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Abstract 

Efficient and accurate solutions of acoustic wave diffraction by a rigid step discontinuity 

and a curved half-plane are derived by the uniform geometrical theory of diffraction. 

These solutions can be used in seismic data processing to evaluate and, eventually, to 

improve the existing data processing procedures. They can also find applications in 

electromagnetics, microwave antenna design, acoustic design and sound engineering. 

The rigid step discontinuity solution given in this thesis is more accurate than the ex­

isting solutions which are based on Kirchhoff theory of diffraction. This solution removes 

the previous restriction on the source and the receiver arrangement. It also provides 

high efficiency by the use of ray theory. This solution is further generalized to two offset 

half-planes and an inclined wedge. Solutions for more comphcated structures can be ob­

tained by superposition of these solutions with added interactions. The complex source 

position method is used to extend the omnidirectional point source solution to a beam 

source solution. The effect of changes of the directivity and orientation of the beam 

source is studied. Time-domain single and double diffraction coefficients are determined 

through direct Fourier transforming and convolution. A n infinite impulse response filter 

is apphed to the time-domain direct computation of single diffraction. This combination 

achieves a total saving of 75% of computing time over the frequency-domain approach. 

Diffraction by a curved half-plane is analyzed with the inclusion of creeping wave 

diffraction and second order edge diffraction. A n acoustic model of a curved half-plane is 

designed to verify the theory. The experimental results obtained by Mellema have verified 

the existence of the creeping wave diffraction and weak traces of the second order edge 

diffraction. 
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Chapter 1 

I N T R O D U C T I O N 

1.1 Introduction 

Scattering properties of subsurface complex shapes to the impinging energy from a point 

source, directional or omnidirectional, are of interest to the geophysicist. From the 

records of seismograph arrays, information can be extracted to predict the structure of 

the earth. Current seismic investigations include both reflection and refraction surveys, 

which complement each other. In recent years, owing to the advance of computers, 

sophisticated methods have been developed to obtain more accurate information about 

the scattering objects. Improved techniques in field surveys as well as in data processing 

have provided increasingly realistic images of scattering structures. Reflection seismics is 

an important method in apphed geophysics, but it has limitations. The reflection image 

will be enhanced, when other forms of waves, such as diffraction from edges and shear 

waves, are included in the scattering image. As field survey technique improves and the 

need for a clear scattering image increases, the study of diffraction by complex shapes 

becomes more important both in theory and in application. 

Because the solution to a specified scattering problem is unique, a scattering body 

can be uniquely represented by its scattering image. Generally speaking, a complete scat­

tering image will include reflection, refraction and diffraction. A correct interpretation 

of the scattering results depends on the knowledge of the propagation properties of these 

wave forms. In the past, reflection and refraction have been thoroughly studied. The 

1 



Chapter 1. INTRODUCTION 2 

investigation of diffraction has been restricted to very simple cases with limited accuracy, 

although it has become increasingly important, especially when sharp edges are involved. 

Mathematical models to account for diffraction of acoustic effects can be found in the 

work of Trorey [1], [2] and Hilterrnan [3]. Kirchhoff theory has been used by Hilterman 

to construct zero offset synthetic scattering images. He also constructed an experimental 

model to verify his theoretical results. Owing to the limitations of the Kirchhoff theory, 

his theoretical scattering images are different from the measured results when sharp edges 

and corners are present. From the computational point of view, his program can only 

handle zero offset arrangements of the source and receiver pair. This greatly limits the 

apphcation of the result. Also in his calculations, only omnidirectional sources can be 

used. 

The numerical modelling of seismic diffraction by a perfectly reflecting wedge has been 

studied by Hutton [4]. In his paper, Biot and Tolstoy's [5] solution was used to construct 

the seismogram for the semi-infinite plane and an infinite wedge. Comparison between the 

exact result and Kirchhoff approximation was made. In Fig. 17 (page 695 of [4]), he showed 

that the diffraction in the deep shadow region obtained from Kirchhoff approximation 

was 54% of the exact solution for an infinite half-plane. They also introduced Keller's 

geometrical theory of diffraction ( G T D ) and revealed that the G T D or high frequency 

solution for edge diffraction is generaUy more accurate than the Kirchhoff method. 

The mathematical representation of the scalar electromagnetic waves and acoustic 

waves are almost identical. For a hnear, homogeneous and isotropic medium, the electric 

and magnetic fields are described by Maxwell equations. In particular, for a monochro­

matic wave, each component of the electric and magnetic fields satisfies a second order 

linear wave equation. For the acoustic field, if the medium has neghgible viscosity, its 

motion at ah ordinary points in space is described by Newton's equations and the conti­

nuity equation. For harmonic time dependence, the velocity potential satisfies the same 
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second order linear wave equation as an electromagnetic wave. For a perfect conduc­

tor, the tangential electric field boundary condition is the same as the velocity potential 

boundary condition of a perfectly soft scatterer in acoustics. The tangential magnetic 

field boundary condition is the same as the boundary condition on a perfectly rigid 

scatterer. Thus, a solution for an electromagnetic model is also a valid solution to the 

corresponding acoustic model. In this thesis, the problem will often be discussed in terms 

of electromagnetic fields; then the results wiU be apphed to the acoustic model. 

In order to achieve both accuracy and efficiency, we have employed the G T D method 

throughout this thesis. The geometrical theory of diffraction [11], which can satisfy the 

boundary condition, is generally superior to the Kirchhoff diffraction theory in both accu­

racy and efficiency. Instead of directly dealing with the field problem, this method takes 

advantage of the high frequency property of the diffracted waves and uses ray meth­

ods to calculate the diffracted field. Diffractions are determined by three key factors— 

diffraction coefficient, amplitude and a phase shift. Amplitude and phase are calculated 

according to the rules of the geometrical optics. Diffraction coefficients are given by the 

asymptotic analysis of canonical problems. 

In this thesis, scattering models are studied in the frequency-domain by the method 

of G T D . These solutions are most accurate for high frequencies. (By high frequencies we 

mean that the smallest dimension of the scattering body is larger than a wavelength.) 

The time-domain solution is then constructed for an appropriate pulse with suppressed 

low frequency components by inverse Fourier transforming the frequency-domain results. 

Both directional and omnidirectional sources are used with no restriction of source and 

receiver arrangement. The configurations modeled are the step discontinuity, inchned 

step, two parallel separated half-planes and a curved half-plane. Double edge diffractions 

are also included, which accurately give the total field in the transition regions. Creeping 

wave diffraction and the effect of the change of curvature in the half-plane are of interest. 
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In the transition regions, there are very strong second order edge diffractions and creeping 

wave diffractions. These diffractions are clear indications of the existence of the edges 

and the changes of the curvature, while it may not be obvious in the reflections. A digital 

filter approach to the time-domain solution is also investigated. For single diffraction by 

an edge, when away from the shadow and reflection boundaries, this approach can reduce 

the time of calculation by a factor of 4. The complex source point (CSP) method is used 

to extend the result of an omnidirectional source to a beam source. The combination 

of the G T D and C S P method greatly increases the efficiency and accuracy of the beam 

diffraction result. A n experimental model of a curved half-plane has been designed and 

constructed. The creeping wave diffraction in the geometrical shadow is clearly shown 

in the experiment result, but experimental difficulties prevented the verification of the 

second order edge diffraction. The mathematical models and programs in this thesis 

can be easily adapted to analyze more comphcated models. In comparison with the 

previous results, better agreement is demonstrated between the experimental data and 

our theoretical results. Calculation efficiency, accuracy and apphcation potential are the 

main features of our new approach. 

1.2 Geometrical Theory of Diffraction (GTD) 

Rigorous mathematical studies of high-frequency diffraction by an edge date back about 

a century [6], [7], [8], [9]. The asymptotic analysis has been limited to simple shapes, 

since exact solutions are not available when the scattering body shape is comphcated. 

G T D was developed in the 1950s by Keller [10], [11]. This method includes diffraction 

as well as geometrical optics fields, but retains the simple form of the ray theory. In G T D , 

the ray path of diffraction is governed by Keller's generalized Fermat's principle, and the 

diffracted field is determined by multiplying the incident field by a diffraction coefficient, 
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a phase factor and an amphtude factor. The diffraction coefficient is obtained from the 

high-frequency asymptotic solution of a canonical problem. When the scattering object 

is large compared to the wavelength, and the field point is away from the edge, caustic 

and transition regions, G T D results agree with the exact asymptotic solution. 

The fact that Keller's G T D fails in transition regions is a major defect. This dif­

ficulty was overcome by the uniform asymptotic theory of diffraction ( U A T ) [12], [13], 

[14], the uniform theory of diffraction ( U T D ) [15], and the spectral theory of diffraction 

(STD) [16]. In U T D and U A T , additional factors or terms which involve Fresnel integral 

are introduced to ensure that the diffracted field at the shadow boundary and reflection 

boundary behave regularly. In S T D , a singularity-free spectral diffraction coefficient is 

obtained from the Fourier transform of the induced surface current distribution. Compar­

ison studies have been conducted by Rahmat-Samii and Mittra [17]. The results indicate 

that the numerical solutions derived from the U A T and U T D theories are different but do 

not show large discrepancies. U A T gives the exact asymptotic solution for a half-plane 

but is approximate for a wedge. U T D is approximate for both but more versatile. 

U T D keeps the simple form of G T D and gives finite values in transition regions. For 

a perfectly conducting half-plane, U T D can give exact solution. Fresnel integral is used 

in U T D to smoothly connect the fields across transition boundaries. The Fresnel integral 

can be easily computed by the Fresnel integral subroutine available on M T S in University 

of British Columbia (UBC) . Because of these properties, the U T D formula is used here 

whenever edge diffraction is involved. 

In the apphcation of G T D , care must be taken to ensure that the high frequency 

condition is satisfied. For a plane with step discontinuities, the height of the step is the 

critical dimension which should not be less than a wavelength of the lowest significant 

frequencies of the acoustic pulse. For a curved half-plane, the radius of the curved surface 

should be greater than the wavelength of the lowest significant frequencies of the acoustic 
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pulse. The position of the source and receiver must be located away from the edge. The 

closest distance from the source or receiver to the edge should be greater than a quarter 

of the longest significant wavelength of the pulse, otherwise inaccuracy may occur. 

1.2.1 Uniform Theory of Diffraction 

U T D was developed by Kouyoumjian and Pathak in 1974 [15]. By an extra multiplier 

with a Fresnel integral, they gave the diffraction coefficient a uniform character. They 

also extended U T D to the edge formed by curved screen. This extension was justified 

by the argument of the local effect of the diffraction phenomenon. U T D as a directly 

modified version of G T D has been widely used in antenna analysis and design. 

According to G T D , a high-frequency wave incident on a discontinuous surface with an 

edge gives rise to a reflected wave and an edge-diffracted wave. The total field observed 

with the presence of the edge is the sum of the incident field, the reflected field and the 

diffracted field, 

u - u{ + ur + ud, (1.1) 

or 

u = u3°- + ud. (1.2) 

In equation 1.2, u9,Qm is the geometrical optics field, which is composed of the incident 

field ul and the reflected field ur; ud is the diffracted field. The geometrical optics field 

u9'°' can be easily found by ray methods. Referring to figure 1.1, the U T D edge diffracted 

field can be expressed as 

ud(p) ~ u\Q) • D(L,J>,<t>') • A(p) • exp(-jkp). (1.3) 

Here, A(p) describes the spatial variation of field amplitude along the diffracted ray, 

for plane, cylindrical wave incidence, 

MP) = , . . . (1-4) 
V P(P+P!) ^ o r s P n e r i c a l wave incidence, 
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where p' and p are the distances from the source to the edge and from the edge to the 

field point respectively. ul(Q) is the incident field on the edge. exp(—jkp) is the phase 

variation along the diffracted ray. D(L,<f>,(j)') is the diffraction coefficient obtained from 

the high-frequency asymptotic solution of the canonical problem, <j) and </>' are incident 

and diffracted angles, and L is a distance parameter. For soft (upper sign) and hard 

(lower sign) boundaries, the diffraction coefficients are given by the following equation 

[15] 

w+V'+'M =" ?Jvl5/4}]
 f o t [ ^ ^ v ^ + ( > - n 

+ cot[7T~^''<f>n)}F{kLa-{(f> - <f>')\ 
In 

Zn 

T c o t [ 7 r ~ ( ^ + ^ ) ] F [ f c L a - ( ^ + ^ ) ] | ) (1.5) 

where n is a parameter describing the wedge angle. When the two planes forming the 

wedge are d> = 0 and cj) = nit•, the wedge interior angle is (2 — n)7r, as shown in figure 1.1. 

The modified Fresnel integral F(x) is defined by 

F(x) = 2jy/xexp(jx) I exp(-JT2)dT, (1.6) 

in which one takes the principal (positive) branch of the square root. The parameter 

^{B) are given by 

a±{0) = 2cos\—2 £ ) (1.7) 

in which N± are the integers which most nearly satisfy the equations 

2irnN+ - 8 = rr (1.8) 

and 

27rniV- -8 = -TT , (1.9) 
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with 3 — <p ± (j)'. For an arbitrary wave front incident on a straight wedge, the distance 

parameter L is given by the following equation: 

L= , f ^ + ^ v (i.io) 

where p\ and p\ are the principle radii of the curvature of the incident wavefront, p\ is 

the radius of the curvature of the incident wavefront at the diffraction point in the plane 

containing the incident ray and the unit vector tangent to the wedge. 

There are several special cases when the diffraction coefficients given by equation 1.5 

can be considered separately. For grazing incidence, Da is zero and Dh must be multiplied 

by a factor of 0.5. If the wedge interior corner angle is ir/m, where m is an integer, the 

diffraction coefficient will vanish, and the boundary value problem can be solved exactly 

by the image method. 

Because G T D method is only valid when the incident field is a ray field and spatially 

slowly varying, we must pay special attention to the situation of double diffraction when 

the second edge is located in the transition region of the diffracted field emerging from 

the first edge. In this case, the incident field at the second edge is not spatially slowly 

changing; consequently, the above G T D equation cannot apply. This special case has been 

investigated by several authors with different methods. Lee and Boersma [18] used U A T 

and Tiberio and Kouyoumjian [19] [20] and Tiberio,. Manara, Pelosi and Kouyoumjian 

[64] used U T D . The results of Tiberio and Kouyoumjian are adopted in chapter two to 

solve the double diffraction of a hard step. 

1.2.2 Creeping Wave Diffraction 

Apart from the edge diffraction, there is creeping wave diffraction for smoothly curved 

surface. The G T D result of creeping wave diffraction for smooth objects was obtained by 

Levy and Keller [21]. They obtained the diffraction coefficient and attenuation constant 
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of the creeping wave for a smooth surface by comparing the G T D form and the high 

frequency asymptotic expansion of the rigorous solution of diffraction by a cylinder and 

sphere. 

