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ABSTRACT

Despite recent advancements in human immunogenetics, graft-versus-host
disease (GvHD) continues to be the major and potentially fatal complication of
hematopoietic stem cell transplantations affecting up to 80% of transplant patients
[1]. Very little is known regarding the pathophysiologic mechanisms behind the
manifestation of either acute or chronic GvHD. Diagnosis and treatment assessment
are often hindered as they rely primarily on ambiguous clinical symptoms, such as
tissue inflammation. It is likely that the outcome for patients diagnosed with GvHD
could be improved if they were treated in a pre-emptive fashion, before the

development of full-scale clinical symptoms.

Using flow cytometry high content screening [2], 123 subsets of immune cells
were identified from blood samples taken at multiple time points from 31 patients
who underwent allogenic bone marrow transplantations. 1 assembled a novel
analysis pipeline specifically designed to process this high-throughput clinical flow
cytometry dataset. The pipeline included a novel quality assurance test [3] and
temporal classification via functional linear discriminant analysis [4]. Temporal
patterns of rhultiple immune cell abundances both after the transplantation and
around the acute GvHD diagnosis were screened for potential discriminative power

for either acute or chronic GvHD.

Among many potential discriminative patterns: higher proportion values in -
immune cell with CD3*CD4*CD8f* phenotype were found in acute GvHD patients
(21), compared to the patients unaffected by GVHD (3), between zero and 120 days
post-transplant. I also generated a list of recommendations for an extended study
designed to validate the current findings. The global approach of the high-

throughput flow cytometry technique and the novel temporal analysis pipeline,

implemented according to the list of recommendations would be beneficial in




elucidating -pathophysiologic mechanisms of complex immunologically based

diseases including GvHD.




TABLE OF CONTENTS

ABSTRACT..... . R ii
TABLE OF CONTENTS......ccccecvuercnnrversranassssans cererenererenens .\
LIST OF TABLES........ (resesssusssssssasssstsbsasses sOIRSR SRS SRR SRS RS SR SRRSO HS OSSO RS viii
LIST OF FIGURES coevveveveeseremssessresssessssssssssssssssessss - rerereenne X
LIST OF ABBREVIATIONS ... xvii
LIST OF SYMBOLS ....ccoiniiinininusssnsninssensssssssssssssssssssssssssasasssasasssasasasasssssssssssssssssssns xix
LIST OF EQUATIONS......... e XX
PREFACE.... ceissssssassssssssssssasesssnsasassresesesTe IR e TS OORSY xxi
ACKNOWLEDGEMENT ......ccocvinineerensnsssssnnnsasssssesssessasasassssssssssssssssesessasssassenss weeeXXii
DEDICATION....ccvenererrrerereresessene XXiv
CHAPTER 1 INTRODUCTION.........coc.. reseerersesesnenssesensaaanes 1
" 11 Flow Cytometry...oociviiiiiiiitiiie e 1
- 1.2 . Graft versus host diS€ase ...........ccoouiviiiiiiiiini e 4
1.21 Acute graft versus host disease.............cooeururiiiiniiiiiinnni 5
1.2.2 Chronic graft versus host disease........... S et 7

1.3  Temporal analyses................. JO OO OO OO ST PRSPPSO 10
1.3.1 Temporal analysis for flow cytometry data.........cocooeieiiiiinnnnnnn, 10
1.3.2 Representing temporal data ............coevevereereeiiiiiiie, ................... 11
133 Data pre-processing - Smoothing & Registration............ccocevvenennnnnne. 12
134 ClaSSIfICAtION ....c.vveuieerererecirrecre e 14

1.4  Sample size calculations.........c.cccccviiiiiiniiiii 17
1.5  Thesis Oals.......ccoviiiiiiiiiiic s 18

- CHAPTER 2 PATIENTS AND METHODS . Y, |

21 OV T VIBW .. o ettt e e e e e e e e e e e e s aseeeeesaeesastaeseseasesssessasaressasssssssssssessassssanssns 20




22 Study patients........cocoveviviviviiiii 20

2.3 Sample preparations and flow cytometry high content screening............... 22

| 24  Temporal analysis pipeline........cccooriiiiini s 24
241 Quality ASSUIANCE.....coiuiririmiririteiniieeennnse s 27

24.2 B-spline parameters evaluation ... 28

243 Data transformation........c.c.ccceceiiiiiniiiineeesses s 29

244 Temporal classification...........coouvviviiriiiniin 30

i 2.5  Static sample size calculation.........ccceeveieiiriiinninnnies s 31

251 'Weight values in the functional linear discriminant analysis

ClaAS ST ICATION .. eeeeeeeeeeee et ee e e e e eeeeeeeeeeeeaeesssesaseesesssaresssasbstreesesinssseassasassreaeesessnnsannens 33

CHAPTER 3 RESULTS - QUALITY ASSURANCE AND B-SPLINE

PARAMETERS......cccvunvererenens 35
31  Quality assurance on ungated data............ccooeviiiiinniinii 35
3.2  Quality assurance on gated data..........oooeeeiiniiinii 35

321 Singular OULHETS ..o 35
3.2.2 Unusually large variations among aliquots............ccevvnenncciinncnnen 42
323 Repeated outlier conditions...........ccovviiinniniiniiiie 45
3.24  Outlier distributions on the 96-well plate ..o, 47
3.3  B-spline parameters ..o 49

CHAPTER 4 RESULTS - TOP RANKING CLASSIFIERS........cccccoeieessnsecssnsasrscsenses 51

41 Clas;sifiers for the onset of acute graft versus host disease............cccocvevnenne. 51
411  Inconsistent classifier DY MISSING VAIUES .......oveoeevveerveseeeeesenrenserenees 54
412  CD3*CD4*CD8p*(CD8) ........... bbb 57
413 7 CDBFYCDAINE ...t 63
414  Static sample size analysis.........ccoovriiiininiiinin 69

42  Classifiers for the onset of chronic graft versus host disease......................... 70
421 Inconsistent classifiers by pattern outlier ... 70

422  Opposite estimated signals between groups ...........cccccovevvvvneinrnicncnnn. 73




423  Static sample size analysiS........c.cocooiiivnninniniinns et es 73

CHAPTER 5 DISCUSSION ..ccorvevomumssrssssmssssssssn ‘ 77
- 51 Quality’ ASSUTAIICE ...cueuviuereuerieieniraeesessess st nese st et an e snsbessss s e sae st st ene s enesenses 78
5.1.1 Quality assurance on ungated and gated data ..o 79
512 - Quality assurance via raw data time plots.........cooeiiiinnnnciicninn 81

513 Robustness of the flow cytometry high content screening technique.. 82

5.2 Daata ISSUES....c.ceiiriereciiiiiitiris e 82
521 PAtIENES ..ottt 82
522  Sampling time Fanges...........icivurrmieririirinieisnississieeciese s 84
523 Proportion and concentration flow cytometry datasets..........ccoeeeeecee. 85

53  Temporal analysis........ccccoevrrrnirinnieceieeeieennnns et s 85

5.4  Predicting the onset of graft versus host disease ..........c.cocovveeeiiiiniiinnns 87
54.1  Acute graft versus host disease........... T, 87

- 54.2 " Acute graft versus host disease prediction model using
L CD3*CDACDBB* .uvviiieeerieieireriseenememssssssseis s bbb sesne 91
543  Chronic graft versus host disease ............coovunernrcrecnneeienenncccrininininnens 93
544  Chronic graft versus host disease prediction model using 45RO*CD3-
CD4dim 94

55  Recommended improvements.........ccociinininieinininnoeisnie e 96
5.5.1 Random plating.........cccoviiniiiicii s 96
552 Patient recruitment ... 97
553 SamPling Tate.......cocovvivinininiiii s 98
5.5.4 Additional MArkers........coeerieeiriiiiiiniiiin s 98
5.5.5 Additional statistic tests.........coviiiiiiiiiiiii s 99
556  Graft versus host disease grades ...t 100

' T5.5.7‘~ ~ External validation...........ccoooiiiiiiiiiiiiii e 101
558 Multiparametric approach.........coccencnriccninseissnenenenneeresssennnnens 101
55.9  Long time Series analysis ...........oo...cooeereserressnereesmersssnesssnessessesessssessnnss 103

5.6 TCONCIUSION ..ttt e et s sttt ettt et ae e ses s eseseseteasanasaes 104

vi




BIBLIOGRAPHY ..cccoininirinesrisnnsessesresssessssssssssessssssssssssasssssesssssesssssonsensans 106

 APPENDICES .....cuuiiiriiniirnenrennnsscsnessessisnssesssssessssssessesasssesassssessssassnsssssssasassnases ... 120

Appendix A. Patient information on maximum GvHD grade, GvHD diagnosis in
days post-transplant and patient-donor relationship............cccooeiviniinnnni. 120
Appendix B. List of the subsets of immune cells from each of the ten aliquots.. 122
Appendix C. PERL script fixFCS.pl for enforcing FCS file compatibility from
FIOWJO IO THLOWCY 1...voveveeererecsceoreeescesiseesiseesese s cosss st s snsssssessssssssns 126
Appendix D. PERL script viz_days.pl for flow cytometry data transformation. 132
Appendix E. PERL script FLDA_MATLAB.pl for creating MATLAB commands

perforrﬁing FLDA analysiS......ccocoviiiiinniiniiicinrsseiss et 142
Appendix F. QA on gated data using CD3 as the common intensity ................... 163
Appendix G. (5ther top ranking classifiers for the onset of aGvHD ..................... 165
Appendix H. Summaries of LOOCV results for the FLDA analyses between
aGvHD and non-GvHD patients..........c.ccceuennen ....................................................... 174
Appendix I. Other top ranking classifiers for the onset of cGVHD................c.... 198
Appendix J. Summaries of LOOCV results for the FLDA analyses between
aGVvHD & cGvHD and aGvHD only patients..................... FOT O OOURRORTOI 204
Appendix K. FLDA classification model for the onset of aGVHD............cccoeunenn 234

Appendix L.” FLDA classification model for the onset of cGVHD ........................ 237



http://fixFCS.pl
http://viz_days.pl
http://FLDA_MATLAB.pl

LIST OF TABLES

Table 2.1 Characteristics of the 31 patients recruited for the study.........cooeviciennce. 21

Table 2.2 Annotated functions and selected literature references on the 25 cell
surface antigens used. ........................................................................... 23

Table 2.3 The combinations of antibody - fluorochromes used in each of the 10

aliquots available per sample. ..o 24

Table 3.1 Outliers identified in the QA test on gated data..........coovveiecicnnnnnnne. 39
Table 3.2 Cell populations and samples where CD3* or CD3- cell population
exhibited unusual variations among the available aliquots. ...........cccooceverrernrnines 42
Table 3.3 Cell populations and samples where the two aliquots rest/act T lhelper
and rest/act T suppressor exhibited similar pattern within and different pattern
compared to all other available aliquots...........cccccooniniinn, ST 45
Table 3.4 Plating order for patient #6 with samples taken at multiple time points on
two plates. Aliquots identified as outliers and unusually variations are labelled

WILH SNAEA ATCAS. wovveeiiiiieeeeeecereeeeesesssesenreereeesesseeaaasesenetesssasssssssassssrssnrsersarssassaseanses 48

Table 4.1 Validation results for the top ranking subsets of immune cells and their
related cell populations from the FLDA classification with different subsets of
aGvHD vs. the non-GvHD patients using samples taken between 7 and 21 days
post-transplant. (nd = not done due to lack of data). ................... R 52

Table 4.2° Estimated power of study via the static sample size calculation using

- CD3*CD4*CD8p* proportion values from samples taken closest to 21 days post-
transplant. .......cccoevnininiinnan, OO S 69

