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Abstract 

Measurement error occurs frequently in observational studies investigating the relation­

ship between exposure variables and the clinical outcome. Error-prone observations on 

the explanatory variable may lead to biased estimation and loss of power in detecting the 

impact of an exposure variable. The mechanism of measurement error, such as whether 

or in what way the quality of data is affected by the disease status, is seldom completely 

revealed to the investigators. This increases uncertainty in assessing the consequences 

of ignoring measurement error associated with observed data, and brings difficulties to 

adjustment for mismeasurement. 

In this study, we consider situations with a correctly specified binary response, and 

a misclassified binary exposure. We propose a solution to conduct Bayesian adjust­

ment to correct for measurement error subject to varying differentiality, including the 

nondifferential misclassification, differential misclassification and nearly nondifferential 

misclassification. Our Bayesian model incorporates the randomness of exposure preva­

lences and misclassification parameters as prior distributions. The posterior model is 

constructed upon simulations generated by Gibbs sampler and Metropolis-Hastings al­

gorithm. Internal validation data is utilized to insure the resulting model is identifiable. 

Meanwhile, we compare the Bayesian model with maximum likelihood estimation 

(MLE) and simulation extrapolation (MC-SIMEX) methods, using simulated datasets. 

The Bayesian and MLE models produce accurate and similar estimates for odds ratio 

in describing the association between the disease and exposure, when appropriate as-
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Abstract 

sumptions regarding the differentially of misclassification are made. The 90% credible 

or confidence intervals capture the truth approximately 90% of the time. A Bayesian 

method corresponding to nearly nondifferential prior belief compromises between the 

loss of efficiency and loss of accuracy associated with other prior assumptions. At the 

end, we look at two case-control studies with misclassified exposure variables, and aim 

to make valid inference about the effect parameter. 
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Chapter 1 

Introduction 

In biomedical research, people are often interested in learning the relationship between a 

health-related outcome Y and an explanatory variable measuring some kind of exposure 

status, denoted by T. Sometimes, in practice, the exposure variable or clinical outcome 

is not precisely recorded. For instance, instead of T, an approximate measurement or a 

surrogate, X is obtained. Carroll, Ruppert, Stefanski and Crainiceanu (2006) found that 

measurement error in the explanatory variables had triple effects: 

• It causes bias in parameter estimation for statistical models. 

• It leads to a loss of power, sometimes profound, for detecting interesting relationship 

among variables. 

• It masks the features of the data, making graphical model analysis difficult. 

The first problem caused by replacing T with X without accounting for the measurement 

error in data analysis has most serious impact on subsequent statistical inference. Hence 

the goal of adjustment for mismeasurement is to achieve roughly unbiased estimates to 

reveal the relationship between Y and T indirectly, based on the measurements of Y, X 

and perhaps other correctly recorded covariates Z. 

As it is important to have adequate knowledge of the nature and type of measurement 

errors, some examples from epidemiology are listed below. 

The NHANES-I dataset was created in a prospective study consisting of nutrition 

habits and incidences of breast cancer concerning a cohort of 8596 females (Jones et al., 
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Chapter 1. Introduction 

1987). The response (Y) represents the occurrence of breast cancer. The covariates of 

primary interest are the long-term nutrition variables (T). Other explanatory variables 

Z include demographic and clinical factors such body mass index (BMI), age, alcohol 

consumption, age at menarche, etc. The response Y and Z were assumed to be correctly 

recorded, whereas T was not measured due to the difficulty in observing diet of a large 

cohort over a long period of time. Instead, a surrogate X recording the nutrition intakes 

of study subjects in the previous 24 hours was retrieved during the interview. The 

longitudinal variation of diet results in a major measurement error in this study. The 

seasonal diet behavior and day-to-day nutrition intake differences make X an inadequate 

approximation of T. The nonnegligible mismeasurement was discussed in epidemiological 

literature (Beaton et al., 1979; Wu et al., 1986). Some measurement error models based 

on a subset of the cohort were proposed by Carroll et al. (2006). 

It is sensible to assume the conditional distribution of X given T and Y does not 

depend on Y in the first example, which is known as the nondifferential measurement 

error. However, in other circumstances, this condition does not hold. In case-control 

studies, explanatory variables are retrieved after the diagnosis. Two group of study sub­

jects with positive (cases) or negative (controls) clinical outcomes are first recruited, and 

consecutively the explanatory variables about their exposure history are measured. This 

type of sampling scheme may well lead to the so called differential measurement error, 

i.e. the conditional distribution of the surrogate X given the unobservable exposure T 

also depends on the response Y. When information about covariates is collected through 

some "self-report" mechanism, subjects with positive clinical outcomes may erroneously 

"blame" a set of risk factors for their conditions, or "ignore" previous experience with ex­

posure variables to avoid any connection between behaviour and disease. The controls on 

the other hand may pay less attention or make less efforts to provide precise information 

about their past actions, as they do not suffer from the disease. 

2 



Chapter 1. Introduction 

A small portion of subjects for whom both the rough measurements and "gold stan­

dard" measurements are acquired (the validation sample) is sometimes obtained to mon­

itor the severeness of measurement error. The herpes and cervical cancer study serves as 

an example to demonstrate the utilization of validation study. A case-control study con­

sisting of 732 subjects of cervical cancer and 1312 community or hospital controls with 

negative cervical cancer diagnosis was conducted to investigate the impact of herpes 

simplex virus type 2 (HSV-2, a binary variable) in the development of invasive cervical 

cancer (Hildesheim et al., 1991). The exposure status was detected by the western blot 

assay, which produced error-prone measurements. A refined, more accurate procedure 

was performed on a randomly selected sample whose disease statuses were blinded, in 

order to assess the misclassification rates. Carroll, Gail and Lubin (1993) observed from 

the validation sample that the misclassification differ between cases and control (Fisher's 

exact two-sided test implied a greater sensitivity for the cases, p=0.049), and proposed 

a pseudo-likelihood model to adjust for the differential measurement error. 

1.1 Problem setup 

The second example reflects how mismeasurement phenomena arise from biomedical stud­

ies with categorical covariates. The measurement error in this situation is often referred 

as a misclassification problem. In this thesis, we restrict ourself to misclassification 

problems on a binary exposure variable T(—0, 1) in case-control studies with no other 

covariates at play. Discussions of measurement error on continuous or polychotomous 

(with more than 2 categories) exposure variable can be found in statistical literature 

(Gustafson, 2004; Carroll et al., 2006). 

We assume no measurement error arising for the outcome of interest Y (=0, 1). 

Complete information on Y, T and the surrogate exposure variable X (=0, 1) is available 

3 



Chapter 1. Introduction 

Table 1.1: Validation data and main data 

Validation Data Main .Data 

Y = l Y=0 Y = l Y=0 

T X = l X = 0 X = l X = 0 X = l X = 0 X = l X = 0 

T-1 
T=0 

an a 1 2 

ai3 ai4 

aoi a-02 

Q03 0-04 

hi 012 

013 »14 

001 002 

003 004 

N an+ 0,13 ai2 + a i4 aoi + ^03 «02 + ao4 ai5 ai6 005 OQ6 

for a small proportion of data (validation'sample), whereas the true exposure status 

for the majority of study subjects (main study) is unobservable or cannot be precisely 

measured. The validation data and incomplete main data are presented in Table 1. While 

each cell'Oij in the validation data is fully specified (i — 0,1 ,j = 1,2, 3,4), only margins 

Oo5) ̂ 06, Oi5, aw in the main misclassification table are recorded. Our goal is therefore to 

recover the main table and ultimately make inference on the relationship between the 

clinical outcome Y and the actual exposure variable T. 

Let us denote the true exposure prevalences amongst cases and controls by r i and ro 

respectively, where r» = P(T = l\Y = i), i = 0,1. The retrospective odds ratio describing 

the correlation between the response and explanatory variable is defined as 

r r n ' 
1 ~r0 

which is equal to the prospective odds ratio, 

p(y=l|T=i) 
, P(Y=0\T=\) 

p(y=i|T=o) ' 
p(y=o|r=o) 

via Bayes rule and simple algebraic manipulations. The odds ratio is sometimes adopted 

to approximate the relative risk $ = P(Y = 1\T = l)/P(Y = 1|T = 0) of having a 
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Chapter 1. Introduction 

disease in two exposure groups, when the disease incidence rate is small (rare disease). 

Sensitivity (SN) and specificity (SP) jointly measure the magnitude of exposure mis­

classification. In the scenarios subject to differential misclassification, the surrogate X 

given the unobserved true exposure T and the response Y are not mutually indepen­

dent. The sensitivities and specificities among cases and controls can be formulated as, 

SNi = P(X = 1\T = 1,Y = i),SPi = P(X = 0|T = Q,Y = i), i = 0,1. Prevalences of 

the apparent exposure for diseased and non-diseased individuals are denoted by r* and 

7Q. Another way of expressing the degree of misclassification is to facilitate the posi­

tive predictive value (PPV) and negative predictive value (NPV). Their relationships are 

presented below. 

r* = P(X = l\Y = i) 

= Z]=QP(X = l\T = j,Y = i)P(T = j\Y = i) 

= nSNi + (l - rO(l - SPi) (l.l) 

PPVi = P(T =1\X = 1,Y = i) 
P(X = l\T = 1, Y = i)P(T = 1\Y = i) 

P(X = 1\T = 1, Y = i)P(T = l\Y = i)+ P(X = 1|T = 0, Y = i)P(T = 0\Y - i) 
SNtn 

SNiTi + ii-SPMi-n) 

NPVi = P(T = 0\X = 0,Y = i) 
P{X = 0\T = 0, Y = i)P(T = 0\Y = i) 

(1.2) 

P(X = 0\T = 1, Y = i)P(T = 1\Y = i) + P(X = 0\T = 0, Y = i)P(T = 0\Y = i) 
SPi(l ~ n) 

SPi(l - n) + (l - SNJn 

It is easy to justify that, in the main study the actual number of subjects of positive 

exposure status (bn) amongst those who are apparently exposed in either case or control 

1.3) 
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Chapter 1. Introduction 

group (045) follows a Binomial distribution, i.e. bn ~ Binomial(ai5, PPVi). Similarly, 

conditioning on the number of cases or controls with negative apparent exposure status 

(aft), the number of truly unexposed subjects ( ^ 4 ) follows Binomial{a{§, NPVi), for 

i = 0 , l . 

When the nondifferential misclassification condition is fulfilled, meaning the condi­

tional distribution of X\T,Y does not depend on Y, it follows immediately that SNQ = 

SNi = SN, SPo = SPi = SP. However it is worth pointing out that, nondifferential 

misclassification does not imply equality of cases and controls regarding the apparent 

exposure prevalence (PPVi, NPVi). 

The bias caused by misclassification of the explanatory variable in case-control studies 

can be evaluated by the attenuation factor (AF), 

(T>* 

$ 

with a numerator representing limit of the error-prone "apparent" odds ratio, 

1 * 

Under the circumstances of nondifferential misclassification, the impact of bias imputed 

by measurement error is well understood (Gustafson, 2004). Under a weak condition 

that the possibility of having an accurately measured surrogate exposure is over 0.5 (i.e. 

