
PC-Cluster Simulator for Joint Infrastructure
Interdependencies Studies

by

Siva Prasad Rao Singupuram

B.Sc. E n g g . , Regional Engineering College, Rourkela, 1988

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T OF
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R OF A P P L I E D S C I E N C E

in

T H E F A C U L T Y OF G R A D U A T E S T U D I E S

(E L E C T R I C A L A N D C O M P U T E R E N G I N E E R I N G)

T H E U N I V E R S I T Y OF BRIT ISH C O L U M B I A

August, 2007

© Siva Prasad Rao Singupuram, 2007

Abstract

11

Rapid advances in network interface cards have facilitated the interconnection of inexpensive

desktop computers to form powerful computational clusters, wherein independent

simulations can be run in parallel. In this thesis, a hardware and software infrastructure is

developed for the simulation o f a complex system of interdependent infrastructures. A P C -

Cluster is constructed by interconnecting 16 off-the-shelf computers v ia high speed Scalable

Coherent Interface (SCI) network adapter cards. To enable synchronized data transfer

between the cluster nodes with very low latencies, a special library comprised of

communication routines was developed based on low-level functions of the SCI protocols.

Different interrupt mechanisms for synchronous data transfer between the cluster computers

(nodes) were investigated. A new method of implementing the interrupts is developed to

achieve a 3.6p.s latency for one directional data transfer, which is shown to be an

improvement over the standard interrupt mechanisms. To facilitate distributed and concurrent

simulation of Simulink models on different computers of the PC-Cluster, a special

communication block with the appropriate G U I interface has been developed based on the

Simulink S-Function and interfaced with the developed SCI library. A reduced-scale

benchmark system comprised of some of the University o f Brit ish Columbia's infrastructures

including the Hospital, Substation, Power House, Water Station, and Steam Station has been

chosen to investigate the operation of PC-Cluster and potential improvement in simulation

speed compared to a single-computer simulation. The models of considered infrastructures

are distributed to different computer nodes of the PC-Cluster and simulated in parallel to

study their interdependencies in a case of emergency situations caused by an earthquake or a

similar disturbing event. It is shown that an improvement of computational speed over a

single computer can be achieved through parallelism using the SCI-based PC-Cluster. For the

considered benchmark system, an increase in simulation speed of up to 5 times was achieved.

Ill

Table of Contents

Abstract i i

Table of Contents i i i

L is t of Tables v i

L is t of Figures vi i

Acknowledgments x

Chapter

1. Introduction 1

1.1 Research Motivation 1
1.2 Related Work 2
1.3 System Interconnection Network 2
1.4 Contributions 3
1.5 Composition of the Thesis 4

2. SCI -Based PC-C lus te r 5

2.1 Communication Networks 5

2.2 SCI Interconnect 7

2.3 System Area Network for Cluster 8

2.4 Point-to-Point links 11

2.5 Network Topologies 12
2.6 PC-Cluster at U B C Power Lab 14

iv

3. SCI Communication Software 20

3.1 SCI Programming 20

3.2 SCI Communication Library 23

3.3 Measured Communication Latencies 30

3.4 Simulink S-function Communication Block 33

4. System Description 35

4.1 Reduced-Scale U B C Benchmark System Description 35

4.1.1. System components 36

4.1.2. System equations 37

4.1.3. Ce l l modeling 37

4.1.4. Channel modeling 39

4.2 Substation 41

4.3 Hospital 42

4.4 Water Station 43
4.5 Power House 44
4.6 Steam Station 45
4.7 Combined Model of the U B C Benchmark System 46
4.8 Distribution of Models to P C Cluster Nodes 48

5. PC-Cluster Simulator Studies 53

5.1 Case Scenario 53

5.2 Analysis o f PC-Cluster Simulation 58

6. Conclusions and future work 62

References

Appendix Computer Programs

V I

List of Tables

Table Page

2.1 Comparison of Myrinet, S C R A M N e t + , and SCI P C I cards 6

3.1 SCI communication library 28

3.2 Sequence of actions between node 8 and node 4 29

5.1 CPU-t ime for different methods of simulation 59

5.2 Simulation speed for different number o f cells 60

Vll

List of Figures

Chapter 2
Figure Page

2.1 SCI-based C C - N U M A multiprocessor model [12] 8

2.2 SCI cluster model [12] 9

2.3 Address spaces and address translations in SCI clusters 10

2.4 4 Node SCI Ring Topology [15] 12

2.5 4 Node SCI Ring Topology with interleaved connections [15] 13

2.6 8 Node SCI Switch Topology [15] 13

2.7 Front view of the 16 Node PC-Cluster at U B C Power Lab 15

2.8 Back view of the PC-Cluster showing the wir ing interconnecting

the 16 Nodes 16

2.9 16 Node SCI Torus Topology (4x4) 17

2.10 4x4 Torus Topology showing the Node Id and

X - Y axes 18

2.11 2D PCI-to-SCI Adapter 18

2.12 Wir ing o f the SCI Network of 16 computers with

Node numbers 19

Chapter 3
Figure Page

3.1 Shared-memory communication model [4] 21

3.2 Message-Passing communication model [4] 22

3.3 State diagram for a local segment 26

3.4 C programs in Computer 1 and Computer 2 using communication library 31

Vll l

Figure Page

3.5 C P U time versus number of doubles using two

different methods of synchronized data transfer 32

3.6 Distributed Simulink model using SCI-communication S-function Block 34

Chapter 4

Figure Page

4.1 U B C reduced-scale system of infrastructures

with interdependencies 36

4.2 Water Station Cel l with input and output tokens 38

4.3 Diagram depicting flow of tokens for the Water Station and

Hospital Cells 39

4.4 Transportation Channel model 40

4.5 U B C Substation feeding power to whole campus 41

4.6 Simulink model o f the U B C Substation Cel l interfacing the P C Cluster .42

4.7 Simulink model o f the U B C Hospital interfaced with the

PC-Cluster 43

4.8 Simulink model of the Water Station interfaced with the

PC-Cluster 44

4.9 Simulink model of the Power House Cel l interfaced

with P C Cluster 45

4.10 Simulink model o f Steam Station Cel l interfaced

with P C Cluster 46

4.11 Overall model o f the reduced-scale

U B C benchmark system 47

4.12 Single-computer Simulink model of 5-cell reduced-scale

U B C benchmark system 48

4.13 Parallel simulation o f 5 cells of reduced U B C test case

on PC-Cluster 50

ix

Figure Page

4.14 User interface on Computer 1 simulating

the Substation Cel l 50

4.15 User interface on Computer 2 simulating the Hospital Ce l l 51

4.16 User interface on Computer 3 simulating

the Water Station Ce l l 51

4.17 User interface on Computer 4 simulating

Power House Ce l l 52

4.18 User interface on Computer 5 simulating

Steam Station Cel l 52

Chapter 5

Figure Page

5.1 Electricity token dispatched from

Substation to the Hospital 55

5.2 Electricity token dispatched from

Substation to the Power House 55

5.3 Simulation results for power token dispatch from Power House

to the Water Station 56

5.4 Water token dispatch from Water Station to the Hospital 56

5.5 Simulation results for Hospital output tokens in terms of

number of beds in service 57

5.6 Simulation results for steam token output form Steam Station Cel l 58

5.7 CPU-t ime for different number of cells with single computer

and distributed simulation 61

X

Acknowledgements

I would like to acknowledge and thank Dr. Juri Jatskevich for providing me the opportunity

to pursue research in the area o f advanced computing technology. I extend my sincere

gratitude for his guidance, encouragement and continuous assistance in this project. I gladly

acknowledge my debt to Dr. Juri Jatskevich and Dr. Jose R. Mart i for the financial assistance

without which it would not have been possible for me to come to Canada for graduate

studies. Dr. Mart i has always inspired me with his philosophical discussions, which

expanded my horizon of thinking and creativity. His commendations motivated me to work

hard for achieving the milestones of this project.

I would like to express a token of special appreciation to Power Lab and Joint Infrastructure

Interdependencies Research Program (JIIRP) members particularly, Jorge Hol lman, Tom De

Rybel, Marcelo Tomim, Haf iz Abdur Rahman, L u L iu , Michael Wrinch, and Quanhong Han,

without whom this work could not be accomplished.

I would also like to thank Roy Nordstroem and other members o f Dolphin Interconnect

Solutions Inc., Norway, for their help in developing software infrastructure for my project.

I am deeply indebted to my beloved wife, Madhavi, for her unconditional love and moral

support during extreme difficult times in my life which inspired me in pursuit of excellence

in the field o f endeavor. I owe my wellbeing and success to her. I am also grateful to my

sons, Aravind and Akh i l , for their love and affection even in a situation when I stayed away

from them for long time. I am particularly grateful to my elder son, Aravind, who has

boosted my morale with his thinking and emotional support which were exceptional for his

young age.

U B C , August 2007 Siva Singupuram

X I

To Madhavi, Aravind and Akh i l

Chapter 1

Introduction

1.1 Research Motivation

The Joint Infrastructure Interdependencies Research Program (JILRP) is part of ongoing

national efforts to secure and protect Canadians from natural disasters and terrorist attacks

[1]. Water utilities, communications, banking, transportation networks and hospitals have

many complex interaction points and depend critically on each other to function properly.

The interdependencies issue has only recently been recognized as a key factor for optimal

decision making where the ultimate outcome of the JILRP is to produce new knowledge-

based practices to better assess, manage, and mitigate risks to the lives o f Canadians [2]. The

system interactions are complex and dynamic. Simulation of complex heterogeneous systems

for coordinated decision making in the case of emergency situations such as an earth quake

or a terrorist attack requires an intensive computational tool. Advance performance

forecasting of the constituent elements and the system as a whole, is highly essential. This

requires that many simulations are run very quickly to find the optimal solution - a sequence

of mitigating actions. The development of a monitor to intuitively visualize and comprehend

the information on the system dynamics for anticipation of incipient emergencies by the

human operators, leads to many research challenges including powerful computing. If the

simulation of complex systems is done on a single computer, the physical computing time

(the C P U time) can be prohibitively long. In spite of continuous increase in the

computational capability o f computers, the need to model complex infrastructure systems at

increasingly higher levels of detail to study their interrelationships makes the computing time

a critical issue. This kind of computationally intensive simulation can be successfully done

using a PC-Cluster simulator. The development and implementation o f PC-Cluster based

simulator is the subject o f this thesis.

1.2 Related Work

In the domain of infrastructure modeling, numerous works and studies have focused on the

modeling, simulation and analysis of single entity elements. Few projects, however, have

attempted to combine multiple-infrastructure networks into one model with the specific

intent of analyzing the interactions-and interdependencies between the systems. The efforts

are being made by Idaho National Engineering and Environment Laboratory (ENEEL) to

implement parallel simulation for infrastructure modeling at the Idaho Nuclear Technology

and Engineering Center (INTEC) to study potential vulnerabilities, emergent behaviours

from infrastructure outages, and to assist in the development o f protective strategies [3]. The

Message Passing Interface (MPI) was used to parallelize the code and facilitate the

information exchange between processors [4]. However, the paradigm of computer

networking used therein introduces a significant communication overhead leading to slower

simulation speed. This limits the study of interdependencies o f complex networks where

large amount of data exchange between the processors would take place. To achieve low

communication latency o f the order of micro-seconds, one of the few available interconnect

standards such as the Scalable Coherent Interface (SCI) [ANSI / IEEE Std 1596-1992) can be

adopted [5].

1.3 System Interconnection Network

System interconnection networks have become a critical component of the computing

technology o f the late 1990s, and they are l ikely to have a great impact on the design,

architecture, and the use of future high-performance computers. Not only the sheer

computational speed but also the efficient integration of the computing nodes into tightly

coupled multiprocessor system that distinguishes high performance clusters from desktop

systems. Network adapters, switches, and device driver software are increasingly becoming

performance critical components in modern supercomputers.

Due to the recent availability of fast commodity network adapter cards and switches, tightly

integrated clusters of PCs or workstations can be built, to f i l l the gap between desktop

- 3 -

systems and supercomputers. These PC-Clusters can be used to perform powerful

computation wherein independent tasks can be executed in parallel. The use of commercial

off-the-shelf (COTS) technology for both computing and networking enables scalable

computing at relatively low costs. Some may disagree, but even the world champion in high-

performance computing, Sandia Lab's Accelerated Strategic Computing Initiative (ASCI)

Red Machine [6], may be seen as C O T S system. Clearly the system area network plays a

decisive role in overall performance.

1.4 Contributions

A n approach of achieving a high simulation speed for complex infrastructures is to distribute

the whole system over different computers in a system area network using fast network

adapters connection that perform the simulation concurrently. Then, these computers can

communicate with each other back and forth implementing the interdependencies among the

relevant subsystems. A s the C P U resource of any one computer is limited, implementing

simulations on multi-computer networks offers considerable potential for reducing the

overall computing time. However, in a PC-Cluster based simulation, additional time wi l l be

required to communicate the data between the computers.

