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Abstract 

The C M 1-8 channel impulse response (CER) models developed by the IEEE 

802.15.4a task group are widely used to fairly compare the performance of alternative 

UWB signaling schemes under representative line-of-sight and non-line-of-sight 

conditions in four different environments: residential, office, industrial and outdoor. 

However, with the advent of M B - O F D M and related schemes, channel frequency 

response (CFR) models are becoming more pertinent. Here, we show how statistical 

models of the autoregressive frequency domain (AR-FD) model parameters that estimate 

for C M 1-8 can be used to gain insights concerning the nature of the channels and 

efficiently simulate the frequency response of the channels. After generating several 

thousand instances of the channel response, estimating the AR-FD model parameters for 

each one, then applying the Akaike Information Criterion (AIC) to determine the 

appropriate model order, we determine the marginal distributions that best describe each 

of the AR-FD parameters and their mutual correlation for each of the eight scenarios. We 

find that the model parameters fall into two independent groups: (1) a set of initial 

condition parameters that are jointly Gaussian and therefore completely described by 

their means, variances, and mutual correlation coefficients and (2) a set of parameters 

that describe the amplitude and phase of the autoregressive poles and the variance of the 

driving noise and that are described by more exotic distributions. As a result, their mutual 

correlation is most conveniently described by a copula, a statistical method widely used 

in finance and finding increasing use in engineering. The result allows us to specify both: 

(1) a set of statistical parameters that define frequency domain versions of C M 1-8 and 

(2) a frequency domain channel response simulator. Comparison of the distribution of 

RMS delay spreads associated with the original training data and simulated channel 

responses shows good agreement. Further, we demonstrate the utility of the AR-FD 

approach by using it to interpret UWB channel response data collected within an aircraft 

passenger cabin and by using AR-FD model parameters as features in the comparison and 

classification of UWB channel responses collected in different environments. 
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Chapter 1 

Introduction 

1.1 General Background and Motivation 

Since FCC released a ruling about unlicensed use UWB in 3.1-10.6GHz band in Feb 

2002, UWB has emerged as the de facto basis for next generation of short range wireless 

communication technology. The large bandwidth, defined as bandwidth larger than 

500MHz or 20% of the carrier frequency, is intended to provide efficient use of scarce 

radio bandwidth while enabling high speed short range data link and energy efficient 

sensor network. The strength of UWB radio lies in its advantages of providing i) high 

data capacity, ii) low probability of intercept and iii) high time resolution. These 

advantages will be exploited by future generations of Bluetooth personal area network 

technology with support for high speed data transfer, future generations of ZigBee sensor 

network technology with support for precise positioning, future generations of the 

WiMedia standard for high speed peripheral interconnections, and a wireless extension to 

the Universal Serial Bus(Wireless USB). 

Our research presented here is to propose an autoregressive frequency domain 

channel (AR-FD) modeling technique that can be used to fairly compare alternative 

UWB signaling schemes from different sources by considering the model and model 

parameters. Specifically, we have derived the AR-FD model parameters from a vast 

database of channel impulse responses from a range of environments. The distributions of 

the AR-FD model parameters and correlations among the parameters are modeled and 

characterized statistically. On one hand, this A R channel modeling technique can be 

extended to characterize channels in unfamiliar environment, like aircraft. On the other 

hand, the proposed model parameters can be used as feature sets of UWB channel 

classifier which recognizes or compares empirical UWB channel to existing channel 
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models. In what follows, we provide general background and motivation for the specific 

research work reported. 

1.1.1 Autoregressive Frequency Domain Channel Model 

Many proposals for UWB channel models have been made since FCC released a ruling 

about UWB unlicensed use in 2002. Some contributors are interested in different 

characteristics of channels that might arise UWB applications, such as cable replacement 

in home and offices. Others might be focused on a complete statistical description of 

large and small propagation characteristics in particular environment [1]. Fair comparison 

of alternative UWB signaling schemes designed for use in different applications requires 

a statistical channel model that fairly represents channel conditions in typical 

environments. 

IEEE 802.15.3a task group were formed to develop standards for high data rate 

wireless personal area network (PAN). The subgroup identified a set of criteria that fairly 

compares channel models in typical indoor scenarios, like office and residential 

environment. The model adopted by the 3a task group was the "classic S-V" time domain 

model [5] which captures the tendency of multipath components to form clusters. This 

model appears to be a good fit for channel measurements; however, it has several 

limitations: i) the range considered was less than 10 meters, limiting the usability of the 

model ii) extraction of the cluster parameter in the S-V model was somewhat ambiguous. 

In particular, from the system design perspective whether to consider power delay profile 

(PDP) as a superposition of several closely spaced clusters or as a single cluster is 

arbitrary [4]. 

The 4a task group extended the standard channel models to some environments and 

applications which 3a did not cover or envision. The resulting model is a "mixed S-V" 

model with parameters defined for residential, office, industrial and outdoor (farm) 

environment in the 3-10GHz band [3]. The application focused by 4a group is low data 
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rate and geolocation capable sensor network. Like 3a, 4a model is based on extensive 

measurement campaigns, except for outdoor environment (which based on simulation 

only). Even though several improvements have been made from 3a standard model, 4a 

has limitations of its own: i) some underlying measurements did not cover the 3-10GHz 

band, restricting the validity range of the models, ii) more parameters are used to model 

the shape of PDPs, adding complexity of existing model. 

Overall, 3 a and 4a's channel impulse responses (CIRs) models are the preferred 

channel representations for assessing the performance of signaling scheme such as direct 

sequence ultrawideband(DS-UWB). However with the advent of multi-band orthogonal 

frequency division multiplexing (MB-OFDM) and related schemes, channel frequency 

responses (CFR) models are becoming more pertinent. Moreover, CFR model offer three 

significant advantages over CIR models: (1) compared to CIR models, CFR models are 

often much simpler and can often be characterized in a more compact form [12]. (2) Most 

UWB measurements are collected as channel frequency responses using a vector network 

analyzer (VNA). Estimating CFR model parameters directly from CFR data avoids 

expensive operations such as the inverse Fourier transform and deconvolution. (3) CFR 

model does not require subjective input, namely number of clusters. 

CFR modeling has been done over the years [8]-[10], some do not have a complete 

statistical description of the channel model; others used too many parameters. Howard 

and Pahlavan pioneered statistical wide band FD modeling in office channel using 

autoregressive approach in the late 80s. They showed that characterizing wideband 

channel using A R approach was easy to set up. Moreover, fewer parameters are used in 

the A R than conventional time domain models. Ghassemzadeh et al. further proved A R 

applicability in the UWB context in residential environment. In his work, 30,000 power 

delay profiles were collected in 23 homes to derive the FD channel parameters. The 

common drawbacks of Howard and Ghassemzadeh's work are: (1) the modeling is done 

for a specific environment; thus, how autoregressive model parameters vary from one 

environment to the other is unknown. (2) For channel simulation, Howard proposed three 

different ways of generating frequency domain channel parameters, but eventually he 

3 



chose to stick to a simple assumption that the autoregressive poles are independent and 

Gaussian distributed. In Ghassemzadeh's work, he showed that the A R poles envelopes 

and phases were strongly correlated but correlations among other model parameters (i.e. 

correlation between observation noise and A R poles) were not fully exploited. 

Motivated by the constraints of previous CIR and CFR models, we propose to study 

all 4a documented channel models using AR-FD methods, include 

• CM1 Residential LOS 

• CM2 Residential NLOS 

• CM3 Office LOS 

• CM4 Office NLOS 

• CM5 Outdoor LOS 

• CM6 Outdoor NLOS 

• CM7 Industrial LOS 

• CM8 Industrial NLOS 

Through the study of standard channel models, we want to determine the order of the 

AR-FD model most appropriate to each channel model, to use distribution of the poles 

from AR-FD model to interpret physical significance and diversity of poles in each case, 

to determine statistical distributions that best describes AR-FD model parameters and to 

assess the suitability of the AR-FD approach in each of the eight cases by comparing 

channel condition parameters like RMS delay spread. 
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1.1.2 Aircraft Frequency Domain Channel Model 

Most UWB channel modeling efforts have emphasized on characterizing time domain 

model parameters for conventional indoor environments, including residential, office, 

industrial and outdoor [l]-[7]. Aircrafts seem to be the last remaining environment where 

mobile communications and Internet access are not available. Some comparisons can be 

drawn between aircraft channel and existing underground subway channel model [15] 

because they are both tunnel-like. However, the physical dimension, scattering 

environment and presence of human activity make aircraft environment quite different 

from any of the previous modeled environments. A variety of studies have been 

conducted on wireless communication and multimedia data networks inside aircraft 

cabins. Previous studies [16]-[19] have emphasized i) field trials for passenger-carried 

electronic devices (i.e. cell phones), wireless L A N , and Bluetooth wireless technology ii) 

using simulation tools such as shooting and bouncing ray method to predict power 

propagation within aircraft cabin or using commercial off-the-shelf simulation tools "Site 

Planner" and "Wireless Insite" to emulate an aircraft cabin propagation environment in 

the absence of internal components (i.e. windows and overhead cargo bins) iii) 

measurement of RF coverage using client devices. In one instance, a measurement based 

in-flight channel characterization was done in the UMTS downlink band [14]. Overall, 

studies of measurement based channel characterization on aircraft cabin are scarce. 

With an increase demand for in-flight services that provide passenger entertainment 

or business experience on board, it is very important to have a valid in-cabin channel 

characterization. In this work, we propose using the AR-FD technique to analyze aircraft 

channel in the 3.1 to 10.6 GHz. We derive the AR-FD channel parameters. The model 

can be used by system deployment of multimedia streaming or sensor network onboard. 

We use the AR-FD parameters to compare characteristics of aircraft channels with those 
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of conventional channels. Finally, we present accurate analysis of the channel condition 

parameters including RMS delay spread and coherence bandwidth. 

1.1.3 AR-FD based Channel Classifier 

A rich set of measurement data is often desirable from a modeling perspective; however, 

size and variety of database pose some serious challenges. The existing mixed S-V model 

incorporates detailed structures of multipath components (MPCs) as a function of time 

delay. To complete describe a new channel (from new environment or from new 

experiment setup) statistically, system designers need to characterize a set of time domain 

parameters, namely inter cluster arrival rate, ray arrival rate, cluster decay factor and etc, 

of over 10 parameters. Regardless that it takes considerable time and efforts to 

characterize S-V model parameters, they do not vary significantly from one environment 

to the other. Thus, there is no easy way to comment on different channel conditions based 

on the mixed S-V model parameters. 

Some efforts have been devoted to use 4 t h order statistics kurtosis, mean excess delay 

and rms-delay spread to identify NLOS channels from aggregated UWB channels for 

localization applications [20]. The method only gives us information about existence of 

obstacles between transmitter and receiver. No comparison can be drawn between new 

channel and existing channel models. In particular, whether it makes sense to add newly 

collected database to existing channel or to a new model remains unanswered. 

Autoregressive model parameters is widely used as features for characterizing 

different classes of music, E E G signals and sensor array processing . In this work, we 

show that using statistically characterized AR-FD model parameters can classify UWB 

channel into different classes. The classes are environment dependent. This estimation 

and classification of channel parameters belonging to a particular modeled environment 

will allow better understanding of channel propagation in that particular environment. 

This work will also help system designers to make a fair comparison of channels in 
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extreme or new environment, such as aircraft cabins or underground mines, with 

conventional channels. 

1.2 Thesis Outline 

The thesis is organized as follows. Chapter 2 proposes autoregressive frequency domain 

equivalent model for all 4a documented environments and chapter 3 demonstrates AR-

FD model's applicability in aircraft channels with detail analysis of physical significance 

of channel parameters. In chapter 4, we propose an AR-FD parameter based classifier for 

distinguishing UWB channels from different environment. Finally, chapter 5 concludes 

the work and outlines future research interests and challenges. 
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Chapter 2 

Frequency Domain Analysis of the IEEE 802.15.4a 
UWB Channel Models 

2.1 Introduction 

'in just over four years, ultra wideband (UWB) signaling has emerged as the de facto 

basis for the next generation of short range wireless communications technology 

including high speed short range data links and energy efficient sensor networks. The 

extremely wide bandwidth of UWB signals offers several advantages including: (1) high 

data capacity, (2) low probability of intercept by and interference to conventional wide 

band receivers and (3) high temporal resolution. These advantages will be exploited by 

the WiMedia radio platform for high speed peripheral interconnection, future generations 

of Bluetooth personal area network technology with support for high speed data transfer, 

a UWB-based wireless extension to the Universal Serial Bus (Wireless USB) and future 

generations of ZigBee sensor network technology with support for precise positioning. 

Fair comparison of alternative UWB signaling schemes designed for use in such 

applications requires a set of statistical channel models that fairly represent channel 

conditions in typical environments. The standard channel models for residential and 

office environments that were developed by the IEEE 802.15.3a task group and extended 

to industrial and outdoor environments by IEEE 802.15.4a are based upon statistical 

analysis of a vast database of channel impulse responses (CIRs) collected by a large 

group of researchers from industry and academia [1][2]. Eight CIR models, designated 

C M 1-8, capture the response of line-of-sight and non-line-of-sight channels in each of 

the four environments. Because the bandwidth of the UWB channel is so wide, the time 

' A version of this chapter will be submitted for publication: N. Xin and D. G. Michelson, "Frequency Domain Analysis of the 
IEEE 802.15.4a UWB Channel Models," to IEEE Transaction on Vehicular Technology, Oct. 28, 2007 
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resolution of UWB CIRs is extremely fine. As a result, a great deal of structure, including 

the tendency for multipath components (MPCs) to form clusters in the manner first 

observed by Saleh and Valenzuela [3], can be observed in a typical UWB CIR. 

Estimation of the statistical distributions of the many parameters that define CIR-based 

UWB channel models is fairly difficult and requires considerable time and effort. 

Channel impulse responses are the preferred channel representation for assessing the 

performance of signaling schemes such as direct sequence ultra-wideband (DS-UWB). 

However, with the advent of multi-band orthogonal frequency division multiplexing 

(MB-OFDM) and related schemes, channel frequency response (CFR) models are 

becoming more pertinent. An indirect approach to CFR modelling involves taking the 

Fourier transform of responses generated from a CIR-based channel model. However, 

"native" CFR models that are derived directly from measured frequency response data 

offer two potential advantages over those derived from CIR models. First, compared to 

CIR models, native CFR models are often much simpler and can often be characterized in 

a more compact form with fewer parameters. Second, most researchers collect UWB 

channel response data in the form of complex frequency responses using a vector network 

analyzer-based measurement system. Estimating CFR model parameters directly from 

CFR data avoids the need to convert the response to a CIR and apply a host of other 

processing steps with their attendant complications and subjectivity. 