Table 4.3 Validation results for the top ranking subsets of immune cells from the
FLDA classification between the aGvHD & ¢cGvHD and GvHD only patients
using samples taken between 21 and 0 days prior to aGvHD diagnosis. ........... 71

viii




Table 4.4 Estimated power of study via the static sample size calculation using
45RO*CD3-CD4dim proportion values from samples taken closest to 7 days prior
t0 aGVHD dIagnosis. .....c.covevviieiiiiiiiiiiiniii s 76

Table H.1 Validation results for qualified subsets of immune cells in proportion to
PBMC (%) from the FLDA classification between aGvHD and non-GvHD
patients using samples taken from 7 to 21 days post-transplant...........ccccceuees 174

Table H.2 Validation results for qualified subsets of immune cells in proportion to
PBMC (%) from the FLDA classification between aGvHD and non-GvHD
patients using samples taken between 21 and 0 days prior to aGvHD diagnosis.
et e et 178

Table H.3 Validation results for qualified subsets of immune cells in proportion to
PBMC (%) from the FLDA classification between aGvHD and non-GvHD
patients using samples taken between 0 and 21 days from aGvHD diagnosis. 182

Table H.4 Validation results for qualified subsets of immune cells in concentration
(mm?3) from the FLDA classification between aGvHD and non-GvHD patients

- using samples taken from 7 to 21 days post-transplant. ..o 186

Table H.5 Validation results for qualified subsets of immune cells in concentration
(mm?3) from the FLDA classification between aGvHD and non-GvHD patients
using samples taken between 21 and 0 days prior to aGvHD diagnosis. ......... 190

Table H.6 Validation results for qualified subsets of immune cells in concentration
(mm?3) from the FLDA classification between aGvHD and non-GvHD patients

using samples taken between 0 and 21 days from aGvHD diagnosis. .............. 194

Table J.1 Validation results for qualified subsets of immune cells in proportion to
PBMC (%) from the FLDA classification between aGvHD & c¢GvHD and
aGvHD only patients using samples taken from 7 to 21 days post-transplant. 204

Table J.2: Validation results for qualified subsets of immune cells in proportion to

PBMC (%) from the FLDA classification between aGvHD & ¢cGvHD and

X




aGvHD only patients using samples taken between 21 and 0 days prior to
AGVHD diagnosis. ........ccoeuiiiiiiiiiiiiiiiiccer e 209
Table ].3 Validation results for qualified subsets of immune cells in proportion to
PBMC (%) from the FLDA classification between aGvHD & ¢GvHD and
aGvHD only patients using samples taken between 0 and 21 days from aGvHD
QIAZNOSIS. ....oevririviiriiiiici bbb 214
Table J.4 Validation results for qualified subsets of immune cells in concentration
(mm3) from the FLDA classification between aGvHD & ¢GvHD and aGvHD
...only pat{énts using samples taken from 7 to 21 days post-transplant............... 219
Table ].5 Validation results for qualified subsets of immune cells in c_oncentration
(mm?) from the FLDA classification between aGvHD & ¢GvHD and aGvHD
‘orﬁlly patients using samples taken between 21 and 0 days prior to aGvHD
QIAGNOSIS. ...t 224
Table ].6 Validation results for qualified subsets of immune cells in concentration
(mm?3) from the FLDA classification between aGvHD & ¢cGvHD and aGvHD

~

only patients using samples taken between 0 and 21 days from aGvHD

dIAGNOSIS. ...ttt s 229




LIST OF FIGURES

Figure1:1 An'example of sequential gating in FCM displayed in contour or
RISEOZIAIML ...t 3
Figure 1.2 Pathophysiologic mechanism of aGvHD (adapted from Couriel et al [17])

Figure 1.4 An example of the FLDA signal plus noise training from the raw data

(panel a) to the estimated signals (panel b), adapted from James and Hastie [4]

Figure 2.1 Temporal analysis pipeline designed for the high-throughput clinical
FCM dataset. ..ot e 26

Figure 2.2 Static sample size calculation pipeline. ..........oooeviieiiinitoiiinn, 32

Figure 3.1 Density plots of the FSC intensity of different aliquots of samples taken at
12 different time points (adopted from [3]). At day 46, the two red arrows show
distributions corresponding to aliquots ‘leukocyte” and ‘3Activation” are
substantially different from other aliquots. ..o 36

Figure 3.2 Density plot of the FSC intensity using CD3* cell populatioh from seven
aliquots of patient #6s 76 days post-transplant sample. Aliquot ‘“3Activation’
was identified as a visual outlier. ....................... et eeetee e eerrea et eaaeearaaeareeeabaeereaaerarean 37

Figure 3.3 Density plot of the SSC intensity using CD3* cell population from seven
aliquots of patient #6's 76 days post-transplant sample. Aliquot ‘3Activation’
was identified as @ VISUAL OULHEE. ....c...nrvvvvveeeeeierereceseiossssssssesesssssssssssssssessssesssenes 38

Figure 3.4 Density plot of the FSC intensity using CD3- cell population from five
aliquots of patient #4's 81 days post-transplant sample. Aliquot ‘T cells” was

identified as @ VISUAL OULLET. .......ooo oottt s eeeree e s siat e e eseentnnneaeaaeaas 40

xi




Figure 3.5 ECDF plot of the FSC intensity using CD3- cell population from five
aliquots of patient #4's 81 days post-transplant sample. Aliquot ‘T cells” was
identified as a visual OUtlEr. .......cccocovivivinininiii 41

Figure 3.6 De»nsity plot of the FSC intensity using CD3- cell population from seven

~ aliquots of patient #28's 14 days post-transplant sample. All aliquots exhibited
great variations from each other. Similar observations also occur in 15 other
sampies. ......................................................................................................................... 43

Figuré 3.7 FCM contour graphs of FSC VS SSC from patient #6, aliqﬁbts “TCR’ and
‘3Activation” from samples taken at 27 and 53 days post-transplant. ................. 44

Figure 3.8 Density plot of the SSC intensity using CD3- cell population from seven
aliqﬁots of patient #7's sample taken at the day of BMT. Aliquots ‘rest/act T
helper’ and ‘rest/act T suppressor’ exhibited different pattern than all other
aliquots. ............ eatemes et oAt e as A e an bR AU E AR AusE e R AR SRR RS ReASRAA PR A SRS SRR n R n e e e s et n e s s 04 46

Figure 3.9 B-splines with knots located at every available time point and orders two,
three or four fitting into the raw data. ..o 50

Figure 3.10 B-spline with order two and different distribution of knots fitting into

Ctheraw data. e 50

Figure 41 Cumulative distribution of the aGvHD diagnosis days post-transplant
with the selected time range between 7 and 21 days post-transpiént labelled... 53

Figure 4.2 Time plots of the FLDA estimated signals (panel a) and the raw data
(panel b) based on samples taken between 7 and 21 days post-transplant for the
immune cells CD24imCD16*CD56*CD3-in proportion to PBMC.............ccococcec. 55

Figure 4.3 Raw data time plot for immune cells CD24imCD16+*CD56*CD3- in
proportion to PBMC based on samples taken between 0 and 100 days post-
transplant. The purpled striped box indicates the time range where data was

analyzed via FLDA. .........ccoiiii e 56

xii




Figure 4.4 FLDA estimated signals time plot based on samples taken between 7 and
21 days post-transplant for immune cells CD3+*CD4*CD8{* in proportién to
15031, QTR eeeeeess s sse e oot ess e .58

Figure 4.5 FCM contour graphs of transformed CD4 and CD8f marker
measurements for a non-GvHD patient (#4) and aGvHD patients (#27) between
zero and three weeks post-transplant. The CD3*CD4*CD8p* population is
gated within the double positive gate..........ooooeiiiiinnni 59

Figure 4.6 Raw data time plot for immune cells CD3*CD4*CD8p* in proportion to
PBMC, based on samples taken between 0 and 120 days post-transplant. The

purpled striped box indicates the time range where data was analyzed via

Figﬁre 4.7 An example of sequential gating of the existing cell population
CD3*CD4+*CD8p* (red gates, panels a, b, and c) to identify a new immune cell
population CD3*CD4*CD8P*CD8* (panel d)........cocovveuririnrreieninieieinieniinieneniiaes 61

Figure 4.8 Time plots of the FLDA estimated signals (panel a) and the raw data
(panel b) based on samples taken between 7 and 21 days post-transplant for the
new immune cell population CD3*CD4*CD8p*CD8* in proportion to PBMC... 62

Figure 4.9 Time plot of the FLDA estimated signals (panel a) based on samples

" taken between 7 and 21 days post-transplant and time plot of the raw data
(panel b) based on samples taken between 0 and 100 days post-transplant for
the immune cells CD3*CD4int in proportion to PBMC (aliquot ‘2Activation’).

The purpled striped box indicates the time range where data was analyzed via

Figure 4.10. FCM data in scatter plot of FSC vs. SSC and histogram of CD3-PerCP
intensity from patient #6, aliquot ‘T cells’ from samples taken at 45, 53, and 60
days post-transplant. ...........cccuiiiiiiiin s 65

Figure 4.11 Raw data time plot for immune cells CD3* (aliquot ‘1Activation’) in
proportion to PBMC based on samples taken between 0 and 100 days post-

xiii




transplant. The purpled striped box indicates the time range where data was

analyzed via FLDA ... s et 67
Figure‘4.12 Raw data time plot for immune cells CD3+CD4* (aliquot ‘rest/act T

helper’) in proportion to PBMC based.on samples taken between 0 and 100 days

post-transplant. The purpled striped box indicates the time range where data

was analyzed via FLDA. ... 68
Figure 4.13 Time plot of the FLDA estimated signals (panel a) and raw data (panel b)

based on samples taken between 21 and 0 days prior to aGvHD diagnosis for

the immune cells 45RA*CD3* in proportion to PBMC (%). .......ccccovneniriicininnnnn. 72
Figure 4.14 Time plot of the FLDA estimated signals (panel a) based on samples

- taken between -21 and 0 days from aGvHD and time plot of the raw data (panel

b) based on samples taken between -21 and 21 days from aGvHD diagnosis for

the immune cells €D45*CD33-CD15*CD14- in proportion to PBMC. The aGvHD

diagnc;sis day is labelled at day 0. ........ccccoouiiinnviviciiccececeencenen, 74
Figure 4.15 Time plét of the FLDA estimated signals (panel a) and raw data (panel b)

bas_ed on samples taken between 21 and 0 .days prior to anHD,diagnosis for

the immune cells 45RO*CD3-CD4dim in proportion to PBMC (%).......c.ccceevennae. 75

Figure 5.1 A pictorial example of FSC vs. SSC dot plot from a normal peripheral
blood sample (adapted from [122]). ......ccocoviviniiinniiiriiinae 80
Figure 5.2 T cells development and maturation.............ccoevniiiiniinininnicie, 90
Figure 5.3 An example of FLDA classification using immune cells CD3*CD4*CD8f*
in proportion to PBMC ..o 92
Figure 54 An example of FLDA classification using immune cells 45RO*CD3-
CD4dim jn proportion to PBMC. .......ccccovveiicvnncniiniininene, ST rreestseaisesesasnes 95

Figure,5.5 Parallel coordinates plot of the normalized linear discriminant values

from the 11 FLDA classifiers selected via the correlation-based feature selection

method .......... PR O OO RO 103




Figure F.1 Density plot of the CD3-PerCP intensity using CD3* cell population from
seven aliquots of patient #6’s 76 days post-transplant sample. There is no
VISIDIE OULLET. ...evveiiiiiiiccicccc e 163

