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Abstract 

New genotyping technologies are producing reliable results with far greater 

coverage and at dramatically lower cost than previously possible. Given the 

rapid new discovery of disease associated markers and the new technology 

for determining the nucleotide sequences of key positions in the DNA of an 

individual, it is now feasible to apply existing knowledge to generate per­

sonalized analyses of genetic risk for diverse diseases. DNA Genetic Risk 

Information Profile (D-GRIP) is a genotype analysis software system that 

determines an individual's genetic risk profile given a genotype. The proto­

type web tool can take, as input, up to a million observed genotypes from 

single nucleotide positions known to be polymorphic in a human popula­

tion. The submitted genotype data are compared to a database of disease 

associated single nucleotide polymorphisms (SNPs) and an output is gen­

erated, reporting disease-associated variants for which the individual has a 

predicted modified risk. 

An evaluation of D-GRIP was performed through the direct surveying 

of potential users of such a system - users such as clinicians, genetic coun­

selors and genetics researchers. Due to ethical issues related to providing a 

genetic risk profile, the prototype system is kept closed to the general public 

and reserved for research into the utility and requirements of such software. 
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Abstract 

The major conclusions drawn direct attention towards the key limitations 

presently precluding the creation of personalized genetic risk assessment. 

The lack of computationally exploitable resource for disease associated ge­

netic variants, the inherent statistical complexities involved with risk cal­

culation for large-scale genotyping data and the limited understanding of 

interactions between genes, environment and complex diseases, are all key 

factors that need to be overcome in order to create a practical genetic risk 

assessment tool. 
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Chapter 1 

Introduction 

This thesis describes the exploration of how bioinformatics can be applied 

in the field of genetics, specifically to the prediction of disease risk. The 

causes of human diseases range from simple Mendelian inheritance patterns 

to complex combination of genetic and non-genetic (environmental) factors. 

With the availability of the entire human genome sequence and the common 

variation map (HapMap project), the understanding of genetic contributions 

to diseases is increasing rapidly. We are approaching a time where prediction 

of disease risk on a personalized level will become a reality. 

1.1 Variations and Diseases 

Variations in DNA sequences occur throughout the genome at a frequency 

of approximately 4-5 in 1000 bases (0.4 — 0.5%) on average between two 

unrelated individuals [3]. These differences or variations in sequences in­

clude both mutations and polymorphisms, which are distinguished by their 

frequency within a population. Mutations are by definition rarely observed 

in a population and while they can cause disease, are not generally relevant 

to the prediction of disease risk in the general population. The simplest 

and most common form of polymorphism is called a Single Nucleotide Poly­

morphism (SNP). At a particular site on the human genomic sequence, a 
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Chapter 1. Introduction 

SNP is denned by the existence of a certain percentage of individuals with a 

nucleotide differing from the norm. For instance, in two copies of a chromo­

some at one site, one chromosome might have an A at that position (the 'A ' 

allele) and the other might have a C (a ' C allele). The minimum threshold 

percentage for classifying a position as being a SNP rather than a mutation 

is generally defined as l%of tested choromosomes, although some reports use 

other values. In the human populations, there are approximately 10 million 

SNPs that occur with greater than 1% frequency and these 10 million sites 

constitute 90% of the variation in the population [3, 21]. In short, SNPs 

constitute a dramatic portion of the genetic variation between two individ­

uals. A genotype is then defined as the combination of the two alleles at a 

particular locus for a given SNP. For instance, at a known polymorphic po­

sition with A and C forms, genotypes would be AA, AC or CC. SNPs occur 

throughout the genome (promoter region, coding and intronic regions) where 

those variations situated in proten coding regions are of two types, synony­

mous (not altering the encoded amino acid sequence) and non-synonymous 

(causing a change to the encoded amino acid sequence). 

In the study of human genetics there have been a litany of examples of 

links between sequence variations (also referred to as markers) and specific 

traits or diseases [27]. Disorders where genetics plays an'important role, the 

so called genetic diseases, can be classified into single gene defects, chromo­

somal disorders or multifactorial. Single gene disorders (or Mendelian dis­

orders) such as Cystic Fibrosis, are usually rare and identifying the causal 

genetic variant has helped understand the disease. Chromosomal disorders 

are caused by excess or deficiency of genes [8]. Most common diseases are 
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Chapter 1. Introduction 

multifactorial such as diabetes or heart disease and it is generally accepted 

that these phehotypic effects are based on direct genetic effects, mult iple 

gene-gene interactions and gene-environment interactions [27, 30]. Recently, 

through new technologies and genome-wide association surveys, there has 

been a strong effort towards finding disease susceptibil i ty variations (espe­

cial ly S N P s ) for complex disorders [13]. 

1.2 Discovery of new markers 

Recently, there has been a surge in new discovery of disease susceptibil i ty 

genes and variations. Tradi t ional ly, in human genetics, a discovery involved 

identifying a gene for susceptibil i ty of disease. Tha t notion, however, comes 

from working on rare diseases in which single studies have reported strong 

statist ical associations between a mutat ion in a gene and a disease [13]. In 

contrast, for common diseases, the oligogenic model is usually accepted. T h e 

model states that the genetic component of complex diseases are more likely 

to be a result of a few genes wi th moderate effect or a large number of genes 

wi th smaller effect [11]. W i t h the development of large-scale genotyping 

technologies, it has now become feasible to perform genome-wide association 

studies [11, 13] to identify contr ibut ing loci by surveying a large set of known 

variable sites. 

Several large-scale genome-wide association studies have been recently 

published, including studies of diabetes Mel l i tus type II [26, 28, 31, 33], 

bipolar disorder [1], Alzheimer ' s disease [4], Crohn 's (inflammatory bowel) 

disease [6, 22] and coronary artery disease [24]. Given the smal l sample of 
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Chapter 1. Introduction 

diseases listed here and the short timeframe in which they were published, a 

large number of markers are being discovered at a very rapid rate. A more 

detailed analysis on the recent advances of genome wide association studies 

and a count of newly discovered markers for several common diseases can 

be found in [5]. 

1.3 Genotyping technologies 

New genotyping technologies are driving the burst of genetic studies. For 

studies where a small number of SNPs are analyzed, Sequenom 's MassARRAY® 

system, TaqMan® and Pyrosequencing™ have been widely used. These 

methods provide flexibility in study design for investigators prepared to work 

on a small set of candidate genes. For studies where thousands of SNPs need 

to be analyzed simultaneously (i.e., multiplexed) for each sample, platforms 

such as the Illumina BeadArray and the Affymetrix GeneChip® can be 

used. These systems have dramatically increased the throughput of geno­

typing and substantially reduced genotyping costs [23]. 

To illustrate the underlying technology, a brief description of the original 
T M T M 

Illumina BeadArray platform and the GoldenGate assay follows. The 

array-based technology comes in a 96 well plate format. Each well contains 

an optical fiber bundle where an array of 50,000 randomly placed beads, each 

~3 microns in diameter, exist. There are 1520 bead types, each representing 

a different oligonucleotide sequence. This gives ~30 copies of each bead type 

providing (on average) 30 replicate genotyping experiments for each SNP 

and can screen up to 100,000 genotypes in one sample [10]. 
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The GoldenGate® Assay is used with the BeadArray platform and has 

the advantage of allowing high multiplexing during amplification steps while 

minimizing reagent volumes and time. Genomic DNA is normalized and 

then chemically reacted to incorporate biotin to make activated DNA. Three 

oligonucleotides are designed for each SNP. Two are allele-specific oligonu­

cleotides (ASO) and.one is locus-specific oligonucleotide (LSO). Each ASO 

has a 3' base complementary to one of the two SNP alleles. The LSO 

hybridizes downstream of the ASOs. Each of the three oligonucleotide se­

quences contain regions of genomic complementary for polymerase chain 

reaction (PCR): PI and P2 on the ASOs and P3 on the LSO. The LSO 

also contains a unique address sequence that targets a particular bead type 

on the well plate. After extension and ligation, activated genomic DNA 

is amplified using PCR and labeled PI and P2. The primers PI and P2 

are labeled with Cy3 and Cy5 respectively. The PCR products are then 

hybridized to array matrix plate where the Cy5 and Cy3 labeled materials 

bind in proportion to the relative abundance of the two alleles in the sample 

such that a homozygote for the allele has only one color and a heterozygote 

has two. The labels are detected and analyzed using the fluorescence signal 

and using software for genotype clustering and calling. Based on the color 

distribution of each allele, the genotype of the samples for the designated 

SNPs can be determined. For a more thorough and detailed description of 

the assay, refer to [19] and [32]. 

Both Illumina and Affymetrix systems have challenged the technological 

limit of genotyping analysis. For instance, Illumina's Sentrix® Human-

Hap650Y BeadChip and whole-genome HumanlM BeadChip can respec-
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tively genotype over 650,000 tag SNPs and over one million genetic varia­

tions on a single array, whereas the Affymetrix's GeneChip® Genome-wide 

human SNP array 5.0 can genotype approximately 500,000 SNPs in one sam­

ple. Both platforms can genotype fixed set of SNPs as well as customized 

panels of SNPs. Illumina's SNP selection is based on the HapMap project 

while Affymetrix's SNPs selection is based on feasibility of SNPs to be geno-

typed. For both systems, the cost of genotyping is less than $0.01 per SNP. 

A general recent summary of the various methods is shown in Table 1.1. A 

more detailed review of various genotyping technologies is available in [32] 

and [23]. Given the new technologies and the high throughput of genotypes 

at substantially low costs, genotyping an individual has become increasingly 

feasible and led to a shift from investigation of a few candidate polymor­

phisms at a time to comprehensive whole-genome studies [23]. 

1.4 Bioinformatic Tools 

There are many different open source and commercial systems available that 

manage, organize and analyze large-scale genotype data and/or provide risk 

assessments for disease. In order to determine whether any currently avail­

able systems integrate the analysis of many genotypes to provide person­

alized risk assessments for diseases, a survey of the risk prediction systems 

follows. 
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Assay design Mul t i p l ex ing Throughput Cost per 
capabil i ty (no. of sam- genotype 

pies per assay) 

T a q M a n ® B y manufacturer N o U p to 10,000+ >US$0.30 

. T M 
ryrosequencmg 

or investigator 
. T M 

ryrosequencmg B y investigator 1 to 3 U p to 4,000+ >US$0.30 
Sequenom's B y investigator 1 to 29 U p to 3,000+ US$0.05-
M a s s A R R A Y ® 

B y investigator 
0.10 

I l lumina 's B y manufacturer 1,536 to U p to 96 <US$0.01 
S e n t r i x ® 1,000,000 
Affymetr ix 's 
G e n e C h i p ® 

B y manufacturer 10,000 to U p to 96 <US$0.01 Affymetr ix 's 
G e n e C h i p ® 

B y manufacturer 
500,000 

U p 

Table 1.1: A summary of genotyping technologies currently available.- The 
cost per genotype is an estimate of max ima l mul t ip lexing capability. A 
note, I l lumina 's S e n t r i x ® numbers in the table are based on the H u m a n l M 
B e a d C h i p which w i l l be released in the second quarter of 2007. 

1.4.1 C o m m e r c i a l S y s t e m s 

Genetics and genetic testing companies such as GeneSage [16], GeneTracks [17] 

and Genelex [14], provide or attempted to provide a variety of products and 

services. For instance, GeneSage, which now appears defunct, offered secure 

storage of genetic information for its users as well as access to genetic infor­

mat ion and cl inical information on genetic medicine for health professionals 

such as physicians and nurses. Also , risk assessments for specific diseases 

were provided through a team of in-house genetic counselors. A n advantage 

of GeneSage was that risk assessments were provided by qualified genetic 

counselors, but the assessments were not based on genotype information. 

GeneTracks, on the other hand, provides various forms of D N A testing 

such as Paternity, T w i n or Sibship and Materni ty . The strength of Gene-
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Tracks lies in its DNA testing capability while the disadvantage is the lack 

of genetic assessment. In addition, two facets of GeneTracks are the DNA 

Bank and DNA Ancestry project. The DNA Bank acts as a storage facility 

for the customer's genetic data while the DNA Ancestry project provides a 

way to trace an individual's ancestry based on 20-40 Y-chromosome DNA 

markers. One advantage of such a service is the incorporation of genotype 

data in tracing ancestry but the disadvantages are the lack of genetic risk 

assessment and the lack of flexibility because only males can be tested since 

the test uses markers from Y-chromosome. 

Lastly, Genelex provides a diverse range of services. For health pro­

fessionals, genetic information, drug information, pharmacogenetic testing 

for specific drugs and nutrigenetic tests (dietary consultation) are provided. 