Various methods for realizing wide-band and UWB frequency domain channel models 

have been proposed in recent years including techniques based upon sampled finite-

impulse response filters, minimum-norm estimators and autoregressive frequency domain 

(AR-FD) methods [4][5][6]. Previous work in [5] and [6] has focused on estimation of 

the AR-FD model parameters and investigation of some of their properties. Here, we take 

the next step and demonstrate how one can develop complete statistical models of the 

AR-FD model parameters and use them to represent and, importantly, simulate the 

frequency response of a UWB channel. For convenience, we have demonstrated the 

technique using the C M 1-8 channel models but our method is applicable to any set of 

frequency domain channel response data that one might collect in a given environment. 
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We take the following approach. First, in the manner of previous AR-FD channel 

modeling studies, we generate many instances of the channel response, estimate the AR-

FD model parameters for each one, and then apply the Akaike Information Criterion 

(AIC) to determine the appropriate model order. We then determine the precise form of 

both the marginal distributions that best describe each of the AR-FD parameters and their 

mutual correlation. The result allows us to specify both: (1) a set of statistical parameters 

for the frequency-domain versions of C M 1-8 (that we refer to as CFR 1-8) and (2) a 

simulator that allows us to generate multiple sets of the AR-FD model parameters that we 

can apply to an AR-FD frequency response simulator. Finally, we confirm the fidelity of 

the CFR 1-8 models by generating thousands of frequency responses, converting each 

one to a channel impulse response, and then comparing the corresponding RMS delay 

spread distributions with those of the C M 1-8 CIRs upon which our model is based. 

The remainder of this paper is organized as follows: In Section 2.2, we review the 

essential aspects of the AR-FD channel model. In Section 2.3, we use AR-FD techniques 

to analyze the C M 1-8 channel responses and determine the model order that best 

represents each of the eight scenarios. In Section 2.4, we present expressions for the 

marginal distributions of the AR-FD model parameters applicable to each scenario and 

our estimates for their mutual correlation in each case. In Section 2.5, we show how to 

generate the AR-FD model parameters applicable to a given scenario given their marginal 

and joint distributions and assess the fidelity of the results. In Section 2.6, we summarize 

our major contributions. 

2.2 Essen t i a l A s p e c t s of the A R - F D Channe l M o d e l 

2.2.1 Form of the Model 

Autoregressive methods allow us to express a complex frequency response of span A/that 

has been sampled at intervals fs at a location x and time t as 

12 



p 
H{fk A x) + Z afiWk-t ,r,x) = U (fk, t; x) (2.1) 

1=1 

whereH(fk,t;x) is the kth sample of the complex frequency response at location x, a.is 

the A R coefficient of the (k-i)th frequency taps and U(fk,t;x) is the white Gaussian noise 

added to the kth sample (as in Figure 2.1). 

Application of the autoregressive frequency domain (AR-FD) modeling approach is 

based upon the following assumptions: (1) the mean value of the response is flat across 

the span, (2) the sampling interval is sufficiently fine that the amplitude and phase of a 

given frequency component is correlated with those of the frequency components that 

precede it and (3) the coherence bandwidth (and the frequency autocorrelation function) 

remains constant across the entire frequency span. 

The AR-FD approach allows us to synthesize a complex channel frequency response by 

representing the amplitude and phase of a given frequency component as the output of a 

filter of order k that combines the weighted sum of the k frequency components that 

immediately precede it with a white complex Gaussian random variable of specified 

variance, as depicted in Figure 2.2. 

H{fk,t;x) 

Figure 2.1 kth. order A R Filter 
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Figure 2.2 AR-FD analysis and synthesis 

The transfer function of such a filter G(z) is given by 

G(z) = - 1 

1=1 

(2.2) 

or in terms of the poles of the response {/?,•}, as 

° ( z ) = - " (2.3) 

i=l 
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The two representations are equivalent, but the poles have greater physical significance 

because they can be interpreted as an indication of significant cluster arrivals. 

An AR-FD channel model of order k has 2k+\ parameters: (1) the amplitude and 

phase of the k poles (or the k AR coefficients), (2) the real and imaginary parts of the k 

initial conditions {i.e., the values of the first k components of the complex frequency 

response) and (3) the variance of the complex white Gaussian noise that drives the filter 

G(z). The values of the AR coefficients and the variance of the driving noise are 

estimated from sample channel frequency responses or training data using the Yule-

Walker equations. If the variance of the driving noise is otherwise set too high, the AR-

FD-generated CFR will exhibit sharper peaks than the true CFR [8]. 

The requirement that the mean of the frequency response be flat with frequency is a 

limitation that must be addressed when AR-FD techniques are used to model the 

frequency response of UWB channels. In practice, the frequency dependence of path loss, 

where K is the frequency dependent path loss exponent, must be removed before the AR-

FD parameters are estimated and re-applied to UWB frequency responses that have been 

generated by an AR-FD-based frequency response simulator. 

2.2.2 Estimation of the AR Model Parameters for CM 1-8 

Our approach to estimation of the parameters of the AR-FD channel models that 

correspond to channel models C M 1-8 involves three steps. First, we used a simulator 

developed by the IEEE 802.15.4a channel modeling committee to generate 8320 

independent realizations of the CIR for each of the eight scenarios captured by the 

models, and then we converted each of them to CFRs by applying a Fourier transform. 

Next, we used the Yule-Walker equations to estimate the A R coefficients and the 

variance of the driving noise for model orders of 1 through 7. Together with the initial 

(2.4) 
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conditions, i.e., independent estimates of the first k frequency components of the CFR, 

they comprise the complete set of AR-FD model parameters that characterize the channel 

response. Finally, we applied the Akaike Information Criterion (AIC) to select the most 

appropriate model order for each scenario, as described in the next section. 

The frequency sampling interval fs between the components of the CFR is determined 

by the length T m a x of the CIR. Ideally, would be identical for all cases considered but, in 

practice, this is generally not the case. Due to an idiosyncrasy of the IEEE 802.15.4a CIR 

generator, 7 m a x varies between different instances of the same scenario so we need to 

either zero pad or truncate the CIRs as required so that all of the CIRs have the same 

length. Here, we use the zero pad approach in order to preserve the integrity of the CIRs. 

Second, the T m a x of the C M 1-8 models vary over an order of magnitude between 

scenarios so it's impractical to use the same interval fs for all CIRs. This affects the 

scaling of the phase angle of the filter poles and must be accounted for when interpreting 

plots of the pole locations in the z-plane. The values of T m a x that we used for residential, 

office, outdoor and industrial environments are given in Table 2.1. 

Table 2.1 Typical Maximum Excess Delays for CM1 to CM8 

Tmax (ns) Residential Office Outdoor Industrial 
LOS 331 994 657 212 

NLOS 276 165 1093 841 

2.3 A R - F D Mode l Parameters 

2.3.1 Model Order Selection for CM 1-8 

Selection of the appropriate model order represents a tradeoff between accuracy and 

complexity. The best value is not generally known a priori and must be determined by 

using the Akaike Information Criterion (AIC) to compare the frequency autocorrelation 
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function associated with the original data to the simplified representation associated with 

a given model order [7]. 

In [6], it was found that a second order AR process was the best choice for modeling 

the UWB channel response in residential environments. Applying the AIC criterion to 

select the appropriate model order for the other environments considered by IEEE 

802.15.4a involves minimizing the information theoretic function 

AIC = \0g(V) + ^- (2.5) 

1 N 

with V = d e t ( T 7 Z £ ( / ' °N ( * ) ) * ( / » AN (k)f ) (2.6) 
TV j 

and V is the variance of prediction error, k is the order of the process, N is the number of 

data points in the CFR, and e is the residual error between the estimated and actual 

autoregressive coefficients for a k order process The term 2k/N penalizes the use of 

additional A R coefficients if they do not substantially reduce the prediction error. 

The manner in which AIC values decrease as the model order increases for the eight 

scenarios captured by C M 1-8 is listed in Table 2.2 and depicted in Figure 2.3. In most 

cases, we find that channels in LOS environments tend to be much more accurately 

represented than those in the corresponding NLOS environments. However, while the 

difference is most striking in the office environment, and is less so in the residential and 

industrial environments, it is negligible for outdoor environments. 

Table 2.2 AIC in Different Environments 

AR Residential Residential Office Office Outdoor Outdoor Industry Industry 
Order LOS NLOS LOS NLOS LOS NLOS LOS NLOS 

1st -10.2074 -9.6111 -14.6264 -8.8150 -11.3972 -10.9579 -10.7101 -9.9612 
2°^ -11.4863 -10.5161 -16.7810 -9.5682 -13.0439 -12.4160 -12.2085 -10.4001 
3"* -12.0984 -10.9927 -16.9462 -9.9748 -13.9809 -13.5598 -12.6770 -10.6170 
4 * -12.3437 -11.2666 -17.0323 -10.2202 -14.3278 -14.2030 -12.8308 -10.7427 
5"1 -12.4696 -11.4369 -17.0878 -10.3807 -14.4785 -14.5245 -12.9089 -10.8234 
6* -12.5491 -11.5454 -17.1247 -10.4849 -14.5784 -14.7073 -12.9575 -10.8790 

-12.6017 -11.6161 -17.1505 -10.5494 -14.5676 -14.8230 -12.9910 -10.9194 
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The relationship between prediction error and the model order is depicted in Figure 

2.3. As expected, the prediction error diminishes with increasing model order, but the 

order required to minimize the prediction error is highest for outdoor environments, less 

so for residential, office NLOS and industrial LOS environments, and least for industrial 

NLOS and office LOS environments. In all cases, the prediction error is less than 10"4 as 

long as the model order is at least 2. For the remainder of this paper, we restrict ourselves 

to using second order AR-FD models to represent all eight C M models. 

Figure 2.3 AIC and Prediction Error vs A R Order 
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2.3.2 Pole location, dispersion and physical interpretation 

The locations of the autoregressive poles accounts for four of the nine parameters of a 

second-order AR-FD model. The eight autoregressive pole distributions plotted in Figure 

2.4 and Figure 2.5 correspond to the LOS and NLOS scenarios in residential, office, 

outdoor, and industrial environments, i.e., C M 1-8. As noted earlier, each is each based 

upon 8320 simulated UWB channel impulse responses that have been transformed to the 

frequency domain. 

If the poles are close to the unit circle, the corresponding clusters carry significant 

energy. If the poles are close to the origin, the corresponding clusters carry lower 

energies. The positive real axis corresponds to a time delay of zero; from there, time 

delay increases clockwise. By the bilinear transform, the angle of a pole is 

where fs is the interval between adjacent frequency components. The time delay at which 

the pole appears can be obtained from the pole phase 

Because rmax - llfs is different for each of the eight C M models, as explained in the 

previous section, the angular distribution of the poles must be interpreted carefully. 

The results given in Figure 2.4 show that the pole distributions for the C M 1-4 models 

(residential and office environments) are similar to those observed by Howard and 

Pahlavan [4] and Ghassemzadeh et al. [6]. For residential LOS channels, the first pole 

magnitude falls in the range 0.76 and 0.99 while the magnitude of the second pole falls in 

the range of 0.32 to 0.97. For the office LOS environment, the magnitude of the first pole 

is usually greater than 0.93 and the magnitude of the second pole falls between 0.36 and 

0.99. For the office NLOS scenario, the variances of the first and second poles are very 

similar. Otherwise, the second poles tend to have a larger variance than the first poles 

(2.7) 

-Zp -Zp 

£>s 27Tfs 

(2.8) 
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with the difference being more apparent in the LOS case. This suggests a possible method 

for distinguishing LOS and NLOS channels based upon features derived from CFR data. 

The results given in Figure 2.5 show the pole distributions for the C M 5-8 models 

(outdoor and industrial environments). In the outdoor environment, we observe similar 

pole distributions as in the indoor environment. The poles for the outdoor NLOS 

environment are mostly concentrated in the third quadrant. These poles, which occupy 

one third of the unit circle, are the result of scattering from distant objects. The 

distribution of the A R poles for the C M 8 Industrial NLOS model is very much narrower 

than that of the other seven models. The difference is so striking that it suggests that C M 

8 may be based on too limited a sample of CIR data or that the data used may have been 

collected at too few locations. Further investigation of the Industrial NLOS scenario is 

therefore warranted. 
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Figure 2.4. Distribution of AR-FD pole locations for LOS and NLOS cases of the 
residential and office environments. (Dark points - first pole locations, light point 
second pole locations.) 

21 



-1 -0.5 0 0.5 1 
Real Part 

a) C M 5 Outdoor LOS 

-1 -0.5 0 0.5 1 
Real Part 

b) C M 6 Outdoor NLOS 

1 

0.5 

-1 -0.5 0 0.5 1 
Real Part 

c) C M 7 Industrial LOS 

/ 

* »j 

-1 -0.5 0 0.5 1 
Real Part 

d) C M 8 Industrial NLOS 

Figure 2.5 Distribution of AR-FD pole locations for LOS and NLOS cases of the outdoor 
and industrial environments. 
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2.4 A R - F D Mode l Parameters Dis t r ibut ion 

With thousands of instances of the AR-FD model parameters for each of the C M models 

on hand, our next step was to determine: (1) the marginal distributions that best describe 

each of the parameters and (2) the mutual correlations between the parameters. In each of 

the 72 cases (nine parameters times eight scenarios), we began by determining whether a 

given parameter in a given scenario followed a normal distribution. If it didn't, we 

conducted further tests to determine whether it followed a more exotic distribution. In 

each case, we used the Kolmogorov-Smirnov test to assess goodness-of-fit at a 

significance level of 0.01.AR-FD Poles. 