Figure F.2 Density plot 'of the CD3-PerCP intensity using CD3* cell population from
seven aliquots of patient #6s -6 days post-transplant sample shown as an

example of gate quality CONTOL......c..vvmiiiiiiiiciiiii s 164

' Flgure G 1 Tlme plot of the FLDA estimated signals (panel a) based on samples .
, taken between -21 and 0 days from aGvHD and time plot of the raw data (panel
b) based on samples taken between 21and 21 days from aGvHD diagnosis for
the immune cells CD3*CD44-CD25- in proportion to PBMC. The aGvHD
diagnosis day is labelled at day 0. .......c.cooevereeerrncccininniicceiieaen. 166
Figure G.2 Time plot of the FLDA estimated signals (panel a) based on samples
taken between -21 and to 0 days from aGvHD and time plot of the raw data
(panel b) based on samples taken between -21 and to 21 days from aGvHD
diagnosis for the immune cells CD3 - (aliquot “1Activation’) in proportion to
PBMC. The date of aGvHD diagnosis is labelled as day 0. .........ccccceevrrinnenen. 167
Figure G.3 Time plot of the FLDA estimated signals (panel a) based on samples
takeﬁ be’tween 0 ahd 21 days from aGvHD and time plot of the faw data (panel
]s)“basea on samples taken between -21 and 21 days from aGvHD diégnosis for
the imn‘iur'lel cells CD24mCD16*CD56-CD3-in proportion to PBMC. The date of
aGvHD diagnosis is labelled as day O............cccoeuvvnivvnnninniiceeeinen 169
Figure G.4 Time plot of the FLDA estimated signals (panel a) based on samples
taken between 0 and 21 days from aGvHD and time plot of the raw data (panel
b) based on samples taken between -21 and 21 days from aGvHD diagnosis for
the immune cells CD3*CD4int (aliquot ‘3Activation’) in proportion to PBMC.
The date of aGvHD diagnosis is labelled as day O.........cccoccevvvvnniiinnnnnnn. 170
Figure G.5 Time plot of the FLDA estimated signals (panel a) based on samples
taken between 0 and 21 days from aGvHD and time plot of the raw data (panel

XV




FaN

b) based on samples taken between -21 and 21 days from aGVHD‘diagnosis for
the new subset of immune cells CD3*CD4*CD83+*CD8* in proportion to CD3*
cell population. The aGvHD diagnosis day is labelled at day 0. ........cccccvuuuec. 172

Figure G.6 Time plots of the FLDA estimated signals (panel a) and the raw data -
(panel b) based on samples taken between 21 and 0 days prior to aGvHD

diagnosis for the immune cells CD45*CD33- in concentration (mm?)............. 173

~ Figure 1.1 Time plot of the FLDA estimated signals (panel a) based on samples taken
between 7 and 21 days post-transplant and time plot of the raw data (panel b)
based on samples taken between 0 and 100 days post-transplant for the immune
cells:45RA*CD3*CD8low in proportion to PBMC (%). The purple striped box
* indicates the time range where data was analyzed via ELDA.......................... 199
Figure 1.2 Time plot of the FLDA estimated signals (panel a) based on sarhples taken
between -21 and 0 from aGvHD diagnosis and time plot of the raw data (panel
b) based on samples taken between -21 and 21 days from aGvHD diagnosis for
the immune cells 45RA*CD3-CD4dim in concentration (mm?3). The date of
aGvHD diagnosis is labelled as day O..........ccccooeevvvcrniiiiniivnninne, 201
Figure 1.3 Time plot of the FLDA estimated signals (panel a) based on samples taken
between 0 and 21 days from aGvHD diagnbsis and time plot of the raw data
(panel b) based on samples taken between -21 and 21 days from aGvHD

diagnosis for the immune cells CD3*CD4int (aliquot “2Activation”) in

proportion to PBMC (%). The date of aGvHD diagnosis is labelled as day 0.. 203




aGvHD

ALL
AML
APC .
BMT
br

CD
CE-MS
cGvHD
CLL
CML
DP
ECDF
EM‘ N
FC-HCS
FCM
FCSf
FITC
FSC
GvHD

HIV
HLA
HSCT

int -

LOOCV

LIST OF ABBREVIATIONS

~Acute graft-versus-host disease

Acute lymphoblastic leukemia

Acute myeloid leukemia

Allophycocyanin

Bone marrow transplantation

Bright (in FCM gating)

Cluster of differentiation

Capillary electrophoresis coupled mass spectrometry
Chronic graft-versus-host disease

Chronic lymphoblastic leukemia

Chronic myeloid leukemia

Double positive

Empirical cumulative distribution function
Ekpectation maximization

Flow cytometric high content screening
Flow cytometry

Flow cytometry standard

Fluorescein isothiocyanate

Forward scatter

Graft-versus-host disease (refers to both acute and chronic
GvHD)

Human immunodeficiency virus

Human leukocyte antigen

Hematopoietic stem cell transplantation
Intermediate (in FCM gating)

Leave-one-out cross-validation

xvii




MDS Myelodysplasia

MHC Major histocompatibility complex
MNC Mononuclear cell

MPD : Myeloproliferative disorder

MUD Matched unrelated donor

NHL Non-Hodgkin's lymphoma

NK  Natural killer (cells)

PE Phycoerythrin

PerCf o Peridinin chlorophyll protein

QA Quality assurance

rest/act resting or activate states (of T cells)
SELDI-TOF Surface-enhanced laser desorption ionization time-of-flight
SIB Sibling donor

ssCc Side scatter

SVMs Support vector machines

TCR T cell receptors

XViii




LIST OF SYMBOLS

A set of observed value from patientjand classi (j=1...J;i=1...I)

Y,

S, B-spline matrix

Sy B-spline matrix for test data x

A Global base value

Aa, Class signal

Yy Individual signal variation

g, Random experiment error

a, Linear discriminant value

weight Weights of the difference between the test data and the global base
- value ((A'STE1S, A) ATSTE )

a Significance level or tolerance of a type I error

XiX




LIST OF EQUATIONS

Equation 1.1 Signal plus noise model ............cocccvvnviiiiiiniini 13
Equation 1.2 Static linear discriminant classification ............cc....ev.ererreeesreseeseremnennnn. 15
Equation 1.3 FLDA weight values at specified time points............... ettt nees 16
Equation 1.4 Functional linear discriminant value .........c.ccccocvvnininininnnininnnnnns 16

Equation 5.1 The aGvHD prediction formula for patient data sampled at 7, 14, and
21 days post-transplant ............cccvcuecinnicciin s 92

Equation 5.2 The cGvHD prediction formula for patient data sampled at 21, 15, 7
and 0 days prior to aGVHD diagnosis ..........c.ccccvvvvvnnnnniiinnncneeceens 95

Equation 5.3 Normalization function for the linear discriminant values................. 102




PREFACE

Graduate study in the CIHR/MSFHR Strategic Training Program in
Bioinformatics at the University of British Columbia begins with three four-month
rotation projects and concludes with a master thesis study. Please note that only the
master project was included in this thesis in order to have a connected thesis
framework. My three rotation projects with Dr. Peter M. Lansdorp & Dr. Ryan
Brinkman, Dr. Artem Cherkasov, and Dr. Robert Hancock are not directly related to
my master study and are therefore absent from this thesis. Nonetheless, I gained a
significant part of my knowledge in genome analysis, drug target identification,

microarray analysis, etc. through the rotation projects.

xx1




ACKNOWLEDGEMENT

I would like to thank everyone who helped or advised me with this project.

Especially, I would like to extend my whole-hearted appreciation to:

My supervisor Dr. Ryan Brinkman who gave me the opportunity to study
this innovative project and the freedom to explore many different analysis methods.
In particular, I would like to thank Ryan for his continuous support through my

illnesses.

Dr. Clay Smith and Dr. Maura Gasparetto for imparting invaluable
knowledge of the graft-versus-host disease and flow cytometry. Dr. Marco Marra
for his advice throughout the project. Dr. Colleen Nelson for her support and
insight into the statistical validation of this study.» Also, Ben Smith for his help on
ti{e stéﬁtic-:.samp.le size calculation. I would also like to thank Dr. Robert Gentleman
and Dr. Nolwenn Le Meur for their work on the flow cytometry quality assurance
test ; Simon Dablemont for his MATLAB scripts for the functional .linear

discriminant analysis; and James Wagner for his help on SVMs.

My program committee members: Dr. Marco Marra (senior supervisor), Dr.
David Baillie, and Dr. Fiona Brinkman for their guidance especially at the
beginning of my graduate studies. Also, my rotation project supervisors: Dr. Peter

M. Lansdorp, Dr. Ryan Brinkman, Dr. Artem Cherkasov, and Dr. Robert Hancock.

Administrative staff including Ms. Sharon Ruschkowski from the
Bioinformatics program and Ms. Monica Deutsch from the UBC -génetics program

for their assistances.

xxii




Fellow students in the UBC genetics program, the Bioinformatics training
program, and the BC Cancer Research Centre. Special thanks to Debra Fulton,

Evette Haddad, and Alison Meynert for their friendship and brainstorming sections.

This study was funded by the CIHR/MSFHR Strategic Training Program in

Bioinformatics and the British Columbia Transplant Foundation.

xx1ii




DEDICATION

This work is dedicated to my parents Shiaou-Cheng Lee and Mu-Tzu Tsou,
for their support. Great opportunities like this master project were only made

possible because of their insight and hard work in bringing me to Canada.

XX1V




CHAPTER 1 INTRODUCTION

Hundreds of bone marrow transplantations (BMT) are performed in Canada
each year. Despite numerous technical advances, graft versus host disease (GvHD)
continues to be a major complication of hematopoietic stem cell transplantations
(HSCT) [1, 5] with a maximum 90% fatality rate for severe GvHD [5-7]. Presently,
there is no test to diagnose the disease definitively, nor standardized assessment for
monitoring response to treatment. Therefore, it is imperative to develop more
reliable and precise tests for predicting and diagnosing GvHD. In the present study,
large scale immune cell population data obtained from a high-throughput flow
cytometry (FCM) technique (section 1.1), were screened for their potential GvHD
(section 1.2) predictive power by a novel temporal analysis pipeline (section 1.3).

Finally, principles of sample size calculation are described in section 1.4.

1.1 . Flow Cytometry

The first flow cytometer, an integration of the flow system and the static -
microscope, was developed by Wallace Cou_ltér in 1954 to count red blood cells.
Today, flow cytometers can separate and count almost any type of biological or non-
biological particle by combining its light scattering properties, which provide an
indication of particle size and shape, as well as the presence of specific fluorescence

markers or fluorochromes.

In FCM, cells are typically labelled with antibody-conjugated fluorochromes
that are used to detect the presence of cell surface proteins. The labelled cells are
then suspended in sheath fluid and flow past the excitation light source, usually a
laser, through a narrow tube one cell at a time. A detector measures the light

emitted from the sample and the intensity of the light can then be used as an

indication of, for example, the presence or absence of a fluorochrome. In the late




1970’s and early 1980’s, clinical applications of FCM rapidly developed in response
to the emergence of the human immunodeficiency virus (HIV) [8]. Since then,
several advancements in antibodies, fluorochromes, and resonance fluorescence
techniques now allow researchers to count and sort an exact population of particles

via sequential gating based on their physical or chemical characteristics.

Gating is a procedure for FCM data where cells with common measurement
intensities are grouped together. This is performed by either identifying a particular
group of cells or separating the entire cell population based on a one or two
parameters display. In sequential gating, multiple markers can be utilized to
identify. a particular subset of particles. An example of the FCM sequential gating is
shown in Figure 1.1. First, forward and side scatter (FSC and SSC) contour graphs
(Figure 1.1a) were used to distinguish live cells (34%) and dead cells by their unique
characteristic size and granularity. The population of live cells can be further
divided using different cluster of differentiation (CD) markers. CDs generally
represent cell-surface antigens. Different immune cell lineages and functions can be
identified using different combination of the CD markers. In this case, the live cells
can be further divided using CD3-fluorchorme intensity (Figure 1.1b) and then
CD44 and CD25 (Figure 1.1 ¢ & d). At the end, 68.8% and 31.2% live cells are with
(CD3*) and without (CD37) the CD3 surface marker respectively. These two
populations' can be further divided into subpopulations of CD25*CD44%,
CD25+CD44, etc.
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Figure 1.1 An example of sequential gating in FCM displayed in contour or
histogram

Multiparametric FCM data analysis is an essential technique in
immunophenotyping. Multiple antibodies and fluorochromes can be used to
identify specific immune cell lineages. Major clinical uses of FCM include the
diagnosis and monitoring of leukemia and lymphoma [9, 10], the evaluation of

peripheral blood hematopoietic stem cell grafts [11], and the quantitation of CD4*



versus CD8*+ T cells in blood to monitor HIV infection and to assess the treatment

“performance [8].