This project represents an important milestone in the quest o f a fast computing tool for

complex simulations. A novel approach of building a PC-Cluster based simulator v ia high

speed Scalable Coherent Interface (SCI) network adaptor cards has been proposed,

implemented and discussed in this thesis. In this research a 16 nodes PC-Cluster is developed

using Dolphin SCI Adapter Cards [7]. The most suitable topology, including other topologies

for networking is discussed and implemented. Next a communication library o f user callable

functions has been developed, in order to use the Dolphin SCI Adapter Card and the

associated low-level functions [8]. Different interrupt mechanisms are investigated for back

and forth synchronized data transfer. To reduce the communication overhead between the

cluster nodes, a new interrupt mechanism has been developed and implemented. A user

defined block, based on the communication libraries is developed in M A T L A B / S L M U L I N K

- 4 -

[9], to communicate between different processors. It is shown that an improvement o f

computational speed over a single computer can be achieved through parallelism using the

SCI-based PC-Cluster. For the considered benchmark system, an increase in simulation

speed of up to 5 times was achieved.

1.5 Composition of the Thesis

This thesis is outlined as follows. In Chapter 2, the concepts o f system area network and

point-to-point links o f SCI adapter cards are presented. Several network topologies are

examined. Based on preliminary review of SCI-based networks, a specific architecture for

building the PC-Cluster at the U B C Power Lab is described that is best suited to accomplish

the research objectives. Next, in Chapter 3, possible software protocols are examined and

suitable low level functions are chosen to build the communication library of user callable

functions. The communication latencies between two nodes o f the SCI-based PC-Cluster are

measured for different interrupt mechanisms of synchronized data transfer. A

M A T L A B / S I M U L I N K S-function block is developed for communicating between

S I M U L I N K models in different nodes. The S I M U L I N K model o f an interdependent reduced-

scale U B C benchmark system of infrastructures is implemented and described in Chapter 4.

In Chapter 5, the simulation studies and results are compared with those obtained from a

conventional single processor implementation. The conclusions are summarized in Chapter 6,

which also includes suggestions for the future research.

Chapter 2

SCI-Based PC-Cluster

Scalable Coherent Interface (SCI) is an innovative interconnect standard (ANSI / IEEE Std

1596-1992 [1]) that addresses the high performance computing and networking domain. SCI

is used as a high-speed interconnection network (often called system area network) for

compute clusters built from commodity workstation nodes. In this chapter, several

communication networks for distributed simulations are described and compared

qualitatively and quantitatively. SCI Interconnect, System Area Network for Clusters, Point-

to-Point Link, and various network topologies evaluated and discussed. Final ly the hardware

infrastructure of 16 nodes U B C Power lab PC-Cluster is presented.

2.1 Communication Networks

Over the years, numerous communication networks and concepts have been proposed for

building clusters or tightly-coupled multiprocessors like N U M A (non-uniform memory

access) or C C - N U M A (cache coherent non-uniform memory access) systems. The

Myr icom's Myrinet [2] is a high-speed system area and local area network that has its origins

in the interconnect technology of a massively parallel machine. Network interface cards

attaching to workstations' I/O buses, high-speed links, switches, and a wealth of software,

predominantly optimized message-passing libraries, are available to facilitate the

construction of high performance compute clusters. In contrast to SCI , a shared address space

across the nodes in a cluster is not provided by the technology. However, the adapter card

hosts a programmable processor, which allows specific communication mechanisms to be

implemented, among them abstractions emulating the distributed shared memory (D S M [3]).

Also the network cost is relatively high because Myrinet requires crossbar switches for

network connection [4].

- 6 -

SCRAMNet+ (Shared Common Random Access Memory Network) from Curtis-Wright

Controls Embedded Computing (C W C E C) [5] is another cluster interconnects that supports

high-bandwidth and low data latency. The S C R A M N e t + approach is a shared-memory

network that has a common pool of memory accessible from multiple nodes through PCI

cards. The software for Windows N T ™ or Linux is commercially available; however, the

software must be purchased for each node.

The advertised performance characteristics of all the above PCI-based networks including

SCI (Scalable Coherent Interface) from Dolphin Interconnect Solutions, Inc. [6], [7], [8] are

summarized in Table 2.1. The latency represents the time needed to transfer the data from

one node to another in the associated with each network. In general, this latency depends on

the amount of data, i.e. length of message to be transmitted, and is nonzero even for zero

length messages.

Scheme Latency Performance Scheme

Zero-Length

Message (ps)

1-kB Length

Message ([is)

Performance

Myrinet *2.6 - 3.2 - Message-passing interface

S C R A M N e t + *0.8 *62.0 Software between N T or

L inux must be purchased for

each card

SCI D350 Ser ies—PCI

Express ™ Adapter

Cards

*1.4 *4.0 Short connection for

standard cable and optical

l ink

Advertised values by the corresponding companies

Table 2.1: Comparison of Myrinet, S C R A M N e t + , and SCI P C I cards

As shown in Table 2.1, the Myrinet latency for zero-length message is longer than that of

SCRMNet+ network. The reason for the increased latency is due to the number of layers in

Myrinet software protocols. On the other hand, compared to S C R A M N e t + and Myrinet, the

SCI networks allow sharing of local computer memory between two or more nodes with

- 7 -

relatively low latencies. Moreover, the SCI software for N T and Linux is freely distributed.

In this project, D350 Series - SCI-PCI Express ™ adapter card [9] was selected because of

its advertised low communication latency, low price per card, and the fact that it can be used

to implement either shared-memory or message-passing programming paradigms, thus

offering more options and future flexibility for the U B C Cluster than other network cards.

Features and benefits o f the Dolphin PCI-SCI networks [10] include:

• Dolphin PCI -SCI is A N S I / I E E E 1596-1992 scalable and coherent interface

compliant.

• Currently, the SCI software supports Linux, Windows N T ™ , Lynx and Solaris

operating systems.

• It is possible to communicate on an SCI cluster using different operating systems on

different nodes, for example between Windows N T ™ and Linux.

• The SCI supports multiprocessing with very low latency and high data throughput.

• The SCI reduces the delay o f inter-processor communication by an enormous factor

compared to the newest and best interconnect technologies that are based on

generation o f networking and I/O protocols (Fiber Channel and A T M) , because SCI

eliminates the run-time layers of software protocol-paradigm translation [11].

2.2 SCI Interconnect

The use of SCI as a cache-coherent memory interconnects allows nodes to be tightly

coupled. This application requires SCI to be attached to the memory bus of a node, as

shown in Figure 2.1 [12]. A t this attachment point, SCI can participate in and "export", i f

necessary, the memory and cache coherence traffic on the bus and make the node's

memory visible and accessible to other nodes. The nodes' memory address ranges (and the

address mappings of processes) can be laid out to span a global (virtual) address space,

giving processes transparent and coherent access to memory anywhere in the system.

Typically this approach is adopted to connect multiple-bus-based commodity SMPs

(symmetric multiprocessors) to form a large-scale, cache-coherent (CC) shared-memory

system, often termed a C C - N U M A (cache-coherent non-uniform memory access) machine.

- 8 -

The inter-node memory interconnects are proprietary implementations of the SCI standard,

with specific adaptations and optimizations incorporated to ease the implementation and

integration with the node architecture and to foster overall performance.

Figure 2.1: SCI-based C C - N U M A multiprocessor model [12]

2.3 System Area Network for Cluster

Computer clusters, i.e., networks of commodity workstations or PCs, are becoming ever

more important as cost-effective parallel and distributed computing facilities. A n SCI system

area network can provide high-performance communication capabilities for such a cluster. In

this application, the SCI interconnect is attached to the I/O bus of the nodes (e.g., PCI) by a

peripheral adapter card, very similar to a L A N ; as shown in Figure 2.2[12]. In contrast to a

L A N though (and most other system area networks as well), the SCI cluster network, by

virtue of the common SCI address space and associated transactions, provides hardware-

based physical distributed shared memory. Figure 2.2 shows a high-level view of the D S M

(Distributed Shared Memory). An SCI cluster is thus more tightly coupled than a L A N -

based cluster, exhibiting the characteristics of a N U M A (non-uniform memory access)

parallel machine.

Figure 2.2: SCI cluster model [12]

The SCI adapter cards, together with the SCI driver software, establish the DSM as depicted
in Figure 2.3[12]. A node, willing to share memory with other nodes (e.g., A), creates shared
memory segments in its physical memory and exports them to the SCI network (i.e., SCI
address space). Other nodes (e.g., B) import these DSM segments into their I/O address
space. Using on-board address translation tables (ATTs), the SCI adapters maintain the
mappings between their local I/O addresses and the global SCI addresses. Processes on the
nodes (e.g., i and j) may further map DSM segments into their virtual address spaces. The
latter mappings are conventionally being maintained by the MMUs (Memory Management
Units).

- 1 0 -

Node A, process i

Local memory segment
Virtual
address spaces

Physical/I/O
Address spaces

EXPORT

SCI physical address space

Node B, process j
Mapped, remote
memory segment

'.MAP MAP./'

IMPORT

MMU
(memory management unit)

ATT
(address translation table)

Figure 2.3: Address spaces and address translations in SCI clusters

Once the mappings have been set up, internodes communication may be performed by the

participating processes at user level, by simple load and store operations into D S M segments

mapped form remote memories. The SCI adapters translate I/O bus transactions that result

from such memory accesses into SCI transactions, and vice versa, and perform them on

behalf of the requesting processor. Thus remote memory accesses are both transparent to the

requesting processes and do not need intervention by the operating system. In other words,

no protocol stack is involved in remote memory accesses, resulting in low communication

latencies even for user-level software.

Currently there is one commercial implementation of such an SCI cluster networks, PCI -SCI

adapter cards offered by Dolphin Interconnect Solutions. These adapter cards are used to

build a 16 node cluster in this project for parallel computing.

There are two ways to transfer data to and from the SCI network. The first method works as

described above: a node's C P U actively reads data from (writes data to) a remote memory

using load (store) operations into the D S M address window mapped from the remote node.

This can be fully done on user level, resulting in very low round-trip latencies but occupying

C P U for moving the data. The second method involves a direct memory access (D M A)

engine in the SCI adapter that copies the data in and out o f the node's memory. While this

method relives the C P U , it has higher start-up costs since the SCI driver software has to be

-11 -

involved to set up the D M A transfer. As we wi l l be using low level data transfer in this

project, the previous method is preferred.

A n important property o f such SCI cluster interconnect adapters is worth pointing out here.

Since an SCI cluster adapter attaches to the I/O bus of a node, it cannot directly observe, and

participate in, the traffic on the memory bus of the node. This therefore precludes caching

and coherence maintenance of memory regions mapped to the SCI address space. In other

words, remote memory contents are basically treated as non-cacheable and are always

accessed remotely. Therefore, the SCI cluster interconnect hardware doesn't implement

cache coherence capabilities. Note that this property raises a performance concern: remote

accesses (round-trip operations such as reads) must be used judiciously since they are still an

order of magnitude more expensive than local memory accesses.

The basic approach to deal with the latter problem is to avoid remote operations that are

inherently round-trip, i.e., read, as rare as possible. Rather remote writes are used which are

typically buffered by the SCI adapter and therefore, from the point o f view of processor

issuing the write, experience latencies in the range of local accesses, which are several times

faster than remote read operations.

2.4 Point-to-Point Links

A n SCI interconnect is defined to be built only from unidirectional, point-to-point links

between participating nodes. These links can be used for concurrent data transfers, in contrast

to the one-at-a-time communications characteristics of buses. The number of links grows as

the nodes are added to the system, increasing the aggregate bandwidth o f the network. The

links can be made fast and their performance can scale with the improvements in the

underlying technology.

Most implementations today use parallel links over distances of up to few meters. The data

transfer rates and lengths of shared buses are inherently limited due to signal propagation

delays and signaling problems on the transmission lines, such as capacitive loads that have to

- 1 2 -

be driven by the sender, impedance mismatches, and noise and signal reflections on the lines.

The unidirectional Point-to-Point SCI links avoid these signalling problems. H igh speeds are

also fostered by low-voltage differential signals.

Furthermore, SCI strictly avoids back-propagating signals; even reverse flow control on the

links, in favor o f high signalling speeds and scalability. A reverse flow control signal would

make timing of, and buffer space required for, a link dependent on the l ink's distance [13].