SN + SP > 1), A F always moves towards the direction of = 1. In other words, there 

is a tendency to report an artificially weak association between the exposure and response 

in ignoring measurement error on the exposure. Furthermore, flattening effect on true 

odds ratios far away from the unity is more manifest. When the exposure prevalence 

is approaching 0 or 1, measurement error induces serious and sensitive attenuation on 
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the odds ratio. Nevertheless, Greenland and Gustafson (2006) found that, no general 

conclusion could be made regarding the direction of estimated association when the non-

differential misclassification on a binary exposure is not satisfied, or when the exposure 

variable is polychotomous. 

1.2 Review of currently available methods 

There is a large literature on the correctness for mismeasurement in biomedical research. 

Most of the work concentrates on building measurement error models using frequentist 

methods (Walter and Irwig, 1987; Bashir and Duffy, 1997; Carroll, Ruppert, Stefanski 

and Crainiceanu, 2006, for example). When the'problem of misclassification on exposure 

variable is encountered in epidemiologic studies, the matrix method (Barron, 1977) esti­

mates the expectations of cell counts (obtained by cross tabulating Y and T) by utilizing 

the margins of the main sample in Table 1.1. The odds ratio is estimated subsequently 

based on the cell counts, and the asymptotic variance of OR is derived by Greenland 

(1988) via'the Delta method. Marshall (1990) reparameterized the misclassification by 

PPV and NPV and proposed an inverse matrix method to retrieve the true odds ra­

tio. Lyles (2002) proved that Marshall's formula was in fact the maximum likelihood 

estimate (MLE) subject to differential misclassification. Other approaches including the 

simulation extrapolation method and latent class logistic regression model are devel­

oped to tackle the same problem (Kiichenhoff, Mwalili and Lesaffre, 2006; Skrondal and 

Rabe-Hesketh, 2004). On the other hand, the dramatic improvement of computational 

capability of electronic computers and the development of indirect simulation techniques 

such as Markov chain Monte Carlo (MCMC) make it possible to explore misclassification 

problems from a Bayesian perspective (Gustafson, 2004). In fact, partial knowledge of 

misclassification probabilities is often accessible to medical researchers before the conduc-
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Chapter 1. Introduction 

t i o n of a study. T h i s makes Bayes ian analysis an appeal ing approach, for the inference 

w i l l be based on the c o m b i n a t i o n of pr ior knowledge a n d d a t a thoroughly. 

Therefore, i n this thesis, we p r i m a r i l y introduce a series of B a y e s i a n methods suit­

able for different misclassi f icat ion assumptions. T h e i r performance w i l l be closely com­

pared to those of the m a x i m u m l i k e l i h o o d estimates ( M L E s ) a n d s i m u l a t i o n extrapola­

t i o n ( S I M E X ) m e t h o d , us ing s i m u l a t i o n studies a n d two real life examples. T h e thesis 

is organized as follows. C h a p t e r 2 presents fundamenta l concepts a n d a lgor i thms of the 

Bayes ian p a r a d i g m , a n d provides detai led methodology for the proposed Bayes ian m e t h ­

ods. C h a p t e r s 3 a n d 4 review the M L E a n d S I M E X methods under differential a n d 

nondifferential misclassif ications. C h a p t e r 5 discusses the comparat ive behaviours of the 

three methods based o n two s i m u l a t i o n studies. C h a p t e r 6 presents the performances 

of Bayes ian a n d other methods v i a two case-control studies w i t h misclassif ied exposure 

variables a n d v a l i d a t i o n sub-samples. C h a p t e r 7 provides overal l conclus ion a n d further 

remarks for the research. 

8 



Chapter 2 

Bayesian data analysis 

2.1 Bayes theorem 

Assume the observable random variables Y are distributed according to a joint density 

function f(y\6), where 9 is an unknown parameter vector. One's prior belief on the 

value of 6 before observing the data y is described by a prior distribution f(6). A joint 

probability distribution can be written as a product of the data distribution /(y|0) and 

the prior distribution /(#). Given the observed data, the posterior distribution of the 

unobserved parameters can be determined using Bayes' rule: 

/(%) = T^T ( 2' 1 } 

- / W W ) (2.2) 
f f(e*)f(y\e*)dd* 

This equation can further be simplified by omitting the fixed factor /(y) for a given 

y that does not depend on 6: 

f(8\y) oc f (0)f (y|0) • 

When it is too complicated to derive a normalized form for the above unnormal-

ized posterior distribution, Markov Chain Monte Carlo (MCMC) and other numerical 

9 
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techniques should be applied. 

2.2 P r i o r distributions 

The exposure prevalances r0, r i , sensitivities SNQ, SNI, and specificities SPo, SPi are 

the parameters of interest in this study, ranging from 0 to 1. We make them cover 

the whole real line by converting into a logit scale, logit(x) = log for x between 0 

and 1. The prior information concerning these parameters can then be modeled using 

bivariate normal distributions. The actual exposure prevalences (r^), sensitivities(>SiVj) 

and specificities (SPi) of X as a surrogate for T are assumed to be uncorrelated in this 

circumstance. 

V*1
 J V l o g T 

( \ 
Pi 

( log 

U J v.logl 

( log 

U ) l l o g l 

- n 

SN0 \ 
-Sis 
SN! 

- S^ 7 
SP0 \ 
-SP0 

SP^ 

N 
KP2J 

( 
P\0-\o-2 

(To 

\ \ 

P2T1T2 T£ 
J I 

P 3 M 2 51 
J J 

The prior knowledge of differentiality for misclassification is reflected by ui, v2, 71, 72 

and varying values of p2 and p3. Theory tells us that normality is retained from linear 

10 
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combination of normal random variables. We then have 

Pi - P2 ~ N(vi - I/2, + T 2

2 - 2p2T1T2) (2.3) 

gi - q2 ~ AT(7! - 72, 5? + b\ - 2p351S2) (2.4) 

Parameters in the prior distributions are often named hyperparameters. In this con­

text, they include pi, a^v^ Ti, 7$, 5i and pj. Hyperparameters reflect one's prior belief 

on the target parameters based on previous research, literature review or even personal, 

opinions. We set p,\ — p2, vx = v2 and 71 = 72 to be "unbiased", a priori, indicating the 

prevalences and misclassification probabilities amongst cases and controls are centred 

around equal means; and ox = a2, T\ = r2 and Sx = 82, asserting that, the variabilities 

associated with prevalences, sensitivities and specificities in two populations are consis­

tent. As a result, the condition p2 = p3 = 1 implies p\ — p2 ~ A/(0,0), q\ — q2 ~ AT(0,0), 

and furthermore pi = p2, qx — q2. Since the logit transformation is a 1-to-l function, it 

follows immediately that SNQ = SNi and SPQ = SPx, which corresponds to nondifferen­

tial misclassification. Conversely, a zero-valued correlation coefficient p2 or p3 indicates 

the independence between px, p2 or qx, q2, and hence implies S W n and SNi or SP0 and 

SPi are independent. This intuitively reflects the fact that sensitivities or specificities are 

free to vary by themselves, and can be interpreted as, fully differential misclassification is 

achieved. Situations in between the two cases are defined as the "nearly nondifferential" 

misclassification to reflect a certain level of dependence between the misclassification pa­

rameters. In addition, by assigning particular values to hyperparameters, for instance Pi 

and a,, we can postulate a priori that r; lies between 0.02 and 0.5 say, on logit scale with 

95% probability. In fact, this is a "wide" interval containing most feasible prevalence 

values in epidemiological applications. 

Because the marginal and conditional densities of a multivariate normal : variable 

11 
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remain normal, the joint, marginal and conditional prior distributions for the original 

parameters r\, r 2, SN\, SN2, SP\, SP2 can be easily derived applying standard variable 

transformation techniques. 

2.3 Posterior simulation 

Let us define the parameter vector 9 as 

e = (r1,r2,SN1,SN2,SP1,SP2 

The sampling distribution (ignoring constant terms) is 

/ (y |0) = f [ \ \sNiri + (1 - SPi)(i - TO]"" [( l - SNi)n + SPi(i - n) 
i=0 

Ot6 

SNin an an 
( i - 5 P 0 ( i - n ) (l-SNjn SPiil-n) },(2.5) 

aii 

and the posterior density / (0 |y) is proportional to f(9)f(y\9). 

With this complex unnormalized posterior density function, one cannot (a) simulate 

independent and identically distributed realizations from the posterior, or (b) simulate 

dependent but identically distributed realizations from the posterior distribution. For­

tunately, under this circumstance, the family of MCMC techniques provides us with an 

approach to simulate from a Markov chain that converges to the posterior density as 

its stationary distribution (Gustafson, 2004). An alternative term referring to MCMC 

methods is the Metropolis Hastings (MH) algorithm. Together with Gibbs sampler, a 

special case of the MH algorithm, MCMC is commonly used in practice to build Markov 

chains,through drawing samples from the Bayesian posterior distributions. 

12 
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Chapter 2. Bayesian data analysis 

2.4 The Metropolis Hastings Algorithm 

The Metropolis Hastings (MH) algorithm was originally introduced by Metropolis et al. 

(1953) and was further generalized by Hastings (1970). The M H algorithm enjoys a 

simple form. Consider the situation when we try to construct a Markov chain converging 

to a stationary distribution (target density of interest) p(£,\z). First, an arbitrary starting 

point is drawn,so that pi^jz) > 0. A jumping distribution (or proposal distribution) 

J i s t n e n selected to simulate a candidate state £* at time t+1 provided the current 

state £*, for t = 1, 2, 3, ... . The acceptance probability is defined as 

Next simulate u from the Uniform(0,l) distribution. If u < a, set £ t + 1 = £*; otherwise, 

set = The transition distribution of the Markov chain is therefore a" mixture of 

the proposal distribution and a point mass at ^ t + 1 = The iteration continues until a 

sample size n is reached after the "burn-in" period of size m. It is important to select 

sufficiently large m and n to guarantee accurate estimation of the quantities associated 

with the target distribution. The choice of the jumping distribution has great impact on 

the convergence of the Markov chain £ m + 1

) £ m + 2

) . . . , £ m + n to the posterior density, and 

mixing of the parameter values. 

The' Gibbs sampler can be treated as a special case of the M H algorithm of accep­

tance probability being 1 at every jump. It is useful when the target posterior distri­

bution is multidimensional, such as the problem being studied here. When it is dif­

ficult to sample from the complicated desired joint distribution, the parameter vector 

(2.6) 

2.5 The Gibbs Sampler 

13 
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0 can be d iv ided into say d subvectors or blocks (0i, . . . ,0d). A t every i tera t ion, a l l 

d subvectors are upda ted i n sequence, each being sampled from the condi t iona l dis­

t r i bu t ion given a l l other blocks (the full conditional distribution). I n other words, at 

step i, 6i is sampled from / ( # i | # ^ \ y ) , provided the latest values of other subvectors 

Q*-} = (0\,..., 9\_x, Oj+l,..., W i t h conjugate priors, it is possible to simulate d i ­

rect ly from the full condi t iona l target d is t r ibut ions . Otherwise , the M H a lgor i thm can 

be used to update parameters w i t h i n a single block. 

