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Abstract

Efﬁcient and accurate solutions of acoustic wave diffraction by a rigid step discontinuity
and a curved half-plane are derived by the uniform geometrical theory of diffraction.
These solutions can be used in seismic data processing to evaluate and, eventually, to
improve the existing data processing procedures. They can also find applications in
electromagnetics, microwave antenna design, acoﬁstic design and sound engineering.
The rigid step discontinuity solution given in this thesis is more accurate than the ex-
1sting solutions which are based on Kirchhoft theory of diffraction. This solution removes
the previous restriction on the source and the receiver arrangement. It also piovides
high efficiency by the use of ray theory. This solution is further generalized to two offset
half-planes and an inclined wedge. Solutions for more complicated structures can be ob-
. tained by superposition of these solutions with added interactions. The complex source
position method is used to extend the omnidirectional point source solution to a beam
source solution. The effect of changes of the directivity and orientation of the beam
source 1s studied. Time-domain. single and double diffraction coefficients are determined
through direct Fourner transforming and convolution. An infinite impulse response filter
is applied to the time-domain direct computation of single diffraction. This combination
achieves a total saving of 76% of computing time over the frequency-domain approach.
Diffraction by a curved half-plane is analyzed with the inclusion of creeping wave
diffraction and second order edge diffraction. An acoustic model of a curved half-plane is
designed to verify the theory. The experimental results obtained by Mellema have verified
the existence of the creeping wave diffraction and weak traces of the second order edge

diffraction.
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Chapter 1

INTRODUCTION

1.1 Introduction

Scattering properties of subsurface complex shapes to the impinging energy from a point
source, di.rectional or omnidirectional, are of interest to the geophysicist. From the
records of seismograph arrays, information can be extracted to predict the structure of
the earth. Current seismic investigations include both reflection and refraction surveys,
which complement each other. In recent years, owing to the advance of computers,
sophisticated methods have been developed to obtain more accurate information about
the scattering objects. Improved techniques in field surveys as well as in data processing
have provided increasingly realistic images of scattering structures. Reflection seismics is
an important method in applied geophysics, but it has limitations. The reflection image
will be enhanced, when other forms of waves, such as diffraction from edges and shear
waves, are included in the scattering image. As field survey technique improves and the
need for a clear scattering image increases, the study of diffraction by complex shapes
becomes more important both in theory and in application.

Because the solution to a specified scattering problem is unique, a scattering body
can be uniquely represented by its scattering image. Generally speaking, a complete scat-
tering image will include reflection, refraction and diffraction. A correct interpretation
of the scattering results depends on the knowledge of the propagation properties of these

wave forms. In the past, reflection and refraction have been thoroughly studied. The
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investigation of diffraction has been restricted to very simple cases with limited accuracy,
| although it has become increasingly important, especially when sharp edges are involved.

Mathematical models to account for diffraction of acoustic effects can be found in the
work of Trorey [1], [2] and Hilterman [3]. Kirchhoff theory has been used by Hilterman
to construct zero offset synthetic scattering images. He also constructed an experimental
model to verify his theoretical results. Owing to the limitations of the Kirchhoff theory,
his theoretical Sca.ttering images are different from the measured results when sharp edges
and corners are present. From the computational point of view, his program can only
handle zero offset arrangements of the source and receiver pair. This greatly limits the
app]jcatién of the result. Also in his calculations, only omnidirectional sources can be
used.

The numerical modelling of séismic diffraction by a perfectly reflecting wedge has been
studied by Hutton [4]. In his pap.er, Biot and Tolstoy’s [5] solution was used to construct
the seismogram for the semi-infinite plane and an infinite wedge. Comparison between the .
exact result and Kirchhoff approximation was made. In Fig.17 (page 695 of [4]), he showed
that the diffraction in the deep shadow region obtained from Kirchhoff approximation
was 54% of the exact solution for an infinite half-plane. They also introduced Keller's
geometrical theory of diffraction (GTD) and revealed that the GTD or high frequency
solution for edge diffraction is generally more accurate than the Kirchhoff method.

The mathematical representation of the scalar electromagnetic waves and acoustic
waves are almos£ identical. For a hinear, homogeneous and isotropic medium, the electric
and magnetic fields are described by Maxwell eciuations. In particular, for a monochro-
matic wave, each component of the electric and magnetic fields satisfies a second order
linear wave equation. .For the acoustic field, if the medium has negligible viscosity, its
motion at all ordinary points in space is described by Newton’s equations and the conti-

" nuity equation. For harmonic time dependence, the velocity potential satisfies the same
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second order linear wave equation as .an electromagnetic wave. For a perfect conduc-
tor, the tangential electric field boundary condition is the same as the velocity potential
boundary condition of a perfectly soft scatterer in acoustics. The tangential magnetic
field boundary condition is the same as the boundary condition on a perfectly rigid
scatterer. Thus, a solution for an electromagnet‘ic model is also a valid solution to the
corresponding acoustic model. In thié thesis, the problem will often be discussed in terms
of electromagnetic fields; then the results will be applied to the acoustic model.

In order to achieve both accuracy and efficiency, we have employed the GTD method
thréughout this thesis. The geometrical theory of diffraction [11], which can satisfy the
boundary condition, is generally sﬁperior to the Kirchhoff diffraction theory in both accu-
racy. and efficiency. Instead of directly dealing with the field problem, this method takes
advantage of the high frequency property of the diffracted waves and uses ray meth-
ods to calculate the diffracted field. Diffractions are determined by three key factors—
diffraction coefficient, amplitude and a phase shift. Amplitude and phase are calculated
according to the rules of the geometrical optics. Diﬂ'r;zction coeflicients are given by the
asymptotic analysis of canonical probiems.

In this thesis, scattering models are studied in the frequency-domain by the method
of GTD. These solutions are fnost accurate for high frequencies. (By high frequencies we
mean that the smallest dimension of the scattering body is larger than a wavelength.)
The time-domain solution is then constructed for an appropriate pulse with suppressed
low frequency components by inverse Fourier transforminé the frec.luency-,domain results.
Both directional and omnidirectional sources are used with no restriction of source and
receiver arrangement. The configurations modeled are the step discontinuity, inclined
step, two parallei separated half-planes and a curved half-plane. Double edge diffractions
are also included, which accurately give the total field in the transition regions. Creeping

wave diffraction and the effect of the change of curvature in the half-plane are of interest.
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In the transition regions, there are very strong second order edge diffractions and creeping
wave diffractions. These diffractions are clear indications of the existence of the edges
and thé changes of the curvature, while it may not be obvious in the reflections. A digital
filter approach to the time-domain solution is also investigated. For single diffraction by
an edge, when away from the shadow and reflection boundaries, this approach can reduce
the time of calculation by a factor of 4. The complex source point (CSP) method 1s used
to extend the result of an omnidirectional source to a beam source. The combination.
of the GTD and CSP method greatly increases the efficiency and accuracy of the beam
diffraction result. An experimental model of a curved half-plane has been designed and
constructed. The creeping wave diffraction in the geometrical shadow is clearly shown
in the experiment result, but experimental difficulties prevented the verification of the
second order edge diffraction. The mathematicaﬂ models and programs in this thesis
can be easily adapted to analyze more complicated models. In comparison with the
previous results, better agreemenf 1s demonstrated between the experimental data and
our theoretical results. Calculation efficiency, accuracy and application potential are the

main features of our new approach.

1.2 Geometrical Theory of Diffraction (GTD)

Rigorous mathematical studies of high-frequenvcy diffraction by an edge date back about
a century [6], [7], [8], [9]. The asymptotic analysis has been limited to simple shapes,
since exact solutions are not available when the scattering body shape is complicated.
GTD was developed in the 1950s by Keller [10], [11]. This method includes diffraction
as well as geometrical optics fields, but retains the simple form of the ray theory. In GTD,
the ray path of diﬂ'ractidn is.governed by Keller’s generalized Fermat's principle, and the

diffracted field is determined by multiplying the incident field by a diffraction coefficient,
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a phase factor and an amplitude factor. The diffraction coefficient 1s obtained from the
high-frequency asymptotic solution of a canonical problem. When the scattering object
1s large compared to the wavelength, and the field point is away from the edge, caustic
and transition regions, GTD results agree with the exact asymptotic solution.

The fact that Keller's GTD fails in transition regions is a major defect. This dif-
ficulty was overcome by the uniform asymptotic theory of diffraction (UAT) [12], [13],
[14], the uniform theory of diffraction (UTD) [15], and the spectral theory of diffraction
(STD) [16]). In UTD and UAT, additional factors or terms which involve Fresnel integral
are introduced to ensure that the diffracted field at the shadow boundary and reflection
boundary behave regularly. In STD, a singularity-free spectral diffraction coeflicient is
obtained from the Fourier transform of the induced surface current distribution. Compar-
ison studies have béen_ conducted by Rahmat-Samii and Mittra [17]. The results indicate
that the numerical solutions derived from the UAT and UTD theories are different but do
not show large discrepancies. UAT gives the exact asymptotic solution for a half-plane
but is approximate for a wedge. UTD is approximate for both but more versatile.

UTD keeps the simple form of GTD and gives finite values in transition regions. For
a perfectly conducting half-plane, UTD can give exact solution. Fresnel integral is used
in UTD to smoothly connect the fields across transition boundaries. The Fresnel integral
can be easily computed by the Fresnel integral subroutine available on MTS in University
of British Columbia (UBC). Because of these properties, the UTD formula is used here
whenever edge diffraction is involved.

In the application of GTD, care,‘must be taken to ensure that the high frequency
| condition is satisfied. For a plane with step discontinuities, the height of the step is the
critical dimension which should not be less than a wavelength of the lowest significant
frequencies of the acoustic pulse. For a curved half-plane, the radius of the curved surface

should be greater than the wavelength of the lowest significant frequencies of the acoustic
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pulse. The position of the source and receiver must be located away from the edge. The
closest distance from the source or receiver to the edge should be greater than a quarter

of the longest significant wavelength of the pulse, otherwise inaccuracy may occur.

1.2.1  Uniform Theory of Diffraction .

UTD was developed by Kouyoﬁmjian and Pathak in 1974 [15]. By an extra multiplier
with a Fresnel integral, they gave the diffraction coéfﬁcient a uniform character. They
also extended UTD to the edge formed by curved screen. This extension was justified
by the argument of the local effect of the diffraction phenomenon. UTD as a directly
modified version of GTD has been widely used in antenna analysis and design.

According to GTD, a high-frequency wave incident on a discontinuous surface with an
edge gives rise to a reflected wave and an edge-diffracted wave. The total field observed
with the presence of the edge is the sum of the incident field, the reflected field and the
diffracted field,

u=u+u +u?, (1.1)

or
u = u9% + ul, (1.2)
In equation 1.2, u9° is the geometrical optics field, which is composed of the incident

field «* and the reflected field u”; u? is the diffracted field. The geometrical optics field

u9° can be easily found by ray methods. Referring to figure 1.1, the UTD edge diffracted

field can be expressed as

wl(p) ~ w(Q) - D(L, &, ') - A(p) - exp(—jkp). (1.3)

Here, A(p) describes the spatial variation of field _amplitude. along the diffracted ray,

{ % for plane, cylindrical wave incidence,

A(p) = (1.4)

\/ A 5 for spherical wave incidence,



Chapter 1. INTRODUCTION 7

where p' and p are the distances from the source to the edge and from.the edge to the
field point respectively. u'(Q) is the incident field on the edge. exp(—jkp) is the phase
variation along the diffracted ray. D(L, @, ') is the diffraction coefficient obtained from
the high-frequency asymptotic solution of the canonical problem, ¢ and ¢' are incident
and diffracted angles, and L is a distance parametér. For soft (upper sign) and hard

(lower sign) boundaries, the diffraction coeflicients are given by the following equation

15)
2D.p(2.6,8) = “RIH oo T2 O D )
teot T 0= pikra-(s - ¢)
Feotl T2 s 4 g1
F eot T oo 4 ¢')1} )

where n 1s a parameter describing the wedge angle. When the two planes forming the
wedge are ¢ = 0 and ¢ = nw, the wedge interior angle is (2 — n)7, as shown in figure 1.1.

The modified Fresnel integral F(z) is defined By

F(z) = 2j\/5exp(j:c)/\: exp(—jr%)dr, | (1.6)

in which one takes the principal (positive) branch of the square root. The parameter

a*(B) are given by

2nrN*E —
a*(8) = 2c052(—nﬂ. 5 ﬂ) (1.7)
in which N* are the integers which most nearly satisfy the equations
2Nt — B =7 v (1.8)

and

2raN~ — B = -, | (1.9)
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with 8 = ¢ £ ¢’. For an arbitrary wave front incident on a straight wedge, the distance

parameter L is given by the following equation:

_ _plpe +p)pip)
pi(pi +P)Py +p)

(1.10)

where pt and p) are the principle radii of the curvature of the incident wavefront, p! is
the radius of the curvature of the incident wavefront at the diffraction point in the plane
containing the incident ray and the unit vector tangent to the wedge.

There are several special cases when the diffraction coefficients given by equation 1.5
can be considered separately. For grazing incidence, D, is zero and Dj, must be multiplied
by a factor of 0.5. If the wedge interior corner angle is 7/m, where m is an integer, the
diffraction coefficient will vanish, and the boundary value problem can be solved exactly
by the image method.

Because GTD method is only valid when the incident field is a ray field and spatially
slowly varying, we must pay special attention to the situation of double diffraction when
the second edge is located in the transition region of the diffracted field emerging from
the first edge. In this case, the incident field at the second edge is not spatially slowly
changing; consequently, the above GTD equation cannot apply. This special case has been
investigated by several authors with different methods. Lee and Boersma [18] used UAT
and Tiberio and Kouyoumjian [19] [20] and Tiberio,. Manara, Pelosi and Kouyoumjian
[64] used UTD. The results of Tiberio and Kouyoumjian are adopted in chapter two to

solve the double diffraction of a hard step.