Also for clinicians, a software called GeneMedRx, which provides drug-drug 

and drug-gene interaction risk prediction for cytochrome P450 metabolism 

and genetic testing [15]. For the general public, adverse drug reaction test­

ing, nutritional testing (dietary consultation), ancestry DNA testing and 

predictive testing for four diseases are provided. Al l the testing services 

utilize genetic information from the customer and test a set of known geno­

types, genes or set of phenotypes. One advantage of Genelex is the Gen­

eMedRx software. It incorporates genetic testing with risk prediction to 

ensure drug efficacy and prevent adverse drug reaction. One disadvantage 

is that GeneMedRx only incorporates one genetic test with risk prediction 

(the cytochrome 450P metabolism). 
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1.4.2 O p e n S o u r c e S y s t e m s 

There are many open source systems that provide management and analysis 

of genotype data and a disease risk assessment. For brevity, only recently 

published tools will be discussed. The open source systems can be broken 

down into three categories. There are data management tools, visualization 

tools and risk assessment tools. 

In the realm of data management, IGS, Integrated Genotype Analy­

sis [12], stores, edits and analyzes genotype and phenotype data. IGS can 

handle large-scale genotype data, stores the data and meta data in various 

formats and can be used for genetic analysis (e.g. pedigree checks, Hardy-

Weinberg tests, allele frequency tests, etc). The system is freely available 

on-line and the underlying database structure can be easily re-created. IGS 

is useful for storing raw genotype as well as processed genotype data (sim­

ply the genotype and the sample). Another tool is called SNPP, Single 

Nucleotide Polymorphism Processor [36]. SNPP's strength lies in handling 

massive amounts of raw SNP genotyping data, using a backend database 

framework for storage and it can also be used as a tool for data format con­

version. The disadvantage lies in the minimal analysis of the genotype data 

since it only provides Mendelian inheritance checks for SNP data obtained 

from families. 

For visualization tools, there are several programs which provide an in­

tegrated environment for visualization and analysis of genotype data. SNP-

VISTA, an interactive SNP visualization tool [29] allows visualization of 

large-scale genotype data for disease related genes. The software maps SNPs 
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to gene structure, classifies SNPs based on location, frequency and allele 

composition, clusters SNPs according to user criteria and includes protein 

evolutionary conservation visualization. The strength of SNP-VISTA is the 

graphical interface and visual representation of large scale data. SNPAna-

lyzer, a workbench for SNP analysis [35], performs data manipulation, sta­

tistical analysis on genotype data and visualization. Another recent tool 

is GEVALT, GEnotype Visualization and ALgorithmic Tool [7], which pro­

vides phasing and tag SNP selection algorithms, along with visualization of 

LD plots and haplotype data. All of the functionality is available in one in­

tegrated viewer. The advantage of GEVALT is in the integration of analysis 

tools and the visualization in one environment. There are other visualiza­

tion tools that provide various features but are not mentioned here. Al l 

the visualization software provides analysis of genotype data but does not 

provide any disease risk assessments. 

Risk assessment tools can be broken.down into two categories, non-

family-based and family-based. For non-family-based risk assessments, the 

tools are classified as expert systems or knowledge-based systems. An expert 

system is a computer system, based on artificial intelligence(AI) principles, 

which uses an organized body of knowledge, heuristics and inference to sug­

gest solutions in a particular domain of expertise, for instance in medicine. 

A review of various expert systems and currently used systems is done in [25] 

and [18]. Therefore, for brevity, only one of the originally developed systems 

will be mentioned here. MYCIN [2] was developed to provide assistance to 

physicians in the diagnosis and treatment of meningitis and bacterial infec­

tions. MYCIN conducts a question and answer dialog where it ask questions 

10 
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such as suspected sites of infection, symptoms and results of other laboratory 

tests. Then, MYCIN recommends a course of antibiotics and can also pro­

vide its reasoning behind its answers. The advantage of an expert system is 

its diagnostic support capability to a physician. A potential disadvantage is 

the purely computational basis of prediction and no incorporation of genetic 

history in diagnosis of diseases. 

For family-based risk assessments, there are many tools available, of 

which the majority target cancers. A tool for prediction of breast cancer 

risk is BRCAPRO [9]. The BRCAPRO model incorporates information on 

all family members (affected and unaffected) for breast and ovarian cancer 

and then calculates the probability of carrying the BRCA gene mutation us­

ing Bayes theorem. BRCAPRO's strength is its accuracy to predict BRCA 

gene mutation. BRCAPRO was validated by comparing to genetic coun­

selors and it was found that BRCAPRO had similar sensitivity and higher 

specificity to experienced genetic counselors in identifying BRCA mutation 

carriers. A similar system has been created for identifying high risk indi­

viduals of familial pancreatic cancer called PancPRO [34]. The underlying 

framework of PancPRO is similar to BRCAPRO. Again, a validation of 

PancPRO indicated its accuracy in risk assessment. In a recent review [20], 

a set of cancer risk assessment tools (CRATs) which were available on the 

Internet. The five tools discussed in the paper determined the risk of various 

types of cancers based on family history. One of the disadvantages of these 

tools is the focus on purely familial-based Mendelian model diseases and not 

on other more complex diseases such as Diabetes Mellitus or Alzheimer's. 

11 
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1.5 Overview of project 

Given the rapid new discoveries of disease-associated markers and the ad­

vent of new genotyping technology, a question arises: is it now possible to 

apply existing knowledge of genetic diseases to create disease risk profiles for 

individuals? This thesis project was motivated by such a question and was 

designed to ascertain the bioinformatic limitations that must be overcome to 

facilitate a genotyping-based analysis of disease risk. We created a web tool 

called D-GRIP, DNA Genetic Risk Information Profile, which is a genotype 

analysis system that determines an individual's genetic risk profile given a 

genotype as input. The on-line tool can take, as input, up to one million ob­

served genotypes from known SNPs in human populations. The submitted 

genotype data are then compared to validated disease-associated SNPs (a 

DNA-Disease database) and then outputs a list of diseases for which the in­

dividual has modified (up or down) risk. D-GRIP is intended to serve as an 

early prototype of a prognostic tool for use by genetic counselors. D-GRIP 

went through a testing phase where clinical geneticists, genetic counselors, 

genetic researchers and biostatisticians were consulted on the utility of D-

GRIP and their feedback was recorded. One major conclusion drawn from 

the project is that the level of current knowledge for disease-causing SNPs is 

limited. There are only a few diseases that had strong supporting evidence 

causally linking SNPs to the disease. Given this scarcity of data, substan­

tial studies on disease-causing variations are needed, especially for complex 

diseases. 
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Chapter 2 

D - G R I P : D N A Genetic Risk 
Information Profile1 

2.1 Introduction 

Genetics knowledge is being transformed through whole-genome associa­

tion studies enabled by new high-throughput genotyping and re-sequencing 

technologies. In the past, genetics research focused on the identification 

of individual genes directly responsible for a disease or phenotype, based 

on Mendellian genetics. Common diseases such as diabetes, heart disease, 

asthma and cancer are caused by a combination of genetic and environmen­

tal factors [17, 25]. For complex diseases, the genetic component may be 

provided by a few genes with moderate effects or a large number of genes 

with smaller effects [22]. 

To identify genes that contribute to susceptibility but are not definitively 

causal has emerged as the focus of many large genetics studies. With the 

completion of the Human Genome project [21], the uncovering of common 

genetic variants through the International Haplotype Map (HapMap) [6] has 

enabled the susceptibility studies for common diseases [32]. The analysis of 

1A version of this chapter wil l be submitted for publication: Srivastava S and Wasser-
man W . 2007 
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large sets of common genetic variants in association to specific diseases are 

called genome-wide association (GWA) studies. The GWA studies typically 

utilize a set of single nucleotide polymorphisms (SNPs) from the HapMap 

project known to represent blocks of linked variations (so called 'tag' SNPs) 

along with nonsynonymous SNPs and SNPs situated within evolutionarily 

conserved regions of the genome. A large number of GWAs were recently 

published for diseases such as Diabetes type 2 [34, 35, 37, 39], bipolar disor­

der [4], Alzheimer's disease [7], Crohn's (inflammatory bowel) disease [8, 26] 

and coronary artery disease [29]. Given the rate of these new discoveries, 

there is much excitement in the scientific community for the potential to 

discover new links between genes and diseases - links which could pave the 

road for predictive genetic screening [13]. 

Facilitating the GWA studies are several new high-throughput genotyp-

ing platform technologies such as the AfTymetrix GeneChip® and Illumina 

BeadArray™ which can simultaneously analyze thousands of variable po­

sitions (i.e. SNPs). The advantages of such platforms lie in their high mul­

tiplexing capability, increased reliability and the low genotyping cost per 

SNP. Both platforms allow genotyping of 500,000 SNPs per sample at a cost 

of less than $0.01 per SNP with greater than 95% accuracy [12, 27]. Due 

to such advancements, it is now economically feasible to perform large-scale 

whole-genome studies. It is even possible for an individual to obtain one's 

own genotype information covering many known common sequence variants 

for an affordable price. 

Suppose a geneticist was provided with results of a large-scale geno­

typing experiment. It would be natural for that scientist to seek insights 
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into the data from computational services. There are several open source 

systems and commercial systems currently available for application to geno­

type data. In the realm of open source systems, three categories exist: data 

management tools, visualization tools and risk assessment tools. Data man­

agement and visualization tools such as Integrated Genotype Analysis [14], 

SNPP [45], SNP-VISTA [36] and GEVALT [9] can process and store large 

amounts of raw genotype data and provide intuitive visualization of results 

from many samples. The majority of the risk prediction tools, such as 

BRCAPRO [11], PancPRO [41] and other Cancer Risk Assessment Tools 

(CRATs) [24], utilize family history to predict risk of disease with relatively 

high accuracy. However, no system allows an individual to explore genetic 

risk for many diseases given a single individual's genotype. 

A few commercial systems handle genetic data and/or perform risk pre­

diction. In addition to performing DNA tests, GeneTracks [19] provides, 

software to trace family ancestry based on markers and offers secure storage 

of personal genetic information. Genelex [18] uses a small set of markers 

for predicting adverse drug reactions and Mendelian model diseases. For 

the commercial risk prediction services, genome-scale genotype data are not 

utilized and risk predictions are, in general, very specific to a small set of 

Mendelian diseases. 

Given the advent of new genotyping technologies and the flow of new 

discoveries of disease-associated variants, is it now possible to use existing 

knowledge of diseases to create disease risk profiles for individuals? This 

paper is concerned with exploring such a concept in order to identify key 

limitations which must be addressed in genetics, bioinformatics and statis-
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tics. In addition, the research raises ethical and societal implications. We 

created a prototype web tool called D-GRIP, DNA Genetic Risk Information 

Profile, which attempts to generate an individual's genetic risk profile given 

a genotype as input. The prototype system accepts up to one million geno­

types, compares the submitted data to a DNA-Disease database and then 

outputs a report for those diseases for which the individual has a predicted 

modified risk. In order to test the utility and ascertain the limitations of D-

GRIP, a survey of potential users, such as genetic counselors, was performed 

and their feedback was recorded. The development and subsequent assess­

ment of D-GRIP revealed several key weaknesses which must be addressed 

before wide use of a predictive system should be attempted. 
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2.2 Methods 

In order to create a practical prototype risk assessment tool, several com­

ponents are required. An intuitive and easy to use interface is essential. At 

the core of the software, two aspects are needed: a DNA-Disease database 

and a statistical model for risk assessment. Lastly, the software needs to 

be passed through a testing phase to assess both usability and predictive 

performance. For D-GRIP, a schematic overview is shown in Figure 2.1. 

In subsequent sections, the various components of the software are detailed 

and in the results, a walkthrough is performed to illustrate the features of 

D-GRIP. 

• Create and'Query. • 
DNA-Disease 

DB 

.Gene ratemtegra ted-Risk 
• Score<(with:Gonfidence .' 

intervals) 

Ra rs£ in put.data. 

Map Variations to 
* Genes and i . 

.'. =;..-• .HapMap data -*" v.: • 

( Perl/BioF?erl 
\ ° ' Ensembl J 

DBofsparsed genotype 
and!demographic:,'. 

- - 'Datas. ..• 

^^ - ' t oca l 'mySQL^ Y T 

Output a list of diseases:, 
:,, lirked to variations 

HTML Oi-tpjt 
Text Output 

Figure 2.1: A schematic overview detailing the flow of information across 
the various components of D-GRIP is illustrated. 
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2.2.1 D - G R I P O v e r v i e w 

The overall flow of information occurs in three steps. The first step in­

volves entering demographic information and the user's genotype data. In 

the second step the genotype data are compared to a genotype-phenotype 

database and a risk is calculated for the individual to develop each disease 

represented in the database. The last step is the reporting of any disease as­

sociated variations found in the user's genotype and the relevant statistical 

measures. 