FCM high content screening (FC-HCS) [2], a high throughput FCM method,
was developed by automating the staining and sample analyses ‘using robotic
devices. The technique is robust and can process up to a thousand samples per day.
Using this technique, large FCM datasets with complexitiesl sirnila.r to genomic
technjques__gu,éh as'microarrays can be obteﬁﬁed relatively simply. The FC-HCS
technique has many advantages over the conventioﬁal manual flow cytometric
assays. First, only a few thousand cells are required for analysis. Consequently,
replication and various experimental designs can be achieved from each sample
collection. As this technique is almost entirely automated, mistakes in handling and
staining large numbers of cell samples are minimized. These advantages
dramatically enhance both the efficiency and the reproducibility of the high-

throughput flow cytometric assays.

1.2 . Graftversus host disease

' GvHD occurs following allogeneic HSCT when immune cells in the:graft
attacll< the ';ggipigpt’é tissues. Very little is known about this potentially fatal disease
[5] an&l for many that survive, the result is a significant decrease in quality of life [6,
7,12,13]. GvHD is the major limitation for broader application of HSCT which is

the only curative treatment for many hematopoietic disorders [1].

GvHD occurs in two distinct forms, acute (aGvHD) and chronic GvHD
(cGvHD). Here the term GvHD refers to both forms. GvHD requires the following

three conditions to occur [14]: The graft contains enough immunologically

competent cells; Antigens present in the recipient are different from those present in




the donor; and The recipient is incapable of mounting an effective immune response

to destroy the graft.

1.2.1 Acute graft versus host disease .

Manifestations of aGvHD can be described in three pﬁases [1, 15-17],
summarized in Figure 12. In phase one, preparative treatments such as
chemotherapy or radiotherapy damage host tissues that subsequently secrete
inflammatory cytokines. During phase two, the donor’s T cell pathway is activated
when it i"eec'cégnizes foreign recipient’s antigens presented by host antigen-presenting
cells. The donor’s T cells proliferate and differentiate into effector cells.  Finally, in
phase three, Thl inflammatory T cells’ differentiation leads to the activation of
cytotdxbic T cells, which in turn release a variety of inflammatory cytokines. This

cytokine dysregulation results in skin, liver and gastrointestinal tract tissue damages.

aGVHD typically occurs within the first 100 days following the HSCT, usually
between 14 and 42 days post-transplant [15]. The diagnosis and the subsequent
grading of aGvHD wusually involve skin and histopathologic examinations.
However, a wide range of unrelated illnesses such as the basal cell necrosis, viral
infection, and epidermolysis often exhibit similar symptoms and complicate the
early diagnosis of aGvHD [18]. When an aGvHD diagnosis is made, it can be
graded into four different levels based on the extent of tissue damage [16, 17]. The
most important risk factor for developing aGvHD after a HSCT procedure is the
degree of histoincompatibility in the human leukocyte antigen (HLA) between

patieht and donor [1]. Other aGvHD risk factdrs include increased age of donor and

mismatched gender [1, 19].




)

[n)
Preparative treatments J Retibienf-
APC

Phase 1 .
Phase 2

Recipient
tissue
‘damages

TNF-a, IL-1, IL-6

N

Phase 3 G

Target cell apoptosis

Figure 1.2 Pathophysiologic mechanism of aGvHD (adapted from Couriel et al
[17])

Many immune cell populations have been identified as aGvHD mediators
particularly through animal models and ex vivo graft treatment studies. They
include the major (MHC) and minor histocompatibility complexes, dendritic cells, T
cells, nature killer (NK) cells, macrophages, and cytokines [1].‘ The most prominent
med~iator.is donor T cells [20]. T cell depleted BMT has been shown to reduce the

occurrence of aGvHD significantly. However T cell depletion is rarely applied due

to its severe side effects including increased rate of graft failure, prolonged




immunosuppressive state resulting in increased likelihood of fatal infections, and

higher relapse rate [21-26].

Previous attempts to 'build a predictive model using CD3* T cells usually
comprised small numbers of patients and exhibited conflicting results. Even though
T cell depletion studies have demonstrated the importance of T cells in aGvHD
development, many studies could not establish a significant correlatién in the CD3*,
CD3+*CD4* c;r CD3+*CD8* T cells patterns (in either proportion-or absolute number) to
the onset of aGvHD [27, 28]. However, one study comparing nine '.moderate or
severe aGvHD and 15 non-GvHD patients demonstrated significant correlation
between the changes of three T cell subtypes (CD4*CD25*, CD4*CD69*, and
CD4*CD134*) to the development of aGvHD [29]. Another study in humans
demonstrated significant correlation between the rapid increase (>50%) of donor T
cell chimerism and the development of moderate or severe aGvHD [30]. NK cells
are also one of the known aGvHD mediators [1]. However, the exact NK cells
population and their functions are not well defined. Some studies suggest NK cells
contribute to tissue damage during aGvHD via secreting pro-inflammatory

cytdkines [31,-32] while others suggest that NK cells suppress GvHD effects [33, 34].

s g v e e

1.2.2 Chrohiq graft versus host disease

. ¢cGvHD: affects 30-80% of patient surviving six months or longer after their
HSCT procedure [35] and is the leading cause of non-relapse deaths. The
péthophysiologic mechanism of cGvHD remains poorly defined despite numerous
studies. Researchers have suggested the participation of both autoreactive and
alloreactive T cells in the manifestation of cGvHD because the symptoms resemble

autoimmune diseases. The development of cGvHD (Figure 1.3) might be the result

of autoreactive T cells escaping negative selection in the damaged thymus caused by




the preparative-treatments or aGvHD [36]. The resulting Th2 CD4* helper T cells
facilitate synthesis of autoantibodies by host B cells [37]. |

Preparative treatments

\ 4
Thymic injury

Loss of negative selection of autoreactive T cells

autoreactive antibodies

Flgure 1.3 vPatI'lophysiologic mechanism of cGvHD (adapted from Iwasaki et al
[371) |

c¢GVvHD usually occurs approximately four months after transplantation [38].
Similar to the diagnosis of aGvHD, ¢GvHD diagnostic methods are based on

ambiguous clinical symptoms that involve skin and multiple internal organs.




cGvHD is usually differentially diagnosed apart from aGvHD and bacterial
infections by at least one unique ¢cGvHD symptom rather than the timing of the

onset [37, 39

c¢GvHD is graded into either limited or extensive disease based on the extent
of skin tissue and internal organ damage. An alternative classification system is
based on the cGvHD diagnosis time relative to the aGvHD status. Progressive
c¢GVHD evolves directly from aGvHD and is associated with the most severe
prognosis. Quiescent-type cGvHD with an intermediate prognosis occurs after an
aGvHD free period. Finally, de novo cGvHD occurs without a prior history of
aGvHD and has a better prognosis [37, 39]. The greatest risk factor associated with
c¢GvHD is the prior incidence of aGvHD. The risk of developing cGvHD is more
than ten times higher in patients with prior aGvHD [35]. Other factors include those
common to aGvHD, such as the age of the patient and the degree of transplant

histbincompatibility [39].

The known mediators of cGvHD include interleukin-18, T cell‘s, and B cells
[37]. Resea;chers have speculated that T cells are also the main mediator and
effectbrlcell type for the development of cGvHD. However, a recent randomized-
trial study of T cell depletion contradicted previous findings [25, 26, 35, 40] and
concluded that T cell depletion did not significantly reduce the incidence or the
severity of cGVHD [21]. Attempts to build a predictive model using T cells or T cell
subsets have resulted in conflicting or incomparable results. One study [41]
demonstrated an insignificant correlation between the changes in CD4* and CD8* T
cells and the onset of cGVHD. Another study utilizing both FCM and intracellular
staining demonstrated a potential correlation between IL-4 producing CD8* T cells
and cGvHD development. Other similar studies have focused on CD34* cells and

suggested the importance of graft composition. However, they did not observed

any significant correlation between any cell subset and the onset.of cGvHD [27, 42-




45]. A pilot study of limited number of patients (six cGvHD and nine controls)
focused on regulatory T cells with a CD25high phenotype and observed a significant

increase of CD4+CD25high T cells associated with the onset of cGvHD.

1.3  Temporal analyses

In comparison to the conventional static or multivariate analyses, temporal
analysis .is. the most efficient analysis approach for the study .of biological
phenomena occurring over time [46]. In static analyses, values from a single fixed
time point or the relationship between two fixed time points are examined. In
multivariate analyses, values from multiple time points are examined as
independent variables. Only in temporal analyses, values from multiple time points

are examined as a single entity, thus conserving the continuity and dynamic of time.

Other main advantages of temporal analyses are that they are generally more
tolerant to missing values and non-uniform sampling rate, the two most prominent
challenges in a clinical dataset. On the other hand, the major challenge in designing
a time-course experiment is the sampling rate. If the experiment is under-sampled,
temporal aggregation may occur [47]. Oversampling is not favourable because of
the cost. There is no standard sampling rate as it is specific to the biological
phenomenon under investigation and the instrumental error rate [47]. Other
experimental and computational challenges in a temporal analysis were previously

reviewed by Ramsay and Silverman [48].

1.3.1 Temporal analysis for flow cytometry data
The popularity of time-course studies has already prompted the development
of temporal versions of many conventional statistic analysis methods. Examples of

these include algorithms for analysis of variance [49, 50], functional principal
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co;r\ponent analysis [48, 51], clustering [52-59], and classification [4, 60-63]. Most
temporal analysis algorithms were designed for or tested on microarray data. In
some cases, the algorithms are not applicable to FCM data. The most noteworthy
difference in the analyses of a microarray dataset versus a FCM dataset is the
underlying assumption. Many microarray analyses are based on the assumptions
that gene expression values follow a normal distribution and most do not change.
These assumptions fit well with the whole genome approach of microarrays. The
same assumptions have no standing in FCM data where only known cell
populations. are measured from a limited and biased selections of antibody-
fluorochromes, and manual sequential gating. Furthermore, results from sequential
gatmg overlap in their targeted immune cell subpopulations. Thus, FCM data are
potentially dependent and correlated. To the best of my knowledge, no study has
been.done on the distribution of individual or overall immune .cell population
changes. As a result, availability of temporal algorithms suitable for FCM data
analyses is further limited. Below in sections 1.3.2 to 1.3.4, | have summarized the
common temporal analysis procedures: time-series data representation, pre-
processing, and classification, employed in the pipeline I developed in response to

the shortcomings of existing analysis methodologies.

1.3.2 Representing temporal data

The first step into a temporal analysis is to transform the time-series data
consisting of.a set of discrete values at multiple time points into one or more
functions. The purpose of this transformation step is to represent the data as
coefficients in a formula. The most common way of representing a non-periodic

time-series data is the B-spline [48, 64].