Thus flow control information becomes part of the normal data stream in the reverse

direction, leading to the requirement that an SCI node must at least have one outgoing link

and one incoming link. The SCI cards include two unidirectional links where each speeds

500 Mbytes/s in system area networks (distances of a few meters) [14].

2.5 Network Topologies
In principle, SCI networks with complex topologies could be built. However, the standard

anticipates simple topologies. For small systems, for instance, the preferred topology may be

a small ring (a so-called ringlet) as shown in Figure 2.4 [15]. For larger systems,

interconnecting the rings using a switch topology as shown in Figure 2.6 or multidimensional

tori are feasible. In ring topology, we have the option called 1-D, 1-D with Interleaved

connection (shown in Figure 2.5) and 2-D connection.

Figure 2.4: 4-Node SCI Ring Topology [15]

- 1 3 -

Figure 2.5: 4-Node SCI Ring Topology with interleaved connections [15]

When interconnecting 1-D Adapter Cards with a switch as shown in Figure 2.6, each port of

the switch has an input and an output connector, just like a regular node. One or more nodes

can be connected to a switch port, following the same scheme as shown above in Figure 2.4

for regular ring topology.

Figure 2.6: 8-Node SCI Switch Topology [15]

- 14-

As explained above, the SCI offers considerable flexibil ity in topology choices all based on

the fundamental structure of a ring. However, since a message from one node in a ring must

traverse every other node in that ring, this topology becomes inefficient as the number of

nodes increases. Multi-dimensional topologies and/or switches are used to minimize the

traffic paths and congestion in larger systems [15]. The multi-dimensional topologies assume

an equal number of nodes in each dimension. Therefore, for a system with Z>-dimensions and

n nodes in each dimension, the total number of nodes (i.e. system size) is equal to nD. With

simple ring, all nodes must share a common communication path, thus limiting the

scalability. Hence in this project the two dimensional torus topology (4x4) is considered to

achieve optimum performance from the latency perspective.

2.5 PC-Cluster at UBC Power Lab

The PC-Cluster built at U B C Power Lab is shown in Figure 2.7 and Figure 2.8. The SCI-

D352 PCI-Express ™ type 2-D adapter cards are used in this cluster. These adapter cards

have two additional SCI links and can be connected in a 2D-torus topology as shown in

Figure 2.9 [16]. The nodes in the torus topology are organized in an X and Y direction as

shown in Figure 2.10. This means that each node-processor has two SCI interfaces; one

interface attaches to the horizontal ringlet (X-direction) and the other attaches to the vertical

ringlet (Y-direction). The minimum number of nodes in a 2-D torus cluster is 4 (e.g., 2x2),

and maximum number of nodes is 256 (e.g., 16x16). The Node Id is assigned to each node

as specified in Figure 2.10 [16].

The cables are connected according to Figure 2.10 [16]. The SCI cables in the X direction

should be connected to the main card connectors (SCI-Link 0) and the SCI cables in the Y

direction should be connected to the daughter card connectors (SCI-L ink 1) as shown in

Figure 2.11. The detailed connection with all the node numbers are shown in Figure 2.12.

- 15 -

Figure 2.7: Front view of the 16-Node PC-Cluster at U B C Power Lab

- 1 6 -

Figure 2.8: B a c k v i e w o f the P C - C l u s t e r showing the w i r i n g interconnecting the 16-Nodes

-17-

Figure 2.9: 16 Node SCI Torus Topology (4x4)

- 18 -

Node 196

x=0,y=3

Node 200

x=l,y=3

Node 204

x=2,y=3

Node 208

x=3,y=3

Node 196

x=0,y=3

Node 200

x=l,y=3

Node 204

x=2,y=3

Node 208

x=3,y=3
i i

Node 132

x=0,y=2

Node 136

x=l,y=2

Node 140

x=2,y=2

Node 144

x=3.y=2

Node 132

x=0,y=2

Node 136

x=l,y=2

Node 140

x=2,y=2

Node 144

x=3.y=2
i i

Node 68

x=0,y=l

Node 72

x=l,y=l

Node 76

x=2»y=l

Node 80

x=3.y=l

Node 68

x=0,y=l

Node 72

x=l,y=l

Node 76

x=2»y=l

Node 80

x=3.y=l

Node 4

x=0,y=0

Node 8

x=l,y=0

Node 12

x=2,y=0

Node 16

x=3,y=0

Node 4

x=0,y=0

Node 8

x=l,y=0

Node 12

x=2,y=0

Node 16

x=3,y=0

X

Figure 2.10: 4x4-Torus Topology showing the Node Id and X - Y axes

PlugUp Board Connectors
SCI Link 1 • £
SCI Link 0 »•
M a i n Board Connectors

Figure 2.11 : 2D PCI-to-SCI Adapter

- 19-

3 1 1 6 N O D E IH

I I XM

fjpj"
mi

xr.

xn

O NODE 200 O p i
T T m

Xii

\i:

JUL

0 NODE 204 O

1 I

m
tm

Xii
0 NODE 20s o

1 i

KI4

X21

Xii

0 NODE 132 O P J

I

xn
Xll

0 NODE 136 O

1 I

I vex. _
rat

TO

Si:

tm O NODE 140 O

XU

0 NODE 144 0

1 I tan

xn 5 T 4 — o p i L ,

0 NODE 8 Oj

1 I

v u

mi

NODE 12 O

1

|YH

YU

X B 3

N O D E 16 O i i i .

XI4

0 NODE 6S f j

1 I
xii O NODE 72 Oj

Mi i
TO

X U I

NODE 76 O

I

v i i

irn

VH

j(ti

xu

<5 NODE 80 0

I I

YU

M L

Figure 2.12: Wiring of the SCI Network of 16 computers with Node numbers

- 2 0 -

Chapter 3

SCI Communication Software

Regardless of the selected network topology, the SCI standard is designed to support two

main communication software protocols for programming of parallel tasks: Message-Passing

and Shared Address Space. The SCI promises efficient implementation of both paradigms as

it allows transport o f messages with extremely low latency and high bandwidth, thus

providing an ideal platform for the message-passing applications. The SCI also provides a

direct access to remote memory using plain load-store transactions, thus providing an equally

good base for the shared memory applications. In this chapter, the trade-offs between both

programming protocols are briefly discussed. The fastest low-level functions [1] are chosen

to develop a libraries composed of set of user-callable communication routines in order to

implement the distributed simulation using PC-Cluster. The communication latencies for

different interrupt mechanisms of synchronized data transfer are measured and compared.

Additionally, the MATLAJ3 /SEV1ULINK [2] S-function block has been developed to

facilitate communication between S I M U L I N K models residing on different cluster nodes.

3.1 SCI Programming

The IEEE SCI standard [3] defines a shared memory interconnect from the physical layer to

the transport layer. However, no standard user-callable software layer is defined. In a

distributed shared memory environment, little software is required because once a distributed

shared memory (DSM) system is set up all accesses can be performed by directly

reading/writing from/to the appropriate shared memory spaces. It results in the lowest

possible message passing latency and transaction overhead. N o procedures or system services

need to be called in order to exchange data between system nodes. Although there is no

software required to perform D S M data exchange, there is a fair amount of software

infrastructure necessary to create an appropriate shared memory segment and to export it into

-21 -

the global shared address space or to import that global shared memory segment into the

local address space of another process.

Transaction overhead and latency are very important features in complex distributed

simulations, where distributed shared memory systems are widely used. Therefore the

software interface standard for D S M (distributed shared memory) applications was designed

in such a way that it does implement all necessary hardware abstraction functions but avoids

any additional functionality that would increase the overhead.

In the shared-memory protocol, all the processors in the network share a global memory as

shown in Figure 3.1 [4]. The SCI D S M constitutes a shared physical address space only,

disallowing caching of remote memory contents. It is much more challenging to devise and

realize shared-memory or shared-objects abstractions in this environment than it is to

implement message passing-programming models. The major challenge involved is to

provide a global virtual address space that can be conveniently and efficiently accessed by

processes or threads distributed in the cluster. Solutions w i l l also have to address caching and

consistency aspects of shared memory models.

G L O B A L M E M O R Y SI*AC I.

• • •

Processor Processor Processor

Figure 3.1: Shared-memory communication model [4]

- 2 2 -

For simplicity reason, message passing communication model as shown in Figure 3.2 [4] is

often used. Message-passing programming requires to explicit ly coding of communication

operations. In doing so, it is often simpler to take care of the performance aspects [5]. In this

approach, each processor has its own address space and can only access a location in its own

memory. The interconnection network enables the processors to send messages to other

processors. A lso special mechanisms are not necessary in message-passing protocol for

controlling simultaneous access to data, thus reducing the computational overhead of a

parallel program.

The Dolphin adapter cards allow direct mapping of memory accesses from the I/O bus of a

machine to the I/O bus and into the memory of a target machine. This means that the memory

in a remote node can be directly accessed by the C P U using store/load operations giving the

possibility to bypass the time consuming driver calls in the applications. The high latency of

accessing the remote memory as compared to local memory does not make it very attractive

to share the program variable over the SCI, since maintaining cache coherence is not possible

on the I/O bus. A remote C P U read w i l l stall the C P U , but writes are posted such that the

latency is minimized. Message passing model using write-only model fits very wel l into this

scheme, offering a low-latency, high-bandwidth and reliable channel that makes it possible to

implement an efficient message passing software interface. Thus message-passing method is

adopted in this research because o f its straightforward program structure.

SCl-INTERCONNECT (PCI-SCI ADAPTER CARD)

Processor Processor

Local Memory Local Memory

Figure 3.2: Message-Passing communication model [4]

- 2 3 -

3.2 SCI Communication Library

To allow different hardware and software implementations, the I E E E Std PI596.9 "Physical

layer Application Programming Interface (API) for the Scalable Coherent Interface (SCI

P H Y - A P I) " [6] defines an A P I to abstract the underlying SCI physical layer. A n EU-funded

project, named "Standard Software Infrastructures for the SCI-based Parallel Systems"

(SISCI) [7] developed highly advanced state-of-the-art software environment and tools to

exploit the unique hardware capabilities of the SCI communications. The SISCI A P I [8]

supports:

> Distributed shared memory (DSM) whereby memory segment can be allocated on

one node and mapped in the virtual address space of a process running on another

node. Data is then moved using programmed I/O.

y DMA (Direct Memory Access) transfers to move data from one node to another

without C P U intervention.

> Remote interrupt whereby a process can trigger interrupts on a remote node.

> Fault tolerance allowing a process to check i f a transfer was successful and to catch

asynchronous events (such as link failures) and take appropriate actions.

The low-level SCI software functional specifications were developed by Espirit Project

23174 [1]. This project (Software Infrastructure for SCI , "SISCI") has defined a common

Application Programming Interface to serve as a basis for porting major applications to

heterogeneous multi vendor SCI platforms. However, from the requirement analysis [9] it has

appeared clear that a unique A P I for all applications is not realistic.

The functional specification of the A P I is defined in A N S I C [10]. The following

functionality of this SCI A P I are used here [9].

> Mapping a memory segment residing on a remote node in read/write mode

> Transferring data from remote node via D M A (Direct Memory Access)

> Transferring data to a remote node via D M A

> Getting some information about the underlying SCI system

-24-

> Sending an interrupt to an application running on a remote node

> Checking i f a function execution failed and why

> Checking data transmission errors

> Transferring data to/from a remote node in a blocking way

> Transferring data to/from a remote node in a non-blocking way

> Sending and receiving raw SCI packets

> A l l functions are thread-safe

> The A P I implementation doesn't deteriorate the characteristic performance of the

SCI technology (high bandwidth and low-latency)

> Implementing A P I on more than one platform and making SCI network to become a

heterogeneous i f the connected nodes are different in terms of platform

The mapping operation is in general very complex and needs to be split in several steps.

Basically, when Node A wants to map a memory segment physically residing on Node B, the

following sequence has to take place:

• Node B allocates the segment and, via one of its SCI interface, makes it available to

Node A

• Node A , v ia one of its SCI interfaces, connects to the memory segment on Node B

and maps it into its own memory

Making a segment available to every other node means essentially mapping this segment to

the SCI address space, in such a way that it is visible to other nodes. Connecting to a segment

is the complementary action and consists mainly in determining the address range of the

segment inside the SCI address space. But it also means maintaining a relationship between

the physical segment and its mapped companion. The connection then appears to be a very

delicate aspect o f the above procedure and it could have strong implications on the lower-

level SCI software, i.e. the driver.

Several models can be adopted to abstract the connection management. For the design of SCI

A P I (SCI Application Programming Interface) two of them have been considered [9]. They

- 2 5 -

differ mainly in how a connection is identified. In what is called the segment-oriented model,

a connection is identified by three elements: the physical segment, the SCI adapter used by

the creating node, the SCI adapter used by the connecting node. However this doesn't allow

distinguishing between all the possible connections, for example in the case when two

connections to the same physical memory segments have been performed v ia the same SCI

adapters. The alternative, on which the other model, called connection-oriented, is based, is

to assign a unique identifier (handle) to a connection, through which the connection can be

referenced.