In the first step, the user enters demographic information such as age, 

gender and ethnic background. Due to the complexities involved in clas­

sifying ethnicity [23], a geographical generic grouping was used as follows: 

European, Asian, African, Pacific, Mixed and First Nations/Aboriginals. 

It is also possible to infer ethnicity based on ancestry informative markers 

(AIMs) [43], especially for admixe'd individuals but for simplicity, D-GRIP 

uses user-identified ethnicity. The user is also required to input one's geno­

type data, either by uploading the processed genotype file or copying and 

pasting the file. D-GRIP accepts two types of genotype file formats from 

widely used instruments (Illumina Final format and Affymetrix text out­

put). Each row of the genotype file contains a SNP identifier (the 'rs' num­

ber provided by dbSNP [38]) and the two alleles that make up the observed 

genotype. The software is capable of handling up to one million genotypes 

at a time. 

The second step processes the genotype data, based on the defined eth­

nic background and compares each of the user's genotypes to the entries 
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i n a genotype-phenotype database. For corresponding matches of S N P id 

and genotype, D - G R I P uses the specific S N P from the genotype-phenotype 

database i n the statist ical model to calculate probabi l i ty of developing a spe­

cific disease. The details of the database and statistical model are explained 

in subsequent sections. 

T h e final step involves reporting all matching S N P s between the user's 

genotype data and the disease-associated S N P s . T h e analysis results are 

reported in a tabular format which includes for each disease, the part icu­

lar gene, the part icular S N P (and genotype) associated wi th the disease, 

the populat ion i n which the association was observed and links to relevant 

studies support ing the association between the disease and genotype. In 

addit ion, for each S N P , odds ratio and confidence intervals, risk and major 

allele's homozygous genotypes, the case and control genotype frequencies 

and set of S N P s found to be in high linkage disequi l ibr ium based on the 

H a p M a p data are reported. F ina l ly , an overall probabi l i ty of developing a 

disease is shown, based on the statist ical model used. A s per the model, 

the overall probabi l i ty is calculated over the whole set of observed disease-

associated genotypes. 

D - G R I P was implemented for browser-based access over a network. Since 

there are many social, ethical and legal implicat ions associated wi th the use 

of such a risk assessment tool , access to D - G R I P is restricted. D - G R I P is 

envisioned to be used in a guided setting, for example, i n the presence of a 

genetic counselor. In addit ion, to respect privacy and confidentiality, user 

submitted information (e.g. demographic and genotype data) is not stored 

in the system. Once a report is generated, al l user data are removed from 
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memory. 

2.2.2 Genotype-Phenotype Database 

Exi s t i ng genotype-phenotype databases are not sufficient for large-scale dis­

ease risk prediction due to deficiencies i n the organization and/or extent 

of genetic risk knowledge [33]. Currently, the majori ty of genetic disease 

databases use free text for disease information (rather than a more struc­

tured format) and thus are not suited for large scale computat ional analyses. 

Due to this deficiency, we created a D - G R I P DNA-Disea se database for the 

testing of the system. The DNA-Disease database contains information per­

taining to a l imi ted set of complex diseases. T h e information represented 

pr imar i ly includes validated markers (SNPs) either confirmed in mult iple 

studies or emerging from studies performed wi th samples from large num­

bers of participants. 

For each available disease, the DNA-Disease database contains associ­

ated and validated S N P s . For each S N P , the case and control allele and 

genotypic frequencies from different populations is recorded. We decided 

to model the information in the database on an existing system, A l z G e n e , 

which was developed for genetic markers predictive for Alzheimer ' s disease 

risk [5]. A l z G e n e was created to house the results of a meta-analysis for 

each polymorphism wi th known genotype data in at least three case-control 

studies. For each polymorphism, allele and genotypic frequencies on a per 

populat ion basis are provided in a well organized structure. In addi t ion to 

Alzheimer ' s data, the D - G R I P DNA-Disease database contains information 

from a Parkinson's disease database (PDGene) , created by the developers 
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of AlzGene [1]. The data for Diabetes Type II was manually extracted from 

a recent large scale genome wide association study [37]. A summary of the 

contents of the database is represented in Table 2.1. 

Diseases Number of Genes Number of Polymorphisms 

Alzheimer's Disease 38 76 
Parkinson Disease 8 17 
Diabetes Type II 5 8 

Table 2.1: A summary of the number of genes and number of polymorphisms 
for each of the diseases in the DNA-Disease database. 

2.2.3 Disease Risk Model 

The implemented statistical model in D-GRIP was defined by Yang et 

al. [44]. The original model includes two steps. First, a likelihood ratio 

was calculated using logistic regression and then a posterior probability of 

disease was estimated using the likelihood ratio. The likelihood ratio is de­

fined as the ratio of the probability for an individual with a disease to have 

an observed genotype to the probability for an individual without the dis­

ease to have the genotype [44]. While full details can be obtained in the 

cited paper, a brief summary follows. 

L i ke l i hood R a t i o 

For an individual with a set of genetic tests, G, where G is a vector of n 

disease susceptibility genes or alleles (<?i,<?2)- ••i9n)- Let gi = 1 for positive 

genetic test result and gi = 0 for negative test result, then, let the individual 

who is tested for one allele be represented as a combination of Os and Is. 
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Also, let D represent the diseased (case) population and let D represent 

the non-diseased (control) population. Then, the likelihood ratio for any 

observed value of G can be defined as: 

LR{G)-piGWy ( 2 J ) 

As stated, G is a set of genetic tests G = (51,52,- • -,9n)- The implemented 

model assumes that each genetic test is acting independently, thus the joint 

probability of a given result is the product of the individual probabilities, 

P(G\D) = P(gi\D)P(g2\D)...P(gn\D). This is also true for P{G\D) and 

thus it follows that LR(G) = LR(g1)LR(g2). •. LR(gn). Thus, the likelihood 

ratio for a panel of independent tests is simply the product of the likelihood 

ratios of the individual test results. The assumption of independence will 

be discussed in a later section. 

Since the DNA-Disease database contains case-control studies from var­

ious populations for each disease, a logistic model can be used to estimate 

the likelihood ratio. For a binary disease outcome (D = 0,1), for a logis­

tic model in the population, logistic regression can be used to calculate the 

likelihood ratio from case-control studies in a population, as follows: 

ln LR(G) = ln ( ^ ) + a C C + PGT, (2.2) 

where acc and (3 are the intercept term and the logistic regression coefficient 

of the odds of developing the disease respectively. NQA is the number of case 

subjects in the study sample and Neo is the number of control subjects in 
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the study sample. It is worth nothing that the likelihood-ratio calculation 

assumes each gene is acting independently. However, realistically, gene-

gene interactions and gene-environment interactions should be included in 

the model. The likelihood-ratio equation (Equation 2.2) can be modified 

by including a vector of covariates as well as interaction effects of multiple 

binary tests (gene-gene or gene-environment interactions). However, for 

brevity, the equation is not shown here and for prototype development, is 

not used in D-GRIP. 

Posterior Probability 

The statistical model uses a set of genetic tests to predict the probability that 

the multifactorial disease will develop in people with allele-positive result, 

or P{D\G). By using the a pretest risk of disease, P(D), or the average risk 

of disease in the population, the posterior probability can be defined as: 

r(D\C) LR(G)P(D) 
P { D l G ) ~ [1 - P(D)] + LR(G)P(DY ( 2 ' 3 ) 

2.2.4 Haplotype Data 

In addition to utilizing validated disease associated variations, we incorpo­

rated the use of haplotype blocks in the statistical model. For each of the 

SNPs that are associated with disease in our DNA-Disease database, we 

extracted SNPs (1Mb on either side), in corresponding HapMap popula­

tions that were in high linkage disequilibrium (threshold of r 2 > 0.8 [2]). 

To extract the HapMap SNPs and linkage disequilibrium values, Ensembl 

(build 45) was used. Due to the complexity involved in defining and classify-
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ing populations, a simplification was made when incorporating the hapmap 

data: the populations from the HapMap project were generalized to match 

the populations found in the DNA-Disease database. The population cate­

gories from the DNA-Disease database were Caucasians, Asians, African and 

other/Mixed. The corresponding matches from the HapMap project were 

European ancestry (CEPH) grouped as Caucasians, the Tokyo (JPT) and 

Han Chinese (CHB) ethnic groups represented as Asians and the Nigeria 

(YRI) ethnic group matched to Africans. 

D-GRIP uses the HapMap data in two different ways during the gen­

eration of a disease risk profile. First, for the reported disease-associated 

SNP, an integrated analysis is performed in which multiple disease associ­

ated SNPs in high linkage disequilibrium (LD) are clustered together during 

the probability calculation. Rather than treating these high LD SNPs in­

dependently in the calculated overall disease probability, a simplification is 

made. The SNP with the highest effect (highest odds ratio) is used to rep­

resent the other SNPs in high LD and thus only one SNP (with strongest 

effect) is used in the posterior probability calculation. 

Second, an inferred analysis is reported with the observed genotypes in 

the final risk profile output. The inferred analysis reports SNPs that were 

present in the user's genotype but did not have a direct association to a 

disease. These inferred SNPs are in high LD with known disease associ­

ated SNPs which are present in the DNA-Disease database. The Hapmap 

Genome Browser (Release 21) [40] was used to extract the phased geno­

type data. Subsequently, Haploview (version 3.32) [3] software was used 

to calculate the haplotype blocks, using the default method on Haploview 
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software for haplotype block calculation, in order to infer phase information. 

Since the inferred analysis is highly predictive in nature and untested, it is 

provided as an option for the user, which by default is turned off during anal­

ysis. Also, the inferred SNPs are not used in overall posterior probability 

calculation. 

2.2.5 So f twa re E v a l u a t i o n 

After a working prototype was created, D-GRIP underwent a series of crit­

ical evaluations. The evaluation was structured as a survey where D-GRIP 

was demonstrated to experts and their feedback was recorded. A total of 

21 scientists, clinicians or counselors were surveyed including clinical geneti­

cists, molecular geneticists, biostatisticians and genetic counseling students. 
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2.3 Results 

A walkthrough of D-GRIP illustrates the user interface features as well as 

the underlying DNA-Disease database. Figure 2.2 shows the first page of 

D-GRIP after the user logs in. The opening page explains how to use D-

GRIP and warns the user via a disclaimer which outlines the assumptions 

and limitations of D-GRIP. Upon clicking the 'Use D-GRIP' link, the user 

is presented with a form to solicit demographic information and options 

regarding the analysis. In this example, suppose the user is a male, 47 years 

old from European ancestry and inference analysis turned on (Figure 2.3). 

W e l c o m e ' T e s t ' 
Home 

Disclaimer This web site provides a Icol lor predicting a genetic risk profile Tor a person hy utlizing geixitype informati.41. 

Use D-GR IP 
Gelling Slarled: 

Logout . & 

1. Olid; on ihe 'Use D-GR'IP' link. 

2. Upload a genotype file or copy/paste data imo ihe form. 

, \ G tick on Calculate:Risk. 

Nnte: Tips are provided anywhere *® appears. Bringcursnr over In see tips. 

Disclaimer 

1. It is assumed lliesyslem is used ina guided setting, 

2. '. All inlbrmatioivprovided by y<xi fllie user') isassumed lobe accurale. Forinslance, elhhiclbackgrnuncl provided hy Ihe 

user is assumed to Ix accurale to inchest of the user's knowledge. 

.V D-GR IP predicts risk of developing disease based on population inlcH'malion collected frun literature. 

4. The overall probability of developing a disease is calculated assuming all susceptible alleles/genes are acting 

independently within diseases and across diseases. 

5. The syslem dees not store any user-pnn'ided data (e.g. genotype and demographic data). 

Figure 2.2: The opening page of D-GRIP is shown. The instructions on 
how to use D-GRIP and a disclaimer explicitly stating the assumptions and 
limitations inherent in D-GRIP are shown. 
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Input user deUiils 

Denmgrtiphli: tninrimitinn 

Gender* 

Year ol'Birilr11 

Elhnlc Background* . 

Configuration Options 

Inference of Genotypes-

M-andaiory fields marked I , [ 

Figure 2.3: The first step in using D-GRIP is illustrated, where the user's 
demographic information such as gender, age and ethnicity is collected. The 
hypothetical example above shows a male, 47 years old from European an­
cestry. The inference option is turned on (checked). 

After clicking 'next', the user is asked to submit genotype data. Two 

options are available, copying and pasting the data into the submission box 

or uploading a genotype data file. The file formats supported are Illumina's 

Final format or Affymetrix's Text Output format. In order to illustrate the 

underlying DNA-Disease database, sample genotype files were created. One 

such sample genotype file is shown in Figure 2.4 which shows 13 genotypes, 

all of which are heterozygous for particular SNPs from each of the three 

diseases. After loading the genotype data, the user clicks on 'Calculate 

Risk'. 