The edge diffraction coefficient for the creeping wave was derived much later. Albert-

sen and Christiansen [22] constructed some creeping wave hybrid diffraction coefficients 

from a set of elementary diffraction coefficients. But there is no rigorous proof for the 

perfectly conducting curved sheet. Later Idemen and Erdogan [23], using Fock's result 

[29], solved the second order canonical problem of G T D — diffraction by a perfectly 

conducting curved sheet. They used a generalized cylindrical coordinate to construct a 

Hilbert problem and found a high frequency asymptotic solution. From this solution, 

they extracted the various diffraction coefficients (or transformation coefficients, as they 

were called in their paper) for the creeping wave. 

1.2.3 Second Order Edge Diffraction 

The geometrical theory of diffraction provides us with a means to accurately and ef­

ficiently analyze the scattering wave. A crucial step in applying G T D is to find an 

appropriate diffraction coefficient. Some diffraction coefficients can be derived by the 

asymptotic solution of a canonical diffraction problem. Other problems cannot be solved 

by this procedure and different methods are used to construct approximate diffraction 

coefficients. 

Weston [30] studied the effect of a discontinuity in the curvature on the high frequency 

scattering. He modeled the problem by conjunction of two parabolic cylinders and solved 

the current distribution asymptotically. Senior [31] extended Weston's work by extracting 

the diffraction coefficient from the asymptotic expansion. But Senior's result is non­

uniform and invalid in the vicinity of the reflection boundary where the diffraction is 

significant. James [32] derived a diffraction coefficient for the edge formed by a smoothly 
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joined cylinder based on both the theory of physical optics and Senior's result. James' 

result gives the correct diffraction on the reflection boundary and retains Senior's result 

away from the reflection boundary. 

1.3 Thesis Overview 

This thesis will emphasize accuracy, efficiency and apphcation. We will target the top­

ics which have very high apphcation value, but with no existing accurate and efficient 

solution. The U T D is used in edge diffraction. The complex source point method is 

employed for the beam diffraction. A time-domain infinite impulse response (HR) digital 

filter approach is investigated. A n experimental model for curved surface diffraction is 

constructed. The measured results show good agreement with theoretical predictions. 

In chapter two, mathematical models of transient pulse diffraction are studied by the 

method of U T D . Soares and Giarola [33] analyzed a 90° step in hard plane by U T D for 

plane wave incidence. The solutions obtained here are more general. The important but 

analytically difficult situation where source or receiver lies on the reflection boundary for 

the multiple diffraction is also included; Soares and Giarola's result fails in this instance. 

The solution is then extended to other diffraction models related to the step. This 

includes diffraction by two offset half-planes and diffraction by an inchned step. Time-

domain diffraction is constructed for an appropriate pulse with suppressed low frequency 

components. Numerical examples are presented which demonstrate the importance of 

including multiple reflection and diffraction for such models. 

In chapter three, the complex source point method is used for beam diffraction. One 

advantage of the frequency-domain approach is that the solution can be easily adapted 

to directional sources with Gaussian beam patterns. By changing the source position 

coordinates from real to complex, a beam diffraction result can be obtained. Suedan 
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and Jull [34] have used the complex source point method to convert an omnidirectional 

source diffraction solution into a beam solution for the half-plane and wedge diffractions. 

In their paper, the combination of U T D and complex source point method is investigated. 

Result showed that this combination provides accurate far field values for all parameters 

of the complex source position. Here, both frequency and time-domain beam diffraction 

by a step discontinuity are obtained. The complicated ray tracing procedure has been 

avoided. The numerical results show that the diffraction is enhanced when a beam is 

focused on the edge and weakened when a beam is aimed away from the edge. By using 

directional source, with zero offset source and receiver pair, diffraction from the edge is 

much weaker than for omnidirectional source incidence. Above the edge, the response 

of reflection and diffraction are relatively the same. When we position the source and 

receiver pair above the edge and change the beam direction over the entire step plane, 

the diffraction response increases as the source points to the edge, while the reflection 

becomes weaker as the source points away from the edge. 

Time-domain filtering technology is investigated in chapter four. Dalton and Yedlin 

[38] obtained an exact time-domain solution for diffraction of acoustic waves by a half-

plane by inverse Fourier transforming the frequency-domain integral solution and used 

a filtering method to calculate the pulse diffraction by a half-plane. Here, a similar 

approach is used. First, we transfer the frequency-domain U T D diffraction coefficient to 

the time-domain. Then an infinite impulse response (IIR) filter is used to carry out the 

convolution. Because the F F T and discrete convolution procedures are eliminated from 

the computer program, this method consumes only a quarter of the time used by the 

F F T . The filter design method discussed by Shanks [39] and Burrus and Parks [40] is 

used in IIR filter design. The filtering technology is not widely used in electromagnetic 

fields and this study should also serve the purpose of drawing attention to the filtering 

technology in wave propagation problems. 
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Curved half-plane diffraction is more complicated and has very interesting features. 

High frequency diffraction of the curved surface has been studied by Fock [29] and his 

U S S R coUeagues. The principle of the local field in the penumbra region estabhshed 

by Fock is basic to the analysis of the high-frequency diffraction by a convex, perfectly 

conducting object with continuously varying curvature. A convex side of a cylindrically 

curved sheet joined by a half-plane was investigated by Weston [30], Hong and Weston 

[42], Senior [31] and James [32]. Idemen [23] studied the case of oblique incidence on 

a perfectly conducting cylindrical sheet and derived the diffraction coefficient for the 

creeping wave. In chapter five, a complete G T D result for general spherical scalar wave 

incidence from an arbitrary point above the perfect hard surface is obtained. This solution 

includes the geometrical optics field, the edge diffracted creeping wave and space ray, 

and the second order edge diffracted space ray. A n experimental model has also been 

constructed and the measured results demonstrate good agreement with theory [43], 

[59]. The creeping wave diffraction shown in the measured results are clearly seen on the 

theoretical result. Because of limitations of the present experimental set-up, the second 

order edge diffraction is masked by reflection in the experimental results. 
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Figure 1.1: The configuration of a spherical wave diffraction by a wedge with an interior 
angle (2 — ra)7r . 



Chapter 2 

D I F F R A C T I O N O F A S T E P D I S C O N T I N U I T Y 

2.1 Introduction 

Diffracting edges produce characteristic signatures in seismic records. As these may in­

dicate the presence of geological faults and possible associated hydrocarbon traps, they 

have long been of interest in seismology. Edges caused by normal faulting frequently 

occur, for example, in the Horst and Graben structures found in the North Sea. Math­

ematical models to account for diffraction usually have been limited to acoustic effects. 

Examples are the work of Trorey [1] [2] and Hilterman [3] who used Kirchhoff diffraction 

theory to study acoustic sections. Hilterman also provided experimental data which for 

many geometries supported his theory. However for normal faults his theory, because 

of its inherent limitations, fails to account for the corner reflections and double diffrac­

tion evident in the experimental results. Jebsen and Medwin [44] investigated diffraction 

backscatter from a semi-infinite plate and a rigid wedge in the time and frequency do­

mains. The spectrum of diffraction, as predicted by use of the Kirchhoff assumption in 

the Helmholtz-Kirchhoff integral formulation, was compared to the experimental results 

and was found to be substantially incorrect. 

Frequency domain solutions of high-frequency diffraction by a step discontinuity or 

thick half-plane have been difficult. Jones [45] obtained a low-frequency asymptotic 

solution of the diffraction by a thick semi-infinite plate for a two-dimensional plane wave 

incidence by Wiener-Hopf technique. The explicit solution can only be obtained for the 

14 
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case that the thickness of the plate is less than one-tenth of the wave-length. Kobayashi 

[46], [47] extended Jones' solution to a rectangular conducting rod and derived a high-

frequency asymptotic solution. His results are not valid when the source and receiver he 

on the reflection boundary because the field incident on the second edge is not spatially 

slowly varying, and therefore, the standard G T D approach fails. Michaeli [48], [49] used 

a method based on the extension of the physical theory of diffraction, in which the 

radiation integral over the actual induced current is replaced by the Helmholtz integral 

over a surface enclosing the wedges. Then an extended spectral theory of diffraction and 

a singularity-matching procedure is proposed to obtain a uniform doubly diffracted field. 

The limitation of his solution is that the incident wave is approximately planar throughout 

the gap between the edges. Solutions for the spherical wave are only available for the 

case that receiver or source lies exactly on the reflection boundary, given by Tiberio and 

Kouyoumjian [20]. Recently, Tiberio et al [64] published another paper which studied the 

double edge diffraction problem. The solution is valid for arbitrary positions of source 

and receiver, but it still has the restriction of plane wave incidence. 

Plane wave diffraction by a 90° step in a hard plane was analyzed by Soares and 

Giarola [33] with U T D . The solution given here is more general as it is for an omnidi­

rectional local source. The important but analytically difficult situation where source or 

receiver lies on the reflection boundary for multiple diffraction is also included; Soares 

and Giarola's result fails in this instance. In addition, this solution is extended to pulse 

diffraction. 

The G T D [11], which can satisfy the boundary conditions, generally is superior to 

Kirchhoff diffraction theory in both accuracy and efficiency, but it fails at and near 

shadow and reflection boundaries because of singularities in the diffraction coefficients. 

Here, U T D [15] is used to model acoustic pulse diffraction by step discontinuities on 

planar structures. This shows considerable improvement over the earher methods in 
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accurately and efficiently accounting for the observations. It also suggests that errors 

may occur in using Kirchhoff theory with inversion of seismic data. 

The basic procedure here is to develop a frequency-domain solution for acoustic point 

source diffraction by a step on a plane surface with a hard boundary condition [50]. This 

solution is most accurate for high frequency diffraction. The hmiting dimension is that of 

the step: it should not be much less than a wavelength in height for the lowest significant 

frequency of the acoustic pulse. The time domain solution is then constructed for an 

appropriate pulse with suppressed low frequency components. Numerical examples are 

presented which demonstrate the importance of including multiple reflection and diffrac­

tion for such models, which are canonical in the sense that seismic records for acoustic 

pulse diffraction by more complex geometries may be constructed by their superposition 

with added interaction. 

2.2 D i f f r a c t i o n b y A 90° Step 

In figure 2.2a a point source of velocity potential ul = R~r exp(-jkR) is located at p', 

(j)' from the upper edge (x=y=0) of a 90° step discontinuity in a plane surface with a 

hard boundary. The total fields that arrive at the receiver are comprised of the incident 

field from the source, the reflected field from the plane surface and the corner of the 

step, and the diffraction from the edge. Owing to the interaction of the edge and the 

lower boundary, there are also multiple diffractions. Here, the consideration is limited to 

double diffractions, for higher order diffractions are insignificant. 

2.2.1 G e o m e t r i c a l O p t i c s F i e l d s 

The geometrical optics field can be written 

u9'°' = ul + u\ + u\ -f u\, (2.11) 



Chapter 2. DIFFRACTION OF A STEP DISCONTINUITY 17 

Figure 2.2: Paths of direct and reflected ray. A source at (p', <j>') and a receiver at (p, (j)) 
from the edge of a 90° step in a plane for different source-receiver positions. 
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where u\ and uT
2 are reflected fields from the upper and lower boundary planes, as shown 

in figure 2.2a and figure 2.2b, and uT
s is the reflected field from the walls of the corner as 

in figure 2.2c. For source and receiver in the x-y plane, the reflected fields at p, 4> are 

.< = !/(, + * - # ) ! 2 ^ « ! , (2.12) 

u\=U(,-lp'-4>)eXP{~JkSl\ (2.13) 

^ = g ( » - « 1 ) ° p ( - M ) , (2.14) 

«'s - U(4> - - #2)Cr(#3 - ^ ) e X P ( ? f c S 3 ) , (2.15) 

with C/(x) = 1, a: > 0 and U(x) = 0, for x < 0. i? is the distance from the source to the 

receiver on the incident ray path in figure 2.2a. Si is the distance from the source to the 

receiver along the reflected ray path. Similarly for S2 and 53 as indicated in figure 2.2b 

and figure 2.2c. The angular limits for the optics field can be obtained from figure 2.3. 

When the sum of the source and receiver angles ((/>' + </>) is less than ir, the reflected wave 

from the upper boundary can reach the receiver. Beyond this limit, no reflection from 

the upper boundary can be received by the receiver. The reflection boundary of the lower 

surface can be obtained from figure 2.3b. When the source is in the right half plane, the 

reflection boundary is in the left half plane; when the source is in the left half plane, the 

reflection boundary is in the right half plane. From the geometry, $i can be expressed 

as 

7T - 4>' + arctan , 2 / l c o s < * ' , ify' < TT/2, a n d | ^ cos <f>'\ < 1; 
y 7p 2 —Ah2 cos2 p' P 

* i - \ 27T, i f y ' < T T / 2 , and|^cos^ '| > 1; ' ( 2 1 6 ) 

arctan | « ^ | , i f y ' > TT/2. 

The angular limits for the reflection from the corner can by obtained from figure 2.3c, 

which can be summarized as 
v' + 2h 

$ 2 = Tr - arctan |- 1, (2.17) 
x' 
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Figure 2.3: Reflection boundaries and shadow boundaries for a source at different loca­
tions above a step discontinuity. 
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I ai' - arctan , 2hcos+' , 1^ cos p'\ < 1; 

$3 — ) y/p2-4h2 cos2 <f>< P (2.18) 

2TT, l^s cosp'l > 1. 

The distance parameters are given by 

R=y/{x-x'y + (y-y')*; (2.19) 

5x = v ^ - z O ' + fo + y')2; (2.20) 

5 2 = y/{x-x'y + (y + y' + 2hy] (2.21) 

5 3 = v
/ ( a ; + a ; ' ) 2 + ( 2 / + T / ' + 2 / i ) 2 . (2.22) 

2.2.2 Singly Diffracted Fields 

The geometrical optics field of equation 2.11 is discontinuous at shadow and reflection 

boundaries given by the angular limits. These field discontinuities are reduced by succes­

sive diffracted fields of which the singly diffracted fields are dominant. Their ray paths are 

shown in figure 2.4. For example, the reflection from the upper surface is discontinuous 

at the reflection boundary R B , shown in figure 2.4a. This discontinuity is compensated 

for by the diffraction from the edge, where the amphtude of the diffraction is half of the 

reflection with a different sign on each side. Thus, the total field is continuous on the 

reflection boundary and half of the reflection. 