2.6 The hybrid algorithm 

W h e n the M a r k o v chain under differential or nearly nondifferential misclassif icat ion 

reaches some state 9 i n the parameter space, the cell counts i n m a i n da ta of Table 

1.1 (hj), i = 0,1, j = 1,2,3,4 are generated from B i n o m i a l d is t r ibut ions described i n 

section 1.1. T h e da t a is updated as y = {y0bs, Yunobs} = {(an, • • • , ai4), (bn, • • • , 6i4)}-=0 . 

T h e sampl ing d i s t r ibu t ion or the l ike l ihood funct ion becomes 

f (y obs j yunobs 
\9) =. L(6\yobs,Yunobs) 

= n{(5 iv^r i + b n((i-^)(i-n)r3+6i3 

i=0 

((l - SNi) n)aii+ba (SPi (l - n))a«+b« } 
i 

_ J~J !^j.aii+ai2+ba+bi2 ^ _ ^.^ ai3+ai4+fct3+fei4 Cjpjau+bii 

i=0 

(1 - SNifi2+ba SP*ii+bii (1 - SPi)aa+biZ} . (2.7) 

A s it is not plausible to simulate 9 from the jo in t posterior d i s t r ibu t ion directly, we 

sample the 6-dimension parameter sequential ly from the cond i t iona l posterior d i s t r ibu-

14 



Chapter 2. Bayesian data analysis 

tions, 

i 

f(r0,r1\SN0,SN1,SP0,SP1,y) oc / ( r o . n ) fj { r ? " + 0 » + 6 " + t » \ l - r . ) « « + a M + * i 3 + 6 M J ; ( 2 8 ) 

t = 0 

1 
HSNo^N^ruS^SPuy) oc / ( S i V 0 , S i V i ) { S A T ^ 6 " (1 - S W i ) ° « + 6 < a } , (2.9) 

1 

HS^SP^ruSNo^Nuy) oc / ( S P 0 , 5 P i ) TJ IsPrt'+b" (1 - 5 P i ) a i 3 + 6 i 3 j . (2.10) 
i = 0 

In above equations, / ( r 0 , r i ) , f(SN0,SNi) and f(SPo,SPi) are bivariate normal prior 

densities for the prevalences, sensitivities and specificities over cases and controls. 

As the densities are not conditionally conjugate, the MH algorithm is performed 

at next "step. We apply univariate MH jumps embedded in Gibbs sampling to update 

each component in the paired of parameters, ( r 0 ) r i ) , (SNo,SNi) and (SPo,SP\). It 

is important to choose a jumping distribution that leads to satisfactory performance of 

the Markov chain. One intuitive solution is to let the jumping distribution follow a 

Beta density as appeared in the likelihood function in Equation (2.7). This simplifies 

calculation of the acceptance rate by cross canceling the ratio of proposed vs. current 

likelihoods and the ratio between two jumping densities. As a result, we are left with, 

merely the ratio between two prior distributions. To be more specific, let us take the 

acceptance probability in one dimensional MH jump on r 0 in Equation (2.8) for example. 

The jumping rule.is specified as ^Beta(aQi + ao2 + b01 + bl2 + l,a03 + ao4 + b03 + b04: + l), 

close to the conditional sampling distribution. The ratio of ratios in Equation (2.6) 

15 
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becomes 

f(r*0 r
t SN*,SN*,SP*,SP*,y*) 
r{, SN*,SN*,SP*,SP*,y*) 

J(r*0 r\,SN*,SN*,SP*,SP*) 
J(r*0\r*0,r*,SN*,SN{,SP*,SP*) 
f(r*0\r\, SN*, SNI SP*, SP*)L(r*0,r\, SN*, SN*, SP*, SP*) 
f(r*0\r{, SN*, SNJ, SP*, SP*)L(r*0, rj, SN*, SN\, SP*, SP*) 

L(r*,r\,SN*,SNj,SP*,SP*) 
L(r*0,r\,SN*,SN*,SP^,SP*) 

f(r*\r\,SN*,SN*,SP*,SP*) 
f(r*0\r\,SN*,SN*,SP*,SP*) 
f(ro\r[) 
f(ro\r\)' 

The last step is obtained because of the mutual independence among prevalence, sensi­

tivity and specificity in prior information. 

We now summarize the posterior simulation procedure as follows. 

1. Acquire initial values of (rg, rf, SN$, SN?, 5P0°, SP?), each lying between 0 and 1. 

2. At the t*h iteration, 

• Given parameters 6* — (r*0,r[, SNQ, SN*, SPQ, SPQ, update the unobserved 

actual exposure data Vunobs ' = based on Binomial distributions, for 

1 = 0,1,7 = 1,2,3,4. 

• Based on the updated cell counts {b*j} at the tth iteration, model parameters 

are generated alternately via Gibbs sampler and MH algorithm. 

(a) Simulate r*0 conditioning on (rj - 1 , SN*'1, SN*~L, SP^T 1, SP^1) using MH 

algorithm. A proposed jumping rule is ~Beta(aoi + a02 + b*01 + b*02 + 

1, a 0 3 + ao4 + b*Q3 + 0̂4 + 1)) w i t n acceptance rate min ( / f f i f y t - L , l } • 
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(b) Simulate r\ conditioning on (T-Q, SNQ'1, SN![~1,SPQ~1, SP^"1). A pro­

posed jumping rule is r\ ~Beta(a,n + ai 2 + b\x + b\2 + l , a i 3 + au + 

b{3 + 6j4 + 1), with acceptance rate min ^y^r^ry, l | • 

(c) Simulate SN% conditioning on (r£, r \ , SW? - 1, SP^1, SP^1), using MH al­

gorithm. A proposed jumping rule is 5A/Q* ~5eta(aoi+6 0 1 + l , ao2+Oo2 + l), 

with acceptance rate min j f ^ p f ^ t - i ^ , 1 j • 
(d) Simulate SN{ conditioning on (r£, r\, SN&, SP^1, S P ' - 1 ) . A proposed 

jumping rule is SAT* ~Beta(au + 6'n.+ 1, a i 2 + 64

12 + 1), with acceptance 

rate mm j , 1) • 

(e) Simulate SP& conditioning on (r£, rj, SWg, SWf, S P ' - 1 ) using MH algo­

rithm. A proposed jumping rule is SPQ ~J3e£a(a04 + 604 + 1, a03 + 6Q3 +1), 

with acceptance rate min j f^f^-^spt-\^, 11 • 

(f) Simulate S P / conditioning on (r^rj, SA/Q, SN{,SPQ). A proposed jump­

ing rule is SP{ ~Beta(au + b\A + 1, ai 3 + 6'3 + 1), with acceptance rate 

• Calculate the log odds ratio at the tth iteration. 

3. Repeat step (2) at subsequent iterations, for t = 1,..., m + n, to simulate target 

parameters alternately using the hybrid algorithm. 

The procedure is stopped after accomplishing m+n iterations, where m is the number 

of burn-in iterations and n stands for the number of target iterations. The multivariate 

Markov chain is generated and converges to the joint posterior distribution at sufficiently 

large m. The marginal Markov chains for individual parameters including the log odds 

ratio are constructed at the meantime and statistical inference can be performed there­

after. 
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Under the circumstances of nondifferential misclassification, the parameter space be­

comes 4 dimensional with 8 = (r0,ri, SN, SP). The prior densities and likelihood func­

tion are revised as 

^( l o gr^)~^' r 2 ) 

g = ( l o g - ^ ) ~ A T M 2 ) 

L(d\yobs, yunobs) = { r ? 1 + ° « + b » + 6 » (1 - r i ) ° a + a " + 6 ' 3 + 6 " 

SN<Hi+bii tX _ SN^i2+bi2 Span+bn f l _ Spjai3+bi3^ _ ̂  

i=0 

This leads to the combinations of steps (c) and (d), (e) and (f) in the above procedure. 

Only one M H jump is required to simulate Markov chain for the sensitivity or specificity 

within the Gibbs sampling structure. Nevertheless, the ideas on posterior simulation can 

be addressed and utilized as before. 
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Chapter 3 

Maximum Likelihood Estimation 

The maximum likelihood estimate of a parameter 9 given a sample point x is a parameter 

value at which the likelihood L(9\x) attains its maximum as a function of 9 (Casella 

and Berger, 2002). Often candidate maximum likelihood estimators (MLEs) can be 

obtained through solving ^logL(9\x) = 0, when the likelihood or log likelihood function 

is differentiable in 6. The left hand side of the equation is sometimes named the score 

function associated with the likelihood. When 9 is multidimensional and a closed-form 

solution does not exist, iterative numerical procedures such as Newton Raphson algorithm 

are required. Because of some optimality quantities of MLE including the consistency and 

efficiency, the method of maximum likelihood estimation is currently the most popular 

method for point estimation. 

3.1 MLEs under differential misclassification 

A standard way to express the likelihood in terms of (r0,ri, SN0, SNX, SPQ, SP\) for prob­

lems consisting of a main study (misclassification data) and internal validation data is 

provided in Equation (2.5) under differential misclassification. Unfortunately the score 

functions do not form a tractable system and no closed-form solution exists under this 

parameterization. Lyles (2002) proposed an alternate to parameterize the likelihood 

in terms of 9* = (rj.rj, PPV0, PPVU NPV0, NPVi). This reparameterization leads to 

closed-form MLEs, and is proven to be equivalent to the inverse matrix method of Mar-
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shall (1990). 

The likelihood function is of the form 

„*\ a i l 

i=0 
W\y) = II {r*a* t1 - r*)° i 0 ( p p v r i ) 

((1 - PPVi)r*)ai3((l -NPV^l - r*)) 

(WPV$(I-O)°"} 

*\\ai2 . 

(3.1) 

By setting the score function associated with each parameter zero, we obtain MLEs 

PPVi 

NPVi 

an 
an + a^ 

ajA 
ai2 + &i4 

ail + <2i3 + &i5 
a t l + a%2 + a i3 + ai4. + <2j5 + aj6 

(3-2) 

If we apply the invariance property, the MLEs of the original parameters and the log 

odds ratio d> can be written as 

U. = PPVirt + il-NPViXl-f!) 

SNi 

SPi 

PPVif* 

<j) = log 

NPVj(l-f*) 
1-fi 

(3-3) 

The Hessian matrix composed of mixed second derivatives is estimated at the M L E 

d* in form of 

H(0*).= 
dd V2logL (V*|y) 

In fact, the zero cross partial derivatives simplifies the expression of Hessian matrix, and 
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the observed Fisher information is obtained as, 

i(0*) = -H(0*) 

/ d2logL(0* |y) 

0 

0 

0 

0 

V 0 

0 

d2logL(e*\y) 

0 

0 

d2logL(e*\y) 

0 

dPPVtf 0 

d2logL(0*\y) 
dPPV? 