The connection-oriented model is evidently more flexible, but it is also more complex to

manage. For this reason, the design of the A P I is based at the beginning on the segment-

oriented model. There is however the intention to extend the design and then the

specification towards the connection-oriented model. In particular the memory management

and the connection management are wel l separated. The procedure described above is then

extended as follows:

• On the creating node, an application first allocates a memory segment

(SCICreateSegment), assigning to it a host-unique identifier, and prepares it to be

accessible by the SCI interface (SCIPrepareSegment). What the preparation means

depends on the platform where the software runs. For example, it could consist of making

the segment contiguous and locked in physical memory. These two operations concern

the memory management aspect of the job.

• Finally, the segment is made available to the external network v ia one or more SCI

interfaces (SCISetSegmentAvailable). This operation represents the connection

part of the job.

A segment can be made unavailable to new connections

(SCISetSegmentUnavailable) without affecting the already established ones. A

segment can be removed only when it is not used any more (SCIRemoveSegment). If the

segment is still in use, locally or remotely, the remove function fails.

- 2 6 -

Figure 3.3 shows a diagram with the possible states that a local segment can occupy for each

adapter card and the legal transitions between those states. The state o f a local segment can

be thought-of as the set o f al l possible combinations o f the states o f all the adapters. The

function SCIRemoveSegment is legal operation from all the states, but it fails i f the segment

is still in use.

SCICreateSegment

-• y DD™. „„,r~~\SCISetSegnientAvailable
„f NOM>KH'ARi:i) NSCIPrepareSegmen̂ / N Q T AVAILABLE ~V~ *(AVAIL\B1.F. j

"^SCISetSegmentl.navailable

SCIRemoveSegment SCIRemoveSegment SCIRemoveSegment

Figure 3.3: State diagram for a local segment

• On the connecting node, an application first needs to connect to the remote segment via

an SCI interface (SCIConnectSegment) and then it can map it into its own address

space (SCIMapRemoteSegment). The two calls create and initialize respectively the

descriptors sci_remote_segment and sci_map and for each return a reference

handle.

When the segment is not any more in use, it has to be unmapped (SCIUnmapSegment) and

disconnected (SCIDisconnectSegment). On the local node, the creation of a memory

segment does not imply that it is mapped in the address space o f the creating process. To do

this, a specific action has to be performed (SCIMapLocalSegment), which also produces

a descriptor o f type sci_map. The same type descriptor is used for remote mapped segments.

Once the mapping is established, movement of data to or from the mapped segment is

performed by a normal assignment to or from a memory location fall ing in the range where

the segment has been mapped in an absolutely transparent way. This also means that there is

no software intervention and the typical SCI performance is untouched [9]. Moreover, in

file:///B1.F

- 2 7 -

order to profit from hardware-dependent features, a specific function is provided to copy a

piece of memory to a remote map (SCIMemCopy). This optimized SCI interface is used in

the project to transfer data back and forth between two nodes and achieve low

communication latency.

In order to use the SCI adapter cards and the associated low-level functions [1], a library of

SCI user-callable functions has been developed. These communication functions are

compiled into one static library that can be linked to applications such C-based

M A T L A B / S i m u l i n k [2] or the Fortran-based languages such as A C S L (Advanced

Continuous Simulation Language) [11] and possibly MicroTran [12]. The developed routines

implement message passing transactions and are summarized in Table 3.1 and Table 3.2.

The first function that must be called in a user program is s c i s t a r t () . This function

initializes the SCI-library, opens the virtual device and verifies the SCI cards installed on a

node. A unique positive integer handle h is returned by this function represents the first

connection. This handle is the identifier of the node-to-node connection. In case of failure of

virtual device or SCI-library, the handle returned by this function is zero. Next, the function

s c i i n i t () is called with respect to the handle h, local Node LD, remote Node LD, and the

vector size of exchange variables. This function initializes the network connection

corresponding to the handle h, by creating and mapping memory segments and then

connecting to remote segments. After initialization of the network corresponding to handle h,

data can be transferred between the nodes back and forth using two other functions called

s c i send () and s c i receive (). Once the data transfer is done, the particular network

connection link with handle h can be closed using the function sciend () . This unmaps

and removes the memory segments corresponding to handle h. Final ly, the s c i c l o s e ()

function is called to close the virtual device on the given Node and free the allocated

resources and thus terminate from the SCI environment.

- 2 8 -

Function Description

s c i s t a r t (int *h) Initializes the SCI-library, opens virtual
device and returns handle h = zero, in case
of failure.

s c i i n i t (int *h , i n t l n l d ,
i n t m i d , i n t vecsize)

Initializes the network connection
corresponding to the handle h.

lnld - local node LD
rnld - remote node LD

vecsize - size o f the vectors (number of
exchange variables in doubles). Last
memory segment is reserved for the
message(l) to tell the remote node , that
the data transfer is done

Creates local segment
Prepares the local segment
Maps the local segment to user space
Sets the local segment available to other
nodes
Connects to remote segment
Maps remote segment to user space

scisend (int *h , double
*invec, i n t vecsize)

Transfers data from invec (localBuffer) to
remote Map using SCLMemCpy. A lso
sends interrupt message telling remote
node that data transfer is done

sc i rece ive (int *h, double
*outvec, i n t vecsize)

Checks for the interrupt message received
from the sending node that transferred the
data. Once this message is received, it puts
data in outvec, from the localMapAddr.

sciend (int *h) Closes the network connection
corresponding to the handle h.
Unmaps the remote segment.
Disconnects the remote segment.
Unmaps the local segment.
Removes the local segment.

sc i c lo se () Closes the virtual device and frees the
allocated resources.

Table 3.1: SCI communication library

- 2 9 -

Sending Node
NODE 8

Maps Remote Segment to
User Space(RemoteMapAddr)!

Initialize SCI Library

Creates Local Segment+
Maps Local Segment to
User Space(LocalMapAddr)
Connect to Remote
Segment

Transfers Data from
LocalBuffer(Invec)
to RemoteMap using
SCIMemCpy +
Sends Interrupt Message
to indicate Node4,
that Data Transfer is Done
Unmap Remote Segment

Disconnect Remote Segment
Unmap Local Segment
Remove Local Segment

Close theVirtual Device

Free the Allocated resources
using SCI Terminate

Receiving Node
NODE 4

Initialize SCI Library

Creates Local Segment+
Maps Local Segment to
User Space(LocalMapAddr)!
Connect to Remote
Segment

Maps Remote Segment to
User Space(RemoteMapAddr)
Waits Until Receives
Interrupt from Node 8
to Know that Data Transfer
is done to the LocalMapAddrl

If Receives interruptMessage
then the correct Data is
transferred to LocalMapAddij
+ Reads Data into
Outvec(LocalBuffer) from
LocalMapAddr.

Unmap Remote Segment
Disconnect Remote Segment
Unmap Local Segment
Remove Local Segment

Close theVirtual Device
Free the Allocated resources
using SCI Terminate

Table 3.2: Sequence of actions between node 8 and node 4

- 3 0 -

3.3 Measured Communication Latencies

The comrnunication library shown in Table 3.1 can be used in all nodes participating in SCI-

Network. Different interrupt mechanisms can be used to obtain a synchronized data transfer.

This is investigated in this section and the best method for synchronized back and forth data

transfer is used. The communication time between two nodes is measured using the C

programs as described in Figure 3.4.

One possible way is to use interrupt mechanism available in SCI -API (SCI application

programming interface) [1]. It is possible to send and interrupt to an application running on a

remote Node. If an application running on Node A wants to trigger an interrupt for an

application running on Node B , the procedure is the following:

• Application B creates an interrupt resource on its node, assigning to it a host-unique

identifier (SCICreatelnterrupt); a descriptor of type sci_local_interrupt_t is

initialized.

• Application A connects to the remote interrupt (SCIConnectlnterrupt) that

initializes a descriptor of type (sci_remote_interrupt) and after that, can trigger it

(SCITriggerlnterrupt).

When application A does not need any more to trigger, it disconnects from the remote

interrupt (SCIDisconnectlnterrupt). Application B frees the interrupt resource with

SCLRemovelnterrupt. Application B can catch the interrupt either specifying a call-back

function at creation time or using a blocking wait function (SCIWaitForInterrupt).

A n alternate method o f synchronized data transfer is proposed in this thesis. In the proposed

approach, a special bit message flag in the memory segment o f the sending node is used. The

receiving node checks for that message flag bit to determine whether or not a new message

was send. Once the message is received, the data can be accepted into local map address.

This kind of poll ing method does not involve any low-level SCI -API interrupt functions and

is very fast.

-31 -

Node 4(computer 1) Node 8 (computer 2)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sci_comm_lib.h>

#include <stdio.h>
#include <string.h>
ttinclude <stdlib.h>
#include <sci_comm_lib.h>

void main ()
{

i n t localNodeId=4; /*computerl */
i n t remoteNodeId=8;/*computer 2*/
i n t vecsize = 100;
i n t h = 1;

void main ()
{

i n t localNodeId=8; /*computerl */
i n t remoteNodeId=4;/*computer 2*/
i n t vecsize = 100;
i n t h = 1;

double y [100], x [100];
i n t i ;

double y [100] , x [100];
i n t i ;

s c i s t a r t (&h); s c i s t a r t (&h);
sciinit(&h,localNodeld, s c i i n i t (& h , l o c a l N o d e l d ,

remoteNodeld, v e c s i z e) ; remoteNodeld, v e c s i z e) ;
for (i=0;i<vecsize-l;i++) {

x[i] = (double)i;
}

for (i=0;i<vecsize-l;i++) {
x[i] = (double)i;

}
s c i r e c e i v e (&h, y, ve c s i z e) ;
scisend (&h, x, v e c s i z e) ;

s c i r e c e i v e (&h, y, v e c s i z e) ;
scisend (&h, x, v e c s i z e) ;

sciend (&h); sciend (&h);
s c i c l o s e (&h); s c i c l o s e (&h);

} }

Figure 3.4: C programs in Computer 1 and Computer 2 using communication library

The measured two-way communication latencies are shown in Figure 3.5 for both the

standard SCI interrupt handling and the new message poll ing method of synchronized data

transfer. The horizontal axis in Figure 3.5 corresponds to the number o f double precision

variables exchanged back and forth between the nodes. The vertical axis corresponds to the

measured C P U time.

- 3 2 -

The slope of each line represents the rate of change of the C P U time with respect to the

number of double-precision variables exchanged. The vertical-intercept represents the

communication overhead associated with the interrupts and other SCI -API functions.

CPU Time versus Double Precision Variables

3 0 0

Data in doubles

Figure 3.5: C P U time versus number of doubles using two different methods of

synchronized data transfer

As can be seen here, using the A P I interrupt function for two-way synchronized data transfer,

the communication overhead is on the order of 40 us for the two-way zero-length message.

This relatively long time may be due to internal Windows operating system handling of the

interrupt mechanism. In the case of message segment method of synchronization, the

communication overhead is 7.2 us for the two-way zero-length data transfer between the two

computers. Hence, in this project, the proposed method of synchronization for transferring

the data is chosen to build the communication library functions, scisend () and

scireceive ().

- 3 3 -

From Figure 3.5, the communication time between two computers for the SCI network for

both types of synchronized data transfer, can be approximated as follows:

TcompX = (0.105**/+ 7.2)/* (3.1)

Tcomp2= (0.120* d + 40)jus (3.2)

Where d is the number o f doubles transferred back and forth between two nodes. TcompX and

Tcomp2 are the C P U times for the proposed method o f synchronized data transfer and low-

level SCI interrupt function method of data transfer.

3.4 Simulink S-function Communication Block

Various methods are available for distributed and parallel simulation within Simulink. One of

them is the D S Toolbox (Distributed Simulation Toolbox) for Simulink and Stateflow that

enables the realization and simulation o f distributed Simulink models [13]. In this case, the

communication is based on the C O R B A / T C P / I P [14]. In analogy to the decomposition

concept of Simulink using subsystem blocks with port sets, it provides blocks (called E X I T E

blocks) with the same structuring functionality but with additional features for parallel and

distributed simulation. The user can create their models in the common way and distribute

these models on several computers which are interconnected via a standard TCP- IP network.

During the simulation, all connected models on all computers run truly in parallel (co-

simulation). However this kind of distributed simulation introduces a significant

communication overhead, which w i l l slow down the simulation speed of large complex

systems. Hence, the SCI communication library described in Section 3, with optimum low-

level A P I functions for achieving low latency is used to develop Simulink S-function user

interface block.

The functional diagram of the developed Simulink block is shown in Figure 3.6. This block

is then used for distributing a complex Simulink model and simulating it concurrently on the

SCI P C cluster. A t the beginning of the simulation, the initialization o f SCI-library has to

-34 -

take place. This includes opening of the virtual device and initialization of network

connection corresponding to handle h is done using s c i s t a r t () and s c i i n i t (&h) .