The last step is the output page which displays a disease risk profile 

report. As seen in Figure 2.5, for each disease, the associated gene, SNP, 

genotype and population is reported along with a list of scientific articles 

supporting the association between disease and genotype. In addition, for 

Male <~ Female 

| Europe • ® 

0'click lo aim On ® 
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Step 2: Copy /Paste or Upload genotype information 

' Copy /Paste d a t a " -

Mandatory fields marked 

File format* 

File name* 

Input genotype data1" 

I Illumina Final Format jgj 

testGenotypeDatal 

s790 3.l'l 6 Europe 
frlorthern European HI30I 
|c '!' 0.99 
i-ojfl 1-875 Europe 

[Northern. Eiu-opeart HDO'l 
A G 0.97 
rs79238-37 Europe 

|llorthem European HDOt 
A G 0.96 
rB37'i0878 Europe 

jlloi-thern European. HD01 

Calcuiate'iRisk. | 

HDO'l rOl -
Gill 7001 -HAI7001 

HDO .1.-0:1 -
GH:l7001-IIA.t700.1 

HD01-01 -
GI:l.1.700.l-tlAi7001 

•HD01.-01 • 
GH17001-HA17001 

i 

OR 

Upload data . . . 

Please complete the form below. Mandator)-- fields marked * 

File format* 

Type (or select) Filename* 

Illumina Final Format 

Browse.. 

r Pre-loaded data -

Selsci. lest gsnaiypr.dala Io load: 

J Sample 1 f̂j 

, : Get-iS am pie;, I 

"LnmnieiiiK 

Sample I: Caiicasiairjx"piilaiion 
with selected SNPs from' all 
diseases in database. All genotypes 
tire lieti!'n:i/ygoiistbr each disease 
except Parldnsotrdisease wliicli'.aie 
ho-moV-v-gous. First five SNPs are 
[or Diabetes type'2, next three are 
for Al/.heirner and lasl'tywi are-for 
PurkinsDii'-sdisease.Xhe last three 

Upload and Calculate Risk 

Figure 2.4: The second step in using D-GRIP is illustrated here. The user 
has a choice of copying and pasting the genotype data or uploading it. For 
ease of use, various hypothetical sample genotype files were created to illus­
trate D-GRIP. The above example contains the 13 highly significant geno­
types which are heterozygous for each disease in the DNA-Disease database. 
A description of the pre-loaded data is shown in the 'Comments' box. 
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each disease, the background probability and the calculated probability are 

indicated. For example, based solely on genotype, a 47 year old male from 

European ancestry is reported to have a slightly elevated risk (7.0%) of 

developing Diabetes type II given that the background probability in the 

Caucasian population is 5%. In figure 2.6, further details for each SNP are 

shown such as risk and major genotype, genotype frequencies for case and 

control populations, odds and likelihood ratios and confidence intervals. In 

this example, SNP rs7903146 from gene TCF7L2 for Diabetes Mellitus type 

2 is shown. Links to relevant resources such as GenBank, OMIM and db-

SNP are available when clicking the gene, disease name and SNP identifier 

respectively. Also, after clicking on the overall probability row, an inte­

grated analysis is shown which combines disease associated SNPs that are 

in linkage disequilibrium according to HapMap data (figure 2.7). Lastly, 

inferred SNPs are shown separately under each disease. The overall proba­

bility calculation is done only once, using observed SNPs and the inferred 

SNPs are not included in the calculation due to their speculative nature. 

The evaluation of D-GRIP was performed by surveying experts in the 

field. The feedback was recorded and is presented in Appendix A. 
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Figure 2.5: The last step shows a tabular result for any single nucleotide 
polymorphisms (SNPs) found to be associated with a disease in the user's 
genotype data. 
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Figure 2.6: More details are shown for each SNP. As an example, details 
for SNP rs7903146 is shown from gene TCF7L2 from Diabetes Mellitus type 
II. 
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Figure 2.7: Details of overall probability calculation, integrated analysis 
and inferred SNPs are shown for Diabetes Mellitus type 2 disease. The inte­
grated analysis indicates which disease-associated SNPs are in high linkage 
disequilibrium (r2 > 0.8). For SNPs in high LD, only the SNP with strongest 
effect (highest odds ratio) is used in the overall calculated probability. 
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2.4 Discussion 

2.4.1 Limitations 

In the current state of information and implementation, D-GRIP has sev­

eral limitations. A key limitation is the narrow scope of the DNA-Disease 

database. The scarcity reflects two key causes: lack of organization of 

genotype-phenotype data and the small number of confirmed markers for 

risk. Even though numerous studies report new DNA marker-disease asso­

ciations, there is a shortage of databases that organize such information in 

a comprehensive and computationally accessible manner. Databases such 

as AlzGene [5] and PDGene [1] are rare examples of organized genotype-

phenotype data which are continuously updated when new studies are pub­

lished and are easy to use computationally. More such genetics databases 

are required for other common diseases [33]. It should be noted that nu­

merous databases provide information about genetics and disease, such as 

OMIM [15] and HGVbase [16], but the information is not sufficiently gran­

ular and/or formatted to incorporate into the risk calculation procedure of 

D-GRIP. The second problem, the scarcity of confirmed predictive mark­

ers will soon be ameliorated as the rate of publication of such studies is 

accelerating. 

Another limitation of D-GRIP resides in the statistical model. There are 

several issues regarding the statistical model. When a posterior probability 

is calculated using the observed SNPs which are associated to a disease, 

each genetic test (SNP) is assumed to be acting independently. This is a 

very simplistic view and does not realistically capture the underlying disease 
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process. In order to partially circumvent this limitation, we included haplo-

type information in the analysis. By including an integrated analysis where 

if observed SNPs in the output were found in linkage disequilibrium, only 

the SNP with strongest effect is included in the posterior probability cal­

culation. Again, this is a simplification which is warranted since we could 

not find other existant suitable statistical models that incorporate haplo-

type data for risk prediction of disease with SNPs. Furthermore, the lack of 

consideration for gene-gene interactions and gene-environment interactions 

is another limitation. Even though the model allows for incorporation of 

interaction effects, for simplicity, D-GRIP does not utilize that feature. 

A second issue with the statistical model is lack of incorporation of age 

and gender during risk calculation. Even though we require the user to input 

such demographic information when calculating risk for a particular disease, 

this information is not utilized. In order to use demographic information 

appropriately, we require the age and gender distribution for each of the 

individuals in the case-control studies stored in the DNA-Disease database. 

Since such raw data are unavailable, a simplification was used. D-GRIP uses 

a different prior probability (background probability) for specific diseases 

(e.g. Alzheimer's disease) based on the age of the person. In order to 

alleviate this scarcity of raw data, currently efforts are under way at the NIH 

to archive and distribute more detailed information on upcoming genetic 

association studies. The database, dbGaP is designed to house genetics 

studies dealing with genotype-phenotype interactions and provide all study 

documentation as well as pre-computed analysis [30]. 

Currently, no family history or medical history is used for predicting 
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risk of disease. Incorporation of family history has been shown to improve 

the predictive accuracy of risk models [11]. Thus future versions of D-GRIP 

should incorporate family history in the risk model. For any prediction based 

software, rigorous validation regarding specificity, sensitivity and accuracy 

is required. Currently, no such validation is performed due to insufficient 

number of diseases in DNA-Disease database as well as the unavailability 

of raw genotype data from individuals for testing. D-GRIP was evaluated 

through a survey in which D-GRIP was demonstrated to various experts in 

genetics-related field and feedback was recorded. The conclusions from this 

form of evaluation are discussed in the next section. 

2.4.2 Ideal Software 

Based on the conclusions drawn from the prototype system and feedback 

from experts, the features and functionality of an idealized software system 

can be outlined. The input features of a system should include, as in the 

prototype, demographic information collected from the user and in addition, 

an option for collecting family history of any diseases and relevant environ­

mental exposures (e.g. cigarette smoking). Also, the genotype parser should 

be flexible and accommodate various fiie formats. Preferably, an widely ac­

cepted file format standard should be established for genotyping data which 

are released from platforms such as Illumina and Affymetrix. By having 

a standard file format, exchange of genotyping data across studies will be 

more efficient. Lastly, user information on non-SNP variants, such as inser­

tions/deletions, copy number variations and large-scale structural variants 

should also be accepted. 
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At the core of the software, the ideal DNA-Disease database will contain 

information for as many common diseases as possible. There are two ways 

to populate such a database. One, create a meta-analysis engine for each 

disease. When new studies are published for a disease, they can be added 

to the database and then meta-analysis re-performed over all the studies for 

a specific disease. This would require continuous updating of the database 

each time new disease associated markers are found. In the second approach, 

genotype-phenotype data would be extracted from disease-specific databases 

such as AlzGene and PD Gene, but currently, such disease specific genetics 

databases, of suitable format are rare. 

Based on recommendations from biostatisticians, an idealized software's 

statistical approach would include a unique model for each disease (or a 

range of optional models). Since common diseases are varied and complex, 

it is crucial to have rigorously tested and validated statistical models. In 

addition, the statistical models will need to incorporate gene-gene interac­

tions as well as co-variates such as exposure to environmental or behavioral 

factors. 

The user interface, both the input and output of an ideal system will 

have to be tailored towards the audience. For example, the current dis­

ease risk profile report generated from D-GRIP is intended to be read by a 

trained user such as a genetic counselor. If one were to target use to family 

physicians, as suggested by one survey participant, it might be more suitable 

for the output to highlight links to information about prevention. Appro­

priate training will be required for any user of such a system, be it genetic 

counselors, family physicians or individual subjects. Lastly, it was highly 

42 



Chapter 2. D-GRIP: DNA Genetic Risk Information Profile 

recommended by the respondants that access to D-GRIP-like tools be re­

stricted - the mixture of complicated interpretation of risk and opportunity 

for the generation of undue stress on the recipient of information combine 

to warrant limited user access for the near-term. As a last comment, the 

average consensus from the feedback for when such an ideal system could 

be accepted and used clinically was between 5 and 10 years. 

2.4.3 Implications 

There are many societal, ethical and legal implications involved with using 

D-GRIP. The immediate issues are discussed here and potential directions 

are presented. One of the pressing questions deals with data protection. The 

same level of protection should be provided for genetic data as for sensitive 

medical data, that is, confidentiality and privacy. In addition, the individ­

ual's rights should be respected everytime such a tool is used in professional 

setting. Currently, D-GRIP ensures protection of the user's rights by not 

storing any user specified information (demographic and genotype) and en­

sures confidentiality via anonymous submission of genetic data. However, in 

the long-term it would be more appropriate for a continuous analysis engine 

to reassess the DNA each time a new genetic risk marker was deposited into 

the database. Therefore, encryption and privacy features are required in 

such a tool. 

There is much research needed in how to present and explain genetic 

risk information to individuals [10]. The effect of inappropriately explaining 

risks can lead to demoralization and unnecessarily increased anxiety, both 

of which can decrease an individual's ability to change risk-related behav-
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ior [28, 42]. Also, most people find probabilities and relative risk information 

difficult to comprehend, in part due to poor presentation of statistics [20]. 

Thus, it is recommended to use standard vocabulary, use a common denomi­

nator when explaining odds, provide both positive and negative perspectives 

and use visual aids for probabilities [31]. 

Genetic testing for affected or at risk individuals creates serious ethical 

dilemmas. Concerns such as discrimination from employers and insurers and 

fear of discrimination can deter individuals who could benefit from genetic 

testing. It also remains to be seen how third-party use of genetic information 

and potential will impact the use of predictive tools such as D-GRIP. These 

issues will have to be discussed and addressed by governments, industries 

and the public in a transparent manner [22]. 

2.4.4 C o n c l u s i o n s 

The creation of the D-GRIP system for genetic risk prediction was intended 

to identify bioinformatics, statistical and scientific challenges that must be 

addressed to create predictive systems of clinical utility. The major bioinfor-

matic limitation is the lack of available data in terms of strongly predictive 

susceptibility alleles for complex diseases. This is in part due to the lack 

of organized and computationally exploitable disease databases for complex 

disorders. The major statistical limitation is the calculation of risk given 

large-scale genotype data (e.g. incorporating haplotype information into the 

analysis). The major scientific limitation, despite the flurry of association 

studies, is our limited understanding of complex diseases and how various 

genes interact with each other and the environment. Any proposed predic-

44 



Chapter 2. D-GRIP: DNA Genetic Risk Information Profile 

tive model (be it for a single disease or a general model) will have to undergo 

rigorous testing and evaluations in order to ensure clinical utility. 