1.2.2 Creeping Wave Diffraction

Apart from the edge diffraction, there is creeping wave diffraction for smoothly curved
surface. The GTD result of creeping wave diffraction for smooth objects was obtained by

Levy and Keller [21]. They obtained the diffraction coefficient and attenuation constant
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of the creeping wave for a smooth surface by comparing the GTD form and the high
frequency asymptotic expansion of the rigorous solution of diffraction by a cylinder and
sphere.

The edge diffraction coeflicient for the creeping wave was derived much later. Albert-
sen and Christiansen [22] constructed some creeping wave hybrid diffraction coeflicients
from a set of elementary diffraction coefficients. But there is no rigorous proof for the
perfectly conducting curved sheet. Later Idemen and Erdogan [23], using Fock's result
[29], solved the second order canonical problem of GTD— diffraction by a perfectly
conducting curved sheet. They used a generalized cylindrical coordinate to construct a
Hilbert problem and found a high frequency asymptotic solution. From this solution,
they extracted the va.ripus diffr’éctioﬁ coeficients (or transformation coefficients, as they

were called in their paper) for the creeping wave.

1.2.3 Second Order Edge Diffraction

The geometrical theory of diffraction provides us with a meéns to accurately and ef-
ficiently analyze the scattering wave. A crucial step in applying GTD is to find an
appropriate diffraction coefficient. Some diffraction coeflicients can be derived by the
asymptotic solution of a canonical diffraction problem. Other problems cannot be solved
by this procedure and different methods are used to construct abproximate diffraction
coefhicients.

Weston [30] studied the effect of a discontinuity in the curvature on the high frequency
scattéring. He modeled theb problem by cdnjunction of two parabolic cylinders and solved
the current distribution asymptoticaﬂy. Senior [31] extended Weston’s work by extracting
the diffraction coefficient from the asymptotic expansion. But Senior’s result is non-
uniform and invalid in the vicinity of the reflection boundary where the diffraction is

significant. James [32] derived a diffraction coefficient for the edge formed by a smoothly



Chapter 1. INTRODUCTION | v 10

joined cylinder based on both the theory of physical optics and Senior’s result. James’
result gives the correct diffraction on the reflection boundary and retains Senior’s result

away from the reflection boundary.

1.3 _Thesis Overview

This thesis will emphasize accuracy, efﬁciency and application. We will target the top-
ics which have very high application value, but with no existing accurate and efficient
solution. The UTD is used in edge diffraction. The complex source point method is
-employed for the beam diffraction. A time-domain infinite impulse response (IIR) digital
filter approach ‘is investigated. An experimental model for curved surface diffraction is
constructed. The measured results show good agreément with theoretical predictions.

In chapter two, mathematical models of transient pulse diffraction are studied by the
method of UTD. Soares and Giarola [33] analyzed a 90° step in hard plan‘e by UTD for
plane wave incidence. The solutions obtained here are more general. The important but
analytically difficult situation where source or receiver lies on the reflection boundary for
the multiple diffraction is. also included; Soares and Giarola’s result fails in this instance.
The solution is then extended to other diﬁractioﬁ models related to the step. This
.includes diffraction by two offset half-planes and diffraction by an inclined step. Time-
domain diffraction is constructed for an appropriate pulse with suppressed 10\’6.7 frequency
componenfs. Numerical examples are presented which demonstrate the importance of
including multiple reflection and diffraction for such models.

In chapter three, the complex source pvoint method is used for beam diffraction. One
advantage of the frequency-domain approach is that the solution can be easily adapted
to directional sources with Gaussian beam patterns. By changing the source position

coordinates from real to complex, a beam diffraction result can be obtained. Suedan
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‘and Jull [34] have used the complex source point method to convert an omnidirectional

source diffraction solution into a beam solution for the half-plane and wedge diffractions.
In their paper, the combination of UTD and complex source point method is investigated.
Result showed that this combination provides accurate far field values for all parameters
of the complex source position. Here, both frequency and time-domain beam diffraction
by a step discontinuity are obtained. The complicated ray tra.cing procedure has been
avoided. The numerical results show that the diffraction is enhanced when a beam is
focused on the edge and weakened when a beam is aimed away from the edge. By using
directional source, with zero offset source and receiver pair, diffraction from the edge is
much weaker than for omnidirectional source incidence. Above the edge, the response
of reflection and diffraction are relatively tile same. When we‘ position the s‘ource and
receiver pair above the edge and change the beam direction over the entire’steb plane,
the diffraction response increases as the source points to the edge, while the reﬂeétion
becomes weaker as the source points away from the edge.

Time-domain filtering technology is investigated in chapter four. Dalton and Yedlin
[38] obtained an exact time-domain solution for diffraction of acoustic waves by a half-
plane by inverse Fourier transforming the frequency-dorhain integral solution and used
a filtering method to calculate the pulse diffraction by a half-plane. Here, a similar
approach is used. First, we transfer the frequency-domain UTD diffraction coefhicient to
the time-domain. Then an infinite impulse response (IIR) filter is used to carry out the
convolution. Because the FFT and discrete convolution procedures are eliminated from
the computer program, this mefhod consumes only a quarter of the time used by t_he
FFT. The filter design method discussed by Shanks [39] and Burrus and Parks [40] is
used in IIR filter design. The filtering technology is not widely used in electromagnetic
fields and this study should also serve the purpose of drawing attention to the filtering

‘technology in wave propagation problems.
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Curved half-plane diﬁ‘ractioﬂ is more complicated and has very interesting féatures.
High frequency diffraction of the curved surface has been stﬁdied by Fock [29] and his
USSR colleagues. The principle of the local field in the penumbra region established
by Fock is basic to the analysis of the high-frequency diffraction by a convex, perfectly
conducting object with coﬂtinuously varying curvature. A convex side of a cylindrically
curved sheet joined by a half-plane was investigated by Weston [30], Hong and Weston
[42], Senior [31] and James [32]. Idemen [23] studied the case of oblique incidence on
a perfectly conducting cylindrical sheet and derived the diffraction coefficient for the
creeping wave. In chapter five, a complete GTD result for general spherical scalar wave
incidence from an arbitrary point above the perfect hard surface is obtained. This solution
includes the geometrical optics field, the edge diffracted creeping wave and space ray,
and the second order edge diffracted space ray. Aniexperimental model has also been
constructed and the measured results demonstrate good agreement with theory V[43],
[59]. The creeping wave diffraction shown in the measured results are clearly seen on the
' theoretical result. Because of limitations of the present experimental set-up, the second

order edge diffraction i1s masked by reflection in the experimental results.
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Figure 1.1: The configuration of a spherical wave diffraction by a wedge with an interior
angle (2 —n)r .



Chapter 2

DIFFRACTION OF A STEP DISCONTINUITY

2.1 Introduction

Diffracting edges produce characteristic signatures in seismic records. As these may in-
dicate the presence of geological faults and possible associated hydrocarbon traps, they
have long been of interest in seismology. Edges caused by normal faulting frequently
occur, for example, in the Horst and Graben structures found in the North Sea. Math-
ematical models to account for diffraction usually have been limited to acoustic effects.
Examples are the work of Trorey [1] [2] and Hilterman [3] who used Kirchhoff diffraction
theory to study acoustic sections. Hilterman also provided experimental data which for
many geometries supportgd his theory.  However for normal faults his theory, because
of its inherent limitations, fails to account for the corner reflections and double diffrac-
tion evident in the experimental results. Jebsen and Medwin [44] investigated diffraction
backscatter from a semj-inﬁnite plate and a rigid wedge in the time and frequency do-
mains. The spectrum of aiffraction, as predicted by use of the Kirchhoff assumption in
the Helmholtz-Kirchhoff integral formulation, was compared to the experimental results
and was found to be substantially incorrect. |
Frequency domain solutions of high-frequency diffraction by a step discontinuity or
thick half-plane have been difficult. Jones [45] obtained a low-frequency asymptotic
solution of the diffraction by a thick semi-infinite plate for a two-dimensional plane wave

incidence by Wiener-Hopf technique. The explicit solution can only be obtained for the

14



Chapter 2. DIFFRACTION OF A S TEP DISCONTINUITY _ 15

case that the thickness of the plate is less than one-tenth of the wave-length. Kobayashi
[46], [47] extended Jones’ solution to a rectangular conducting rod and derived a high-
frequency asymptotic solution. His results are not valid when the source and receiver lie
on the reflection boundary because the field incident on the second edge is not spatially
slowly varying, and therefore, the standard GTD approach fails. Michaeli [48], [49] used
a method based on the extension of the physical theory of diffraction, in which the
radiation integral over the actual induced current is replaced by the Hélmholtz integral
over a surface enclosing the wedges. Then an extended spectral theory of diffraction and
a singularity-matching procedure is proposed to obtain a uniform doubly diffracted field.
The limitation of his solution is that the incident wave is approximately planar thfoughout
the gap between the edges. Solutions for the sphe;ical wave are only available for the
case that receiver or source lies exactly on the reflection boundary, given by Tiberio and
Kouyoumjian [20]. Recently, Tiberio et al [64] published another paper which studied the
‘ double edge diffraction problem. The solution is valid for arbitrary positions of source
and recetver, but it still has the restriction of plane wave incidence.

Plane wave diffraction by a 90° step in a hard plane was analyzed by Soares and
Giarola [33] with UTD. The solution given here is more general as it is for an omnidi-
rect_ional local source. The important but analytically difficult situation where source or
receiver lies on the reflection boundary for multiple diffraction is also included; Soares
and Giarola's result fails in this instance. In addition, this solution is extended to pulse
diffraction.

The GTD [11], which can satisfy the boundary conditions, generally is superior to
Kirchhoff diffraction theory in both accuracy and efficiency, but it fails at and near
shadow and reflection boundaries because of singularities in the diffraction coefficients.
Here, UTD [15] is used to model acoustic pulsé diffraction by step discontinuities on

planar structures. This shows considerable improvement over the earlier methods in
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accurately and efficiently accounting for the observations. It also suggests that errors
may occur in using Kirchhoff theory with inversion of seismic data.

The basic procedure here is to develop a frequency-domain solution for acoustic point
source diffraction by a step on a plane surface wif_h a hard boundary condition [50]. This
solution is most accurate for high frequency diffraction. The limiting dimension is that of v
- the step: it should not be much less than a wavelength in height for the lowest significant
frequency of the acoustic pulse. The time domain solution is then constructed for an
appropriate pulse with suppressed low frequency components. Numerical examples are
presénted which demonstrate the importance of including multiple reflection and diffrac-
tion for such models, which are canonical in thé sense that seismic records for acoustic

pulse diffraction by more complex geometries may be constructed by their superposition

with added interaction.

2.2 Diffraction by A 90° Step -

In figure 2.2a a point source of velocity potential u' = R~ exp(—jkR) is located at p’,
¢' from the upper edge (x=y=0) of a 90° step discontinuity in a plane surface with a
hard boundary. The total fields that arrive at the receiver are comprised of the incident
field from the source, the reflected field from the plane surface and the corner of the
step, and the diffraction from the edge. Owing to the interaction of the edge and the
lower boundary, there are also multiple diffractions. Here, the consideration is limited to

double diffractions, for higher order diffractions are insignificant.

2.2.1 Geometrical Optics Fields

The geometrical optics field can be written

w? =o't 4 ol +ul +ul, (2.11)
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Figure 2.2: Paths of direct and reflected ray. A source at (', ¢') and a receiver at (p, ¢)

from the edge of a 90° step in a plane for different source-receiver positions.
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where u] and u}, are reflected fields from the upper and lower boundary planes, as shown
in figure 2.2a and figure 2.2b, and uj is the reflected field from the walls of the corner as

in figure 2.2c. For source and receiver in the x-y plane, the reflected fields at p, ¢ are

wt=U(r +¢' — ¢)?-’EP—(_RLR), (2.12)

u =Ulr—¢ — qs)%gfl“f‘—), | (2.13)

= U — él)ﬂfq—?@—), (2.14)

i = U( - )09 - 8@ - ) 22T, (2.15)

with U(z) =1, > 0 and U(z) = 0, for z < 0. R is the distance from the source to the
receiver on the incident ray path in figure 2.2a. S, is the distance from the source to the
receiver along the reflected ray path. Similarly for S, and S; as indicated in figure 2.2b
and figure 2.2c. The angular limits for the optics field can be obtained from figure 2.3.

When the sum of the source and receiver angles (¢’ + ¢) is less than 7, the reflected wave
from the upper boundary can reach the receiver. Beyond this limit, no reflection from
the upper boundary can be received by the receiver. The reflection boundary of the lower
surface can be obtained from figure 2.3b. When the source is in the right half plane, the
reflection boundary is in the left half plane; when the source is in the left half plane, the

reflection boundary is in thevri.ght half plane. From the geometry, ®; can be expressed

as
7 — ¢ + arctan ——2hcosd if¢' < m/2, and|22 cos @'} < 1;
\/p?—4h? cos? o'’ ’ [ '
(1)1 =9 2m, » ¢’ < n/2, and 2—: cos¢'| > 1; (2.16)
arctan ]—y—';,zb-l, if¢! > m/2.

The angular limits for the reflection from the corner can by obtained from figure 2.3c,

which can be summarized as

y' + 2h

®, = m — arctan |——
T

B - (217)
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..........................

Figure 2.3: Reflection boundaries and shadow boundaries for a source at different loca-
tions above a step discontinuity.
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'~ arctan ——=2hesd |2k o5 51| < 1,
®; = ¢ \/P?—4h? cos? ¢/ Iy cos (2.18)

27, ]2—: cosp'| > 1.

The distance parameters are given by

R=\/(z~2')+(y-y); (2.19)
Si1=1/(z — o) + (v +v) - (2.20)
S = /(e — o) + (v +9' + 2h)% (2.21)
Ss = /(e +2')? + (y +y' + 2R)*. (2.22)

2.2.2 Singly Diffracted Fields

The geometrical optics field of equation 2.11 is discontinuous at shadow and reflection
boundaries given by the angular limits. These field disconfinuities are reduced by succes-
sive diffracted fields of which the singly diffracted fields are dominant. Their ray paths are
shown in figure 2.4. For example, the reflection from the upper surface is discontinuous
at the reflection boundary RB, shown in figure 2.4a. This di’sc()ntinuity 1s compensated
for by the diffraction from the edge, where the amplitude of the diffraction is half of the
reflection with a different sign on each side. Thus, the total field is continuous on the
reflection boundary and half of the reflection.