After that, the data can be transferred to other Simulink models residing on different

computers using s c i s e n d () and s c i r e c e i v e () during every time-step. Finally, at

the end of simulation, and after completion of data transfer, the closing o f SCI network,

virtual device and releasing of the allocated resources is executed using s c i e n d () and

s c i c l o s e () .Thus, s c i s t a r t () , s c i i n i t () , s c i e n d () and s c i c l o s e ()

are used only once while s c i s e n d () and s c i r e c e i v e () are used in every time-step

during the whole process of simulation.

SIMULINK MODEL 1 SC1-INTERF«E

sen-Receive

S-FUNCTION BLOCK

St l -RECEIVE

SCI-INTERFACE

S-FUNCTION BLOCK

K I M U L I N K M O D E L 2

COMPUTER 1 COMPUTER 2

Figure 3.6: Distributed Simulink model using SCI-communication S-function Block

- 3 5 -

Chapter 4

System Description

It should be acknowledged that development of the infrastructure cell models is an on-going

research mostly carried out by other graduate students working on the JILRP project in the

U B C Power Lab; whereas the focus of this thesis remains to be software and hardware of the

SCI-based PC-Cluster. In this chapter, a reduced-scale U B C test case for joint infrastructure

interdependencies is briefly described for completeness. The Simulink models of these

infrastructures [1] including the S-function communication block introduced in Chapter 3 are

also presented here. The overall reduced-scale benchmark system w i l l be used in this thesis

for demonstration and evaluation of distributed simulation using the SCI-based PC-Cluster.

4.1 Reduced-Scale UBC Benchmark System Description

The reduced-scale version of the U B C infrastructures connected with each other form a

complex system shown in Figure 4.1. The five infrastructures include Sub-Station, Hospital,

Water Station, Power House, and Steam Station. This system is selected because it represents

many attributes of a small city [2], which is sufficiently complex to investigate the

improvement in the simulation speed that can be obtained i f instead o f using a single

computer this system is distributed over 5 computers of the PC-Cluster. For this comparison,

the Simulink models of the infrastructure cells are taken from [1]. The description of a

system of infrastructures requires at least two layers: the physical layer and the human layer

[3]. In this thesis, only the physical layer model has been considered for distributed

simulation.

- 3 6 -

Figure 4.1: U B C reduced-scale system of infrastructures with interdependencies

4.1.1. System components

In describing the model of infrastructures, we use a particular ontology developed by the

U B C JIIRP researchers. The components of the physical layer exchange quantities such as

power, water, steam, gas and oi l , which are defined as tokens [4], [5], and [6]. Generally

speaking, the tokens are goods or services that are provided by some entity to another entity

that uses them. The infrastructures: Sub-Station, Hospital, Water Station, Power Station, and

Steam Station are therefore represented as cells that exchange appropriate tokens. A cell is an

entity that performs a function [3]. For example, a Hospital is a cell that uses input tokens:

- 3 7 -

electricity, water, medicines, etc. and produces output tokens: e.g., beds served. A group of

one or multiple cells can form a Node. A Node is a Generator Node i f the tokens are

produced by its cells or taken out from its storing facilities or exported to other nodes.

Similarly, a Node can be a Load Node i f it receives tokens from other nodes and then

delivers to its internal cells for immediate use or storage. In the reduced-scale U B C

benchmark system considered in this thesis, a Node consists of one cell only and it is a

Generator Node with respect to some tokens and at the same time a Load Node with respect

to other tokens. The nodes are connected by the Transportation Channels. The Transportation

Channels are the means by which tokens flow from Generator Node to Load Node. If the

channel is broken down, no tokens can be transmitted through that channel.

4.1.2. System equations

Sometimes in modeling a system where goods are produced and consumed, mathematical

economics concepts are used [7]. In mathematical economics, similar to systems engineering,

the logical relationships between entities and quantities are expressed in terms of

mathematical symbols. Due to the complex problem of representing the dynamics of

infrastructures during the disasters and due to the highly non-linear nature of the underlying

relationships, the mathematical approach is considered to model the system of infrastructures

[3], on which the models used in this thesis are based.

4.1.3. Cell modeling

A cell 's function can be characterized using an input-output model [3], [8]. For example, a

Water Station cel l shown in Figure 4.2 uses a number o f input tokens: electricity, external-

water, and oi l to produce an output token: water. A given token in the cell w i l l then be

denoted as xk.. The first subscript indicates the cell number and the second subscript

indicates the type number of token. Assuming Water Station is cell k = 3 , the tokens in the

Water Station cell as shown in Figure 4.2 can be expressed as follows:

JC 3 1 = electricity, x32 = external - water, x 3 3 = oil,xu = water

- 3 8 -

Figure 4.2: Water Station Cel l with input and output tokens

Here it is assumed that the relationship among the tokens can be described by some non

linear function as:

*34(0 = /(X31(0»*32(0»*33(0>*34(0) (4-1)

xkj= token j used or produced in k

x3l = electricity used

x32 = external - water used

x 3 3 = oil used

x 3 4 = water produced

The Water Station as a cel l is connected to all the networks that provide the tokens it needs to

output the product (water). The diagram in Figure 4.3 illustrates these relationships for the

U B C Water Station. The Hospital cell connection can also be represented in a similar

fashion.

- 3 9 -

Figure 4.3: Diagram depicting flow of tokens for the Water Station and Hospital Cells

4.1.4. Channel modeling

In general, the tokens needed at the nodes for the cells to do their jobs come from other nodes

(apart from local storage) [6]. The tokens travel through the transportation network from

Generator Nodes to Load Nodes. A given token may come out of multiple Generator Nodes,

and likewise travel to multiple Load Nodes. Thus, there may be multiple channels l inking

Generator Nodes to Load Nodes. For a given Generator Node, dispatching decisions wi l l

determine how the node's token production wi l l be distributed among the channels coming

out of the node. Once the tokens are in the channels, they may be affected by the channel's

capacity and transportation delays. How many token units received by a Load Node at a

- 4 0 -

given instant of time depends on many factors including the amount of token generated in the

system, the dispatching decisions, and the channels capacity and possible delays.

For studying the interdependencies in the U B C benchmark system, specific scenarios can be

implemented using the cell and channels features. For example, the water pipe channel may

be broken and then repaired after sometime during the study [1]. A l so , the channels' gain

may be changed to simulate different capacity of the channels. For example, the channel 32

illustrated in Figure 4.4 [3] is the means for transportation of water from Node 3 to Node 2.

Here, m 3 2 denotes the magnitude and D32(t-k) the corresponding time delay. If no water is

lost during the transportation, then mi2 becomes 1. A lso, i f the trip takes 20 minutes

(assuming one time delay is one hour) then

^32(0 = ^ 3 2 ^ - 0 - 3 3) (4.2)

Here subscript X stands for " l ink". This equations states that the quantity o f water arriving at

Node 2 at a given time t is same as the amount of water sent from Node 3 twenty minutes

earlier.

Water Station Node 3

-cr

»3,(t)

Node 2

X>

^ 0 = m n D j i (t - k 3 2 >

Hospital

Figure 4.4: Transportation Channel model

The channel model concept is derived from wave propagation in electrical transmission lines

[6]. According to this approach, a wave injected at the sending end o f transmission line w i l l

arrive at the receiving end after the elapsed traveling time. The maximum channel capacity

should be considered as a limit in the dispatch block Dn. Broken channels or reduced

capacity links during disaster situations can be modeled easily with the model depicted in

-41 -

Figure 4.4. For example, i f an electric power line has to be disconnected for four hours due to

a fault, the link model for the line would include the transmission line maximum power

capacity plus a delay time of four hours.

4.2 Substation

The Substation is one of the key infrastructure components of the U B C campus. To have a

better appreciation for the real physical infrastructure, a picture of the Substation is shown in

Figure 4.5. This Substation is the link between B C Hydro transmission network and the U B C

campus power network [9]. The electricity is transmitted from B C Hydro via two high

voltage 6 4 K V overhead lines. The key components of the Substation are transformers, switch

gear equipments, circuit breakers, feeders etc.

Figure 4.5: U B C Substation feeding power to whole campus

The Substation model is built to assess its performance in normal state and in disaster

situations that may arise due to an earthquake or a terrorist attack. After an earthquake, the

- 4 2 -

Substation service may be deteriorated and require repairs to the damaged components in

order to restore its normal operating condition. The model takes into consideration the

restoration process after the disaster, based on the repairing process as per predefined

response plan and appropriate schedules. The U B C Substation Simulink model developed by

L iu , L. [1] includes distributor, channels, and tokens. For the distributed simulation using the

PC-Cluster, the Substation model is implemented on one computer and interfaced with other

components using the S-function communication block as shown in Figure 4.6.

UBC Substation Bnxrmm PC-CLUSTER

Figure 4.6: Simulink model of the U B C Substation Cel l interfacing the P C Cluster

4.3 Hospital

Hospital is considered to be a critical infrastructure. On the one hand, in the event of a

disaster like an earthquake, many people would be injured leading to a dramatic increase in

the number of patients requiring immediate medical assistance/service. On the other hand,

the functionality of the Hospital may be impaired due to the direct and indirect impact of this

kind of unforeseen circumstances. For optimum health care services during this situation,

proper decision making based on the awareness of the real capability of the infrastructure

during emergency situations is essential. A Simulink Hospital model has been developed in

[1] to evaluate its performance during normal and abnormal situations where different

hypothetical scenarios may be considered. The output o f this model is the service it can

provide to the patients on urgent, short-term and long-term basis. The Simulink model of the

- 43 -

U B C Hospital Ce l l includes input tokens, output tokens (number o f beds), and the channels.

For the distributed simulation using the PC-Cluster, the Hospital Ce l l has been interfaced

with the cluster nodes using the S-function communication block as shown in Figure 4.7.

Figure 4.7: Simulink model of the U B C Hospital interfaced with the PC-Cluster

4.4 Water Station

The water system is also a critical infrastructure as its failure may jeopardize the human life.

In this project, the Water Station is one of the components o f the reduced-scale U B C campus

benchmark system, which was originally developed in Simulink [1]. The U B C water supply

system gets the water from the reservoir located outside the campus - external source. The

Water Station pumps the water to every building through appropriate system of pipes. In the

model considered here, the water is a token and pipes are the channels as described earlier in

Section 4.1.1. The Simulink implementation of the Water Station cell includes the channels

and appropriate tokens. The Water Station model has been interfaced with the P C Cluster

using the S-function communication block as shown in Figure 4.8. To enable parallel

simulation, this model w i l l be connected with other cell models that reside on different

computers.

- 4 4 -

C h a n n e l s

Figure 4.8: Simulink model o f the Water Station interfaced with the PC-Cluster

4.5 Power House

In the U B C campus, the Power House plays a vital role in the case of emergency as it

supplies the power and oi l to the Water Station and Steam Station. The Power House receives

power from the Substation, and it has the oi l storage facility which can be used for back up

generator in case of power failure. Thus, the Power House cell has one input token and two

output tokens. The output tokens are delivered to the other cells including the Water Station

and Steam Station through different channels. The Simulink model of the Power House has

been interfaced with the P C Cluster using two S-function communication blocks as shown in

Figure 4.9. This model is then used for distributed simulation of the U B C benchmark system.

- 45 -

Figure 4.9: Simulink model of the Power House Cel l interfaced with P C Cluster

4.6 Steam Station

Similar to the other cells of the U B C benchmark system, the Steam Station cell also plays a

major role in daily activities on campus. The Steam Station supplies steam to the whole

campus including some critical facilities such as Hospital. The steam generation process

requires several pieces of equipments including steam pump, boiler, hot wel l , air fan, and

deaerator. This cell receives input tokens including the electricity and water, and then

delivers output tokens which are the steam and gas. A Simulink model of the Steam Station

has been developed using input-output logical tables [1]. In this thesis, the Steam Station has

been interfaced with the P C Cluster using the S-function communication block as shown in

Figure 4.10. This final model is then used for distributed simulation of the U B C benchmark

system.

- 4 6 -

Figure 4.10: Simulink model of the Steam Station Cel l interfaced with P C Cluster

4.7 Combined Model of the UBC Benchmark System

The interconnection o f the overall subsystems of the reduced-scale U B C campus benchmark

is shown in Figure 4.11. A s can be seen here, the Substation sends electricity token to

Hospital and Power House. Similarly, Hospital receives tokens: electricity, steam, gas, and

water from different cells. The Substation Ce l l , Hospital Ce l l , Water Station Cel l , Power

House Cel l and Steam Station Cel l models have been first simulated on a single computer as

shown in the Figure 4.12.