0 

0 

d2logL(6*\y) 
JP\ 

0 

dNPVg 

0 

0 

0 

0 

0 

d2logL(e-\y) 
. dNPV2 / 

The asymptotic covariance matrix of MLEs in the Cramer-Rao lower bound £ g , is ap­

proximated by the inverse of the observed Fisher informatin at 9*, which bears the form 

of a 6x6 diagonal matrix with reciprocals of non-zero second derivatives of the log like­

lihood on the diagonal. As a result, variances of the "apparent" exposure, positive and 

negative predictive values are estimated as, 

var (r*) 

var (PPV^) 

f ? ( l - f \ ) 2 

O i l + &i2 + ai3 + a i 4 + ai5 + a i ( 

PPVj(l - PPVj) 
ail + &i3 

l y p ? i ( i - NPVJ) 
ai2 + a i 4 

The asymptotic variance for the log odds ratio is further estimated as (Morrissey and 
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Spiegelman, 1999; Lyles, 2002), 

var 
/ „ N » ( r W j + JVfYj - l)255?(f;) + (ff)25Sr ( r W , 

W =
 ^ — rf(l - hY ~ 

(1 - flf var {NPV^j 

+ 

(3.5) 

using multivariate Delta method. 

var ($) = W T % W , (3.6) 

whereby 

W = 

d J L 

9ppvi<n0*=0* 

aAfPv 0

v y l^*=s* 

a j , 

is a column vector composed of first derivatives evaluated at the MLE 6*. Similar ideas 

can be adapted to obtain the asymptotic variances for MLEs of the original parameters 

6 = (r0,h,SNo,' ^i,SP0,SP\) • 

vaf{ri) = (PPVi + NPVi-1) var (r*) + 

{f*fvar(pPV^ + 

(f* - i f var (NPV^ (3.7) 
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var (SNi) 
fpy. PPViT* (pPVi + NPVi - l ) " 2 

var (f*)+ 

f*fi-PPVi(f*) 

(1 - ft) ft PPVi 

var (PPVi) 

var (NPV^J 

+ 

(3.8) 

var (SPi) 
.•gpy. NPVi (1 - r*) [PPVi + NPVi 

* + • - 1 ) 

1 -r. 
ft (1-ft) NPVj 

(1 - r*)a 

(1 - hf 

var (PPV^j + 

var (f*) + 

I-f* NPVi (1-ft)2 

1 - f . ( i - hY 
var NPVi (3.9) 

3.2 MLEs under nondifferential misclassification 

Neither parameterization mentioned above facilitates closed-form MLEs under the cir­

cumstances of nondifferential misclassification. Although explicit formulas that are com­

putationally less intensive are provided in approaches such as the matrix method (Barron, 

1977) and inverse matrix method (Marshall, 1990), the ML estimation is in general prefer­

able due to its efficiency. We therefore proceed by employing a quasi-Newton method 

("L-BFGS-B") by Byrd et al. (1995) that is implemented in the "optim()" function in 

statistical software R to achieve likelihood optimization in original parameter space of 

0 = (r0,ri,SNo,SNi,SPo:SPi). Function values, gradients (first order derivatives) of 

the log likelihood function and the initial estimates are supplied to the routine in order 

to build up a picture of the surface to be maximized (R 2.4.0). 
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A numerically differentiated Hessian matrix at the best set of estimates in form of a 

matrix of mixed second derivatives, 

H(<j) 

will be returned if the option hessian is set T R U E in "optimQ" function. The estimate 

of observed Fisher information is received immediately 

i(l) = -H(0) , 

and the asymptotic covariance matrix of 6 in the Cramer-Rao lower bound is approxi­

mated by the inverse of the estimated Fisher information, denoted by i (0) _ 1 . The asymp­

totic variance of the log odds ratio estimate is attainable by the multivariate Delta 

method, 

var 
\ 

dr0 ve\e 
a i 

( 
°~r0 °~f0ri 

' * 2 
°~fo?i crf1 

J 

\ 
dr0 Ve\e (3.10) 

whereby the matrix in the middle of the right hand is the 2x2 component of the estimated 

asymptotic covariance matrix corresponding to the ro and f\. 
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Simulation Extrapolation Approach 

Simulation extrapolation (SIMEX) method was initially proposed to correct additive 

measurement error in general regression problems by Cook and Stefanski (1994) and 

further extended to handle other measurement error models (Cook and Stefansk, 1994; 

Kiichenhoff and Carroll, 1997; Eckert, Carroll and Wang, 1997). SIMEX exploits the 

relationship between the size of measurement error in covariate or response and the bias 

in parameter estimation. It utilizes a self-contained simulation component to establish 

a trend of measurement error-induced bias versus the variance of the extra added mea­

surement error, and extrapolate this trend to the case of no measurement error (Carroll, 

Ruppert, Stefanski and Crainiceanu, 2006). 

The misclassification SIMEX (MC-SIMEX) method, proposed by Kiichenhoff, Mwalili 

and Lesaffre (2006) extends SIMEX to handle misclassification problems with discrete 

covariate or response. Let us describe MC-SIMEX in a logistic regression setting with a 

binary response variable Y, and a nondifferential misclassification prone binary covariate 

X that is associated with an unobservable independent variable T. 

logit (Y = l\t)=p0 +Pit 

It follows immediately after simple arithmetic that Pi is the effect parameter of interest 

in this context, which is the log odds ratio of having a positive response, i.e. <f) = P\. The 
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nondifferential misclassification mechanism is characterized by a misclassification matrix, 

n = 
( SP l-SN^ 

^1-SP SN 

' P{X = 0\T = 0) P(X = 0|T = 1) ^ 

P(X = 1\T = 0) P(X = 1\T = 1) j 

Assuming II is positive definite, the spectral decomposition can be written as II = 

EAE-1, where A is a diagonal matrix of eigenvalues and E is composed of eigenvec­

tors. Let us define a misclassification operation MC [II] (Z), indicating the procedure 

to simulate a misspecified random variable related to Z with measurement error prob­

abilities SN, SP. It is then natural to express the relationship between X and T as 

X = MC [II] (T). The limit to which the naive estimator of Bx converges ignoring mea­

surement error on the exposure, is denoted by (3* (II), as the sample size approaches 

infinity. 

At the simulation stage of MG-SIMEX algorithm, extra misclassification IIA = EAxE~l, 

(A > 0) is attached to the error prone variable X to generate "reclassified" pseudo data, 

X (A) = MC [n A ] (X). 

Under the assumption that the measurement error mechanisms affecting T and X are 

independent, one can write 

X (A) = MC [U.1+A] (T), 

and the naive estimator based on the simulated dataset (Xi (A), , i = 1,..., N, bears 

the form /3J ( l l 1 + A ) , which is achievable by least squares method. Hence for a fixed set 
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of A values, 0 < Ai < A2 < ... < AM , the MC-SIMEX.reclassification step is repeated for 

B times at every Â  to simulate pseudo data (Xi (A&), Yi) and to estimate /?*b (n1+Afc) . 
The situation of no misclassification is obtained at A = —1, as n 1 + A = II0 = / . The log 

odds ratio at Â  is then estimated as 

* Ef = 1fe(n 1 + AQ 
Pi,k - -g , 

for fc = 1 , . . . ,M. 

At the extrapolation step, the MC-SIMEX estimator 'BMC is thus acquired by 

1. fitting an parametric extrapolation function L on data 1̂ + \k,J3i,k), for instance 

by least squares, for k = 1,..., M; 

2. extrapolating the parametric model back to the origin crossing 0̂, PMCJ • 

Kiichenhoff et al. (2006) believe that the MC-SIMEX estimator is at least approx­

imately consistent when the extrapolation function is correctly specified or sufficiently 

close to Pt (rffc+A) . They conclude that a quadratic or loglinear extrapolation function 

works well in general for various models. Examples of MC-SIMEX plots illustrating the 

effect of increasing measurement error on logOR via different extrapolation functions are 

provided in Figures 6.2 and 6.4. 

The MC-SIMEX method can also be applied to differential misclassification prob­

lems. In the context to model relationship between binary covariate and response, a 

4x4 misclassification matrix with separate matrices characterizing measurement error in 

case fix and control fl 0 populations should be supplied to initiate the simulation and 
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extrapolation process, 

n = 
v o n i y 

(4.1) 

The misclassification matrices are usually either directly obtainable or can be estimated 

from the validation data. 

There are several candidates for the MC-SIMEX variance estimation var(J3Mc). The 

ease of parameter estimation in general regression context using SIMEX is somehow coun­

terbalanced by the complex calculation of the standard errors. A bootstrap approach is 

outlined by Kuchenhoff et al. (2006), though the intensive computation required in sim­

ulation step brings difficulty to the implementation. Two other methods avoiding nested 

resampling are established by Stefanski and Cook (1995) and Carroll et al. (1996). The 

first one goes' closely with Tukey's jackknife standard error calculation, when the misclas­

sification matrix is known or adequately estimated. The latter employs the asymptotic 

normal distribution and the asymptotic covariance matrix in the setting of M-estimation, 

and provides a more flexible estimation (Carroll et al., 2006). These two variance esti­

mation methods are adapted in this thesis. 

The MC-SIMEX method is available in R after loading the "SIMEX" package that was 

developed by Lederer. The main function "mcsimex()" is modified to meet our needs 

to automate the estimation process of log odds ratio repeatedly under the differential 

misclassification. 
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Simulat ion Studies 

5.1 Data Simulation 

In order to demonstrate the performance of Bayesian adjustment to misclassificatibn 

and make comparison with other statistical approaches, we conduct simulation study 

under two cases. Two sets of fixed simulation parameters are assigned to cases 1 and 2 

respectively. Four misclassification scenarios concerning different levels of misclassifica­

tion differentiality are built to contrast statistical methods introduced in Chapter 2, 3 

and 4. We generate 400 datasets (NREP=400) regarding each of the scenarios in each 

case. Data in scenario 1 are simulated under the nondifferential misclassification, with 

increasing degree of differentiality in scenarios 2, 3, and 4. 

Case 1: Simulation with equal numbers of cases and controls (Nca = Ncnt = 800), 

whereby each group consists of 25 percent of validation data and 75 percent of main (or 

misclassification prone) study data (JV£ = Nv

mt = 200, JV£ = N™t = 600). To achieve 

the property that the odds ratio $ = -^p- for the true exposure T on the response Y is 
l - r 0 

1.5, we have 

• Scenario 1: (r 0 , r1)=(0.075, 0.1084), (SN0, SWi)=(0.6, 0.6), (SP0, SPi)=(0.9, 

0.9) 

• Scenario 2: (r 0 , n)=(0.075, 0.1084), (SN0, 5M)=(0.6, 0.65), (SP0, 5Pi)=(0.9, 

0.85) 
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• Scenario 3: (r 0, n)=(0.075, 0.1084), (SN0, 5iVx)=(0.6, 0.7), (SP 0 , 5Pi)=(0.9,. 