By GTD, the singly diffracted field at p, ¢ in the x-y plane containing the source and

the edge in figure 2.4a is

a1 on _ XP[—Jk(p+ )] pp' n|_ P
u (P,¢,P,¢)" Pl D(P+P', ¢) ¢) P(P"i‘P’)’ (223)

in which the scalar diffraction coefficient D(L,¢,¢') of Kouyoumjian and Pathak [15]

is given in equation 1.5 and the distance parameter L for a spherical wave is given in

equation 1.10. This result (2.23) is not exact but its accuracy is well established. For
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Figure 2.4: Diffracted ray paths over a hard step discontinuity with source and receiver
at different locations. The dashed vertical paths indicate multiple diffractions.
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a 90° wedge its graphical numerical values generally are indistinguishable from exact
values (Skuedan and Jﬁll [34], figure 7). Also, the diffraction coefficient is not singular at
shadow and reflection boundaries and has the considerable advantage of being expressed
in terms of Fresnel integral which can be efficiently calculated from available computer
subroutines. Moreover, Fresnel integral time-domain transforms can be expressed in
clbsed form, providing exceptional computational gain in single diffraction.

Equation 2.23 is the entire singly diffracted field if both sourée and receiver are in
z >0 (d,¢ < w/2), as in figure 2.4a. If ' < 7/2 and ¢ > 7r/2 singly diffracted fields
from the edge are reflected from the lower plane back to the receiver, figure 2.4b. The
total singly diffracted field is then

w(p,¢;0',¢") + vt (pi, dis 0, 8'), - (2.29)

where p;, ¢; are the coordinates of the receiver relative to the image of the upper edge

in the lower boundary in figure 2.4b

pi = /22 + (y + 2h)2, | (2.25)
3 1 T |
= S

If both source and receiver are in z < 0 (¢, ¢’ > 7/2), there are, in addition, reflected
fields from the lower boundary which are diffracted directly or after reflection back to the
receiver, as illustrated by the ray paths in figure 2.4c and figure 2.4d. The total singly
~ diffracted field is fhen »

wh(p, 60, ¢") + w0, 6 &) + u(p, Bl B) +ulpi, diipl 4, (2:20)

where p}, ¢. are the source coordinates relative to the image of the upper edge in the

lower boundary.

i = VTG T ), (2 28)
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3r z'

"= _tan~?
;= ~tan ly’+2h

] (2.29)

There is no diffraction at the lower edge of the corner. This applies to all corners
where the interior wedge angle is an integer fraction of 7 radians, for then the boundary
conditions on the walls of an infinite wedge are satisfied exactly by an incident field and

the fields of a finite number of images.

2.2.3 Doubly Diffracted Fields

Fields diffracted from the edge in the d) = 37 /2 direction of figure 2.4 are again diffracted
after reflection from the lower boundary, as indicated by the dashed line. These dou-
bly diffracted fields are weaker than the singly diffracted fields (unless on the reflection
‘bounda,ry of the singly diffraction field) and arrive at the observation point later in the
time. In the frequency-domain, they further improve field continuity at the reﬁectioﬁ
bounciaries.

If both soi;rce and receiver are in z > 0 (¢, ¢’ < ), the total ddubly diffracted field

1s

dd 1ot exp[—jk(p' + p + 2h)] 2hp’ —pl
) - D
’LL‘ (P,¢,p,¢) pl (2h+p” 2’45) 2h(2h+P’)
2hp p' + 2h
) b, g rer 2.30
(2h+p vy )\/p(p+p’+2h) (230)

If the sourée_ isinz > 0 (¢’ < m/2) and the receiver isin z < 0 (¢ > 7/2) as in figure 2.4b,
the doubly diffracted field is given by equation 2.24 with u% replacing u? and if both

source and receiver are in ¢ < 0 (¢,¢' > m/2) as in figure 2.4c and figure 2.4d, the doubly

diffracted fields are given by 2.27 with udd replacing ud in all terms.
The ray paths of higher order diffractions are those in figure 2.4 with an additional
bounce between the upper edge and the lower boundary. The above expressions fail in

the transition regions of the doubly diffracted fields; i.e., if the source 1s in the vicinity
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of the reflection boundary (¢' ~ m/2). This situation has been examined by Tiberio and
Kouyoumjian [19]>, [20]. From their results a doubly diffracted field for ¢’ = n/2 can be

determined as

dd(p ¢.pl I) — eXp{—jk(p'-{-zh)]D( (p'+2h)p ¢ 3_’{)\/ p'+2h
T2 2(p’ + 2h) 2h+p' 4 p’ " p(2h + p' + p)
exp(—Jjkp’) 2hp P
D,D Lo, —
LYY 2 (2h+p¢ 7) (p' +2R)(p + p' + 2h)"

(2.31)

where

D2:

2exp(— jw/4) 2 F[%M] (2.32)

cot
3V 2T 3 3 ) p+p +2h
1s a new diffraction coefficient needed for the doubly diffracted field with ¢’ = n/2. F(z)

is the modified Fresnel integral given by equation 1.6. Reciprocity can be used to obtain
a similar expression for ¢ = 7/2 and arbitrary ¢’ from 2.31, but these results are valid
for eithe; ¢' or ¢ = /2 only. A more general result for arbitrary values of ¢ a.nd ¢' near
w/2 and spherical wave incidencé 18 sub'sta.ntially more involved and has not yet been
determined.

Triple and higher order multiple diffraction may also be included by continuing this
procedure. Successive diffractions represent additional interactions between the edge and
the lower plane along the dashed ray paths of figure 2.4. Each diffracted field is weaker
and later in arrival than the last at the receiver. If the receiver and source are both in
the right half plane and the receiver is not in the transition region, the triply diffracted

field is given by

dadd = €Xp(Tikp')p_2hp' 0 ')y ]—~B —i2kh
' p' +2h X
D(h,270°,270°) | == —J2kh
X ( 3 70 ) ) 2h( /+4h) exp( J )

2hp .
D —jkp). 2.
X (2h+ \/p +4h exp(~—jkp) (2.33)
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Multiple diffraction can be obtained by adding higher order diffractions to the expression
above. For plane wave incidence (p’ — oo) the multiply diffracted fields can be written

in a closed form

—7kp) 2hp
4 = Dipg eV ZREIR) | pon or0e \D(-2P , o700
Utotal (p ¢ d)) -\/ﬁ ( 3 ¢) (2h+p,p )
exp|+-jk(2h + p)] > . exp(—j2h) |
1 Di(h,270°, 270°)(— =2} 2.34
o +§(,,)(\/2—h),()
or
. (o] 1 h o
ity = ST | by gy 220210 DGt 6, 210°) | (2.35)
- VP | V/2h exp(j2kh) — D(h, 270°,270°)

The above equation agrees with that of Soares and Giarola ([33], equation (5)). However,
as the triple and higher order multiply diffracted fields are of hmited accuracy and sig-
nificance they are omitted in the calculated values presented. In the results which follow
the total field is the sum of the incident and reflected fields, the singly diffracted fields

and the doubly diffracted fields. However, examples of triple diffraction will be shown

in both the time and frequency domains in order to compare with the single and double

diffractions.

2.3 Frequency-Domain Results

Results of the last section are used to calculate the scattering field of a normal step
discontinuity on an acoustic hard plane. Geometrical optics ﬁelds, single diffraction,
double diffraction, and triple diffraction are shown separately. Numerical results show
that the single and double diffraction are very important in getting a continuous total
scattered field, while the triple diffractions are ihsigniﬁcant. '

Figure 2.5 and figure 2.6 show the total and diffracted field patterns at a distance °

p = 3) from the edge of a 90° step discontinuity with o = ) illuminated by a point
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Figure 2.5: Total field and diffracted field from a step discontinuity with h=X illuminated
by a point source at p’ = 1000 and ¢’ = 45°. Solid curves represent the total field, dashed
curves represent the diffracted field. a: single diffraction; b: single and double diffraction;
c: single, double and triple diffraction.
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Figure 2.6: Total field and diffracted field from a step discontinuity of h = A illuminated
by a point source at p' = 1000A and ¢’ = 135°. Solid curves represent the total field,
dashed curves represent the diffracted field. a: single diffraction; b: single and double
diffraction; c: single, double and triple diffraction.
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source at p’ = 1000\ for ¢’ = 45° and ¢’ = 135°. In figure 2.5a, the total field includes
geémetrical optics fields and single diffractiohs; in figure 2.5b, the total field includes
geometrical optics fields, single diffractions and double diffractions; in figure 2.5¢c, the
total field includes geometrical optics fields, single, double and triple diffractions. In
ﬁgure.2.5a, the total field has a disconﬁﬁuity at ¢ = 90°. When the doubly diffracted
field is added, the total field is greatly improved, as shown in figure 2.5b. But triple
diffraction is insignificant, as expected. The discontinuity at ¢ = 90" in figure 2.6a is
caused by the shadow of the reflected single diffraction. On the right half plane, there
are no reflections of singly diffracted field. On the left half plane, the singly diffracted
field will be reflected by the lower boundary. This discontinuity is smoothed out by
the doubly diffracted field emitted from the edge. Figure 2.5b and figure 2.5¢ is almost
identical to each other. These results suggest that only singly and doubly diffracted
fields are rcqﬁired here, triply diffracted fields are not significant. These results are fof
essentially plane wave incidence and thus may be compared with those of Soares and
Giarola ([33], figures 3 and 4). Their results are virtually identical to figure 2.5a and
figure 2.6a. '

The behaviour of the diﬁ'ra_cted field at shadow and reflection boundaries is also very
interesting. In figure 2.5, the amplitude of the diffracted field reaches its maximum at
the reflection boundary of the upper plane (¢ = 135°) and the reflection boundary of the
lower plane (¢ = 165°). There are two components of singly diffracted fields. One is the
diffraction directly from the edgé and the other is the diffraction reflected by the lower
plane. At the reflection boundary of the upper plé,ne, the two diffractions are almost
90° out of phase (figure 2.7). Thus, the amplitude of the total single diffra.ctioﬁ changes
continuously across the reflection boundary. The two diffractions are almost 180° out of

‘phase (figure 2.7) on the reflection boundary of the lower plane. This phase difference

results in the amplitude discontinuity of the total diffraction on the reflection boundary.
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Thus the total diffraction behaves differently on the two reflection boundaries.

Figure 2.8 shows the effect of step height h on the diffracted field at p = 3A for an
essentially plane wave at normal incidence (p’ = 1000, ¢’ = 90°). In this situation, to
the right of the edge, single diffraction from the edge is of equal magnitude but 180° out
of phase of to doubly diffracted field. Thus, their sum to the right of the edge is zero. To
the left of the edge, the diffraction is distant from the reflection boundary. Both single
and double diffractions are very weak. For the same reason, the resultant total diffraction
1s zero to the left of the edge. From another point of view, the diffraction increases when
the geometrical optics field has discontinuities. When h is one wavelength, the total
reflection from the upper and lower planes 1s continuous (assuming the source is distant).
Consequently, the total diffraction is very weak. But if -2h is not an integer of the wave
length, the reflection to the right of the edge will be different in phase to the reﬁ.ection
to the left of the edge. Then, the diffraction will compensate for the difference of the
total reflected fields. Thus, when h = nA/2 + A/4, n =1, 2---, the diffraction is very
weak, as in figure 2.8a (where n is an integer and nA/2 < p’). But when h = nl/2, |
n =1, 2.--, they are very strong, as in figure 2.8b. If the source is very close to the
edge, the difference in ampljtﬁde of the reflections results in a difference in the total
geometrical optics field, then the diffraction rises even with h = A, figure 2.9c. For a
| given frequency then, the step height can have a major effect on the diffracted and total

fields, particularly when the source and receiver are directly above it.

2.4 Time-Domain Results

For a time domain solution to this diffraction problem, the source must have weak low

frequency components and be similar to sources used in the geophysical literature so that
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comparisons may be made. A convenient source function is

O G B A (2.36)
[t — tol

which is illustrated in figure 2.10a for wy = 204/mrad/s, a = 2.2 x 10® and to = 0.1s. Its
amplitude spectrum peaks at about 35 Hz and its low frequency amplitudes are small,
figure 2.10b. The time démain solution is the convolution of the Fourier transformation
of the incident, reflected and diffracted ﬁeids given earlier with the pulse signal f(t).

The dimensions of the model chosen correspond to those of Hilterﬁan [3] who obtained
bnumerical_ results By Kirchhoff diffraction theory as well as experimental results for a scale
model. The dimensions modeled are a step height of = 400m and source and receiver
locations at a height of 4000m above the upper surface, figure 2.11. The velocity is
4000m/s. |

Figure 2.12 shows results for source and receiver together at 200m intervals along
the horizontal scale indicated by the 41 vertical traces. At z = 0, ¢' = ¢ = 90° and at
r = £4000m, ¢ = ¢’ = 45° or 135°. The two large amplitude horizontal events represent
reflections from the upper the lower horizontal boundaries. The large amplitude event
on the left side of figure 2.12, which appears to be hyperbolic, indicates reflections from
the corner. The corresponding ray path is shown as S3 in figure 2.2¢ for offset source and
receiver. With zero offset the path is the line connecting the source and receiver pair and
the corner.