- 4 7 -

POWER MOOSE

Figure 4.11: Overall model of the reduced-scale U B C benchmark system

- 4 8 -

POWER HOUSE

Figure 4.12: Single-computer Simulink model o f 5-cell reduced-scale U B C benchmark
system

4.8 Distribution of Models to PC Cluster Nodes

The overall model o f the reduced-scale U B C benchmark system has been also implemented

using 5 computers in the PC-Cluster. The corresponding computer screens showing the

Simulink model interfaces are depicted in Figure 4.13. The individual computers simulating

the cell models in parallel are shown in Figures 4.14, 4.15, 4.16, 4.17, and 4.18, respectively.

The assignment of the cell models to the cluster nodes is as follows:

Computer 1: simulates Substation as shown in Figure 4.14

Computer 2: simulates Hospital as shown in Figure 4.15

Computer 3: simulates Water Station as shown in Figure 4.16

Computer 4: simulates Power House as shown in Figure 4.17

Computer 5: simulates Steam Station as shown in Figure 4.18

- 4 9 -

The interdependencies among the cells are realized through the exchange of tokens between

the subsystems, which are implemented using the communication interfaces between the

corresponding cluster nodes. Each cell shown in Figures 4.14 - 4.18 has sophisticated

graphical user interface (GUI) that enables simultaneous monitoring o f several variables

and/or tokens during the simulation as wel l as the user control of the dispatch. This feature is

particularly useful as it allows several users to dynamically interact with the model as the

simulation proceeds and displays the results and f low of the tokens.

The Substation cell in computer 1 receives power token through the transmission line

channels from B C Hydro. Then, it dispatches the electricity token to the Hospital cell in

computer 2 and to the Power House cell in computer 4. The Hospital cell in computer 2

receives 4 tokens: electricity, water, steam and gas from Substation in computer 1, Water

Station in computer 3, and Steam Station in computer 4. Then, the Hospital cell in turn

outputs the services in the form of number of beds serviced for urgent patients, short-term

patients, and long-term patients. The Water Station cell in computer 3 receives water token

from an external source, electricity token from the Power House cell in computer 4, and

outputs water token through water pipe channel to the Hospital in computer 2 and the Steam

Station in computer 5, respectively. The Power House cell in computer 4 gets input

electricity token from Substation in computer 1 and dispatches electricity and oi l tokens to

Water Station and Steam Station in computer 3 and computer 5, respectively. Finally, the

Steam Station cell in computer 5 receives electricity token from the Power House and sends

output tokens gas and steam to the Hospital cell in computer 2.

- 5 0 -

Figure 4.13: Parallel simulation of 5 cells of reduced U B C test case on PC-Cluster

. r >

• a a a ••••>» 4*4. i ... : > »Far" INO Î < a tsi i2 « » @ a » »

Figure 4.14: User interface on Computer 1 simulating the Substation Cel l

Figure 4.16: User interface on Computer 3 simulating Water Station Cel l

- 5 2 -

Figure 4.17: User interface on Computer 4 simulating Power House Cel l

Figure 4.18: User interface on Computer 5 simulating Steam Station Cel l

- 53 -

Chapter 5

PC-Cluster Simulator Studies

In this chapter, the PC-Cluster simulator is used to simulate the reduced-scale U B C

benchmark system described in Chapter 4[1]. The interdependency aspect is explained in

detail showing that some of the parameters can be observed on-line while the simulation is

running.

For the studies presented here, the simulation time step At o f 1 minute was used. The results

of the distributed simulation are superimposed in Figures 5.1 through 5.6 against those

obtained from a single computer simulation, which validates the proposed solution

methodology. The C P U times for different methods o f simulation are investigated and

presented. Final ly, it is observed that using the proposed distributed simulation approach as

implemented on the U B C P C Cluster, a remarkable increase in the overall simulation speed

and reduction of the C P U time can be achieved.

5.1 Case Scenario

In order to establish the simulation speed for both the single computer implementation and

the PC-Cluster implementation, the following computer study was conducted. In this study,

each cell model was initialized corresponding to its normal conditions. The model was run

for 1500 minutes (25 hours) o f the total time. The following disturbances were simulated.

• Initially, up to 460 minutes, there was no disturbance in the system and all five cells

were running in normal mode.

• Then, at t = 461 minutes, there was a total failure o f the power supply from B C

Hydro through both feeders 1 and 2. This disturbance was assumed due to some

emulated disaster event.

- 5 4 -

• A t t = 700 minutes, a disturbance in water supply system was simulated where the

water pipe to the Hospital was broken.

• A t t = 900 minutes, the power lines were fixed and the normal power was restored.

However, at the same time, irregularities in steam supply to the Hospital were also

created resulting in reduction of the steam production by 50%.

• A t t = 1200 minutes, the water pipe to the Hospital was repaired and the water supply

was restored to normal. A t the same time, the steam supply to the Hospital was

completely cut off to zero.

• A t t = 1400 minutes, the steam production was finally restored to its nominal

production capacity.

Due to the stated above sequence of disturbances, the situation at the U B C campus unfolded

as follows: From r = 461 minutes to t - 900 minutes, there was no electricity supply from

Substation to Hospital and Power House as shown in Figure 5.1 and Figure 5.2. Immediately

following this disturbance the backup generators automatically came into service in the

Hospital, Power House and Water Station. A s a result of backup generators, there were no

interruptions in the Hospital service for urgent, short-term and long-term patients due to the

failure of power supply from substation as observed in Figure 5.5. However, the disruption in

water supply from Water Station as shown in Figure 5.4, has affected the Hospital service for

30 minutes starting from the time t = 700 minutes when the water pipe was broken. After 30

minutes the backup water system came into service and normal operation of the Hospital

service was restored.

However, the disturbance in the Steam Station shown in Figure 5.6 had a greater implication

on the Hospital service. The long-term service was particularly badly affected due to the

interruptions in steam supply. A s we can observe when the steam was reduced to 50%, the

long-term beds service was also reduced to half of normal capacity, while urgent- and short-

term patient services were less influenced. In case of complete cut-off o f the steam token, the

long-term service was completely unavailable, while sufficient portion of other two types of

beds were still served.

- 55 -

Substation Cell Sending Power Token to Hospital Cell
1,417 Kw

1000 Kw

' • ! ' I i : 1 ' ' ! 1 ' ! ' I ' '

•

/ ; —PC-Cluster Simulation
! • ••Single Computer Simulation

• ; Normal Power Supply to
i Hospital Restored

•

-

Electricity to Hospital
Became Zero

i
i .

-

0 460 mins 700 mins 900 mins 1200 mins 1400mins

Figure 5.1: Electricity token dispatched from Substation to the Hospital

Substation Cell Sending Power Token to Power House Cell

120 Kw

80 Kw

60 Kw

.......

I—PC-Cluster Simulation
I - - Single Computer Simulaiton | /
I—PC-Cluster Simulation
I - - Single Computer Simulaiton |

Normal Power
Power House

Supply to I
Restored

-

Electricity to Power House

-

Became Zero

,—,— I 1 1 1 1 1 1 1 1 L--̂ t I — I | _— — l _ U I I 1 _J | | I I L_J 1

0 460 mins 700 mins 900 mins 1200 mins 1400 mins

Figure 5.2: Electricity token dispatched from Substation to the Power House

- 5 6 -

40 Kw

35 Kw

30 Kw

25 Kw

20 Kw

15 Kw

10 Kw

5 Kw

Power to Water Station Cell from Power House Cel

— PC-Cluster Simulation
• - Single Computer Simulation

Normal Power Supply from i
Power House to Water Station Resored

Power Supply from Power House
to Water Station Interrupted

i JL. . a . JL
460 mins 700 mins 900 mins 1200 mins 1400 mins

Figure 5.3: Simulation results for power token dispatch from Power House to the Water

Station

350

300

250

: 200

150

100

50

Water from Water Station Cell to Hospital Cell

Water Pipe Repaired and Normal
Water Supply to Hospital Resumed

•PC-Cluster Simulation
•Single Computer Simulation

Water Pipe Channel Broken and
Water Supply to Hoipital Stopped

460 mins 700 mins 900 mins 1200 mins 1400 mins

Figure 5.4: Water token dispatch from Water Station to the Hospital

- 5 7 -

P C - C l u s t e r S i m u l a t i o n
1 S i n g l e C o m p u t e r S i m u l a t i o n 5 0 % R e d u c t i o n in S t e a m Supp l y

2 0 oeds

15 Deds

16 beds l
Urgent Beds

No Water Supply from
Water Station to Hospital

j W a t e r B a c k u p S ta r ted
after 30 minu tes

N o r m a ! Stearr
R e s t o r e d

No S t e a m S u p p l y

700 mins 9 0 0 mins 1200 mins 1400 mins

311 beds

280 beds

248 b e d !

•PC-Cluster Simulation
Single Computer Simulation

• Short Term Beds I

No Water Supply from
| Water-Station- to Hospital -j

50% Reduction
in Steam Supply.

| Normal Steam
; Supply Restored

I No Stoam Supply'

PC-Cluster Simulation
— — Single Computer Simulation

l Long Term Beds

150 b e d s ! - -

; Water Backup Started
; Rafter 30 minutes

No Water Supply from

i ;Normal Steam Supply

I 50% Reduction <
I in Steam.Supply,;

No Steam Supply

700 mins 900 mins 1200 m i n s 1400 mins

Figure 5.5: Simulation results for Hospital output tokens in terms of number of beds in

service

- 5 8 -

Despatch of Steam Token from Steam Cell to Hospital Cell

tn 600

"•PC-Cluster Simulation
- - Sinnle Comnuter Simulation

Normal Steam Supply
to Hospital Restored

Steam Supply to H
Reduced by 50%

ospital

|

I

Steam Supply to Hospital
Reduced to Zero

, , , . \
0 460 mins 700 mins 900 mins 1200 mins 1400mins

Figure 5.6: Simulation results for steam token output from Steam Station Cel l

5.2 Analysis of PC-Cluster Simulation

A l l the above scenario conditions were simulated using the PC-Cluster and the results were

compared with those obtained from a single computer. The simulation results were shown in

Figures 5.1 to 5.6. A s can be seen in these figures, the distributed simulation results coincide

exactly with those obtained from the single computer simulation. This shows the accuracy of

the distributed simulation on the PC-Cluster. Thus, the PC-Cluster simulation results were

validated against the bench mark system of the Simulink model simulation in a single

computer.

The CPU-t ime for the simulation of five cells model is summarized in Table 5.1. As can be

seen, a single-computer simulation took about 4.4 seconds. The distributed simulation of the

five cells U B C test case with five computers of PC-Cluster was five times faster than the

- 5 9 -

original model in a single computer where message flag is used as a method of synchronized

data transfer. But for the same distributed simulation test using the standard low-level SCI

interrupt functions for synchronized data transfer the simulation speed was only 3.86 times

faster. Thus, the P C Cluster simulation with the developed synchronization method is more

efficient. This in an expected result based on the previously investigated interrupt

mechanisms as explained in Chapter 3.

Simulation Method Processor Type CPU-t ime in seconds

Single Computer A M D Athlon

64 Processor

4000+

2.41 G H z

4.25

Distributed Simulation using

5 Computers in PC-Cluster

where sci low level interrupt

message is used for

synchronized data transfer

A M D Athlon

64 Processor

4000+

2.41 G H z

1.1

Distributed Simulation using

5 Computers in PC-Cluster

where message segment flag

is used for synchronized data

transfer

A M D Athlon

64 Processor

4000+

2.41 G H z

0.85

Table 5.1: CPU-t ime for different methods of simulation

To further investigate the benefits of distributed simulation, we have considered different

number of cells. A s shown in Table 5.2 and Figure 5.7, there was a little improvement in

computational speed with distributed simulation in case of only two cells (Substation and

Power House), compared to a single processor simulation. In case of three cells (Substation,

Power House and Water Station) there was a more pronounced rise in simulation speed (2.37

times) with PC-Cluster as compared to the single computer method. Computational

- 6 0 -

efficiency was further increased for the four cells (Substation, Power House, Water Station

and Steam Station) distributed simulation with four computers. Ultimately, this observation

showed that for the U B C test case with five cells (Substation, Power House, Water Station,

Steam Station and Hospital), the PC-Cluster simulation is about five times faster than its

single-computer version. This concludes that PC-Cluster Simulator can be used as a powerful

tool in investigating complex infrastructure interdependencies such as complete U B C case

where more than 50 cells w i l l be used for representing the scenarios o f disaster conditions

such as earth quake, terrorist attack, etc.