2.4.1 Marginal Distribution of the AR-FD Poles 

The results of our efforts to characterize the marginal distributions of the magnitude and 

phase of the autoregressive poles are presented in Table2.3. In all cases, we require two 

parameters to specify each of the distributions. Of the sixteen first and second pole 

magnitude distributions considered, two followed a normal distribution with a density 

function given by 

1 (*-,")2 

f(x\ju,a) = r— e 2°2
 ( 2 . 9 ) 

where [i and a > 0 are the mean and standard deviation, respectively. Two followed a 

Weibull distribution with a density function given by 

A 

x 

\Aj 

-{xlXf 
(2.10) 
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where x > 0 and k > 0 and A > 0 are the scale and shape parameters, respectively. Five 

followed the log-Weibull distribution with a density function given by 

f(\Pi\\a,P) = P e x P 1 ~„ e x P ( ^ ) (2.11) 

where a and /? > 0 are the location and scale parameters respectively. Seven followed a 

beta distribution with a density function given by 

d-\p2\r-i\p2r 
f(\p2\\a,P) = 

where a and p are the shape factors and 

B(a,f3) 

B(a,/3) 
(2.12) 

T(a + f3) • (2-13> 

Of the sixteen pole phase distributions considered, four followed a normal distribution, 

eight followed the log-Weibull distribution and four followed a logistic distribution given 

by 

f(x\ju,s) = -f-sech2 

4s 

1 , x-ju^ 

2s (2.14) 

where p and s > 0 are the location and scale parameters, respectively. 
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Table2.3 A R - F D Model Parameters for CFR1 to C F R 8 

Environment Parameter Distribution 0 R 
Residential toil E.V. 0.97902 0.0126811 

LOS IP2I E.V. 0.907689 0.0384309 

ANG(pi) E.V. -0.112781 0.0691762 

ANG(p2) E.V. -0.823681 0.200563 

Residential IPil E.V. 0.956557 0.0206694 

NLOS IP2I Weibull 0.830912 20.1068 

ANG(p,) E.V. -0.334411 0.162197 

ANG(p2) Logistic -1.4209 0.143231 

Office IPil Beta 291.06 1.83643 

LOS IP2I Beta 12.0806 1.13572 

ANG( P l) E.V. -0.0280643 0.0103262 

ANG(p2) Logistic. -0.198357 0.0825399 

Office IPil E.V. 0.937549 0.0187299 

NLOS IP2I Weibull 0.798975 20.1621 

ANG(p,) Logistic -0.352289 0.0465455 

ANG(p2) Logistic -1.44995 0.0835703 

Outdoor |p,l Beta 110.201 2.0347 

LOS IP2I E.V. 0.924297 0.0424312 

ANG(p,) E.V. -0.080478 0.0406996 

ANG(p2) Normal -0.899339 0.219821 

Outdoor |p,l Beta 34.8605 1.53616 

NLOS IP2I Beta 8.07804 1.30163 

ANG(pi) E.V. -0.394444 0.135074 

ANG(p2) Normal -1.52237 0.467246 

Industrial IPil ' Beta 55.9055 0.92936 

LOS IP2I Beta 11.7672 1.62909 

ANGCp,) E.V. -0.0402077 0.0348511 

ANG(p2) E.V. -1.00777 0.455724 

Industrial lp,l Normal 0.883227 0.0054326 

NLOS lp2l Normal 0.674853 0.0097030 

ANGfp,) Normal -0.504287 0.0155721 

ANG(p2) Normal -1.86243 0.0254698 
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2.4.2 Marginal Distribution of the Initial Conditions 

The real and imaginary parts of the initial conditions for the eight scenarios all follow 

normal distributions. The mean and variance corresponding to each case are given in 

Table 2.4. In all cases, the means are two orders of magnitude less than the corresponding 

standard deviations and are therefore well approximated by zero. For a particular 

environment, the standard deviations of the real and imaginary parts of the initial 

conditions are essentially identical. This reduces the number of unique parameters 

required to specify the marginal distributions of the initial conditions in a given scenario 

to just one. 
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Table 2.4 Marginal Distributions of the Initial Conditions 

Scenario Parameter a 
Residential LOS Re {Hi} -3.56e-5 5.79e-3 

Im{H,} 7.58e-5 5.79e-3 
Re{H2} -1.49e-5 5.76e-3 
Im{H2} 2.93e-5 5.76e-3 

Residential NLOS Re{H,} -4.85e-5 2.73e-3 
Im{H,} -1.18e-5 2.75e-3 
Re{H2} -6.48e-5 2.71e-3 
Im{H2} 1.56e-5 2.75e-3 

Office LOS Re{H,} 1.69e-5 7.97e-3 
Im{H,} 6.22e-5 7.97e-3 
Re{H2} 1.55e-5 7.97e-3 
Im{H2} 5.34e-5 7.96e-3 

Office NLOS Re {Hi} -1.35e-4 1.22e-2 
Im{H,} 2.49e-4 1.23e-2 
Re{H2} 8.36e-5 1.22e-2 
Im{H2} 2.79e-4 1.24e-2 

Outdoor LOS Re {Hi} 2.53e-4 9.48e-3 
Im{H,} 1.51e-4 9.47e-3 
Re{H2} 3.59e-4 9.47e-3 
Im{H2} 1.01e-4 9.52e-3 

Outdoor NLOS Re{H,} -3.11e-5 7.33e-3 
Im{H,} 1.47e-4 7.51e-3 
Re{H2} 1.12e-4 7.37e-3 
Im{H2} 9.51e-5 7.51e-3 

Industrial LOS Re{H,} 6.86e-5 1.25e-2 
Im{H,} 1.77e-4 1.26e-2 
Re{H2} 1.15e-4 1.25e-2 
Im{H2} 1.42e-4 1.26e-2 

Industrial NLOS Re{H,} -4.32e-5 4.60e-3 
Im{H,} 3.77e-5 4.64e-3 , 
Re{H2} 1.94e-4 4.72e-3 
Im{H2} 2.41e-5 4.65e-3 



2.4.3 Marginal Distribution of the Variance of the Driving 

Noise 

In most scenarios, the variance of the driving noise is lognormally distributed. However, 

the exponential distribution provides a much better fit for the outdoor NLOS and 

industrial LOS environments. The distributions and the corresponding parameters that 

apply to each of the eight C M scenarios are given in Table 2.5. 

Table 2.5 Marginal Distributions of the Varaince of Driving Noise 

Scenario Distribution a 
Residential LOS logn -11.6377 0.808253 

Residential 
NLOS 

logn -10.7521 0.440403 

Office LOS logn -16.8811 0.9636 
Office NLOS logn -9.6782 0.3712 
Outdoor LOS logn -13.2402 0.833459 

Outdoor NLOS exp 6.061e-6 -
Industrial LOS exp 6.147e-6 -

Industrial NLOS logn -10.5998 0.0346458 

2.4.4 Dependency between Model Parameters 

Knowledge of the marginal distributions of the model parameters is necessary but not 

sufficient for the purposes of simulating the parameters. We must also capture the 

dependencies of the parameters on one another. Previous work that was conducted in 

residential environments and reported in [6] has shown that: (1) the initial conditions and 

the variance of the input noise are uncorrelated, (2) the poles and initial conditions are 

uncorrelated, but (3) the pole magnitudes and phases are correlated. Here, we examine 

the mutual dependencies in greater detail and for all eight C M scenarios. First, we 

calculated the linear mutual correlation coefficients between all nine parameters of the 

AR-FD model for each of the eight scenarios. Although the linear correlation coefficient 
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is most descriptive when the parameters are normally distributed, it still conveys useful 

information when they are not, as we shall show in the next section. 

The results presented in Table 2.6 for C M 1 are typical. In each case, we discovered 

that the real and imaginary parts of the initial conditions are correlated with each other 

but not with the other five parameters. Thus, the initial conditions form an independent 

set. Because they are all normally distributed, they are completely described by a four-

element mean vector and a four-by-four covariance matrix. Given the results of the 

previous section, we conclude that the initial conditions are completely characterized by 

just seven parameters: six mutual correlation coefficients and one standard deviation. 

The remaining five model parameters are correlated with each other but, in general, 

are not normally distributed. While this greatly complicates the matter of modeling their 

mutual dependencies, Sklar's theorem teaches us that given joint multivariate distribution 

functions and the relevant marginal distributions, there exists a copula function that 

relates them. The copula method that is based upon this theorem provides us with a 

method for capturing the mutual dependencies in a form useful in simulation. Although 

not yet widely used in science and engineering, it has become a mainstay of dependency 

analysis in finance and economics [9] [10]. We describe this approach in more detail in 

Section 2.5. 
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Table 2.6 Correlation between AR-FD Model Parameters for CM1 

4>2 "o 
0.5595 0.2039 -0.6622 

0.0902 0.4616 -0.4756 

-0.0924 -0.3443 

-0.0924 -0.6859 

Re{//,} Re{//2} Im{//,} Im{//K 

0.2384 

0.2384 

0.5595 0.0902 

0.2039 0.4616 

-0.6622 -0.4756 -0.3443 -0.6859 

-0.0259 0.0030 

-0.0307 0.0021 

-0.0115 0.0017 

-0.0031 0.0001 

-0.0254 0.0128 

-0.0297 0.0078 

-0.0174 0.0019 

-0.0089 0.0086 

0.0103 

0.0175 

0.0083 

-0.0025 

-0.0259 

0.0030 

-0.0254 

0.0128 

0.0103 

-0.0307 

0.0021 

-0.0297 

0.0078 

0.0175 

-0.0115 

0.0017 

-0.0174 

0.0019 

0.0083 

0.9267 0.0060 

0.2022 

0.9281 

-0.0031 

0.0001 

-0.0089 

0.0086 

-0.0025 

2.5 A R - F D Parameter S imula tor 

The results of the preceding section provide us with a strategy for designing an AR-FD-

based simulator for the frequency domain equivalent of the C M 1-8 models. First we use 

the standard techniques that apply to jointly Gaussian random variables to generate a 

random sequence of state vectors whose elements have the same first-order statistics as 

the initial conditions {Hi}. Next, we use the copula method to generate a random 

sequence of state vectors whose elements have the same first-order statistics as the 

variance of the driving noise and the locations of the autoregressive poles. The two halves 

of the AR-FD model parameter vector are then applied to an AR-FD frequency response 

generator that consists of a second order filter G(z) that is driven by a complex Gaussian 

white noise source, as described in Section 2.2. The resulting set of channel frequency 

responses has the same first-order statistical properties as those of the original training 

data. 
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2.5.1 Simulation of the Initial Conditions 

We begin by generating a random sequence of state vectors H whose elements have the 

same first-order statistics as the real and imaginary components of the initial conditions 

observed in the original training data. First, we generate a vector U that contains four 

independent sequences of Gaussian distributed random numbers with zero mean and unit 

variance. Applying the transformation 

L ici rvc ^2.15) 

where p/c and [C/c] are the mean vector and covariance matrix, respectively, that 

describe the initial conditions, yields the desired result. 

2.5.2 Simulation of the Pole Locations and the Variance of the 

Driving Noise 

Our next step is generate a random sequence of state vectors P whose elements have the 

same first-order statistics as the magnitude and phase of the autoregressive poles and the 

variance of the driving noise associated with the original training data. First, we denote 

the magnitude and phase of the poles and the variance of the driving noise, 

{|/71|,|p2|,^Pi»'^P2»Mo}' a s t n e random variables {si, ...S5}. According to Sklar's theorem, if 

F(si, S5) is an five-dimensional joint distribution function, and each random variable, 

Si, ;=/,...5 has a marginal distribution specified by Fi(s{), ..., F5(s5), there exists an 5-copula 

C such that for all s,, ,•=/,...5 in R5 

F(sY ,...s5) = C(Fl(sl),...F5 (s5)) (2.16) 

If F\(s\).. .Fn(sn) are continuous, then C is uniquely defined. By a change of variables, the 

copula can be expressed as 
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for any u [0 l] 5 . 

C(w1,...,w5) = Pr(F1 \ul),...Fn \u5)) (2.17) 

2.5.3 Gaussian copula and Spearman's Rho 

The precise form of the copula function depends upon the form of the marginal 

distributions. If the marginal distributions are Gaussian, the Gaussian copula applies. 

Multivariate student-t distributions will lead to the t-copula. Other combinations of 

distributions will be characterized by their own copula functions. However, all copula 

functions behave identically in the limit as the correlation between the variables 

approaches either 1 or -1. Although the best results are obtained using the ideal copula 

function, acceptable results can often be obtained by using a simpler function. 

Here, we used the Gaussian copula. A Gaussian copula with specified correlation 

matrix Ks is defined by 

C(uxu5) = (j)5

Ks (0f 1 ( « ! ) , . . . ^ 5

_ 1 (u5)) (2.18) 

The elements in the correlation matrix Ks are the mutual linear correlation between the 

two random variables. The linear correlation Ks fully specifies the dependency structure 

of elliptical distributions, such as the Gaussian and t-distributions. For copulas with non-

elliptical distributions, one must generally use rank correlation instead. The most widely 

accepted rank correlation is Spearman's rho, which can be expressed via 

psp = Corr(Fx(sx),..F5(s5)) (2.19) 
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2.5.4 Simulation Steps 

To generate correlated model parameters using a Gaussian copula, we followed the 

procedure described in [10] and [11]. Assume that the parameter simulator outputs 5 

dimension parameters (s\,...55). Each 5,,=/...5 has a predefined marginal distribution F J ( S J ) , 

and the underlying dependency is characterized by linear correlation matrix Ks. The steps 

for generating dependent random variables are as follows: 

i) We start by generating white Gaussian random variables R = (r\,...r5). The white 

Gaussian random variables have cumulative density functions (u\,...U5). Each w/,,=/,...5 

is independent and uniformly distributed in [0, 1]. Pr(«j, j = 1 > . . 5 ) = 1/N, where N is the 

number of empirical data points. 

ii) The next step is to transform the Gaussian random variables to the eigenspace defined 

by the correlation matrix. Applying decomposition to the covariance matrix Ks, we 

obtain a diagonal matrix D with eigenvalues on the main diagonal plus a matrix V with 

corresponding eigenvectors as column vectors. 

Ks = VDV~l (2.20) 
i_ 

T = V(D2) (2.21) 

rKs 

= T 

rKs J5_ 

iii)By transforming Gaussian random variables (r\,...r5) to the eigenspace specified by 

matrix V, we get multivariate Gaussian ( r ] ^ ) with dependency specified by 

correlation Ks. During the transformation, the linear correlation is preserved. The 

multivarite Gaussian random variables have marginal cumulative density functions 

(u^^.Mfc), which are also uniformly distributed. 
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iv)Applying inverse transform to ( w j ^ , . . . ^ ) with previously specified marginal 

parameter (as presented in Section 2.4.1, 2.4.2 and 2.4.3), we get random variables 

(Sl,...Ss). For example, if the specified marginal is an extreme value distributed 

random variable E V ( a i , /3i), then f, can be generated by 

sx = ft ln{- ln(l - u\s}+ ax (2.23) 

The variables (sl,...Ss) have the same marginal distributions as the modeled 
parameters and they have the specified correlation in Ks. 

