0000325 c,_ 0.00001695 c „ . 0.000017625 c,, _ 0.000012575 f5 f7 f l l fl3 

Rĵ  6.05 x c 212.0 

DC Controllers 

K_ 30 T 0.002778 sec. KT 30 T_ 0.002778 sec. k 0.9 

is. K 1 1 

Operating point 

v. 1.1 v 1.0 P 0.4 P, 0.4 
t o ac dc 

A 5° 6 51.05° i b . , 1.165 ± . 1.0057 
o Tfd kd iK 0.947 -0.497 * -0.568 v J 0.565 d kq q d 

-V 0;944 -E 1:59 V . 1vl»8 P 1.-0 q x ref 

Q 0.15 P 1.004 1. 0.584 i 0.71 
m d q 

*fd ^ l U °- 1 9 V ° ' 3 1 - ° ' 3 4 

i- -0.18 v , 0.71 v 0.82 Q 0.0073 qB dc qc ac 

I R 0.363 I d 0.331 I 0.225 VR 1.65 

V 1.55 VT -1.45 O L 8.25° a T 141.7° c I R I 

Q, 0.185 i,„ 0.09 i 0.16 i , -0.004 
dc dl ql cd 

i 0.003 -0.012 i „ 0.007 i,,, -0.006 cq df5 qf5 df7 

i 0.004 -0.006 i „, 0.004 -0.0045 qf7 d f l l q f l l dfl3 

\jfl3 0.003 

file:///jfl3
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3.5 Eigenvalue Analysis 

Both state variable grouping technique and nonlinear approxi

mation technique described in section 3.1 are employed to calculate 

the eigenvalues for the different system models developed in section 

3.2. The results are tabulated in Tables I and II respectively. There 

is not much difference in high order models for the two methods. But 

the difference becomes evident x̂ hen the model order becomes low. This 

is because of two different ways of making approximations. For example 

the ac harmonic filters equations (2.11) are replaced by (3.4) in non

linear approximation and the filter currents are given in terms of v^ 

and v^ only. On the other hand when the same equations (2.11) are 

linearized and then solved the resulting currents are in terms of Ato, 

' I ' J T J S & i> • • • > IT,> C O S O L , .... v, and v due to the presence of pv,, fd kd R R d q d 
»p.v̂  .:and 4>Ato .terms, /in the-.eq.uations. ..The nonlinear tapproximation ...approach 

seems to be giving more accurate results. It is especially clear for 

the second order model. While the nonlinear approximation technique 

gives a pair of imaginary eigenvalues, which is expected since damping 

is neglected in the synchronous machine equations, the state variable 

grouping technique yields a conjugate pair of eigenvalues with'positive 

real parts indicating an unstable system which contradicts the results 

from higher order models analysis. 

The eigenvalues for the 39th order model are plotted in the 

complex plane in Fig. 3.1. It is noticed that a majority of the eigen

values are clustered in the region between -10 and -200 of the real 

axis. The dominant eigenvalues are found to be these corresponding to 

6, Ato, if i ^ and E^ equations. The largest eigenvalues correspond to 

v., v , v, and v equations. Based on this information the following d q dc qc n & 



2nd Order 0.126+J6.76 

4 th Order -0.052+j7.1 - 0 . 3 3 6 i J l . i l 

6th Order -0.052+J7.1 -0.336+jl.ll -362, -35156 

8th Order -0.052+j7.1 -0.336+jl.ll -362, -35156 

10 th Order -0.15+j7.14 -0.33+jl.l -363, -30532 

12th Order -0.15+J7.14 -0.33+jl.l -363, -39685 

15th Order -0.15+j7.14 -0.33+jl.l -365 

17th Order -0.15+j7.14 -0.33+jl.l -365 

23rd Order -0.164+J7.14 -0.33+jl.l -365 

39 th Order -0.164+J7.14 -0.33+jl.l -365 

360,-360 

350,-360 -41.9,-26.1 

•360,-360 -41.9,-26.1 -18250+j59136 

360,-360 -41.9,-26.1 -6623+J64990 

•360,-360 -41.8,-26.2 -4415+J10930 

•360,-360 -41.9,-26.3 -i039+j5524 

•360,-360 -41.9,-26.3 -6577+J15988 

Table I Eigenvalues by state v a r i a b l e grouping technique 

•185+J761 

•20.5+j 327 

•122+J785 

•15.5+J325 

•143+J809 

•14.8+j 326 

•143+j 811 

•14.8+j 326 

847+J1892 

•73+J1993 

•76.7+J1977 

•2620+J4267 

•59 U +J1216 

•50+j 376 

•34339,-7018 

•61+J1198 

•50+j 376 

-8.95+j1490 

-9.5+J2245 

-18+J2191 

-23.7+J2947 

-55+J4358 

-73+J5118 

- 92+j 3568 

-123+J4335 

http://-0.336iJl.il


2nd Order 

4th Order 

6th Order 

8th Order 

10th Order 

12th Order 

15th Order 

0.0+J6.76 

-0.083+J7.1 

-0.083+J7.1 

-0.083+J7.1 

-0.18+J7.13 

-0.18+j 7.13 

-0.18+j7.13 

-0 .34+j l . l l 

-0 .34+j l . l l 

-0 .34+j l . l l 

-0.33+jl . l 

-0.33+jl . l 

-0.33+jl . l 

23rd Order -0.164+J7.13 -0.33+jl. l 

-362,-35156 

-362,-35156 -360,-360 

-362,-30531 -360,-360 -41.9,-26.15 

-362,-31455 -360,-360 -41.9,-26.15 -166910+j495377 

-360,-360 -41.9,-26.15 -̂49562+j488820 -364 

17th Order -0.17+J7.13 -0.33+jl . l -364.5 

-365 

39th Order -0.164+J714 -0.33+jl. l -365 

-360,-360 -41.8,-26.2 -37936+j72148 

-360,-360 -41.9,-26.? -6572+J13689 

-360,-360 -41.9,-26.3 ^-6577+jl5988 . 

-185+j760 

-20.5+j327 

-123+J783 

-15.5+J325 

-143+J806 

-14.9+J326 

-1116+J1963 

-64.3+J2004 

-143+J811 -76.7+J1977 

-14.8+J326 

-36945,-5154 

-55+J1227 

-50+J376 

-34339,-7018 -8.95+J1490 

-61+J119S 

-50+J376 

-9.5+J2245 

-18+J2191 

-23.7+J2947 

-55+J4358 

-73+J5118 

-92+j3558 

-123+J4 335 
r o 

Table II Eigenvalues by nonlinear elimination technique 
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classification of system models, is suggested: 

1. A fourth order model comprising §, Ato, ip^^ and as state variables 

is the simplest model one can have for system dynamic studies. 

2. A sixth order model including cosa and cosaT in addition to the 4th 
R 1 

order states is fairly accurate and can be used for control design 

including an hvdc system. 

3. If one wants more accurate results the 5th harmonic f i l t e r may be 

included resulting in a tenth order model. • 

4. The thirty-ninth order model is accurate but impractical in digital 

computation. 
3.6 Nonlinear Tests with System Disturbances 

To compare the four suggested models nonlinear system response 

tests subjected to different types of disturbances are compared. Figs. 

3.2 and 3.3 show the change in rotor angle 6 and speed deviation Ato 

with time for a 25% step change in the dc reference current. For this 

disturbance i t is seen from Fig. 3.2 that results are very close but 

the 6th order model gives the closest response to that of the 39th 

order model. Figures 3.4 and 3.5 show the system's response with a 25% 

step reduction in mechanical torque input. The 6th and 10th order models 

give identical response closer to that of the 39th order model than the 

4th order model. Figures 3.6 and 3.7 show the system response to a three 

phase ground fault at the middle of one ac line for 6 cycles followed 

by isolating the faulted line at both ends and a successful reclosure 

after 0.4 second after the fault is removed. In this case only the res

ponses of the 39th and 6th order models are plotted. It is noticed that 

even for such a severe disturbance the 6th order model results are s t i l l 



SRAD 32 

1.0[ 

0.8L 

0-6 \ 

0-4 

0.21 

39 th ORDER 

10th ORDER 

x xxx 6th ORDER 

• o « . 4th ORDER 

a o " — " — i — L . _ i i i i i i 
0.5 W 

Fig. 3-2 STEP CHANCE IN Iref 

1.5 
t SEC 

AGO RAD/SEC 

t SEC 

39th ORDER 

V 10th ORDER 

v xxxx 6th ORDER 

. . . . 4th ORDER 

Fig. 3.3 STEP CHANCE IN Iref 



SRAD 

39 th ORDER 
7.0 

0.5[ 

10 th ORDER 

xxx x 6th ORDER 

. • • • *4th ORDER 

_i i i ' • i i i ' • 
0.0 0.5 1.0 15 t SEC 

Fig. 3.4 STEP CHANGE IN P, m 

A CO RAD/SEC 

2.01 

t SEC 

39th ORDER 

10th ORDER 

xxxx 6 th ORDER 

. . . . 4th ORDER 

-3.0 

Fig. 3.5 STEP CHANGE IN P 



S RAD 



35 

close to those of the 39th order model. From these test results, suppor

ted also by eigenvalue analysis, i t is decided that from now on in the suc

ceeding chapters only the 6th order model will be used for the control design. 
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4. STABILIZATION OF DC/AC PARALLEL SYSTEMS 

BY LINEAR OPTIMAL CONTROL SIGNALS 

In this chapter linear optimal control theory is employed to 

stabilize dc/ac parallel power systems. Two systems are investigated; 

the first is to stabilize an existing system, and the second is to stab

ili z e an expanded system by adding a parallel dc link to the existing 

ac line in order to increase the transmission capacity of the system. 

Several control schemes are designed and the disturbance test results 

on nonlinear system models are compared. For a l l designs the sixth 

order system model, i.e. A6 , Ato, Ait-,, AE , A C O S O L and AcosaT, is 
fd x R I 

employed. 