A B-spline is a linear combination of a basis function. Two parameters

involved in a B-spline shape are basis function order (n-1) and a knot placement.
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Generally, these parameters were selected to ensure adaptability of a B-spline to the
original data pattern. If n is two, a B-spline is built on combinations of linear basis
functions between each knot. The spline dictates smoothness between the two basis
functions on each side of a knot. The order of the basis function is also determined
by the degree of the derivative function to be analyzed. For an example, a cubic B-
spliné (n=4) wﬂl -ensure -smoothness and the availability of up to the second
derivatiye for further analyses. In a B-spline, knots designate the beginning of a new
basis Afunction where a change in the pattern is available. Subsequently, knots are
placed around regions where complex variation is expected. By specifying the
location and the number of knots, one can enforce regions with complex variation,
ensure tolerance to non-uniform sampling time, and induce smoothing. Presently,

there is no standard for the basis order or the knot positions.

The B-spline, represented as coefficient values in a matrix, is flexible to fit
large numbers of data points and allows relatively easy implantation of various
calculations. - Other data representation techniques include:-P-spli‘ne, polynomial
f{méti.o‘ﬁ; expohenfial bésis, pdwer basis, step-function basis [65] and the. Fourier
‘basis.for‘perio,dié data [48, 64]. In this study, I utilized B;splines, the most robust
répréser}tation'of time-series data and investigated how to build a B-spline that best

- reflects the raw data pattern.

1.3.3 Data pre-processing -~ Smoothing & Registration

When time-series datasets are transformed into one or more combinations of
functions via methods such as B-splines, the resulting pattern is automatically
smoothed. The purpose of performing an additional smoothing procedure is to
minimize fluctuations in the pattern that might be motivated by random

exp'e_rimental. errors instead of the underlying biological phenomena. The

12




commonly used smoothing methods: least square, roughness penalty, and positive

smoothing methods, are briefly described below.

The basic aim of these smoothing methods is to determine the balance
between goodness of fit to the intrinsic or external pattern and amount of
information lost. For the least squares smoothing method, patterns are changed
throughout the available time range in order to minimize sum of squared errors in
fitting a 's'in},ula’ged model with normally distributed and independent residues. For
the roughness penalty method, variances among the patterns’ are decreased
fﬁroughdﬁt. The amount of smoothing is unbiased and is controlled by the user
specified parameter A. The positive smoothing method modifies évery pattern by
enforcing a logarithmic property, thus adding positive constraint throughout.
Overall, there is no standard degree of smoothing by any method, and as a result,

this increases the complexity of long time-series data analyses.

Another form of smoothing where random experimental errors are estimated

and removed is the signal-plus-noise model. Essentially, a set of observed values ¥,
from sample j in class i are divided into global base value 4,, class signal Ae,,
individual signal variationy, and individual experimental errorse, (Equation 1.1).

The -parameters can be estimated via algorithms such as the Expectation
Maximization (EM) algorithm. |
Y, =4 +Aa, +y, +¢,

Equation 1.1 Signal plus noise model

Registration in a temporal analysis refers to stretching and shrinking the time
index of each observed data to fit an overall time-series data pattern [48]. This step

is often necessary because the phenomena being measured may not follow the linear
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time scale the data. Registration is particular‘ly important for long time-series data
and clinical data in order to synchronize different patient response times. Examples

of registration methods are the landmark and continuous fitting criterion [48].

Landmark registration is biased as it depends on prior information. First, a
minimum of two landmarks for the two ends of each time-series data are identified.
More landmarks can be identified based on specified patterns or prior information
such as disease diagnosis or combinations of both. There must be an equal number
of landmarks specified for each set of time-series data. The landmark registration
algorithm then transforms the time axis so that corresponding landmarks in the
time-series dataset are comparable [48, 66]. Continuous fitting or global registration
is unbiased and aims to minimize the least square value between the registered
patterns and their means. At each iteration, amplitude differences between the
patterns and their mean are minimized by modifying the time scale [48]. Other
registration methods include shift registration, which applies a constant shift to the

time index and warping function, which combines registration and smoothing.

1.3.4 Classification
| Classification algorithms analyzing time course data can be catégorized into
two approaches. The first approach utilizes conventional multivariate analyses such
as principal component analysis [67, 68], singular value decomposition [69],
correlation analysis [70], and support vector machines [71]. These algorithms omit
the time dependency of the time course data. The second approach includes the
time dependency in the time course data. Thus, the second approach is generally
considered more efficient in time course study and applicable to study with missing

values and non-uniform sampling rate.

14




Algorithms categorized in the second approach include nonparametric curves
discrimination [72], functional linear discriminant analysis (FLDA) [4], mixture
functional discriminant analysis [73], predictive modular neural networks [60], etc.
Among all these classification algorithms, only FLDA was designed specifically for
sparsgly sarr}pled datasets. Therefore, FLDA [4] is deemed the most suitable

temporal classification algorithm for the analysis of the present clinical dataset.

FLDA is a B-spline based method. Similar fo the static linear discriminant
analysis, it provides an easily interpretable classifier. In the static linear
discriminant analysis [74], the classification of test data can be made via multiplying
weight values (bs, by,... bw) with test data values (x1, x2, ... Xm) from the corresponding
parameter (Equation 1.2). These weight values are determined for each parameter
using a training dataset with multiple and independent parameters. The absolute
value of these weight values also represents how strongly each test data will be

accounted for in the classifier.

Group = a+bx, +b,x,...+b,x,,

- Equation 1.2 Static linear discriminant classification -

- For time-series datasets, FLDA builds a classifier by estimating the signal-
plus-noise model (Equation 1.1 and Figure 1.4) using a training dataset where the
tirst three parameters (global base value, class signal, and individual signal variation)

are denoted by the B-spline matrix S,. In the FLDA classifier, weight values

(Equation 1.3) are determined for a set of sampled time points using variables
estimated in the signal plus noise model (Equation 1.1). Classification is made by
multiplying the difference of the test data with the corresponding global base

values 4,, to the weight values at the sampled time points (Equation 1.4). The
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polarity of the linear discriminant value @, is used to determine the classification of

a test data into one of the two groups. In a FLDA classifier, large absolute weight
values are assigned to time points where there is large separation between the
estimated class signals. As a result, small differences between test data and the
global base values at those time points will be accounted more heavily than

differences at other time points in the overall classification (Equation 1.4).

values
values

time

Figure 1.4 An example of the FLDA signal plus noise training from the raw data

(panel a) to the estimated signals (panel b), adapted from James and Hastie [4]

weight =(A'S}Z7S,A)'A'S 27

Equation 1.3 FLDA weight values at specified time points

a, =weights-(X - S, A,)

Equation 1.4 Functional linear discriminant value
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Validation techniques for classifiers can be categorized into four groups:
external test set, resubstitution, bootstrap, and cross-validation. The external test set
is the best validation technique because it provides unbiased error estimation by
validating the classifier using a new dataset with prior knowledge of class
assignment. Unfortunately, the external test set validation is usually impractical in
studies with a small sample size. The other three groups of validation techniques
utilize the same dataset for both training and validation of classifiers. Resubstitution
is a method where the same training dataset is used as the test dataset and it usually
underestimates the classifier error considerably [75]. Similar to resubstitution,
bootstrap repeatedly re-analyzes a subset of the training dataset by selecting profiles
with replacement. K-fold cross-validation also repeatedly re-analyzes a subset of the
training dataset but without replacement. Error is estimated by k training datasets,
each time leaving a subset of the original dataset as the testing dataset. If k is set to
the size of a dataset, then leave-one-out cross-validation (LOOCV) is performed and
a single data point is used as the testing dataset each time. .Studies have shown that
bootstrap technique generally results in biased error estimation with small variance

while the cross-validation results in less biased estimation with large variance [76].

1.4  Sample size calculations

Sample size calculation or power analysis estimates the certainty of detecting
an effect, which is inversely proportional to the probability of a false negative (a type
IT error) result. The estimated power depends on the tolerance of type I errors
(significance level, a) and the data variance. In the case of a pilot project, sample
size calculation may be used to determine how many samples are needed for a
future study in order to achieve a certain power level. Generally, sample size

calculation consists of four steps [77]:
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1. Specify a

2. Specify hypothesis-testing procedure

3. Sampling of the original dataset to create simulated datasets of different
sizes

4. Estimate power of the analysis based on multiple stimulated datasets

. Most of the sample size calculations vary with their choice of hypothesis
testing- and sampling methods. Most include assumption of normal or known
distributions. Power analysis by location shift [78] is entirely nonparametric and
incorporates the average X & Y method for a'conservative power estimation. Itis a
bootstrap based method where multiple stimulated datasets from the empirical
cumulative distribution function (ECDF) are compared with the Wilcoxon test. It

considers variances from the two original datasets separately and determines the

overall power as the average of the power estimated from the two original datasets.

1.5  Thesis goals

Previously, high-throughput methods have proven useful in probing
unknown diseases [79, 80]. High-throughput FCM has never been applied to the
study of GvHD.because of the technical dlfflcultles of FCM were only resolved with
the recent development of FC-HCS. As manifestations of GVHD are based on. the
1mmune system, it was thought a hlgh-throughput analysis on immune cell changes
in the blood following allogeneic HSCT might prove to be successful in predicting
the onset of GvHD and elucidating their mechanisms. The main hypothesis of the

present study was:

Onset of aGVHD or ¢cGvHD can be predicted by identifying patterns of
cellular markers in peripheral blood mononuclear cells (PBMCs) via FC-HCS.
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It is suspected that there are,multiplev immune cells and pathways involvéd
in GvHD disease manifestation [81]. The global approach used in this study should
be beneficial in the further elucidation of the disease. The main goal of the present
study was to develop a bioinformatics analysis pipeline that can analyze high-
throughput clinical FCM data and if possible identify immune cell populations that
may be used in a diagnosis of either aGVHD or cGvHD. The specific aims were:

1. Assemble a suitable temporal analysis pipeline to process the high-
throughput FCM dataset
2. Identify one or more immune cell populations with potential discriminate
- power for either aGvHD or cGvHD
. 3. Construct diagnostic models for aGvHD and cGvHD

4. Recommend an analysis methodology for an extended study. . .
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CHAPTER 2 PATIENTS AND METHODS

21  Overview

One hundred and twenty-three subsets of PBMCs were obtained by FC-HCS
using samples taken from 31 patients (Table 2.1) at multiple time points. The quality
éf the dataset was assessed and suspicious outliers removed. This dataset was then
separated based on patients’ GvHD diagnoses and analyzed by a temporal
classification algorithm. In order to verify the hypothesis of the present study,
temporal patterns of immune cell populations’ abundances that appeared to
correlate with the onset of either aGvHD or cGvHD were identified and visually
inspected. Finally, sample size calculations were performed based on the top

classifiers in order to estimate statistical power of the current and future studies.

2.2  Study patients

Thirtif-one patients who received HLA matched BMT from either sibling (SIB)
or ma_tched-,unrélated dondrs (MUD) were enrolled at the Moffitt Cancer Center
with the apprbval of the institutional review board. On average, there were 14 (+3)
samples per patient, collected approximately every ten days (+14). Samples were
collected from 0 to 16 days (average 6 + 4 days) before the transplantation and until
49 to 400 days (average 125 + 81 days) after the transplantation. This was a
heterogeneous dataset. ~Among the 31 patients, there were seven different
underlying hematopoietic disorders (Table 2.1) and at least four different types of
pre-transplant treatments (data not shown). Twenty-one patients were diagnosed
with aGvHD on average 36 days (+ 18 days) post-transplant. Seven of these aGvHD
patients were later diagnosed with cGvHD from 98 to 446 days post-transplant. The
diagnosis and grading of GVHD were performed using previously published criteria

[82]. Details of the stem cell source, GvHD diagnosis time, and maximum GvHD

grades are summarized in Appendix A.




Table 2.1 Characteristics of the 31 patients recruited for the study.