2.5.5 Goodness-of-fit Test for Poles 

Copula is one way of modeling dependency between multivariate data. Finding a type of 

copula that best resemble empirical data is an active area of research [13]. Our objective 

is to verify that the Gaussian copula generated poles and the AR-FD modeled poles have 

the same statistical distribution. In the univariate case, the null hypothesis Ho, the 

simulated pole magnitudes are statistical the same as the modeled poles, can be tested by 

the Kolmogorov -Smirnov (K-S) statistic [11] 

Dn= sup \F(\pl\)-F(\pl\)\ ( 2 2 4 ) 

l/»i|e[0,l] 
where is the distribution function of copula generated poles and is the 

distribution function of the modeled poles. Some more or less satisfying techniques are 

available for testing good-of-fit for multivariate data: i) Justel et al [12] used Rosenblatt's 

transform before testing a simple GOF assumption ii) Pollard et al [14] recommended to 

form disjoint cells and use x 2 test for testing goodness of fit in each cell. For the first 

approach, it is very computational intensive to do the Rosenblatt's transform as 

dimension grows. For the c/zz-square test, it is hard to justify what is the best way of 

setting the cell boundaries. Here, we compare the results of copula-simulated poles and 
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original poles by: i) the pole plots of CM1-8 vs CFR 1-8 (Figure 2.6 and Figure 2.7)) and 

ii) the RMS delay spread derived from 4a and AR-FD model (Figure 2.8 and Figure 2.9). 

Real Part Real Part 

Tmax 
=994ns 

-0.5 0 
Real Part 

0.5 

Figure 2.6 Copula generated AR-FD pole locations for LOS and NLOS cases of the 
residential and office environments. (Dark points - first pole locations, light point -
second pole locations.) 
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Figure 2.7 Copula generated AR-FD pole locations for LOS and NLOS cases of the 
outdoor and industrial environments. (Dark points - first pole locations, light point -
second pole locations.) 
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Figure 2.8 Comparison o f R M S Delay Spreads for obtained from the estimated A R - F D 
and S-V models ( C M 1-8) 
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Figure 2.9 Comparison o f R M S Delay Spreads for obtained from the copula-regenrated 
A R - F D and S-V models ( C M 1-8) 
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2.6 Conclusion 

We have determined that the eight C M channel models developed by the IEEE 802.15.4a 

task group can all be represented with reasonable fidelity by second-order autoregressive 

frequency domain channel models. LOS environments tend to be much more accurately 

represented than the corresponding NLOS environments, but the difference depends upon 

the environment with office environments displaying the greatest difference and outdoor 

environments the least. The distribution of the A R poles for the CM8 Industrial NLOS 

model is very much narrower than that of the other seven models. The difference is so 

striking that it suggests that C M 8 may be based on too limited a sample of CIR data or 

that the data used may have been collected at too few locations. Further investigation of 

the Industrial NLOS scenario is therefore warranted. 

We have also determined the marginal distributions and mutual correlation for each 

of the nine model parameters that apply to each of the eight scenarios captured by C M 1-

8. We have shown that the parameters divide into two independent sets: the initial 

conditions form a joint multivariate normal distribution on one hand and the variance of 

the driving noise and the magnitudes and phases of the autoregressive poles form a more 

general joint multivariate distribution on the other. Using a scheme based upon copulas 

allows us generate random sequences of AR-FD model parameters that have the same 

first-order statistics as the original training data. 

Our technique for reducing the AR-FD model parameters to a statistical model 

useful in simulation can also be applied to reduction of frequency response data measured 

in new environments. Moreover, unlike schemes used to reduce channel impulse 

response data, it can likely be automated with relative ease. Although we obtained good 

results using a Gaussian copula, it would be useful to compare the performance that can 

be achieved using more sophisticated copula functions. This is a task for future studies. 
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Chapter 3 

Frequency Domain Analysis of UWB Radiowave 
Propagation within the Passenger Cabin of a 

Boeing 737-200 Aircraft 

3.1 Introduction 

With an increase demand for in-flight services that provide passengers entertainment or 

business experience on board, it is very important to have a valid in-cabin channel 

characterization. Aircraft environment is intrinsically different from conventional 

environments in the following sense: (1) geometry of the aircraft cabin is tunnel like, 

enclosed by metallic reflectors [5] (2)high density of obstacles (seats) in a conventional 

commercial aircraft suggests severe propagation conditions in such environment (3)high 

density of human presence is anticipated to introduce excess losses on the propagation 

channel. A variety of studies have been conducted on wireless communication and 

multimedia data networks inside aircraft cabins. Previous studies [8] [9][14] have 

emphasized: (1) field trials for passenger-carried electronic devices (i.e. cell phones), 

wireless L A N , and Bluetooth wireless technology (2) using ray tracing simulation tools 

such as "Site Planner" and "Wirelesslnsite" to predict power propagation within aircraft 

cabin or to emulate an aircraft cabin propagation environment in the absence of internal 

components (i.e. windows, overhead cargo bins) (3) measurement of RF coverage using 

client devices. In one instance, a measurement based in-flight channel characterization 

was done in the UMTS downlink band [14]. Overall, studies of measurement based 

channel characterization on aircraft cabin are limited to existing narrowband technologies 

except for [14]. 

2 A version of this chapter will be submitted for publication. N. Xin and D. G. Michelson, "Frequency Domain Analysis of the 
Ultrawideband Radiowave Propagation within the Passenger Cabin of a Boeing 737-200 Aircraft," to IEEE Transaction on Wireless 
Communication, Oct. 28, 2007 
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streaming as well as network access services within aircraft passenger cabin (2) 

facilitating operations and maintenance through deployment of sensor networks, 

emergency communication and precise positioning system. However, to the best of our 

knowledge, no measurement based frequency domain channel characterization has ever 

been done in the 3.1 to 10.6 GHz band. Past efforts by dedicated task groups, such as 

IEEE 802.15.3a and 4a, to develop UWB propagation models focused only on time 

domain models like the Saleh-Valenzuela (S-V) model, and their corresponding time 

domain model parameters for conventional environments such as residential, office, 

outdoor, and industrial [6]. Because aircraft cabin is a very specific environment hosting 

numerous functionalities and UWB is well known for its low interference with existing 

systems, in this paper we propose to characterize UWB channel onboard statistically in 

frequency domain using autoregressive frequency domain (AR-FD) approach. In AR-FD, 

we first estimate the autoregressive coefficients and the residual error between true and 

estimated spectra. Then, we use the characterized coefficients to find autoregressive poles 

of the system. These pole locations are discussed in detail and compared with those found 

in conventional environments documented by 802.15.4a [11]. From the AR-FD analysis, 

we derive the auxiliary channel parameters, such as RMS delay spread and coherence 

bandwidth. We show that these auxiliary parameters are statistically similar to those 

derived from measured channel responses. 

The remainder of the paper is organized in the following way: Section 3.2 gives an 

overview of the considered aircraft environment, as well as the measurement setup that 

was used to collect data. Section 3.3 describes the AR-FD model and the 

parameterization of such model. Section 3.4 describes the derived system parameters 

such as RMS delay spread and coherence bandwidth. Section 3.5 concludes the paper. 
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3.2 Measurement Setup and Loca t ions 

3.2.1 Measurement Setup and Calibration 

UWB frequency domain measurements were performed in the aircraft using an Agilent 

E8362B vector network analyzer (VNA). For point-to-multipoint(p-to-mp) setup, port A 

of the vector network analyzer was connected to the transmitting antenna through a short 

coaxial cable(as shown in Figure 3.1a). Transmitter height was fixed. Port B of the V N A 

was connected to the receiving antenna through a 15m coaxial cable. At both the 

transmitting and the receiving end, we used an Electro-Metrics EM-6865 omnidirectional 

bicone antenna, which has a gain of 0 dBi typically. These antennae are chosen because 

they have a large bandwidth and constant impedance over a large frequency. For the 

peer-to-peer (p-to-p) setup, both the transmitting and receiving antenna are connected to 

the V N A ports by 15m double-shielded coaxial cables. Before measurements were 

performed, calibration with cables is carried out in the 3.0 to 10.6 GHz band using 

through-line calibration. The calibration procedure is meant to compensate for the effect 

of amplitude and phase variations caused by long cables and VNA. As a result, the UWB 

channel measurements contain the effect of the channel as well as transmitting and 

receiving antenna. 

The source power level is set to 5dB and at receiver side IF bandwidth is set to 3 kHz. 

In each sweep, the V N A takes in 6401 sample points, corresponding to 1.18 MHz 

spacing between each sampled points. The time resolution at the receiver is the inverse of 

the center frequency 0.147 ns and the maximum excess delay of the system is 842 ns. 

Investigations on maximum excess delay of indoor channels to be 70ns have been 

reported by other researchers [3]. 
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3.2.2 Description of Measurement Location 

Measurements were carried out in a mid-size Boeing 737 airliner. The main cabin of the 

aircraft is 21 m in length, 3.54 m in width, and 2.2 m in height. The cabin has 21 rows 

with 6 passenger seats in each row (seats A to C on one side, and seats D to F on the 

other side). A full aircraft can take more than 100 passengers. As mentioned previously, 

the measurement campaign has two configurations: (1) point-to-multipoint (p-to-mp) and 

(2) peer-to-peer (p-to-p). For the p-to-mp configuration, transmit antenna is mounted at 

the ceiling height at row 2 (approximately 2.2 m above floor) and receiving antenna is 

placed at 50 different seat locations throughout the cabin from row 4 to row 18. In 

addition, the receiving antenna is mounted at different heights to represent how a wireless 

device is likely to be deployed, include headrest, armrest and footrest positions. The 

second configuration, p-to-p, investigates the effects of different transmitting antenna 

locations have on the channel. The transmitter is placed at headrest, armrest and footrest 

positions instead. These configurations allow us to study effects of receivers at different 

heights as well as AR-FD channel model parameter as a function of distance. 

3.2.3 Sampling Strategy 

The measurement is taken from row 4 to row 19 of a commercial aircraft; the last three 

rows were not considered due to limitation in cable length; but the result for the last rows 

can be derived because of the parameters' dependency on distance. Symmetry of the 

aircraft allows us to perform measurements on right half of the airplane, i.e., from seat A 

to C. To reduce the time and effort needed to sample the aircraft, measurements were 

only taken at every other seat (as shown in Figure 3.2). 
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(b) 

Figure 3.2 Location of the transmitting and receiving antennas within a Boeing 737-200 
aircraft for (a) point-to-multipoint and (b) peer-to-peer configurations during the 
development runs. In production runs, only one side of the aircraft and one transmitting 
antenna 
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3.3 Au to reg res s ive Frequency Domain M o d e l 

The autoregressive frequency domain (AR-FD) model has been demonstrated to be 

promising for characterizing and simulating indoor UWB channels [2][11]. In particular, 

indoor office LOS, outdoor LOS and NLOS channels are more accurately presented by 

AR-FD model due to existence of dominant cluster [11]. The AR-FD model has several 

advantages over time domain S-V model. Firstly, in the process of characterizing model 

parameters, AR-FD model requires less subjective user input, namely order of the AR 

model rather than number of cluster in a particular environment. Secondly, with most 

channel measurements done using a VNA, characterizing frequency domain model 

avoids expensive operations such as inverse Fourier transform and deconvolution that 

might introduce more errors into the measurement, e.g. finite bandwidth effects. As a 

result, frequency domain channel characterization becomes attractive for modeling 

propagation channels in an unfamiliar environment, like aircraft. 

3.3.1 Background 

AR-FD approach estimates the complex channel frequency response based on the 

complex autocorrelation between frequency taps assuming that each frequency tap is sum 

of the previous taps plus some observation noise. By taking the z-transform, the channel 

frequency responses are treated as the output of an all-pole filter in the form of 

G(z) = 1 
k 

1 
-1 

(3.1) 
) 
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To find the filter function G(z) that model complex channel response as desired output, 

we apply a well known A R parameter estimation algorithm Yule Walker to over 1000 

snapshots of channel frequency response taken in aircraft cabin (as shown Figure 3.3a). 

The A R order k must be chosen with special care. The order determines tradeoff between 

spectrum resolution and model complexity. We show in the next session an information 

criterion which is often used to determine appropriate A R order. 

The AR-FD model parameters include AR coefficients {a\}, initial conditions {Hi}, 

and variance of driving noise a. A simple flow chart showing the extraction process of 

AR-FD model parameters is shown in Figure 3.3a. The AR coefficients completely 

characterize the filter function G(z). For channel emulation process, we take the 

characterized autoregressive poles {p,}, initial conditions and variance of driving noise as 

inputs. The frequency taps are generated recursively as in Figure 3.3 b) by 

H(fk ,t;x) + YJ afiifk-i ,f,x) = U(fk,t;x) (3.2) 

where U(fk, t; x) is white Gaussian noise with variance a. 

CFR 
A R estimation 

algorithm 
{ai, a 2... ak} 
{H, H 2 , Hk} 

a 

(a) 

Pk} 
— ^ 

Regenerative 
Hk} algorithm 

(b) 

CFR^st 

Figure 3.3 a) AR-FD parameter characterization, b) AR-FD aircraft channel emulation 
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3.3.2 AIC 

In practice, the best choice of filter order is not generally known a priori. Higher order 

gives better resolution and finer details to the estimated frequency response but increases 

system complexity. If the order is too low, resulting frequency response will be too 

smooth. With empirical data, the prediction error variance alone is often not sufficient to 

indicate which order is most appropriate, unless there is some definitive order after which 

the rate of change in error variance reduction suddenly decreases [11] (Figure 3.4). A 

selection criterion named the Akaike information criterion (AIC) chooses the model order 

by minimizing the following information theoretic function 

where V is the loss function (also known as the variance of residual error between true 

and estimated spectrum), k is the number of estimated parameters, N is the number of 

data used for estimation and §Nis the estimated A R coefficients. The term 2kIN is a 

penalty for use of extra AR coefficients that do not substantially reduce prediction error. 

From Table 3.1, the AIC value drops from -10.9826 to -12.7135 as the A R order 

increases from 1 to 7. These AIC values are most close to what was found in 

characterizing industrial LOS channels using different orders of A R estimation 

(3.3) 

V = tet{-YJe(f,ej)e(f,ej)T) 
1 JL 

(3.4) 
j=l+k 
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Table 3.1 AIC in Aircraft Environment 

AR Order AIC 
Prediction 

Error 
1st -10.9826 1.9619e-5 
2n d -11.9241 8.2170e-6 
3rd -12.3522 5.5097e-6 
4th -12.5371 4.6267e-6 
5th -12.6284 4.2529e-6 
6th -12.6807 4.0589e-6 
yth -12.7135 3.9443e-6 
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Figure 3.4 AIC and Prediction Error vs AR Order 

3.3.3 Autoregressive Coefficients and Poles of the System 

The AIC analysis shows that a second order autoregressive model can estimate the 

aircraft channel response quite accurately. To characterize autoregressive poles, AR-FD 

model order is set to 2 and 500 measured UWB channel response in an empty aircraft is 

input to the estimation algorithm to yield complex coefficients a\ and a2. The poles p\ 
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and pi are found by solving the denominator of G(z). Figure 3.5 is the pole plot of the 

second order AR-FD model; the pole locations for aircraft channel is closest to those 

found in office NLOS. 