4.1 Linear Optimal Regulator Problem 
The system's linearized equations are written as 
x = Ax + BU (4.1) 

It is required to find an optimal control U that minimizes the quad

ratic cost function 
oo 

J = Y J (xfc Ox + T/ RU) dt (4.2) 
o 

subject to (4.1), where Q and R are positive definite matrices. The 
48 

required optimal control is given by 

U = -R_1 Bt Kx (4.3) 

where the Riccati matrix K is obtained from the solution of the non

linear algebraic matrix equation 

t -1 t 
KA + A K - KBR B K + Q = 0 (4.4) 

Several computation techniques for the solution are available utilizing 
49 50 

the properties of the state and costate composite system matrix M ' , 
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A 
M = (A.5) 

the matrix K may be computed from 

K X. (4.6) 

where 

X. T X. I l l 
X = (4.7) 

XII XIV 

is the eigenvector matrix of M and the eigenvectors X̂  and X^ correspond 

tb the stable eigenvalues of M or the eigenvalues of the controlled 

system. 

4.2 Control Signals for an Existing System 

The system considered here is the same as described in Chapter 

3, which was shown in Figure 2.3. Three different stabilization schemes 

are investigated; the first with an optimal excitation control u^ on 

the synchronous machine alone without any stabilization signal on dc, 

the second with optimal current control u^ on dc but without excitation 

stabilization on the synchronous machine, and the third with both u^ and 

Up controls designed together. The control signals designed for the 

system's linearized model are tested on the original nonlinear system 

and the system's response to the disturbances and also the system's 

eigenvalues are compared. 

For the data given in Chapter 3 the linearized state equations 

for the system are 
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1 — 

A6 0.0 1.0 0.0 0.0 0.0 
• -52.1 0.0 -112.6 0.0 -92.1 

-0.14 0.0 -0.46 0.21 -0.2 

AE -0.24 0.0 -6.92 -0.5 -1.11 X -0.5 -1.11 

Acosct 
R 

-278.2 0.0 -8042.0 0.0 -14197 

Acosct̂ . 5.09 0.0 147.1 0.0 259.7 

0.0 

-46.7 

-0.2 

0.92 

-10672.0 

-164.8 

A6 

Aw 

Aifj 

AE 

fd 

A cos a R 

+ BU 

The B matrices for the three controls are given by 

t 

Acosa, 

(4.8) 

Ug! B = [0 0 0 k
r / T

r
 0 

B = [0 0 0 0 

0]' 

V T R V t ° ] t (4.9) 

Ug and u^rB 
0 0 0 k /T r r 

0 0 0 0 V T R V t ° 

In a l l three cases the matrices Q and R of equation (4.2) are' taken as 

unit matrices. The system's eigenvalues for a l l cases are listed in 

Table III and the corresponding control laws are given in (4.10). 

Table III Eigenvalues of the existing power system for various controls 

Control Used Eigenvalues 

no control -0.084 + J7.093 -0.339 + jl.108 -365, -13997 

"E -0.728 + j7.154 -0.403, -9.915 -365, -13997 

UD -1.512, -43.89 -0.349 + jl.13 -348, -17097 

" E A N D % 
-1.56, -43.89 -0.383, -9.87 -348, -17097 
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UE ~ -5.79 -0.36 -7.32 -1.09 -0.002 -0.025 ~ 

"D 0.415 1.004 -0.17 -0.0004 -0.319 -0.082 

UE -0.159 -0.0017 -0.495 -0.961 0.8xl0~5 -0.0045 

_UD_ 0.402 1.005 -0.532 0.008 -0.319 -0.082 

[A6 Aw Aii_, AE A C O S O L AcosaT] fd x R I (4.10) 

It is noticed in Table III that the dominant pair of eigenvalues in a l l 

three cases have been shifted to the left of the complex plane indicating 

the stabilizing effect of these controls. The damping ratio for the 

dominant eigenvalues is improved in the case of û , control. For the 

other cases the dominant pair is decoupled into two real eigenvalues. 

For Up and u^ controls a l l the eigenvalues are real indicating a non-

oscillatory system. 

4.3 Nonlinear Tests 

The system disturbance considered in a l l cases is a three phase 

to ground fault at the middle of one circuit of the ac transmission line 

for 0.1 sec. The faulted line is then isolated by disconnecting i t from 

both ends followed by a successful reclosure at 0.5 sec. after the fault 

is completely removed. The system's response is summarized in Figures, 

4.1 to 4.6. It is noticed from these figures that the excitation con

trol signal Ug by itself does not improve the system's stability effec

tively despite the fact that the control effort reaches maximum a l l the 

time as shown in Fig. 4.6. The limits set for the control signals are 

+0.12 p.u. for Ug and +0.3 p.u. for u^. The limits for u g were chosen as 

+0.12 p.u. after several other values were tried. It is shown in Figure 

4.7 that the higher the Ug limits, the higher will be the overshoot in machine 
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Fig. 4.5 Variation of AC Power for Existing System 

u 4 

1 NO CONTROL 

2 u£ CONTROL 

3 uD CONTROL 

CONTROL 

Fig. 4.6 Control Effort for Existing System 
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swing. The machine goes unstable when û , is not restricted. Figure 

4 . 8 shows the control efforts for different cases. The dc control limits 

are so chosen that i t will not overload the dc line or operate i t under 

very light load. It is found that the stabilization is very effective 

either with the dc control signal u^ alone or combined with the excitation 

control signal û ,. The angular deviation is very small, and the dc line 

picks up the load originally carried by the faulty line very quickly. 

It is also noted that the system's responses with u^ control alone or 

with Ug and u^ controls are very close except that the terminal voltage 

changes are smaller in the later case. 

4.4 A Fourth Order Model Study 

Due to the presence of two large eigenvalues on the sixth order 

model corresponding to the dc firing circuits dynamics the step size in 

numerical integration is very small thus requiring longer compu

tation time. It was thought that i t would be interesting to find out 

i f these two small time constants associated with the firing circuits 

can be neglected in order to save the computation time. The resulting 

system's linearized equations of the fourth order become 

A6 n 

Ato 

A * f d 
AE 

- A6 " - 0 .0 1.0 0 . 0 o .o -

• 
Ato - 5 0 . 3 0 .0 - 6 0 . 4 0 .0 

A * f d - 0 . 1 3 5 0 .0 - 0 . 3 4 5 0 .207 

AE _ x _ - 0 . 2 1 7 0 .0 - 6 . 3 - 0 . 5 

+ BU ( 4 . 1 1 ) 

The matrix B is given by 

1 ^ : 6 = [0 .0 0 .0 0 .0 1 0 . 0 ] 

u D: B = [ 0 . 0 - 5 2 . 5 - 0 . 1 6 3 0 .108 ] 
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" E 
and u^: B 0.0 0.0 0.0 10.0 

0.0 -52.5 -0.163 0.10.8 

_ t 

(4.12) 

The system's eigenvalues are listed in Table IV and the corresponding 

control laws are given in (4.13) 

Table IV Eigenvalues for a fourth order model 

control used eigenvalues 

no control -0.084 + j7.093 -0.339 + jl.108 

" E 
-0.728 + J7.154 -0.388, -9.915 

-1.39,-51.49 -0.349 +jl.13 

u E and u D -1.42, -51.49 -0.35, -9.87 

\~ ~-5.78 -0.359 -7.24 -1.09 " ~ A6 

%<• 0.444 1.005 -0.023 -0.02 Aco 

UE -0.109 -0.002 -0.286 -0.957 Â  

0.43 1.006 -0.45 0.004 AE 
fd (4.13) 

The same nonlinear test with system disturbance is applied to this model 

and the corresponding swing curves are plotted in Figure 4.9. It is 

found that there is considerable deviation' between the fourth and 

sixth, order models and some accuracy is sacrificed by neglecting the 

two small time constants for faster computation. It is decided that 

the dc firing circuit dynamics will be retained from now on in the dc 

system studies for the rest of this thesis. 

4.5 Expanded System 

The system investigated in this section had an ac system con

sisting of a synchronous generator transmitting power to an infinite 

system over a double circuit ac transmission line, Figure 4.10. The 
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Fig. 4.10 AC System to be Expanded 
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generator is equipped with a voltage regulator and also has a local 

load at the terminal bus. This system is expanded by adding a dc link 

in parallel after the generating capacity is doubled. The system was 

unstable at the outset and a conventional excitation control signal is 

designed. 

The ac system's per unit data was as follows: 

Synchronous machine and voltage regulator: 

x, 0.973 x 0.55 d q do 7.76 sec. 

x' 0.19 
d 

x„ 0.04 H 4.63 sec. 
£a 

K 130 r 

T 0.05 sec. r 

AC transmission line and local load 

G r -0.034 x £ 0.997 

Operating point: 

0.249 B £ 0.262 

v 1.05 

v 1.02 
o fd 

0.02 

1.22 

0.952 E 1.34 
x 

v 

65.2' 

0.45 

0.95 

0.4 

0.81 

From the data given the linearized fourth order system's 

model, equations (2.2a) and (2.2b) were 
— 1 i 

A6 

Aco 

Aiji 

A6 0.0 1.0 0.0 0.0 
• 

Aw -22.4 0.0 -39.7 0.0 

A $ f d -0.1 0.0 -0.2 0.15 

AE 
x _ 

223.6 0.0 1794.2 -20.0 
fd 

AE 
X _ i 

( 4 . 14 ) 

She system's eigenvalues were 

0.18+J5.16, -10.3+J13.3 

which indicates an unstable system. A conventional excitation control 
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signal u^ is designed''"'", 

u 
k S e 

x 1 + T S e 
. 0.04 S . 
Au = - — : — „ ,„ Au 

(4.15) 

— — 

A6 
« 

Aw 

A * f d = 

AE 
X 

u 
X 

A6 
Aw 

Aip 

AE 

fd 

1 + 0.5S 

and is added to the system resulting in 

0.0 1.0 0.0 0.0 0.0 
-22.4 0.0 -39.7 0.0 0.0 

-0.1 0.0 ~0.2 0.15 0.0 

223.6 0.0 1794.2 -20.0 2600.0 

-1.8 0.0 -3.2 0.0 -2.0 

The corresponding eigenvalues become 

-2.5+J3.5, -4.6, -6.3+J11.9 

Thus the system is stabilized. 