Characteristics | Subtypes Incidence (% of total
population)
GvHD
aGvHD 21 (68%)
aGvHD and survived 9/21 (29%)
aGvHD then died or withdrew 5/21 (16%)
from the study :
Progressive or quiescent-type 7/21 (23%)
. cGVHD
non-GvHD 7 (23%)
non-GvHD with records past 100  4/7 (13%)
days post-transplant '
non-GvHD died or withdrew 3/7 (10%)
before 100 days post-transplant
De novo cGVvHD 3 (10%)
Underlying
disorders
AML 11 (35%)
MDS 1(3%)
MDS-AML 3 (10%)
CML 5 (16%)
NHL 7 (23%)
MPD 1(3%)
CLL 2(6%) -
, ALL 1 (3%)
Donor-recipient
relationship : S
SIB 17 (55%)"
‘MUD 7 (23%)
~ unknown 7 (23%)
Total 31
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2.3 ----Sample-preparations and flow cytometry high content screening

~ Blood samples were obtained both pre- and post-transplantation on an
approximate weekly basis. PBMCs were isolated using Ficoll-Hypaque technique.
The samples were divided into ten aliquots in 96 well plates. Each aliquot was
stained with four different antibodies out of the total 25 (Table 2.2) used in the
present study. The four antibodies used per group were attached with different
fluorochromes and the combinations of antibodies-fluorochromes were designed to
target different immune cells (Table 2.3). Six aliquots named “lActivation’,
‘2Activation’, ‘3Activation’, ‘resting/activate (rest/act) T helper’, ‘rest/act T
suppressor’, and ‘T cells’ targeted subsets of T cells and their functional states. The
other four aliquots targeted myeloid cells, B cells, NK cells, and T cell receptor (TCR)
via aliquots so named.

A Depending on the sample number and frequency, one or more“%-well plates
were used for each patient. Samples were usually plated one row per aliquot and
ordered-in columns by their sampled time. These 96 well plates were stained with
antibodies and then analyzed using multi-parameter FCM as part of the FC-HCS
technique previously described [2]. Batch gating analysis of the FCM was
performed using FlowJo software (Tree Star, Inc, Oregon) on one- or two-
dimensional plots to generate abundance values for maximum 123 subsets of
immune cells for each sample (Appendix B). The sample preparations and the FCM

gating were previously performed by the Moffitt Cancer Center and Dr. Maura

Gasparetto (BC Cancer Research Centre).




Table 2.2 Annotated functions and selected literature references on the 25 cell

surface antigens used.

Gene Functions Literature
Name(s
CD2 - — |-Activation of T and NK cells [83]
CD3 Known to be involved in phase II of acute GvHD [84]
Regulation of interleukin-2 biosynthesis; T-cell [85-87]
CD4 differentiation; Known mediator in GvHD
CD5 | Cell proliferation and recognition 1 [88, 89]
CD8 Know to be involved in phase II of acute GvHD [84]
CD8p T-cell activation, MHC class I binding [90, 91]
Also known as common acute lymphoblastic leukemia; | [92]
CD10 marks early lymphoid progenitor cells
Cell surface receptor linked signal transduction; [93]
CD14 inflammatory response
CD15 Neutrophil adhesion [94]
CD16 Immune response [95]
CD19 B cells marker [96]
B cells activation; immune responses; signal [97]
CD20 transduction
CD22 Cell adhesion; antimicrobial humoral response [98, 99]
CD25 | Marker for strong or prolonged antigen stimulation [96]
CD33" ** |'Cell adhesion [100]
CD44 Cell adhesion | [101]
CD45 | Lymphocytes activation [102]
CD45RA | T cells in resting state [103]
CD45RO | T cells in activating state [103]
CD56 NK cells marker [96]
CD69 Early T cell activation antigen, acute graft rejection [104]
CD122 | Cytokine receptor [96]
Tumor necrosis factor receptor superfamily, marks [105]
CD134 activated CD4* cells
TCRab T cell activation [96, 106]
TCRgd | T cell activation [96]
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aliquots available per sample.

Aliquot # | Aliquot name FITC PE PerCP APC

Table 2.3 The combinations of antibody - fluorochromes used in each of the 10

1 | Myeloids CD15 CD45 CD14 CD33
2| Tcells CD4 CD8f3 CD3 CD8

3 | NK cells CD16 CD2 CD3 CD56

4 | Bcells CD10 CD20 CD19 CD22
5/|TCR TCRab TCRgd CD3 CD5

6 | 1Activation CDh44 CD25 CD3 CD69
7 | 2Activation CD4 CD134 CD3 CD8
8 | 3Activation CD4 CD122 CD3 CD8
. 9| rest/act T helper CD45RA |CD45RO | CD3 | CD4
10 | rest/act T suppressor | CD45RA | CD45RO CD3 CD8

24  Temporal analysis pipeline

A temporal analysis pipeline consisting of three steps was assembled
specifically for the high-throughput clinical FCM dataset (Figure 2.1). Step one
involved a quality assurance (QA) test in two parts. The purpose of this QA test was
to identify values motivated by experimental errors. Step two involved the data
transformation via a PERL script. Finally, step three involved the temporal
classification via FLDA. The resulting classifiers were ranked based on their

potential discriminative power for the onset of either aGvHD or cGvHD.

-
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Step 1: Flow Cytometry Quality Control

' Flow Cytometry

Flow cytometry data

Quality assurance test
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S
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Step 3: Temporal classification

Functional Linear Discriminant Analysis

\l/ Time
Day 0 Day 7
. . Patient #1 30 10
Continuous representation Palion 72 o 5
Patient #3 27 52
Data as values at multiple ! GeHD
L discrete time points 3 non-GeHD

¢

Proportion CD3+CD4+CD8b+

Linear B-splines

T T T T T
8 1w 12 14 (13 18 ut]

8
aGvHD
64 | non-GvHD
FLDA Classifiers

Days post-transplant

FLDA estimated signal CD3+CD4+CD8b+

LOOCV validation S S S A
— - Days post-transplant
T cells CD3+CD4+CD8B+
diagnosis : :
< aGVHD |healthy Weighted knots validation for
E aGVHD 18 0 | static sample size calculation _
= [healthy 3 3 7
T cells CD3+CD4+CD8B+
Knots (days post-
transplant) 7 14 21

Accounted weights

(=3

0.012| -0.177

Visual inspections of top ranking measurements

Figure 2.1 Temporal analysis pipeline designed for the high-throughput clinical
FCM dataset.




241 Quality Assurance

The bqéic assumption for the main QA test was that distributions from
common hght scatter intensities of cells in different aliquofs of the same sample
should be similar [3]. Outliers were identified through visual inspection of ECDF,
density plots and box plots. Part one of the QA test was performed on ungated data
by Dr. Le Meur (Fred Hutchinson Cancer Centre) where the QA assumption was
tested on intensities of the FSC and SSC measurements for all cells. Raw flow
cytometry standard (FCS) files from a FACSCalibur (Becton Dickinson (BD), San
Jose, CA) were obtained and analyzed in R via the rflowcyt packége [107].

In part two, I tested the QA assumption based on the intensities of the FSC,
SSC' and CD3-PerCP antibody-fluorochrome for CD3* and CD3- populations
separately. FCS files of the gated CD3* and CD3- populations were exported from
Flow]o. Excéss keywords in the FCS files were removed via a PERL script (fixFCS.pl,
Appendix C) :f'o'generate a file format compatible with the rflowcyt package. Unlike
the QA test on ungated data where up to ten aliquots were available per sample,
there were only five or seven aliquots available for the QA test of gated data.
Consequently, it was more difficult to identify outliers visually. In order to retain
most of the limited data for the subsequent classification analysis, only obvious and
singular outliers were identified. Criteria for outlier identification in the QA tést on
gated data were:
1. One outlier per sample
2. The outlier pattern must be visually different from all other aliquots
-3.:The outlier pattern cannot be visually explained by the observed general
variations. |
Under these criteria, outliers were identified and all their associated sub-gates were
removed from subsequent analyses. Data with putative outliers that did not fit the

above criteria were retained. Finally, all outliers and unusual patterns were mapped
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back to the original plating chart in order to investigate the distribution of outliers

on the 96-well plate.

L |

2.4.2 B-spline parameters evaluation

The effects of two B-spline parameters: basis order and knot placement were
tested ‘.using a time-series data from patient #2 between 0 and 13 weeks post-
transplant. This patient was selected because of its uniform sampling rate and a
single missing value at week one. The effects of these parameters on the overall fit
between the resulting B-spline and this data were evaluated and were used as
models in determining the optimal B-spline parameters for the dataset. However,
because of the sampling rate disparities and the massive numbers of values available,

this data may not be representative of the entire dataset.

First, the effects of different basis orders were examined using three B-splines
created with two, three or four basis order creating linear, quadratic, and cubic basis
functions. Knot placement of one knot for every sampled time point was used for all
three B-splines. Secondly, the effects of different knot placements were examined
with four .B}splines.cons'isting. of linear basis- functions. The four knot placements,
with decreasing knot frequency were:

1. A weekly knot placement including one knot at week one post-transplant

when patient information was not available

2. Kndts at every sampled time points (no knot at week 1)

3. A bi-weekly knot placement covering the entire time range (0, 2, 4, 6, 8,

and 13 weeks post-transplant)

4. A tri-weekly knot placement covering the entire time range (0, 3, 6, 9, and

13 weeks post-transplant)
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2.4.3 Data transformation

Step two in the temporal analysis pipeline (Figure 2.1) involved data
transformations via a PERL script (viz_days.pl; Appendix D). The 123 gated
immune cell abundances were exported to text files using Flow]Jo software. The
FCM data were then combined with immune cell concentration data and
transformed into a proportion dataset and a concentration dataset. The proportion
dataset contained all 123 subsets of immune cells; each corresponding to the
proportion of cells (proportion of either the total PBMCs or total CD3* cells) in the
gafe: The mononuclear cell (MNC) concentration values (mm?®) were obtained
separately ﬁsing different samples taken from the same group of patients-at multiple
time points. The concentration dataset was obtained by multiplying each proportion
value with the MNC concentration of samples taken at the closest date. Both
datasets were tested because they may contribﬁte different insights into immune

responses.

The PERL script viz_days.pl (Appendix D) also rearranged the file layout and
the time scale. Originally, data was recorded as the number of days after the BMT.
Viz_,déys.pl combined the known aGvHD diagnosis date, BMT date, and the
sampled time points to modify the time scale from days post-transplant into days
from the aGvHD diagnosis. For patients unaffected by aGvHD, the average date of
aGVHD dlagnosm observed in the current dataset (36 days post-transplant) was used
as-the synchromzatlon event. The non-GvHD patient data were transformed so they
could be compared to the aGvHD patient data. Thus, patients’ responses were
synchronized by two events resulting in two time scales in days post-transplant and
days frém aGvHD diagnosis. The PERL script also excerpted three parts of the data
for time ranges representing patterns right after BMT, and before and after aGvHD
manifestation. Consequently, results derived from these three time ranges should

be useful in elucidating the onset, manifestation, and progression of GVHD. In the

end, three separate dataset of different time ranges were obtained:



http://viz_days.pl
http://viz_days.pl
http://Viz_days.pl

. 1. 7 to0.21 days post-transplant
2. 21 to 0 days prior to aGvHD diagnosis
3. 0to 21 days from aGvHD diagnosis

24.4 Temporal classification

In step three of the temporal analysis pipeline (Figure 2.1), different
combinations of GVHD and non-GvHD patient groups (Table 2.1) were analyzed
using FLDA for both the proportion and concentration datasets. The first
comparison was between the 21 aGvHD and the 4 non-GvHD patients. This
comparison was intended to identify temporal patterns from one or more subsets of
immune cells that could predict aGvHD reliably and precisely prior to the
manifestatien‘ of clinical symptoms, or elucidate pathophysiologic pathway of
anHD durmg the clinical manifestation of aGvHD. Supplementary comparisons
1nc1ud1ng 17 Grade ILIV aGvHD vs. 4 non-GvHD patlents and 12 Grade III Y
aGvHD vs. 4 non-GvHD patlents were also performed. The second comparlson was
between seven patients diagnosed with both aGvHD and ¢GvHD and nine patients
diagnosed with only aGvHD. This comparison was intended to identify temporal
patterns from one or more subsets of immune cell that are predictive of progressive
or quiescent-type ¢cGvHD either after the BMT or during the manifestation of
aGvHD.