0.8) 

• Scenario 4: (r 0, ri)=(0.075, 0.1084), (SN0, SWi)=(0.6, 0.75), (SP 0 , SPi)=(0.9, 

0.75) 

Case 2: Simulation with larger percentage of controls (./Vcnt = 1200) than cases (./Vca 

= 400), while the ratio of validation data against main data remains 1:3 ( A ^ = 100, N^t 

= 300, N£ = 300, N™t = 900). To achieve the property that the odds ratio $ for the 

true exposure T on the response Y is 2, we have 

• Scenario 1: (r 0, ri)=(0.1, 0.1818), (SN0, SWi)=(0.6, 0.6), (SP 0 , SPi)=(0.85, 0.85) 

• Scenario 2: (r 0, n)=(0.1, 0.1818), (SN0, 5iV1)=(0.65, 0.6), (SP0, 5Pi).=(0.8, 0.85) 

• Scenario 5: (r 0 ) ^=(0 .1 , 0.1818), (SAT0, SA^1)=(0.7, 0.6), (SP 0 , 5P1)=(0.75, 0.85) 

• Scenario ̂ : (r 0, ri)=(0.1, 0.1818), (SN0, S'iVi)=(0.75, 0.6), (SP 0 , 5Pi)=(0.7, 0.85) 

To generate data in either case, we first simulate the true exposure status T (=0, 1) 

at Y = i from Bernoulli^), for i=0, 1, two binary quantities indicating the occurrence of 

misclassification in terms of sensitivity and specificity, of sample size iV c a or Nmt. Using 

Equation 1.1, we then simulate the apparent (or surrogate) exposure measurements in two 

groups. Finally we cross tabulate the true and apparent exposure quantities of size N^a 

or to construct the internal validation tables, and classify the remaining apparent 

exposure measurements to acquire the main study table (Table 1.1). 

Three Bayesian methods adopting nondifferential, nearly nondifferential and differ­

ential prior distributions respectively, are performed at each scenario within each case to 

adjust for possible misclassifications and assess the association between the true exposure 

and outcome. 
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5.2 Choice of Hyperparameters 

Methodology about the MCMC method is described in details in Chapter 2. In simulation 

studies, we first specify the hyperparameters appearing in prior distributions of the effect 

parameter of interest 6 — (r0, rx,SNi, SPi), i = 0,1. According to Section 2.2, under the 

assumptions that p\ = p2, o\ = 02, V\ = ^2, 7i = 72, r i — T2 and Si = S2, we assign 

p = — 2, a = 1 to model the prior information that the logit true exposures are normally 

distributed with 95% probability between logit(0.02) and logit(0.5). Mild correlation 

between r 0 and r\ (pi = 0.3) is selected to allow relatively large standard deviation of 

logOR around mean 0. Similarly, we set v — r = 1.7, 7 = 5 = 0.65 to represent the 

prior knowledge that the logit sensitivity and logit specificity are normally distributed 

within logit(0.6) and logit(0.95) with 95% probability. As discussed in Chapter 2, we 

set p2 = p3 = 1 to reflect nondifferential misclassification; p2 = p3 — 0 to express 

prior belief in differential misclassification. The choice of p2, p3 for nearly nondifferential 

misclassification requires extra work. To reflect the priori that, the probability of having 

similar proportions of correctly measured exposure variable among cases and controls is 

about one quarter, i.e. 

P{\SNi - SNQ\ < 0.01} = P{\SPi - SP0\ < 0.01} = 0.24, 

a simulation study is conducted, and 0.9 is assigned to p2 and p3. Alternatively, closed-

form solutions p2 = p3 = 0.9 can be obtained by solving the equation, 

PUlogiHSNi) - logit(SN0)\ < 0.1} = P{\logit(SP\) - logit{SP0)\ < 0.1} = 0.1, 

using expressions (2.3), (2.4) and the standard normal table. 
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5.3 Convergence of M C M C Simulation 

The convergence and mixing of MCMC simulation should be checked before we make in­

ference about the posterior distributions. Decisions are made based on visual inspection 

of simulation plots. After discarding the first 1000 simulations to diminish the effect of 

initial distributions, we draw samples from 10000 iterations, based on which statistical 

inferences are conducted. The last 2000 iterations of Markov chains for Ti, SNt, SPi and 

logOR at different scenarios (each represented by one out of 400 simulated datasets) in 

Case 1 are displayed in Figure 5.1 and 5.2. To be more specific, Figure 5.1 depicts the 

8000-10000 realizations of a Markov chain simulated under the nondifferential misclas­

sification assumption regarding a dataset in Case 1, scenario 1; Figure 5.2 depicts the 

8000-10000 realizations of a Markov chain simulated under the differential misclassifica­

tion assumption regarding a dataset in Case 1, scenario 4. 

It is observed that Markov chains generated by the "nondifferential", "nearly nondif­

ferential" and "differential" Bayesian methods, under different prior distributions display 

satisfactory mixing and convergence. The Markov chains are moving thoroughly within 

the target range, and no chain is stuck at the similar values for successive iterations. 

Table 5.1 reports the acceptance rates based on 10000 posterior realizations over 400 

replicated datasets at each scenario in Case 1. As described in section 2.6, the uni­

variate proposal (or jumping) distributions of model parameters embedded in the Gibbs 

sampler, do not directly depend on preceding states, for information from the imme­

diate previous states facilitates update of the unobserved cell counts in the main data 

Yunobs — and, the univariate candidate parameter value is simulated solely based 

on updated data and previous values of other parameters. Therefore, high acceptance 

rates displayed in Table 5.1 demonstrate, posterior Markov chain is moving around and 

adequacy of mixing is achieved. It is worth pointing out that, the jumping distributions 
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proposed here do not involve tuning parameters as required in the random-walk MH algo­

rithm. The typical challenge of adjusting variations (oVs) in the proposal distributions 

81 ~ N(9t

k,a2.) (k = l,. . . ,m), to maintain a moderate acceptance rate, is therefore 

avoided. Meanwhile the Markov chains converge roughly to the target distributions af-

Table 5.1: Average acceptance rates over 400 replicates in Case 1 

Nondifferential Bayesian method - scenario 1 
r0 ri SPo SPi SN0 S^ 

Acceptance 0.973 0.950 0.728 0.728 0.977 0.977 
Nearly nondifferential Bayesian method - scenario 2 

ro n SPo SPi SNo SNi 
Acceptance 0.976 0.947 0.540 0.668 0.742 0.741 

Nearly nondifferential Bayesian method - scenario 3 
ro SPo SPi SN0 

Acceptance 0.977 0.944 0.485 0.665 0.572 0.602 
Differential Bayesian method - scenario 4 

ro SPo SPi SNo 
Acceptance 0.973 0.949 0.641 0.786 0.959 0.909 

ter 1000 burn-in iterations. Posterior distributions of the exposure prevalences amongst 

diseased and non-diseased participants, and log odds ratio describing the association 

between the response and exposure, are illustrated by histograms of posterior samples 

(Figure 5.3 and 5.4). We hereby emphasize plots considering scenarios where models are 

consistent with the data-generation, though the simulations include inconsistent cases 

as well (e.g. differential model on nondifferentially misclassified data, or nondifferential 

model on differentially misspecified data). The pre-specified true exposure prevalence 

are 0.075 (control group), 0.1081 (case group) in Case 1, and 0.1 (control group), 0.1818 

(case group) in Case 2. The simulation parameters along with the true log odds ratios 

(log(1.5) in Case 1 and log(2) in Case 2) are marked by vertical bars in the plots. It is 

shown in the plots that, posterior samples capture the true model parameters with high 
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accuracy. It is also noticeable that r0 and r\ are often estimated with bias towards the 

same direction (i.e. whose medians located both below or above the vertical bars). This 

however leads to a more accurate estimate of logOR. 

Table 5.2: Posterior distributions at various scenarios in Case 1 with different prior 
information 

Nondifferential prior at Case 1, scenario 1 
r0 ri SP0 SP! SN0 SNi logOR 

Mean 0.075 0.102 0.901 0.901 0.706 0.706 0.353 
SD 0.015 0.0169 0.011 0.011 0.063 0.063 0.265 

5th %tile 0.052 0.076 0.883 . 0.883 0.599 0.599 -0.070 
95th %tile 0.101 0.131 0.918 0.918 0.805 0.805 0.798 

Nearly nondifferential prior at Case 1, scenario 2 
r0 SP0 SPi SN0 SiVi logOR 

Mean 0.053 0.098 0.884 0.847 0.777 0.785 0.686 
SD 0.013 0.018 0.013 0.016 0.069 0.063 0.339 

5 th %tile 0.032 0.070 0.862 0.820 0.658 0.677 0.142 
95th %tile 0.076 0.129 0.906 0.873 0.877 0.880 1.262 

Nearly nondifferential prior at Case 1, scenario 3 
ro n SP0 SPi SNQ. SNi logOR 

Mean 0.060 0.091 0.884 0.798 0.715 0.750 0.463 
SD 0.014 0.018 0.013 0.017 0.074 0.064 0.320 

5th %tile 0.039 0.064 0.863 0.769 0.588 0.637 -0.049 
95th %tile 0.084 0.123 0.905 0.826 0.828 0.846 0.995 

Differential prior at Case 1, scenario 4 
r0 n SP0 SPr SN0. SNX logOR 

Mean 0.055 0.089 0.898 0.762 0.645 0.7520 0.529 
SD 0.014 0.019 0.013 0.020 0.103 0.077 0.360 

5th %tile 0.034 0.060 0.876 0.730 0.468 0.614 -0;050 
95th %tile 0.080 0.123 0.920 0.795 0.805 0.864 1.128 

The sample mean, standard deviation and 90% credible interval (regarding 10000 post 

burn-in iterations) for each model parameter at different scenarios of Case 1 and Case 2 

(each corresponding to one simulated dataset) are calculated under the appropriate prior 

assumptions regarding differentiality of misclassification. Results presented in Tables 5.2 
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Table 5.3: Posterior distributions at various scenarios in Case 2 with different prior 
information 

Nondifferential prior at Case 2, scenario 1 
r0 ri SPo SP\ SN0 logOR 

Mean 0.104 0.162 0.828 0.828 0.629 0.629 0.511 
SD 0.017 0.030 0.013 0.013 0.060 0.060 0.280 

5th %tile 0.078 0.115 0.806 0.806 0.529 0.529 0.049 
95th %tile 0.132 0.215 0.849 0.849 0.727 0.727 0.975 

Nearly nondifferential prior at Case 2, scenario 2 
ro SPo SPi SNo SNi logOR 

Mean 0.072 0.152 0.804 0.861 0.627 0,608 0.840 
SD 0.014 0.029 0.013 0.019 0.071 0.073 0.310 

5th %tile 0.050 0.106 0.783 0.828 0.506 0.486 0.323 
95th %tile 0.095 0.202 0.826 0.892 0.742 0.727 1.344 

Nearly nondifferential prior at Case 2, scenario 3 
r0 n SP0 SPi SNo SNX logOR 

Mean 0.103 0.150 0.775 0.820 0.770 0.751 0.426 
SD . 0.017 0.028 0.016 0.023 0.054 0.063 0.292 

5th %tile 0.076 0.106 0.749 0.782 0.676 0.642 -0.053 
95tft %tile 0.132 0.199 0.801 0.856 0.851 0.845 - 0.910 

Differential prior at Case 2, scenario 4 
ro n SPo SPi SNo SN! logOR 

Mean 0.110 0.196 0.697 0.861 0.765 0.758 0.674 
SD 0.017 0.032 0.017 0.027 0.058 0.069 0.274 

5th %tile 0.084 0.145 0.669 0.815 0.663 0.636 0.221 
95th %tile 0.140 0.250 0.725 0.904 0.855 0.863 1.116 

and 5.3. Most sample means are sufficiently close to the true values of the parameters at 

different levels of exposure misclassification, except for the sensitives. The sensitivities 

in case and control groups are found larger than the true values in Cases 1 and 2. This 

should not downgrade the performance of our algorithm, because most 90% credible 

intervals cover the true values, except for SNi at scenario 2, Case 1 and a few exceptional 

observations in Case 2. To conclude, the Bayesian misclassification methods utilizing 

MCMC algorithm facilitate convergent posterior Markov chains with adequate mixing. 
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8000 8500 9000 9500 10000 

iteration 

Figure 5.1: MCMC mixing based on iterations 8000-10000 regarding a dataset in Case 1, 
Scenario 1, using the nondifferential Bayesian method 
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Figure 5.2: MCMC mixing based on iterations 8000-10000 regarding a dataset in Case 1, 
Scenario 4, using the differential Bayesian method 
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Figure 5.3: Posterior histogram ofr0, ri and logOR based on 10000 iterations of Case 1 
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Figure 5.4: Posterior histogram ofr0, rx and logOR based on 10000 iterations of Case 2 
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Tables 5.2 and 5.3 also suggests that standard deviations increase with the inflation 

of differential misclassification. This is not unexpected because under nondifferential 

misclassification, data concerning cases and controls are pooled together to estimate the 

misclassification parameters. Whereas under differential misclassification, sensitivities 

and specificities are estimated separately according to data in each arm, hence resulting 

in less precise estimates (i.e., with larger variance). 