Next the system is expanded by doubling its capacity. With 

the base MVA of the synchronous machine doubled, the p.u.. ac line and 

local load data become 

r -0.068 x^ 1.994 0.1245 B 0.131 

The new dc line and harmonic filters' data are 

R 0.066 x 0.2 G. 0.22xl0~3 ' B, -0.14 co f f 

It happened that the reactive power can be sufficiently provided by 

the harmonic filters and no special condenser for power factor correc

tion is needed. The system's new operating point is given as 

v„ 1.05 v 1.02 P 0.9765 Q 0.0622 t o 

P 0.504 Q 0.187 P. 0.335 Q, 0.135 
ac ^ac dc dc 
6 81.15° A 15° v , 0.449 v 0.949 o d q 

(4.16) 
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1.233 E- 1.388 V ref 1.061 V 1.61 
R 

VT -1.57 cosa_ 0.962 cosaT -0.868 I R 0.312 

For the given data the system's linearized equations are 

A6 0.0 

Aw 

Aifi fd 

AE 

A cos a R 

Acosa, 

u 
X 

1.0 0.0 0.0 0.0 0.0 0.0 

0.0 -119.4 0.0 -173.3 -120.3 0.0 

0.0 -0.38 0.15 -0.35 -0.33 0.0 -0.04 

183.0 0.0 -1860.0 -20.0 -443.8 134.0 2600.0 

2171.1 0.0 -22068.0 0.0 -40020.0 -32172.4 0.0 

-17.7 0.0 . 179.5 

0.03 0.0 -9.55 

0.0 318.2 

0.0 -13.9 

-105.4 

-9.62 

[A6 Aa> AiJ;,., AE Acosa„ Acosa,. 
fd x R I 

u ] x 

0.0 

-2.0 

(4.17) 

and the corresponding eigenvalues are 

-0.87 +j2.4, -4.76, -7.85 + j l l , -363.6, -39762.6 

The system is s t i l l stable. However, because of the new situation, the 

excitation control signal originally designed for the ac system is 

modified to become 

0.09 S 
Ux " 1 + S Aw (4.18) 

and the system's eigenvalues for this case are 

-1.94+J2.04, -2.06, -7.63+J10.8, ~363.6, -39762.6 

The system is more stable with the new adjustment. 

In addition to the above two cases where the system is 

stabilized by excitation control signals u x and u^ respectively, three 

new controls are designed and compared with old schemes 

J 
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1. No modification of the excitation control u and no optimal control 
x 

signals. 

2. With only the modified excitation control signal u^. 

3. An optimal dc current control is designed with excitation control 

removed. 

4. A dc control u^ is designed in conjunction with u^. 

5. A dc control is designed in conjunction with the modified exci

tation control u'. 
x The system's eigenvalues for the last three cases are listed in Table V. 

Table V Eigenvalues for expanded system 

Control Eigenvalues 

-0.93, -38 .5 -10.75 + J13.1 -379, -41071.2 

u and u^ x D -1 .06 + jl.5 -55.35 + J66.7 -0.8 -384.5 , -41071.2 

u' and u^ x D -0.85 + jl.01 -58.4 + j71 -0.667 -385.2 , -41071.2 

The control laws for different cases are given by 

" V " 2.05 1.13 -13.2 -0.045 -0.133 -0.27 0.0 " 

ux and u^ UD = 1.37 0.92 -7.73 0.75 -0.14 0.88 19.75 

ux a n d "D _UD_ 1.52 0.99 -9.3 0.76 -0.14 0.9 18.8 

[A6 Au) Ail),., AE A C O S O L AcosaT u or u'] (4.19) fd x R I x x 

The nonlinear test of section 4.3 with the same disturbance is 

applied to this system but with a fault duration reduced to 0.05 sec. 

and line reclosure at 0.25 sec. after the fault occurrence. The nonlinear 

system response is summarized in Figures 4.11 to 4.16. Figure 4.11 in

dicates that in the first two cases, where u and u' respectively are 

applied, the system is unstable despite the fact that the corresponding 
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eigenvalues are stable. This clearly demonstrates the necessity of 

nonlinear tests and that eigenvalue analysis, although necessary, is 

not sufficient. Although the dc control signal u^ is more effective than 

the excitation controls, i t is not sufficient by itself to maintain 

stability. The system's response with combined excitation and dc controls 

is much better and the two responses with u or u' controls are very 
x x 

close whether the excitation control signal is modified or not. The 

terminal voltage variations, Figure 4.13, are more pronounced in cases 1 

and 2 and the voltage oscillation continues after the line is restored 

whereas the terminal voltage approaches its steady state value asymp

totically after 0.35 sec. in cases 3,4 and 5. Figures 4.14 and 4.15 

show the variation-of transmitted power over the dc and ac lines res

pectively. In cases 1-and 2 the dc link is operating under constant 

current control and the dc power is nearly constant about, the original 

value, 0.335 p.u. while the ac power is changing widely after line 

reclosure. In cases 4 and 5 the dc line picks up the power lost by the 

ac line and returns to rated value when the line is reclosed. In the 

mean time the ac line is transmitting the rated power. A similar behav

iour is noted in case 3 up to a point where the ac power starts to drop 

again and the dc line picks up the difference. The dc control effort 

in cases 4 and 5 is smaller than case 3 as shown in Figure 4.16. The 

control stays at limit values, + 0.25, for about 0.3 sec. then decreases 

rapidly and approaches zero asymptotically. 

It is concluded from the above discussion that a combined 

dc and excitation control scheme is the best for the dc/ac parallel 

system with slightly better results for u^ and than and u^ controls. 
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Fig. 4.11 Swing Curves for Expanded System 
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Fig. 4.12 Speed Deviation for Expanded System 
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Fig. 4.14 Variation of DC Power for Expanded System 
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5. MULTITERMINAL HVDC SYSTEMS 

Al l hvdc systems designed so far have been restricted to the 

two-terminal operation in which power is transmitted over an hvdc link 

from system A to system B. However, hvdc need not be so limited and 

can be readily extended to the multi-terminal operation. In this and 

the next Chapter the operation and control of a three terminal dc link 

in conjunction with a delta connected ac system are studied. Two 

operation modes are considered^ two rectifiers and one inverter or one 

rectifier and two inverters. The ac system is either a two-machine in

finite system or a three-machine system. The equations describing system 

dynamics and the determination of the operating point are given in this 

chapter. 

5.1 Ope-rati-on.antd-Conitrnl<,sf ;Multl-fce-rminal..-DC.Lines 

As partly explained in Chapter 2 the normal operation mode 

of a two-terminal dc line is to control the currents of both the rec

t i f i e r and inverter with identical current orders but giving the inver

ter a current margin signal of a polarity opposite to the current order. 

The inverter is normally operating on constant extinction angle control 

which maintains a minimum safe angle of advance and a maximum dc line 

voltage while the line current is regulated by the delay angle a R. The 

current control will be taken over by the inverter only i f the rectifier 

is unable to provide the ordered current at its minimum delay angle. 

The same principles of operation can be adopted without change 

for a tapped dc line with two rectifiers and one inverter. The inverter 

current order is the algebraic sum of the two rectifiers' current orders 

plus the current margin. However, the same policy can not be applied 
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to the case of one rectifier and two inverters. If both inverters 

were on constant extinction angle control there would only be one ratio 

of power flow between the two receiving stations. For this reason one 

of the inverters and the rectifier are given specific current orders 
37 

while the second inverter regulates the dc line voltage .: The difference 

between these two current orders minus the current margin is applied to 

the second inverter's current override control. Changing the current 

order of the first inverter without changing the rectifier' s current order 

would result in current transfer between the two inverters. An alter-
40 

native control policy was also proposed where constant extinction 

angle control is applied at more than one inverter. It is argued that 

the first control method has the disadvantage that reactive power com

pensation must be provided for constant current operation at a l l but one 

of the converter stations whereas the second method improves this situation. 

In the second method the desired power flow can be achieved by adjusting 

the ac voltages at the inverter stations by means of tap changer control. 

In this chapter the first control method is adopted. 
5.2 System Equations 

The system to be studied is given in Figure 5.1, consisting 

of a tapped dc line superimposed on a delta connected ac network. Bus 

number 3 is an infinite system which will be replaced by a small gen

erator for later studies. There are in general three converter stations 

where converter station 1 is always operated as a rectifier and that of 

station 2 always as an inverter. As for converter station 3 i t is 

operated either as a rectifier or as an inverter depending on which 

cases are studied. The system is modelled in general as follows; the 



Fig. 5.2 TRANSFORMATION BETWEEN COMMON AND INDIVIDUAL 
MACHINE FRAMES 
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synchronous machines are represented by third order models with single 

time lag voltage regulators. Converter controls are also represented 

by single time lags. The transmission network is represented by static 

impedances and the ac harmonic filters are not considered but the con

densers supplying the required reactive power are included. The system 

state equations are given by 

p<S. = Aw. , pAu). = - r r ~ ( P . - P .) J 3 3 2Hj mj ej 
E . 

^ rfdj e fdj v x a d j fdj' 

PE . = [K . (V ,. - v .) - E .] (5.1) 
v xj T rj refj tj xj v 

P C O S C L , . = — ^ (I ,. - I„.) v Rj T„.v . v refj Rj' Rj tj 

1 1 2 pcosaT. = — — T-cosaT. - cos A . H (— x . I T . •+- e T.)] V X J - 13 oj v t j ^ coj Ij c l j ' j 

where 

e _. = K (k I - I ) d j Ij J refj I j y 

k. = 1 for constant current control (5.2) 

< 1 for constant extinction angle control 

where the subscript j indicates the unit number. 

For a multi-machine power system study a common reference 
53 

frame (D,Q) must be chosen . This frame is rotating at the synchronous 

speed. The individual machine angle 6_. is defined as the angle between 

the quadrature axis q̂  of the individual machine with respect to the 

quadrature axis Q of the common frame. The transformation between the 

D,Q and the individual d^, q^ frames is given by 
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F . ~ Dj 
F . 

L*Qj J 

cos6. -sinS. 
J 3 

sin<5. cos6 . 
J 3 -1 

f . 
i - q j -

(5.3) 

f . 
<- q j -> 

cos6 . sincS . 
3 3 

-sinS. cos6. 
3 3 

• Dj 
F " L Qj J 

where f can be either voltage or current. 
The synchronous machine quantities referred to individual 

dq frames are given by 

P = ip,. 1 . - ib •. 1 ej dj q j q j d j 

v 2 2 4- 2 v . = V,. + V . t j d j q j 

" c i j C2j C3j 

•qj - C 2 j C4j _ C 5 j 

1dj " C6j " C7j C8j 
i . 
q j 

C9j C I O J 

_ _ c i o j " C8j C l l j -

vdj 

V . 
• - q j 

L*fdj. (5.4) 

where coefficients c^. to c^.^ are given in equation (3.28) 

Next, the. local loads and capacitor currents are given by 

"d£j 

q£j 

G£j " B£j 

Z-3 13 

v dj 

v . 
q j 

(5.5) 

"cdj 

c q j 

-v q j 

'dj 
(5.6) 

and the currents transmitted over line £ connecting busses j and k are 
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given in DQ coordinates by 
& l l a2l a3l ~ahl 

~a2% 
al£ a4£ a3l 

XDk£ a3£ ~aH 
au a2l 

a H a3£ -a2i a u 

Dj 

v_. • 
Qj 

VDk 
(5.7) 

where to â  are the transmission line coefficients given in equation 
(3.7). 