By G T D , the singly diffracted field at p, (j) in the x-y plane containing the source and 

the edge in figure 2.4a is 

« {P,<P,P ,<t> =• ; D{—— 4>, 0 h M — — r , (2.23 
p P + P V P{P + P) 

in which the scalar diffraction coefficient D(L, (/>,(/>') of Kouyoumjian and Pathak [15] 

is given in equation 1.5 and the distance parameter L for a spherical wave is given in 

equation 1.10. This result (2.23) is not exact but its accuracy is well estabhshed. For 
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c 

Figure 2.4: Diffracted ray paths over a hard step discontinuity with source and receiver 
at different locations. The dashed vertical paths indicate multiple diffractions. 
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a 90° wedge its graphical numerical values generally are indistinguishable from exact 

values (Suedan and Jull [34], figure 7). Also, the diffraction coefficient is not singular at 

shadow and reflection boundaries and has the considerable advantage of being expressed 

in terms of Fresnel integral which can be efficiently calculated from available computer 

subroutines. Moreover, Fresnel integral time-domain transforms can be expressed in 

closed form, providing exceptional computational gain in single diffraction. 

Equation 2.23 is the entire singly diffracted field if both source and receiver are in 

x > 0 (</), 4>' < 7r/2), as in figure 2.4a. If <j)' < TT/2 and <f> > 7 r / 2 singly diffracted fields 

from the edge are reflected from the lower plane back to the receiver, figure 2.4b. The 

total singly diffracted field is then 

ud{p,<l>-,p',<l>') + ud{pi,<l>i]p'i 4>'l (2.24) 

where pi, fa are the coordinates of the receiver relative to the image of the upper edge 

in the lower boundary in figure 2.4b 

Pi = \A>2 + (V + 2/.)2, (2.25) 

* = T-t,u,",|iTS|- (2 2 6 ) 

If both source and receiver are in x < 0 (ci>, </>' > TT/2), there are, in addition, reflected 

fields from the lower boundary which are diffracted directly or after reflection back to the 

receiver, as illustrated by the ray paths in figure 2.4c and figure 2.4d. The total singly 

diffracted field is then 

ud{pA\p\^) + ud{piAi\p\^') + ^d{pA]p[Ai)^^d{piAi\p[A[), (2-27) 

where p\, <$>\ are the source coordinates relative to the image of the upper edge in the 

lower boundary. 

pi = vV)» + V + 2/J2, (2 28) 
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<?!»' = — - tan"11—^—|. ' (2.29) 
^ 2 y' + 2h] v ; 

There is no diffraction at the lower edge of the corner. This applies to all corners 

where the interior wedge angle is an integer fraction of 7r radians, for then the boundary 

conditions on the walls of an infinite wedge are satisfied exactly by an incident field and 

the fields of a finite number of images. 

2.2.3 D o u b l y Dif f rac ted F i e l d s 

Fields diffracted from the edge in the <p = 3 7 r /2 direction of figure 2.4 are again diffracted 

after reflection from the lower boundary, as indicated by the dashed hne. These dou­

bly diffracted fields are weaker than the singly diffracted fields (unless on the reflection 

boundary of the singly diffraction field) and arrive at the observation point later in the 

time. In the frequency-domain, they further improve field continuity at the reflection 

boundaries. 

If both source and receiver are in x > 0 ((f), qS1 < |), the total doubly diffracted field 

is 

d d . , exp[-jk(p' + P + 2h)} 2hp' 3TT / p> 
p' K2h + p'' 2 J\ 2h(2h + p') 

2hp , 3TT, / p' + 2h 

" " a ^ ^ T ' f a v i t t ) ( 2 ' 3 0 ) 

If the source is in x > 0 ((f)' < IT/2) and the receiver is in x < 0 ((f) > 7r/2) as in figure 2.4b, 

the doubly diffracted field is given by equation 2.24 with udd replacing ud and if both 

source and receiver are in x < 0 ((f), cV > 7r/2) as in figure 2.4c and figure 2.4d, the doubly 

diffracted fields are given by 2.27 with udd replacing ud in all terms. 

The ray paths of higher order diffractions are those in figure 2.4 with an additional 

bounce between the upper edge and the lower boundary. The above expressions fail in 

the transition regions of the doubly diffracted fields; i.e., if the source is in the vicinity 
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of the reflection boundary (4>' ~ 7r/2). This situation has been examined by Tiberio and 

Kouyoumjian [19], [20]. From their results a doubly diffracted field for <j>' = 7r/2 can be 

determined as 

d d , , Tr exp\—jk(p' -f 2h)] (p' -f 2h)p 3rr / p'+ 2h 

2(p' + 2h) ^h + p' + p^' 2 'V p(2h + p' + p) 

e x p ( - - J V ) 2hp 3TT / P ( . 

where 

„ 2 exp( - jirl 4) „ 2?iv 
1 ) 2 = - 3v4 c o t (T ) F 

2kp'(p + 2fc) 
(2.32) 

p + p' + 2fc_ 

is a new diffraction coefficient needed for the doubly diffracted field with <j)' — 7r/2. F(x) 

is the modified Fresnel integral given by equation 1.6. Reciprocity can be used to obtain 

a similar expression for (f> — TT/2 and arbitrary cf)' from 2.31, but these results are valid 

for either cf)' or <p = 7r/2 only. A more general result for arbitrary values of (f> and <p' near 

7r/2 and spherical wave incidence is substantially more involved and has not yet been 

determined. 

Triple and higher order multiple diffraction may also be included by continuing this 

procedure. Successive diffractions represent additional interactions between the edge and 

the lower plane along the dashed ray paths of figure 2.4. Each diffracted field is weaker 

and later in arrival than the last at the receiver. If the receiver and source are both in 

the right half plane and the receiver is not in the transition region, the triply diffracted 

field is given by 

Uddd 
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Multiple diffraction can be obtained by adding higher order diffractions to the expression 

above. For plane wave incidence (p' —» oo) the multiply diffracted fields can be written 

in a closed form 

<t*i = DMA')^ ikp)
 + l > ( 2 f r , 2 7 0 ^ ) Z ) ( # ^ , , , 2 7 0 ° ) 

x 
exp[-jk(2h + p)] 

y/2hp 

'2fc + p 
1 + £ D\h, 270° , 2 7 0 ° ) ( e X p ( ^ . 2 f e ) ) ' 

i = l 2h 
(2.34) 

or 

Utotal — 
exp(-jkp) 

D(p,d>,<p') + 
D(2h,27O°,<f>')D(0-p,d>, 2 7 0 ° ) 

(2.35) 
>2h exp(j2kh) - D(h, 270° , 2 7 0 ° ) 

The above equation agrees with that of Soares and Giarola ([33], equation (5)). However, 

as the triple and higher order multiply diffracted fields are of limited accuracy and sig­

nificance they are omitted in the calculated values presented. In the results which follow 

the total field is the sum of the incident and reflected fields, the singly diffracted fields 

and the doubly diffracted fields. However, examples of triple diffraction will be shown 

in both the time and frequency domains in order to compare with the single and double 

diffractions. 

2.3 Frequency-Domain Results 

Results of the last section are used to calculate the scattering field of a normal step 

discontinuity on an acoustic hard plane. Geometrical optics fields, single diffraction, 

double diffraction, and triple diffraction are shown separately. Numerical results show 

that the single and double diffraction are very important in getting a continuous total 

scattered field, while the triple diffractions are insignificant. 

Figure 2.5 and figure 2.6 show the total and diffracted field patterns at a distance ' 

p = 3A from the edge of a 90° step discontinuity with h = X illuminated by a point 
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Figure 2.5: Total field and diffracted field from a step discontinuity with h=A illuminated 
by a point source at p' = 1000A and i>' — 4 5 ° . Sohd curves represent the total field, dashed 
curves represent the diffracted field, a: single diffraction; b: single and double diffraction; 
c: single, double and triple diffraction. 
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Figure 2.6: Total field and diffracted field from a step discontinuity of h = A illuminated 
by a point source at p' = 1000A and <p' — 135°. Sohd curves represent the total field, 
dashed curves represent the diffracted field, a: single diffraction; b: single and double 
diffraction; c: single, double and triple diffraction. 
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source at p' = 1000A for </>' = 45° and <p' = 135° . In figure 2.5a, the total field includes 

geometrical optics fields and single diffractions; in figure 2.5b, the total field includes 

geometrical optics fields, single diffractions and double diffractions; in figure 2.5c, the 

total field includes geometrical optics fields, single, double and triple diffractions. In 

figure 2.5a, the total field has a discontinuity at <f> = 90° . When the doubly diffracted 

field is added, the total field is greatly improved, as shown in figure 2.5b. But triple 

diffraction is insignificant, as expected. The discontinuity at <f> = 90° in figure 2.6a is 

caused by the shadow of the reflected single diffraction. On the right half plane, there 

are no reflections of singly diffracted field. On the left half plane, the singly diffracted 

field wiU be reflected by the lower boundary. This discontinuity is smoothed out by 

the doubly diffracted field emitted from the edge. Figure 2.5b and figure 2.5c is almost 

identical to each other. These results suggest that only singly and doubly diffracted 

fields are required here, triply diffracted fields are not significant. These results are for 

essentially plane wave incidence and thus may be compared with those of Soares and 

Giarola ([33], figures 3 and 4). Their results are virtually identical to figure 2.5a and 

figure 2.6a. 

The behaviour of the diffracted field at shadow and reflection boundaries is also very 

interesting. In figure 2.5, the amphtude of the diffracted field reaches its maximum at 

the reflection boundary of the upper plane (t/> = 1 3 5 ° ) and the reflection boundary of the 

lower plane (d> = 165° ) . There are two components of singly diffracted fields. One is the 

diffraction directly from the edge and the other is the diffraction reflected by the lower 

plane. At the reflection boundary of the upper plane, the two diffractions are almost 

90° out of phase (figure 2.7). Thus, the amphtude of the total single diffraction changes 

continuously across the reflection boundary. The two diffractions are almost 180° out of 

phase (figure 2.7) on the reflection boundary of the lower plane. This phase difference 

results in the amphtude discontinuity of the total diffraction on the reflection boundary. 
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Thus the total diffraction behaves differently on the two reflection boundaries. 

Figure 2.8 shows the effect of step height h on the diffracted field at p = 3A for an 

essentially plane wave at normal incidence (/?' = lOOOA,^' = 9 0 ° ) . In this situation, to 

the right of the edge, single diffraction from the edge is of equal magnitude but 180° out 

of phase of to doubly diffracted field. Thus, their sum to the right of the edge is zero. To 

the left of the edge, the diffraction is distant from the reflection boundary. Both single 

and double diffractions are very weak. For the same reason, the resultant total diffraction 

is zero to the left of the edge. From another point of view, the diffraction increases when 

the geometrical optics field has discontinuities. When h is one wavelength, the total 

reflection from the upper and lower planes is continuous (assuming the source is distant). 

Consequently, the total diffraction is very weak. But if 2h is not an integer of the wave 

length, the reflection to the right of the edge will be different in phase to the reflection 

to the left of the edge. Then, the diffraction will compensate for the difference of the 

total reflected fields. Thus, when h = n A / 2 -f A/4, n = 1, 2---, the diffraction is very 

weak, as in figure 2.8a (where n is an integer and nA/2 <C p')- But when h = nA/2 , 

n = 1, 2---, they are very strong, as in figure 2.8b. If the source is very close to the 

edge, the difference in amphtude of the reflections results in a difference in the total 

geometrical optics field, then the diffraction rises even with h = A, figure 2.9c. For a 

given frequency then, the step height can have a major effect on the diffracted and total 

fields, particularly when the source and receiver are directly above it. 

2.4 T i m e - D o m a i n Results 

For a time domain solution to this diffraction problem, the source must have weak low 

frequency components and be similar to sources used in the geophysical literature so that 
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comparisons may be made. A convenient source function is 

f{t) = S m [7 l (* " t o ) ] exp[-a(* - ton (2-36) 

which is illustrated in figure 2.10a for a>i = 20v/7n:ad/s, a = 2.2 x 103 and to = 0.1s. Its 

amplitude spectrum peaks at about 35 Hz and its low frequency amphtudes are small, 

figure 2.10b. The time domain solution is the convolution of the Fourier transformation 

of the incident, reflected and diffracted fields given earher with the pulse signal f(t). 

The dimensions of the model chosen correspond to those of Hilterman [3] who obtained 

numerical results b3' Kirchhoff diffraction theory as well as experimental results for a scale 

model. The dimensions modeled are a step height of h = 400m and source and receiver 

locations at a height of 4000m above the upper surface, figure 2.11. The velocity is 

4000m/s. 

Figure 2.12 shows results for source and receiver together at 200m intervals along 

the horizontal scale indicated by the 41 vertical traces. At x = 0, <f>' = (j) = 90° and at 

x — ±4000/71, <p — <f>' = 45° or 135°. The two large amplitude horizontal events represent 

reflections from the upper the lower horizontal boundaries. The large amplitude event 

on the left side of figure 2.12, which appears to be hyperbolic, indicates reflections from 

the corner. The corresponding ray path is shown as 5 3 in figure 2.2c for offset source and 

receiver. With zero offset the path is the hne connecting the source and receiver pair and 

the corner. 

The weaker hyperbolic events in figure 2.12 which decrease in amplitude with increas­

ing time of arrival represent diffracted pulses. These diffracted pulses are reprinted in 

figure 2.13b to figure 2.13d. Single diffraction and double diffraction are shown in fig­

ure 2.13b and figure 2.13c. For the purpose of comparison, the triple diffraction is shown 

in figure 2.13d. From these results, diffraction events can easily be identified. The first 

to arrive in figure 2.13b are singly diffracted from the edge and are represented by the 



Chapter 2. DIFFRACTION OF A STEP DISCONTINUITY 31 

upper hyperbolic event. This diffraction has a phase change at the reflection boundary 

at <f>' = (j) = 90° in order to compensate for the discontinuity of the reflections. The next 

to arrive, which start to the left of the edge, are the sum of two events — the diffraction 

of the reflected pulse from the lower plane and the reflection of the edge diffracted pulse. 

These events merge with the corner reflections on the left side of figure 2.13a. The third 

diffraction is the one which experienced twice reflection from the lower boundary and once 

diffraction from the edge. The reflected single diffraction and singly diffracted reflection 

are discontinuous at the boundary <fi' = <p = 90° . This discontinuity is compensated for 

by the double diffractions shown in figure 2.13c. The discontinuity of the second event 

in the double diffraction will be compensated for by the triple diffraction in figure 2.13d, 

which is very weak in figure 2.12. Higher order diffractions can be included, but they are 

insignificant. The triple diffraction shown here is not evident in Hilterman's measured 

results. In order to record the extremely weak triple diffraction, the test equipment must 

have a dynamic range greater than SOdB. In figure 2.14, the amphtude is in dB scale 

with a dynamic range of 80dB. In this image the triple diffraction on the left of the last 

event is quite visible but in practice, these weak triple diffractions wiU be buried in the 

background noise unless some special signal processing measure is taken. 