The weaker hyperbolic events in figure 2.12 which decrease in amplitude with increas-
iﬁg time of arrivé,l represent diffracted pulses. These diffracted pulses are reprinted in
figure 2.13b to figure 2.13d. Single diffraction and double diffraction are shown in fig-
ure 2.13b and figure 2.13c. For the purpose of comparison, the triple diffraction is shown

in figure 2.13d. From these results, diffraction events can easily be identified. The first
to arrive in figure 2:13b are singly diffracted from the edge and are represented by the
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~ upper hyperbolic event. This diffraction has a phase change at the reflection boundary
~at ¢ = ¢‘= 90° in order to .compensate for the discontinuity of the reflections. The next
to arrive, which start to the left of the edge, are the sum of two events — the diffraction
of the reflected pulse from the lower plane and the reflection of the edge diffracted pulse.
These events merge with the corner reflections on the left side of figure 2.13a. The third
diffraction 1s the one which experienced twice réﬂection from the lower boundary and once
diffraction from the edge. The reflected single diffraction and singly diffracted reflection
are discontinuous at the boundary ¢’ = ¢ = 90°. This discontinuity is compensated for
by the vdouble'diffractior‘ls shown in figure 2.13c. The discontinuity of the second event
in the double diffraction will be compensated for by the triple diffraction in figure 2.13d,.
which is very weak in figure 2.12. Higher order diffractions can be included, but they are
insignificant. The triple diffraction shown here is not evident in .Hilterman's measured
results. In order to record the extremely weak triple diffraction, the test equipment must
have a dynamic range greater than 80dB. In figure 2.14, the amplitude is in dB scale
with a dynamic rénge of 80dB. In this image the triple diffraction on the left of the last
event is quite visible but in practice, these weak triple diffractions will be buried in the
background noise unless some special signal processing measure is taken.

A comparison of figure 2.12 with Hilterman's results ([3], figure 11) shows that our
numerical model accounts for corner reflection and successive diffraction and reflections
apparent in Hilterman’s observations but absent from his calculated results. In addition,
the relative amplitude of the singly diffracted field should be more accirately predicted.
This cannot be observed from the data here as different pulses are used, but is known
from the inherent limitations of the Kii‘chhoff approximation, which cannot reproduce
its own boundary condition on the surface. The geometrical theory of diffraction can,
to essentially any degree of accuracy required, by the inclusion of successive diffraction.

Figure 2.15 shows the measured result of acoustic scattering by a step discontinuity by
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Mellema [43]. A median filtered result is shown in figure 2.16. These results verified
the theoretically predicated single and double diffraction. As discussed earlier, the triple
diffraction does nof appear in the measured result even with the help of the filtering
technology.

~ Figure 2.18a shows results obtained when the vertical portion of the step.in figure 2.11
1s removed leaving two parallel half-planes with their edges aligned and separated by
h=400m. For a half-plane the diffraction coefficient and consequently the singly diffracted
fields in figure 2.183,‘ are exact. Those from the upper edge are represented by the pulses
with arrival times tracing a hyperbola with its apex coinciding with reflection from the
upper edge in figure 2.17a. In figure 2.12 and figure 2.18a the pulses are asymmetric in
amplitude aboutk the axis of the hyperbola and reverse in phase as the source-receiver pair
passes over the edge. Kirchhoff diffraction theory predicts pulse amplitudes symmetric
about the hyperbola axis ([1], figure 13). Consequently, migration or inversion of the
data of figure 2.12 and figure 2.18a with Kirchhoff theory will not collapse the diffraction
hyperbolas and may give poor results. For real seismic data with elastic media and
nonrigid boundaries, this may not be observed however.

As the source and receiver position moves to the left of the discontinuity in figure 2.17a
the arrival times of diffracted pulses from the upper and lower edges converge, but as
they differ in phase, vhere the amplitude of the resultant hyperbolic event is not noticeably
increased. On the right side of figure 2.18a the second or lower hyperbolic event represents
doﬁble diffraction by the two edges and therefore is weaker than the corresponding event
on the left side. |

The numerical results in figure 2.18b for zero offset between source and receiver are
for the 30° incline to the step, figure 2.17b. To'obta.in these values the preceding theory
must be Ihodiﬁéd to include a 150° wedge at the upper edge and a 210° wedge angle at the

lower. Consequently, edge diffracted fields are weaker than in the previous examples, and
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doubly diffracted‘ﬁelds, although they are included, are scarcely evident. Also a reflected
pulse from the inclined step is apparent with source and receiver at ¢’ = ¢ = 120°. In
Hilterman ‘s numerical model for his case ([3] figure 12) these features also appear, but for
¢ = ¢ = 90° the diffracted pulse amplitudes appear to be weaker than those observed,
and those in figure 2.13.

The f)arameters in figure 2.19 for a 90° step are the same as those in figure 2.13 but
source and receiver are separated. In ﬁgure 2.19a the éource is at 2’ = 4000m. and
the receiver position is indicated by the horizontal coordinate. For ¢ < 135° a strong
reflected pulse is received first, followed by weaker singly diffracted and still weaker
doubly diffracted pulses from the edge. At ¢ = 135° (x=-4000m) the singly diffracted
fields from the edge are reflected from the lower boundary producing an enhanced return
which merges with the doubly diffracted field in figure 2.19a.

The source is directly above the edge in figure 2.19b and thus reflected and diffracted
fields merge for ¢ = 90°, but, as the receiver moves away from the .edge, the arrival
time of réﬂected as well as diffracted pulses increases. - In figure 2.19¢ the source is at
z' = —4000m, (¢’ = 135°) and when the receiver is nearby (¢ = 135°) corner reflected
pulses are observed. Pulses which are successively reflected and diffracted are observed
for 135° > ¢ > 90°. At ¢ = 45° reflection from the upper plane appears first as reflection

from the lower plane 1s shadowed by the edge.

2.5 Conclusion

The uniform geometrical theory of diffraction has been applied to seismic modelling
of acoustic pulse diffraction by planar structures with edges. Here, some defects in

~ previous mathematical models based on the Kirchhoff method are noted. These inciude

the omission of corner reflection and limited accuracy in the singly diffracted pulses.
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Geometrical diffraction theory is ideally suited to the inclusions of these delayed returns.
~In addition, its use in inverting seismic data may avoid errors inherent in using Kirchhoff
theory.

Computational efficiency is also a significant advantage to this approach. In Hilterman's
paper [3], only the zero offset case can be calculated. The solution given here can handle
the non-zero offset case without any computational difficulty. These uniform frequency
domain solutions are in the form of Fresnel integral readily computed by efficient subrou-
tines. Increased computational advantage is also possible because analytical expressions
are available for the Fourier transforms of Fresnel integral. Geometries more complex
than these may well require their use. Solutions for complex geometries can be con-
structed by superposition of solutions of simple structures. For example, a solution for
the rectangular ridge would be the superposition of solutions for two vertical steps and

interaction between the edges would be added for narrow ridges.



Chapter 2. DIFFRACTION OF A STEP DISCONTINUITY 35

— Re(ud)

-] $=163°

Figure 2.7: Single diffraction at and near reflection boundaries. The arrows show the
amplitude and phase of the sum of the two components of singly diffracted fields for the
parameters of figure 2.5.
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Figure 2.8: The effect of change of step height h on the diffractions. A point source is
located at p’ = 1000A and ¢’ = 90°. Solid curves represent the total field; dashed curves
represent the diffracted field. a: h = 1\, b: h = 0.75), c: h = 0.625).
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Figure 2.9: The effect of change of source position on the diffractions. Solid curves
represent the total field; dashed curves represent the diffracted field. Step helght h=J,
@' =90° a: p' = 1000, b: p' =10, c: p' = A.
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time-domain pulse; b: spectrum amplitude.
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Figure 2.11: Source and receiver array over a step discontinuity.
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Figure 2.12: Pulse diffraction by a step discontinuity. Source and receiver array is located

at yo = 4000m, from ¢' = 45° to ¢’ = 135°, with a 200m interval. The velocity of the
pulse is 4000 m/s.
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Figure 2.13: Reflection and diffraction from a step discontinuity normalized to maximum
amplitude. a: reflection; b: single diffraction; c: double diffraction; d: triple diffraction.
Parameters are same as figure 2.12,
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Figure 2.14: Pulse scattering by a step discontinuity in a logarithm scale. Parameters
are same as figure 2.12.
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Figure 2.15: Measured acoustic scattering by a step discontinuity. Courtesy of Mellema
[43].
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Figure 2.16: Median filtered results of figure 2.15 for acoustic scattering by a step dis-
continuity. Courtesy of Mellema [43].
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Figure 2.17: Two offset half-planes and an inclined step. a: two offset half-planes; b: a
30° inclined step.
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Figure 2.18: Reflection and diffraction from two offset half-planes and an inclined step.
a: received pulse from above of two offset half-planes; b: received pulse from above of an
inclined step. h = 400m, w = 692m. "
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Figure 2.19: Received pulses for a non-zero offset source and receiver array over a normal
step discontinuity. a: ¢’ = 45%; b: ¢’ = 90°; c: ¢' = 135°.



Chapter 3

BEAM DIFFRACTION BY A STEP DISCONTINUITY

3.1 Introduction

Beam sources are widely used in optics, antennas, acoustics and a Gaussian beam 1s the
most frequently used representation of the main beam pattern. The propagation of the
Gaussian beam can be tracked from the source to the observation point by the method of
evanescent wave tracking; Examples of this are the study of Gaussian beam propagation
through a lens-like medium by Choudhary and Felsen [51], and the complex ray tracing
.of an evanescent plane wave scattering by a conducting circular cylinder by Wang and
Deschamps [52]. When dealing with spherical Gaussian beam diffraction by conduct-
ing edges, the wave tracing process 1s very complicated. However, using the complex
source point method, beam solutions can be directly obtained from the solution for om-
nidirectional source. The beam éan also be traced through propagation and scattering
configurations by analytic extension into compiex space of the rules pertaining to rays
" in real space. In this chapter, the complex source point method is used to generalize
solutions of the step discontinuity diffraction. This approach dramatically simplifies the
analysis of the problem. The behaviour of the diffracted field at and near the reﬂecﬁon

boundary is also examined.

48
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3.2 Complex Source Point Method-

Complex rays were first used by Keller and Streifer [53] to study the propagation of
a beam with a Gaussian profile. They pointed out that the complex ray is also the
leading term in a high frequency asymptotic expansion of the exact field solution. The
comparnson study of the complex ray method and the stationary phase method was
 conducted with the conclﬁsion that both methods yield the same result with the complex
ray method being much simpler. This complex ray representation of the beam source
greatly facilitates the analysis of the reflector antennas with tapered illumination. A
general representation of a Gaussian beam as a bundle of complex rays was given by
Deséhamps [54]. He verified that a Gaussian beam can be described paraxially in terms of
a Green fuﬁction in free space with a complex source position. Using this repfesentation,
solutions of reflection, refraction and diffraction for a point source at a real locatioﬁ can
be transferred to solutions for a beam source. This method greatly simplifies the analysis
of beam scattering and extends the power of the various methods which are based on
the solutions of the real point sources. For a beam éource, the focus and transition
region problem encountered by the ray method can also be avoided in .some parameter
ranges [55]. A thorough study and some excellent examples of the beam patterns of the
cofnplex position source have been given by Suedan and Jull [34]. An exact solution of
the wave equation in time-space coordinates with a complex source location was obtained
by Ziolkowski {56). The extensions of this solution may yield other physically interesting
wave equation solutions. This space-time investigation was further carried out by Einziger
and Raz [57]. Thgif solutions can be used as basis functions for generalized space-time
field representatidns. |

In the following appiications of the complex source point method,. the behaviour of the

transition function for the complex source is examined. Then the solution to a real source
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diffraction by a sfep discontinuity is extended to the solution for a complex source. This
extension includes modifying the program to handle the Fresnel integral with a complex
argument and the recalculation of the reflection and shadow boundaries.

An incident wave from a point source at a complex location g’ can be expressed as

[58]
exp(—jkR)
S,

i

(3.37)
where
R=lo-§ (33

If the beam axis is in the x;y plane, by using polar coordinates with # defining the

orientation of the beam as shown in figure 3.20, it can be shown

o' = /(o) + 26,(—5b) cos(B — ¢;) — b2 - (3.39)

and

o " _sb
p'

where p’ and ¢’ are complex now. The original real ¢’ and p’ are denoted by ¢! and p!..

: (3.40)

When |p| > |p'l,
R =p—p’cos(¢ - ¢), (3.41)

the incident wave can be simplified to

v = §XP{—jk[p ~ l;f cos(¢ m é,)1} explkb cos( — )] (3.42)

The directivity of the beam is determined by the factor pp and the direction of the beam

axis is determined by the angle . The 3dB beam band width is given by

HPBW = 2arccos(1 — 22),  kb> =2 v (3.43)

2kb iy

The beam patterns for different kbs are shown in figure 3.21. Since the directivity of
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Figure 3.20: A point source at a complex location.
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lui¢)] 1

Figure 3.21: Normalized beain patterns for kb=0, 2,4, 8,16 from (3.42) with 8=0. After
Suedan [58].
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the beam generated by a complex position source is determined by the factor kb, Special
attention must be paied to the fact that the beam paittern is a function of frequency. The
influence on fhe beam pattern by the propagation constant k¥ and the parameter b is the
samé. For a narrow band signal, this will not present any significant difference, but for a
wide band pulse this can not be overlooked. Most antenna feeders and acoustic sources
have higher directivity at higher frequency and lower directivity at lower frequency. In
any case, care must be taken when the complex source point method is used‘ to model real
beam sources. The parameter b should always match the beam pattern at the operating
the frequency. In the following studies, the real source directivity will not be concerned.
It can be incorporated into solutions by assigning a different parameter b at a different

frequency.

3.3 Shadow and Reflection Boundary

A beam generated by a complex position source.has distinct properties. The shadow
and reflection boundary positions are different from their positions for a real source. The
boundaries are'straight hnes for a real poéition source, while they are curved lines for a
source‘ in a complex position. This property has been investigated by Green et al [55].
The shadow and reflection boundaries can be found from the saddle point contribution in
the integral representation of the wave equation solution. Here these results are adopted
for a complex point source with a conducting wedge.

The shadow boundary cast by an édge is located by Re(W,) = 0 [55], [34], where

¢—¢

kpp’
o) (3.44)

p+p+R

W, = ~2exp(j%)

cos(

In the lit region Re(W,) < 0 and in the shadow region Re (W,) > 0. The reflection
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boundary is given by Re(W,) = 0 with

kop’ N
) PP (¢+¢

T
W, = —2exp(j— cos )
p(J Py 5)

; (3.45)

In the lit region Re(W,) < 0 and in the shadow region Re(W,) > 0. Thus, the step
functions in equation 2.12 to equation 2.15 can be replaced by the following equations.