Substituting (5 .3) into (5.7) yields 

a2l 
(a3*COSV+ ( a3£ S l n 6jk-
a 4 J t s l n 6 j k ) a 4 £ C O s 6 j k ) 

~a2l 
au - ( a3£ s i n 6jk- ( a 3 £ C O s 6 j k + 

sa4ros<S.k) a4£ S l n 6 jk ) • 

Xdk£ ( a
3 £ C O s 6 j k ~ - ( a 3 ^ S i n 6 j k + a u a2£ 

a4£sinSk) a 4 £cos6. k) 

Xqk£ ( a 3 £ s i n 5 j k + ( a3£ C O s 5jk" ~a2l a u 

a4£COS<V 
[v,. V . V „ v , l * " dj qj dk qkJ ( 5 . 8 ) 

The dc voltages and currents are determined from r v 
3=1

 J k=l v 

VRJ = v t j c o s a R j " Koj hi J = ^ 2> 
3/3 w 3 T ——• v . cosa x . I T . 

IT tj Ij TT COJ Ij 
j = 1, 2, v 
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V_. = V, + 2R. I_ . j = 1, 2, r 

j = 1, 2, v (5.9) 

The formulation is rather in general where r is the number of rectifiers, 

V_. = -V, + 2R. I_. Ij b ] I] 

v is the number of inverters, and is the voltage at the tapping point. 

For the three-terminal system with rectifier stations 1 and 3, and 

inverter station 2, the solution o f (5.9) becomes 

_ V R l " _ d l ~d2 d3. _ V t l cosa R 1 

VI2 "d4 d5 "d6 
• 

Vt2 cosa^2 

VR3 d7 "d8 d9 _ Vt3 cosa R 3 

XR1 d10 d l l "d12 

II2 d l l d13 d14 

TR3 "d12 d14 d15 

(5.10) 

On the other hand for rectifier station 1 and inverter stations 2 and 

3, the solution becomes 

VR1 

VI2 

VI3 = 

*R1 

XI2 

XI3 

d l "d2 

-d. 

d10 d n 

d l l d13 

d12 _ d14 

12 

-d 14 

15 

v t l cosa R 1 

v t 2 cosa I 2 

V t 3 C O S a I 3 (5.11) 

where 
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10 

d l l 

d12 

d13 

d U 

d15. 
and R^ 

3^3 

2R. + 
3 

RE2 ^3 + 2 R1 (RE2 + *E3> 

3 / l T Xcol ^3 

3 / 7 r Xcol *E2 

3 / l T Xco2 ^3 

*E1 *E3 + 2 R2 ( RE1 + 

3 h Xco2 *E1 . 

3 / * Xco3 ^2 

3 / l T Xco3 *E1 

^1 ^2 + 2 R3 ( RE1 + RE2 ) 

^2 + ^3 

^3 

^2 

hi + ^3 

hi 

hl + hl' 

j = 1, 2, 3 3 — x 
IT C O J 

(5.12) 

h = *E1 (RE2 + V + ^2 ^3 

Finally the current components referred to individual machine 

frame are given by 

dj 2/3 T 

IT dcj 

sin6 R. cos5R. 

cos6R. -Sin<5R. 

cos<pRj 

j = 1, 2, 3 
S i n*Rj (5.13) 
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where§_ . = arc tan (v,./v .) Rj dj qj 

, TT d C j 
COSCJ) . = >>-

R J 3/3 \ j 

sin* R. = + W - cos2<j> Rj 
Of sin $ the positive sign is used for rectifiers and the negative sign Rj 
for inverters. The terminal voltage components v,. and v . are deter-

dj qj 
mined from 

i , . = i,„ . + i ,. + V i.,„ + I,, dj d£j cdj L djil dj 
(5.14) 

i . = i . . + i .+ I i . + I . 

qj qAj cqj J qjil qj 
5.3 Initial Conditions 

Given the terminal voltages vtj> j = 1> 2, 3, the generator 

output powers P̂  and 7^, the dc power ^ a n d the minimum extinction 

angles A^ for inverters the system's operating point is determined as 

follows: 

For one rectifier and two inverters operation equation (5.1) gives 

2 Xco2 
cosa T O = -cosA + — — I 0 (5.15) 

12 02 fi Vt2 1 2 

cosa = -cosA + — — - — I (5.16) 
13 o3 fi v t 3 13 

For two rectifiers and one inverter operation, where the rectifier's 

current ratio is given as x, equation (5.16) is replaced by 

I R 1 = x I R 3 (5.17) 

Let the dc power be given as 

P d c l = -3 VR1 TR1 ( 5 ' 1 8 ) 
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Then the dc voltages, currents and firing angles can be determined by 
substituting equations (5.15), (5.16) or (5.17) and (5.18) into (5.10) 
or (5.11). Substituting the results into (5.13) the dc current compo
nents I,, and I . are given in terms of v,. and v .. 

dj qj dj qj 

Choosing the common reference frame (D,Q) to coincide with 

(d^jq^) the angle §^ is equal to zero. From the given powers P̂  and 

P~ one has 
z 2 

P. + c, . v t , + (c 7.-c n.) v,. v . 
» f - 3 , 6 J t J + Z J - ^ ^-iUL j = l , 2 (5.19) 

f d j ( C8J Vdj + C10j V Since v,. can be expressed in terms of v . and the terminal voltages dj qj 
v , substituting (5.4), (5.5), (5.6), (5.8), (5.13) and (5.19) into tj 
(5.15) v ., j = 1, 2, 3, 6..> S„ and can be solved, qj 1 2 r f d3 

5.4 Numerical Example 

The system studied is basically the same for a l l four cases. 

The only differences are the operating points and loading conditions. 

Synchronous machines 1 and 2 are identical of the same capa

city, synchronous machine 3 is a smaller machine which has a capacity 

of only one third of either of the two. The machines have the following 

per unit data 

x" = (0.09, 0.09, 0.54) p.u. x, = (1.28, 1.28, 4.5) p.u. d a 

x^ = (0.13, 0.13, 0.6) p.u. x q = (0.8, 0.8, 3.8) p.u. 

: 'x' = (0.18, 0.18, 0.69) p.u. x„ = (0.1, 0.1, 0.35) p.u. 

T d o = (2.5, 2.5, 2.3) sec. T Q̂=(0.018, 0.018, 0.0192) sec 

T||o = (0.011, 0.011, 0.0117) sec. H = (4.0, 4.0, 1.33) sec. 

r = (0.0097, 0.0097, 0.1008) p.u. 
3. 
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The ac transmission lines have the following constants 

r = (0.0364, 0.03185, 0.0455) p.u. x £ = (0.905, 0.79, 1.13) p.u. 

x £ = (16.05, 18.35, 12.85) p.u. 

Al l dc lines are assumed of equal length and have the same parameters 

R = 0.0432 p.u. and X = 64.2 p.u. 
c 

The commutation reactances are X^Q = (0.3, 0.3, 0.21) p.u. 

The voltage regulators are assumed identical and also the converter 

control parameters are assumed similar: 
K = 20, T = 2 sec, K = 30, T„ = 0.002778 sec, k = 0.9 r r R R 

The local loads and shunt capacitors for two rectifiers - one inverter 

case are given by 

G£ = (0.145, 1.9, 0.17)p.u. B £ = -(0.09, 0.04, 0.02) p.u. 

i - = (0.088, 0.0, 0.0795) 
c 

The operating conditions for the two rectifiers and one inverter system 

are given by 

vfc = (1.03, 1.0, 1.02) p.u. P = (0.96, 0.975, 0.325) p.u. 

Q = (0.213, 0.323, 0.033) p.u. P d c = (0.197, -0.371, 0.186) p.u. 

Q = (0.093, -0.178, 0.083) p.u. P = (0.393, -0.173, -0.212) p.u. 
Q C 3. C 

Q = (0.114, -0.011, 0.011) p.u. 6 = (0.21, -0.515, 0.0) rad. 

<5__ = (0.553, 0.55, 0.799) rad. i b c , = (1.121, 1.119, 1.026) p.u. K id 
ipd = (0.883, 0.859, 0.731) p.u. \p = -(0.548, 0.53, 0.756) p.u. 

v d = (0.541, 0.522, 0.731) p.u. v q = (0.876, 0.853, 0.711) p.u. 

E = (1.735, 1.864, 1.861) p.u. V , = (1.117, 1.093, 1.113) p.u. 

P m = (0.969, 0.985, 0.335) p.u. cosct = (0.936, -0.837, 0.933) 
V = (1.54,-1.49, 1.54) p.u. I J = (0.192, 0.373, 0.181) oc dc 
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For the one rectifier and two inverters system the local 

loads and shunt capacitors are given by 

= (0.145, 1.55, 0.5) p.u. = -(0.09, 0.7, 0.2) p.u. 

=i = (0.13, 0.0,. 0.0) p.u. 
c 

and the other operating conditions are 

v = (1.04, 1.01, 1.0) p.u. P = (0.96, 0.975, 0.322) p.u. 

Q = (0.134, 0.678, 0.08) p.u. P d c = (0.371, -0.184, -0.177) p.u. 

Q, = (0.141, -0.069, -0.061) p.u. P = (0.292, -0.136, -0.139) p.u. dc ac 
Q = (0.046, -0.002, -0.033) p.u. 6 = (0.124, -0.492, 0.0) rad. 

6 R = (0.569, 0.457, 0.738) rad. tyfd = (1.109, 1.227, 1.076) p.u. 

ij>d = (0.883, 0.912, 0.759) p.u. $ = -(0.566, 0.456, 0.7) p.u. 

v d = (0.561, 0.446, 0.672) p.u. v q = (0.876, 0.906, 0.74) p.u. 