A comparison of figure 2.12 with Hilterman's results '([3], figure 11) shows that our 

numerical model accounts for corner reflection and successive diffraction and reflections 

apparent in Hilterman's observations but absent from his calculated results. In addition, 

the relative amphtude of the singly diffracted field should be more accurately predicted. 

This cannot be observed from the data here as different pulses are used, but is known 

from the inherent hmitations of the Kirchhoff approximation, which cannot reproduce 

its own boundary condition on the surface. The geometrical theory of diffraction can, 

to essentially any degree of accuracy required, by the inclusion of successive diffraction. 

Figure 2.15 shows the measured result of acoustic scattering by a step discontinuity by 
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Mellema [43]. A median filtered result is shown in figure 2.16. These results verified 

the theoretically predicated single and double diffraction. As discussed earlier, the triple 

diffraction does not appear in the measured result even with the help of the filtering 

technology. 

Figure 2.18a shows results obtained when the vertical portion of the step in figure 2.11 

is removed leaving two parallel half-planes with their edges aligned and separated by 

h=400m. For a half-plane the diffraction coefficient and consequently the singly diffracted 

fields in figure 2.18a are exact. Those from the upper edge are represented by the pulses 

with arrival times tracing a hyperbola with its apex coinciding with reflection from the 

upper edge in figure 2.17a. In figure 2.12 and figure 2.18a the pulses are asymmetric in 

amplitude about the axis of the hyperbola and reverse in phase as the source-receiver pair 

passes over the edge. Kirchhoff diffraction theory predicts pulse amphtudes symmetric 

about the hyperbola axis ([1], figure 13). Consequently, migration or inversion of the 

data of figure 2.12 and figure 2.18a with Kirchhoff theory will not collapse the diffraction 

hyperbolas and may give poor results. For real seismic data with elastic media and 

nonrigid boundaries, this may not be observed however. 

As the source and receiver position moves to the left of the discontinuity in figure 2.17a 

the arrival times of diffracted pulses from the upper and lower edges converge, but as 

they differ in phase, here the amplitude of the resultant hyperbolic event is not noticeably 

increased. O n the right side of figure 2.18a the second or lower hyperbolic event represents 

double diffraction by the two edges and therefore is weaker than the corresponding event 

on the left side. 

The numerical results in figure 2.18b for zero offset between source and receiver are 

for the 30° inchne to the step, figure 2.17b. To obtain these values the preceding theory 

must be modified to include a 150° wedge at the upper edge and a 210° wedge angle at the 

lower. Consequently, edge diffracted fields are weaker than in the previous examples, and 
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doubly diffracted fields, although they are included, are scarcely evident. Also a reflected 

pulse from the inchned step is apparent with source and receiver at (j)' — (j) = 120° . In 

Hilterman's numerical model for his case ([3] figure 12) these features also appear, but for 

4>' = 4> = 90° the diffracted pulse amphtudes appear to be weaker than those observed, 

and those in figure 2.13. 

The parameters in figure 2.19 for a 90° step are the same as those in figure 2.13 but 

source and receiver are separated. In figure 2.19a the source is at x' — 4000m. and 

the receiver position is indicated by the horizontal coordinate. For <f> < 135° a strong 

reflected pulse is received first, followed by weaker singly diffracted and still weaker 

doubly diffracted pulses from the edge. At <f> = 135° (x=-4000m) the singly diffracted 

fields from the edge are reflected from the lower boundary producing an enhanced return 

which merges with the doubly diffracted field in figure 2.19a. 

The source is directly above the edge in figure 2.19b and thus reflected and diffracted 

fields merge for <p = 90° , but, as the receiver moves away from the edge, the arrival 

time of reflected as well as diffracted pulses increases. In figure 2.19c the source is at 

x' = —4000m, (</)' = 135° ) and when the receiver is nearby (<p = 1 3 5 ° ) corner reflected 

pulses are observed. Pulses which are successively reflected and diffracted are observed 

for 135° > (f> > 90° . At <f> = 45° reflection from the upper plane appears first as reflection 

from the lower plane is shadowed by the edge. 

2.5 C o n c l u s i o n 

The uniform geometrical theory of diffraction has been apphed to seismic modelling 

of acoustic pulse diffraction by planar structures with edges. Here, some defects in 

previous mathematical models based on the Kirchhoff method are noted. These include 

the omission of corner reflection and limited accuracy in the singly diffracted pulses. 
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Geometrical diffraction theory is ideally suited to the inclusions of these delayed returns. 

In addition, its use in inverting seismic data may avoid errors inherent in using Kirchhoff 

theory. 

Computational efficiency is also a significant advantage to this approach. In Hilterman's 

paper [3], only the zero offset case can be calculated. The solution given here can handle 

the non-zero offset case without any computational difficulty. These uniform frequency 

domain solutions are in the form of Fresnel integral readily computed by efficient subrou­

tines. Increased computational advantage is also possible because analytical expressions 

are available for the Fourier transforms of Fresnel integral. Geometries more complex 

than these may well require their use. Solutions for complex geometries can be con­

structed by superposition of solutions of simple structures. For example, a solution for 

the rectangular ridge would be the superposition of solutions for two vertical steps and 

interaction between the edges would be added for narrow ridges. 
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Figure 2.7: Single diffraction at and near reflection boundaries. The arrows show the 
amphtude and phase of the sum of the two components of singly diffracted fields for the 
parameters of figure 2.5. 
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Figure 2.8: The effect of change of step height h on the diffractions. A point source i's 
located at p' = 1000A and <j>' = 90°. Sohd curves represent the total field; dashed curves 
represent the diffracted field, a: h = 1A, b: h = 0.75A, c: h — 0.625A. 
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Figure 2.9: The effect of change of source position on the diffractions. Sohd curves 
represent the total field; dashed curves represent the diffracted field. Step height h=A, 
<f>' = 90°. a: p' = 1000A, b: p' = 10A, c: p' = A. 
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Figure 2.10: Pulse function used to construct the time-domain diffraction image, 
time-domain pulse; b: spectrum amplitude. 
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Figure 2.11: Source and receiver array over a step discontinuity. 
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Figure 2.12: Pulse diffraction by a step discontinuity. Source and receiver array is located 
at y0 = 4000m, from <p' = 45° to <p' = 135°, with a 200m interval. The velocity of the 
pulse is 4000 m/s. 



Figure 2.13: Reflection and diffraction from a step discontinuity normalized to maximum 
amplitude, a: reflection; b: single diffraction; c: double diffraction; d: triple diffraction. 
Parameters are same as figure 2.12. 
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Figure 2.14: Pulse scattering by a step discontinuity in a logarithm scale. Parameters 
are same as figure 2.12. 
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Figure 2.15: Measured acoustic scattering by a step discontinuity. Courtesy of Mellema 
[43]. 
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Figure 2.16: Median filtered results of figure 2.15 for acoustic scattering by a step dis­
continuity. Courtesy of Mellema [43]. 
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Figure 2.17: Two offset half-planes and an inchned step, a: two offset half-planes; b: a 
30° inchned step. 
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Figure 2.18: Reflection and diffraction from two offset half-planes and an inchned step, 
a: received pulse from above of two offset half-planes; b: received pulse from above of an 
inchned step, h = 400m, w = 692m. 



Figure 2.19: Received pulses for a non-zero offset source and receiver array over a normal 
step discontinuity, a: <j>' - 4 5 ° ; b: <j>' = 90° ; c: <f>' = 135° . 



Chapter 3 

B E A M D I F F R A C T I O N B Y A STEP DISCONTINUITY 

3.1 Introduction 

Beam sources are widely used in optics, antennas, acoustics and a Gaussian beam is the 

most frequently used representation of the main beam pattern. The propagation of the 

Gaussian beam can be tracked from the source to the observation point by the method of 

evanescent wave tracking. Examples of this are the study of Gaussian beam propagation 

through a lens-like medium by Choudhary and Felsen [51], and the complex ray tracing 

of an evanescent plane wave scattering by a conducting circular cylinder by Wang and 

Deschamps [52]. When dealing with spherical Gaussian beam diffraction by conduct­

ing edges, the wave tracing process is very complicated. However, using the complex 

source point method, beam solutions can be directly obtained from the solution for om­

nidirectional source. The beam can also be traced through propagation and scattering 

configurations by analytic extension into complex space of the rules pertaining to rays 

in real space. In this chapter, the complex source point method is used to generalize 

solutions of the step discontinuity diffraction. This approach dramatically simplifies the 

analysis of the problem. The behaviour of the diffracted field at and near the reflection 

boundary is also examined. 

48 
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3.2 Complex Source Point Method 

Complex rays were first used by Keller and Streifer [53] to study the propagation of 

a beam with a Gaussian profile. They pointed out that the complex ray is also the 

leading term in a high frequency asymptotic expansion of the exact field solution. The 

comparison study of the complex ray method and the stationary phase method was 

conducted with the conclusion that both methods yield the same result with the complex 

ray method being much simpler. This complex ray representation of the beam source 

greatly facilitates the analysis of the reflector antennas with tapered illumination. A 

general representation of a Gaussian beam as a bundle of complex rays was given by 

Deschamps [54]. He verified that a Gaussian beam can be described paraxially in terms of 

a Green function in free space with a complex source position. Using this representation, 

solutions of reflection, refraction and diffraction for a point source at a real location can 

be transferred to solutions for a beam source. This method greatly simplifies the analysis 

of beam scattering and extends the power of the various methods which are based on 

the solutions of the real point sources. For a beam source, the focus and transition 

region problem encountered by the ray method can also be avoided in some parameter 

ranges [55]. A thorough study and some exceUent examples of the beam patterns of the 

complex position source have been given by Suedan and Jull [34]. A n exact solution of 

the wave equation in time-space coordinates with a complex source location was obtained 

by Ziolkowski [56]. The extensions of this solution may yield other physically interesting 

wave equation solutions. This space-time investigation was further carried out by Einziger 

and Raz [57]. Their solutions can be used as basis functions for generahzed space-time 

field representations. 

In the following apphcations of the complex source point method, the behaviour of the 

transition function for the complex source is examined. Then the solution to a real source 
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diffraction by a step discontinuity is extended to the solution for a complex source. This 

extension includes modifying the program to handle the Fresnel integral with a complex 

argument and the recalculation of the reflection and shadow boundaries. 

A n incident wave from a point source at a complex location p' can be expressed as 

[58] 

M , = e^ - j f c J O ( 3 3 7 ) 

where 

R = \p-p\- (3-38) 

If the beam axis is in the x-y plane, by using polar coordinates with 8 defining the 

orientation of the beam as shown in figure 3.20, it can be shown 

P = J(Pr')2 + 2Pr(-3b)coS(6- # ) - P (3.39) 

and 
• p'r cos <j)'T - jb cos 8 

<p — arccos[ j, (3.40) 
P' 

where p' and </>' are complex now. The original real (j)1 and p' are denoted by <j>'T and p'r. 

When \p\ > \p'\, 

R =P-p' cos(<£ - < £ ' ) , (3.41) 

the incident wave can be simplified to 

i exp{-jfc[p ~ P'r COs(</> ~ <#.)]} 
u — • exp[fcft cos(<jt> — p)J. (3-42) 

The directivity of the beam is determined by the factor Kh and the direction of the beam 

axis is determined by the angle 8. The 3dB beam band width is given by 

HPBW = 2arccos(l - gf), kb>^f. (3.43) 

The beam patterns for different kbs are shown in figure 3.21. Since the directivity of 

file:///p-p/-
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Figure 3.20: A point source at a complex location. 
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Figure 3.21: Normalized beam patterns for kb=0, 2, 4, 8, 16 from (3.42) with 0=0. After 
Suedan [58]. 
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the beam generated by a complex position source is determined by the factor kb, Special 

attention must be paied to the fact that the beam pattern is a function of frequency. The 

influence on the beam pattern by the propagation constant k and the parameter b is the 

same. For a narrow band signal, this will not present any significant difference, but for a 

wide band pulse this can not be overlooked. Most antenna feeders and acoustic sources 

have higher directivity at higher frequency and lower directivity at lower frequency. In 

any case, care must be taken when the complex source point method is used to model real 

beam sources. The parameter b should always match the beam pattern at the operating 

the frequency. In the following studies, the real source directivity will not be concerned. 

It can be incorporated into solutions by assigning a different parameter b at a different 

frequency. 

3.3 Shadow and Reflection Boundary 

A beam generated by a complex position source has distinct properties. The shadow 

and reflection boundary positions are different from their positions for a real source. The 

boundaries are straight hnes for a real position source, while they are curved hnes for a 

source in a complex position. This property has been investigated by Green et al [55]. 

The shadow and reflection boundaries can be found from the saddle point contribution in 

the integral representation of the wave equation solution. Here these results are adopted 

for a complex point source with a conducting wedge. 

The shadow boundary cast by an edge is located by R e ( W „ ) = 0 [55], [34], where 

In the ht region Re(VF„) < 0 and in the shadow region Re (W8) > 0. The reflection 
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boundary is given by Re(W r ) = 0 with 

7T . 
Wr = - 2 e x p 0 - ) 

kpp' f<P + <p\ 
c o s ( — - — J. (3.45) 

A'^p + p' + R 2 

In the ht region Re(W r ) < 0 and in the shadow region Re(W r ) > 0. Thus, the step 

functions in equation 2.12 to equation 2.15 can be replaced by the following equations. 

For the shadow boundary, 

U{T + <f>'- <p) = U[-Re{W)) 

W = - 2 e x p ( j 7 r / 4 ) 1 

p + p' + R 

A n d for the reflection boundary of the upper half-plane, 

U{-K + <J>' + <f>) = u\-MWi)\ 

= -2exp(J7r/4) 1 

kpp' <f> - d>' 
cos{ j. 

p + P' + Ri 

The reflection boundary of the lower half-plane is given by 

kpp' ,<P + <t>\ cos( J. 

C / ( 7 T - $ i ) 

W2 = 

(3.46) 

(3.47) 

U[-Re(W2)} 

1, if d> and d>' < | 

- 2 e x p ( j i r / 4 ) v / = S ^ : c o s ( * ^ ) , if J> > = and ̂  < f (3.48) 

[ - 2 e x p ( j T / 4 ) v / ^ ^ o o B ( i ^ i ) i f a V > f . 