Combination o f different

Cells

CPU-t ime for

Single Computer

Simulation

CPU-t ime for Distributed

Simulation with the same

number of computers as

that o f Cells

Improvement

in simulation

speed

Substation + Power

House

0.3280 seconds 0.3200 seconds

(2-computers)

2.5%

Substation + Power

House + Water Station

0.5690 seconds 0.2400 seconds

(3-computers)

137%

Substation + Power

House + Water Station +

Steam Station

0.9100 seconds 0.2500 seconds

(4-computers)

264%

Substation + Power

House + Water Station +

Steam Station + Hospital

4.25 seconds 0.85 seconds

(5-computers)

400%

Table 5.2: Simulation speed for different number of cells

-61 -

Simulation Speed Studies for Different Number of Ceils

I . . I I , , , , , I I I , I 1 L _ J 1 1 i 1 1 1 1 1 1 t _ l l _ J

2 Cells 3 Cells 4 Cells 5 Cells

Figure 5.7: CPU- time for different number of cells with single computer and distributed
simulation

- 6 2 -

Chapter 6

Conclusions and future work

In this thesis, a SCI-based PC-Cluster simulator for studying the interdependent nature of

critical infrastructures was developed where the computational superiority of a clustered

multi processor PC-Cluster over a sequential single processor system was demonstrated. A

practical scaled test case of the University of Brit ish Columbia (U B C) campus was used. The

U B C model included a substation, hospital, water station, power house and steam station.

The test model was distributed among five computers of the PC-Cluster. The PC-Cluster

used in this research consists of 16 computers networked v ia high speed SCI interconnect

adapter cards. A set o f C-language based communication libraries based on optimum SCI

low-level functions was developed, in order to use the hardware interconnect efficiently.

Furthermore, a Simulink S-function block using these communication functions was built for

parallel simulation o f Simulink models distributed in different computers o f the PC-Cluster.

With the implementation of SCI low-level interrupt function for synchronized back and forth

zero-length data transfer between nodes, the measured communication overhead was

40^seconds. In case of message poll ing method of bi-directional synchronized zero-length

data transfer the communication latency was 7.2useconds.

The PC-Cluster based distributed simulation plot results for the U B C test case were identical

as those obtained from sequential simulation on a single computer. The message poll ing

synchronized data transfer based distributed simulation on PC-Cluster was nearly five times

faster than the simulation o f the original model on a single computer. On the other hand, SCI

low-level interrupt function synchronized data transfer method o f distributed simulation is

3.86 times faster than that obtained on a single processor. There is a negligible improvement

in PC-Cluster simulation speed compared to a single node simulation in case of models with

less complexity such as two cells: substation and power house. When the number of cells

- 6 3 -

increases to five, the distributed parallel computing showed a remarkable improvement in

computation speed compared to that o f one processor simulation. Hence PC-Cluster

simulator is proposed for better computational efficiency and feasibility o f investigating the

interdependencies o f complex and critical infrastructures.

Future research would include the implementation of the O V N I (Object Virtual Network

Integrator) method and I2SIM (Infrastructure Interdependencies Simulator) on SCI-based

PC-Cluster using the M A T E ("Mult i-Area Thevenin Equivalent") network partitioning

technique [1], [2], [3]. Here one master node contains a memory segment to which all other

sub-systems residing on other nodes w i l l send Thevenin Equivalent data. Then the master

node solves the reduced system represented by the links subsystem. The updated link

currents are then communicated back to the sub-systems and the whole process starts again.

For this, a method of sending data from different nodes to a single node with a common

memory segment should be developed [3] on SCI. Addit ionally, this distributed PC-Cluster

simulation with different At's (simulation time step) should be investigated in order to

achieve better computational efficiency due to less communication overhead.

- 6 4 -

References

Chapter 1
[1] Mansell , Rankin and Associates, "Joint Infrastructure Interdependencies Research

Program (JIIRP) Symposium," 198 Holmwood Avenue, Ottawa, O N , Canada, November
10, 2005.

[2] J . A . Hol lman, J . R. Mart i , J . Jatskevich and K. Srivastava, "Dynamic islanding of critical
infrastructures: a suitable strategy to survive and mitigate extreme events," International
Journal of Emergency Management, vol. 4, pp. 45-58, 2007.

[3] D. D. Dudenhoeffer, M . R. Permann and E. M . Sussman, "General methodology 3: a
parallel simulation framework for infrastructure modeling and analysis," Proceedings of
the 34th Conference on Winter Simulation: Exploring New Frontiers, pp. 1971-1977,
2002.

[4] W. Gropp and E. Lusk, "User 's Guide for mpich, a Portable Implementation of M P I
Version 1.2. 1," Argonne National Laboratory, U S A 1996.

[5] IEEE Standard for Scalable Coherent Interface (SCI), I E E E Std 1596-1992, March 1992.

[6] S. Garg and J. Mache, "Performance evaluation of parallel file systems for P C clusters
and A S C I red," Cluster Computing, 2001.Proceedings.2001 IEEE International
Conference on, pp. 172-177, 2001.

[7] "PCI-SCI Adapter Card D320/321 Functional Overview," Dolphin Interconnect
Solutions Inc., Version 1.01, Oslo, Norway, November 30, 1999. [Online]. Available:
http://www.dolphinics.com

[8] "Low-level SCI software functional specification," Dolphin Interconnect Solutions Inc.,
Oslo, Norway, Espirit Project 23174 - Software Infrastructure for SCI (SISCI), Version
2.1.1 - March 15, 1999. [Online]. Available: http://www.dolphinics.com

[9] " S I M U L I N K : Dynamic System Simulation for M A T L A B , " Us ing Simulink Version 7,
The Math Works Inc., 2003.

http://www.dolphinics.com
http://www.dolphinics.com

- 6 5 -

Chapter 2
[I] IEEE Standard for Scalable Coherent Interface (SCI), I E E E Std 1596-1992, March 1992.

[2] N . Boden, D. Cohen, R. Felderman, A . Kulawik, C . Seitz and J . Seizovic, "Myrinet: a
gigabit-per-second local area network," Micro, IEEE, vol . 15, pp. 29-36, 1995.

[3] C. Dubnicki , A . Bi las, Y . Chen, S. N . Damianakis and K. L i , "Shrimp Project Update:
Myrinet Communication," IEEE Micro, vol. 18, pp. 50-52, 1998.

[4] S. H. Chung, S. C. Oh, S. Park and H. Jang, "Ut i l iz ing network cache on an SCI-based
P C cluster," Parallel and Distributed Processing Symposium., Proceedings 15th
International, pp. 1666-1672, 2001.

[5] " S C R A M N e t + Shared Memory- Speed, Determinism, Reliabil i ty, and Flexibi l i ty For
Distributed Real-Time Systems," Curtiss-Wright Controls Embedded Computing,
Dayton, Ohio, U S A , 2004.

[6] "M3S-PCI64B and M3S-PCI64C, Universal, 64/32-bit, 66/33MHz, Myrinet-2000-Serial-
L ink /PCI interfaces," Guide to Myrinet-2000 Switches and Switch Networks, 2001.
Myr icom Inc..

[7] " S C R A M N e t + SCI50 Network P C I bus hardware reference," Document No . D-T-
M R - P C I - A - 0 - A 7 , Systran Corporation, Dayton , Ohio, U S A , November 10,2000.

[8] "Dolphin Interconnect Solutions Inc. - Benchmarks," Dolphin Interconnect Solutions
Inc., Oslo, Norway, 2006. [Online]. Available:
http ://www. dolphinics.com/products/benchmarks .html.

[9] "Dolphin Interconnect Solutions Inc. - D350 Series P C I Express," Dolphin Interconnect
Solutions Inc., Oslo, Norway, 2006. [Online]. Available:
http://www.dolphinics.com/products/hardware/d350.html

[10] "PCI-SCI Adapter Card for System Area Networks," Dolphin Interconnect Solutions
Inc.., Oslo, Norway, 2006. [Online]. Available: http://www.dolphinics.com.

[II] "SCIzz l : the Local Area Memory Port, Local Area Multiprocessor, Scalable Coherent
Interface and Serial Express Users, Developers, and Manufacturers Association,".
[Online]. Avai lable: http://www.SCIzzl.com

[12] H. Hellwagner and A . Reinefeld, SCI-Scalable Coherent Interface: Scalable Coherent
Interface: Architecture and Software for High-Performance Compute Clusters.
Springer, 1999.

http://dolphinics.com/products/benchmarks
http://www.dolphinics.com/products/hardware/d350.html
http://www.dolphinics.com
http://www.SCIzzl.com

- 6 6 -

[13] D. Gustavson and Q. L i , "The Scalable Coherent Interface (SCI)," Communications

Magazine, IEEE, vo l . 34, pp. 52-63, 1996.

[14] "Link Controller L C - 2 Specification. Data Sheet," Dolphin Interconnect Solutions Inc.,
Oslo, Norway, 1997. [Online]. Available: http://www.dolphinics.com

[15] "Installation Guide for the Dolphin Adapter Card," Dolphin Interconnect Solutions Inc.,
Oslo, Norway, February 2003. [Online] Available: http://www.dolphinics.com

Chapter 3
[1] "Low-level SCI software functional specification," Dolphin Interconnect Solutions Inc.,

Oslo, Norway, Espirit Project 23174 - Software Infrastructure for SCI (SISCI), Version
2.1.1 - March 15, 1999. [Online]. Available: http://www.dolphinics.com

[2] " S I M U L I N K : Dynamic System Simulation for M A T L A B , " Us ing Simulink Version 7,
The Math Works Inc., 2003.

[3] H. Hellwagner and A . Reinefeld, SCI-Scalable Coherent Interface: Scalable Coherent
Interface: Architecture and Software for High-Performance Compute Clusters. Springer,
1999.

[4] T. A . Ngo and L. Snyder, "Data Locality on Shared Memory Computers Under Two
Programming Models" Technical Report 93-06-08, Dept. O f C S , and I B M Research
Report R19082, Univ . of Washington 1993.

[5] "PSB32/64 Functional Specification," Dolphin Interconnect Solutions Inc., Oslo,
Norway, February 2003. [Online]. Available: http://www.dolphinics.com

[6] R. Hauser, " A n Implementation o f the SCI P H Y - A P I (LEEEStd P1596. 9 Draft 0.41) for
Dolphin PCI -SCI Boards," CERNInternal Note.Draft, vol . 1, 1997.

[7] "SISCI, Standard Software Infrastructures for SCI-based Parallel Systems," Dolphin
Interconnect Solutions Inc., Oslo, Norway, Espirit Project 23174 - Software
Infrastructure for SCI (SISCI), 1997.

[8] F. Giacomini, T. Amundsen, A . Bogaerts, R. Hauser, B. Johnsen, H . Kohmann, R.
Nordstrom and P. Werner, "Low-level SCI software functional specification," Esprit
Project, vol . 23174, 1999.

[9] "Low-level SCI software requirements, analysis and pre-design," Dolphin Interconnect
Solutions Inc., Oslo, Norway, Espirit Project 23174 - Software Infrastructure for SCI
(SISCI), Deliverable D.l.1.1 Version 2.0 - M a y , 1998. [Online].
Available: http//: www.dolphinics.com

http://www.dolphinics.com
http://www.dolphinics.com
http://www.dolphinics.com
http://www.dolphinics.com
http://www.dolphinics.com

- 6 7 -

[10] American National Standard Institute, Rationale for the ANSI C Programming
Language, Si l icon. Press, Summit, N J , U S A , 1990.

[11] E. E. L. Mitchel l and J . S. Gauthier, ACSL: Advanced Continuous Simulation
Language-User Guide/Reference Manual, 1991.

[12] Microtran Power System Analysis Corporation, "Reference Manual , Transients Analysis
Program for Power and Power Electronic Circuits," Vancouver, Canada, 2002.

[13] Distributed Simulation Toolbox, Distributed and parallel simulation within Simulink or
Stateflow, The Math Works - Third-Party Products & Services, The Math Works Inc.,
2003. [Online]. Avalable:
http://www.mathworks.com/products/connections/product main.html

[14] EXTESSYInter Tool Exchange (EXTTE), E X T E S S Y A G , Major-Hirst-Str. 11
38442 Wolfsburg, Germany. [Online]. Available: http://www.extessy.com

Chapter 4
[1] Lu L iu , "Prototyping and Cells Model ing of the Infrastructure Interdependencies

Simulator I2SIM," M .A .Sc . thesis, to be submitted, Dept. of Electrical and Computer
Engineering, The University o f Brit ish Columbia, Vancouver, Canada, August 2007.

[2] J . Hol lman, D. Grigg, "Campus Case: Experiences from a collaborative effort, " JIIRP
Industry Symposium, Vancouver, Canada, February 26, 2007.

[3] J . Mart i , J . Hol lman, C . Ventura and J. Jatskevich, "Design for Survival Real-time
Infrastructures Coordination," in Proceedings of the International Workshop on Complex
Network and Infrastructure Protection (CNIP), Rome, Italy, 2006.

[4] J . A . Hol lman, J . R. Mart i , J . Jatskevich and K. Srivastava, "Dynamic islanding of critical
infrastructures: a suitable strategy to survive and mitigate extreme events," International
Journal of Emergency Management, vol. 4, pp. 45-58, 2007.