For the shadow boundary,

Ur+¢ —¢) = Ul-Re(W)]

kpp' ¢—¢'

W = —2exp(jn/4) p+p’+RCOS( 5 ). (3.46)

And for the reflection boundary of the upper half-plane,

Ur+¢' +¢) = U[—Re(W)]

_ : | kpp' ¢+ ¢
W, = —2exp(jn/4) Py cos( 5 ). - (3.47)

The reflection boundary of the lower half-plane is given by

U(r — &) = Ul—Re(W,)] | |
1, ' if g and ¢' < I
Wa = 0 —2exp(jn/4)\ /5 cos(225E), i ¢ > F and ¢/ < 3 (348)
-2 exp(j7r/4),/p+l;’,”:R2 cos( %"_‘;_‘I’;) if ¢' > 3.

The reflection from the corner is bound by three factors, they can be put together as

U4~ 5)V(® = 22)U(®s — $) = U[~Re(Wa)|U |~ Re(Wa)]
Wa = __2 exp(ﬁr/fl), / oo+ I cos(—2 5 31
. v [ kpip’ Vs + ¥,
Wéz = —-2 exp(jw/4) pyn z,p_'_ A cos(—2 5 2y, (3.49)
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In the above equations, the angles are defined below

2 "+2H

v, _—.sin—l(y+.H) v, :sin_l(y +, )

Pi Pi
oy +2H 3
¥, = o () g, 3y
Pi
3 2H
U, = rie ¢ Vi = cos’l(y —;3 (3.50)

The distance parameters R, S;, S, and S; are still given by equations 2.19 to 2.22, but
they are complex. p; and p; are given by equations 2.25 and 2.28. Here, p! is also complex.

The complex coordinates of the source point are given by

z' = p'cosd’
y' =p'sing’. (3.51)

In the above representation, the form used for a real source position is still kept. In this
way changes of the formula of the diffraction solution for a real source position can be
avoided. However, it should always be kept in mind that these complex variables have a

" different content from those of the real source position.

3.4 Transition Function F(w)

By analytic continuation into complex space, the UTD method can be extended to the
case of a complex source position. The parameters in equation 1.5 should be extended

to include a complex source position. In equation 1.8 and equation 1.9,

2nTNE — Re(¢ + ¢') = +7. | (3.52)

Substituting the above equations into equations 2.23, 2.24 and 2.27, the solution of a

beam source diffraction by a step discontinuity can be obtained.



Chapter 3. BEAM DIFFRACTION BY A STEP DISCONTINUITY 56

Before the UTD method 1s applied to the step discontinuity diffraction with a beam
source, the behaviour of the transition function F(w) (defined by equation 1.6) will
- be examined inside and outside of transition regions. For a real position source, the
transition function F (w) provides a zero point at w = 0 to compensate for the singularity
in the GTD diffraction coefficients at the shadow or reflection boundary. Away from the
shadow and reflection boundaries, F'(w) approaches to unity as w approaéhes to infinity.

At the reflection and shadow boundaries, the GTD formula is not valid because of
singularities in the GTD diffraction coefficient. When the source position is complex, the
incident angle ¢’ also becomes complex (if the source is not pointed to the edge) and the
singularity in the GTD diffraction coefficient is removed [55]. For some parameters, the
- GTD diffraction coefficient can be used in the transition regions, but for most applica-
tions the complex source position does not ensure the accuracy of the GTD diffra‘cti‘on
coefficient in the transition regions [34]). The accuracy is determined by the orientation
and the directivity of the incident beam. The transition function F(w) can be used to
show the difference between the GTD and UTD. .

In figure 3.22 for different values of kb and incident angle 3, a three dimensional plot
of the transition function F(w) is shown in the region 0 < ¢ < x/2 , for a point source
at ¢, = 135° and p. = 50A. The reflection boundary is ¢ = 45° for a real positioned
source. In figure 3.22, the source isb pointed in the y-direction, with differenf values of
kb. When kb = 0, ¢ and p’ are real. F(w) is zero at ¢ = 45°. This zero will compensate
for the singularity in the GTD formula. F(w) approaches unity when the receiver is
distant from the reflection boundary. If the surface of F(w) is cut by planes parallél to
the x-y plane, the contours obtained will be parabolas Wi_th foci at the edge and axis
along the reflection boundary. With kb > 0 the source position is complex, |F(w)| # 0
and the locus of min |F(w)| becomes a curve about which the above parabolas are bent.

Figure 3.23 shows the transition functions when the beam is pointed in the x direction
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Figure 3.2-2: The transition function with the source located at p! = 50}, ¢! = 135° and
B = —-90°. a: kb=0; b: kb=4; c: kb=8.
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Figure 3.23: The transition function with the source located at p. = 50), ¢! = 135° and
B = 0° a: kb=0; b: kb=4; c: kb=8.
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(8 = 0°). Here, when kb is large, the valley in the transition function, ﬁgure 3.23c, shifts
in the opposite direction to that of figure 3.22c. N

Figure 3.24 and 3.25 shows the effect of the change of a beam direction on the tran-
sitién function F(w) Here, kb‘: 8, B changes from 30° to —120°. When the beam
axis is close to the edge, as in figures 3.24c and 3.25a the transition function still has
‘a deep valley near the reflection boundary. In this circumstance, the GTD diffraction
coefficients will be inaccurate. When the beam is directed away from the edge, the deep
valley in |F(w)| will disappear. Ounly in those regions where the transition function is
close to unity, UTD and GTD give a similar result.

In general, when kb is large and the beam axis does not pass through the edge, the
diffraction is very weak, because only a very small amount of energy strikes the edge
and is being diffracted. In this situation, GTD can be used to save the computing time
without the loss of accuracy. Otherwise, UTD should be used to ensure the accuracy
of the result. This conclusion agrees with Suedan and Jull [34], where they studied a

half-plane and a wedge diffraction with a line source incidence.

3.5 Frequency-Domain Solution

In this section; the complex source point method is used to solve beam pulse diffraction by
a hard step discontinuity. The geometrical optics field can still be obtained from images
and the direct incident field, but reflection and diffraction boundaries are different from
the real source case as discussed above. Thus the incident field and reflected fields from
the upper boundary, lower boundary and the corner are given by equations 2.12 to 2.15,
with appropriate substitutions of the angles and distances discussed in last section. The
same is true for the diffractions, where equations 2.23, 2.24, 2.27 and 2.30 can still be

used with appropriate substitutions.
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IF(w)|

Figure 3.24: The transition function with p! = 50\, ¢! = 135° and kb = 8. a: B = 30°;
b: B =0°%c: B =-30°

60



Chapter 3. BEAM DIFFRACTION BY A STEP DISCONTINUITY 61

Figure 3.25: The transition function with p! = 50X, ¢! = 135° and kb = 8. a: 8 = —60°;
b: B =-90°%c B =-120°.
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Figure 3.26: Diffraction patterns of a 90° step discontinuity with a point source at a
complex location. h = A, p = 3X, p, = 10A, ¢, = 45° and B = 270°. a: kb =0, b: kb = 4,
c: kb =8. :
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Figure 3.27: Diffraction patterns of a 90° step discontinuity with a point source at a
complex location. h = A, p = 3X, p! = 10, ¢! = 135° and B = 270°. a: kb = 0, b:
kb=4,c: kb=8.
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The numerical diffraction results are presented in figure 3.26 and 3.27, where diffrac-
tion patterns are calculated for kb = 0, 4, 8, with h=AX, p! = 10X, p = 3A and B = 270°
for ¢, = 45° and ¢! = 135°. In this case, the direction of the main beam is pointed
away from the edge. The field striking the edge become weaker, as kb becomes larger.
Therefore, the diffraction as well as the total field away from the main beam becomes
weaker as kb changes from 0 to 8.

In figure 3.28, the directivity of the beam is fixed at kb = 8 and the beam incident
angle is changed from # = —90° to § = —135°. When the beam is aimed at the edge
(B = —135°), the diffraction from the edge is very strong. When the beam is aimed away

from the edge, the diffraction is obviously very weak.

3.6 Time-Domain Diffraction

The signal used in this section is the same as equation 2.36, but with different directivities.
The source directivity is changed from kb = 0 to kb = 8, and the beam is directed
down to the boundary plane. Thus, when the source-receiver pair is distant from the
edge, the diffraction is weak. This eﬂ”ect shows on the diffraction hyperbolic events in
figure 3.29. These reflection and diffraction events have been analyzed before. Here, with
a beam source incident, the major difference is the magn‘ituvde of the corner reflection
and edge diffraction, which diminish more rapidly as the source-receiver pair moves away
from the top of the edge. The non-zero offset results are presented in figure 3.30 and
figure 3.31. These results show similar effects of the beam source on corner reflection and

edge diffractions.
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Figure 3.28: Diffraction patterns by a 90° step discontinuity of a point source at a complex
location with h=X, p = 3, p] = 10X, ¢, =45° and kb =8. a: B = —90°, b: B = —115°,

c B =-135°.
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Figure 3.29: Pulse diffraction by a step discontinuity with a beam source. The source
and receiver array is positioned at y, = 4000m with a step height h = 400m. The beam
is pointed at @ = 270°. a: kb =0, b: kb = 4, c: kb = 8. Pulse velocity is 4000m/s.
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Figure 3.30: Pulse diffraction by a step discontinuity with a beam source. The receiver
array is positioned at yo = 4000m with a step height h=400m. The beam is pointed at
B = 270° with ¢, = 45°. a: kb =0, b: kb = 4, c: kb = 8. Pulse velocity is 4000m/s.
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Figure 3.31: Pulse diffraction by a step discontinuity With a beam source. The receiver
array 1s positioned at yo = 4000m with a step height h = 400m. The beam is pointed at
B = 270° with ¢, = 135°. a: kb =0, b: kb = 4, c: kb = 8. Pulse velocity is 4000m/s.
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3.7 Conclusion

Beam diffractions by a step discontinuity are obtained by the method of complex source
point in this chapter. The difference between GTD and UTD formulas are examined
through the study of the behaviour of the transition function F(w). It is noted that the

transition function F'(w) is necessary even for highly directive beam.



Chapter 4

TIME-DOMAIN IIR FILTER METHOD

4.1 Introduction

Calculation efficiency is one of the important features of this thesis. In previous chapters,
the ray method was used to seek high frequency solutions of the field scattering problem.
This asymptotic approach makes it possible to investigate the scattering properties of
a complex shape, but for a pulse of certain wavelet, the time consuming fast Fourier
transforrﬁation (FFT) is still needed to generate the diffraction image. To avéid FFT, a
direct time-domain approach can be used, and this requires the impulse response of the
diffracted field.

Time-domain solutions of diffraction by a half-plane and a wedge were given by Wait
[35) and Felsen and Marcuvitz [36] respectively. Time-domain half-plane diffraction was
studied by invers.e Fourier transformation of the frequency-domain solution by Daiton
and Yedlin [38], [37]. A general pulse response can be obtained from the solutions given
~in [35], [36], [38], but convolution must be used and it is more time consuming than
the FFT procedure. Dalton and Yedlin [37] used an infinite impulse response (IIR)
filter to calculate the pulse diffraction by a half-plane, a procedure which eliminates the
convolution and accelerates the numerical calculation.

IR filters, also known as recursive filters, have been recognized as a very efficient
and powerful implementation of convolution and many signal pr_o.cessing procedures [39].

Instead of the conventional convolution, an IIR filter can be designed to carry out the

70
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task of transforming the impulse response to a general wavelet response in a recursive
way. IIR ﬁlteﬁng can be considerably faster than the conventional convolution and very
accurate with a properly designed filter. Shanks [39] has shown in one example that the
recursion filter is about 45 times faster than simple convolution. He pointed out that
it is not unusual to find recursion filter savings of four or five times over conventional
convolution in terms of computer CPU time.

The time-domain diffraction results in [35], [36] and [38] are for a half-plane or a wedge
only and limited to single diffractions. Here general uniform diffraction coefficients in the
time-domain for single and double diffractions are presented. First, the inverse Fourier
transformation of the uniform diffraction coefficient is performed. Then, a procedure
used by Dalton and Yedlin [37] is adapted with improved efficiency. The convolution of
the impulse response with an arbitrary wavelet is digitized. A recursive filter is designed
to match the impulse response. The wavelet response is calculated recursively. In this

way a substantial amount of computer processing time is saved.

4.2 Inverse Fourier Transformation of the Diffraction Coefficient

The time-domain diffraction coefficient is given by inverse Fourier transforming the
frequency-domain coefficient. There are four similar terms in the UTD diffraction coef-
ficient for a wedge. The inverse Fourier transformation will be performed on one term.
The rest of the terms can be easily obtained by proper substitution of the corresponding
variables and signs. v

The UTD diffraction coefficient for a wedge with hard b‘oundary condition can be

written as

D(w) =Y 2D} exp [j(wT* + 7/4)

[ iran s
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(4.54)

(4.55)

(4.56)

(4.57)

in which a*(8) and L are given by equations 1.7 and 1.10. Taking an inverse Fourier

transformation of the first term,

pi(t) = %Re 7 D) explot

(4.58)

where D'(w) is the first term in the uniform diffraction coefficient D(w). This can be

“written as

Interchanging the order of integration, D'(t) can be expressed as

ﬁl(t) = 2.D0

Di(t) = 2D1

Using the well known result

oo oo 1
/ sin72dr = / cos T2dr = ——ﬁ,
0 0 2V 2

An explicit expression can be obtained,

)1(1) — D_&__fl;l__
D (t) = /(T +t)\/ZU(t)'

exp[] WwT* +wt — 72 +

Re/ /Fexp{ (T +t)— 12 +4]}dwd'r.