The reflection from the corner is bound by three factors, they can be put together as 

7T , 

U{<f>' - -)U{d> - *2)tf (*s -<p) = U[-Re(W31)}U[-Re(W32)} 

W31 = -2 'exp(jV/4) 1 

W 3 2 = - 2 e x p ( J 7 r / 4 ) J 

/ kpp'i , * 3 i + %i 
; — COSI 

p + pi + R3
 v 2 

) 

cos( ). 
Pi + P' + R3 

(3.49) 
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In the above equations, the angles are defined below 

Pi 
% = sin" 

1 P'i 

ri 
# 3 1 

3 
= - x 

2 -* 
*32 * 3 2 = cos" 

P3 
). (3.50) 

The distance parameters R, Si, S2 and S3 are still given by equations 2.19 to 2.22, but 

they are complex, and p\ are given by equations 2.25 and 2.28. Here, p[ is also complex. 

The complex coordinates of the source point are given by 

x' — p'coscf)' 

y' = p'sin <l>'. (3.51) 

In the above representation, the form used for a real source position is still kept. In this 

way changes of the formula of the diffraction solution for a real source position can be 

avoided. However, it should always be kept in mind that these complex variables have a 

different content from those of the real source position. 

3.4 Transition Function F(w) 

By analytic continuation into complex space, the U T D method can be extended to the 

case of a complex source position. The parameters in equation 1.5 should be extended 

to include a complex source position. In equation 1.8 and equation 1.9, 

2mrN± - Re(<f> ± <f>') = ±ir. (3.52) 

Substituting the above equations into equations 2.23, 2.24 and 2.27, the solution of a 

beam source diffraction by a step discontinuity can be obtained. 
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Before the U T D method is apphed to the step discontinuity diffraction with a beam 

source, the behaviour of the transition function F(w) (defined by equation 1.6) will 

be examined inside and outside of transition regions. For a real position source, the 

transition function F(w) provides a zero point at w = 0 to compensate for the singularity 

in the G T D diffraction coefficients at the shadow or reflection boundary. Away from the 

shadow and reflection boundaries, F(w) approaches to unity as w approaches to infinity. 

At the reflection and shadow boundaries, the G T D formula is not valid because of 

singularities in the G T D diffraction coefficient. When the source position is complex, the 

incident angle (/>' also becomes complex (if the source is not pointed to the edge) and the 

singularity in the G T D diffraction coefficient is removed [55]. For some parameters, the 

G T D diffraction coefficient can be used in the transition regions, but for most applica­

tions the complex source position does not ensure the accuracy of the G T D diffraction 

coefficient in the transition regions [34]. The accuracy is determined by the orientation 

and the directivity of the incident beam. The transition function F(w) can be used to 

show the difference between the G T D and U T D . 

In figure 3.22 for different values of kb and incident angle 0, a three dimensional plot 

of the transition function F(w) is shown in the region 0 < <p < 7r/2 , for a point source 

at <f)'T — 135° and p'T = 50A. The reflection boundary is <p — 45° for a real positioned 

source. In figure 3.22, the source is pointed in the y-direction, with different values of 

kb. When kb = 0, <f)' and p' are real. F(w) is zero at </> = 45° . This zero will compensate 

for the singularity in the G T D formula. F(w) approaches unity when the receiver is 

distant from the reflection boundary. If the surface of F(w) is cut by planes parallel to 

the x-y plane, the contours obtained will be parabolas with foci at the edge and axis 

along the reflection boundary. With kb > 0 the source position is complex, |.F(iu)| ^ 0 

and the locus of min |.F(tu)| becomes a curve about which the above parabolas are bent. 

Figure 3.23 shows the transition functions when the beam is pointed in the x direction 
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Figure 3.22: The transition function with the source located at p'r = 50A, <f>'r = 135° and 
0 = - 9 0 ° . a: kb=0; b: kb=4; c: kb=8. 
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Figure 3.23: The transition function with the source located at p'r = 50A, d>'r = 135° and 
0 = 0 ° . a: kb=0; b: kb=4; c: kb=8. 
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(6 = 0°). Here, when kb is large, the valley in the transition function, figure 3.23c, shifts 

in the opposite direction to that of figure 3.22c. 

Figure 3.24 and 3.25 shows the effect of the change of a beam direction on the tran­

sition function F(w). Here, kb = 8, 6 changes from 30° to —120° . When the beam 

axis is close to the edge, as in figures 3.24c and 3.25a the transition function still has 

a deep valley near the reflection boundary. In this circumstance, the G T D diffraction 

coefficients will be inaccurate. When the beam is directed away from the edge, the deep 

valley in |jF(tf;)| wiU disappear. Only in those regions where the transition function is 

close to unity, U T D and G T D give a similar result. 

In general, when kb is large and the beam axis does not pass through the edge, the 

diffraction is very weak, because only a very small amount of energy strikes the edge 

and is being diffracted. In this situation, G T D can be used to save the computing time 

without the loss of accuracy. Otherwise, U T D should be used to ensure the accuracy 

of the result. This conclusion agrees with Suedan and Jull [34], where they studied a 

half-plane and a wedge diffraction with a hne source incidence. 

3.5 Frequency-Domain Solution 

In this section, the complex source point method is used to solve beam pulse diffraction by 

a hard step discontinuity. The geometrical optics field can still be obtained from images 

and the direct incident field, but reflection and diffraction boundaries are different from 

the real source case as discussed above. Thus the incident field and reflected fields from 

the upper boundary, lower boundary and the corner are given by equations 2.12 to 2.15, 

with appropriate substitutions of the angles and distances discussed in last section. The 

same is true for the diffractions, where equations 2.23, 2.24, 2.27 and 2.30 can still be 

used with appropriate substitutions. 
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Figure 3.24: The transition function with p'T = 50A, <j>'r = 135° and kb = 8. a: 0 = 3 0 ° ; 
b: 0 = 0° ; c: 0 = - 3 0 ° . 
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Figure 3.25: The transition function with p'r = 50A, <t>'T = 135° and kb = 8. a: 0 = - 6 0 ° ; 
b: 0 = - 9 0 ° ; c: 0 = - 1 2 0 ° . 
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Figure 3.26: Diffraction patterns of a 90° step discontinuity with a point source at a 
complex location, h = A, p = 3A, p'r = 10A, # = 45° and 0 = 2 7 0 ° . a: kb = 0, b: kb = 4, 
c: kb = 8. 
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Figure 3.27: Diffraction patterns of a 90° step discontinuity with a point source at a 
complex location, h = X, p = 3A, p'r = 10A, <p'T = 135° and 8 = 2 7 0 ° . a: kb = 0, b: 
kb = 4, c: kb = 8. 
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The numerical diffraction results are presented in figure 3.26 and 3.27, where diffrac­

tion patterns are calculated for kb = 0, 4, 8, with h=A, p'T = 10A, p = 3A and 8 = 270° 

for <f>'T = 45° and <p'r = 135° . In this case, the direction of the main beam is pointed 

away from the edge. The field striking the edge become weaker, as kb becomes larger. 

Therefore, the diffraction as well as the total field away from the main beam becomes 

weaker as kb changes from 0 to 8. 

In figure 3.28, the directivity of the beam is fixed at kb = 8 and the beam incident 

angle is changed from 8 = —90° to 8 = —135° . When the beam is aimed at the edge 

(8 = — 1 3 5 ° ) , the diffraction from the edge is very strong. When the beam is aimed away 

from the edge, the diffraction is obviously very weak. 

3.6 Time-Domain Diffraction 

The signal used in this section is the same as equation 2.36, but with different directivities. 

The source directivity is changed from kb = 0 to kb = 8, and the beam is directed 

down to the boundary plane. Thus, when the source-receiver pair is distant from the 

edge, the diffraction is weak. This effect shows on the diffraction hyperbolic events in 

figure 3.29. These reflection and diffraction events have been analyzed before. Here, with 

a beam source incident, the major difference is the magnitude of the corner reflection 

and edge diffraction, which diminish more rapidly as the source-receiver pair moves away 

from the top of the edge. The non-zero offset results are presented in figure 3.30 and 

figure 3.31. These results show similar effects of the beam source on corner reflection and 

edge diffractions. 
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Figure 3.28: Diffraction patterns by a 90° step discontinuity of a point source at a complex 
location with h=A, p - 3A, p'T = 10A, # = 45° and kb = 8. a: 0 = - 9 0 ° , b: 0 = - 1 1 5 ° , 
c: 0 = - 1 3 5 ° . 



Figure 3.29: Pulse diffraction by a step discontinuity with a beam source. The source 
and receiver array is positioned at y0 = 4000m with a step height h = 400m. The beam 
is pointed at 0 = 270°. a: kb = 0, b: kb = 4, c: kb = 8. Pulse velocity is 4000m/s. 



Figure 3.30: Pulse diffraction by a step discontinuity with a beam source. The receiver 
array is positioned at y0 = 4000m with a step height h=400m. The beam is pointed at 
B = 270° with <p'r = 4 5 ° . a: kb = 0, b: kb = 4, c: kb = 8. Pulse velocity is 4000m/s. 



Figure 3.31: Pulse diffraction by a step discontinuity with a beam source. The receiver 
array is positioned at y0 = 4000m with a step height h = 400m. The beam is pointed at 
0 = 270° with 4>'T = 135°. a: kb = 0, b: kb = 4, c: kb = 8. Pulse velocity is 4000m/5. 
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3.7 C o n c l u s i o n 

Beam diffractions by a step discontinuity are obtained by the method of complex source 

point in this chapter. The difference between G T D and U T D formulas are examined 

through the study of the behaviour of the transition function F(w). It is noted that the 

transition function F(w) is necessary even for highly directive beam. 



Chapter 4 

T I M E - D O M A I N TSR F ILTER M E T H O D 

4.1 Introduction 

Calculation efficiency is one of the important features of this thesis. In previous chapters, 

the ray method was used to seek high frequency solutions of the field scattering problem. 

This asymptotic approach makes it possible to investigate the scattering properties of 

a complex shape, but for a pulse of certain wavelet, the time consuming fast Fourier 

transformation ( F F T ) is still needed to generate the diffraction image. To avoid F F T , a 

direct time-domain approach can be used, and this requires the impulse response of the 

diffracted field. 

Time-domain solutions of diffraction by a half-plane and a wedge were given by Wait 

[35] and Felsen and Marcuvitz [36] respectively. Time-domain half-plane diffraction was 

studied by inverse Fourier transformation of the frequency-domain solution by Dalton 

and Yedlin [38], [37]. A general pulse response can be obtained from the solutions given 

in [35], [36], [38], but convolution must be used and it is more time consuming than 

the F F T procedure. Dalton and Yedhn [37] used an infinite impulse response (IIR) 

filter to calculate the pulse diffraction by a half-plane, a procedure which eliminates the 

convolution and accelerates the numerical calculation. 

IIR filters, also known as recursive filters, have been recognized as a very efficient 

and powerful implementation of convolution and many signal processing procedures [39]. 

Instead of the conventional convolution, an IIR filter can be designed to carry out the 

70 



Chapter 4. TIME-DOMAIN IIR FILTER METHOD 71 

task of transforming the impulse response to a general wavelet response in a recursive 

way. IIR filtering can be considerably faster than the conventional convolution and very 

accurate with a properly designed filter. Shanks [39] has shown in one example that the 

recursion filter is about 45 times faster than simple convolution. He pointed out that 

it is not unusual to find recursion filter savings of four or five times over conventional 

convolution in terms of computer C P U time. 

The time-domain diffraction results in [35], [36] and [38] are for a half-plane or a wedge 

only and limited to single diffractions. Here general uniform diffraction coefficients in the 

time-domain for single and double diffractions are presented. First, the inverse Fourier 

transformation of the uniform diffraction coefficient is performed. Then, a procedure 

used by Dalton and Yedhn [37] is adapted with improved efficiency. The convolution of 

the impulse response with an arbitrary wavelet is digitized. A recursive filter is designed 

to match the impulse response. The wavelet response is calculated recursively. In this 

way a substantial amount of computer processing time is saved. 

4.2 Inverse Fourier Transformation of the Diffraction Coefficient 

The time-domain diffraction coefficient is given by inverse Fourier transforming the 

frequency-domain coefficient. There are four similar terms in the U T D diffraction coef­

ficient for a wedge. The inverse Fourier transformation wiU be performed on one term. 

The rest of the terms can be easily obtained by proper substitution of the corresponding 

variables and signs. 

The U T D diffraction coefficient for a wedge with hard boundary condition can be 

written as 
4 foo 

D{w) = ^ 2 J D l
0 e x p [ j ( a ; T i + TT/4)] / _ exp {-jr2)dr, (4.53) 
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where 

T^ = -a\4>~n (4-54) 
c 

T 3 ' 4 = -<**(</>+ <£'), (4.55) 

and 

n i , 2 -} + r 7 r ± ( ^ - < ^ ) 1 

^° = ^ / w c c o t [ - ^ - ] ' f 4 - o 7 ) 

in which a±(B) and L are given by equations 1.7 and 1.10. Taking an inverse Fourier 

transformation of the first term, 

1 r°° 
D1(t) = -Re / D1(u)exp(jut)dw, (4.58) 

7T JO 

where - D 1 ^ ) is the first term in the uniform diffraction coefficient D(UJ). This can be 

written as 

D^t) = 2Dl- Re / / explJiuT1 + ut - r 2 + -)]<£rda; . (4.59) 

Interchanging the order of integration, Dl{t) can be expressed as 

D^t) = 2 D 0 — R E f°° exp ( i K ? 1 1
 + t) - r 2 + iu/dr. (4.60) 

IT Jo Jo K 4 J 

Using the well known result 

7. s i n r 2 < i T = /„ C O S T 2 i T = 2\lr (4'61) 

A n explicit expression can be obtained, 

^ t ) = ^WTWtm- (4'62) 
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0 H 1 1 1 — i 1 
0 1 2 3 4 5 

t (second) 

Figure 4.32: The impulse response (4.62) of part of a wedge diffraction coefficient (4.63) 
normahzed to 1 at t=0.1 second. The sohd curve represents T a =l second; the thin dashed 
curve represents T'1=10 seconds; the thick dashed curve represents Ta=100 seconds, with 
4> = 4>' = 45°. 
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The rest of Dl(t) can be obtained by the proper superscript substitution. The total 

time-domain U T D diffraction coefficient is given by the inverse Fourier transforming the 

sum of the four terms in the U T D diffraction coefficient, 

D(t) = Y.D\t). (4.63) 
i=l 

For T1 = 1, 10 and 100 seconds, the impulse response is plotted in figure 4.32, where 

the maximum has been normahzed to 1 at t = 0.1 second. When T 1 is large, the impulse 

response behaves hke While when T 1 is small, the impulse response becomes sharp. 