E_ = (1.659, 2.229, 2.002) p.u. V r g f = (1.123, 1.121, 1.1) p.u. x 
P = (0.968, 0.988, 0.333) p.u. cosa = (0.9925, -0.9054, -0.9248) m 
V d c = (1.608, -1.563, -1.564) p.u. I d c = (0.346, 0.1765, 0.1695) p.u. 
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6. LINEAR OPTIMAL CONTROL FOR MULTITERMINAL DC/AC SYSTEMS 

In this chapter linear optimal control signals are designed 

for the three-terminal system described in Chapter 5. Two systems are 

investigated; a two-machine infinite system, and a three-machine system. 

For each system two modes of operation are studied; two rectifiers and 

one inverter, and one rectifier and two inverters. Four control schemes 

are tested for each case. Firstly, optimal excitation control signals, 

Ug's, are applied to a l l machines. Secondly, optimal dc current control 

signals, u^'s, are applied to converters regulating dc current. Thirdly, 

an excitation control signal is applied to the machine connected to the 

converter station operating on constant extinction angle control and dc 

current control signals are applied to the rest of the converter stations. 

Finally a l l excitation and dc current control signals are applied simul

taneously. 

In designing the linear optimal regulator a performance func-
52 

tion of the quadratic form must be chosen. Moussa and Yu developed a 

method for determining the Q matrix with the dominant eigenvalue shift 

of the closed loop system. This technique was also applied to multi-
53 

machine stabilization studies . It was found from their results that 

weights must be given to Au and A<S in order to obtain a very stable system, 

a limited number of diagonal matrices are tested with varying emphasis 

on the deviation of rotor angles <5, that of speed Au, and the field 

flux linkages i>£^' The reason for giving weight on ty^^ is mainly be

cause of the dc lines involved and it was not necessary for ac lines 

alone. As for the weighing matrix R i t is always taken as a unit matrix. 



68 

6.1 Two Machine-Infinite Bus System with Two Rectifiers and One Inverter 

Converter stations 1 and 3 are operated as rectifiers while 

converter station 2 is operated as an inverter in this case. For the 

data given in Chapter 5 the linearized state equations for the system 

are given in eqn. (6.1). 

The diagonal matrices Q and the nonzero elements of matrices 

B for different control schemes are given by 

u E 1,u E 2 ; Q = diag {10, 100, 1, 1, 1, 10, 100, 1, 1, 1, 1} 

b^ 1 = 10.0, bg 2 = 1 0 , 0 

U j ^ . u ^ . Q = diag {10, 1, 100, 1, 1, 10, 1, 100, 1, 1, l ) 

b_ . = 10485.44, b . . _ = 10588.23 n. 
D , 1 11, I (.0 . 1 ) 

. Q = diag {10, 1, 100, 1, 1, 10, 1, 100, 1, 1, 1> 

b c , = 10485.44, b Q . = 10.0, b . . . = 10588.23 
-> > -L " » ^ J . J . , J 

u E 1,u D l,u E 2,u D 3. Q = diag {10, 1, 10, 1, 1, 10, 1, 10, 1, 1, 1> 

b. . = 10.0, bK _ = 10485.44, b Q = 10.0, b . . , = 10588.23 
H , i D , z y , J i ^ - > ^ 

and the corresponding control laws are given in eqn. (6.3). The sys

tem's eigenvalues are listed in Table VI. 

A three-phase ground fault at the middle of one circuit of 

ac line 1 is used as a disturbance for the nonlinear tests to compare 

the different control schemes designed. The fault duration is 0.07 

sec. followed by isolating the faulted line from both ends. The system 

responses are shown in Figures 6.1 to 6.7 for the following cases 
case 0 

case 1 

case 2 

no optimal control whatsoever. 

optimal excitation controls for both machines. 

optimal dc controls for rectifier stations 1 and 3. 



A6\ 

Aip fdl 

A * x l 
• 

Acosa 

AS, 

Aw, 

Rl 

Aip fd2 

A Ex2 

Acosa 
* 

Acosa 

12 

R3 

0.0 1.0 0.0 

0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

-26.0 0.0 -114.0 0.0 -123.4 7.225 0.0 -0.72 0.0 -38.8 

-0.35 0.0 -1.5 0.45 -1.26 0.142 0.0 0.145 0.0 -0.393 

0.405 0.0 -6.58 -0.5 -0.434 -0.369 0.0 -0.87 0.0 -0.145 

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

20.98 0.0 22.42 0.0 17.07 -53.9 0.0 -151.4 0.0 43.89 

0.11 0.0 0.388 0.0 0.409 

0.617 0.0 -0.834 0.0 -1.26 -1.099 0.0 -6.55 -0.5 -2.89 

0.0 

63.6 

0.82 

-0.769 

501.6 0.0 -18991.0 0.0 -33213.0 177'.0 0.0 5075.5 0.0 -11125.0 16942.0 

0.0 

68.0 

-0.372 0.0 -1.902 0.447 0.988 0.81 

-0.501 

16.43 0.0 72.54 0.0 133.0 -34.8 0.0 -228.0 0.0 -78.9 -6.43 

1657.4 0.0 12689.0 0.0 21752.4 2339.4 0.0 11649.4 0.0 -13772.0 -35626.0 

•[A6, Ato, Aip.,, AE , Acosa,,, A6„ Au. Aij i - , - AE „ AcosaT„ Acosa_~] + BU 1 1 fdl xl Rl 2 2 fd2 x2 12 RJ (6. 



"El -38.4 6.37 -60.4 -2.48 -0.023 21.4 -1.01 -3.53 -0.057 0.285 -0.003 

"E2 5.66 3.38 -3.53 -0.057 -0.004 -40.6 6.84 -88.4 -2.93 -1.04 0.015 

UDl 3.1 1.01 -0.98 0.75 -0.22 -1.69 -0.22 -5.0 0.75 
• 
-0.101 -0.108 

UD3 -0.39 -0.35 0.49 0.79 -0.11 -2.58 -0.97 -1.02 0.67 0.15 -0.195 

UD1 2.63 1.05 -3.3 0.41 -0.22 -1.09 -0.26 -2.41 -0.04 -0.086 -0.108 

"E2 0.51 0.02 -1.42 0.51 -0.4x10" -4 -0.77 0.12 -9.81 -1.32 -0.004 -0.3x10" •5 

"D3 -0.76 -0.31 -1.4 0.53 -0.109 -2.11 -0.998 0.93 -0.003 0.16 -0.195 

"El -0.06 0.03 -2.16 -1.04 -0.8x10" -5 -0.005 -0.003 -0.04 -0.005 -0.002 0.1x10" •4 

"Dl 2.4 1.02 -1.3 -0.009 -0.22 -0.85 -0.27' -1.12 -0.013 -0.087 -0.108 

"E2 0.16 0.016 -0.25 -0.005 -0.1x10" -4 -0.6 0.034 -3.83 -1.11 0.004 0.1x10" -4 

-0.93 -0.33 0.037 0.012 -0.11 -1.94 -1.01 2.06 0.01 0.16 -0.19 

. [A6 Ao) Aif/ AE . Acosa A6 Au). Aip AE Acosa 0 Acosa Q ] t (6.3) 



Table VI Eigenvalues for 2 Machine-Infinite Bus, 2 Rectifiers System 

Control used Eigenvalues 

no control -53657.4, -15084.8, -177.3, -0.605+jl.35 , -0. 342+J4.77, -0.293+j6.81, -0.261+J1.83 

UE1 ' "E2 -53657.4, -15084.8, -177.3, -15.74,-13.5, -7.45+J12.9, -6.16+jlO.74, -0.35, -0.32 

"DI ' UD3 -54675, -18423, -162.1, -39.8, -22.95 ,-3.36, -3.16 , -1.17y2.1, -0.5+J1.58 

"DI ' "E2 ' "D3 -54675, -18423, -162 , -39.83,-22.96 -6.98,-5.95, -4.39, -3.37, -0.717 + jl.7 

" E I » "DI ' 

"E2 » "D3 

-54675, -18423, -162, -39.44,-22.8,-9.6,-9.2, -3.76,-3.4, -2.39,-1.81 
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case 3: case 2 plus excitation control for the machine connected to 

inverter station 2. 

case 4: case 1 plus case 2. 

Figures 6.1 and 6.2 show that machine 1 loses stability but 

machine 2 remains stable when there is no optimal control signals, 

case 0. Next when excitation control signals are applied to both mach

ines the stability of machine 1 is getting worse and machine 2 that was 

originally stable goes out of step, case 1. S t i l l next where optimal 

dc .controls are applied to rectifiers 1 and 3 the system is stable, 

case 2. Finally the system is stable and the responses are very close 

for both cases 3 and 4. The angle and speed deviations are less in 

case 2 than cases 3.and 4. 

The changes in terminal voltages are shown in Figures 6.3 

and 6.4. It is noted" that' at ac bus- I "the deviations are small for 

cases 2 and 3 with larger changes for cases 4, 0, and 1 respectively. 

For machine 2 the terminal voltage deviations, Figure 6.4, are smallest 

for case 4 followed by cases 2, 1, 3 and 0 respectively. 

Figures 6.5 (a, b, c) show the changes in power transmitted 

over the dc transmission network. Consider case 0 fi r s t . The dc power 

drops for the first 0.07 sec. during the fault because of ac terminal 

voltages drops, and then returns to rated values. After 0.69 sec. the 

power carried by dc line 1 drops sharply for 0.1 sec, between approxi

mately 0.69 and 0.79 sec, then continues to drop at a slower rate 

because of the deterioration of v ^ while the power carried by line 3 

increases in a similar fashion because of drops in v 2 with vfc^ remain

ing constant. But the total dc power is decreased. Consider case 1 

next. The same pattern is noticed but with sharper drops in P , .. 
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Fig. 6.4 Terminal Voltage Variations at Bus 2 for 2 Machine, 2 

Rectifier System 
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Fig. 6.7 Excitation Control Effort 'for 2 Machine, 2 Rectifier System 
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because of larger drops in v^. For cases. 2, 3 and 4 the dc reference 

currents are modified by optimal control signals and therefore the total 

power transmitted over the dc network is significantly increased to 

absorb some power from the ac system, which may cause large acceleration 

of the synchronous machines, and consequently resulting in a more stable 

system. 