(4.59)
(4.60)
(4.61)

(4.6.2)
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Figure 4.32: The impulse response (4.62) of part of a wedge diffraction coefficient (4.63)
normalized to 1 at t=0.1 second. The solid curve represents T'=1 second; the thin dashed
curve represents 7' =10 seconds; the thick dashed curve represents T*=100 seconds, with

¢ = ¢ = 45°.
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The rest of ﬁi(t) can be obtained by the proper superscript substitution. The total -
time-domain UTD diffraction coefficient is given by the inverse Fourier transforming the

sum of the four terms in the UTD diffraction coefhicient,

D(t) = '4 Di(t). (4.63)

=1

For T! = 1, 10 and 100 seconds, the impulse response is plotted in figure 4.32, where
the maximum has been normalized to 1 at ¢ = 0.1 second. When T™ is large, the impulse
response behaves like 1/+/t. While when T is small, the impulse response becomes sharp.
Also most of the energy concentrates in the early response for small T*. It can be shown
that for T! — 0, the D(t) will approach §(t), where §(t) is the Dirac delta function.
Generally speaking, in the physical world, when 7% — 0, the receiving point is on the
shadow or reflection boundary, where the diffracted field is half of the incident or reflected
field. Thus, the diffracted wavelet has the same shape as the incident or reflected wavelet
with half its amplitude. The recetver will be well away from the shadow or reflection
boundary, when T" is large. For an early time response, lji(t) can be simplified to

Y D:
Di(t) = \/,7%

The above result is identical to the inverse Fourier transformation of Keller's diffraction

Ut). (4.64)

coefficient [11].

For doublé diffraction, if the two edges do not lie in each other’s transition region, in
the frequency-domain the double diffraction coeflicient is just the product of the two single
diffraction coefficients. In the time-domain, double diffraction is the autocorrelation of
equation 4.62 with different parameters.

Let Dy(w), Dy(w) denote the first and the second diffraction coefficients respectively.

The double diffraction coefficient D (w) can be written as

Dd(w). = Dy(w)Dy(w)
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K exp [j(wTF + 7 ex L ‘dT
k{: Zz: {2DE, exp [j(wTF + 7/4)) /\/_ p(—j7°)dr} |
(2D}, exp [j(wT} +7/4)] | o o (i), (4.65)

where D, Di,, Tt and T} have the same definition as equation 4.54 and equation 4.56
with the subscript 1 and 2 refer to the first and second edges respectively. Inverse Fourier
transforming the above diffraction coefficient gives the time-domain double diffraction

coefficient for two wedges as

4 4 Tsz
_ D 4.66
;; 01 02Tk+T2+t / +Tk Tk /t-}—Tl Tl ( )

There are no singular points at the origin in double diffraction. This means that the

doubly diffracted pulse, generally speaking, is smoother than the singly diffracted pulse
and even smoother than the input signal. There are two cases where equation 4.66 can
be simplified for its early time response. For example, taking the first term, when T}

and T, both are much larger than ¢, then
D (t) ~ D}, DLU(t). (4.67)
When only one of the Ty, Ty, is large, say T} is much larger than T3 4 ¢,

. JT2
D¥(t) ~ D}, DL, —Y2_U(¢). (4.68)

vt + T3

These two approximations give us a clear picture of the early response of the double
diffractions. Because D}, and D}, are not functions of ¢, initially, the double diffraction
impulse response is simply a step function.

The time-domain result of the single diffraction is the convolution of the incident
wavelet with the weighting function 1/ \/Z or T /(T + t)v/1] exactly. In this way the

output of a diffraction pulse is differeﬁt in shape from the input signal. The low frequency
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content of the wavelet is emphasized and the high frequency portioﬁ is depressed. As a
result, the diffraction pulse is flattened. This effect can be easily understood from the fact
that single diffraction acts like a low pass filter with a characteristic 1//w behaviour.
For double diffraction, the diffraction output is just the integral of the input wavelet.
This means that the high frequency component in the wavelet is further depressed.

In geophysical applications, diffraction has} been treated, mos;t of the time, as noise
- and been filtered out as much as possible. It is necessary to design a bandpass filter in
this case to suppress the diffraction. With the knowledge of this chapter, the diffracted
seismic pulse shape can be predicted. Thus a more effective depressing or shaping filter

~can be designed.

4.3 Digitization of the Convolution

The time-domain diffraction coefficient has been given explicitlyvin the last section. For
an arbitrary wavelet f(t), the single diffraction can be obtained by convoluting the wavelet
with equation 4.62 and proper phase and amplitude parameters. In this section, the con-
volution will be first put into a form which eliminates the singular point in the integrand.
Then, this convolution will by digitized.

For si'mpllicity, only one of the four terms in single diffraction by a wedge are é’onsidered
and the superscript and subscript are neglected to avoid any confusion. It is assumed that
the wavelet satisfies two conditions: f(0) = 0 and f(¢) has weak low frequency content.
From chapter 2 and the previous sections, the impulse response for single diffraction for

spherical wave incidence can be written as

as(t) :AP\/-_:;(TH_ZO)MU@-%), | (4.69)




Chapter 4. TIME-DOMAIN IIR FILTER METHOD [

where ‘ _
1 .
A= —— (4.70)
| pp'(p +p')
and
t,= PP (4.71)
c
Thus, the output of a general wavelet f(t) is
ug(t) = us(t)* f(t)
DT fo° Ut — 7 —to)
= a2z [ d
N AR A ey e Al
DT ft—to . dr
= A . 4.72
\/7? 0 f(T)(T+t—T—to)\/t*T—to ( )

The integrand is singular at the end point. It is difficult to directly carry out the digi-
tization. To avoid the singular point, integrating by parts with the condition f(0) =0
gives

T"to

T 1t
Uq(t) = 2AD0\/; \ fiit- T)ta,n_l\ T dr. (4.73)

If f'(t) has no singular point, equation 4.73 can be easily calculated numerically. Let

t.,':t0+7:At, ’L:O, 1, 2,"' (I—l)

(4.74)
T; :to +]At, ] = 0, 1, 2, (J'— 1)
Usiﬁg summatioh instead of the integration gives
9 =Do > fl_sh;j, (4.75)
j=0
where '
< 2DovT At ‘
Do = oV T , (4.76)
VT\/pp'(p +p")
g = ’lld(to + ’I,At), . . (477)

f=flisy) @)
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and

h; = tan™! %. | | (4.79)

Equation 4.75 1s a standard numerical convolution. The direct calculation is more

time consuming than the FFT procedure used in the previous chapters. In the next

section, an IIR filter approximation will be used to implement the digital convolution.

4.4 IIR Filter Design and Convolution

In this section, the method discussed by Shanks [39], Burrus and Parks [40] is used to
design the IIR filter. This method was also used by Dalton and Yedlin [37] in their study
of the half-plane diffraction. In their approach, the matrix 8; in equation 4.95 1s not
given explicitly. Hére the elements of B, 1s given through a recursion formula which is
much more efﬁcient than the matrix inversion.

For two z-transformation functions
fz)=fot fiz7 4+ foz TP 4o+ fu2h (4.80)

h(z) = ho+ hiz™t + hpz 2+ - + hp2™™, (4.81)

the product of f(z) and h(z) is given by

g(z) = f(z) x h(z)
v(.fo +fiz7l+ faz i+ frozT?) X
(ho + h1z72 + hpz=2 4 -+ + hppz™™)

I

= go+ g1z + gz i A Ggnz ™" (4.82)

where

gi:zfjhi—j 7::07 1, 2, -, m+n. (483)
o |
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If the system response h; can be written in a closed form, the convolution can be carried
out by recursive calculation and the number of multiplications and summations can be

greatly reduced. Assume

N —i
ho+ haz ™l 4 hpz 2 b oer b hppnz ™ n 0% 4.84
o+ N1z "+ hy2™° + + hminz ‘ Zﬁ'w:objz‘] ( )
A(z)
= 4.8
B(Z), ( 5)
then
_ _ SN g
1 2 .. a n 1=0 i 486
(fot fiz7i + oz oo + foz )——‘ZjMzobjz_J ( )
N ogot;iz  + gz 4 Gmanz T (4.87)
By rearranging, this can be wrnitten as
N o
(fo+ friz i+ foz 2+ + fnz_n)(z a;z™") (4.88)
rd
M .
= (go+ g1z + g2z 24 o F Gypmz )Y b277) (4.89)
—

Without loss of generality, assuming by = 1, g; can be obtained by the following recursive
formula
i i-1
9 =) fitio; = Y 95bi-; (4.90)
=0 3=0
If M and N are small integers, which usually is the case, the saving of the computing
time is phenomenal. But for the problem‘ of the last section, the impulse response is not
in the form of a closed rational function. An approximate rational function has to be
designed, which should give the same coefficient when expanded into z~* series. This
filter design procedure is rather time consuming. There are several approaches to the
IIR filter design. Generally speaking, different approaches give different results. One
design procedure may give a better result than the other in one occasion, while another

algorithm may be more suitable itself in a different situation. Here, the method, which
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was first discussed by Shanks [39] and later by Burrus and Parks [40] is used and an
efficient design equation is derived to implement the recursive filter.

The computation method used in IIR filter design is very important. Numerical
approximation by the computer results in errors. The accumulation of errors in the
numerical result can prevent accurate filter design. By o‘ptimjzi’nig the design formulas,
computer round off errors can be reduced. Here an optimized IIR filter design formula
1s given.

Applying the Burrus and Parks’ notation [40], the coefficients by, bs, - -, bar in equa-

tion 4.90 can be obtained from the matrix equation

"HIH:B = HT H?, (4.91)
where - -
by
by
B=| " |. (4.92)
. bM -

The elements of matrix H; are given by

hY; = hN-14i-; - (4.93)
and the column matrix H? is i )
hn
h
g=| " (4.94)
- hK_l -

The coefficients a; in equation 4.90 can be found from

A= (678 B (4.95)
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with
a)

a2

A= | (4.96)

and

h1 . ’ ’
=] (4.97)

where h; is given by equation 4.79. B; is a K by M matrix, the elements of 8, are given
by |

0, 1<
Bui=<S1, i=j . : (4.98)
ﬁi—jr 1 >.7
and f; is given recursively
= 1
’ . : (4.99)
/Bi: _E;;%) jbi—j, 1‘:1)2):]{_1

This method is used to calculate the diffraétion coefficients of different incident angles,
¢ = ¢ = 25° 45° and 88°. For ¢ = ¢’ = 88°, the wave is almost vertically incident
on the reflection surface and the diffraction coefficient approaches a delta function. This
cas?: represents the most difficult situation in the design. Different values of N = M are
tested ranging from 2 to 15. Here the lowest N = M, which can ensure that the absolute
error is less than one percent, is chosen. It is found that for N = M less than 10 all the

diffraction coeflicients can be easily approximated. The results are shown in figure 4.33.
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Figure 4.33: Impulse responses of the filters designed by Shanks’ method. Solid curve
represents the exact impulse response; dashed curve represents -the approximated filter
impulse response. a: ¢ = ¢' = 25%, b: ¢ = ¢’ = 45°%; c: ¢ = ¢' = 88°.
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In the following section this method will be used in the IIR filter design. In the
- calculation, it is found that most of the comput_ihg time is used by the filter design.
Calculation shows that it is unnecessary to search for the best values of N and M every
time. N = M cén be chosen large enough to handle the most diﬂicult case. Thus, in the
- following calculation M = N is set equal to 9.

Once the IIR filter is obtained in the form of a rational function of z variables, the

convolution of the equation 4.75 can be carried out by the following recursive formula

_ minfi, N-1] min[j, M—1] .
gi = Do Z a’jfi’—j - Z bigi—j, (4.100)
Jj=0 7=1

where Dy and f{ are given by equations 4.76 and 4.78 respectively.

4.5 Numerical Example for Single Diffraction

Next the single diffraction by a hard step discontinuity is obtained via time-domain
convolution and IIvR filter method. In order to compére the speed, the same response
is calculated in frequency-domain and FFT is used to convert the result back to the
time-domain.

A Berlage wavelet [41] is used here with f(t) = U(t)t® exp(—190t) sin(607t ) and veloc-
ity c :_4* 10°m/s, step height h = 4 x 103m, source and receiver positions yo = 4 x 103m,
K =1 =J = 100. The results are shown in figure 4.34. The two diffraction patterns
virtually identical, but the computer CPU time used by the different methods is different.
To genérate these diffraction images, the CPU time for the IIR filter method is 6 seconds
while the CPU time for the FFT method is 24 seconds on an Amdahl 5850 computer.
Figure 4.34 includes only single diffractions. If double diffractions are included, sixteen
IIR filters have to be designed for every doubly diffracted ray. Thus it is evident that

this approach is less efficient for double diffraction.
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Figure 4.34: Scattering from a step discontinuity. Step height h = 4 x 10® meters, source

and receiver array is positioned at yo = 4 x 10 meters. a: result by IIR filter approach;
b: result by FFT approach.
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4.6 Conclusion

In this chapter, calculation of pulse diffraction by a hard step discontinuity is approached
differently. The inverse Fourier transformation results are used to derive tirﬁe-domain
diffraction. An IIR filter is designed to carry out the numerical convolution recursively.
Because the order of the filter is very small (M = N = 9), the IIR filter method is very
efficient. For single diffraction, one scattering image shown in figure 4.34 can save 75
percent of the computer CPU time.

The IIR filter method can also be used in the calculation of the double diffraction.
The time-domain double diffraction coefficient is given by equation 4.66. Because of the
complex nature of the double diffraction, the implementation of the IIR filter method
will be difficult. In the time-domain, convolution has to be performed for each single
diffraction and double diffraction but only one FFT is needed by the frequency-domain
approach. |

Both impulse responses of single diffraction and double diffraction aie given explicitly
iﬁ this chapter. This information can be used in the filter design either to subtract the

diffraction signal or to suppress the diffraction.



Chapter 5

DIFFRACTION BY A CURVED HALF PLANE

5.1 Introduction

High frequency solutions of electromagnetic scattering from simple shapes have been ex-
tensively studied in the past and widely reported in the open literature, but results for
complex structures which can be constructed from the simple shapes are relatively few.
Although some experimental results have been reported (3], the theoretical analysis of
diffraction is often not satisfactory. The study of the diffraction by complex shapes is
important in itself. First, when simple shapes are combined, new diffraction mechanisms
are created. Generally, new problems cannot be treated by classical methods and an ap-
proximate approach has to be adopted. Also, the solution of complex shapes constitutes
a central step in constructing solutions of scattering objects of préétical interest in radar
and seismic applications.