5.4 Comparison with results obtained using MLE 

In this section, we study the comparative performance of Bayesian methods, maximum 

likelihood estimation methods and simulation extrapolation methods in several misclas­

sification situations. Three methods under the assumptions of nondifferential misclassi­

fication (NDF), nearly nondifferential misclassification (Nearly NDF, only applicable to 

Bayesian method), and differential misclassification (DF) are applied simultaneously to 

data simulated in section 5.1 (4 scenarios in two cases). The estimated mean squared 

error (MSE), defined as 

is calculated to assess the goodness of the point estimator for 4> = logOR, by incorporat­

ing both the precision (via variance) and accuracy (via bias) of <f>. NREP=400 represents 

the number of repeated datasets generated in each scenario. The coverage proportion of 

the logOR and average width of the 90% credible interval using Bayesian methods and 

the 90% confidence intervals using M L E or MC-SIMEX are also reported to evaluate the 

accuracy and precision of the effect estimator qb (Table 5.4, 5-5 , 5.6 and 5.7 for Case 1 

and MC-SIMEX 
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and Table 5.8, 5.9 and 5.10 for Case 2). 

Table 5.4 shows the nondifferential Bayesian method has the best performance when 

the data is truly nondifferentially misclassified. It produces estimator with smallest 

bias, variation and overall error rate compared to other Bayesian methods in scenario 1. 

However, the related coverage proportion drops dramatically as the exposure misclassi­

fication gets more differential. The fact that the empirical coverage probability drops to 

0.06 in scenario 4 illustrates the poor reliability of the nondifferential. Bayesian method, 

for the level of differentiality involved in the misclassification is seldom well understood 

in practice. The differential misclassification Bayesian method behaves better than the 

others in terms of smaller estimated MSEs and larger coverage proportions, when data 

are highly differentially misclassified (scenario 3 and 4), which agrees to our expectation, 

fn general, the differential Bayesian method is not as efficient under nondifferential mis­

classification, because data are split to two groups and estimations are accomplished on 

separate subsets. Nevertheless, it generates reliable estimations as misclassification devi­

ates from complete nondifferential condition without losing much efficiency. The nearly 

nondifferential Bayesian method performs well in scenario 2 where departure from the 

nondifferential misclassification is mild. Separate estimation of sensitivities or specifici­

ties improves the accuracy of </>. Meanwhile by posing large positive correlation between 

SWjS and SPts, it "borrows strength" from measurements in both groups and produces 

small variance and MSE. The MSE, coverage proportion and average width of credible 

interval associated with the nearly nondifferential method are always in between the other 

two Bayesian methods. It is a method worth exploring in practice when the mechanism 

of misclassification is not fully specified. 

In Table 5.5, we observe analogous phenomena comparing the performances of nondif­

ferential (NDF) MLE and differential (DF) MLE. More accurate and precise estimation 

of logOR with smaller MSE, greater empirical coverage rate and shorter confidence in-
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terval is supplied by NDF ML method in scenario 1. On the other hand, the estimates 

are far away from the target when the actual misclassification rates differ between cases 

and controls. The DF ML method yields consistent estimates with satisfactory coverage 

proportions (> 88%) over all situations, and is especially superior at more differential 

scenarios such as 3 and 4. It is also found that MLEs are systematically associated with 

slightly greater MSE and variation compared with the Bayesian estimates in Table 5.4, 

which may result from the utilization of appropriate prior information. 

Results obtained using differential (DF) and nondifferential (NDF) MC-SIMEX meth­

ods are summarized in Table 5.6 and 5.7. For each simulated dataset, the estimated effect 

parameter <f> is acquired via a quadratic extrapolation function and a loglinear extrapo­

lation function, 

Lquad(^) = a 0 + «iA + a 2A 2, 

Llog(X) = eao+a'\ 

The variance for each 4> is estimated using the asymptotic theory and Jackknife method. 

Tables 5.6 and 5.7 hence summarize the performance of MC-SIMEX methods at these 

four combinations. Similar to Bayesian and MLE methods, the NDF MC-SIMEX works 

better for the nondifferential misclassification scenario, but is off-target with differential 

measurement errors. In Case 1, </>s achieved during reclassification at various values of 

A are on average better fit by the quadratic parametric function, leading to relatively 

more accurate estimates of <fi without measurement error. This is reflected by greater 

coverage proportions in Table 5.6 and 5.7. We also observe that estimates using either 

extrapolation functions bear same MSEs in each scenario, while Tukey's Jackknife vari­

ance is consistently smaller than asymptotic variance when quadratic function is applied. 

As the size of measurement error represented by SNi ano- SPi is not totally specified 
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in this study, Tukey's Jackknife method is preferred to accommodate situations where 

variation of SNi, SPi is not negligible (Carroll et al., 2006). Compared with intervals by 

first two methods, the 90% confidence intervals generated by MC-SIMEX methods have 

apparently smaller probabilities to cover the true effect parameter logOR. 

Table 5.4: MSEs, empirical coverages and average widths of 90% credible intervals for 
logOR using Bayesian methods based on datasets simulated in Case 1 

NDF Nearly NDF DF 
scenario 1 MSE 0.0773 0.0869 0.0993 

Coverage 0.9075 0.8975 0.8875 
Width 0.9247 0.9947 1.0279 

scenario .2 MSE 0.1801 0.0959 0.0986 
Coverage 0.6825 0.9000 0.9075 

Width 0.9325 1.01327 1.0380 
scenario 3 MSE 0.4798 0.1230 0.0946 

Coverage 0.2400 0.8550 0.8950 
Width 0.9295 1.0308 1.0501 

scenario 4 MSE 0.8759 0.1545 0.1071 
Coverage 0.0600 0.8000 0.8875 

Width 0.9249 1.0478 1.0564 

Similar findings present in Case 2. For in each simulated dataset, the number of 

controls are three time of the number of cases, data from the control group have more 

impact on the estimation of model parameters such as the exposure prevalences ro, ri 

and the effect parameter logOR. This results in greater coverage proportions than those 

in Case 1 when NDF methods (Bayesian or MLE or MC-SIMEX) are incorrectly applied 

to the differentially misclassified data (scenario 2, 3 and 4). It is also observed that the 

DF MC-SIMEX method fails at some replicative datasets in scenario 2. Two possibilities 

may cause this problem. First, the estimated misclassification matrix T I (Equation 

(4.1) in Chapter 4) does not exit. This may be caused by estimation of the original 

misclassification matrix IT using the validation data. Kiichenhoff et al. (2006) suggested 

use a refined approximation method (Israel et al, 2001) to estimate nA. Second, a few 
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Table 5.5: MSEs, empirical coverages and average widths of 90% confidence intervals for 
logOR using M L E methods based on datasets simulated in Case 1 

NDF DF 
scenario 1 MSE 

Coverage 
Width 

0.0924 0.1224 
0.9100 0.8875 
0,97706 1.1062 

scenario 2 MSE 
Coverage 

. Width 

0.2258 0.1226 
0.6650 0.9075 
0.9849 1.1150 

scenario 3 MSE 
Coverage 

Width 

0.5776 0.1176 
0.2125 0.8975 
0.9800 1.1235 

scenario 4 MSE 
Coverage 

Width 

1.0361 0.1338 
0.0575 0.8875 
0.9765 1.1301 

modifications are made on function "mcsimex()" to fulfil our needs to automate the 

estimation process of log odds ratio repeatedly under the differential misclassification. 

Although the performance of the modified function under boundary conditions (large 

misclassification rates) are not completely tested, we believe the chance that it causes a 

problem is very tiny. 
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Table 5.6: MSEs, empirical coverages and average widths of 90% confidence intervals 
for logOR using MC-SIMEX under nondifferential misclassification based on datasets 
simulated in Case 1 

Quadratic extrapolation Loglinear extrapolation 
Asymptotic Jackknife Asymptotic Jackknife 

variance variance variance variance 
scenario 1 MSE 0.0810 0.0810 0.1078 0.1078 

Coverage 0.8875 0.8025 0.7550 0.7350 
Width 0.8929 0.7300 0.9317 0.7300 

scenario 2 MSE 0.3414 0.3414 0.6136 0.6136 
Coverage 0.3600 0.2450 0.3175 0.1650 

Width 0.8704 0.6999 1.0617 0.6999 
scenario 3 MSE 1.1960 1.1960 1.7361 1.7361 

Coverage 0.0100 -0.0025 0.005 0 
Width 0.8561 0.6788 1.0415 0,6788 

scenario 4 MSE 2.4902 2.4902 3.5249 3.5249 
Coverage 0 0 0 0 

Width 0.8607 0.6718 1.0683 0.6718 

Table 5.7: MSEs, empirical coverages and average widths of 90% confidence intervals for 
logOR using MC-SIMEX under differencial misclassification based on datasets simulated 
in Case 1 

Quadratic extrapolation Loglinear extrapolation 
Asymptotic Jackknife Asymptotic Jackknife 

variance variance variance variance 
scenario 1 MSE 0.1502 0.1502 0.0829 0.0829 

Coverage 0.7700 0.6500 0.6600 0.8550 
Width 0.8950. 0.7278 0.6227 0.7278 

scenario 2 MSE 0.1226 0.1226 0.0877 0.0877 
Coverage 0.7875 0.6800 0.8325 0.8625 
Width 0.8637 0.6937 0.5673 0.6937 

scenario 3 MSE 0.1423 . . 0.1423 0.1992 0.1992 
Coverage 0.7175 0.6300 0.2800 0.5800 