The control efforts are shown in Figures 6.6 and 6.7. It is 

interesting to notice that the dc control effort at rectifier station 1, 

IL^> is larger in case 4 than that of cases 2 and 3. This suggests 

that the presence of an excitation control signal at machine 1 is work

ing against the dc control at the same bus. This may be explained by 

the fact that the voltage drop at bus 1 is larger in case 4 than cases 

2 and 3. It is also noticed that in general the dc control efforts at 

rectifier station 1 are much larger than the dc control efforts at 

rectifier station 3 since v ^ is constant and machine 1 is also closer 

to the fault location. The excitation control efforts are greatly 

reduced in the presence of dc controls. 

6.2 Two Machine-Infinite Bus System with One Rectifier and Two Inverters 

The study in this section is similar to that of section 6.1 

except that converter station 3 is now operated as an inverter instead 

of a rectifier. So the only change in the cases listed before will be 

the fact that station 3 is an inverter. The operating point was given 

in Chapter 5 and the linearized system state equations are 
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The weighing matrices Q and the corresponding nonzero elements of 

matrices B are 

V L ^ and ^ ; Q » diag. {100, 10, 1, 1, 1, 100, 10, 1, 1, 1, 1} 

b 4 , l = 1 0 ' b9,2 = 1 0 

and u D 3 . Q = diag. {100, 10, 1000, 1, 1, 100, 10, 1000, 1, 1, 1} 

b. . = 10383.8, b.. 0 = 10799.1 
->, J - 1-L, 2. Qo. D) 

^ , 1 ^ 2 and . Q = diag. {100, 10, 1, 1, 1, 100, 10, 1, 1, 1, 1} 

b 5 ± = 10383.8, b 9 2 = 10, b u 3 = 10799.1 

"El* "Dl' UE2 a n d UD3- Q = d l a g ' 1 > 1 0 ' l j 1' 1 0 ' 1» 1 0 ' 1' 1 } 

b. ' = 10, b_ „ = 10383.8, b. . = 10, b.. . = 10799.1 
H , J - D , y , J ±±,4 

The control laws are given in equation (6.6) and the system's eigen

values are listed in Table VII. 

The same disturbance described in section 6.1 is applied to 

this system for the nonlinear tests. The system responses are summari

zed in Figures 6.8 to 6.14. 

Figures 6.8 and 6.9 show the angle and speed deviations res

pectively. The system is more stable without optimal control, case 0, 

than with excitation control, case 1. Cases 2 and 3 give the smallest 

angular deviations and i t is also close for case 4. 

The terminal voltage variations at bus 1, Figure 6.10, are 

largest in case 1 followed by cases 4, 0, 2 and 3 in that order. At 

bus 2 a l l the voltage deviations are small. 

In Figures 6.12 (a, b, c) the variations of power transmitted 

over the dc network are shown. In cases 0 and 1 with the dc network 

operating on constant current control the dc power goes back to original 

values immediately after the faulted line is isolated and then decreases 



" E l -13 1.6 -25.6 -1.75 -0.004 12.15 -0.66 -12 -0.34 0.52 0.0013 ~ 

"E2 -4.4 2.74 -14.7 -0.34 -0.01 -12 1.11 -23.3 -1.67 -0.36 -0.0016 

UD1 10.8 3.1 -0.63 1.99 -0.22 -3.25 -0.25 -11.6 0.27 -0.12 0.102 

" D3 0.17 0.57 1.28 -2.81 0.11 10.4 3.1 7.76 -0.49 -0.93 -0.2 

UD1 9.04 3.21 -1.39 0.06 -0.21 -1.17 -0.45 -0.72 0.0003 -0.025 0.102 

"E2 0.21 0.02 -1.08 0.21 0.3xl0~ 6 -0.41 0.01 -1.3 -1.0 0.0026 -O.SxlO - 5 

UD3 = 1.73 0.48 0.42 -0.08 0.11 8.48 3.24 -1.75 -0.009 -1.0 -0.2 

" E l -0.15 0.03 -2.16 -1.05 -0.5xl0~ 6 0.18 -0.003 -0.006 -0.005 -0.005 -0.15xl0~ 4 

"Dl 2.43 1.06 -1.07 -0.0005 -0.21 -0.08 -0.04 -1.01 0.005 -0.12 0.1 

"E2 0.09 0.009 -0.24 -0.005 0.5xl0~ 5 -0.2 0.01 -1.32 -1.01 -0.0014 -0.2xl0~ 4 

0.52 0.07 0.49 -0.02 0.11 1.94 1.07 -0.72 -0.02 -0.48 -0.19 

•[A61 A W 1 A * f d l AEx^ Acosa -
KJL 

A6 2 Ao 2 A*fd2 A E x 2 Acosaj 2 Acosa.^] t (6.6) 

co 
o 



Table VII Eigenvalues for 2 Machine-Infinite Bus, 2 Inverters System 

Control used Eigenvalues 

no control -55443, -16056, -155, -0.785+j1.49, -0.405+J1.82, -0.201+J4.76, -0.168+J6.52 

u E l a n d "E2 -55443, -16056, -155, -10.75,-9.91, -3.66+J7.91, -2.92, 2.15+J6.23, -2.11 

UD1 a n d "D3 -56428, -19286, -191, -94.45,-48.4, -3.16, -1.82 +j2.2, -1.81, -0.78 + jl.41 

UD1'UE2&UD3 -56428, -19286, -191, -93.9,-46.8, -9.64, -3.26, -3.18, -1.59, -0.874+J1.68 

UE1'UD1>UE2 

and u D 3 

-56428, -19286, -149, -32.3, -14.38, -9.55, -9.49, -4.18, -3.39, -2.66, -2.17 
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t sec 

Fig. 6.8 Swing Curves for 2 Machine, 2 Inverter System 

Au rad/sec 

'3 t sec J.O 

0.6̂  ^ ^ ^ I r r . 

Fig. 6.9 Speed Deviation for 2 Machine, 2 Inverter System 
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because of the ac voltage drop at the rectifier bus. In cases 2, 3 and 

4 where the dc reference currents are modified by optimal control sig

nals, the rectifier power is increased even with the fault on. The power 

is even increased further after the fault is removed and stays almost 

constant at about 0.48 p.u. then starts to go down at 0.7 sec. 

The control efforts are shown in Figures 6.13 and 6.14. Again 

i t is seen that the excitation control efforts, Figure 6.14, are greatly 

reduced in the presence of dc controls. It is also noticed that the 

dc control at converter station 3 jumps to high positive values for 

the fault duration and then changes sign after the faulted line is iso

lated. The reason for this is that during the fault inverter 3 draws 

more dc power since inverter 2 is incapable of absorbing this power 

due to the ac voltage drop.' After the faulted line is removed inverter 

2 starts to pick up more dc power to compensate for the ac line power 

loss. 

6.3 Three Machine System with Two Rectifiers and One Inverter 

The system studied here is the same as that of section 6.1 

except that the infinite bus 3 is replaced by a small synchronous 

machine having one third the rating of either machines 1 or 2. The sys

tem's operating point is the same as section 6.1. The system's linearized 

state equations are given in eqn. (6.7). 



A l l 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ,0.0 

Au^ -23.2 0.0 -99 0.0 -105 13.4 0.0 7.85 

A * f d l -0.36 0.0 -1.23 0.45 -0.9 0.24 0.0 0.35 

0.63 0.0 -7.19 -0-5 -1.28 -0.52 0.0 -1.5 

Acosa^ -14690 0.0 -14935 0.0 -27366 1069 0.0 9644 

ti2 
tm 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 

27.6 0.0 44.4 0.0 43.9 -44.1 0.0 -141 

A*fd2 0.11 0.0 0.7 0.0 0.82 -0.26 0.0 -1.67 

A*x2 1.03 0.0 -1.28 0.0 -1.95 -1.14 0.0 -7.21 

Acosaj2 2.0 0.0 129 0.0 211 -18.45 0.0 -175 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Au^ 49.6 0.0 42.8 0.0 42.3 29.8 0.0 -9.89 

A*fd3 0.52 0.0 0.97 0.0 1.12 0.5 0.0 0.27 

A*x3 1.27 0.0 -3.13 0.0 -4.45 -0.76 0.0 -3.33 

Acoaa^ 1718 0.0 3593 0.0 8926 36.9 0.0 2264 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 -52.6 9.77 0.0 10.7 0.0 31.2 

0.0 -0.57 0.125 0.0 0.21 0.0 0.35 

0.0 0.03 -0.11 0.0 -0.55 0.0 -0.1 

0.0 -11826 400 0.0 3849 0.0 13269 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 20.7 . 16.4 0.0 14.75 0.0 15.8 

0.48 0.77 0.15 0.0 0.24 0.0 0.25 

0.5 -3.03 0.11 0.0 -0.49 0.0 -0.46 

0.0 -103 16.45 0.0 49.3 0.0 140 

0.0 0.0 0.0 1.0 0.0 0.0 0.0 

0.0 -86 -79.4 0.0 -129 0.0 -170 

0.0 -1.27 -1.02 0.0 -2.25 0.49 -2.73 

0.0 0.82 -0.51 0.0 -2.89 -0.5 -3.3 

0.0 -11034 -17554 0.0 -8268 0.0 -25443 

A5, 

Ai|> fdl 
AE , xl 
Acosa 

A52 

Au. 

Rl 

Ai(i fd2 
A Ex2 
Acosa 

AS, 

Au. 

12 

A^ fd3 
AE , x3 

L A c o s o R 3 j 

+ BU 

(6.7) 

oo 
—i 
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The matrices Q and the nonzero elements of B are given by 

^.u^.^.-Q = diag {10,. 100, 1, 1, 1, 10, 100, 1, 1, 1, 10, 100, 1, 1,1} 

b 4 , l * 1 0 ' b9,2 " 1 0 ' b14,3 = 1 0 

"DI* UD3 : Q = d i a g { 1 0 ' 1» 1 0 0> 1» 1> 10> 1» 1 0 0> 1» X> 1 0» 1' 1 0 0 » 1' 1 } 

b 5 j l = 10484.6, b 1 5 > 2 = 10587.4 ( 6 > g ) 

" D l ' ^ ' ^ : Q = d i a g { 1 0 ' 1» 1 0 0 ' 1' 1' 1 0 ' 1» 1 0 0 ' l j 1» 1 0 ' l j 1 0 0 ' 1' 1 }  

b 5 , l = 1 0 4 8 4- 6> b
9 2 = 1 0 , b15 3 = 1 0 5 8 7 ' 4 

" E l ^ l ' ^ ' ^ E a ' ^ : Q = d ± a g { 1 0 ' 1 0 , 10-' 1 > 1 > 1 0 > 1 0 ' 1 0> 1» 1» 1 0 ' 1 0» 
10, 1, 1} 

b 4 , l = 1 0 ' b5,2 = 1 0 4 8 4-6» b 9 j 3 = 10, b U ) 4 = 10, b 1 5 ) 5 = 10587.4 

The corresponding control laws are given in (6.9). The system's eigenvalues 

for different controls are listed in Table VIII. 