-1.0 -0.5 0.0 0.5 1.0 
Real Rart 

Figure 3.5 Second Order Autoregressive Poles of Channels in Empty Aircraft 

3.3.3.1 Pole Magnitude 

First order poles are located near the unit circle. Their magnitudes fall in the range of 

0.8034 to 0.9981. From spectral estimation, poles close to unit circle suggest the 

spectrum has significant energy at certain delays [11]. These delays can be modeled by 

pole phase. In our context, large pole magnitudes also suggest existence of dominant 

cluster in the impulse response [11]. Magnitudes of second order pole fall in the range of 

0.6556 to 0.8769. Second order poles that have magnitudes greater than 0.5 suggest 

energy of corresponding channels is not significantly attenuated [1]. Given the pole plots 

in Figure 3.5, we observe that the variance in angle spread of first pole and second pole 

are not significantly different; thus, we can conclude snapshots of the aircraft channels 

are made of mostly NLOS channels, where no dominant cluster exists. The channel 

energy in such environment spreads over time; thus, RMS delay spread is anticipated to 

be quite large. 
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3.3.3.2 Pole Phase 

The time delay corresponding to a pole is modeled by 

(3.5) 

The frequency step fs in our context is 2.375MHz. Starting from the positive real axis 

which corresponds to time delay of zero, time delay increases in clockwise direction. 

Delay derived from phase of 1st order pole falls in the range of 0.4934 ns to 54.20ns, 

which correspond to unambiguous distance of 0.15m and 16.2585m. The 0.15m is the 

distance between Tx at armrest and Rx at armrest in the same row. The 16.2585 m is the 

distance between Tx at front row and Rx at row 18. Time delay corresponds to 2nd order 

pole falls in the range of 41.7612ns and 124.3992ns. This range suggests propagation 

distance from 12.5294m to 41.7612m. The relationship shown in (5) implies a pole's 

dependency on propagation distance through time delay. This relationship will be 

exploited in the analysis of pole and auxiliary parameters in the next section. 

In time domain analysis, the arrival time of the first path in the power delay profile to 

models the distance between transmit and receiver if LOS exists. This parameter is often 

taken into account and power delay profile is often shifted by to in order to obtain more 

accurate analysis of mean excess delay. In AR-FD approach, the pole phase and time 

delay is modeled by (3.5). The to effect can be compensated by multiplying the frequency 

response with e1"10. In our modeled mid-size aircraft environment, to falls in the range of 

1 to 39ns. The change of phase in pole plot is not observable. In other environment with 

larger dimension (e.g. distance between transmitter and receiver are greater than 50m), 

this to effect need to be removed in order to obtain more accurate pole locations. 
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3.3.3.3 Pole Statistics 

The autoregressive poles can be characterized statistically by finding a good fit of its 

magnitude and phase through Kolmogorov-Smirnov test. The K-S tests accepts 

hypothesis of an AR-FD model based on testing the vertical distance between estimated 

CDF and empirical CDF, the level of significance is set at 0.01. Figure 3.6 shows the 

distribution fitting of pole parameter and pole phase. Magnitudes of first order and 

second order pole both follow extreme value distribution (in Figure 3.6 a and b). Extreme 

value distribution is the log of a Weibull distribution. The density function of an extreme 

value distributed variable |pi| is given by 

E.V. distribution was used for fitting pole magnitude in some indoor environments. 

Researchers in [2] have taken similar approach to model pole statistics in residential 

environment. The first order and second order pole phase follow Gaussian distributions 

(as shown in Figure 3.6 c and d). A complete list of distributions and distribution 

parameters is shown in Table 3.2 

f(\px\\a,P) = p-x expj 
P 

exp(-
(a~\Pi\), 

(3.6) 
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Figure 3.6 Pole Magnitude and Phase Histogram with Best Fit Distribution a) first order 
pole magnitude with extreme value fit; b) second order pole magnitude with extreme 
value fit; c) first order pole phase with normal fit; d) second order pole phase with normal 
fit 

Table 3.2 Poles of AR-FD Model 

Parameter Distribution a & 
IPil E.V. 0.9608 0.0244 
|p2| E.V. 0.8312 0.0287 

Ang(p,) Normal -0.2275 0.0949 
Ang(p2) Normal -1.1761 0.2037 
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3.3.3.4 Initial Conditions of AR-FD Model 

First and second autoregressive poles in aircraft environment are important parameters to 

characterize because they determine the filter transfer function G(z). Other AR-FD model 

parameters include initial conditions of the channel frequency responses and variance of 

the driving noise. Study in [2] shows initial conditions varies in different indoor and 

outdoor environment, but they tend to follow normal distribution with empirical mean 

close to zero. Here, we found the characterized second order initial conditions for aircraft 

channels also follow normal distributions. Table 3.3 shows the first and second order 

statistics of characterized initial conditions. 

Table 3.3 Initial Conditions of AR-FD Model 

Re {Hi} Im{H!} Re{H 2 } Im{H 2 } 

fx -8.4474e-4 -8.4695e-4 -1.3661e-3 -5.9173e-4 

a 1.3924e-2 1.4597e-2 1.3282e-2 1.4265e-2 

From Table 3.3, it is concluded that real and imaginary part of initial conditions 

characterized for aircraft channel have a mean close to zero as anticipated. The variance 

of initial condition is in the order of 10e-2. The real part of first order initial condition is 

highly correlated with the real part of second order initial condition. Same applies to the 

imaginary parts. Their correlation coefficients are shown in Table 3.4. 

Table 3.4 Correlation Coefficients between Initial Conditions 

p Re{H,} Re{H2} Im{H,} Im{H2} 
Re {Hi} 1 0.8734 -0.0559 -0.4017 
Re{H2} 0.8734 1 0.3564 0.0136 
Im{H,} -0.0559 0.3564 1 0.9040 
Im{H2} -0.4017 0.0136 0.9040 1 
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3.3.3.5 Variance of Driving Noise for AR-FD Model 

Previous work in [2] shows variance of driving noise UQ follows a lognormal distribution. 

Figure 3.7 shows the histogram of the characterized initial condition in aircraft 

environment and a best fitted distribution; the parameter is found to be normal distributed 

with mean at 3.22e-5 and standard deviation at 1.08e-5. It is correlated with the second 

order autoregressive poles, but uncorrelated with initial conditions. Table 3.5 lists the 

normalized covariance matrix of UQ and autoregressive poles. 

Table 3.5 Correlation Coefficient between Variance of Driving Noise and Autoregressive 
Poles 

p u0 \Pi\ ang(pi) ang(p2) 

u0 1 -0.9609 0.7733 -0.6921 -0.7152 

-0.9609 1 0.8336 0.7603 0.8526 

\pl\ -0.7733 0.8336 1 0.4837 0.6786 

-0.6921 0.7603 0.4837 1 0.8609 

ang(p2) -0.7152 0.8526 0.6786 0.8609 1 
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3.4 Resul t and D i s c u s s i o n 

In this session, we investigate how pole locations alter with different receiver positions 

and different density of passengers. We study auxiliary parameters like excess attenuation 

introduced by passengers; RMS delay spread T R M S and coherence bandwidth Bc of the 

aircraft channel. 

3.4.1 Pole Dependency on Distance 

In an empty aircraft (January data), pole location changes with receiving antenna's 

mounting positions in two ways i) the projected distance to horizontal plane (from row 4 

to row 18) ii) in the vertical direction (headrest, armrest and footrest). To relate 

measurement distance with the location of characterized poles, we study correlation 

between pole and distance. Figure 3.8 shows pole magnitudes are inverse proportional to 

distance. As receiver moves towards the back of passenger cabin, the first order and 

second order poles magnitude decreases (as Figure 3.8 a). This decrease in magnitude is 

seen in pole plot as that first and second order poles move farther away from the unit 

circle. Decrease in pole magnitude is very often accompanied by decrease in pole phase 

(as Figure 3.8 a and b). When modeling channels that correspond to a relatively large 

propagation distances (i.e. at the back of a cabin), the second pole is anticipated to have a 

large negative phase. Analytically, the pole magnitudes and phases can be modeled by 

distance as follows 

\px\ = -0.0076</ + 0.9883 

\p2\ = -0.0098^ + 0.8697 

Zpx =-0.0192</-0.1347 
Zp2 = -0.0556^-0.8802 

The above relationship is by fitting pole magnitude and phase with respect to distance 

linearly in a least square sense. The work in [2] uses a similar approach. 

(3.7) 

(3.8) 
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3.4.2 Pole's Dependency on Receiver's Mounting Positions 

Applications on demand in aircraft cabin require receiving antenna placed at different 

locations. For configuration where receiving antenna is placed at headrests, first order 

poles are found near the unit circle and the magnitudes fall are greater than 0.94(as seen 

in Figure 3.9a); variance of first poles is relatively small compared to armrest and footrest 

case. This result is anticipated because receivers placed at headrests enjoy LOS paths 

most of the time. Dominant cluster can be found in those headrest channels and the 

channel energy is concentrated at delays when significant multipaths arrive. The delay 

that models dominant cluster arrival is obtained by first order pole phase. From the 

cumulative density function in Figure 3.9 c, it is observed that the first pole phase fall in 

the range of -0.4458 to -0.0856, equivalent to propagation delay of 11.4ns and 59.7ns. 

For receiver placed armrest positions, transmitter enjoys LOS on aisle seats; for middle 

and window seats, LOS are obstructed. In comparison with headrest case, the first order 

pole for armrest placed receiver tilt more towards origin because i) not all the channel has 

dominant cluster (strong poles with large magnitude) ii) channel energy spread more over 

time due to NLOS paths (Figure 3.9a). For receiver placed at footrest positions, LOS 

paths are completely obstructed. The first order pole magnitude thus has lower 

magnitudes and larger angular spreads compared with the previous scenarios. The second 

order pole has similar properties as the first pole (Figure 3.9b and d). Overall, pole with 

large magnitude and small phases are found in positions when LOS exists, including 

headrests positions and aisle seat armrests and footrests. Small poles with more negative 

phases are found in NLOS cases, including armrest and footrest at middle and window 

seats. 
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3.4.3 Influence of People 

Measurements have been conducted in an aircraft passenger cabin to investigate 

influence of passengers on the radio channel. The measurement configuration was 

divided into three scenarios: i) within an empty aircraft ii) with every other seat occupied 

by passengers from row 4 to row 16; iii) with all seats occupied by passengers from row 

4 to row 10. Figure 3.10a shows pole locations for empty, half full and full aircraft. 

Figure 3.10b and c show pole locations based on data from 10 locations with receivers 

placed at headrest and armrest positions respectively. The first order pole does not show a 

significant variation with change of number of passengers. The second order poles 

however show a decrease in pole magnitude as passenger increases. The effect is more 

obvious when receiver is placed at armrest. The excess attenuation at location x is found 

by examining pole energy in an empty aircraft with those in aircraft with 50% of the seats 

occupied, and every seat occupied aircraft (as in Figure 3.6). 

~ k 

atten i _ empty empty (x)-Pt fuiMPi full O ) (3.9) 
i=i 

We conclude more influence is introduced by people when receiver is placed at 

armrests than headrests. This is opposite to what has been found in indoor laboratory 

environment where people have more influence on LOS channel. This difference is due 

to the fact that in aircraft environment all passengers are assumed to be remaining in their 

seats for most of the time and transmit antenna is mounted on the ceiling level, 

passengers do not completely block the LOS when receiver is placed at the headrest. For 

armrest positions which consist of both LOS and NLOS, passengers are part of the 

scattering environment; they introduce excess attenuation to the channel. 
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Table 3.6 Attenuation of Passengers on Poles 

ElPempty} y a r

 E { P ; - W var 
-EjPfuii} -E{Ph aif} 

armrest 1.7030dB 0.0832dB 1.4610dB 0.0050dB 
headrest 1.4903dB 0.0098dB 1.4107dB 0.0012dB 

/ 50% of the 
/ seats occupied 
j V 

all seats 
occupied 

empty 
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i i 

* H ^ i 
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Figure 3.10 Pole Plots for Receivers Placed at (a) all positions; (b) headrest; (c) armrest 
within empty, half-full, and full aircraft 
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3.4.4 RMS Delay Spread 

The RMS delay spread is the square root of the second central moment of the power 

delay profile. It is an important parameter for system design because it measures the 

dispersion of radio channel, and consequently the inter-symbol interference. When no 

equalization or diversity technique is applied to the channel, the RMS maximum reliable 

data rate Rma x is given by [12] 

^max
 = 1 /4r r f t w (3.10) 

In previous indoor channel studies, many researchers have found RMS delay spread 

follows a normal distribution. For point to multipoint setup, the average values and 

standard deviation of RMS delay spread in an empty aircraft is studied and shown in 

Table 3.7. 

Table 3.7 RMS Delay Spread for Different Receiver Locations 

Aisle seat Middle seat 
Window 

seat 
Rx r 

rms 
cr r 

rms 
cr frms CT 

Head 4.07 1.64 7.83 2.96 13.81 4.27 
Arm 8.89 1.90 20.98 6.91 21.71 6.39 
Foot 18.71 3.82 22.75 4.22 23.92 3.48 

From the results it is concluded that the rrms is minimum when receiver is mounted at 

headrests. This is true for all seating positions. Receivers at headrest positions enjoy the 

LOS views of transmitter and thus values of frms are low at these positions, typically 

between 4ns and 14ns. Armrest and part of the footrest at aisle seats also have 

unobstructed path to the transmitter; therefore, values of RMS delay spread at these 

positions are smaller than those found at other seats. Larger RMS delay spread is found 

when path is obstructed, typically in armrest and footrest positions of middle and window 

seats. 
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RMS delay spread increases with distance as shown in Figure 3.12a. Using previously 

characterized AR-FD parameters, channel impulse responses are regenerated. The RMS 

delay spread from characterized CIR and from original CIR are compared in Figure 

3.12b. The result shows AR-FD model can characterize the aircraft channel reasonably 

well. With passengers introduced to the aircraft cabin, RMS delay spread decreases. 

Passengers block some paths and introduce excess attenuation approximately 1 to 3dB 

across the channel. The RMS delay spread is reduced by 10ns. 
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Figure 3.11 RMS delay spread for aisle/middle/window seats at a) headrest b) armrest c) 
footrest 

For point-to-multipoint configuration, LOS exists for some receiving antenna 

mounting location; for peer-to-peer configuration, we found that NLOS dominates and 
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RMS delay spread increases with distance as shown in Figure 3.12a. Using previously 

characterized AR-FD parameters, channel impulse responses are regenerated. The RMS 

delay spread from characterized CIR and from original CIR are compared in Figure 

3.12b. The result shows AR-FD model can characterize the aircraft channel reasonably 

well. With passengers introduced to the aircraft cabin, RMS delay spread decreases. 