Width 0.8319 0.6746 0.5204 0.6746 
scenario 4 MSE . 0.1920 0.1920 0.2995 0.2995 

Coverage 0.6075 0.5200 0.0025 0.0900 
Width 0.8194 0.6590 0.4734 0.6590 
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Table 5.8: MSEs, empirical coverages and average widths of 90% credible intervals for 
logOR using Bayesian methods based on datasets simulated in Case 2 

NDF Nearly NDF DF 
scenario 1 MSE 0.0703 0.0832 0.0965 

Coverage 0.8925 0.9000 0.8900 
Width 0.8734 0.9393 0.9627 

scenario 2 MSE 0.1624 0.1049 0.0977 
Coverage 0.7300 0.8650 0.8950 

Width 0.9157 0.9536 0.9643 
scenario 3 MSE 0.3317 0.1318 0.0969 

Coverage 0.4400 0.8100 0.8900 
Width 0.9471 0.9624 0.9661 

scenario 4 MSE 0.5852 0.1792 0.1035 
Coverage 0.2375 0.7125 0.9025 

Width 0.9675 0.9722 0.9712 

Table 5.9: MSEs, empirical coverages and average widths of 90% confidence intervals for 
logOR using MLE methods based on datasets simulated in Case 2 

NDF DF 
scenario 1 MSE 

Coverage 
Width 

0.0771 0.1055 
0.8925 0.8850 
0.9079 1.0215 

scenario 2 MSE 
Coverage 

Width 

0.1452 0.1080 
0.8050 0.8950 
0.9595 1.0211 

scenario 3 MSE 
Coverage 

Width 

0.2945 0.1025 
0.5500 0.9050 
0.9956 .1.0211 

scenario 4 MSE 
Coverage 

Width 

0.5429 0.1006 
0.3425 0.9000 
1.0222 1.0255 
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Table 5.10: MSEs, empirical coverages and average widths of 90% confidence intervals 
for logOR using MC-SIMEX under nondifferential misclassification based on datasets 
simulated in Case 2 

Quadratic extrapolation Loglinear ex trapolation 
Asymptotic Jackknife Asymptotic Jackknife 

variance variance variance variance 
scenario 1 MSE 0.1247 0.1247 0.1725 0.1725 

Coverage 0.7950 0.6650 0.7800 0.6575 
Width 0.8890 0.7193 1.0223 0.7198 

scenario 2 MSE 0.7746 0.7746 0.6240 0.6240 
Coverage 0.0550 0.0200 0.0950 0.0575 

Width 0.9058 0.7172 0.6418 0.7172 
scenario 3 MSE 1.9450 1.9450 1.2375 1.2375 

Coverage 0 0 0 0 
Width 0.9165 0.7145 0.4893 0.7145 

scenario 4 MSE 3.4673 3.4673 1.8875 1.8875 
Coverage 0 0 0 0 

Width 0.9236 0.7099 0.4382 0.7099 
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Chapter 6 

Application in Epidemiological 

Studies 

6.1 The study of sudden infant death syndrome 

To further illustrate how Bayesian methods, MLE methods and MC-SIMEX methods 

work in practice, we consider a case-control study on sudden infant death syndrome 

(SIDS) (Kraus, Greenland and Bulterys, 1989). It is of interest to investigate the as­

sociation between the use of antibiotics during pregnancy and the occurrence of SIDS. 

The surrogate exposure quantity about maternal use of antibiotic (X) was measured by 

interview question (yes=l, no=0). Information from medical records (T) was extracted 

to conduct an internal validation study to assess the misclassification probabilities. The 

complete data is shown in Table 6.1. Ignoring possible measurement errors, the X — Y 

log odds ratio is estimated as 0.352 with 90% confidence interval (0.141, 0.563). 

Table 6.1: Validation study and main study of SIDS 

Validation data Main data 

Y = l Y=0 

T X = l X=0 X = l X=0 Y X = l X=0 

T=l 29 17 21 16 Y = l 122 442 

T=0 22 143 12 168 Y=0 101 479 
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Table 6.2: Estimates of model parameters in SIDS study 

NDF Bayesian Nearly NDF Bayesian DF Bayesian 
Mean SD Rejection Mean SD Rejection Mean SD Rejection 
0.1593 0.0200 0.0419 0.1675 0,0215 0.0481 0.1701 0.0222 0.0496 

ri 0.2194 0.0232 0.0588 0.2098 0.0234 0.0562 0.2013 0.0236 0.0589-
SP0 0.9017 0.0122 0.1987 0.9134 0.0140 0.2817 0.9216 0.0155 0.2794 
SPi 0.9017 0.0122 0.1987 0.8889 0.01661 0.1959 0.8803 0.0184 0.2717 
SN0 0.6255 0.0450 0.0241 0.6181 0.0559 0.2678 0.6378 0.0632 0.0914 
SNi 0.6255 0.0450 0.0241 0.6333 0.0515 0.2529 0.6528 ' 0.0588 0.0199 

NDF MLE DF MLE 
Mean SD Mean SD 
0.1634 0.1981 0.1793 0.0234 

n 0.2253 0.2649 0.2095 0.0254 
SPo 0.6031 0.6810 0.5966 0.0695 
SPi 0.6031 0.6810 0.6060 0.0653 
SNo 0.9028 0.9241 0.9255 0.0172 
SNi 0.9028 0.9241 0.8782 0.0197 

Table 6.3: logOR, SD and 90% intervals for logOR in SIDS study 

log(OR) SD 90% intervals 
NDF Bayesian 

Nearly NDF Bayesian 
DF Bayesian 

0.3967 0.1875 (0.0887, 0.7079) 
0.2791 0.2047 (-0.0576, 0.6135) 
0.2086 0.2154 (-0.1450, 0.5650) 

NDF MLE 
DF MLE 

0.3983 0.1909 (0.08442, 0.7123) 
0.1927 0.2212 (-0.1711, 0.5566) 

NDF MC-SIMEX 
quadratic, asymptotic 
quadratic, Jackknife 
loglinear, asymptotic 
loglinear, Jackknife 

DF MC-SIMEX 
quadratic, asymptotic 
quadratic, Jackknife 
loglinear, asymptotic 
loglinear, Jackknife 

0.6131 0.2265 (0.2406, 0.9856) 
0.1772 (0.3217, 0.9045) 

0.7896 0.2579 (0.3654, 1.2138) 
0.1772 (0.4981,1.0810) 

0.0365 0.2221 (-0.3288, 0.4019) 
0.1794 (-0.2585, 0.3316) 

0.2701 0.1090 (0.0908, 0.4494) 
0.1794 (-0.0249, 0.5651) 
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Figure 6.1: MCMC mixing based, on iterations 8000-10000 using Nearly NDF Bayesian 
method (SIDS study) 
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Figure 6.2: Plots of the estimated logOR as a function of misclassification size A in 
SIDS study. The upper-left panel is based on a quadratic extrapolation subject to NDF 
MC-SIMEX. The upper-right panel is based on a loglinear extrapolation subject to NDF 
MC-SIMEX. The lower-left panel is based on a quadratic extrapolation subject to DF 
MC-SIMEX. The lower-right panel is based on a loglinear extrapolation subject to DF 
MC-SIMEX. 
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The Markov chains generated by Bayesian methods present adequate mixing and 

convergence. Figure 6.1 displays posterior simulations over the last 2000 iterations when 

the Nearly ND method is applied. Study results after adjustment for misclassification 

are presented in Tables 6.2 and 6.3. The sample means and 90% intervals regarding 

model parameters (r0, r\, SNi, SPi) obtained by NDF or DF Bayesian approach are 

close to those estimated by corresponding MLE method. Standard errors generated from 

Bayesian and MLE methods are similar to one another. Parameters estimated under DF 

misclassification assumptions are found more variable than those derived under NDF or 

nearly NDF situations, which is consistent with findings from simulation studies. 

The point estimates of logOR in form of posterior mean are greater than zero, when 

the Bayesian, MLE or NDF MC-SIMEX methods are applied. It appears that log(OR) 

by NDF Bayesian or NDF MLE is twice greater than that obtained by DF Bayesian 

or DF MLE algorithm. Given the equality of misclassification rates in case and control 

groups, data in Table 6.1 suggest a positive association between the use of antibiotic and 

subsequence incidence of SIDS, for 0 is not contained in the 90% credible or confidence 

intervals generated by NDF methods. 

The estimates of log(OR) returned by MC-SIMEX are somehow distinguished from 

those returned from Bayesian or MLE method. It is depicted in Figure 6.2 that, log odds 

ratio Pitk decreases with Â  if the measurement of drug use is nondifferentially misclas­

sified, but increases with greater size of misclassification when SNi or SPi differentiates 

between two groups. As a result, combining the trajectory of the points, a quadratic 

extrapolation function produces a smaller positive log odds ratio at the origin under 

NDF and a smaller negative log odds ratio crossing the origin under DF. The existence 

of misclassification matrix nA is fulfilled at A = 0.5, 1, 1.5, 2, and two variance calcu­

lations are accomplished at each misclassification level. Because SNi and SPi required 

in MC-SIMEX are estimated from the validation study, and their variabilities are not 
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negligible, we consider the Jackknife variance as a more appropriate method to apply 

(Kiichenhoff et al., 2006). One drawback of MC-SIMEX method is, it does not provide 

approximation of other parameters such as the exposure prevalence or misclassification 

rates directly. In addition, a known or adequately estimated misclassification matrix JI 

is required to ensure the performance of the algorithm. 
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6.2 The study of invasive cervical cancer 

A brief profile of the case-control study investigating the impact of herpes simplex virus 

type 2 (HSV-2) in the progression of invasive cervical cancer is provided in Chapter 1. We 

adopt this study as an example to demonstrate the effectiveness of Bayesian adjustments 

when the differentiality of misclassification is borderline. Data for the cervical cancer 

study is shown in Table 6.4. It is noticeable from the validation and main data that the 

exposure prevalence of HSV-2 is high in both cases and controls. 

Table 6.4: Validation data and main data for cervical cancer study 

Validation data Main data 

Y = l Y=0 

T X = l x=o X = l x=o Y X = l X=0 

T=l 18 5 16 16 Y = l 375 318 

T=0 3 13 11 33 Y=0 535 701 

Ignoring measurement error arising from the inaccurate western blot procedure, the 

naive log odds ratio is estimated as 0.4529 (standard error = 0.0928), with 95% confidence 

interval (0.300, 0.606), indicating HSV-2 is positively correlated with the occurrence of 

invasive cervical cancer. We conduct Bayesian adjustment subject to three misclassifica­

tion situations (NDF, nearly NDF and DF) via different prior distributions. Mild prior 

association (px = 0.3) is imposed for exposure prevalences in cases and controls. The 

randomness and differentiality of misclassification parameters are reflected by hyperpa­

rameters, the same way as in simulation studies: p2 = p3 = 1 for NDF misclassification; 

P2 — Pz = 0 for DF misclassification; and p2 = p3 = 0.9 for nearly NDF misclassification. 