The same disturbance applied to the nonlinear tests of section 

6.1 is applied to this three machine system. Figures 6.15 to 6.22 show 

the system responses for different control schemes. Again four cases 

are studied as listed in section 6.1 except that in cases land 4 excitation 

controls are applied to a l l three machines in this case. Since this 

three machine system is unstable without optimal controls as indicated 

by the eigenvalues in Table VIII, the nonlinear response for this case 

is not shown. • 

The angle and speed deviation curves, Figures 6.15 and 6.16 

respectively, show that in case 1 machine 1 is unstable and that in 

general the variations in angle and speed deviations are the largest 

in this case. Case 2 results in the smallest deviations followed by 

cases 3 and 4 in that order. 

Figures 6.17, 6.18 and 6.19 show the ac terminal voltages 

variations. At bus 1, Figure 6.17, the voltage changes most in case 1 



" U E l " ~37.4 6.37 -63.4 -2.53 -0.023 21.3 -1.04 -0.26 -0.002 0.19 17.3 -1.19 10.7 0.17 0.002 

"E2 26.3 5.24 0.69 -0.002 -0.016 -23.9 7.81 -129 -3.49 -0.4 2.26 2.36 -9.19 -0.19 -0.015 

UE3 25 2.88 8.5 0.17 -0.015 40 0.6 -16.. 5 -0.19 0.06 -62.5 4.89 -69.7 -2.74 -0.03 

" D I 7.14 1.26 0.47 0.19 -0.21 -3.94 0.64 -21.6 -0.61 -0.14 1.08 0.05 -0.54 1.09 -0.09 

"D3 1.26 0.13 0.65 -0.34 -0.09 -1.67 0.31 -8.73 -0.17 -0.12 3.82 1.03 0.3 ' -1.62 -0.25 

. " D I 
6.24 1.23 -0.001 0.19 -0.21 -2.77 0.49 -15.2 -0.32 -0.13 0.69 0.05 -0.62 1.1 -0.09 

UE2 2.83 0.13 1.88 0.03 -0.0003 -2.91 0.61 -20.6 -1.6 -0.03 1.11 0.03 0.25 0.13 -0.0001 

"D3 0.89 0.12 0.44 -0.3 -0.09 -1.11 0.25 -6.05 -0113 -0.12 3.64 1.03 0.22 -1.61 -0.25 

" E I 
a -0.73 0.007 -2.41 -1.05 0.2xl0~4 0.78 -0.12 2.92 0.08 0.005 -0.14 -0.006 0.04 0.001 0.8x10" -5 

" D I 
6.99 3.37 0.17 0.03 -0.22 -5.32 0.48 -21.3 -0.43 -0.16 1.93 0.001 0.27 0.008 -0.09 

"E2 9.87 0.44 3.16 0.08 -0.0004 -11.8 2.17 -48.3 -2.21 -0.13 4.13 0.1 0.9 0.02 -0.0002 

UE3 0.13 0.02 -0.01 0.001 0.8xl0~5 0.34 -0.001 0.69 0.02 -0.003 -0.43 0.02 -2.48 -1.07 0.3x10' -5 

_"l>3_ 2.32 0.14 0.92 0.01 -0.09 -1.92 0.28 -9.06 -0.18 -0.16 3.1 3.19 -0.63 0.004 -0.26 

.[Afi1 A* f < J 1 AExx Aco Sc R 1 Afi 2 A* f d 2 AE^ Acosa^ A« 3 A ^ A* f d 3 AE^ Acosa^]' (6.9 



Table VIII Eigenvalues for 3 Machine, 2 Rectifier System. 

Control used Eigenvalues 

no control -37332, -15211, -372, -0.585 + , -0.526 + , -0.501 + , -0.483 + , -0.314 + , +0.88 xlO - 3 

jl.95 jl.16 jl.58 J8.92 J6.88 

UE1 , UE2 , UE3 -37332, -15211, -372, -18.5, -15.4, -13.26, -0.9 + , -7.05 + , -6.1 + , -0.35, -0.34, -0.32 
J14.9 J14.2 jlO.26 

UD1> ^3 -38764, -18557, -342, -70.25, -38.24, -3.28, -3.18, -2.8 + , -1.44, -1.2 + , -0.526, -0.4 + 
J5.82 jl.98 jl.68 

" D l ' ^ ' V , -38764, -18557, -342, -70.2, -38.2, -9.57, -4.27, -4.19 + , -3.25, -3.2, -1.19 + , -0.41 + 
J6.88 jl.97 jl.67 

"E3' "D3 
-38764, -18556, -341, -225, -122, -13.06, -9.6, -9.57, -6.1 + , -1.73 + , -1.13, -1.1, -1.0 

J9.89 jO.07 

O 
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followed by cases 4, 3 and 2 respectively. The largest changes in termin

al voltage at bus 2, Figure 6.18, are also observed in case 1 followed 

by cases 2, 3 and 4 respectively. At bus 3, Figure 6.19, the order 

is changed to 1, 4, 2 and 3. 

The dc power changes are shown in Figure 6.20 (a, b, c). In 

case 1, where no dc controls are applied, the dc power returns to pre-

fault values after fault removal because of the constant current control 

and then starts to deteriorate after 0.45 sec. because of ac voltage 

drops. In cases 2, 3 and 4 the dc power transmitted over line 1 reaches 

its maximum value after fault removal and stays there for 0.75, 0.63 

and 0.52 sec. for cases 2, 3 and 4 respectively. Then they a l l go down rapidly 

at first and then gradually. The total energy transmitted over the dc 

network is maximum in case 2 followed by cases 4 and 3 respectively. 

The control efforts are shown in Figure 6.21 and 6.22. The 

required excitation control efforts are maximum in case 1 and are greatly 

reduced in case 4. The dc control signal u ^ is largest in case 2 fol 

lowed by cases 3 and 4 while u ^ is largest in case 3 followed by cases 

4 and 2. 

6.4 Three Machine System with One Rectifier and Two Inverters 

Similar to section 6.3 again four cases are studied with the 

exception that converter station 3 is operated as an inverter instead 

of a rectifier for a l l cases. Converter station 1 is operated as a 

rectifier and is controlling the dc current. Inverter station 2 is 

controlling the dc voltage while station 3 is operated under constant 

current control. The system's operating point is the same as that of 

section 6.2. The linearized state equations are given by (6.10). The 

weighing matrices Q and control laws for different control schemes are 



0.0 1.0 0.0 0.0 0.0 0.0 0.0 

All)̂  -28.2 0.0 -101 0.0 -119 18 0.0 

A * f d l -0.36 0.0 -1.29 0.45 -1 0.24 0.0 

* E x l 0.28 0.0 -6.94 -0.5 -1.88 -0.24 0.0 

Acosa^ -1381 0.0 -16638 0.0 -32176 747 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 1.0 

Ato2 ' 26.3 0.0 44.1 0.0 49.9 -40.4 0.0 

**fd2 0.1 0.0 0.61 0.0 0.74 -0.21 0.0 

A E x2 0.64 0.0 -1.06 0.0 -1.47 -0.71 0.0 

A C O S O J 2 1.66 0.0 124 0.0 213 -14.8 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

AtOj 45.9 0.0 52.3 0.0 73.4 34.3 0.0 

A *fd3 0.49 0.0 1.03 0.0 1.41 0.51 0.0 

A E x3 0.87 0.0 -2.45 0.0 -3.17 -0.36 0.0 

AcosOj 3 -1400 0.0 -6195 0.0 -14464 -379 0.0 

0.0 0.0 0.0 0.0 

9.58 0.0. -48.1 10.1 

0.37 0.0 -0.54 0.12 

-1.56 0.0 0.08 -0.04 

8155 0.0 -11526 635 

0.0 0.0 0.0 0.0 

-126 0.0 46.6 14.1 

-1.58 0.45 0.85 0.11 

-6.69 -0.5 -2.14 0.06 

-164 0.0 -59.1 13.1 

0.0 0.0 0.0 0.0 

5.76 0.0 -97.6 -80.3 

0.46 0.0 -1.33 -1 

-2.79 0.0 0.23 -0.51 

-4604 0.0 14619 1778 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

1.0 

0.0 

0.0 

0.0 

0.0 

0.0 0.0 

8.91 0.0 

0.22 0.0 

-0.73 0.0 

4497 0.0 

0.0 0.0 

11.7 0.0 

0.24 0.0 

-0.64 0.0 

59.8 0.0 

0.0 

-148 

0.0 

0.0 

-2.51 0.49 

-3.58 -0.5 

9940 0.0 

0.0 

-31.4 Aiô  

-0.34 * * fd l 

-0.04 A E x l 

-10085 A cos 

0.0 A62 

-25.7 Au2 

-0.21 

-0.05 i E x 2 

-121 Acosaj 2 

0.0 A6 3 

98.1 Au 3 

1.97 •A*fd3 

-4.83 A E x3 

-21231 AcosOj 3 

+ BU 
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Fig. 6.21 DC Control Effort for 3 Machine, 2 Rectifier System 

Fig. 6.22 Excitation Control Effort for 3 Machine, 2 Rectifier System 
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given in equations (6.11) and (6.12) respectively. The system's eigen

values are listed in Table IX and i t is seen that without optimal con

trols the system is nearly unstable. 