When the proposed limitations are overcome, useful and beneficial pre­

dictive software can be created and implemented. The key features include: 

incorporation of genotype data along with family history of disease, a contin­

uously updated DNA-Disease database with a meta-analysis engine, disease-

specific risk models which have been validated and user-oriented risk profile 

reporting. The use of the software will be under a guided setting, with 

potential users being genetic counselors and family physicians. Regardless 

of the user, appropriate training in using the software and interpreting the 

output will be a necessity. Lastly, implications such as privacy and confi­

dentiality of genetic data, appropriate explanations of risk, discrimination 

towards individuals via third parties, effect on public health policies and 

public education are all important challenges to be addressed before imple­

mentation of such a predictive tool becomes a reality. 

45 



Bibliography 

[1] S Bagade, NC Allen, R Tanzi, and L Bertram. The pdgene database, 
alzheimer research forum, available at: http://www.pdgene.org/, Ac­
cessed May 2007. 

[2] Michael R Barnes. Navigating the hapmap. Brief Bioinform, 7(3):211-
24, September 2006. 

[3] J C Barrett, B Fry, J Mailer, and M J Daly. Haploview: analysis and 
visualization of Id and haplotype maps. Bioinformatics, 21(2):263-5, 
January 2005. 

[4] A E Baum, N Akula, M Cabanero, I Cardona, W Corona, B Klemens, 
T G Schulze, S Cichon, M Rietschel, M M Nothen, A Georgi, J Schu­
macher, M Schwarz, R Abou Jamra, S Hofels, P Propping, J Satagopan, 
S D Detera-Wadleigh, J Hardy, and F J McMahon. A genome-wide as­
sociation study implicates diacylglycerol kinase eta (dgkh) and several 
other genes in the etiology of bipolar disorder. Mol Psychiatry, May 
2007. 

[5] Lars Bertram, Matthew B McQueen, Kristina Mullin, Deborah Blacker, 
and Rudolph E Tanzi. Systematic meta-analysis of alzheimer disease 
genetic association studies: The alzgene database. Nature Genetics, 
39:17-23, January 2007. 

[6] International Hapmap Consortium. The international hapmap project. 
Nature, 426(6968):789-96, December 2003. 

[7] Keith D Coon, Amanda J Myers, David W Craig, Jennifer A Web­
ster, John V Pearson, Diane Hu Lince, Victoria L Zismann, Thomas G 
Beach, Doris Leung, Leslie Bryden, Rebecca F Halperin, Lauren Mar­
lowe, Mona Kaleem, Douglas G Walker, Rivka Ravid, Christopher B 
Heward, Joseph Rogers, Andreas Papassotiropoulos, Eric M Reiman, 
John Hardy, and Dietrich A Stephan. A high-density whole-genome 
association study reveals that apoe is the major susceptibility gene for 

46 

http://www.pdgene.org/


Bibliography 

sporadic late-onset alzheimer's disease. J Clin Psychiatry, 68(4):613-8, 
April 2007. 

[8] J R Fraser Cummings, Rachel Cooney, Saad Pathan, Carl A Anderson, 
Jeffrey C Barrett, John Beckly, Alessandra Geremia, Laura Hancock, 
Changcun Guo, Tariq Ahmad, Lon R Cardon, and Derek P Jewell. 
Confirmation of the role of atgl611 as a Crohn's disease susceptibility 
gene. Inflamm Bowel Dis, April 2007. 

[9] Ofir Davidovich, Gad Kimmel, and Ron Shamir. Gevalt: an integrated 
software tool for genotype analysis. BMC Bioinformatics, 8:36, 2007. 

[10] Adrian Edwards, Silvana Unigwe, Glyn Elwyn, and Kerenza Hood. 
Effects of communicating individual risks in screening programmes: 
Cochrane systematic review. BMJ, 327(7417):703-9, September 2003. 

[11] David M Euhus, Kristin C Smith, Linda Robinson, Amy Stucky, Olu-
funmilayo I Olopade, Shelly Cummings, Judy E Garber, Anu Chit­
tenden, Gordon B Mills, Paula Rieger, Laura Esserman, Beth Craw­
ford, Kevin S Hughes, Connie A Roche, Patricia A Ganz, Joyce Seldon, 
Carol J Fabian, Jennifer Klemp, and Gail Tomlinson. Pretest predic­
tion of brcal or brca2 mutation by risk counselors and the computer 
model brcapro. J Natl Cancer Inst, 94(11):844-51, June 2002. 

[12] J.B. Fan, A. Qliphant, R. Shen, B.G. Kermani, F. Garcia, K .L . Gun-
derson, M . Hansen, F. Steemers, S.L. Butler, P. Deloukas, L. Galver, 
S. Hunt, C. McBride, M . Bibikova, T. Rubano, J. Chen, E. Wickham, 
D. Doucet, W. Chang, D. Campbell, B. Zhang, S. Kruglyak, D. Bently, 
J. Haas, P. Rigault, L. Zhou, J. Stuelpnagel, and M.S. Chee. Highly 
parallel snp genotyping. Cold Springs Harbor Symposia on Quantitative 
Biology, 68:69-78, 2003. 

[13] Martin Farrall and Andrew P Morris. Gearing up for genome-wide gene-
association studies. Hum Mol Genet, 14 Spec No. 2:R157-62, October 
2005. 

[14] Simon Fiddy, David Cattermole, Dong Xie, Xiao Yuan Duan, and 
Richard Mott. Igs: An integrated system for genetic analysis. BMC 
Bioinformatics, 7:210, 2006. 

[15] McKusick-Nathans Institute for Genetic Medicine and National Center 
for Biotechnology Information. Online mendelian inheritance in man 
omim (tm), http://www.ncbi.nlm.nih.gov/omim/, July 2006. 

47 

http://www.ncbi.nlm.nih.gov/omim/


Bibliography 

[16] D Fredman, M Siegfried, Y P Yuan, P Bork, H Lehvaslaiho, and A J 
Brookes. Hgvbase: a human sequence variation database emphasizing 
data quality and a broad spectrum of data sources. Nucleic Acids Res, 
30(1):387-91, January 2002. 

[17] Nelson B Freimer and Chiara Sabatti. Human genetics: variants in 
common diseases. Nature, 445(7130):828-30, February 2007. 

[18] Genelex. Genelex website, available at http://www.genelex.com/, 
May 2007. 

[19] GeneTrack. Genetrack website, available at http://www.genetrack. 
bc.ca, July 2006. 

[20] Gerd Gigerenzer and Adrian Edwards. Simple tools for understanding 
risks: from innumeracy to insight. BMJ, 327(7417):741-4, September 
2003. 

[21] Alan E Guttmacher and Francis S Collins. Welcome to the genomic 
era. N Engl J Med, 349(10) :996-8, September 2003. 

[22] Wayne D Hall, Katherine I Morley, and Jayne C Lucke. The prediction 
of disease risk in genomic medicine. EMBO Rep, 5 Spec No:S22-6, 
October 2004. 

[23] Lynn B Jorde and Stephen P Wooding. Genetic variation, classification 
and 'race'. Nat Genet, 36(11 Suppl):S28-33, November 2004. 

[24] K M Kelly and K Sweet. In search of a familial cancer risk assessment 
tool. Clin Genet, 71(l):76-83, January 2007. 

[25] Muin J Khoury, Julian Little, Marta Gwinn, and John Pa Ioannidis. 
On the synthesis and interpretation of consistent but weak gene-disease 
associations in the era of genome-wide association studies. Int J Epi­
demiol, 36(2):439-45, April 2007. 

[26] Cecile Libioulle, Edouard Louis, Sarah Hansoul, Cynthia Sandor, 
Frederic Farnir, Denis Franchimont, Severine Vermeire, Olivier Dewit, 
Martine de Vos, Anna Dixon, Bruno Demarche, Ivo Gut, Simon Heath, 
Mario Foglio, Liming Liang, Debby Laukens, Myriam Mni, Diana Ze-
lenika, Andre Van Gossum, Paul Rutgeerts, Jacques Belaiche, Mark 
Lathrop, and Michel Georges. Novel crohn disease locus identified by 
genome-wide association maps to a gene desert on 5pl3.1 and modu­
lates expression of ptger4. PLoS Genet, 3(4):e58, April 2007. 

48 

http://www.genelex.com/
http://www.genetrack


Bibliography 

[27] Yen-Ling Low, Sara Wedren, and Jianjun Liu. High-throughput ge­
nomic technology in research and clinical management of breast cancer, 
evolving landscape of genetic epidemiological studies. Breast Cancer 
Res, 8(3):209, 2006. 

[28] T M Marteau and R T Croyle. The new genetics, psychological re­
sponses to genetic testing. BMJ, 316(7132):693-6, February 1998. 

[29] Ruth McPherson, Alexander Pertsemlidis, Nihan Kavaslar, Alexandre 
Stewart, Robert Roberts, David R Cox, David A Hinds, Len A Pen-
nacchio, Anne Tybjaerg-Hansen, Aaron R Folsom, Eric Boerwinkle, 
Helen H Hobbs, and Jonathan C Cohen. A common allele on chromo­
some 9 associated with coronary heart disease. Science, May 2007. 

[30] NCBI. dbgap: Database of genome wide association studies, url: 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap, 2007. 

[31] John Paling. Strategies to help patients understand risks. BMJ, 
327(7417) :745-8, September 2003. 

[32] Lyle J Palmer and Lon R Cardon. Shaking the tree: mapping complex 
disease genes with linkage disequilibrium. Lancet, 366(9492): 1223-34, 
October 2005. 

[33] George P Patrinos and Anthony J Brookes. Dna, diseases and 
databases: disastrously deficient. Trends Genet, 21(6):333-8, June 
2005. 

[34] Richa Saxena, Benjamin F Voight, Valeriya Lyssenko, Noel P Burtt, 
Paul I W de Bakker, Hong Chen, Jeffrey J Roix, Sekar Kathiresan, 
Joel N Hirschhorn, Mark J Daly, Thomas E Hughes, Leif Groop, David 
Altshuler, Peter Almgren, Jose C Florez, Joanne Meyer, Kristin Ardlie, 
Kristina Bengtsson, Bo Isomaa, Guillaume Lettre, Ulf Lindblad, He­
len N Lyon, Olle Melander, Christopher Newton-Cheh, Peter Nilsson, 
Marju Orho-Melander, Lennart Rastam, Elizabeth K Speliotes, Marja-
Riitta Taskinen, Tiinamaija Tuomi, Candace Guiducci, Anna Berglund, 
Joyce Carlson, Lauren Gianniny, Rachel Hackett, Liselott Hall, Johan 
Holmkvist, Esa Laurila, Marketa Sjogren, Maria Sterner, Aarti Surti, 
Margareta Svensson, Malin Svensson, Ryan Tewhey, Brendan Blumen-
stiel, Melissa Parkin, Matthew Defelice, Rachel Barry, Wendy Brodeur, 
Jody Camarata, Nancy Chia, Mary Fava, John Gibbons, Bob Hand-
saker, Claire Healy, Kieu Nguyen, Casey Gates, Carrie Sougnez, Diane 

49 

http://www.ncbi


Bibliography-

Gage, Marcia Nizzari, Stacey B Gabriel, Gung-Wei Chirn, Qicheng Ma, 
Hemang Parikh, Delwood Richardson, Darrell Ricke, and Shaun Pur-
cell. Genome-wide association analysis identifies loci for type 2 diabetes 
and triglyceride levels. Science, April 2007. 

[35] Laura J Scott, Karen L Mohlke, Lori L Bonnycastle, Cristen J Wilier, 
Yun Li , William L Duren, Michael R Erdos, Heather M Stringham, 
Peter S Chines, Anne U Jackson, Ludmila Prokunina-Olsson, Chia-Jen 
Ding, Amy J Swift, Narisu Narisu, Tianle Hu, Randall Pruim, Rui Xiao, 
Xiao-Yi Li , Karen N Conneely, Nancy L Riebow, Andrew G Sprau, 
Maurine Tong, Peggy P White, Kurt N Hetrick, Michael W Barnhart, 
Craig W Bark, Janet L Goldstein, Lee Watkins, Fang Xiang, Jouko 
Saramies, Thomas A Buchanan, Richard M Watanabe, Timo T Valle, 
Leena Kinnunen, Goncalo R Abecasis, Elizabeth W Pugh, Kimberly F 
Doheny, Richard N Bergman, Jaakko Tuomilehto, Francis S Collins, 
and Michael Boehnke. A genome-wide association study of type 2 di­
abetes in finns detects multiple susceptibility variants. Science, April 
2007. 

[36] Nameeta Shah, Michael V Teplitsky, Simon Minovitsky, Len A Pennac-
chio, Philip Hugenholtz, Bernd Hamann, and Inna L Dubchak. Snp-
vista: an interactive snp visualization tool. BMC Bioinformatics, 6:292, 
2005. 