Also most of the energy concentrates in the early response for small T 1 . It can be shown 

that for T 1 —> 0, the D1^) will approach 8(t), where 8(t) is the Dirac delta function. 

Generally speaking, in the physical world, when T1 —> 0, the receiving point is on the 

shadow or reflection boundary, where the diffracted field is half of the incident or reflected 

field. Thus, the diffracted wavelet has the same shape as the incident or reflected wavelet 

with half its amphtude. The receiver will be well away from the shadow or reflection 

boundary, when Tl is large. For an early time response, D%(t) can be simplified to 

&{t)*^Lu{t). (4-64) 

The above result is identical to the inverse Fourier transformation of Keller's diffraction 

coefficient [11]. 

For double diffraction, if the two edges do not he in each other's transition region, in 

the frequency-domain the double diffraction coefficient is just the product of the two single 

diffraction coefficients. In the time-domain, double diffraction is the autocorrelation of 

equation 4.62 with different parameters. 

Let Di(w), D2[w) denote the first and the second diffraction coefficients respectively. 

The double diffraction coefficient Dd(u>) can be written as 

Dd(u>) = Z M ^ H 
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= E E { 2 ^ 1 e x p [ i ( u ; r i
f c

+ V 4 ) ] / " exp (-jr 2)<ir} 
fc=ii=i • / v / l t a , r n 

exp( - j r 2 )d r } , (4.65) 

where JDQI, Dl
02, T\ and T2 have the same definition as equation 4.54 and equation 4.56 

with the subscript 1 and 2 refer to the first and second edges respectively. Inverse Fourier 

transforming the above diffraction coefficient gives the time-domain double diffraction 

coefficient for two wedges as 

4 4 rpkrpi 

U(t), (4.66) 

-2. 

There are no singular points at the origin in double diffraction. This means that the 

doubly diffracted pulse, generally speaking, is smoother than the singly diffracted pulse 

and even smoother than the input signal. There are two cases where equation 4.66 can 

be simplified for its early time response. For example, taking the first term, when 

and T2 both are much larger than t, then 

Dd\t) « D^D^Uit). (4.67) 

When only one of the T^, T$2 is large, say Tl is much larger than Tl + t, 

Dd\t) « <J> 0 2 ?-^—U{t). (4.68) 

These two approximations give us a clear picture of the early response of the double 

diffractions. Because D\t and D\2 are not functions of t, initially, the double diffraction 

impulse response is simply a step function. 

The time-domain result of the single diffraction is the convolution of the incident 

wavelet with the weighting function 1/y/t or Tl/[(Tl + i)y/t] exactly. In this way the 

output of a diffraction pulse is different in shape from the input signal. The low frequency 
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content of the wavelet is emphasized and the high frequency portion is depressed. As a 

result, the diffraction pulse is flattened. This effect can be easily understood from the fact 

that single diffraction acts hke a low pass filter with a characteristic l/\/ui behaviour. 

For double diffraction, the diffraction output is just the integral of the input wavelet. 

This means that the high frequency component in the wavelet is further depressed. 

In geophysical applications, diffraction has been treated, most of the time, as noise 

and been filtered out as much as possible. It is necessary to design a bandpass filter in 

this case to suppress the diffraction. With the knowledge of this chapter, the diffracted 

seismic pulse shape can be predicted. Thus a more effective depressing or shaping filter 

can be designed. 

4.3 Digitization of the Convolution 

The time-domain diffraction coefficient has been given exphcitly in the last section. For 

an arbitrary wavelet / ( £ ) , the single diffraction can be obtained by convoluting the wavelet 

with equation 4.62 and proper phase and amphtude parameters. In this section, the con­

volution will be first put into a form which eliminates the singular point in the integrand. 

Then, this convolution will by digitized. 

For simplicity, only one of the four terms in single diffraction by a wedge are considered 

and the superscript and subscript are neglected to avoid any confusion. It is assumed that 

the wavelet satisfies two conditions: /(0) = 0 and f(t) has weak low frequency content. 

From chapter 2 and the previous sections, the impulse response for single diffraction for 

spherical wave incidence can be written as 

us{t) = A 
D0 T 

U(t - t0), (4.69) 
VT? (T + t - to)y/t^fo 
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where 

and 

A = (4.70) 
y/PP'ip + P') 

to = (4.71) 
c 

Thus, the output of a general wavelet f(t) is 

« j ( 0 = *i{t)*f(t) 

yft J-ooJy ' ^ \T + t-T -toWt-T -t0 

DnT ft-to dr 
= A=^- I / ( r ) — \ , (4-72) 

^ Jo J y J{T + t-T -to)yft-r -to V 1 

The integrand is singular at the end point. It is difficult to directly carry out the digi­

tization. To avoid the singular point, integrating by parts with the condition /(0) = 0 

gives 

ud(t) = 2AD0\j^ft f'(t - r ) t a n - 1 \j^^dr. (4.73) 

If f'(t) has no singular point, equation 4.73 can be easily calculated numerically. Let 

(4.74) 
ti = t0 + iAt, t = 0, 1, 2, ••• ( 7 - 1 ) 

TJ = t0+jAt, j = 0, 1, 2, ••• ( J - 1). 

Using summation instead of the integration gives 

9i = DoJ2fLj
h

J, (4.75) 
j=0 

where 
- 2DoVTAt 

D0 = ——====, (4.76) 
V*yJPP'{P + P') 

9i = ud{t0 + iAt), (4.77) 

fl = f\iAt) (4.78) 
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and 

(4.79) 

Equation 4.75 is a standard numerical convolution. The direct calculation is more 

time consuming than the F F T procedure used in the previous chapters. In the next 

section, an IIR filter approximation will be used to implement the digital convolution. 

4.4 LTR Filter Design and Convolution 

In this section, the method discussed by Shanks [39], Burrus and Parks [40] is used to 

design the IIR filter. This method was also used by Dalton and Yedhn [37] in their study 

of the half-plane diffraction. In their approach, the matrix B1 in equation 4.95 is not 

given explicitly. Here the elements of 0i is given through a recursion formula which is 

much more efficient than the matrix inversion. 

For two z-transformation functions 

f(z) = fo + fiz-1+f2Z-2 + ---+fnz-n (4.80) 

h(z) = h0 + hlZ~l + h2z~2 + ••• + hnz-n, (4.81) 

the product of f(z) and h(z) is given by 

g(z) = f(z) x h(z) 

= {fo + f i Z - 1 + f 2 z - 2 + - - - + f n z - n ) x 

(h0 + hz-1 + h2z~2 + • • • + hmz-m) 

= 9o + giz'1 + g2z~2 + • • • + 3 m + „ 2 " r a " " (4.82) 

where 
i 

9i = Y,fihi-i * = 0, 1, 2, m + n . (4.83) 
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If the system response h{ can be written in a closed form, the convolution can be carried 

out by recursive calculation and the number of multiphcations and summations can be 

greatly reduced. Assume 

h0 + h1Z-1 + h22-2 + - - . + h m + n Z - m - n W Sh^* • 

A{z) 

B(zY 

(4.84) 

(4.85) 

then 

(fo + fi*-1 + f2z~2 + •••+ / n O S r * ? * " * (4-8 6) 

~ 90+giz'1 +g2z~2 + ••• + g m + n z - n - m . (4.87) 

By rearranging, this can be written as 

(fo + fiz-1 + f2z~2 + •••+ fnz~n)(J2 Ciz-') (4.88) 

M 
~ (go + giz-1+g2z-2+ +gn+rnz-n-m)C£bjz-i) (4.89) 

Without loss of generahty, assuming b0 = 1, gi can be obtained by the following recursive 

formula 
i i — 1 

gi~Yl fiai-i - 12 9ibi-j (4-90) 

j=0 j=0 

If M and A^ are smaU integers, which usually is the case, the saving of the computing 

time is phenomenal. But for the problem of the last section, the impulse response is not 

in the form of a closed rational function. A n approximate rational function has to be 

designed, which should give the same coefficient when expanded into z~% series. This 

filter design procedure is rather time consuming. There are several approaches to the 

IIR filter design. Generally speaking, different approaches give different results. One 

design procedure may give a better result than the other in one occasion, while another 

algorithm may be more suitable itself in a different situation. Here, the method, which 
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was first discussed by Shanks [39] and later by Burrus and Parks [40] is used and an 

efficient design equation is derived to implement the recursive filter. 

The computation method used in IIR filter design is very important. Numerical 

approximation by the computer results in errors. The accumulation of errors in the 

numerical result can prevent accurate filter design. By optimizing the design formulas, 

computer round off errors can be reduced. Here an optimized IIR filter design formula 

is given. 

Applying the Burrus and Parks' notation [40], the coefficients b\, 62, 6M in equa­

tion 4.90 can be obtained from the matrix equation 

Hi H3B = H3H1, (4.91) 

where 

B = 

The elements of matrix H3 are given by 

6a 

62 

6M 

(4.92) 

6-fj = hpr-i+i-j (4.93) 

and the column matrix H1 is 

H1 = 

hN 

The coefficients in equation 4.90 can be found from 

(4.94) 

A = (4.95) 
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with 

A 

and 

aM 

h0 

hic-i 

(4.96) 

(4.97) 

where hj is given by equation 4.79. B\ is a K by M matrix, the elements of 01 are given 

by 

0, i < j 

1, i=j (4-98) 

and /3j is given recursively 

(4.99) 
•0o= 1 

ft= -EJ=o/9A-,-, i = l ; 2 , - . - , ^ - l . 

This method is used to calculate the diffraction coefficients of different incident angles, 

0 = ^ ' = 2 5 ° , 45° and 88° . For 0 = 0' = 8 8 ° , the wave is almost vertically incident 

on the reflection surface and the diffraction coefficient approaches a delta function. This 

case represents the most difficult situation in the design. Different values of N = M are 

tested ranging from 2 to 15. Here the lowest N = M, which can ensure that the absolute 

error is less than one percent, is chosen. It is found that for N = M less than 10 all the 

diffraction coefficients can be easily approximated. The results are shown in figure 4.33. 
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Figure 4.33: Impulse responses of the filters designed by Shanks' method. Sohd curve 
represents the exact impulse response; dashed curve represents -the approximated filter 
impulse response, a: d> = d>' = 2 5 ° ; b: <f> = <f>' = 4 5 ° ; c: d> = <f>' = 88° . 
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In the following section this method wil l be used in the IIR filter design. In the 

calculation, it is found that most of the computing time is used by the filter design. 

Calculation shows that it is unnecessary to search for the best values of JV and M every 

time. JV = M can be chosen large enough to handle the most difficult case. Thus, in the 

following calculation M = JV is set equal to 9. 

Once the IIR filter is obtained in the form of a rational function of z variables, the 

convolution of the equation 4.75 can be carried out by the following recursive formula 

min[i, J V — l ] min\j, M—1] 

9 i = D0 Yl "if!-, ~ £ bi9i-j, (4-100) 
j = o j = l 

where Do and / / are given by equations 4.76 and 4.78 respectively. 

4.5 Numerical Example for Single Diffraction 

Next the single diffraction by a hard step discontinuity is obtained via time-domain 

convolution and IIR filter method. In order to compare the speed, the same response 

is calculated in frequency-domain and F F T is used to convert the result back to the 

time-domain. 

A Berlage wavelet [41] is used here with f(t) — U(t)t3 exp( — 190i) sin(607rf) and veloc­

ity c = 4 x 10 3 m/s , step height h — 4 x 10 3 m, source and receiver positions y0 — 4 x 10 3 m, 

K = I = J = 100. The results are shown in figure 4.34. The two diffraction patterns 

virtually identical, but the computer C P U time used by the different methods is different. 

To generate these diffraction images, the C P U time for the IIR filter method is 6 seconds 

while the C P U time for the F F T method is 24 seconds on an A m d a h l 5850 computer. 

Figure 4.34 includes only single diffractions. If double diffractions are included, sixteen 

IIR filters have to be designed for every doubly diffracted ray. Thus it is evident that 

this approach is less efficient for double diffraction. 
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x(m) 
-4000 o 4000 

I L 3.4 

Figure 4.34: Scattering from a step discontinuity. Step height h = 4 x 103 meters, source 
and receiver array is positioned at y0 = 4 x 103 meters, a: result by IIR filter approach; 
b: result by FFT approach. 
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4.6 C o n c l u s i o n 

In this chapter, calculation of pulse diffraction by a hard step discontinuity is approached 

differently. The inverse Fourier transformation results are used to derive time-domain 

diffraction. A n IIR filter is designed to carry out the numerical convolution recursively. 

Because the order of the filter is very small ( M = N = 9), the I IR filter method is very 

efficient. For single diffraction, one scattering image shown in figure 4.34 can save 75 

percent of the computer C P U time. 

The IIR filter method can also be used in the calculation of the double diffraction. 

The time-domain double diffraction coefficient is given by equation 4.66. Because of the 

complex nature of the double diffraction, the implementation of the IIR filter method 

wil l be difficult. In the time-domain, convolution has to be performed for each single 

diffraction and double diffraction but only one F F T is needed by the frequency-domain 

approach. 

Both impulse responses of single diffraction and double diffraction are given exphcitly 

in this chapter. This information can be used i n the filter design either to subtract the 

diffraction signal or to suppress the diffraction. 



Chapter 5 

D I F F R A C T I O N B Y A C U R V E D H A L F P L A N E 

5.1 Introduction 

High frequency solutions of electromagnetic scattering from simple shapes have been ex­

tensively studied in the past and widely reported in the open literature, but results for 

complex structures which can be constructed from the simple shapes are relatively few. 

Although some experimental results have been reported [3], the theoretical analysis of 

diffraction is often not satisfactory. The study of the diffraction by complex shapes is 

important in itself. First, when simple shapes are combined, new diffraction mechanisms 

are created. Generally, new problems cannot be treated by classical methods and an ap­

proximate approach has to be adopted. Also, the solution of complex shapes constitutes 

a central step in constructing solutions of scattering objects of practical interest in radar 

and seismic applications. 

In this chapter, spherical wave diffraction by a convex side of a cylindrically curved 

sheet tangential to a half-plane is studied. The geometry of the problem is shown in 

figure 5.35. A similar configuration has been studied by Chuang [60] for a plane wave 

at grazing incidence. By the extension of Weston's [30] result, he obtained diffracted 

fields in both shadow and ht regions. Here an asymptotic solution for general spherical 

wave incidence from an arbitrary point above the perfectly hard surface is obtained. This 

solution, which includes the geometric optics field, the edge diffracted creeping wave and 

space ray, the second order edge diffracted space ray and uses G T D , U T D , physical optics 

86 
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Figure 5.35: Geometry of a curved half-plane. 
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and the creeping wave diffraction coefficient for an edge on a curved surface by Idemen 

and Erdogan [23], is presently the most complete high frequency solution to the problem. 