"El' u ^ , U g 3 . Q «= diag (10, 100, 1, 1, 1, 10, 100, 1, 1, 1, 10, 100, 

1, 1, 1> 

b 4 , l = 1 0 ' b 9 , 2 = 1 ° ' b 1 4 , 3 = 1 ° 

"Dl' "D3 •' Q = d l a g 1 0 ° ' 1' 1 > 1 0 ' 1» 1 0 0 ' 1' 1' 1 0 ' 1' 1 0 0 ' 1' 1 } 

b 5 f l - 10384, b 1 5 f 2 - 10799 

u D 1,u E 2,u D 3 ; Q = diag {10, 1, 100, 1, 1, 10, 1, 100, 1, 1, 10, 1, 100, 

1, 1) (6.11) 
b 5 , l = 1 0 3 8 4 ' b9,2 " 10> b15, 3 = 1 0 7 9 9 

"El' "D1» UE2.' 
Q = diag {10, 1, 100, 1, 1, 10, 1, 100, 1, 1, 10, 1, 100, 

U E 3 ' ^ 3 ; 1, 1) 
b 4 , l = 1 0 ' b5, 2

 = l ° 3 6 4 - b9,,3 = 1 ° ' b14,4 = 1 ° ' 

b 1 5 > 5 - 10799 

The test results of nonlinear system responses to the same 

disturbance used for the three previous systems are summarized in 

Figures 6.23 to 6.30. 

Again case 2 is the most stable, as indicated by angle and 

speed deviations shown in Figures 6.23 and 6.24, followed closely by 

cases 3 and 4 respectively. Case 1 is the least stable case proving 

once more that excitation control signals by themselves are not suffi

cient to effectively stabilize such a system. 

Figures 6.25 to 6.27 show that ac terminal voltages variations 

are largest in case 1 and smallest in case 2 with cases 3 and 4 in between. 



" E l " -40.4 6.06 -57.7 -2.43 -0.02 26.2 -0.4 -3.92 -0.05 0.13 15.8 -0.49 5.33 0.08 0.4x10" -4 

"E2 20.8 4.35 -2.18 -0.05 -0.006 -28.2 7.81 -107 -3.19 -0.55 11.5 1.24 -10.7 -0.19 -0.004 

" E ? 
29.2 3.22 4.59 0.08 -0.01 35.5 1.82 -15.7 -0.19 -0.64 -61.4 5.87 -93.5 -3.14 0.02 

UD1 8.72 1.51 0.04 -0.03 -0.2 -2.76 0.87 -24 -0.91 -0.27 -0.57 0.4 -8.8 -0.24 0.1 

UD3 1.12 0.13 0.02 0.09 0.11 1.01 0.38 1.67 0.2 0.15 -3.13 -0.89 -1.78 1.74 -0.29 

" D I 
7.37 1.41 -0.13 -0.04 -0.2 -1.76 0.62 -15.6 -0.36 -0.25 -0.61 0.34 -7.17 0.19 0.1 

"E2. 
m 3.52 0.31 0.41 0.05 -0.0003 -1.74 0.77 -20.2 -1.59 -0.05 0.11 0.2 -3.95 -0.83 0.7x10" •5 

UD3 1.16 0.11 0.12 0.13 0.11 0.66 0.35 -0.4 0.007 0.15 -3.02 -0.91 -1.66 1.65 -0.29 

"El -0.06 0,07 -8.43 -1.27 0.4xl0~5 0.04 -0.05 0.5 0.01 0.005 0.03 -0.01 0.19 0.005 0.2x10" -5 

" D I 
6.94 1.42 -0.33 0.004 -0.2 -1.88 0.61 -15.6 -0.36 -0.24 -0.21 0.31 -5.38 -0.12 0.1 

"E2 3.64 0.29 0.26 0.01 -0.0003 -1.55 0.74 -19.5 -1.56 -0.06 -0.19 0.19 -3.24 -0.09 -0.3x10" -4 

"E3 1.63 0.11 0.14 0.005 -0.0001 -0.25 0.25 -3.8 -0.09 -0.02 -0.43 0.2 -10.4 -1.37 -0.5x10" -5 

"D3 0.43 0.17 -0.25 0.002 0.11 0.23 0.39 -1.48 -0.03 0.16 -2.07 -0.93 -0.88 -0.005 -0.29 

•[t6x Au^ fi*fdl AE^ Acosa R 1 A6,, Au>2 W{A2 AE^ Acoso I 2 A*3 Aw3 Ai)i f d 3 AE x 3 Acosa I 3] C (6.12) 



Table IX Eigenvalues for 3 Machine, 2 Inverter System 

Control used Eigenvalues 

no control -39956, -13146, -366, -0.641 + , -0.608 + , -0.564 + , -0.458 + , -0.245 + , -0.527 xlO" 7 + 
jl.52 jl.93 J9.05 jl.38 J7.1 j0.68xl0~3 

-39956, -13146, -366, -17.74, -16.21, -13.26, -8.12 + , -8.03 + , -6.07 + , -0.355, -0.343, -0.316 
J13.8 J15.26 jlO.48 

"Dl* "D3 -41301, -16972, -317, -60.7, -38.85, -3.29, -3.21, -3.03 + , -1.72, -1.1 + , -0.478, -0.443 + 
J4.59 J2.2 jl.59 

"DI'^'VJ -41301, -16972, -317, -607, -36.86, -9.32, -4.32 + , -4.19, -3.26 + , -1.25 + , -0.442 + 
J5.65 jO.054 j 2 . l l jl.59 

"E3' "D3 
-41301, -16972, -317, -60.7, -36.86, -9.39, -7.93, -6.55 + , -5.71, -4.43 + , -4.42, -4.11, -3.19 

J0.9 J5.73 

VO VO 

http://j2.ll
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Fig. 6.24 Speed Deviation for'3 Machine, 2 Inverter System 
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Figure 6.28 shows the dc power variations. In case 1 the power 

returns to rated values immediately after fault removal and starts to 

go down at 0.45 sec. Cases 2, 3 and 4 are very similar. In a l l 

three cases the power transmitted over the dc network is greatly increased 

after fault removal and stays at a value of about 0.47 p.u. then goes 

down. The dc energy transmission is maximum in case 2 followed by 

cases 3 and 4 respectively. 

Control efforts are shown in Figures 6.29 and 6.30. The con

trol changes have a pattern similar to previous systems. 

For the four systems studied in this chapter the nonlinear 

test results indicate strongly that optimizing the dc reference currents 

is the most suitable for controlling the dc/ac parallel systems. The 

dc network in such cases acts as a variable load at the machine terminals 

with the ability to adjust itself according to the system stability 

requirements. Optimal excitation controls, on the other hand, are slower 

and hence far less effective than dc controls. In certain cases where 

the excitation control signals cause the ac terminal voltages to drop, 

the power transmitted over the dc network is reduced accordingly, since 

the dc system is operating under constant current control, and the sys

tem is less stable. It is noted that applying combinations of optimal 

dc and excitation controls also yield stable systems with responses 

close to the case with dc optimal control alone. 
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7. CONCLUDING REMARKS 

The hvdc system dynamics are described in Chapter 2. For a 

simple two-terminal dc/ac parallel system i t takes a 39th order model 

to describe the system dynamics in detail including filters, reactive 

power condensers, ac tie lines, dc tie line and controls, synchronous 

machine and control loops. 

Dynamic models for the stability and control studies are devel

oped in Chapter 3. Despite the accuracy of the 39th order model i t is 

practically impossible for digital computation due to the tremendous 

time required because of the small step size. Several reduced models 

are found in this thesis which are accurate enough for practical purposes. 

The most suitable one seems to be the 6th order model consisting of a 

3rd order synchronous machine, a 1st order voltage regulator, and two 

dc firing circuit controls. 

In Chapter 4 linear optimal controls are designed for two 

different single machine-infinite bus systems. It is found that a control 

signal modifying the dc reference'current is the most effective one in 

stabilizing a strong dc system. As for the excitation control i t is found 

that there is very limited effect on system stabilization. When the two 

controls, excitation and dc, are applied simultaneously an increase of 

dc control effort is noted. For a weak ac system, by adding a parallel 

dc link in expansion, i t is found that the best results are achieved 

by using a dc control signal in addition to the existing excitation con

trol designed for the ac system, but the system response s t i l l can be 

improved slightly by modifying the excitation control signal with the 

system expansion. 

The investigation of optimal control for multi-terminal dc 
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systems begins in Chapter 5. The system equations for a tapped three-

terminal dc line superimposed on a three bus ac system are derived. 

In Chapter 6 two multi-terminal systems are investigated, each 

with two different modes of operation. The two machine-infinite bus 

system was stable but the three machine system was unstable when there 

were no controls. Four different control schemes are tested for each 

system and i t is found that the application of optimal control signals 

to modify dc reference currents at the current controlling converter 

stations is the most effective scheme, for a l l systems studied. On the 

other hand the application of optimal excitation controls is the least 

effective scheme and in some cases i t was even worse than not having 

controls. A combination of dc and excitation controls does stabilize 

the systems studied but is less effective than the dc control by its e l f . 

It is also evidenced that the dc control effort is increased rather than 

decreased in the presence of excitation control signals, suggesting that 

the two kinds of controls may work against each other. 

There are a few points deserving special discussion. In choosing 

the weighing matrix Q for the linear optimal control design for an ac 

system more emphasis must be placed on speed deviation"'1. This result 

i s also confirmed in this thesis when designing excitation controls alone. 

But when dc controls were being designed for a dc/ac parallel system i t 

i s found that more emphasis should be placed on the field flux linkage. 

This can be explained as follows. Since the basic function of the dc 

control is to pick up some power from the ac.system which may cause large 

acceleration of the synchronous machines in order to achieve stability 

and since the dc control is regulating dc current, then i t is preferable 

to keep the change in ac terminal voltages, which are directly related to 
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field flux linkages, to a minimum and hence a larger weighing factor 

must be assigned to field flux linkage deviations. 

Another reason for high computer costs, in addition to small 

step size because of the large eigenvalues, is the iterative solution 

of the system's auxilliary nonlinear algebraic equations four times for 

each integration step. One way of overcoming this difficulty is linear

ization of these algebraic equations but the effect of this lineariza

tion on the accuracy of results has to be investigated. 

As for future work the present study may be extended to the 

cases of dc line disturbances such as loss of one pole in a bipolar sys

tem, and the possibility of using suboptimal controls by neglecting 

the smaller gains in the control laws. The switching transients over 

transmission lines might have some effect on the control performance 

of dc/ae. parallel systems'-with small time-., constants--in-the- control ioop. 

Finally, the implementation of such optimal controls in actual systems 

is of course a challenging problem to utilities. 
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