[37] Robert Sladek, Ghislain Rocheleau, Johan Rung, Christian Dina, 
Lishuang Shen, David Serre, Philippe Boutin, Daniel Vincent, 
Alexandre Belisle, Samy Hadjadj, Beverley Balkau, Barbara Heude, 
Guillanume Charpentier, Thomas J. Hudson, Alexandre Montpetit, 
Alexey V. Pshezhetsky, Marc Prentki, Barry I. Posner, David J. Bald­
ing, David Meyre, Constantin Polychronakos, and Philippe Froguel. 
A genome-wide association study identifies novel risk loci for type 2 

• diabetes. Nature, 445:881-885, February 2007. 

[38] E M Smigielski, K Sirotkin, M Ward, and S T Sherry, dbsnp: a database 
of single nucleotide polymorphisms. Nucleic Acids Res, 28(l):352-5, 
January 2000. 

[39] Valgerdur Steinthorsdottir, Gudmar Thorleifsson, Inga Reynisdottir, 
Rafn Benediktsson, Thorbjorg Jonsdottir, G Bragi Walters, Unnur 
Styrkarsdottir, Solveig Gretarsdottir, Valur Emilsson, Shyamali Ghosh, 
Adam Baker, Steinunn Snorradottir, Hjordis Bjarnason, Maggie C Y 
Ng, Torben Hansen, Yu Bagger, Robert L Wilensky, Muredach P Reilly, 

50 



Bibliography 

Adebowale Adeyemo, Yuanxiu Chen,- Jie Zhou, Vilmundur Gudnason, 
Guanjie Chen, Hanxia Huang, Kerrie Lashley, Ayo Doumatey, Wing-
Yee So, Ronald C Y Ma, Gitte Andersen, Knut Borch-Johnsen, Tor-
ben Jorgensen, Jana V van Vliet-Ostaptchouk, Marten H Hofker, Cisca 
Wijmenga, Claus Christiansen, Daniel J Rader, Charles Rotimi, Mark 
Gurney, Juliana C N Chan, Oluf Pedersen, Gunnar Sigurdsson, Jef­
frey R Gulcher, Unnur Thorsteinsdottir,' Augustine Kong, and Kari 
Stefansson. A variant in cdkall influences insulin response and risk of 
type 2 diabetes. Nat Genet, April 2007. 

[40] Gudmundur A Thorisson, Albert V Smith, Lalitha Krishnan, and Lin­
coln D Stein. The international hapmap project web site. Genome Res, 
15(ll):1592-3, November 2005. 

[41] Wenyi Wang, Sining Chen, Kieran A Brune, Ralph H Hruban, Gio­
vanni Parmigiani, and Alison P Klein. Pancpro: risk assessment for 
individuals with a family history of pancreatic cancer. J Clin Oncol, 
25(ll):1417-22, April 2007. 

[42] A J Wright, J Weinman, and T M Marteau. The impact of learning 
of a genetic predisposition to nicotine dependence: an analogue study. 
Tob Control, 12(2):227--30, June 2003. 

[43] Nan Yang, Hongzhe Li , Lindsey A Criswell, • Peter K Gregersen, 
Marta E Alarcon-Riquelme, Rick Kittles, Russell Shigeta, Gabriel Silva, 
Pragna I Patel, John W Belmont, and Michael F Seldin. Examination 
of ancestry and ethnic affiliation using highly informative diallelic dna 
markers: application to diverse and admixed populations and impli­
cations for clinical epidemiology and forensic medicine. Hum Genet, 
118(3-4):382-92, December 2005. 

[44] Quanhe Yang, Muin J. Khoury, Lorenzo Botto, J .M. Friedman, and 
Dana Flanders. Improving the prediction of complex diseases by testing 
for multiple disease-susceptibility genes. American Journal of Human 
Genetics, 72:636-649, 2003. 

[45] Lan-Juan Zhao, Miao-Xin Li , Yan-Fang Guo, Fu-Hua Xu, Jin-Long Li , 
and Hong-Wen Deng. Snpp: automating large-scale snp genotype data 
management. Bioinformatics, 21(2):266-8, January 2005. 

51 



Chapter 3 

Conclusions and Future 
Directions 

3.1 Further Observations 

One of the most important observations noted during the D-GRIP develop­

ment and testing was the lack of computationally efficient organization of 

existing and new discoveries in the genetics field [5, 10]. There has been an 

explosion of data from the recent progress in disease genetics field, and even 

'though currently there are many types of mutation databases, the progress 

towards creation of new databases has been slow. The challenges involved 

are often technical in nature, such as, gathering, exchanging, integrating 

and interpreting the disease-related information. However, arguably the 

lack of targeted funding and the inherent bias towards making new discov­

eries rather than managing existing data are one of the main underlying 

problems [10]. 

In order to overcome the technical limitations of creating a comprehen­

sive, computationally exploitable genotype-phenotype database, a few goals 

must be met. For easy computational access, complex phenotype data mod­

els that extensively utilize phenotype ontologies will be required. By using 

ontologies, a standard vocabulary can be established for use of terms, which 
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will help integrate various types of data and make analysis computationally 

easier. Initially, the DNA changes related to phenotypes can be represented 

in a structured and standardized way. Then, a basic framework for gath­

ering, integrating, analyzing and updating the stored information will be 

required. Given the enormous amounts of data being generated, a system­

atic and standardized way to manage phenotype data will be a necessity, 

which will require international cooperation and open access to anonymous 

data. Ultimately, an ideal genotype-phenotype database will provide a sys­

tems biology approach where all information, such as that derived from the 

genome, transcriptome, proteome and metabolome, pertaining to the con­

nection between genotypic differences and phenotypic consequences will be 

recorded. 

The second important observation that resulted from my work on D-

GRIP was the limited number of variants that are known to be associated 

with complex diseases. Even though individual genome wide association 

studies(GWAs) are publishing results for many diseases [12, 11, 1, 2, 4, 9], 

most of the studies report only a few disease associated variants [3, 8]. In 

addition, the reported effects of individual genetic variants associated to 

common diseases are small (risk ratios ^ 2.0). Although, it has been shown 

that the combined effects of a moderate number (fewer than 20) of common 

genetic variants (with relative ratios ^ 2.0) could explain 50% of the burden 

of disease in a population [13]; there are numerous challenges with genome-

wide association studies. These challenges include, for example, significance 

chasing bias (including publication bias, selective analysis and reporting 

bias), population stratification (due to heterogenous populations mixtures), 
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misclassification of exposures and outcome, and the inherent problems that 

include, failure to detect gene-gene and gene-environment interactions, lim­

ited sample size, statistical power and false positive associations. All these 

issues can lead to difficulty in finding biologically meaningful genetic asso­

ciations and thus slow the progress of understanding complex diseases. 

In order to alleviate and infer true disease-associated variants from nu­

merous GWAs, standards should be established for presenting and interpret­

ing the accumulated evidence. Efforts by the Human Genome Epidemiology 

Network (HuGENet) are ongoing in developing systematic approaches for 

assessing combined evidence of disease associated variants. The approaches 

include criteria such as biological plausibility, experimental evidence, sound 

methods for conduct and analysis, and appropriate replication [8]. The op­

portunity to develop methods and standards for measuring, validating and 

interpreting genetic associations will be high in the next few years and will 

ultimately lead to benefit for individuals and population health. 

3.2 Future Considerations 

The goal of shifting the current medical paradigm from a reactive to pre­

ventative approach through personalized risk profiles appears within reach 

long-term. The generation of genetic risk profiles is intended to improve 

disease prevention by prompting at-risk individuals to take specific preven­

tative actions that usually involve environmental exposures, diet or other 

lifestyle changes. However, before genetic risk assessment tools can be used 

in a clinical setting, an evaluation of the clinical utility of such tools needs 
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to be conducted [7] 

Clinical utility of a test refers to the likelihood a diagnostic test will lead 

to improved health outcomes [7]; For individuals with positive test results, 

the clinical utility depends on the availability, safety and effectiveness of 

therapeutic measures. The recommendation for ensuring clinical utility for 

any genetic test is to consider the clinical and social outcomes of the test. 

Clinical outcomes depend on effective changes in lifestyle due to positive 

test result. The social outcomes depend on the psychosocial, ethical, legal 

and social issues related to receiving a positive or negative outcome. Both 

clinical and social outcomes are important because they both contribute to 

the net balance between benefits and harms of genetic testing [6]. Thus, 

future evaluation of genomic profiles should encompass and clearly address 

validity of the test, clinical utility and social utility of the test. 

Regardless of the intended audience for a genetic risk profiling software, 

two crucial criteria are necessary for providing a genetic profile test. First, 

due to the still limited knowledge about clinical implications of such tests, 

the benefits and limitations of the tests should be clearly explained. Such 

limitations should be explicitly addressed, and individuals who provide tests 

should disclose what is known and not known about the test. Second, the 

tests should be offered in a controlled environment such that individual test 

takers are counseled about the results and implications of the tests. By 

having transparency when providing the genetic profile test and counseling 

the individual test taker, informed decisions can be made by health profes­

sionals, patients and general pubic. 

Lastly, consensus needs to be achieved on when genomic profiling has 
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achieved an acceptable standard in a clinical setting. In the future, ge­

nomic profiling will likely become common and thus the level of evidence 

that justifies clinical use of genomic profiling requires careful thought. It is 

recommended to develop an accepted process that incorporates defined pro­

cedures for evaluating evidence and reaching conclusions that include input 

from clinicians, health care payers and consumers. 

3.3 Conclusion 

Given the advent of new genotyping technologies and the rapid new discov­

ery of new disease associated variants, experts have predicted that future 

medical care will become more personalized and geared towards disease pre­

vention. We created a prototype web tool, called, DNA Genetic Risk Infor­

mation Profile (D-GRIP), which predicts disease risk profiles based on an 

individual's genotype. The project outlined the current bioinformatic and 

scientific limitations involved in creating a genetic risk assessment software 

and addressed the main issues involved in the creation, evaluation and util­

ity of such a tool in a clinical setting. By overcoming the major limitations 

and addressing the important issues, a viable and useful genetic risk profil­

ing software is plausible in the future and thus will lead to a change in the 

way medicine is currently practiced. 
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Appendix A 

Feedback from Experts 

A . l Questions 

The set of questions asked to each type of expert (clinical geneticist, molec­

ular geneticist, genetic counselors and biostatisticians) are listed below. 

1. Any comments on the user-interface of D-GRIP? 

• The input page? 

• The output page? 

2. Any comments or references to available risk models that predict risk 

based on genotype data? 

• How to include age specific risk prediction without raw data? 

3. How should an ideal system handle various complex diseases? Treat 

each separately with disease-specific risk model? 

4 . The system shows a very fatalistic view. Do you think we should 

include more positive news? 

5. Who could be a potential user of D-GRIP? 

• Genetic Counselors? 

• Family Physicians? 
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• Insurance companies? 

• Lay public? 

• Yourself? 

6. How many years down the line can you see this being used (respectively 

for each of the potential users from previous question)? 

7. Do you think we should store people's genotype data? What about 

family doctor's storing .their patient's genotype data? 

8. What are some of the implications you see from using such a system? 

• Personal implications? 

• Effect on patients? 

• Societal implications? 

9. In what journal can you see this type of paper being published? 
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A . 2 Feedback 

A summary of the feedback provided by several experts is detailed below. 

The experts consisted of two biostatisticians, two molecular geneticists, five 

clinical geneticists and 12 MSc genetic counseling students. The comments 

and recommendations are categorized into various aspects of D-GRIP, for 

example, user interface issues regarding input and output features, core of D-

GRIP dealing with DNA-Disease database and risk prediction model, issues 

pertaining to the users and any ethical, legal and social implications. 

A.2.1 User Interface 

Input and general usability 

• Allow option for users to provide family history along with genotype 

data. 

• Ethnicity classification is currently biased. Provide two options, one 

user-specified ethnicity and two, calculate ethnicity based on a verified 

and reliable predetermined-determined markers from genotype data 

provided. Consensus was to calculate the ethnicity but only when 

calculations can be done reliably. 

• When more data is available, allow input for copy number variantions 

data. 

• Provide a disclaimer that explicitly informs the user of all the limita­

tions and assumptions of the software. 
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• As it is currently, keep the interface simple and easy to use. 

Risk Profile Report 

• Tailor the final risk report towards the intended user. Currently, the 

view is more geared towards genetic researchers and counselors. In 

contrast, for a family physician or a consumer, provide a 'Patient view' 

where communication of probabilities and risk is done visually, links to 

prevention and therapeutic options and any relevant links for lifestyle 

and behavior changes are provided. 

• Provide the option of restricting analysis to specific diseases, for in­

stance, diseases where prevention is an option versus where currently 

no preventative options are available. 

A.2.2 D-GRIP Core 

Diseases, DNA-Disease database 

• Implement a meta-analysis engine for each disease so that whenever 

new studies are published, the entire database is updated. In addition, 

whenever such updates are performed, create a notification system for 

users to inform them. 