A PERL script (FLDA_MATLAB.pl; Appendix E) read in the specified data
and outputted necessary MATLAB (MathWorks, Inc. Boston) commands to build a
FLDA classifier for each subset of immune cells and each patient group comparison.
The. PERL ec;ipt also acted as a filter to omit data with fewer than three available
éafnpiled time points per patients in each of the selected time ranges',‘or fewer than

three available patients per group. Because of missing values from the é_anipled time

point. and limited number of available aliquots, not all the identified immune cell
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populations and patients were included in each analysis. The qualified data were
then analyzed via the FLDA analyses with a linear B-spline and a weekly knot

placement.

~ LOOCV was performed on the FLDA classifiers. The yalidation results were
used: to rank the FLDA classifiers and their corresponding subsets of immune cells
as the values were directly proportional to the potential discriminative power of the
témporal patterns. Top ranking classifiers were then inspected visually via time
plots of the FLDA estimated signals and the raw data in the analyzed and extended

time ranges.

2.5  Static sample size calculation

A static sample size calculation pipeline (Figure 2.2) was implemented in the
R package ‘PALS’ (Power Analysis by Location Shift) based on the location shift -
hypothesis [78]. The analysis was performed on values from the top FLDA ranking
immune cell populations closest to the time point where the class signal separation
was the .greatest based on the adjusted weight values (sectioh42.6). . The purpose of

this analysis was to estimate statistical power of the present and future studies.

. Briefly, -in the sample size calculation (.Figure 2.2), simulated datasets were
generated from random samplings of two ECDFs corresponding to the two groups
of observed values. The simulated datasets were then analyzed using the Wilcoxon
test for statistical significance (a < 0.1). This was repeated 10,000 times to estimate

“the power of the study. Each ECDF was used to simulate data representing both
groups. The average of the power from each ECDF was obtained. In the interest of
time, an upper and lower limit of 100 and 0 was set for the random sampling from

the proportion dataset.
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Observations from group 1 Observations from group 2

I Group 1 ECDF Group2 ECDF > <<

Random sampling

B Y )

Simulated dataset of size n -

Simulated dataset of size n

+/- median differences

Simulated dataset for groups 1&2

Simulated dataset for groups 1&2
Wilcoxin test Wilcoxin test

p<a p<a

Repeat j times

v o “Egtimate power of the study with Bx simulated datasets of size n'
SR “average of (number of time p< « / )

Figure 2.2 Static sample size calculation pipeline.
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For the first comparison, between 21 aGvHD and three out of four non-GvHD
patients, observed values from the immune cells CD3*CD4*CD8{* taken closest to
21 days post-transplant were used. For the second comparison, between seven
aGvHD &_c¢GvHD, and nine aGvHD only patients, observed values from the
immune cells CD3*TCRab*CD5*TCRgd* taken closest to seven days prior to the
aGvHD diagnosis were used. Various simulated dataset sizes were used for both
comparisons. However, sizes of aGvHD simulated data were two times larger than
the non-GvHD simulated data sizes in order to imitate the aGvHD manifestation
rate in the BMT patients. On the other hand, equal sizes were assigned between the

aGVvHD & ¢GvHD and aGvHD simulated datasets.

2.5.1 Weight values in the functional linear discriminant analysis classification
In a FLDA classifier, large absolute weight values are assigned to time points
where there are large separation between the estimated class signals (Equations 1.3
and 14). For the static sample size calculation, weight values were determined at
each of the weekly knots originally used in the FLDA analysis (section 2.4.4). The
reliability. of the weight values were accounted for by multiplying the weight value
with the ratio of the corresponding total nurﬁber of observed values and the total
number of expected values. In the range between half the knot interval away from
each knot on both sides, the number of expected and observed values from the class
with the least number of patients was noted in order to obtain the most conservative

estimations.

A hypothetical example of accounted weight values is described using a
FLDA classifier built using fabricated samples from 21 aGvHD and three non-GvHD
patients taken between 7 and 21 days post-transplant. Weight values for the weekly
knots at?, 14 and 21 days post-transplant were assumed to be 2, 0.5 and 3. Sample

avallablhty for the three non-GvHD patients were assumed.to be two values at
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seven days post-transplant, three at 14 days post-transplant and one at 21 days post-
transplant. In a weekly sampled rate, one value was expected for every patient and
every week. As a result, the accounted weight values were determined to be 4/3, 0.5
and 1 at each knot. Due to the lack of available values for the smaller non-GvHD
patient group (between 18 and 21 days post-transplant), the estimated class
separation at 21 days post-transplant was not reliable. By taking the actual number
of values available around each knot into account, the greatest and the most reliable

class separation was at 7 days post-transplant.
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CHAPTER 3 RESULTS - QUALITY ASSURANCE AND B-SPLINE
PARAMETERS

3.1  Quality assurance on ungated data

From the QA test on ungated data, two outliers corresponding to aliquots
‘Myeloids” and ‘3 Activation’ were identified in the FSC intensity density plots for
patient #6 (Figure 3.1). One of the two outliers (aliquot ‘Myeloids’) was also
identified in the ECDF plots (data not shown). Box plots failed to dépict details in
the distributions while most differences were observed in the FSC distribution,

compared to the SSC ones [3].

3.2  Quality assurance on gated data
3.2'.1‘ Singular outliers

In the QA test on gatéd data, outliers such as aliquot ‘3Activation” from
patient #6's samples taken at 76 days post-transplant (Figures 3.2 and 3.3) were
selected using the criteria outlined in section 2.4.1,. In total, 29 aliquots (< 0.4% of
the dataset) were identified as visually significant outliers (Table 3.1) and removed
from the dataset. While the outlier ‘3Activation’ can be easily identified in the FSC
and SSC intensities density plots (Figures 3.2 and 3.3), the same aliquot would not
have been identified as an outlier due to general variations observed in the density
plot of CD3-PerCP intensity (Figure F.1). Consequently, CD3-PerCP was not used in
the outlier identification. Results from the CD3-PerCP density plots and their

potential role in gate quality control are described in Appendix F.
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Figure 3.2 Density plot of the FSC intensity using CD3* cell population from
seven aliquots of patient #6's 76 days post-transplant sample. Aliquot

‘3 Activation’ was identified as a visual outlier.
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Figure 3.3 Density plot of the SSC intensity using CD3* cell population from
seven aliquots of patient #6's 76 days post-transplant sample. Aliquot

‘3Activation’ was identified as a visual outlier.
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Table 3.1 Outliers identified in the QA test on gated data.

Time point (days
Patient # Cell population | Outlier aliquot | post-transplant)
p3 CD3- 2Activation 14
CD3+ 2Activation 14
CD3- 3Activation ' 0
p4 1 CD3 T cells - 81
CD3* T cells 81
CD3+* TCR 32
p6 CD3* 3Activation 76 and 83
p7 . CD3+ TCR . 35
p9 CD3* TCR 32
pl13 CD3* TCR 20
pl4 CD3* TCR 21
pl7 CD3* TCR 34, 41, and 55
p18 CD3+ 1Activation -6,27,34, and 41
CD3- T cells 0
p19 CD3- T cells . 28 and 38
p20 CD3* TCR 28
p23 CD3- T cells 28
p25 CD3* TCR 7 and 21
p31 CD3* TCR 21,35,and 70

An example of an outlier and its representation in the density and ECDF plots
is shown in Figures-3.4 and 3.5. Among the five available aliquots from patient #4’s
sample taken at 81 days post-transflant, aliquot ‘T cells’ exhibited a shift in the

intensity while maintaining similar shape. In this case, evidence of this outlier was

more prominent in the density plot (Figure 3.4), compared to its corresponding

ECDF plot (Figure 3.5).
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Figure 3.4 Density plot of the FSC intensity using CD3- cell population from five

aliquots of patient #4's 81 days post-transplant sample. Aliquot ‘T cells’ was

identified as a visual outlier.
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Figure 3.5 ECDF plot of the FSC intensity using CD3- cell population from five
aliquots of patient #4's 81 days post-transplant sample. Aliquot ‘T cells’ was

identified as a visual outlier.
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3.2.2 Unusually large variations among aliquots

Among all the density plots of FSC and SSC intensities, there were 15
occurrences (Table 3.2) of unusually large variations among the available aliquots.
These aliquots (1.4% of the dataset) were removed from the dataset. An example of
this trend is shown using the density plot of the CD3- cell population from patient
#28's sample at 14 days post-transplant (Figure 3.6). Although most density plots
were mono- or bi-modal and relatively smooth, these 15 samples exhibited rapid
polyfr{oa;l dis’c‘riﬁﬁtic‘)n in both FSC and SSC intensity plots. The uﬁﬁsually large
variations were also observed in the corresponding ECDF plots; however, the
pattern was less apparent without details in the polymodal shape (data not shown).
Upon visualization of the FCM data, less live cells were present in some of the
aliquots identified (aliquots taken at 53 days post-transplant) with this unusually
large variations compared to aliquots from sample taken at different time point (27

days post-transplant) (Figure 3.7).

Table 3.2 Cell populations and samples where CD3* or CD3- cell population

exhibited unusual variations among the available aliquots.

Patient # - - - |Cell population Time point (days post-transplant)
p4 - |CD3* ‘ 0
p6 . . CD3 . . .46
CD3- 53
p9 ~ |CD3 o ' ‘ 6
p10 CD3- 6
pl15 CD3- 7
p20 CD3- - 7
CD3* 49, 56, and 63
26 CD3- 1,7,and 14
p28 CD3- 14
p29 CD3- 0
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Figure 3.6 Density plot of the FSC intensity using CD3- cell population from
seven aliquots of patient #28’s 14 days post-transplant sample. All aliquots
exhibited great variations from each other. Similar observations also occur in 15

other samples.
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Figure 3.7 FCM contour graphs of FSC vs. SSC from patient #6, aliquots “TCR’

and “3Activation’ from samples taken at 27 and 53 days post-transplant.
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3.2.3 Repeated outlier conditions

The last unusual pattern I found were repeated ‘rest/act T helper’ and
‘rest/act T suppressor’ outliers. There were 33 cell populations where there were
two distinct aliquot clusters (Table 3.3). In all cases, the ‘rest/act T helper’ and the
‘rest/act T suppressor’ aliquots exhibited similar pattern and formed one cluster
whereas all other available aliquots formed another. This trend was most frequent
in patients #6's and #7’s samples. An example is shown with patient #7’s sample
taken at the day of BMT. In the CD3-cell population density plot (Figure 3.8), both
shape and intensity were different between the two clusters: i. ‘rest/act T helper’
and ‘rest/act T suppressors’; and ii. ‘1Activation’, “2Activation’, ‘3Activation’, “TCR’

and ‘T cells’. Relatively small variations were observed within each cluster.

Table 3.3 Cell populations and samples where the two aliquots rest/act T helper
and rest/act T suppressor exhibited similar pattern within and different pattern

compared to all other available aliquots.