In this chapter, spherical wave diffraction by a convex side of a cylindrically curved
sheet tangential to a half-plane is studied. The geometry of the problem is shown in
figure 5.35. A similar configuration has been studied by Chuang [60] for a plane wave
at grazing incidence.” By the extension of Weston’s [30] result, he obtained diffracted
fields in both shadow and lit regions. Here an asymptotic solution for general spherical
wave incidence from an arbitrary point above the perfectly hard surface is obtained. This
solution, which includes the geometric optics field, the edge diffracted creeping wave and

space ray, the second order edge diffracted space ray and uses GTD, UTD, physical optics
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Figure 5.35: Geometry of a curved half-plane.
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and the creeping wave diffraction coefficient for an edge on a curved surface by Idemen
and Erdogan [23], is presently the most complete high frequency solution to the problem.
This result can serve as a building block for the solution of more complicated structures.

Here a hard boundary is assumed; that is, the normal derivative of the total field
equals zero on the scattering body. The radius of the curvature of the cylinder must be
large in wavelengths with high frequency approximations (ka>>>1) and far field conditions
(kr>>1) satisfied. It is also assumed that the field point P and the source point Q are
always in the upper half of the x-y plane, so that only the convex side of the cylinder
is lluminated. It i1s quite easy to generalize the current result to a soft boundary and
oblique incidence. |

In figure 5.35, the total field at a receiving point consists of reﬂection from the bound-
ary surface and diffractions from the two édges. The first order edge at E(z., y.) gives
rise to the edge diffracted space ray and an edge diffracted creeping wave. These two rays
are of the order 1/v/k, where k = 27/ is the propagation constant, which is assumed to
be large. Here, the whispering gallery mode is neglected, because its (_:ohtribution to the
total field at receiving point is of higher order (1/k). The second order edge at O(0, 0)
also gives rise to space rays and creeping waves, but the creeping wave which is much
weaker than the space ray 1s neglected.

The edge diffraction at E(z., y.) makes the total field continuous across the reflection
boundary generated by the discontinuity of the cylindrical sheet. The diffracted creeping
wave extends this diffraction to the shadow region where the diffracted space ray is
blocked by the curved surface. The second order edge diffraction compensates for the
discontinuity of the geometrical optics field because of the change of the surface curvature.
Away from the reflection boundary, the second order edge diffraction is of higher order
compared with the first order edge diffraction, and is negligible. But the second order

- edge diffraction is significant when the field point is near the reflection boundary. There
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are also higher order multiple diffractions because of the interaction between the two
edges. They are less important than the field discussed above. In the time-domain,
these multiple diffractions are later arrivals. The inclusion of these diffractions does not
improve the early response which is most important. Thus, these multiple diffractions
are neglected.

The method used in this chapter is Keller's geometrical theory of diffraction and the
theory of physical optics. The uniform diffraction coefficients given by UTD are used to
calculate th‘e space ray diffracted by an edge. These diffraction coefficients are still valid
when the edge i1s formed by a curved surface. This extension is justified by the argument
Qf the local effect of the diffraction phenomenon.

Apart from the space rays, there are creeping waves on the cylinder. This creeping
wave has been largely neglected in high frequency antenna analysis, becﬁuse of the lack
of an appropriate diffraction coefficient. Albertsen and Christiansen [22] constructed
some creeping wave hybrid diffraction coeflicients from a set of. elementary diffraction
coefficients. Idemen and Erdogan [23] solved the second order canonical problem of GTD-
diffraction by a curved sheet. They used generalized cylindrical coordinates to construct
a Hilbeft problem.and found a high frequency asymptotic solution. From this solution,
they extracted the various diffraction coefficients (or transformation coefficients) for the
creeping wave. With these diffraction coefhicients, the creeping wave can be handled in
the saine way as the space ray. The launching coefficient and the attenuation coefficient
associated with the smooth part of the cylinder were given by Levy and Keller [21] in
19>59. ’

There is a transition region of angular width the order of m™? radians [m = (ka/2)"/?]
near grazing incidence. In this region, both Kouyoumjian and Pathak’s UTD [15] and
the diffraction coefficient given by Serbest [24] based on [23] fail. Michaeli [25] [26] [27]

derived a solution valid in this transition region. He multiplied the UTD diffraction
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coefficient by the Fock function to give a uniform diffraction coefficient. On the dark side
of the edge diffraction, the solution was also given in term of the Fock function, which
gives the same results of Idemen and Serbest if enough Ahigher order terms in [24] are
included.

At the junction of the cylinder and the half-plane, a second order edge (after Kaminet-
sky and Keller [61]) is created. A second order edge is an edge at which the second deriva-
tive of the surface has a discontinuity while the first order derivative is continuous. The
diffraction phenomenon by the second order edge on a conducting surface was first studied
by Weston [30] and Hong and Weston [42]. By an extension of Weston’s method, Senior
[31] derived the first diffraction coefficient for the second order edge. Later, Kaminetsky
and Keller [61] generalized this diffraction coefficient to include impedance boundary
conditions by a different approach. All these results are invalid in the vicinity of the
reflection boundary where they are of vital importancé.

There are two major methods to obtain a uniform version of the second order edge
diffraction coefficient. First, in Keller’s approach, a uniform asymptotic expansion for-
mula by Bleistein [62] can be used when the stationary point close to the second order
edge. Second, using the theory of physical optics, a uniform diffraction coefficient can be
obtained by the uniform asymptotic evaluation of the end point contribution from the
surface integral. The second approach, which is simple in conception, has been used by
James [32] for the edge formed by smoothly joined cylinders. This diffraction coefficient
enables the total field to change continuously in the transition region at the reflection
boundary and retains Senior’s result away from the reflection boundary. James' method
is used here to derive the ‘second order edge diffraction coefficient.

Once the frequency-domain solution is obtained, the time-domain' solution is con-
" structed by Fourier transformation. A measured result of acoustic pulse diffraction by

the same object is given. A quantitdtive comparison 1is not possible at this stage, but a
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qualitative companson shows good agreement between theoretical prediction and exper-

imental observation.

5.2 Geometric Optics Field

There are three species of the geometric optics fields: direct incident field from the source, -
reflection from the half-plane and reflection from the cylinder, as shown in figure 5.36 and
figure 5.37. It is straight forward to find the incident field from the source and reflected
field from the half plane. For the reflection from the cylinder, the formulas given by [63]
are used and appear below.

For a point source at (z', y'), and the incident field is given by

ot = SP(=Ikr) (5.101)
T

where

r=y(z—2)+ (@ —y) (5.102)
and z, y are the coordinates of the field point. The reflection from the half-plane can be
obtained by the source image,

ik
ur — (:‘Xp( .7 TT)U[ﬂ_

- ol -~ (-, (5.103)
where |
Ty = \/(1: —z') + (y +y')? (5.104)
and v
1, z>0
U(z) = { , (5.105)
0, z<0 : .

the angles ¢ and ¢’ are defined in figure 5.36.

For the cylindrical segment, the reflected field in the illuminated region is

= {4 DL+ + ]} | (5.106)

x exp[~7k(f + g)]- v - (5.107)



Chapter 5.

DIFFRACTION BY A CURVED HALF PLANE

Qx,y) gt P(x,y)

E(x.,Y. )

Figure 5.36: Coordinates for reflection from the half-plane.
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Figure 5.37: Coordinates for reflection from the circular cylinder.
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With the aid of figure 5.37, the parameters can be found as:

f= \/7'12 +a® — 2ary cos iy,

g : \/1.22 + a? — 2ar, cos(y; — ),
8= arcsin(-;— sin4,),

where ¥; < 7/2, is the root of

7'_f1 sin ¢ + rg-% sin(¢1 — ¥) =0,

and

I+a

¥ = arctan( Y

)7

- a) — arctan( Y =

o= /ml2+(yl+a)2,
T2 =/z? + (y +a)’.

For zero offset, p = p’, ¢ = @', reflection simplifies to:

— 9k
o — exp( 2] T"') a U((E - mmam)U(_z)’

27, Na-+r,

where

Tmer = —(y + @) tan ap

and

T, =T — a.

5.3 Edge Diffracted Space Ray
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(5.108)

(5.109)

(5.110)

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

(5.116)

(5.117)

By the theory of GTD, high frequency diffraction, like hi‘gh frequency reflection, 1s a local

- phenomenon. Locally an edge of a curved surface can thus be replaced by a half-plane

tangent to the curved surface at edge. Therefore, the edge diffracted space ray, if away
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from the edge and grazing incidence region, is the same as the spa.ce ray diffracted by
a half plane which is tangent to the edge of the curved sheet. Here, the uniform GTD
formula [15] is used to calculate the edge diffracted space ray.

For a source at Q(z', y') and field point at P(z, y), as shown in figure 5.38, the
diffracted field 1s

o eXP(;jk”) Td(ri’"j{_ D, ¥ ) exp(—jkra), (5.118)

where
re= /(7 — ) + (ve — ¥')") (5.119)
ra= (e. —2) + (4. — v)" | (5.120)

The coordinates of the edge E are given by
Te = —asin o, ' (5.121)

Ye = a(cos a, — 1). (5.122)

The UTD edge diffraction coefficient for a curved half-plane is

D, v) = =S FlkLia(y - ¥ (5.123)
FFIRL7a(t + ) rie ) - (5.129)

The distance parameters L’ and L™ are determined from the continuity of the total field

at the reflection or shadow boundaries. The general forms are

i o_ralpe +ra)oiph (5.125)
- PPt +ra)(ph +ra)
. ra(pz +ra)pips (5.126)

IACEEN RN

~wherein p! (p7) is the radius of the curvature of the incident (reﬂected) wavefront at -

E taken in the plane containing the incident (reflected) ray and unit vector tangent to .
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\J

- Figure 5.38: Coordinates for diffraction from the first order edge E(z.,y.) of a curved
half-plane.
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the edge at E, pi(p}), p(p;) are the principal radii of the curvatures of the incident
(reflected) wavefront at the diffraction point. For a straight edge (as in the present case),

the curvature of the edge is infinite, consequently

Pe = PL = pey (5.127)

where p. is the distance between the caustic at the edge and a second caustic of diffracted
rays which equals to r;, as illustrated in figure 5.39 for a general edge. For spherical wave
incidence, with the substitutions of r; = a, r; = 00, s’ = 7;, and 6, = 7 — §; in equation

(A-9) of [15], the principal radii are

T; +a
1= 128
Pr=1 + 27r; cos §;’ (5 )
Py =T;. (5.129)
This gives
L=l (5.130)
L
and
, piTd
L' = ———. 5.131
Py +Td ( )
In the diffraction coefficient,
v L
a(¢v £¢') = 2cosz(¢ id ) (5.132)
and
F(z) = 2j/z exp(j:z:)/\:i> exp(—jr2)dr. (5.133)
The incident angle and diffraction angle are given by
1 = arctan TeZT T Oy, | (5.134)
Y=Y 2

T, — T T

+ = —a, (5.135) -

' = arctan
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Figure 5.39: Geometry of the second caustic of the diffracted rays.
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and
6; = |g —9']. (5.136)
When z is small,

P(z) ~ \/ﬁexp[—j(% ta). (5.137)

Using the above equations, it can be shown that the diffracted field is one half of the
reflected field and changes its sign across the reflection boundary. This property makes
" the total field continuous across the reflection boundary.

Near grazing incidence, ¥’ — 0, and equation 5.124 cannot be used. Under this
circumstance, the diffraction coeflicient equation 5.124 should be multiplied by the tran-

sition coefficient C(o)C(o') which is given by [26]

C(o) = 5 exp(~jo*/3)g(o), (5.138)

where g(z) is the well-known Fock function (28] and o = ms/a. Here a is the radius of

~ the curved surface and m = (ka/2)/3. s is given by the following equations:

_ —[z?a + ay(a +y)] + zav/z? + 2y%a + y?

- , 5.139
Yo, T2 + (a+y)2 ( )
zq, = —\/~2ayq, — yg,% (5.140)
¢ = arctan 8 TYOr _ arctan %, (5.141)

—ZQ, —&Le
s = pa. - (5.142)

The Fock function g(z) is tabulated in [28], but it is inconvenient in the computer program
to use a table. Here a least-squares polynomial approximation is used instead. Figure 5.40

shows the amplitude and phase of the Fock function g(z) along with the approximations.
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Figure 5.40: Approximation of the Fock function g(z). Solid curves are data from Logan's
table, dashed curves are the polynomial approximations. a: amplitude of g(z); b: phase

of g(z).
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5.4 Creeping Wave Diffraction

Thé study of creeping wave diffraction by the GTD method was carried out by Levy and
Keller [21] in 1959. By comparing the GTD result and the high frequency asymptotic
expansion of the rigoroﬁs solution of diffraction by cylinder and sphere, they obtained
the diffraction coefficient and attenuation constant of the creeping wave. With these
diffr.ac.tion coeflicients and attenuation constants, the high frequency diffraction problems
for smooth scattering objects can be solved.

Diffraction at an edge of a curved surface has been studied by Idemen and Erdogan
[23] extensively. By solving a second order canonical diffraction problem, they rigorously
derived diffraction coefficients necessary to determine the excitation of the diffracted
space ray and creeping wave by the edge of cylindrically curved surface. Whenever
comparison is possible, these diffraction coefficients are identical to the previously derived
ones.

In this section the results of Levy and Keller [21], Idemen and Erdogan [23] are
combined to determine creeping wave diffraction by the curved segment. Because only
the convex side of the curved screen is considered, whispering gallery modes may be
neglected. There are three types of diffraction at the edge E; that is, creeping wave to
creéping wave diffraction, creeping wave to space ray diffraction and space ray to creeping
wave diffraction, as illustrated in figures 5.41, 5.43 and 5.44 respectively.

First considering the case in figure 5.41, the space ray is incident tangentially on
the diffraction point ¢}, and is transformed to the infinite modes of a creeping wave.
The creeping wave modes travel a.lohg the surface of the cylinder and shed space rays
tangentially. At the edge E, the incident creeping wave modes are diffracted back with
a diffraction coefficient. As diffracted creeping waves travel back to the point P;, they

are shed again tangentially to the observation point P.
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Figure 5.41: Coordinates for creeping wave diffraction.
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Figure 5.42: The diffracted ray tube.