• Store gene-gene and gene-environment and epigenetic information in 

DNA-Disease database. Data on gender and age related to diseases is 

very important, especially for age-dependent diseases. 
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• When information regarding copy number variations related to dis­

eases is available, store this into the DNA-Disease database. 

• Also store intermediate phenotypes associated with markers in addi­

tion to disease associated markers. 

Risk prediction issues 

• Implement disease specific risk models so that each disease is treated 

separately. Also, allow advanced users to choose multiple risk predic­

tion models for each disease. 

• When data are available, incorporate gene-gene and gene-environment 

effects into the respective disease risk models. 

• Perform rigours validation of each predictive model and prediction. 

Show the results of the tests performed, such as sensitivity, specificity, 

positive predictive values. Ensure validations of the prediction models 

is performed with genotype data that is not part of the case-control 

population data in the DNA-Disease database. Currently, such volume 

of data for testing is not available so future versions will require this 

feature. Also, provide links to studies supporting the risk predictions 

models for respective diseases. 

A.2.3 Potential Users 

• Genetic counselors are a good initial user for the software. During 

initial deployment of D-GRIP, user training will be required so that 

all limitations and proper interpretation of results is performed. 
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• Family physicians (or in a primary care setting) can be other potential 

users. But training for family physicians on how to use and interpret 

results from such a tool will be a necessity. 

• Potentially, general public could act as consumers of such a software. 

But all implications will need to be addressed by health professionals, 

governments and industry before such a software is released to the 

general public. 

• Insurance companies could also be potential users but the many social, 

legal and ethical implications will need to be addressed and a support­

ing framework will need to be implemented so handle third party use 

of genetic data. 

• As mentioned, user interface of software should be tailored towards 

the user. 

• The consensus was that currently, D-GRIP is ahead of its time. But 

a similar software can be seen used in the next 5-10years time. How­

ever, better understanding of disease associated variants and reliable 

predictions will be a necessity. 

• Until proper standards and procedures are developed to handle all the 

ethical, legal and social implications, such a software should always be 

used under a guided setting where the counseled individual is explained 

all the limitations and provide guidance in understanding the results 

from such a software. 
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A.2.4 Implications 

• As it is currently, there should be no user identifiable storing of geno­

type data. User genotype data can be stored only when the family 

physician is the user and storing the patient's genotype data. How­

ever, in the future, proper framework will be required to handle genetic 

data management, to support privacy, confidentiality and anonymity. 

• The level of care required in helping the general public interpret and 

understand the results is enormous and should be done appropriately. 

• At the current rate, not enough genetic counselors to support the 

future demand for counseling of individuals wanting .a genetic risk 

profile. 

• All necessary ethical, social and legal implications will need to be 

addressed by the providers of such a tool. 
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D-GRIP User Manual 

B . l Introduction to D - G R I P 

This user Guide assumes you have access to D-GRIP since D-GRIP is a 

closed and secure web tool. The guide explains the various features of D-

GRIP and provides a brief walk through. This guide is not intended to 

explain the results of D-GRIP or how to interpret them. 

The guide explains: 

• The overall processes. 

• Basic features that are available. 

B . l . l D-GRIP System 

DNA Genetic Risk Information Profile (D-GRIP) is a genotype analysis 

system that predicts an individual's genetic risk profile based on the geno­

type. The system can take as input, observed genotypes of up to one million 

positions of known single nucleotide polymorphisms (SNPs) in human pop­

ulations. 

The flow of information in D-GRIP begins from the input of user data. 

The user is asked to fill in demographic information (ethnic background, 
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age and gender) and a genotype file which is parsed and temporarily stored. 

Next, The system compares the genotyping results to an internal DNA-

DISEASE risk database and for each disease, calculates a risk score for 

developing the disease. Finally, a tabular output of potential diseases with 

the relevant disease risk for the individual is displayed. 

Useniumc: | 

Password: [ 

Submit j 

Figure B . l : The entry into D-GRIP occurs with user authentication. A 
valid username and password is required to access D-GRIP. 
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B.2 D-GRIP Features 

There are various features in D-GRIP and a detailed description of each with 

illustrations is provided below. The page is laid out with a menu on the left 

and all the relevant content on the right. The menu contains navigation 

links to Home page (Figure B.2), Disclaimer page, Use D-GRIP page, Help 

page and link to Log out of D-GRIP. 

Home 
Disclaimer 
Use D-GRIP 
Help 
Lou oui 

DNA Genetic.Rt.sk Information Profile 

Welcome 'Test' 

This web sile provides a tool for predicting a genetic risk prolllc for a person by utlizing genotype information. 

Getting Started: 

Click on the 'Use D-GRIP" link. 
Kill in demographic information and click 'next'. 
Upload a genotype file or copy/paste data into the form. 
Click on Calculate Risk. 
Please LOR out when leaving D-GRIP 

N o t e : T i p s a r e p r o v i d e d a n y w h e r e ' & & a p p e a r s . B r i n g c u r s o r o v e r t o s e e t i p s . 

Disclaimer 

1. It is assumed the "system is used in a guided setting. 
2. All information provided by you ('the user') is.assumed to be accurate. For instance, ethnic background provided by 

the user is assumed to be.accurate to the best of the user's knowledge. 
3. ; D-GRIP predicts risk of developing disease-based on population information collected from literature. 
4. The overall probability of developing a disease is calculated'assuming all susceptible allcles/gcncs arc-acting 

independently within diseases and across diseases. 
5. The system does not store any user-provided data (e.g. genotype and demographic data). 

:i«>i w i ^ f i r a n Lull 

Figure B.2: A snapshot of D-GRIP's main page. The page describes in­
structions on how to use D-GRIP and outlines a disclaimer for the user to 
read. 
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B.2.1 Disclaimer 

The disclaimer explicitly outlines the assumptions made by D-GRIP (Fig­

ure B.3). The disclaimer is shown on the first page, when the user accesses 

the site. Also, a separate link is provided to view the disclaimer. 

Di scln i m er 

1. H is assumed Ihe system is used in a guided setting. 
2. Al l information provided by you ('the user') is assumed to be accurate. For instance, ethnic background provided by 

the user isassuiried to be accurate to the best of the user's knowledge. 
3. D-GRIP predicts risk ol" developing.disease based on population information collected from literature. 
4. The overall probability of developing a disease is calculated assuming all susceptible allcles/genes arc acting 

independently within diseases and across diseases. 
5. Ilie system does not store any user-provided data (e.g. genotype'and demographic data). 

Figure B.3: The assumptions made by D-GRIP are listed as a disclaimer 
and shown here 

B.2.2 Input 

The input page can be accessed by clicking on the 'Use D-GRIP' link in 

the menu on the left. The input for D-GRIP occurs in two steps. First, 

demographic information and configuration options are presented. Next, 

genotype data is requested from the user. 

Demographic Information 

Figure B.4 shows the first stage of the input. The mandatory information 

requested from the user is Gender, Age and Ethnic background. 

For the Age, the user enters the year of birth. For the Ethnic background, 

the user should select the most appropriate option based on the geographic 
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ancestry of the user. The options presented are: Africa, Asia, Europe, 

Pacific, First nations/Aboriginals and Mixed. 

The configuration option currently has one checkbox for 'inference of 

genotypes'. The inference of genotypes utilizes the haplotype information 

from the Hapmap Project Website to infer disease-associated genotypes from 

the genotype data provided by the user. By default, the inference option is 

turned off (no tick in checkbox). 

Once the user fills in the demographic information form, proceed to 

loading genotype data by clicking the 'Next' button. 

Input user details 

Demographic Information 

Gender * 

Y e a r o f B i r t h * 

E t h n i c B a c k g r o u n d * 

Configuration Options 

I n f e r e n c e o f G e n o t y p e s 

M a n d a t o r y fields m a r k e d * 

Figure B.4: Demographic information and configuration options submitted 
to D-GRIP are shown here. 

Genotype Data 

Figure B.5 shows how the genotype data can be loaded into D-GRIP. 

There are two ways to load the genotype data. The copy/paste option 

f " M a l e * ~ F e m a l e 

| Y Y Y Y 

| E u r o p e T ] ® 

I - c l i c k t o t u r n O n ® 

• N e x t | 
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allows the user to copy the genotype data and paste into the text area 

provided. The mandatory fields for copy/paste form are file format, file 

name and genotype data. After filling in the form, click on 'Calculate Risk' 

button to generate the risk profile output. 

For the uploading of genotype file, the mandatory fields are file format 

and address where the file is stored. The user may use the 'Browse' button 

to find the genotype file on the hard drive. Note, the maximum allowed size 

for the genotype file to be uploaded is 10Mb. This size limit can contain 

genotypes for more than 1 million SNPs in the file. After filling in the form, 

click on 'Upload File and Calculate Risk' button to generate the risk profile 

output. 

Currently, D-GRIP accepts two file formats: Illumina Final format and 

Affymetrix Text Output. An example of the respective genotype file formats 

are shown in Figure B.6. 

The Illumina Final format can be obtained by generating a tab delimited 

'Final Report' when using the Illumina platform's BeadStudio Genotyping 

Module software. The only fields necessary are: SNP Name, Allele 1 and 

Allele 2. The sample Id and GC score are not necessary for D-GRIP. 

The Affymetrix text output can be obtained by using the SNP Export 

feature in the Affymetrix GeneChip Genotyping Analysis Software and gen­

erating a tab delimited output file. Again, the only fields necessary are SNP 

identifier and SNP genotype (two alleles). 

In Figure B.5, next to the copy/paste form is a box with 'Pre-loaded' 

data. To illustrate D-GRIP, sample genotype files have been created and 

can be loaded using this 'Pre-loaded' data box. Simply select the particular 
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Copy/Paste or Upload genotype information 

Copy/Paste data 

Mandatory fields marked ' 

File format* 

File name* 

Input genotype data* 

| Illumina Final Format J 

-Pre-loaded datri-

Scleci test gcnotyps dnin to load; 

| Sample 1 _J ig> 

Get Sample | 

CalculateRisk 

OR 
Upload data - -

Please complete the form below. Mandator)' fields marked * 

F i le format* | Illumina Final Format j j 

Type (or select) Filename* | Browse... | # 

Upload and Calculate Risk | 

Figure B.5: Form for submitting the genotype data is shown here. The user 
can either copy/paste the genotype data or upload a genotype file. A set of 
sample genotypes are provided and can be loaded into the copy/paste form 
by clicking on 'Get Sample'. 
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|[Header] 
BSGT Version. 2.1.10 30089 
Processing Date. 5/2/2006 12:54 PM 
Content. . CS0006968-0PA 
NUB SNPS. 26 
Total SNPs. 26 
Num Samples. 1 
Total Samples. 1 
[Data] 
SNP Name. Sample ID. AHelel - Top. Allele2 - Top. GC Score 
rs2018621 Europe - HD01-01 - Northern European HD01 - GM17001 -NA17001. A. G. 0.63 
rs4845378. Europe - HD01-01 - Northern European HD01 - GM17001 -NA17001 G. G. 0 54 
rsll31706. Europe - HD01-01 - Northern European HD01 - GH17001 -NA17001. T. T. 0 6 
rs2847173. Europe - KD01-01 - Northern European HD01 - GM17001 -NA17001 G. G. 0 54 
rsl2448760. Europe - HD01-01 - Northern European HD01 - GM17001 -NA17001. A.. G. 0 65 
rsl0915884. Europe - HD01-01 - Northern European HD01 - GM17001 -NA17001. G. G. 0 89 
rsl676885. Europe - HD01-01 - Northern European HD01 - GM17001 -NA17001 A.. A., 0 59 

(a) I l lumina final format sample file 

£NP. SAMPLE. GENOTYPE.' SCORE 
rs2018621. Europe - HD01 -01 - Northern European HD01 - GH17001- NA17001. AG. 0 6345 
rs4845378. Europe - HD01 -01 - Northern European HD01 - CM17001- NA17001. CG. 0 5403 
rsll31706. Europe - HD01 -01 - Northern European HD01 - CM17001- NA17001. TT. 0 6032 
rs2847173. Europe - HD01 -01 - Northern European HD01 - CM17001- NA17001. GG. 0 5403 
rsl.2448760. Europe - HD01 -01 - Northern European HD01 - GM17001- NA17001. AG. 0 6478 
rsl0915884. Europe - HD01 -01 - Northern European HTJ01 - GM17001- NA17001. GG. 0 8906 
rsl676885. Europe - HD01 -01 - Northern European HD01 - GM17001- NA17001 AA. 0 5901 

(b) Affymetrix text output sample file 

Figure B.6: The Illumina and Affymetrix tab-delimited file formats for 
D-GRIP. The respective column names are shown at the top. 
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sample and click on 'Get Sample'. A 'Comments' box appears describing 

the sample file and the sample file appears in the copy/paste text area. 