This result can serve as a building block for the solution of more comphcated structures. 

Here a hard boundary is assumed; that is, the normal derivative of the total field 

equals zero on the scattering body. The radius of the curvature of the cyhnder must be 

large in wavelengths with high frequency approximations (ka^>l) and far field conditions 

(kr^>l) satisfied. It is also assumed that the field point P and the source point Q are 

always in the upper half of the x-y plane, so that only the convex side of the cyhnder 

is illuminated. It is quite easy to generahze the current result to a soft boundary and 

obhque incidence. 

In figure 5.35, the total field at a receiving point consists of reflection from the bound­

ary surface and diffractions from the two edges. The first order edge at E(xe, ye) gives 

rise to the edge diffracted space ray and an edge diffracted creeping wave. These two rays 

are of the order l/\/k, where k = 27r/A is the propagation constant, which is assumed to 

be large. Here, the whispering gallery mode is neglected, because its contribution to the 

total field at receiving point is of higher order (l/k). The second order edge at O(0, 0) 

also gives rise to space rays and creeping waves, but the creeping wave which is much 

weaker than the space ray is neglected. 

The edge diffraction at E(xe, ye) makes the total field continuous across the reflection 

boundary generated by the discontinuity of the cylindrical sheet. The diffracted creeping 

wave extends this diffraction to the shadow region where the diffracted space ray is 

blocked by the curved surface. The second order edge diffraction compensates for the 

discontinuity of the geometrical optics field because of the change of the surface curvature. 

Away from the reflection boundary, the second order edge diffraction is of higher order 

compared with the first order edge diffraction, and is neghgible. But the second order 

edge diffraction is significant when the field point is near the reflection boundary. There 



Chapter 5. DIFFRACTION BY A CURVED HALF PLANE 89 

are also higher order multiple diffractions because of the interaction between the two 

edges. They are less important than the field discussed above. In the time-domain, 

these multiple diffractions are later arrivals. The inclusion of these diffractions does not 

improve the early response which is most important. Thus, these multiple diffractions 

are neglected. 

The method used in this chapter is Keller's geometrical theory of diffraction and the 

theory of physical optics. The uniform diffraction coefficients given by U T D are used to 

calculate the space ray diffracted by an edge. These diffraction coefficients are still valid 

when the edge is formed by a curved surface. This extension is justified by the argument 

of the local effect of the diffraction phenomenon. 

Apart from the space rays, there are creeping waves on the cyhnder. This creeping 

wave has been largely neglected i n high frequency antenna analysis, because of the lack 

of an appropriate diffraction coefficient. Albertsen and Christiansen [22] constructed 

some creeping wave hybrid diffraction coefficients from a set of elementary diffraction 

coefficients. Idemen and Erdogan [23] solved the second order canonical problem of G T D -

diffraction by a curved sheet. They used generalized cylindrical coordinates to construct 

a Hilbert problem and found a high frequency asymptotic solution. From this solution, 

they extracted the various diffraction coefficients (or transformation coefficients) for the 

creeping wave. W i t h these diffraction coefficients, the creeping wave can be handled in 

the same way as the space ray. The launching coefficient and the attenuation coefficient 

associated with the smooth part of the cyhnder were given by Levy and Keller [21] in 

1959. 

There is a transition region of angular width the order of m - 1 radians [m = (fco/2) 1 /' 3] 

near grazing incidence. In this region, both Kouyoumjian and Pathak's U T D [15] and 

the diffraction coefficient given by Serbest [24] based on [23] fail. Michaeli [25] [26] [27] 

derived a solution valid in this transition region. He multiplied the U T D diffraction 
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coefficient by the Fock function to give a uniform diffraction coefficient. On the dark side 

of the edge diffraction, the solution was also given in term of the Fock function, which 

gives the same results of Idemen and Serbest if enough higher order terms in [24] are 

included. 

A t the junction of the cylinder and the half-plane, a second order edge (after Kaminet-

sky and Keller [61]) is created. A second order edge is an edge at which the second deriva­

tive of the surface has a discontinuity while the first order derivative is continuous. The 

diffraction phenomenon by the second order edge on a conducting surface was first studied 

by Weston [30] and Hong and Weston [42]. B y an extension of Weston's method, Senior 

[31] derived the first diffraction coefficient for the second order edge. Later, Kaminetsky 

and Keller [61] generalized this diffraction coefficient to include impedance boundary 

conditions by a different approach. A l l these results are invalid in the vicinity of the 

reflection boundary where they are of vital importance. 

There are two major methods to obtain a uniform version of the second order edge 

diffraction coefficient. First, in Keller's approach, a uniform asymptotic expansion for­

mula by Bleistein [62] can be used when the stationary point close to the second order 

edge. Second, using the theory of physical optics, a uniform diffraction coefficient can be 

obtained by the uniform asymptotic evaluation of the end point contribution from the 

surface integral. The second approach, which is simple in conception, has been used by 

James [32] for the edge formed by smoothly joined cyhnders. This diffraction coefficient 

enables the total field to change continuously i n the transition region at the reflection 

boundary and retains Senior's result away from the reflection boundary. James' method 

is used here to derive the second order edge diffraction coefficient. 

Once the frequency-domain solution is obtained, the time-domain solution is con­

structed by Fourier transformation. A measured result of acoustic pulse diffraction by 

the same object is given. A quantitative comparison is not possible at this stage, but a 
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qualitative comparison shows good agreement between theoretical prediction and exper­

imental observation. 

5.2 Geometric Optics Field 

There are three species of the geometric optics fields: direct incident field from the source, 

reflection from the half-plane and reflection from the cyhnder, as shown in figure 5.36 and 

figure 5.37. It is straight forward to find the incident field from the source and reflected 

field from the half plane. For the reflection from the cyhnder, the formulas given by [63] 

are used and appear below. 

For a point source at (x\ y'), and the incident field is given by 

«< = e X p ( " J " f c r ) , (5.101) 
r 

where 

r = ^{x - x'f + {y- y'f (5.102) 

and x, y are the coordinates of the field point. The reflection from the half-plane can be 

obtained by the source image, 

M r = « p H f c r f ) 
TV 

where 

TV = yj(x-x>y + (y + y'y (5.104) 

and 
f 1, x > 0 

U(x) = \ , (5.105) 
I 0, x < 0 

the angles <p and are defined in figure 5.36. 

For the cylindrical segment, the reflected field in the illuminated region is 

' {/2(l + ^ 1 + 7 + ^ ^ ) ] > " ( 5 " 1 0 6 ) 

x e x p [ - j f c ( / + a)]. (5.107) 
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Figure 5.36: Coordinates for reflection from the half-plane. 
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Figure 5.37: Coordinates for reflection from the circular cyhnder. 
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W i t h the aid of figure 5.37, the parameters can be found as: 

/ = \ A i 2 - f a 2 - 2ar 1 cosV ' i , (5.108) 

9 = ^Jr2
2 + a 2 - 2 a r 2 c o s ^ i - if,), (5.109) 

6 = arcsin(— s i n ^ i ) , (5.110) 

where if>i < 7r/2, is the root of 

a n c 

y s i n ^ i - f y sin(V>i - ^ ) = 0, (5.111) 

•0 = arctan( — — ) — arctan(^——), (5.112) 
a; x' 

r i = y/xn + [y1 + a ) 2 , (5.113) 

r-2 .= v 7 ^ 2 + (y + a ) 2 - (5.114) 

For zero offset, p = p', (f> = 0', reflection simplifies to: 

where 

and 

«' = 6 X P (
 0

2 J k T r )
x H ^ U { x - xmax)U(-x), (5.115) 

zrT y a + rr 

(y + a) tan a 0 (5.116) 

r r = — a . 

5.3 Edge Diffracted Space Ray 

(5.117) 

B y the theory of G T D , high frequency diffraction, like high frequency reflection, is a local 

phenomenon. Locally an edge of a curved surface can thus be replaced by a half-plane 

tangent to the curved surface at edge. Therefore, the edge diffracted space ray, if away 
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from the edge and grazing incidence region, is the same as the space ray diffracted by 

a half plane which is tangent to the edge of the curved sheet. Here, the uniform G T D 

formula [15] is used to calculate the edge diffracted space ray. 

For a source at Q(x', y') and field point at P(x, y), as shown in figure 5.38, the 

diffracted field is 

ud = e X P (

 Jkri\r^^D(^ V W - j f c T v ) , (5.118) 
Vi A/ W i + rd) 

where 

ri = sj{xe - x'Y + (ye - y')\ (5.119) 

rd = y/(Xe-xy + (ye-yy. (5.120) 

The coordinates of the edge E are given by 

xe = — a s i n a D , (5.121) 

ye = a(cos aD — 1). (5.122) 

The U T D edge diffraction coefficient for a curved half-plane is 

DW> ^ = ^ {F[kL^ - i>')}^r (5.123) 

+F[kLTa{ijJ+ V ' ) ] ^ a ^ >• (5-124) 

The distance parameters Ll and V are determined from the continuity of the total field 

at the reflection or shadow boundaries. The general forms are 

V = ' Tfo '+^foi x, (5.125) 

r r _ rd(pr
e+Td)p\p\ (5 126) 

PT
e(pi+rd)(pr2+rd)' 

wherein p\ (pi) is the radius of the curvature of the incident (reflected) wavefront at 

E taken i n the plane containing the incident (reflected) ray and unit vector tangent to 
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Figure 5.38: Coordinates for diffraction from the first order edge E(xe,ye) of a curved 
half-plane. 
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the edge at E , p\(Pi), pU/9 )̂ a r e ^ n e principal radii of the curvatures of the incident 

(reflected) wavefront at the diffraction point. For a straight edge (as in the present case), 

the curvature of the edge is infinite, consequently 

Pi = Pl = Pc (5-127) 

where pc is the distance between the caustic at the edge and a second caustic of diffracted 

rays which equals to r-;, as illustrated in figure 5.39 for a general edge. For spherical wave 

incidence, with the substitutions of r a — a, r2 = oo, s' — r^, and B\ — \ — &i in equation 

(A-9) of [15], the principal radii are 

P\= " ; + a
 fl, (5-128) a -f 2r; cos 0; 

pl=Ti. (5.129) 

This gives 

and 

V = (5.130) 
Ti + rd 

Pird 
Pi+rd 

In the diffraction coefficient, 

and 

The incident angle and diffraction angle are given by 

XE — X1
 7T 

(5.131) 

a(,0 ± tp') — 2cos (————) (5.132) 

r oo 
F(x) = 2j^/xexp(jx) / ex.p(-JT2)dr. (5.133) 

XE — X IT 
-ip = arctan h — — ct0, (5.134) 

y-ye 2 
ip' = arctan 1 aa (5.135) 

y ~ Ve 2 
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Figure 5.39: Geometry of the second caustic of the diffracted rays. 
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and 

W h e n x is small, 

6i = \^-tp'\. (5.136) 

F(x) % y/vxex.p[-j(^ +x)]. (5.137) 

Using the above equations, it can be shown that the diffracted field is one half of the 

reflected field and changes its sign across the reflection boundary. This property makes 

the total field continuous across the reflection boundary. 

Near grazing incidence, ip' —* 0, and equation 5.124 cannot be used. Under this 

circumstance, the diffraction coefficient equation 5.124 should be multiphed by the tran­

sition coefficient C(ar)C(a') which is given by [26] 

C(cr) = i exp(-ja3/3)g(a), (5.138) 

where g(x) is the well-known Fock function [28] and cr = ms/a. Here a is the radius of 

the curved surface and m = (fco/2)V 3 . s is given by the following equations: 

-[x2a + ay(a + y)] + xa-Jx2 + 2y2a + y2 

yQl = , (5.139) 
r + a + y 2 

-J-2ayQl-yQl
2, (5.140) 

ip = arctan ° + ^ - arctan ^ ± ^ £ ] (5.141) 
-xQl -xe 

s = <pa. (5.142) 

The Fock function g(x) is tabulated in [28], but it is inconvenient in the computer program 

to use a table. Here a least-squares polynomial approximation is used instead. Figure 5.40 

shows the amphtude and phase of the Fock function g(x) along with the approximations. 
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Figure 5.40: Approximation of the Fock function g(x). Sohd curves are data from Logan's 
table, dashed curves are the polynomial approximations, a: amphtude of g(x); b: phase 
of g(x). 
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5.4 Creeping Wave Diffraction 

The study of creeping wave diffraction by the G T D method was carried out by Levy and 

Keller [21] in 1959. By comparing the G T D result and the high frequency asymptotic 

expansion of the rigorous solution of diffraction by cylinder and sphere, they obtained 

the diffraction coefficient and attenuation constant of the creeping wave. W i t h these 

diffraction coefficients and attenuation constants, the high frequency diffraction problems 

for smooth scattering objects can be solved. 

Diffraction at an edge of a curved surface has been studied by Idemen and Erdogan 

[23] extensively. B y solving a second order canonical diffraction problem, they rigorously 

derived diffraction coefficients necessary to determine the excitation of the diffracted 

space ray and creeping wave by the edge of cylindrically curved surface. Whenever 

comparison is possible, these diffraction coefficients are identical to the previously derived 

ones. 

In this section the results of Levy and Keller [21], Idemen and Erdogan [23] are 

combined to determine creeping wave diffraction by the curved segment. Because only 

the convex side of the curved screen is considered, whispering gallery modes may be 

neglected. There are three types of diffraction at the edge E; that is, creeping wave to 

creeping wave diffraction, creeping wave to space ray diffraction and space ray to creeping 

wave diffraction, as illustrated i n figures 5.41, 5.43 and 5.44 respectively. 

First considering the case i n figure 5.41, the space ray is incident tangentially on 

the diffraction point Qi, and is transformed to the infinite modes of a creeping wave. 

The creeping wave modes travel along the surface of the cylinder and shed space rays 

tangentially. A t the edge E, the incident creeping wave modes are diffracted back with 

a diffraction coefficient. As diffracted creeping waves travel back to the point P1, they 

are shed again tangentially to the observation point P. 
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Figure 5.41: Coordinates for creeping wave diffraction. 
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Figure 5.42: The diffracted ray tube. 