In the following, only the leading mode in the series is considered. Its result easily
can be generalized to higher order modes. According to GTD [21], the diffracted field

can be expressed as:

utd = (Ql)D (Q:1)D"(E)D'(P,) ,/MQE* =& (5.143)

X/ exp [—gk(s' + 8 + 1) — A(s + )] (5.144)

where u!(Q;) is the incident field at @, do is the cross-sectional area of the diffracted
ray tube, as illustrated in figure 5.42, and p; is the principal radius of the curvature
of the incident wavefront through P;. s, s’ and t, t' are indicated in figure 5.44 The
diffraction coefficients depend on the nature of the field, the properties of the object at
the diffraction point and the propagation constant k. The diffraction coefficient of the
space ray to creeping ray and the attenuation const#nt are given by Levy and Keller [21].

The edge diffraction coefficient is given by Idemen and Erdogan [23].
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With the same incident field and some geometrical manipulations, the GTD solution

of the diffracted creeping wave is

exp[—jk(s' +t' + s +1)]

u(P) = D'(Q,)D"(P,)D'(E)exp|—A(s + s")] ,  (5.145)
) \/g\/(s’-{—t’—&—s-}-t)
where
t' = \/m’z +(y' +a)? - a2 (5.146) -
s' can be determined by the following set of equations:
—[z"?%a + ay'(a + ¥')] + z'av/z + 2y'2a + y7?
Yo = | ( 2 ) Ry , (5.147)
2 + (a +3')
o, = _\/_za’yQ1 - yQ127 (5148)
@' = arctan 2TV _ arctan 25 ye, - (5.149)
—IQ, — T,
s'=ya, . (5.150)

t and s can be obtained by replacing z', y’ with z and y in equations 5.146 to 5.150. The

diffraction coefficients of the smooth surface are given by [21]

D*(Q,) = D*(P) = (5%, (5.151)

n jka
D"(E) = .
(E) 4vy(v] — ka)’ (5.152)
with ,
ka s
v = ka — a;(?"’)s exp(—-jg), (5.153)

where a) satisfies Al(a}) = 0 and Ai(z) is the Airy function and Al(z) = dAl(z)/dz.

u(P) equals zero, when

. (5.154)
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Figure 5.43: Coordinates for the edge diffracted space ray.
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The attenuation constant A is given by

a1 ka1 T
A:—-—' p— ] — ).
—(5 )2 exp(iz)

Similarly for the case in figure 5.43, the diffracted creeping wave is

exp[—jk(s' +t' + r4)]

u(P) = D'(Q1)D"(E)exp (—As’)

\/t"l'd(t' + s+ Td)
where

DYE) = _CXP(—j%") ka+/1 + cos ¢
(8)% (v + ka cos ) /v} — ka
ra=/(z -2+ (y - 3.)?,

D(Q1) is the same as equation 5.151 and 7 is shown in figure 5.43.

For figure 5.44, reciprocity can be used and the result is

exp[—jk(s +t + ;)]
tri(t + s + 1)

U(P) = D'(P;)D(B)exp (~As)

with

=/ — ze)? + (¥ — ve)

and D(P,) is the same as given by equation 5.151.
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(5.155)

(5.156)

(5.157)

(5.158)

(5.159)

(5.160)

Equations 5.151 and 5.152 give the leading order of the diffraction coefficients. Away

from the grazing incidence, these leading order terms are sufficient.

But close to the

grazing incidence, higher order terms must be included. These higher order terms can

be obtained by the replacement of a} and v} in equations 5.151 and 5.152 by a’, and v/,

with n = 1, 2,---, where a, satisfies Al(a’) = 0, and v/, is given by 5.153 with subscript

1 being replaced by n.

Near grazing incidence, using Michaeli’s [25] result, the following solution in term of

the Fock function can be obtained:

Py i/ 4) o expljh(s' +1 + s +1)]
(P)=——, o= )g( NN e

(5.161)
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Figure 5.44: Coordinates for the edge diffracted creeping wave.
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In order to examine diffraction in the transition region, the diffracted fields near
grazing incidence are ploted in figure 5.45 for both GTD and Fock function solutions.
For a/A =2, 20, 100, thé corresponding angular transition regions are approximately equal
to 31°, 14° and 8°. The GTD resuits are represented by the solid curves and the solutions
in term of the Fock function are dashed curves. The GTD solution gives finite diffracted
fields, but has a discontinuity in the transition region. The Fock function solution changes
smoothly from the edge diffracted space ray to the creeping wave diffracted space ray. On
the boundaries of the transition region, the two solutions are identical. It is interesting
to notice that the creeping wave diffraction converges even in the transition region. Here

15 terms are included in the calculation of the creeping wave diffraction.

5.5 Diffraction by the Second Order Edge

The diffraction by the second order edge, where the radius of the surface curvature
has a discontinuity, is of higher order of the inverse power of the propagation constant,
but it is still significant near the reflection boundary. Weston [30] first studied the
effect of a discontinuity in curvature on the high frequency scattering. He modelled the
problem by the conjunction of two parabolic cylinders and solved the current distribution
asymptotically. Senior extended Weston’s work by extracting the diffraction coefficient
from the asymptotic expansion. Senior’s result is non-uniform and invalid in the vicinity
of the reﬁection boundary where diffraction plays a vital role. Later, James [32] derived
a uniform version of the diffraction coefficient for the edge formed by smoothly joined
cylinders based on both the theory of physical optics and Senior’s result. James’ result
gives correct diffraction on thé reflection Bounda,ry and retains Senior’s result away from
the reflection boundary. In this section, the diffraction coefficient derived by James’

method is used to construct the diffracted field by the second order edge.
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Figure 5.45: Diffraction in the transition regions for grazing incidence. The solid curves
are GTD solutions and the dashed curves are Fock function solutions. a: a/A = 2; b:

a/X =20; c: a/\ = 100.
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Using GTD and ﬁgufe 5.35, the diffraction of the second order edge is given by
u® =u'D, ———-E—I——,— exp(—jkp), (5.162)
(p+p)p
where the incident field is the same as before. The diffraction coefficient is obtained by

James’ method and is given by

—4(1 +cos¢COS¢')EXP( i)

D, =
jkav/8mk(cos ¢ + cos ¢')3

- (5.163)

if Vpe > 3,
2(1 4 cos ¢ cos ¢')

T T

(5.164)
if vp. < 3, where

D, = ii(/p——S(T—I;j—) {7sgn(cos ¢’ + cos ¢)

X [2sin ¢ + 3 cot ¢(cos ¢’ + cos @) exp(jv})

><\/2Lkiu(1¢) cot 6 } (5.165)

D, = :2—e\};——18L7;;c—i) { ssgn(cos ¢' + cos d))\/%
. cos ¢(1 + 7 sin ¢ )(cos ! 4+ cos
X [sin ¢ + q:fn ¢' + sin f()l( + L¢31:¢) ?
Fo.(v.)
sin ¢’ + sin ¢(1 + 7 sin @)
__ cos $(1 + 22 sin ¢)
sin ¢’ + sin (,‘b(l + £ sin ¢)

x exp(jv;) J

}, (5.166)
in which the F;esnel iﬁtegral 1s defined by -

Fn(a:) = /:o exp(—jtzjdt (5.167)
and the distance parameters are given by

1
L= ;%”—/-)-,, . (5.168)
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kL | cos ¢' + cos ¢|
2 sin ¢ ’
ka  |cos¢' + cosg|
Ve =/ — :
2 \/sin ¢' + sin ¢(1 + ¢ sin ¢)

Vh =

(5.169)

(5.170)

5.6 Time-Domain Solution

Single pulse diffraction by the curved half-plane can be easily constructed by Fourier
transforming the frequency-dorﬁajn soiution. The pulse is shown in figure 2.10. This
pulse has a weak low frequency content; to minimize errors originating from the high
frequency assumption of GTD. The parameters are a = 8 x 10%m, h = 4 x 10%3m, a, = 45°
and the pulse velocity equals 4 x 103m/s. The source and field point are changing from
¢ = ¢ = 30° to 150°, as shown in ﬁgure 5.46. The results of the total field and the
diffracted field are shown in figure 5.47 and 5.48 respectively. In order to test the -
above theoretical predication, an acoustic model of a curved half-plane was designed.
The model was constructed in the departmental shop. The test equipment set up and
the measuremént was done by Mellema [43].._ The measuréd acoustic pulse incidence
response is shown in figure 5.49 and a median filtered result is shown in figure 5.50. The
- median filtered result rev.ea,led a continued response of the edge diffracted space ray and
creeping wave as predicated by the theory. The second order diffraction at the joint'
of the half—plane a.nd‘the quarter of the circﬁlar cylinder is not evident in these result,

but traces of the diffraction might be found with more selective apparatus and filtering

of interaction between source and target. It.is very difficult to distinguish the diffraction
from the noise in figures 5.49 and 5.50. At this stage, direct quantitative comparison is
not possible, but these results show that the theoretical predication of the creeping wave
and second order edge diffraction is in agreement with the experimental results.

In figure 5.47, the earliest arriving pulses of traces 1 to 21 are reflections from the
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Figure 5.46: Coordinates of a source and receiver array over a curved half plane.
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Figure 5.47: Calculated total scattered pulses from a curved half-plane for zero offset
source-receiver pairs. a=8x10%2m, h=4x10%m, ag = 45° and pulse velocity is 4x 103m/s.
The spacing of traces is 346m and trace number 1 is started at x=6928m.
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Figure 5.48: Diffracted pulses of figure 5.47.
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Figure 5.49: Measured acoustic reflection and diffraction by a curved half-plane. Courtesy
of Mellema [43].
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~ half-plane. Further on in the plot (traces 22 to 34), reflection from the curved segment is
separated in time from diffraction by the edge E initially, but these two fields merge into
one on the reflection boundary. Across the reflection boundary (between trace 34 and
35), reflection vanishes and the total field continues in the form of the.edge diffraction.
In figure 5.48, the diffracted field changes its phase on the reflection boundary. This
behaviour of the diffraction field makes the total field change smoothly. Inbﬁgure 5.48,
right above the second order edge (trace 21), bthe sécond order edge diffraction arrives
first and is larger in magnitude than the first order edge diffraction. When the field
point ‘moves away from the reflection boundary, the second order edge diﬁractibn fades
rapidly. The creeping wave diffraction in the first s_everal traces are plotted separately in
figure 5.51. Creeping wave diffraction alone is responsible for those pulses in trace 1 to
trace 10. The first order edge diffractions start at trace 11. At the shadow boundary of
the edge diffracted space ray, the diffracted field changes continuously from direct edge

diffraction to creeping wave diffraction. The latter is much smaller in magnitude.

5.7 Conclusidn

In this chapter high frequency scattering property by a cylindrically curved half-plane is
studied. This solution can correctly predict not only the first order edge diffracted space
ray, but also the second order edge diffracted space ray and the creeping wave which has
vbeen missing in previous solutions. By using the Fock function in the transition region
of the grazing incidence, the total diffracted field changes uniformly from the direct edge

diffraction to the creeping wave diffraction.
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Figure 5.51: Diffracted space ray and creeping wave pulses from figure 5.47.
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CONCLUSIONS

6.1 Conclusions

The geometrical theory of diffraction in electromagnetics i1s used to derive the solutions
of the spherical wave diffraction by a 90° step, two offset half-planes, an inclined step
and a curved surface. These solutions are more accurate and efﬁcient than previous ones
based on Kirchhoff diffraction theory. Previous incorrect predictions of the diffraction
phase shift at the edge and the amplitude symmetric hyperbola are corrected by the GTD
solutions. The solution for the 90° step is further extended to beam source diffraction.
This makes it possiblé to simulate the real source diffraction in electromagnetics and in
geophysics. The beam diffraction solution cin be further generalized to diffraction by
other configurations.

For a 90° step, single diffraction and double diffraction are most important. Predicted
by the theory, they can also be observed in the measurements. Triple diffraction is very
weak in the analysis and has not been observed in the experimental results. Creeping
wave diffraction is responsible for the diffraction reqeived when the recéiver is beyond
the shadoﬁ boundary of the direct edge diffraction. The above conclusions have been
confirmed by Mellema's acoustic scatter-mapping imagiﬁg system.

Time-domain infinite impulse response (IIR) filtering methods can have advantages
over the frequency-domai‘n‘ approach which needs an inverse Fourer transformation to

obtain the time-domain pulse solution. A 75% computing time saving can be achieved for

119
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single diffraction. The same procedure can be applied to double diffraction, but the time
saving will be less significant, since more IIR filters have to be designed to implement the
convolution. The single and double diffraction coeflicients in the time-domain are given

explicitly in the thesis.

6.2 Future Work

Future work can be divided into two parts. One is the study of the similar models by
rigorous methods and comparison with the solutions given here. The other is to use the
solutions given here to construct solutions for more complex shapes.

The solution for low frequency diffraction by a 90° step with a plane wave incidence
can be obtained by the method used by Jones [45], but the result will be only valid for a
low step. The analysis for for arbitrary step height is difficult. Some preliminary works
have béen done in this area by the author, but much more effort is needed to complete
thé solution and to obtain some useful numerical results.

There is no rigorous solution for double diffraction by two edges with point source
incidence and completely arbitkrary source and receiver. positions. This is difficult because,
like single diffréction at a reflection or shadow boundary, the physical wave separates into
diffraction and reflection terms in the analysis, but physically they are essentially the
same at the reflection or shadow boundaries. The analysis is always difficult when the
geometrical optics field and the diffracted field cannot be separated. The mathematical
tools which can be gpplied to this problem are also very limited. |

To apply the existing solution to more complex models and to generalize the solution
to different waves and boundary conditions is moré realistic. Diﬁerent seismic models can
be constructed to provide solutions for evaluating the different data processing methods

and different filters. In the process of constructing the solutions for complex diffracting
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bodies, -the interacﬁon between the edges must be taken into account.

Based on the present solutions and programs, a graphic interface software for the
comf)utation of the reflection and diffraction by complex shapes can be developed to
meet the needs of different applications. The potential users would be scientists and
engineers workiﬁg in seismic imaging, engineers working in acoustic design and sound

reproduction, and engineers working in radar scatter and nondestructive testing.
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