Genotype Sample 1 is shown in Figure B.7. 

Copy/Paste data 

Mandatory fields marked ' 

File format* 

File name* 

Input genotype data* 

I lllufnina Final Format 

tes (Genotype Datal 

rs790314.6 
Northern 
C ' 'if 
rial 1.1.1875 
Northern 
A G 
rs79'23837 
Northern 

|A G 
rs37-10878 
Nor thern 

Europe 
European HDOl 

0.99 
Eu rope 

European HDOl 
0.97 
Eu rope 

European HD01. 
0.96 
Eu rope 

European HDOl 

HDOl-O-'F- •• 
GMi70b.t'4tAl7001 

HDOl-a.l- • 
GM17001-NA1700 

HDO'l-01 • 

CM! 700.1.-HA 17001 

HDO 1.-0.1 • 
CH17001-NA17001 

•Pro-loaded data-

Seiea lest genotype data 10 loud: 

| Sample 1 ;rj @ 

.Get Sam pie' | 

-.Corainenls 

Sample.-'I: Caucasian population 
willi seiecLod''SNf'sfronrall' , 
.(liseases-iii-database. All genotypes 
are heterozygous for each disease 
except Parkinson disease which tire 
hornozygotts..First five SNPs me 
for Diabetes type 1, next Three tire 
I'or AbJte'irner nrid last, two tire Fur 
Parkinson's disease. The last throe 
SNPs are for diatjetesi2 SN'PsI and 
Parkinson) I SNP) bul used for 
: » f n m , ™ n«..u,^, TI»..™ 

Calculate Risk 

Figure B.7: Genotype sample 1 is loaded into the copy/paste form by 
clicking on 'Get Sample'. A description of the sample genotype file are 
illustrated in the 'Comments' box. 
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B.2.3 Output 

An example output of D-GRIP is shown in Figure B.8. The output of D-

GRIP is table that shows user's SNPs that matched disease-associated SNPs. 

The table illustrates the disorder, gene, SNP and genotype associated with 

the disorder, population in which the SNP occurs, calculated odds ratio and 

link to Pubmed for literature articles supporting the association. 

^l/lfSmer^drsuise ,£IJM . B 1T [ » „ i - - r s 4 S 4 5 \ 7 8 ; f T / O ""~ " ' C a u c a s i a n ; t 2 5 2 jJIfccfl&T "Ti 
A l z h e i m e r d i s e a s e P . O M T ' I . r s 2 0 1 : 8 6 2 1 • . _ . AJG ' C a u c a s i a n K 6 8 v 1 6 8 4 7 0 1 2 , 

t\l/liTiIiTerdTseIsI ^ ^ ' M 4 0 f i
 r1' i s l ^ i T j ^ l ^ c V r J C a u c i s i V p ^ l „ I* "> gfo H^ip 1 7 - ' 8 4 t " " J 

A l z h e i m e r d i s e a s e background population probability I f i v o 

overall c a l c u l a t e d probability 20.P.") / o 

D i a b e t e s M J I i t u s t \ p « . 2 T \ T 2 _ i_ TOO' 7 S 

D n K t c "MelTitu t y p e 2 ^ H1JJTX_ J f . . 1 . 7 9 2 3 8 ) 3 7 

D i a b e t e s M e l i i m s t y - p e 2 - M H E X •• ' r s M ' M S 7 5 ' 

DnbLtc^irirrSs itY|~ ,*2 ~fcT7L2~ ~T~ Tj9QMA6' 
Diabctes;Mcllitus type2: EXT*. . • . • -re-l'l 0 3 7 9 0 9 

D i i b c k s M e l l i t u s t y p 0 2 r \ T 2 i s 1 1 1 ^ 1 1 2 

D i a b e t e s M e l l i t u s t v p e 2 b a c k g r o u n d p o p u l a t i o n p r o b a b i l i t y 

o v e r a l l c a l c u l a t e d p r o b a b i l i t y 

O A Cu iL isnn 1 2 6 ]T>rW7L 

A / G : . C a u c a s i a n . 1 7 1 9 , ' 1 7 . 2 9 3 8 7 6 ' -

C / T . C a u c a s i a n 1 : 2 7 . 1 7 2 9 3 8 7 6 

l ^ ' G / C ^ ' ^ c T u ^ a n T 7 1 J I ' m H T O - 1̂ 
s 

7 % 

P a r k i n s o n d i s e a s e P 1 N K 1 rsl 0 4 3 4 2 4 A / A C a u c a s i a n . I v 5 _ 1 6 0 0 9 8 9 1 . « • 

P a , k i n ? o i f | i i . J j s e ^ "7 * i $ k k K ^ * ' I 1 , ^ 1 X 0 1 5 8 2 , ; ' } V S ^ / V C j u t a s i . m i ' ^ , ' " l ' \ 7 5 J r O 0 6 7 6 7 _ . ; j 
P a r k i n s o n d i s e a s e b a c k g r o u n d p o p u l a t i o n p r o b a b i l i t y 2 V» 

o v e r a l l c a l c u l a t e d p r o b a b i l i t y 2.14% 

Figure B.8: D-GRIP risk profile sample output. The output illustrates 
3 diseases, Alzheimer's, Diabetes type 2 and Parkinson's disease. The re­
spective associated SNPs with each disease is shown. The background and 
overall calculated probability of developing the disease is also shown. 
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The user can click on the gene name, and disorder name for external 

links to genbank and OMIM respectively. In addition, by clicking on each 

SNP row, more details about the SNP can be seen (Figure B.9). 

Diabetes Mellitus.typo 2 TCF/Ue2 - ". rs7?03;,14fc. '. ' ' . -.G/T'- Caucasian 1.05 • J729JiS^6'f' 
Genotypes. . ' .Statistics • • . 

'• Risk genotype: G/T , ' O'dds;Mi6.(95%;Ci):" 1:65 (1.47-. 1>'5) 
Majot genotype C7C ' .log OddssRatio: . 0.5 :i 0.06' . 

log Odds Ratio -)5 !-;,..€]: (0.38.'. 0.6':!') 
Oeiiotvpe. Frequencies 

. , „ , , , Likelihood, Ratio: L27 ; a 0.0017. 
C/T ' C7C Likelihood ratio 95%'CI: ( I . ! / . I.3S') 

Case 0:486 0:351 • Probability ofidiscasebased: 6;-27,.n/o 
. . . A .„ «„v ' lon.tliis'iSNP: Control. 0:419 0.497 , . . • . 

Figure B.9: Details about one SNP from Diabetes type II disease. 

More details about the probability calculation for each disease can be 

seen by clicking on the probability row (Figure B.10). If there are SNPs 

found that are in high linkage disequilibrium (r2 > 0.8) then integrated 

analysis is performed where only one SNP from the set of high LD SNPs is 

chosen to be in the overall calculated probability. This is illustrated on the 

right side of Figure B.10. 
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Diabetes Mel 1 iius type 2 backgroun d. popul at ion probab i I ity 
overall calculated probability 7 % 

Age 

G;ender 

Ethnicity 

User details 

47 

Male 

Europe 

Background probabil'itv details 

Age of Onset Background 
(yrs) probability 

45 5% 

Integrated Analysis 

SNP used in probability 
calculation 

rsl 1037909 

SNPs in high linkag 
disequilibrium 

rsl 1037909 
rsl 113132 
rs3740S7S 

60 •15% 

Figure B.10: Probability details for diabetes type 2 is shown here. 

. If the inference of genotypes configuration option was selected, the out­

put will display SNPs from inference analysis. > An example of inferred SNPs 

and their corresponding details is illustrated in Figures B . l l and B.12. 
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Diibetc Mdlitu t\pe 2 TCrT 2 
Dijbdx" M jFiHJ^>pL. 2 ?_ 'f\T^7" 
Diabetes Mel I itu's typc.2' HHBX 
Dnbcte Mellitu t>| ejfi HHJ-X 
Diabetes Mellitus type 2 .EXT2 
Dnbete Mdfitus ^fi , 2 I f Y H 

is790^14o 
i ^i!uLi i !?2 r 

rs I 111875 

-rs3740878 
7s I To W O K 

lZ?Jsi2l_<fTv',«s76 

CT [ C lucasmi 1 6D ]7">9 S^6 
G/C__ j | t tufc3Ji 

•A/Gf ; .'Caucasian 1.19' 
A/3T" '(^CTHTTTITTJ 
G/A- ' Caucasian k-26 
C T V Cauca nn j , 4 f l 27 l7~J.jr.7e 

17-293876. 

17293876 

In ference Analysis !® 
Diabetes Mellitus type 2 LOC387761 rs74800IO A/G Caucasian 1.14 17293876. 
Diabetes Mellitus type 2 SLC30A8 rsl3266634 T/C Caucasian 1.18 172938.76 

Diabetes Mellilus type. 2 background population probability 
overall calculated probability 7 % 

Figure B . l l : SNPs from Inference analysis for Diabetes type 2 are shown. 
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I n f e r e n c e A n a l y s i s @ 

D i a b e t e s M e l l i t u s t y p e 2 L O C 3 K 7 7 6 1 

I n f e r r e d S N P d e t a i l s 

U s e r ' s G e n o t y p e 

S N P i d : r s 4 4 4 5 6 l 9 

g e n o t y p e : T / C 

S N P I d 

r s 7 4 S O 0 ' l O 

r s 4 4 4 5 6 l . 9 

H a p m a p P h a s e d a t a 

A l l e l e I 

A 

T 

r s 7 4 K 0 0 l ' 0 

A l l e l e : 

G 

C 

A / G C a u c a s i a n . 1 7 2 9 3 8 7 6 

H a p m a p S N P - I n f o r m a t i o n 

S N P 

A l l e l e s . 

G e n o t y p e 

G e n o t y p e f r e q u e n c y 

G e n e 

C h r o m o s o m e 

P o s i t i o n 

r s 4 4 4 5 6 l 9 

T , C 

T / C 

0 . 3 0 9 

1 1 

4 2 2 0 2 I 7 K 

H a p m a p p o p u l a t i o n . C S H L - H A P M A P : H a p M a p - C E U 

• D i s e a s e a s s o c i a t e d S N P D e t a i l s 

G e n o t y p e s 

R i s k g e n o t y p e : A / G 

M a j o r g e n o t y p e : , A / A 

G e n o t y p e F r e q u e n c i e s 

A / G 

C a s e 0 . 4 3 0 

C o n t r o l 0 . 4 1 3 

A / A 

0 , 4 4 9 

0 . 4 9 2 

S t a t i s t i c s 

O d d s R a t i o ( 9 5 % C I ) : 

l o g O d d s R a t i o : 

l o g O d d s R a t i o 9 5 % C I : 

1 . 1 4 ( 1 . 0 2 . 1 . 2 8 ) 

0 . 1 3 i 0 . 0 6 

( 0 . 0 2 . 0 . 2 5 ) 

. L i k e l i h o o d R a t i o : 1 . 0 7 ± 0 . 0 0 1 7 

L i k e l i h o o d r a t i o 9 5 % C I : ( 0 . 9 9 . 1 . 1 6 ) 

Figure B.12: Details about the inferred SNPs is shown. The details include 
the user's genotype, Hapmap data from which inference was performed and 
the relevant statistics for the disease-associated SNP. 
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B.2.4 Help Tips 

Help tips appear as pop-up on the top right of the page. Whenever a blue 

question mark icon is displayed, the user can bring the mouse over to the 

question mark to see the relevant tip. This is done to help guide the user 

when using D-GRIP. Examples are shown below. 

Ethnic Background* Europe 

M a j o r i t y o f d a t a i n d a t a b a s e i s b a s e d o n C a u c a s i a n 

p o p u l a t i o n . T h u s , d e f a u l t i s E u r o p e a n a n c e s t r y . 

Figure B.13: An example of a ethnic background help tip is shown. 

I n f e r e n c e o f G e n o t y p e s r c l i c k t o t u r n O n # 

W h e n ' I n f e r e n c e o f g e n o t y p e s ' o p t i o n i s a i m e d o n . 

a n y u s e r g e n o t y p e s t h a t a r c i n h i g h l i n k a g e 

d i s e q u l i b r i u m ( r2> O . S ) w i t h d i s e a s e a s s o c i a t e d 

S N P s a r e a l s o r e p o r t e d i n t h e g e n e r a t e d r i s k p r o f i l e . 

T h e r e p o r t e d i n f e r r e d S N P s a r e n o t u s e d i n t h e 

o v e r a l l p r o b a b i l i t y c a l c u l a t i o n . 

C l i c k c h e c k b o x l o . t i i m o n I n f e r e n c e A n a l y s i s o p t i o n . 

Figure B.14: An example of inference of genotypes help tip is shown. 
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