Passengers block some paths and introduce excess attenuation approximately 1 to 3dB 

across the channel. The RMS delay spread is reduced by 10ns. 
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Figure 3.12 (a) RMS delay spread for peer-to-peer configuration (b) CDF for RMS 
derived from 4a simulated CERs vs RMS derived from AR-FD simulated CIRs. 

3.4.5 Coherence Bandwidth 

Coherence bandwidth is the statistical average bandwidth of the channel, over which 

signal propagation characteristics are correlated. It is defined on basis of the complex 

autocorrelation 

N 

0HH[fn>fn+m]= Y^H(<fn)H*(fn+m-k) (3.11) 

k=-N 

The coherence bandwidth is defined as the value where <f)m decreases by 3dB from the 

maximum. The value of coherence bandwidth is determined by the fading statistics of the 

channel at a particular location. At locations where a channel does not experience deep 

fade and channel is very flat, the channel will have a larger coherence bandwidth. 

Examining more than 500 complex responses in an empty aircraft environment, we found 

90% of channel measurements have coherence bandwidth falls between 4.75MHz to 25 
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MHz, with the mean of coherence bandwidth equal to 7.125MHz. For some LOS 

locations where the distance between transmitter and location are placed very close 

together (< 0.5m), the coherence bandwidth becomes very large; no deep fades can be 

seen in such channel. For the locations where large coherence bandwidth is found, the 

value for coherence bandwidth over 350 MHz that can be considered flat (as seen in 

Figure 3.13); less than 10% of data falls in this category and is excluded from data set. 
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Figure 3.13 Coherence Bandwidth vs Distance for Empty Aircraft 

The coherence bandwidth in Figure 3.13 shows when transmitter is placed at a fixed 

location (row 4 and window seat), and receiver is placed at headrest, armrest, footrest 

locations through row 4 to row 18. As the receiver moves father away from the 

transmitter, the coherence bandwidth decreases. This is as expected because coherence 

bandwidth is inverse proportional to RMS delay spread. RMS delay spread increases with 

distance. Coherence bandwidth thus decreases with distance. Another observation is 

coherence bandwidth does not change significantly with change in receiver's vertical 

locations. Generally the coherence bandwidth is reverse proportional to the RMS delay 

spread in terms of [12]. 

BWcoh=-
1 

aoTRMS 
(3.12) 
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The parameter aQ of the inverse proportional relation for coherence bandwidth and RMS 

delay spread for the UWB aircraft channel is characterized in the LMS sense, and for 

aircraft channel aa is found to be 7.3125 (as in Figure 3.14) Thus, we have 

(3.13) 

0 5 10 15 20 25 30 

Figure 3.14 Coherence Bandwidth vs. RMS delay spread 

3.5 Conclusion 

Our results show that a second order AR-FD model can perform reasonably well for 

estimating UWB aircraft channel. Second order pole locations are most close to those 

found in indoor NLOS environment. Passengers introduce 1-3 dB excess attenuation 

across the channel, and the autoregressive second poles show decrease amplitude as the 
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density of passenger increases. We show that regardless of receiving antenna's vertical 

positions (headrest/armrest/footrest), receiver placed at aisle seats has smaller RMS delay 

spread. The RMS delay spread for LOS channels doesn't increase with distance; for 

NLOS case, RMS delay spread increase with distance. 
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Chapter 4 

Comparison and Classification of UWB Channel 
Models in the Frequency Domain 

4.1 Introduction 

Ultrawide band (UWB) has emerged as a promising technology for next generation 

multimedia data streaming within short ranges. Its two anticipated major applications 

include wireless interconnections throughout digital home and office and low 

maintenance sensor networks. Deployment of UWB devices requires a reliable channel 

model and model parameters that are suitable for the evaluation of system performance. 

Currently, UWB propagation is modeled using time-domain models based on the well-

known Saleh-Valenzuela (S-V) model. The existing (S-V) model parameters are 

characterized as constant parameters for eight types of channels, namely C M 1-8. It is 

difficult to access and compare channel performance based on constant model 

parameters. On the other hand, if system designers were to use the S-V model in a new 

environment, like aircraft or underground mine, the model parameters have to be re­

characterized. There is no existing scheme that allows us to compare UWB channels in 

different environment automatically and efficiently using S-V model parameters. 

For channel propagation problems, very often the environment to be characterized is 

unconventional or unfamiliar. Comparison and similarities drawn between the new 

environment and existing channel models would help system designers deploying 

wireless system in unfamiliar environment. 

3 

A version of this chapter will be submitted for publication: N. Xin and D. G. Michelson, "Comparison and Classification of UWB 

Channel Models in the Frequency Domain," to IEEE Transaction on Wireless Communication, Oct. 28, 2007 
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Identifying the type of channel the device is operating in has been recognized as a 

crucial step for optimizing system performance. For instance, Guevenc et. al have used 

kurtosis, mean excess delay, and RMS delay spread to identify LOS channels from 

aggregated LOS and NLOS channels in localization applications [9]. The possibility of 

recognizing a channel response from unidentified source, where the measurement site and 

setup are unknown, as a sample of a particular standard channel model has not exploited. 

The challenge thus lies in searching a set of channel parameters which i) compares how 

similar C M 1-8 to each other in a statistical sense and ii) provides us with some 

information on how similar a new set of channel impulse responses (CIRs) is to existing 

models. 

Several researchers have proposed to characterize UWB channels in frequency 

domain using autoregressive approach (AR) [1][2][3]. The autoregressive model uses 

parameters such as autoregressive coefficients, driving noise and initial conditions. In 

[1][2], the researchers show statistics of second order autoregressive poles in office and 

residential environment can be used to characterize complex channel frequency response. 

In particular, the work in [3] demonstrated autoregressive poles characterized in each of 

the 4a documented channel models follow standard distributions. 

Autoregressive model parameters is widely used as features for characterizing 

different classes of music, E E G signals and sensor array processings [20] [21]. In this 

paper, we propose using statistically characterized AR-FD model parameters to classify 

UWB channels from diverse environment. A reliable estimation and classification of 

channel parameters belonging to a modeled environment will allow a better 

understanding of channel propagation and AR-FD model parameters in that particular 

environment. This classification will also help system designers make a fair comparison 

of UWB channel conditions in different environments and deploy UWB devices in new 

or extreme environment, like aircraft cabins and underground mines. 

The reminder of the paper is organized as follow: Section 4.2 presents general 

background of AR-FD model and provides a complete statistical description of model 

parameters. Two novel parameters, first and second moment of pole, are introduced and 
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characterized statistically in this section. Together with AR-FD parameters, these two 

new parameters serve as attributes of our proposed classifier. Section 4.3 presents a 

supervised Bayesian classifier with Nai've Bayesian assumption. The final decision of the 

classifier is based upon evaluating joint probabilities of good attributes using maximum 

likelihood criterion. Section 4.4 shows simulated classification results for untrained data 

from each standard channel model. Applicability of the proposed classifier for complex 

channel response from an unfamiliar source is demonstrated using channel responses 

collected in aircraft environment. Section 4.5 concludes the paper. 

4.2 A R - F D M o d e l Features Extrac t ion 

Some success has been demonstrated in characterizing wideband office and residential 

UWB channels using A R technique [1][2]. Our work in [3] in particular shows AR-FD 

model is appealing for modeling UWB channels in a range of indoor environments. Since 

the AR-FD model gives a statistical representation of the different types of channel 

frequency responses with reasonable accuracy, we can use the model parameters as 

attributes for a UWB channel classifier. 

Multivariate AR-FD model and determination of appropriate order for the AR-FD 

model are briefly reviewed here. We show that the accuracy of estimating UWB channels 

response using AR technique depends on existence of dominant clusters in a power delay 

profile. 

4.2.1 AR-FD Model General Description 

To apply A R analysis to the complex UWB frequency response, we assume that the 

current frequency tap can be expressed as a cumulative sum of previous frequency taps. 

The memory of previous frequency taps is determined by order of the model. In the 

context of our study, we assume that the UWB channel frequency responses are 
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stationary with respect to time. The complex channel frequency response (CFR) is 

governed by, 

H(fk + £ afiWk-i J\x) = U(fk ,t;x) (4.1) 

1=1 

where H(fk,t,x) is the kth sample of the complex frequency response at location x, fl. is 

the AR coefficient of the (k-i)th frequency taps and U(fk,t;x) is the white Gaussian noise 

added to the kth sample. This assumption is valid if the spacing between correlated 

neighboring frequency taps is equal or less than coherence bandwidth (in terms of M H z ) . 

With this assumption, we can treat the complex channel frequency response as the output 

of a linear filter with order k, which takes the form of 

G(z) = ^ o r 

1+ ]>>-<• 

° ( z > - " (4.2) 

;=i 

where {/?,} are a collection of poles. The above all-pole filter is fed by complex Gaussian 

noise with variance determined by energy of the output RHH(0,X) over energy of the filter 

Raa(o,x). The autoregressive coefficient representation and the poles representation of the 

filter are interchangeable, but the poles have more physical meanings: they can be seen as 

an indication of significant cluster arrivals. 

4.2.2 Data Acquisition and Preprocessing 

AR-FD model parameters are obtained through Fourier transform of a large collection of 

channel impulse responses generated using the CIR generation code in the 802.15.4a final 

report [10]. Each set of AR-FD model parameter is derived from 8320 snapshots of 

unambiguously identified channel frequency responses from a particular environment as 
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shown in Figure 4.1. Before estimating AR-FD parameters, an information criterion is 

used to determine order of the model. Given a selected model order, snapshots of 

independent channel response are fed into an A R estimation algorithm [18] and yield 

multiple copies of model parameters. The AR-FD model parameters include kth order 

complex poles {pu...pk}, kth order initial conditions {Hu...Hk}, and variance of the input 

white noise, aw • Al l the parameters have their own distributions and a thorough 

discussion will be presented in later section. 

CFR AIC 
AR estimation 

algorithm 

(Pi, - --Pk} 
{Hi, ...H k} 

{tfw} 

Figure 4.1 AR-FD Model Acquisition and Preprocessing 
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4.2.3 Akaike Information Criterion 

In practice, an appropriate model order is selected by information theoretic function [18]. 

The Akaike information criterion (AIC) is a measure of goodness fit of an estimated 

model. It trades off between complexities (the order of an estimated model) against how 

well the data fits an estimated model, in terms of prediction error. A possible solution of 

the model order maybe derived by minimizing the following theoretic function [8] [18] 

where V is the loss function (also known as the variance of the estimated parameters), k 

is the number of estimated parameters, N is the number of data used for estimation and 

9N is the estimated AR coefficients. The term 2k IN is a penalty for use of extra AR 

coefficients that do not substantially reduce prediction error. 

In previous work [3], we have showed that most of channels frequency responses 

(CFRs) from indoor environments can be modeled by second order AR-FD model based 

on the rate of change in AIC values. In particular, office LOS, outdoor LOS and NLOS 

channels are more accurately represented by second order AR-FD model. For outdoor 

channels, a higher-order model might be more appropriate to obtain less prediction error. 

For the scope of this study, we focus on classification of the second order AR-FD model. 

From classical parameter estimation, pole close to unit circle implies the corresponding 

spectra has significant energy at a particular delay [1][3] 

(4.3) 

(4.4) 

4.2.4 AR-FD Parameters Statistics 

4.2.4.1 AR Poles 
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Zl - Ap Z\-Z.p ~ 
T = — = = (4.5) 

Qs 2Ttfs 2rfs 

Poles locate near the origin implies the corresponding spectra are significantly attenuated. 

In UWB channel characterization, the magnitude of pole affects the shape of the power 

delay profile. 

If a second order AR model is to be used and the first order poles are found close to 

the unit circle, the corresponding power delay profiles have a dominant cluster. This is 

mostly found in channels with LOS paths. On the other side, if the first order pole is 

farther away from the unit circle, the related channel impulse response does not 

experience a strong cluster arrival and envelope of power delay profile is anticipated to 

be Rayleigh distributed. Pole phase can be directly related to distance through (4.5). Poles 

derived from a particular set of channel frequency responses varies because i) the 

dimension of each environment varies; if the sampling frequency fs and the number of 

sampling points ./V are fixed, the pole locations, especially the difference between pole 

phases, suggest the dimension of the modeled environment ii) For some environment, 

such as industrial environment, part of second order poles are found near origin (Figure 

4.3c). The energy in the corresponding channel is very spread out. Thus, we can utilize 

poles magnitudes and pole phases as features to classify channels from different 

environments. Figure 4.2 and 4.3 show the AR-FD second order pole locations for 4a 

documented environments. In previous work, the autoregressive poles are found to be 

dependent on distance [2]. Magnitudes and phases of higher order poles are functional 

dependent because they are functions of distance. 

4.2.4.2 Initial Conditions and Variance of Driving Noise 

Initial conditions of the AR-FD model do not affect stability of the system. They were 

previously characterized as distance dependent parameter with a Gaussian random part in 

residential indoor environment. Variance of driving noise was characterized as a 

lognormal distributed variable which also appeared to be dependent on distance in [2]. 
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Distributions of initial conditions and variance of driving noise in other indoor 

environments and outdoor will be exploited in the next section. 

4.2.4.3 Moments of Poles 

We introduce two parameters which are first and second moment of pole magnitude. The 

parameters are defined as follows 

2 

^^Pi\Pi\ 

(4.6) 

i=i 

2 

(4.7) 

/=i 

First and second moments of poles, derived from AR-FD model poles, are analogous 

quantities of mean excess delay and rms delay spread since the poles as described before 

can be used to represent where the significant energy is located in a channel impulse 

response. We have incorporated these two parameters into our classifier since it is well 

known that these two parameters are derived from the geometrical properties of the 

channel; specifically, they describe the relative locations of the scatterers in the 

environment with respect to the receiver. Furthermore, as an example, mean excess delay 

and rms delay spread were used as features to separate LOS and NLOS channels in [9] 

for localization applications. Note that since the moments of the poles are derived from 

the magnitude and phase of poles themselves, they are considered as to be totally 

functional dependent on the pole parameters. 
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Figure 4.2. Distribution of AR-FD pole locations for LOS and NLOS cases of the 
residential and office environments. (Dark points - first pole locations, light point 
second pole locations.) 
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4.2.5 Characterization of AR-FD Features as Prior Knowledge 

Given a predefined channel model from a specific environment, the AR-FD model 

parameters can be characterized statistically. The approach is based on previous work in 

[3]. To choose an appropriate distribution for an AR-FD model parameter, several 

candidate distributions are compared using the Kolmogorov-Smirnov (K-S) goodness of 

fit test. The distributions under test include extreme value, beta, logistic, normal and 

weibull. Given a channel model from a particular environment (i.e. Office LOS), 

conditional probability density functions of AR-FD pole statistics are characterized as 

depicted in Figure 4.4. It is found that most of the first order pole magnitudes can be 

modeled by an extreme value distribution, with a PDF given as follows 

P ( A |a,/5) = /i- 1ex P -exp( ^—!-) 
P P 

or a beta distribution which takes the form of 

(4.8) 

^ a ' » = B(a,P) 
2 

(4.9) 

with B(a,P) = ±-—J:H ' (4.10) 
(a + /?-l)! 