[5] P. Kruchten, C. Woo, "Model ing Disasters," JIIRP Seminar presentation, Vancouver,
Canada, September 2005 .

[6] J . Mart i , J . Hol lman, C . Ventura, J . Jatskevich, "Transportation Matr ix Model for
Infrastructures Disaster Coordination," JIIRP Seminar presentation, Vancouver, Canada,
February 2006.

[7] A . C . Chiang, Fundamental Methods of Mathematical Economics, Third Ed., McGraw-
H i l l , 1984.

[8] A . P . Sage, Methodology for Large-Scale Systems, McGraw-H i l l , 1977.

http://www.mathworks.com/products/connections/product
http://www.extessy.com

- 6 8 -

[9] J.R.Marti , L. L i u , " U B C Campus Case: Cel l Model ing E E Computer Society, " Internal
report, The University o f Brit ish Columbia, Vancouver, Canada, August 2006

Chapter 5
[1] Lu L iu , "Prototyping and Cells Model ing of the Infrastructure Interdependencies

Simulator I2SIM," M .A .Sc . thesis, to be submitted, Dept. o f Electrical and Computer
Engineering, The University of Brit ish Columbia, Vancouver, Canada, August 2007.

Chapter 6
[1] J.R. Mart i , L .R. Linares, J . Calvino, H.W. Dommel, and J . L i n , " O V N I : Integrated

software/hardware solution for real-time simulation o f large power systems," in 14th

Power Systems Computation Conference, Sevilla, Spain, 2002, PSCC'02.

[2] J.R. Mart i , L.R. Linares, J . Calvino, and H.W. Dommel, " O V N I : A n Object Approach to
Real-Time Power System Simulators," in Proceedings of the 1998 International
Conference on Power System Technology, Power con '98, Beijing, China, August 18-21,

1998.

[3] T.D. Rybel , J . A . Hol lman, J.R. Ma r t i , " O V N I - N E T : A flexible cluster interconnect for
the new O V N I Real-Time simulator," in 15th Power Systems Computation Conference,
Liege, Belgium, 2005, PSCC'05.

Appendix

- 6 9 -

Computer Programs
/* */
/* */
/ * F I L E N A M E : C O M P U T E R 1 . C * /
/ * D E S C R I P T I O N : Measurement of Communication Latency between two *
/* Computers using two different methods o f synchronous * /
/* back and forth data transfer * /
/* * /
/* * /

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sci_comm_lib.h>

void main ()
{

in t localNodeld = 4; /*computer 1 */
in t remoteNodeld = 8; /*computer 2 */
in t vecsize = 100;
in t h = 1;

double y [100], x [100];
i n t i ;

s c i s t a r t (&h);
s c i i n i t (&h, localNodeld, remoteNodeld, vecsize);
for (i=0; i<vecsize-l; i++) {

x [i] = (double) i ;
}

scireceive (&h, y, vecsize);
scisend (&h, x, vecsize);
sciend (&h);
sci c l o s e (&h);

}

- 7 0 -

/* */
/* */
/* F I L E N A M E : COMPUTER2.C */
/ * D E S C R I P T I O N : Measurement o f Communication Latency between two *
I* Computers using two different methods of synchronous */
/ * back and forth data transfer * /
/* */
/* */

#include <stdio.h>
#include <string.h>
ttinclude <stdlib.h>
#include <sci coram lib.h>

void main ()
{

i n t localNodeld = 8; /*computer 2 */
i n t remoteNodeld =4; /*computer 1 */
i n t vecsize = 100;
i n t h = 1;

double y [100], x [100];
i n t i ;

s c i s t a r t (&h);
s c i i n i t (&h, localNodeld, remoteNodeld, vecsize);
for (i=0; i<vecsize-l; i++) {

x [i] = (double) i ;
}

scireceive (&h, y, vecsize);
scisend (&h, x, vecsize);
sciend (&h);
sc i c l o s e (&h);

}

-71 -

/* */
/* */
/ * F I L E N A M E : C O M M U N I C A T I O N _ S _ F U N C T I O N */
/* D E S C P J P T I O N : This is the C-code for building Simulink S-function * /
/* in order to facilitate communication between distributed */
/ * Simulink models in different computers of the PC-Cluster * /
/* */
/* */

#define S_FUNCTION_NAME SCICOMMLIB
#define S FUNCTION LEVEL 2

ftdefine NUM_INPUTS 2

/* Input Port 0 */

#define IN_PORT_0_NAME uO
#define INPUT_0_WIDTH 3
#define INPTJT_DIMS_0_COL 1
#define INPUT_0_DTYPE real_T
#define INPUT_0_COMPLEX COMPLEX_NO
#define IN_0_FRAME_BASED FRAMENO
ftdefine IN_0_DIMS 1-D
#define INPUT_0_FEEDTHROUGH 1
#define IN_0_ISSIGNED 0
#define IN_0_WORDLENGTH 8
#define IN_0_FIXPOINTSCALING 1
#define IN_0_FRACTIONLENGTH 9
#define INOBIAS 0
#define IN 0 SLOPE 0.125

/* Input Port 1 */

#define IN_PORT_l_NAME u l
ttdefine INPUT_1_WIDTH 1
ftdefine INPUT_DIMS_l_COL 1
#define INPUT_1_DTYPE real_T
#define INPUT1COMPLEX COMPLEXNO
#define IN_1_FRAME_BASED FRAME_NO
#define IN_1_DIMS 1-D
#define INPUT_l_FEEDTHROUGH 1
#define IN_1_ISSIGNED 0
ftdefine IN_l_WORDLENGTH 8
#define IN_l_FIXPOINTSCALING 1
#define IN1FRACTIONLENGTH 9
idefine IN 1 BIAS 0

- 7 2 -

#define IN_1_SL0PE 0.125

ftdefine NUMOUTPUTS 0

/* Output Port 0 */

#define OUT_PORT_0_NAME yO
tfdefine OUTPUT_0_WIDTH 3
#define OUTPUT_DIMS_0_COL 1
#define OUTPUT_0_DTYPE r e a l T
tfdefine OUTPUT0COMPLEX COMPLEXNO
#define OUT_0_FRAME_BASED FRAME_NO
#define OUT_0_DIMS 1-D
ttdefine OUT0ISSIGNED 1
#define OUT 0 WORDLENGTH 8
#define OUT_0_FIXPOINTSCALING 1
#define OUT 0 FRACTIONLENGTH 3

0
0.125

0

0
0
[0]
0
[0]

ftdefine SFUNWIZ_GENERATE_TLC 1
#define SOURCEFILES " SFB s c i l i b . l i b SFB s i s c i a p i . l i b "
ttdefine PANELINDEX 6
ftdefine USESIMSTRUCT 0
#define SHOW_COMPILE_STEPS 0
#define CREATE_DEBUG_MEXFILE 0
#define SAVE_CODE_ONLY 1
#define SFUNWIZ_REVISION 3.0
#define u_width 1
ttdefine y_width 1

#if defined (MATLAB_MEX_FILE)
#include "tmwtypes.h"
#include "simstruc_types.h"
#else

#define OUT_0_BIAS
#define OUT 0 SLOPE

#de£ine NPARAMS

#define SAMPLE_TIME_0
#define NUM_DISC_STATES
#define DISC_STATES_IC
#define NUM_CONT_STATES
#define CONT STATES IC

-73 -

#include "rtwtypes.h"
#endif

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "sc^conrn^lifc^version.h"
ttinclude "simstruc.h"

i n t localNodeld =4; /* Nodeld of Computer 1 */
i n t remoteNodeld =8; /* Nodeld of Computer 2 */
i n t h = 1;
i n t vecsize =4;

s t a t i c void m d l l n i t i a l i z e S i z e s (SimStruct *S)
{

DECL_AND_INIT_DIMSINFO (inputDimsInfo);
DECL_AND_INIT_DIMSINFO (outputDimsInfo);
ssSetNumSFcnParams (S, NPARAMS);
i f (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
return; /* Parameter mismatch w i l l be reported by

Simulink */
}

ssSetNumContStates (S, NUM_CONT_STATES);
ssSetNumDiscStates (S, NUMDISCSTATES);

i f (!ssSetNumlnputPorts (S # NUM_INPUTS)) return;

/•Input Port 0*/

ssSetlnputPortWidth (S, 0, INPUTOWIDTH);
ssSetlnputPortDataType (S, 0, SS_D0UBLE);
ssSetlnputPortComplexSignal (S, 0, INPTJT0COMPLEX) ;
ssSetlnputPortDirectFeedThrough(S,0,

INPUT0FEEDTHROUGH);
ssSetlnputPortRequiredContiguous (S, 0, 1); / * d i r e c t

input
signal
access*/

-74 -

/*Input Port 1*/

ssSetlnputPortWidth (S, 1, INPUT_1_WIDTH);
ssSetlnputPortDataType (S, 1, SS_DOUBLE);
ssSetlnputPortComplexSignal (S, 1, INPUT_1_C0MPLEX);
ssSetlnputPortDirectFeedThrough (S, 1,

INPUT_1_FEEDTHR0UGH);
ssSetlnputPortRequiredContiguous (S, 1, 1); / * d i r e c t

input
s igna l
access*/

i f (!ssSetNumOutputPorts (S, NUMOUTPUTS)) re turn;

/ •Output Port 0*/

ssSetOutputPortWidth (S, 0, OUTPUTOWIDTH);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);
ssSetOutputPortComplexSignal (S, 0, OUTPUT0COMPLEX);

ssSetNumSampleTimes (S, 1) ;
ssSetNumRWork (S, 0);
ssSetNumlWork (S # 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0) ;
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_USE_TLC_WITH_ACCELERATOR |

SS_OPTION_WORKS_WITH_CODE_REUSE));
}
define MDL_SET_INPUT_PORT_FRAME_DATA

s t a t i c vo id mdlSetlnputPortFrameData (SimStruct *S,
in t_T p o r t ,
Frame_T frameData)

{
ssSetlnputPortFrameData (S, por t , frameData);

}

s t a t i c vo id mdllnit ia l izeSampleTimes (SimStruct *S)
{

ssSetSampleTime (S, 0, SAMPLE_TIME_0);

-75 -

ssSetOffsetTime (S, 0 , 0 . 0) ;
}

#de f ine MDLS ET_INPUT_PORT_DATA_TYPE
s t a t i c void mdlSetlnputPortDataType (SimStruct *S, i n t port,
DTypeld dType)
{

ssSetlnputPortDataType (S, 0 , dType);
ssSetlnputPortDataType (S, 1, dType);

}
#define MDL_SET_OUTPUT_PORT_DATA_TYPE
s t a t i c void mdlSetOutputPortDataType (SimStruct *S, i n t port,
DTypeld dType)
{

ssSetOutputPortDataType (S, 0 , dType);
}
#define MDL_SET_DEFATJLT_PORT_DATA_TYPES
s t a t i c void mdlSetDefaultPortDataTypes (SimStruct *S)
{
ssSetlnputPortDataType (S, 0 , SS_DOUBLE);
ssSetlnputPortDataType(S, 1, SS_DOUBLE);
ssSetOutputPortDataType(S, 0 , SSDOUBLE);
}
#define MDLINITIALIZECONDITIONS
#if defined (MDL_INITIALIZE_CONDITIONS)

s t a t i c void m d l l n i t i a l i z e C o n d i t i o n s (SimStruct *S)
{

}

#endif

#define MDL_START
#if defined (MDL_START)

s t a t i c void mdlStart (SimStruct *S)
{

/*SCI functions to s t a r t and
i n i t i a l i z e the SCI environment */

s c i s t a r t (&h);
s c i i n i t (&h, localNodeld, remoteNodeld, vecsize);

- 7 6 -

}

#endif

s t a t i c void mdlOutputs (SimStruct *S, int_T tid)
{

const real_T *u0 = (const real_T*)
ssGetlnputPortSignal (S,0);
real_T *y0 = (real_T *)
ssGetOutputPortRealSignal (S,0);

double x [4] , y [4] ;

uO [0] = x [0];
uO [1] = x [1] ;
uO [2] = x [3];

scisend (&h, x, vecsize);
scireceive (&h, y, vecsize);

y0 [0] = y [0];
yO [1] = y [1];
y0 [2] = y [2];

}

/* Function: mdlTerminate * Abstract:

* In t h i s function, you should perform any actions that
* are necessary at the termination of a simulation.
* For example, i f memory was allocated i n mdlStart,
* t h i s i s the place to free i t .
*/

s t a t i c void mdlTerminate (SimStruct *S)
{

/* SCI functions to close the network and free the
* allocated resource and terminate from SCI environment
*/

sciend (&h) ;
s c i c l o s e () ;

- 7 7 -

}
#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#endif

/* Is t h i s f i l e being compiled
as a MEX-file? */

/* MEX-file in t e r f a c e mechanism
*/