The mixing and convergence of posterior Markov chains are satisfactory: Figure' 6.3 

depicts prior densities and posterior simulations regarding ro, r\ and logOR based on 

10000 posterior realizations (after 1000 burn-in iterations), under different misclassifi-
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cation assumptions. The same prior distributions of ro, rx and logOR are applied to 

various differentially conditions. Although exposure prevalences seem to be underes­

timated in prior densities, the posterior distributions incorporate information from the 

data and prior beliefs and lead to greater, distinct exposure prevalences and positive log 

odds ratio. Figure 6.3 illustrates that, the resulting estimates obtained using Bayesian 

adjustment are reasonably robust to prior knowledge, for posterior distributions gen­

erated across three conditions are sufficiently close to one another. Yet the analogous 

shapes of the prior and posterior densities suggest that, the prior knowledge still plays 

a non-negligible role in generating the resulting models. Furthermore, it is noticeable 

that, as the measurement error becomes more differential, fo increases and f\ decreases 

slightly, resulting in small decrement of logOR, which is consistent with findings from 

simulation studies. 

Table 6.5 presents posterior means, posterior standard deviation and 90% credible 

intervals (or 90% confidence intervals for non Bayesian models) for the log odds ratio 

describing how herpes simplex virus type 2 affect development of cervical cancer. We 

observe that, exposure of HSV-2 is positively associated with a growing risk of develop­

ing cervical cancer. As expected, the Bayesian and MLE adjustments in general produce 

similar logOR under various misclassification assumptions. Effect estimates derived as­

suming more differential misclassifications move towards the unity of odds ratio, with 

larger variability. MC-SIMEX on the other hand generates bigger correlation, if the in­

accuracy arising in western blot procedure does not depend on the incidence of cervical 

cancer; and smaller association if the measurement error is nondifferential. Extrapola­

tions based on the quadratic and log linear models are displayed in Figure 6.4. 

As Carroll, Gail and Lubin (1993) pointed out, there is moderate evidence to show 

measurement error is differential across cases and controls. Sensitivities estimated from 

validation data alone are 0.78 for cases and 0.5 for controls (two sided Fisher's exact 
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producing p-value=0.047). Nevertheless, if both the complete and incomplete data are 

considered, a likelihood ratio test for the nondifferentiality of misclassification with 2 

degrees of freedom, generates a p-value at 0.073, indicating lack of evidence to reject the 

null at 5% significance level. Hence, it is more appropriate to interpret the differentiality 

of measurement as borderline. One advantage of Bayesian adjustment emerges in this 

context, as it incorporates the "in-between" scenario into consideration via nearly non-

differential prior densities. By imposing reasonably large correlation coefficients (p2, ps 

< 1) between sensitivities or specificities in cases and controls, the nearly ND Bayesian 

method compromises between loss of efficiency and accuracy associated with the "fully" 

differential and nondifferential adjustment methods. Furthermore, the sensitivities and 

specificities estimated via MLE or Bayesian methods are found consistent with the condi­

tional probabilities of measurement errors calculated using the generalized latent variable 

modeling technique of Skrondal and Rabe-Hesketh (2004). 

Table 6.5: logOR, SD and 90% intervals for logOR in cervical cancer study 

log(OR) SD 90% interval 
NDF Bayesian 

Nearly NDF Bayesian 
DF Bayesian 

0.8665 0.2047 (0.5434, 1.2175) 
0.6527 0.2700 (0.2303, 1.1066) 
0.5417 0.2938. (0.0462, 1.0200) 

NDF MLE 
DF MLE 

0.9579 0.2366 (0.5688, 1.3471) 
0.6081 0.3503 (0.0318, 1.1843) 

NDF MC-SIMEX 
quadratic, asymptotic 
quadratic, Jackknife 
loglinear, asymptotic 
loglinear, Jackknife 

DF MC-SIMEX 
quadratic, asymptotic 
quadratic, Jackknife 
loglinear, asymptotic 
loglinear, Jackknife 

0.9106 0.1845 (0.6071, 1.2141) 
0.1545 (0.6566, 1.1647) 

1.1130 0.2426 (0.7139, 1.5120) 
0.1545 (0.8589, 1.3670) 

0.1093 0.1721 (-0.1737, 0.3923) 
0.1327 (-0.1090, 0.3276) 

0.434 0.1010 (0.2678, 0.5999) 
0.1327 (0.2156, 0.6521) 

56 



Chapter 6. Application in Epidemiological Studies 

NDF Bayesian adjustment 

o 

Nearly NDF Bayesian adjustmc 

DF Bayesian adjustment 

0.0 0.4 0.8 0.0 0.4 0.8 - 4 0 2 4 

r0 H logOR 

Figure 6.3: Prior and posterior distributions of rQ, rv and logOR subject to three mis-
classifications. 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

(c)(1+X), (d)(1+X) 

Figure 6.4: Plots of the estimated logOR as a function of misclassification size A in 
cervical cancer study. The upper-left panel is based on a quadratic extrapolation subject 
to NDF MC-SIMEX. The upper-right panel is based on a loglinear extrapolation subject 
to NDF MC-SIMEX. The lower-left panel is based on a quadratic extrapolation subject 
to DF MC-SIMEX. The lower-right panel is based on a loglinear extrapolation subject to 
DF MC-SIMEX. 
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Chapter 7 -

Conclusion and Future Work 

In this dissertation, we concentrate on comparing three adjustment models for binary 

exposure measurement error in case-control studies. When potential measurement error 

on the exposure is "ignored", statistical assessment of the impact of the exposure variable 

on a dichotomous health related outcome is misleading. The direction towards which the 

association between the actual but unobservable explanatory variable and the response 

is biased, is unpredictable in some circumstances. 

A Bayesian model is developed to account for various types of measurement error 

on the covariate (i.e., nondifferential misclassification, nearly nondifferential misclassifi­

cation and differential misclassification), by incorporating randomness of the exposure 

prevalences, sensitivities and specificities amongst cases and controls via prior distribu­

tions. The concepts and fundamental techniques of Bayesian paradigm are reviewed in 

Chapter 2. A hybrid algorithm alternating the Gibbs sampler and Metropolis-Hastings 

algorithm is proposed to sample the parameters of interest (n, SN, SPi) i=0, 1 from the 

posterior distributions. Statistical inference about the odds ratio describing the correla­

tion between the exposure and response, is made based on posterior realizations of model 

parameters after burn-in iterations. Other models previously developed to account for 

misclassification problems include the maximum likelihood estimation and simulation ex­

trapolation method (Chapters 3 and 4). In connection to our research, we contrast model 

parameters and log odds ratio estimated in the Bayesian model against those generated 

by other methods under different misclassification scenarios, to investigate the overall 
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performances of the adjustment models. 

Two simulation studies composed of four scenarios with gradually increasing levels 

of differentiality of misclassification are conducted in Chapter 5. Markov chains simu­

lated using the Bayesian model display adequate convergence and mixing, when the prior 

distributions are consistent with data-generation. Our choice of the univariate proposal 

. distribution in the M H algorithm is proportional to the likelihood function and does not 

depend on the current parameter value. High acceptance rates are observed in both 

cases, indicating the proposed hybrid algorithm is efficient. When data are simulated 

using equal sensitivities and specificities in diseased and non-diseased populations, the 

nondifferential (ND) prior behaves the best, for logOR returned by the corresponding 

posterior model is associated with the smallest MSE, least variance and greatest coverage 

proportion. The differential (DF) Bayesian adjustment model performs better when the 

measurement error on the exposure is highly differential. The nearly DF prior performs 

well when the influence of disease status on the exposure misclassification is mild. A l ­

though separate estimation of the sensitivities and specificities under the DF assumption 

improves accuracy of the estimates, the DF Bayesian model has a trade-off of loss of 

efficiency when the exposure is actually nondifferentially misclassified. The nearly DF 

Bayesian model to some extent, balances the loss of efficiency and accuracy, by posing 

large yet less than one, positive correlation between the SN^s and SPi's. It is found that, 

the MSE, coverage proportion and average width of the 90% credible intervals obtained 

using the nearly ND prior distributions, are always between those associated with the 

completely differential or nondifferential prior densities. Hence in situations where the 

mechanism of misclassification is uncertain or the differentiality is borderline, the nearly 

ND Bayesian adjustment should be adopted to reveal the actual relationship between the 

disease and actual exposure variable. 

Analogous phenomena regarding the performances of NDF vs. DF are detected in the 
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maximum likelihood estimates (MLE) and MC-SIMEX estimates. As expected, coverage 

proportions of the true log odds ratio associated with 90% confidence or credible inter­

vals using the appropriate M L E or Bayesian models, are satisfactory (89%) and similar 

to one another. On the other hand, we notice that MLEs are associated with system­

atically bigger MSE and interval width, compared with the Bayesian.estimates. One 

possible explanation is that, the properly specified prior distribution helps to reduce the 

variability of the effect estimator and improves the efficiency of Bayesian model. As no 

middle-ground scenario exists in the M L E approach, logOR is estimated either through a 

NDF stream or a DF stream. A two-step M L E procedure, sometimes can be adapted to 

recover the potentially biased effect estimator. A hypothesis test for the nondifferential 

misclassification (the null) can first be conducted using some standard procedures, for 

instance, the likelihood ratio test with two degrees of freedom, based on the validation 

data and main data. Under guidance of the testing result, the M L estimate of logOR 

subject to DF or NDF measurement error, will be reported as the final answer. Unfor­

tunately, for situations where the evidence to reject the null is merely mild, say p-value 

is around 0.05, the two-stage procedure is incapable of providing a reliable estimate. 

The extrapolated log odds ratio at zero measurement error varies with the choice 

of extrapolation function in a MC-SIMEX model. Although Kiichenhoff, Mwalili and 

Lesaffre (2006) showed through some concrete examples that, the quadratic and log 

linear functions provided good approximation, in extrapolating logOR back to the ori­

gin of no measurement error, we observe these functions sometimes return substantially 

distinct logOR with variable coverage proportions. The subjective choice of an extrapola­

tion function brings difficulty in determining an unique effect estimate in epidemiological 

applications and makes result interpretation ambiguous. Moreover, even if the differen­

tiality of exposure misclassification is correctly specified, log odds ratios estimated via 

MC-SIMEX models tend to be more variable, having lower coverage rates and bigger 
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MSEs, compared with the alternatives. 

The Bayesian adjustment model proposed in this dissertation can be naturally ex­

tended to other related areas. One immediate extension arises in the appearance of 

additional correctly recorded explanatory variables, in addition to the binary response 

and error-prone exposure discussed in this thesis. Previous studies show that, the impact 

of measurement error is more difficult to predict and the adjustment protocol becomes 

more complex in this case. Gustafson (2004) investigated other situation where two sur­

rogates are employed to measure the unobserved true exposure. The likelihood functions 

utilized in the MLE and Bayesian models need to be reconstructed to capture informa­

tion emerging from the dual error-prone covariates. Special attention should be paid to 

the sensitivities and specificities associated with each surrogate variable, conditioning on 

the binary disease status. Another interesting example is in investigation of misclassifi­

cation on an exposure with more than 2 categories, for example, the exposure evaluation 

among three populations. It is then more appropriate to construct a posterior distribu­

tion based on a Multinomial likelihood instead of a Binomial sampling distribution. 

Eventually, the measurement error problems arising from combination of the above sce­

narios are worth exploring. Further research should be conducted to improve the validity 

of scientific findings in epidemiological studies. 
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