The second order pole magnitude can be modeled by a Beta, extreme value, Normal or 

Weibull distribution depending on the modeled environment. A complete list of AR-FD 

pole statistics is provided in Table 4.1. From the characterization results, it is observed 

that the first and second order pole magnitudes very often follow the same distribution. In 

other words, |pi| and |p2| are not only found correlated, but also can be identified as 

functional dependent variables as shown in [2]. Angle(pi) and angle(p2) are functional 

dependent as well. These correlations are characterized in Table 4.2. 

For a second order AR-FD model, initial conditions Hi and H 2 need to be 

characterized; both the real and imaginary parts of initial conditions follow a normal 
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distribution (see Table 4.3). Real part of the Hi is strongly correlated with real part of H2, 

and imaginary part of Hi and H2 are strongly correlated as well. Marginal distributions 

for initial conditions are found to be normal. Variances of input noise for AR-FD model 

are characterized as lognormal distributions for all indoor environments; exponential 

distribution has a better fit for outdoor channels. We choose a distribution based on 

values of the log likelihood. 
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Table 4.1 AR-FD Model Parameters for CFR1 to CFR8 

Channel 
Model Parameter Distribution O! 0 

Residential IP.I E.V. 0.97902 0.0126811 
LOS IP2I E.V. 0.907689 0.0384309 

ANGfp.) E .V. -0.112781 0.0691762 

A N G ( p 2 ) E.V. -0.823681 0.200563 
Residential IP.I E.V. 0.956557 0.0206694 

NLOS IP2I Weibull 0.830912 20.1068 
A N G ( P l ) E .V. -0.334411 0.162197 

ANG(p 2 ) Logistic -1.4209 0.143231 
Office IP.I Beta 291.06 1.83643 
LOS IP2I Beta 12.0806 1.13572 

A N G ( P l ) E .V. -0.0280643 0.0103262 
A N G ( p 2 ) Logistic -0.198357 0.0825399 

Office IP.I E.V. 0.937549 0.0187299 
NLOS IP2I Weibull 0.798975 20.1621 

A N G ( p O Logistic -0.352289 0.0465455 
A N G ( p 2 ) Logistic -1.44995 0.0835703 

Outdoor IP.I Beta 110.201 2.0347 
LOS IP2I E.V. 0.924297 0.0424312 

A N G ( p i ) E.V. -0.080478 0.0406996 
A N G ( p 2 ) Normal -0.899339 0.219821 

Outdoor IP.I Beta 34.8605 1.53616 
NLOS IP2I Beta 8.07804 1.30163 

ANG(p,) E .V. -0.394444 0.135074 
A N G ( p 2 ) Normal -1.52237 0.467246 

Industrial IPi l Beta 55.9055 0.92936 
LOS IP2I Beta 11.7672 1.62909 

A N G ( P l ) E .V. -0.0402077 0.0348511 
A N G ( p 2 ) E.V. -1.00777 0.455724 

Industrial IP.I Normal 0.883227 0.0054326 
NLOS IP2I Normal 0.674853 0.0097030 

ANG(p.) Normal -0.504287 0.0155721 
A N G ( p 2 ) Normal -1.86243 0.0254698 
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Table 4.2 Correlation of A R Pole Magnitudes and Phases 

C M P IPH IP2I P pha(pl),pha(p2) 

1 0.2384 -0.0924 
2 0.1706 0.5656 
3 0.0949 -0.0248 
4 0.1752 0.0951 
5 0.1664 -0.0159 
6 0.4977 0.3925 
7 -0.1364 0.0817 
8 0.1695 0.2756 

Table 4.3 Initial Conditions for C F R 1-8 

C M Re{H,} Im{H,} Re{H 2} Im{H2} 

1 -3.56e-5 7.58e-5 -1.49e-5 2.93e-5 
a 5.79e-3 5.79e-3 5.76e-3 5.76e-3 

2 M -4.85e5 -1.18e-5 -6.48e-5 1.56e-5 
o~ 2.73e-3 2.75e-3 2.71e-3 2.75e-3 

3 1.69e-5 6.22e-5 1.55e-5 5.34e-5 
a 7.97e-3 7.97e-3 7.98e-3 7.96e-3 

4 -1.35e-4 2.49e-4 8.36e-5 2.79e-4 
a 1.22e-2 1.23e-2 1.22e-2 1.24e-2 

5 M 2.53e-4 1.51e-4 3.59e-4 1.01e-4 
a 9.48e-3 9.47e-3 9.47e-3 9.52e-3 

6 M -3.11e-5 1.47e-4 1.12e-4 9.51e-5 
ff 7.33e-3 7.51e-3 7.37e-3 7.51e-3 

7 M 6.86e-5 1.77e-4 1.15e-4 1.42e-4 
a 1.25e-2 1.26e-2 1.25e-2 1.26e-2 

8 -4.32e-5 3.77e-5 1.94e-4 2.41e-5 
a 4.60e-3 4.64e-3 4.72e-3 4.65e-3 

Table 4.4 Variance of Input Noise for C F R 1-8 

Residential Office Outdoor Industrial 
Distribution LognO,or) Logn(/x,a) ExpO) LognO,a) 

LOS -11.6377 -16.8811 5.6595e-6 -12.367 LOS 
0.808253 0.9636 

5.6595e-6 
1.37264 

NLOS 
-10.7521 -9.6782 

5.6895e-3 
-10.5998 

NLOS 
-10.7521 -9.6782 

5.6895e-3 
0.440403 0.3712 0.0346458 



4.3 A R - F D B a s e d Channe l Class i f i ca t ion 

The main purpose of our classification algorithm is to decide whether a new measured 

channel frequency response (from a new environment or a new measurement from known 

environment) belongs to a particular channel model c,-,z' = l,...8 , with c, e C . The 

conditional probability densities of AR-FD parameters are characterized in previous 

session as prior. 

In the first part of the classifying algorithm, Bayes decision rule finds the conditional 

probability for a single attribute. Then, conditional probabilities of all the attributes are 

considered using Naive Bayesian assumption. Finally the most probable channel model 

is selected based on maximum likelihood criterion 

4.3.1 One Attribute Classifier Using Bayesian Learning 

In previous section, snapshots of channel frequency response are characterized to yield 

attributes (features) of the AR-FD model. The probabilistic model shown in Table 4.1, 

Table 4.3 and Table 4.4 (poles, initial conditions and variances of noise respectively) 

become our prior. The posterior probability that we seek for is the hypothesis (likelihood) 

of unclassified complex channel responses belong to a particular modeled environment 

P(c; \au...at), where a}, j = l,...t is probability of attribute obtained from data training. For 

a single attribute, Baye's rule states 

P ( c > ( ) = ^ ) p ( 4 . U ) 

where P(aj |c,) in the numerator is the likelihood of an attribute equal to a fixed value if 

the hypothesis of channel model c, is true. For example, = x\c1) is the likelihood of 

the first order pole envelope equal to x given the channel response is measured in a 
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residential LOS environment. If |pi| is characterized as an extreme value distributed 

variable in Table 4.1, then 

P(aJC,) = P W = * |a ,£) 
= / i - 1 e x p { ( a - | A | ) / ^ - e x p ( a - \Pl \)/3} (4'12) 

On the other hand, P(c,) in the numerator is the prior brief, also known as the probability 

of hypothesized class c, before seeing any data. In the context of this study, we assume 

that data under test are multiple snapshots of complex channel response from an 

unknown environment; therefore, it is equal probable that the CFRs are to be classified as 

any of the eight channel models. The prior brief is thus P(c,) = 1/8. The denominator can 

be expanded as 

P(a,) = \CJ)P(CJ) (4.13) 
7=1 

The term P(aj |c,)P(c,) is the joint probability and can be denoted as P(a - .c,-) .The sum of 

all the joint probability yields P(a,), the marginal probability of an attribute. It is the data 

evidence of a feature belonging to all channel models. We choose the most probable 

hypothesis, P(ct \aj), known as maximum a posteriori hypothesis. 

4.3.2 Maximum Likelihood Criterion 

The Maximum likelihood classifier choose the maximum of posterior probability based 

on 

KAP = a r § m a x P(Ci I at) (4.14) 

A useful observation is that P(Ct \ at) does not depend on denominator P{at) in the 

classification computation since P{at) will be the same for all classifying channel 
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models. In addition, the prior brief P(C () is equal probable. The hypothesis then reduces 

to the form 

hML=aigmaxP(ai\Ct) (4.15) 

This is a well known maximum likelihood criterion, which only depends on conditional 

probability of attribute given a hypothesis of a certain model is true. 

4.3.3 Naive Bayes Assumption for Combining Multiple 

Bayesian Classifiers 

The AR-FD model that we considered has multiple attributes; including magnitude of 

first order pole, magnitude of second order pole, phase of first order pole, phase of 

second order pole, real part of first order initial condition, imaginary part of first order 

initial condition, real part of second order initial condition, imaginary part of second 

order initial condition, and variance of white noise, in total of 9 dimensions. We need to 

introduce an assumption that deals with multiple attributes. The Naive Bayes assumption 

allows us to deal with multiple attributes by considering independency of each attribute, 

as shown in 

P(A | C,) = P(ax,...ac | C) = t\P{at \ Ct) (4.16) 
1=1 

where A is collection of all the attributes {a,,...«,}. Although independency is a poor 

assumption and often violated in reality, Naive Bayes often yields surprisingly good 

results with nearly functional dependencies [5] [6]. With nai've Bayes assumption in 

(4.16), the maximum likelihood becomes 

c 

KAP = a r S max n P(at | C.) (4.17) 
i=i 
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Each term of the product in (4.17) is a Bayesian classifier result for a single attribute. The 

test channel response is then assigned to class c, by selecting the maxima of the above 

criterion. 

4.4 S imula t ion and Resu l t s 

An eight class channel model classification problem is considered in this section by using 

i) simulated data from 4a CIR simulator ii) experiment data collected from a 737-200 

mid-size airliner environment. With the simulated data, the channel model C, is known 

as a prior, we thus considered a variety of attributes to study sensitivity of our 

classification algorithm and validate completeness of our characterized attributes. For the 

measured aircraft data, we would like to compare the channel from an unfamiliar 

environment with existing channel models, and comment on the channel behavior of the 

unfamiliar environment based on our classification result. 

4.4.1 Classification with Simulated Data 

In feature extraction procedure of channel frequency response, a second order AR-FD 

model can represent diverse UWB channels with reasonable accuracy, with variance of 

prediction error ranging from 7.556e-8 to 7.380e-5, depending on modeled environment 

[3]. For lower AIC values, higher order poles and initial conditions are required. As the 

model order increases, dimensions of classifier increase. In practice, we would like to 

keep the dimension of classifier as low as possible [7]. 

In previous section, we show pole magnitude controls the shapes of channel impulse 

response, and the pole phase determines time arrival of spectrum with significant energy. 

Since pole information directly contributes to shape of power delay profile, type I 

classifier considers first and second order pole magnitudes and pole phases (4 

dimensions). Initial condition is another parameter depending on selected model order. 
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Type II classifier considers pole statistics with initial conditions (8 dimensions all 

together). Attributes for type III classifier include pole, initial conditions and variance of 

driving noise (9 dimensions). Input for all three types of classifiers is 100 samples of 

attributes derived from untrained complex channel responses from each class. The result 

in Table 4.5 shows the correct classification rate for all three types of classifier 

i 

Table 4.5 Type I, Type II and Type III Classifier 

Correct Classification Rate (/100 samples) 
Type I Type II Type III 

Poles 

(%) 

Poles + Initial 
Conditions 

(%) 

Poles + Initial 
Conditions + 
variance of 

driving noise 
(%) 

1. Res LOS 47 62 64 
2. Res NLOS 55 95 97 
3. Office LOS 94 _ 

92 96 
4. Office NLOS 68 88 89 
5. Outdoor LOS 48 46* 55 

6. Outdoor NLOS 65 68 30* 

7. Industrial LOS 53 68 69 

8. Industrial NLOS 100 100 100 

correct classification rate 66.25 77.38 75 

94 



With only pole statistics as classifier attributes, more than 47% of the channels are 

accurately classified for each channel model. In particular, office LOS, and industrial 

NLOS channels are recognized by type I classifier with classification rate as high as 94% 

and 100%) respectively. Residential LOS is the worst identified class given the pole 

statistics. For type II classifier, initial conditions are added as classifier attributes. The 

average recognition percentage increased by 11.13% from 66.25% to 77.38%. For 

residential and office environment, the initial conditions help to increase correct 

classification rate by 15-40%. Type II classifier has higher classification rate than type I 

classifier for most of the channel classes, with exception for recognizing office LOS and 

outdoor LOS, where classification rates slightly decline by 2 %. Type III classifier with 

driving noise considers 9 dimension attributes. It outperforms the type II classifier by 1 -

9 %, except for outdoor NLOS. When classifying outdoor NLOS channels, the 

performance degrades by 31%. This large degree decline suggests type III classifier 

which incorporates variance of driving noise as attribute has difficulty distinguishing 

outdoor NLOS from other classes. Because the outdoor NLOS is poorly identified, the 

average classification rate of type III classifier is not as high as type II and drops slightly 

to 75%. In comparison to the first classifier, the third classifier improves correct 

classification rate by 9.375%, with only outdoor NLOS channels that the classification 

rate is lower. Overall, no single classifier from Table 4.5 is best for all channel models, 

the second classifier has the best average performance. However, classification rate for 

outdoor LOS is below 50%. Table 4.7 shows the classification rate of type II and type III 

classifier with its major competitor. Type II classifier has difficulty distinguish outdoor 

LOS with its major competitor Res LOS. Type III classifier has difficulty distinguish 

outdoor NLOS and Res NLOS. 