In the following, only the leading mode in the series is considered. Its result easily 

can be generalized to higher order modes. According to GTD [21], the diffracted field 

can be expressed as: 

«•* = u ^ D ^ D ' ^ D ' i P , ) ^ ^ ^ ^ ( 5 - U 3 ) 

X E X P [ ~ J K ( S ' + 8 + * ) " A{>S + *'M < 5 1 4 4 ) 

where ul(Qi) is the incident field at Qi, da is the cross-sectional area of the diffracted 

ray tube, as illustrated in figure 5.42, and pi is the principal radius of the curvature 

of the incident wavefront through Pj. s, s' and t, t' are indicated in figure 5.44 The 

diffraction coefficients depend on the nature of the field, the properties of the object at 

the diffraction point and the propagation constant k. The diffraction coefficient of the 

space ray to creeping ray and the attenuation constant are given by Levy and Keller [21]. 

The edge diffraction coefficient is given by Idemen and Erdogan [23]. 
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W i t h the same incident field and some geometrical manipulations, the G T D solution 

of the diffracted creeping wave is 

u^{P) = D'(Q1)D"(P1)D'(E)exp[-A(s + s>fM-Ms' + t' + s + t)]^ 
Vtt'y/{8'+t' +8+t) 

where 

t' = ^x'2 + (y' + a ) 2 - a 2 . (5.146) 

s' can be determined by the following set of equations: 

- [x'2a + ay'(a + y')} + x'ay/x'2 + 2y'2a + y'2 

VQi = ,2 , / i A 2 ' (5.147) 
x12 + (a + y')2 

= sJ-2ayQl-yQl
2, (5.148) 

C P ' = arctan — — arctan ———, (5.149) 

j .J. s = tp'a, (5.150) 

t and s can be obtained by replacing x', y' with x and y in equations 5.146 to 5.150. The 

diffraction coefficients of the smooth surface are given by [21] 

and the edge diffraction coefficient for creeping wave is [23] 

with 

v[ = ka- a i ( y ) i e x p ( - j ^ ) , (5.153) 

where a'j satisfies A[{a\) = 0 and Ai(ai) is the A i r y function and A'^x) = dA'^x)/dx. 

u(P) equals zero, when 

arctan > aa. (5.154) 
V-Ve 
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Figure 5.43: Coordinates for the edge diffracted space ray. 
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The attenuation constant A is given by 

A = - ^ ) * e x p ( j £ ) . (5.155) 
a 2 o 

Similarly for the case in figure 5.43, the diffracted creeping wave is 

u(P) = D'jQ, )D\E) exp ( - A a ' j ^ ^ H * ' + T' + T D ) ] , (5.156) 

y/t'rd(t' + s' + rd) 

where 

D\E) = - e ^ t l l l W l + c o s ^ (5.157) 

( 8 7 r ) 4 (v[ + ka cos xp)Jv[ — ka 
Td = yJ(X-Xe)2 + (y-ye)2} (5.158) 

D(Qi) is the same as equation 5.151 and ip is shown in figure 5.43. 

For figure 5.44, reciprocity can be used and the result is 

U(P) = D'(P1)D(E)exp(-As)eX1?[~JHs + t + r i ) \ (5.159) 
JtTi{t + s + n) 

with 

Ti = y/(x'-xey + (y'-ye)\ (5.160) 

and D(Pi) is the same as given by equation 5.151. 

Equations 5.151 and 5.152 give the leading order of the diffraction coefficients. Away 

from the grazing incidence, these leading order terms are sufficient. But close to the 

grazing incidence, higher order terms must be included. These higher order terms can 

be obtained by the replacement of a[ and v[ i n equations 5.151 and 5.152 by a'n and v'n 

with n — 1, 2, • • •, where a'n satisfies A^(a^) = 0, and v'n is given by 5.153 with subscript 

1 being replaced by n. 

Near grazing incidence, using Michaeli's [25] result, the following solution i n term of 

the Fock function can be obtained: 

e x p ( - J7 r / 4 ) . . exp[-jk(s' +1' + s +1)] . ... 
U P = A A T T 9{^)g[(r)— , • (5.161) 

4V27TA; Vit'y/{s' + t' + s+t) 
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Figure 5.44: Coordinates for the edge diffracted creeping wave. 
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In order to examine diffraction in the transition region, the diffracted fields near 

grazing incidence are ploted i n figure 5.45 for both G T D and Fock function solutions. 

For a/A =2, 20, 100, the corresponding angular transition regions are approximately equal 

to 31°, 14° and 8°. The G T D results are represented by the solid curves and the solutions 

in term of the Fock function are dashed curves. The G T D solution gives finite diffracted 

fields, but has a discontinuity i n the transition region. The Fock function solution changes 

smoothly from the edge diffracted space ray to the creeping wave diffracted space ray. On 

the boundaries of the transition region, the two solutions are identical. It is interesting 

to notice that the creeping wave diffraction converges even in the transition region. Here 

15 terms are included in the calculation of the creeping wave diffraction. 

5.5 Diffraction by the Second Order Edge 

The diffraction by the second order edge, where the radius of the surface curvature 

has a discontinuity, is of higher order of the inverse power of the propagation constant, 

but it is still significant near the reflection boundary. Weston [30] first studied the 

effect of a discontinuity in curvature on the high frequency scattering. He modelled the 

problem by the conjunction of two parabolic cylinders and solved the current distribution 

asymptotically. Senior extended Weston's work by extracting the diffraction coefficient 

from the asymptotic expansion. Senior's result is non-uniform and invalid in the vicinity 

of the reflection boundary where diffraction plays a vital role. Later, James [32] derived 

a uniform version of the diffraction coefficient for the edge formed by smoothly joined 

cyhnders based on both the theory of physical optics and Senior's result. James' result 

gives correct diffraction on the reflection boundary and retains Senior's result away from 

the reflection boundary. In this section, the diffraction coefficient derived by James' 

method is used to construct the diffracted field by the second order edge. 
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Figure 5.45: Diffraction in the transition regions for grazing incidence. The sohd curves 
are G T D solutions and the dashed curves are Fock function solutions, a: a/A = 2; b: 
a/A = 20; c: a /A = 100. 
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Using G T D and figure 5.35, the diffraction of the second order edge is given by 

ud° =uiDs^-^-exV(-jkp), (5.162) 

where the incident field is the same as before. The diffraction coefficient is obtained by 

James' method and is given by 

if vh,c > 3, 

if Vh c < 3, where 

D. = ~ 4 ( 1 + ^ C O S ^ ) e X p ( ~ J " ) , (5.163) 
jkay 87rfc(cos ci + cos cV) 3 

^ . ̂  ^ . 2(1 + cos <b cos ci') 
De = (Dh - D c H - 7 Z , 5 ' 1 6 4 

1 -f cos(ci — q>') 

Dh = ^-J^ {jsgn(cos <p' + cos ci) 

x [2 sin <p + 3 cot ci(cos <p' + cos ai)] exp( ji;/!) 

xV2LkFn^ - 3 c o t c i } (5.165) 
sm cp 

- 2 e x p ( - j = ) 
Dc = 4 { jsgn(cos ci' + cos (f>)V2ka 

V87rfc 

x [sin + 
cos ci(l -)- ̂  sinai)(cos ci' 4- cos ci) 

sin ci' 4- sin ci( l 4- f sin <f>) 

I • 2\ •^n('yc) 
x exp(j7j,:)- sin ci' 4- sin ci(l 4- f sin ci) 

cos ci(l + sinci) 
}, (5.166) 

sin ci' 4- sin ci(l 4- f sin d>) 

in which the Fresnel integral is defined by 

/•oo 

Fn{x)= / exV{-jt2)dt (5.167) 
Jx 

and the distance parameters are given by 
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kL | cos 0' + cos 0| (5.169) 

ka | cos 0' 4- cos 0| 
2 ^ s i n 0' + sin 0(1 + -| sin 0) 

(5.170) 

5.6 Time-Domain Solution 

Single pulse diffraction by the curved half-plane can be easily constructed by Fourier 

transforming the frequency-domain solution. The pulse is shown in figure 2.10. This 

pulse has a weak low frequency content; to minimize errors originating from the high 

frequency assumption of G T D . The parameters are a = 8 x 1 0 2 m , h = 4 x 1 0 3 m , aa = 45° 

and the pulse velocity equals 4 X 1 0 3 m / s . The source and field point are changing from 

0' = 0 = 30° to 150°, as shown in figure 5.46. The results of the total field and the 

diffracted field are shown in figure 5.47 and 5.48 respectively. In order to test the 

above theoretical predication, an acoustic model of a curved half-plane was designed. 

The model was constructed in the departmental shop. The test equipment set up and 

the measurement was done by Mellerna [43].. The measured acoustic pulse incidence 

response is shown in figure 5.49 and a median filtered result is shown in figure 5.50. The 

median filtered result revealed a continued response of the edge diffracted space ray and 

creeping wave as predicated by the theory. The second order diffraction at the joint 

of the half-plane and the quarter of the circular cyhnder is not evident in these result, 

but traces of the diffraction might be found with more selective apparatus and filtering 

of interaction between source and target. It is very difficult to distinguish the diffraction 

from the noise i n figures 5.49 and 5.50. A t this stage, direct quantitative comparison is 

not possible, but these results show that the theoretical predication of the creeping wave 

and second order edge diffraction is in agreement with the experimental results. 

In figure 5.47, the earliest arriving pulses of traces 1 to 21 are reflections from the 
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Figure 5.46: Coordinates of a source and receiver array over a curved half plane. 
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Figure 5.47: Calculated total scattered pulses from a curved half-plane for zero offset 
source-receiver pairs. a = 8 x l 0 2 m , h = 4 x l 0 3 m , a 0 = 45° and pulse velocity is 4 x l 0 3 m / s . 
The spacing of traces is 346m and trace number 1 is started at x=6928m. 
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Figure 5.48: Diffracted pulses of figure 5.47. 



Chapter 5. DIFFRACTION BY A CURVED HALF PLANE 115 

9-

Q 8-3 
I * 
C 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 
Horizontal Transducer Offset From Reference (cm) (g=7, c=3, s=a) 

Figure 5.49: Measured acoustic reflection and diffraction by a curved half-plane. Courtesy 
of Mellema [43]. 
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Figure 5.50: Median filtered result of figure 5.49 for acoustic reflection and diffraction by 
a curved half-plane. Courtesy of Mellema [43]. 
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half-plane. Further on in the plot (traces 22 to 34), reflection from the curved segment is 

separated in time from diffraction by the edge E initiaUy, but these two fields merge into 

one on the reflection boundary. Across the reflection boundary (between trace 34 and 

35), reflection vanishes and the total field continues in the form of the edge diffraction. 

In figure 5.48, the diffracted field changes its phase on the reflection boundary. This 

behaviour of the diffraction field makes the total field change smoothly. In figure 5.48, 

right above the second order edge (trace 21), the second order edge diffraction arrives 

first and is larger i n magnitude than the first order edge diffraction. When the field 

point moves away from the reflection boundary, the second order edge diffraction fades 

rapidly. The creeping wave diffraction in the first several traces are plotted separately in 

figure 5.51. Creeping wave diffraction alone is responsible for those pulses in trace 1 to 

trace 10. The first order edge diffractions start at trace 11. A t the shadow boundary of 

the edge diffracted space ray, the diffracted field changes continuously from direct edge 

diffraction to creeping wave diffraction. The latter is much smaUer i n magnitude. 

5 . 7 C o n c l u s i o n 

In this chapter high frequency scattering property by a cyhndricaUy curved half-plane is 

studied. This solution can correctly predict not only the first order edge diffracted space 

ray, but also the second order edge diffracted space ray and the creeping wave which has 

been missing in previous solutions. B y using the Fock function in the transition region 

of the grazing incidence, the total diffracted field changes uniformly from the direct edge 

diffraction to the creeping wave diffraction. 
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Figure 5.51: Diffracted space ray and creeping wave pulses from figure 5.47. 
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C O N C L U S I O N S 

6.1 Conclusions 

The geometrical theory of diffraction in electromagnetics is used to derive the solutions 

of the spherical wave diffraction by a 90° step, two offset half-planes, an inchned step 

and a curved surface. These solutions are more accurate and efficient than previous ones 

based on Kirchhoff diffraction theory. Previous incorrect predictions of the diffraction 

phase shift at the edge and the amphtude symmetric hyperbola are corrected by the G T D 

solutions. The solution for the 90° step is further extended to beam source diffraction. 

This makes it possible to simulate the real source diffraction in electromagnetics and in 

geophysics. The beam diffraction solution can be further generalized to diffraction by 

other configurations. 

For a 90° step, single diffraction and double diffraction are most important. Predicted 

by the theory, they can also be observed i n the measurements. Triple diffraction is very 

weak in the analysis and has not been observed in the experimental results. Creeping 

wave diffraction is responsible for the diffraction received when the receiver is beyond 

the shadow boundary of the direct edge diffraction. The above conclusions have been 

confirmed by Mellema's acoustic scatter-mapping imaging system. 

Time-domain infinite impulse response (IIR) filtering methods can have advantages 

over the frequency-domain approach which needs an inverse Fourier transformation to 

obtain the time-domain pulse solution. A 75% computing time saving can be achieved for 

119 
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single diffraction. The same procedure can be apphed to double diffraction, but the time 

saving wi l l be less significant, since more IIR filters have to be designed to implement the 

convolution. The single and double diffraction coefficients in the time-domain are given 

exphcitly in the thesis. 

6.2 Future Work 

Future work can be divided into two parts. One is the study of the similar models by 

rigorous methods and comparison with the solutions given here. The other is to use the 

solutions given here to construct solutions for more complex shapes. 

The solution for low frequency diffraction by a 90° step with a plane wave incidence 

can be obtained by the method used by Jones [45], but the result wi l l be only vahd for a 

low step. The analysis for for arbitrary step height is difficult. Some preliminary works 

have been done in this area by the author, but much more effort is needed to complete 

the solution and to obtain some useful numerical results. 

There is no rigorous solution for double diffraction by two edges with point source 

incidence and completely arbitrary source and receiver, positions. This is difficult because, 

hke single diffraction at a reflection or shadow boundary, the physical wave separates into 

diffraction and reflection terms in the analysis, but physically they are essentially the 

same at the reflection or shadow boundaries. The analysis is always difficult when the 

geometrical optics field and the diffracted field cannot be separated. The mathematical 

tools which can be apphed to this problem are also very limited. 

To apply the existing solution to more complex models and to generahze the solution 

to different waves and boundary conditions is more reahstic. Different seismic models can 

be constructed to provide solutions for evaluating the different data processing methods 

and different filters. In the process of constructing the solutions for complex diffracting 
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bodies, the interaction between the edges must be taken into account. 

Based on the present solutions and programs, a graphic interface software for the 

computation of the reflection and diffraction by complex shapes can be developed to 

meet the needs of different apphcations. The potential users would be scientists and 

engineers working in seismic imaging, engineers working in acoustic design and sound 

reproduction, and engineers working in radar scatter and nondestructive testing. 
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