The confusion matrix in Table 4.6 shows detailed classifying result of type III 

classifier with 9 dimension attributes. For four cases, residential NLOS, office LOS, 

office NLOS and industrial NLOS, the third classifier is able to recognize the true 

channel model at rate 97%, 96%, 89% and 100% respectively. For residential LOS class, 

the classifier labeled it incorrectly to residential NLOS 13% of the time and outdoor LOS 
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15% of the time. The reason is that residential LOS and outdoor LOS channels have 

clearly overlaps in pole locations; residential LOS and residential NLOS have similar 

second pole location. With outdoor LOS, the classifier gets a bit confused between 

residential, industrial and outdoor LOS. For outdoor NLOS, because the pole locations 

are very close to those found in residential LOS and NLOS, the correct classification rate 

reduces to 30%. 
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Table 4.6 Confusion Matrices for the 9 Dimension Classifier for Q . g with Untrained Data 

Classified as 
Residential 

LOS 
(%) 

Residential 
NLOS 

(%) 

Office 
LOS 
(%) 

Office 
NLOS 

(%) 

Outdoor 
LOS 
(%) 

Outdoor 
NLOS 

(%) 

Industrial 
LOS 
(%) 

Industrial 
NLOS 

(%) 
Residential 

LOS 64 13 0 2 15 2 4 0 

Residential 
NLOS 

2 97 0 1 0 0 0 0 

Office LOS 0 0 96 0 1 1 2 0 
Office NLOS 2 7 0 89 0 1 1 0 
Outdoor LOS 24 0 1 0 55* 0 20 0 

Outdoor 
NLOS 

24 25 1 3 12 30* 5 0 

Industrial LOS 8 0 3 3 13 4 69 0 
Industrial 

NLOS 0 0 0 0 0 0 0 100 

Table 4.7 Distribution of Auxi l iary Parameters mi and ni2 for Ci-8 

c, c 2 c 3 c 4 c 5 c 6 c 7 c 8 

mi Lognormal Lognormal Lognormal Log-
logistic Normal Log-

logistic Nakagami Normal 

-0.678869 -0.138212 -2.06455 -0.160159 0.483066 -0.1073 1.39967 1.09251 

a 0.258124 0.22916 0.377277 0.0602481 0.103582 0.186159 0.291511 0.0151633 

m 2 Lognormal Lognormal Nakagami Log-
logistic Nakagami Logistic Nakagami Normal 

M -0.964123 -0.691945 1.27766 -0.613933 3.27233 0.545094 1.1933 0.672948 

a 0.290753 0.15656 0.013846 0.0679616 0.170053 0.111516 0.26258 0.0127937 
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Table 4.8 Winning Class and Its Major Competitor for Type II and Type III Classifier 

Type II Type III 
Poles + Initial 

Poles + Initial Conditions + 
Ci Conditions variance of driving 

(%) noise 
(%) 

1. Res LOS 62/16 64/15 
2. Res NLOS 95/3 97/2 
3. Off LOS 92/6 96/2 
4. Off NLOS 88/8 89/7 
5. Out LOS 46/ 33 ' 55/24 
6. Out NLOS 68/11 30/25 
7. Ind LOS 68/11 69/13 
8. Ind NLOS 100/0 100/0 

4.4.2 Feature Selection and Classifier with Auxiliary 

Parameters 

We want to obtain better classification result with larger distance between a winning class 

and its major competing class. Since pole phase is proportional to propagation delay by 

(4.5) and pole magnitude suggest the peak amplitude. To improve classification rate of 

the classifier, we introduce two parameters which are first moment and second moment 

of pole. First and second moments of poles are analogous quantities of mean excess delay 

and rms delay spread. Mean excess delay and rms delay spread were used as features to 

separate LOS and NLOS channels in [9]. Statistical distribution of mv and m2 are listed 

in Table 4.7. The classification result is shown in Table 4.9. With auxiliary parameters 

ml , the average classification rate is 75.63%. The improvement on outdoor NLOS is 12% 

(compared with 30% of type III classifier). With ml and m2 combined, the correct 

classification rate for outdoor NLOS increased from 30% to 52%. The results in column 3 

and 4 of Table 4.8 show that with variance of driving noise removed, the classification 

rate for outdoor NLOS improved by almost 20% compared to type V classifier in column 
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2. The tradeoff of tuning the classifier to better recognize worse identified case outdoor 

NLOS channel is that the correct classification rate in other classes drops. For type IV 

classifier, the classification rate of outdoor LOS drops by 13% and for residential NLOS, 

the classification rate drops 7%. The classifier considering poles, initial conditions, first 

and second moment of poles as attributes is chosen based on an average classification 

rate of 76.25% and for the worst identified case outdoor NLOS, the winning class and the 

major competitor are differ by 35%. We recommend type II and type V classifier. Type II 

classifier has the maximum average classification rate. Type V classifier's has better 

winning class to major competitor class ratio for the worst identified case. 
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Table 4.9 Classification with Different Combination of Attributes 

Rate of correction classification (/100 samples) 
Type IV Type V Type V I Type VII 
Poles + 
Initial 

conditions + 
Variances 

+ m l 
10 

dimensions 
(%) 

Poles + 
Initial 

Condition 
s 

+variance 
of driving 
noise m l 

+ m2 + 
(%) 

Poles 
+Initial 

Conditioi 
ns+ 
m l 

(%) 

Poles + 
Initial 
Condition 
s +ml 
+m2 

(%) 

l .Res LOS 62 60 61 57 
2. Res NLOS 95 96 89 92 
3. Off LOS 95 94 92 92 
4. Off NLOS 87 86 85 85 
5. Out LOS 61 61 48 50 
6 Out NLOS 42 52 71 72 
7 Ind LOS 63 61 59 59 
8 Ind NLOS 100 100 100 100 

C C R 75.63 76.25 75.63 75.88 

Table 4.10 Type II vs. Type V Classifier 

Type II Type V 
Poles + Initial 

Poles + Initial Conditions 
Conditions +variance of driving 

(%) noise ml + m2 + 
(%) 

l.Res LOS 62/16 60/16 
2. Res NLOS 95/3 96/2 
3. Off LOS 92/6 94/4 
4. Off NLOS 88/8 86/9 
5. Out LOS 46/33 61/23 
6. Out NLOS 68/11 52/17 
7. Ind LOS 68/11 61/21 
8. Ind NLOS 100/0 100/0 

CCR 77.38 76.25 



4.4.3 Classification based on time-domain parameters 

Previous work in [9] uses RMS delay spread, mean excess delay and kurtosis to classify 

LOS and NLOS for channel realizations from a given environment. Here, we access the 

decency of our feature selection by comparing classifier based on AR-FD model features 

with that based on time domain model features. The result is shown in the following 

Table 4.11 

From Table 4.10, RMS delay spread appears to be the best time domain model feature 

for obtaining the highest CCR. This is because RMS delay spread measures the temporal 

and spatial average of consecutive CIRs over a local area. In particular, RMS delay 

spread measures the spread of MPCs arrival over time. For outdoor environment, where 

scattering objects are farther apart, channels have larger delay spread in the range of 

100ns. For indoor environments, where reflecting objects are denser in a given area, the 

RMS delay spreads are found to be under 50ns. Figure 4.5 shows the RMS delay spread 

distributions for all modeled environments. It is observed that histograms of RMS 

distributions overlap each other. For example, the histogram for RMS delay spread from 

CM1 is overlaid by those from C M 2 to C M 4. Given an RMS delay value from 

CMl(e.g. 20ns), the classified model is rarely recognized as the true class because the 

probability is overshadowed by higher probability of other classed. 

It is also found that kurtosis is a poor feature for differentiating channels from 

different environments because the distributions from different environment are very 

close (as in Figure 4.6). Overall, the listed time domain parameters are insufficient in 

identifying all of the eight channel models. 
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Table 4.11 Comparison of AR-FD Attributes and Time Domain Attributes 

Rate of correction classification (/100 samples) 

Type V Time Domain Feature 

Poles + Initial 

c, 

Conditions 
+variance of 
driving noise 

RMS delay 
spread 

(%\ 

Excess 
delay 

(%~\ 

Kurtosis 
(%) 

ml + m2 + 
(%) 

y/o) \/0) 

l .Res LOS 60 8 11 0 
2. Res NLOS 96 53 26 7 
3. Off LOS 94 62 69 0 

4. Off NLOS 86 44 67 96 
5. Out LOS 61 66 54 0 
6 Out NLOS 52 . 81 83 52 
7 Ind LOS 61 37 22 20 

8 Ind NLOS 100 99 0 0 
C C R 76.25 56.25 41.5 21.86 



4.4.4 Classification with measured aircraft data 

For channel propagation problems, very often the environment to be characterized is 

unconventional or unfamiliar. Comparison and similarities drawn between the new 

environment and existing channel models would help system designers deploying 

wireless system in unfamiliar environment. Aircraft environment is different from 

conventional environments in the following sense: i) geometry of the aircraft cabin is 

short tunnel like, enclosed by metallic reflectors ii) high density of obstacles (seats) in a 

conventional commercial aircraft suggests severe propagation conditions in such 

environment. 

The input of the classifier in this case consists of 352 samples of attributes derived 

from channel responses measured in a mid-size airliner 737-200. The detailed description 

of measurement data can be found in [19]. The frequency span for the measurement is 

from 3.0 to 10.6 GHz. Depending on transmit and receive antenna locations, measured 

channel responses include both LOS and NLOS paths. The confusion matrix in Table 4.7 

shows classification result of the type V classifier proposed in previous session. It labels 

the aircraft as office NLOS 56% of the time. 11% of time it labels the aircraft as 

residential LOS channels; 16% of the time it labels aircraft as industrial LOS. Figure 4.7 

shows the classification result for type II and type V classifier. Both classifiers recognize 

the channel as office NLOS more than half of the time and identify industrial LOS as its 

major competitor. These results are anticipated because the aircraft environment consists 

two main parts physically: metallic reflectors of the aircraft cabin, and a high density of 

seats. The metallic reflectors can also be found in industrial environment because massive 

storage of machineries. If LOS path exists, the aircraft cabin and the seats both contribute 

to the multipath components in the channel. For NLOS paths, the scatterings from 

passenger seats dominate; thus, the classifier finds NLOS aircraft channels most close to 

office NLOS. Through these classifying results, we can expect the aircraft channel will 

behave most likely as the office NLOS channels due to the following reasons: i) in 
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practice, LOS paths are most likely obstructed by passengers or luggage; NLOS paths 

thus dominate in aircraft environment ii) dimension of mid-size airliner is most close to 

office environment. For larger airliners, similar results would hold because cabins can be 

divided into subsections. 

Table 4.12 Confusion Matrices for the Type V Classifier with Aircraft Data 

Classified Res Res Office Office Outdoor Outdoor Indust Indust 
as LOS NLOS LOS NLOS LOS NLOS LOS NLOS 

Aircraft 
data 

12 6 0 58 11 0 13 0 
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Figure 4.7 Classification Rate for Aircraft Channel as Standard Channel Models 
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4.5 Conclusion 

In this paper, we devised a new UWB channel classifier which takes channel responses as 

inputs and predict a channel model which measured data belong to. Attributes of the 

channel classifier are AR-FD model parameters extracted from snapshots of UWB 

complex frequency response. We show that our maximum likelihood classifier with 

Naive Bayesian assumption can achieve correct classification rate as high as 77.38% with 

8 dimension attributes (Type II classifier) and 75 % with 9 dimension attributes (Type III 

classifier). The drawback of the classifier is that it has a worst classified scenario which 

the correct classification rate is low and the winning class has a major competitor. An 

improvement is demonstrated by adding two auxiliary parameters, namely the first and 

second moment of pole, to the 9 attribute classifier. An average classification rate of 

76.25%) is obtained through the proposed 11 dimensional classifier (Type V classifier) 

and the effect of major competitor is diminished. The 11 dimension attribute classifier is 

used to compare unconventional aircraft channels with existing channel models; the result 

shows aircraft channel is most close to office NLOS channels. For LOS channels found in 

aircraft environment, industrial LOS seems to be the closest match. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusion 

This work has been concerned with modeling of UWB channels in different 

environment using autoregressive frequency domain approach. Specifically, this 

work makes the following three major contributions. 

First, we have modeled UWB channels in different environment based on a 

vast database of CIR provided in 4a. We have shown the AR-FD technique can 

model all 4a documented channels with reasonable accuracy. Compared to classic 

time domain modeling, the AR-FD model proposed in this work uses fewer 

parameters. We have compared RMS delay spreads obtained from 4a model and 

those obtained from AR-FD model. The result shows AR-FD generated channels 

are reasonably close to 4a channel. This AR-FD technique is powerful in 

comparing channels from different environments. Thus, in chapter 3, we have 

applied the AR-FD technique to measured channel frequency response in aircraft 

environment. We have shown that LOS channels in aircraft environment are 

similar to those found in industrial environment. On the other hand, NLOS 

channels in aircraft environment are most close to those found in office 

environment. This result is further proved in chapter 4, in which we proposed an 

AR-FD parameter based classifier. The Naive Bayesian classifier makes use of 

distribution of AR-FD parameters. For untrained data, an average classification 

rate of 76.25% is obtained through the proposed 11 dimensional classifier. 
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5.2 Future Cha l lenge and Recommenda t ion 

In our proposed AR-FD modeling technique, the modeling database is from 4a 

channel impulse response generator. For industrial environment in particular, the 

shape of the power delay profile from 4a generator does not quite match with its 

quoted source where the measurement and model was originally outlined. Our 

analysis shows the pole locations are very condense in two regions. Further 

measurements in industrial environment are necessary to prove the validity of the 

4a industrial model. We modeled aircraft environment with aggregated LOS and 

NLOS data. For future work, the test setup should clearly be divided into LOS and 

NLOS scenario. Then, the model would better reflect the propagation environment 

and it would be easier to process. 
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A p p e n d i x A 

A R Yule-Walker normal equations step-by-step derivation 

H(fn) = -takH(fn_k) + U(fn) 

Multiply (Al) by # * ( / „ - J 

E{H(fJH\fn_j}=-f]akE{H(f^)H\fn_j}+ E{u(fn)H\fn_m)} 

where 

RUH^fm) ~ 

0 for m>0 

pw for m = 0 

PwH\-fm) M m<0 

Substitute (A4) into (A3) 

RHH(L) = { 

Y j a ^ R H H i f m - k ) 
k=\ for m > 0 

-YsakRnAf-k) + Pw far m = 0 

RHH (f-m ) ^ 
m<0 

Evaluate for 0 < m < p 

RHH(0) • • RHH(-P) ' ' 1" 

RHH(0) • • RHH(-P + V — 
0 

RHH(P) • RMH(0) -ap. _ o _ 

( A l ) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 
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Correlation Matrix between Parameters (CM3) 
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