Patient # | Cell population Time point (days post-transplant)
po CD3- 0,5,19,27,32,39, 46, 60, and 67
CD3* 60 and 67
p7 CD3- -4,0,7,21,28, 35,49, 56, 63, 70, and 77
p8 CD3- 19, 33, 42, 49, 54, and 61
p?. ... |CD3 -6, 55, and 62 ’
p19 CD3- 0
CD3* 77
p21 | CD3* . 21
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Figure 3.8 Density plot of the SSC intensity using CD3- cell population from
seven aliquots of patient #7’s sample taken at the day of BMT. Aliquots ‘rest/act
T helper’ and ‘rest/act T suppressor’ exhibited different pattern than all other

aliquots.
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3.24 Outlier distributions on the 96-well plate

Distributions of all outliers and unusual patterns on the 96-well plate were
investigated. The plating for samplés from patient # 6 is shown as an example
(Table 3.4). The two outliers, both from aliquot ‘3Activation’, were from sample
taken at 76 and 83 days post-transplant and were found to be platted next to each
other in column at the left-hand corner of the second plate (Table 3.4). Unusually
lz;rge variations. were observed among all ten aliquots from samples taken at 46 and
53 days post-transplant (Table 3.2). Most of these aliquots were plated in ninth and
tenth columns of the first plate and top of seventh and ninth columns of the second
platet(Table 34) Furthermore, for all but one sample taken between 0 and 67 days
post-transplant, two aliquots ‘rest/act T helper’ and ‘rest/act T suppressor’
exhibited similar pattern to each other while being completely different to other
aliquots (Table 3.3). These aliquots were plated on different plate - the two rest/act
aliquots were plated on the second plate while most of the other aliquots were

plated on the first plate (Table 3.4).

There were many outliers observed from aliquots close or next to each other
in column as there were a trend of cluster of time points when the same aliquot were
identified as outliers at multiple time points (Table 3.1). Among the 29 outliers, 20
were aliquots “TCR’ or ‘T cells” and 13 of which were identified from samples taken
between 20 and 40 days post-transplant (Table 3.1). In many cases, these outliers
were'mapped to aliquots plated in the middle of a plate (Table 3.4). Similar to
patient # 6’s, many of the rest/act aliquots differences were observed when these
aliquots were plated in a separate plate from most of the other aliquots. These

trends could generally be observed from other patients” samples (data not shown).
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Table 3.4 Plating order for patient #6 with samples taken at multlple time pomts on two plates. Aliquots identified as
outliers and unusually variations are labelled with shaded areas.

Plate #1

Plate ‘

Rows Aliquots 1 2 3 4 5 6 7
A Myeloids - -8 0 5
B T cells -8 0 5
C NK cells -8 0 5
D B cells -8 0 5
E TCR . _ -8 0 5
F 1Act Marker -8 0 5
G 2Act Marker -8 0 5
H 3Act Marker -8 0 5
Plate #2

Plate

Rows Aliquots 1
A Myeloids 76
B T cells 76
C NK cells 76
D B cells 76
E TCR 76
F 1Act Marker 76
G 2Act Marker 76
H 3Act Marker - 76
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3.3  B-spline parameters

The effects of the B-spline basis order and knot placements were evaluated
usmg data from patient #2 w1th a missing observation at week one. First, B-splines
were -built with one knot at every sampled time point and three different basis
orders (Figure 3.9). Although all three B-splines followed the general patterns
exhibited by the raw data (red dots) by visual inspection, the B-spline with basis
order-two best reflected the raw data. Even though no knot was placed at week one,
fitting a B-spline with basis order three imposed quadratic function between the two
knots at week zero and weeks two. As a result, there was a discrepancy between the
B-spline with basis order of three and the raw data pattern. A similar discrepancy
was also observed between the raw data and B-spline fitted with basis order four,

most evidently between five and six weeks post-transplant (Figuré 3.9).

Secondly, B-splines were built with linear basis order and four different knot
placements with decreasing knots interval. The B-splines becomes smoother and
further . away from the actual raw data pattern as the knot frequen_cy decreased
(Figure 3.10). Another noticeable feature was the behaviour of each spline at week
one where no observed value was available. A knot at week one resulted in an
imputed B-spline pattern at either side of the knot based on the trends of the

previous basis function. As a result, the imputation created discrepancy from the

raw data pattérn (Figure 3.10).
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Figure 3.9 B-splines with knots located at every available time point and orders

two, three or four fitting into the raw data.
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Figure 3.10 B-spline with order two and different distribution of knots fitting

into the raw data.



CHAPTER 4 RESULTS - TOP RANKING CLASSIFIERS

In order to identify patterns of immune cell abundances that correlate to the
onset of aGvHD and cGvHD, the temporal analysis pipeline was performed on
qualified subsets of immune cells comparing between samples taken from the
aGvHD and the non-GvHD patients, and between samples taken from seven
aGvHD & cGvHD and nine aGvHD only patients respectively. Top ranking
classifiers with potential discriminative patterns predicting the onset of aGvHD and

¢GVvHD are described in sections 4.1 and 4.2.

41 Classifiers for the onset of acute graft versus host disease

Patient #17, a non-GvHD patient, was omitted from the FLDA analysis due to
lack of available data within the selected time ranges. However, these data, if
available, were included in the raw data time plots. Only top ranking classifiers
from the proportion dataset using samr;les taken between 7 and 21 days post-
trénsplant are described below (Table 4.1). All others are described in Appendix G.
The complete validation results for all subsets of immune cells in each time range
are listed in Tables H.1 - H.3 for the proportion dataset and Tables H.4 - H.6 for the
concentration dataset. The time range after BMT (7 to 21 days post-transplant) was
selected to exclude the day of BMT and 21 to 28 days post-transplant when the
aGvHD diagnosis rate rapidly increased (Figure 4.1) so the top classifiers may be

used for aGvHD prediction.
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- .Table 4.1 Validation results for the top ranking subsets of immune cells and their related cell populafions from the
:FLDA classification with different subsets of aGVHD vs. the non-GvHD patiénts using samples taken between 7 and
.21 days post-transplant. (nd = not done due to lack of data). '

) . -aGvHD Grade II-IV aGvHD Grade III-1V aGvHD

1 Immune cells Aliquot .
- ' Sensitivity | Specificity | Sensitivity | Specificity [ Sensitivity | Specificity
CD2dim CD16* CD56* :
CD3- NK cells 90% 100% 82% 100% 92% 67 %
CD3+CD4+*CD8f3* T cells 86% 100% 82% 100% 92% 100%
CD3+*CD4int 2Activation 81% 100% 82% 100% 83% 100%
CD3+*CD4+*CD8B+*CD8* | T cells 71% 100% 76% 100% 83% 100%
CD3+ 1Activation 90% 33% 94% 33% 92% 33%
CD3* 2Activation 86% 33% 94% 33% 92% 33%

rest/act T

CD3*CD4* helper nd nd nd nd nd nd
CD3+*CD8fdimCD8- T cells 90% 0% 82% 67 % 83% 67 %
CD3+CD8p+*CD4- T cells 81% 33% 76% 33% 75% 33%
CD3+*CD8+*CD8p- T cells 81% 33% 76% 33% 83% 33%
CD3*CD4+CD8p- T cells 90% 33% 100% 33% 100% 0%
CD3+*CD8p+*CD8* T cells 81% 33% 76% 33% 75% 33%
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Figure 4.1 Cumulative distribution of the aGvHD diagnosis days post-transplant
with the selected time range between 7 and 21 days post-transplant labelled.
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41.1 Inconsistent classifier by missing values

~ The FLDA classifier built on the immune cells CD24mCD16*CD56*CD3 was
estimated to have the highest sensitivity and specificity (Table 4.1). The FLDA
estimated signals exhibited a very clear separation between the aGvHD and the non-
GvHD patients at seven days post-transplant (Figure 4.2a). However, the separation
around seven days post-transplant between the aGvHD and the non-GvHD patients
was not observed in the raw data time plot of the same time range because there
were no data available from the non-GvHD patients between seven and ten days
post-transplant (Figure 4.2b). In the extended raw data time plot, the proportion
values from two out of three non-GvHD patients were as high as the values from
most aGvHD patients (Figure 4.3). Unlike all other top ranking classifiers described
below, this subset of immune cells did not display a consistent pattern in its

extended raw data time plot.
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Figure 4.2 Time plots of the FLDA estimated signals (panel a) and the raw data

(panel b) based on samples taken between 7 and 21 days post-transplant for the
immune cells CD24mCD16*CD56*CD3-in proportion to PBMC.
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41.2 CD3*CD4*CD8p*(CD8*)

The FLDA classifier built from the immune cells CD3*CD4*CD8f* was
identified as one of the top ranking classifiers with the estimated sensitivity and
specificity both higher than 70% in two time ranges: 7 to 21 days post-transplant
(Table 41) and 21 and 0 days prior to aGvHD diagnosis (Table H.2). Estimated
sensitivity and specificity increased in the supplementary comparieens between
moderate or severe aGvHD and non-GvHD patients (Table 4.1). The FLDA
estimated signals time plot (Figure 4.4) displayed a pattern of higher PBMC
proportion values from the aGvHD patients, compared to values from the non-
GvHD patients. A similar pattern was also observed in the FCM data in contour

graphs between CD4 and CDB8{} intensities (Figure 4.5).

In the extended raw data time plot (Figure 4.6), all but one aGvHD patient
had higher values and greater fluctuation, compared to the non-GvHD patients,
within the time range from 0 to 120 days post-transplant. Patient #25, who was
dlagnosed w1th grade I aGvHD at 44 days post-transplant had CD?)*‘CDAL“CDSQ+
proportion Values lower than 0.5% from 0 to 50 days post-transplant There were
two sudden. increases in the CD3*CD4*CD8f* proportion for patient #6’s samples
taken at 53 and 90 daYs post-transplant. (Figure 4.6). They were the results of
minimal amounts of viable cells in the aliquots (data not shown). Similar incidences

were observed in the immune cells CD3+CD4int described in section 4.1.3.

A new subpopulation was gated within the immune cells CD3*CD4*CD8p* to
obtain abundance readings for a new immune cell population -
CD3+CD4+*CD8B*CD8* (Figure 4.7). The FLDA classifier from this new subset of
immune cells had an estimated 71% sensitivity and 100% specificity (Table 4.1), and
displayed a similar pattern in both the raw data and FLDA signal time plots (Figure
4. 8) to its parent populatlon All other related immune cell populations that were

posmve in only one of the CD4 or CD8/CD83 markers had a lower estimated
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sensitivity and specificity (Table 4.1) and did not exhibit discriminative pattern

between the two patient groups (Figure 4.12).
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Figure 4.4 FLDA estimated signals time plot based on samples taken between 7

and 21 days post-transplant for immune cells CD3*CD4*CD8f* in proportion to
PBMC.
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4.1.3 CD3*CD4int

The FLDA classifier built using the immune cells CD3*CD4nt (aliquot
‘2Activation’) had an estimated 71% sensitivity and 100% specificity (Table 4.1). The
time plots of FLDA estimated signals (Figure 4.9a) and raw data (purple stripped
area, Figure 4.9b) exhibited similar patterns to that of the immune cells
CD3+*CD4+*CD8p* (Figure 4.4). In the FLDA estimated signals time plot, the aGvHD
patients had higher proportion values of this subset of immune cells, compared to
the non—GVHD patlents, and the main separatlons were found around 7 and 14 days
post- transplant This pattern persisted in the raw data time’ plot from 0 to 100 days
post-transplant (Figure 4.9b).

There were also two peaks from patient #6's samples at 53 and 90 days. At39
days post-transplant, the proportion value was 1%. It increased to 26% at 53 days
post-transplant and returned to 2.6% at 60 days post-transplant. After a relatively .
flat pattern between 60 and 83 days post-transplant, the value increased again to
25% at 90 days post-transplant. Similar peaks from patient #6 were also observed in
the immune cells CD3+*CD4*CD8p* (Figure 4.6). The corresponding FCM data from
samples taken around the aforementioned time points were examined. Aliquot ‘T
cells” from samples taken at 53 and 90 days post-transplant exhibited very different
pattern wit-ﬁ less live cells within the gate in both the FSC-55C scatter i)lot and CD3-
_ PerCP histongratn, when compared to sample taken before (46 daﬁpost—trahspl,ant)

or after (60 days post-transplant) the sudden peaks (Figure 4.10).
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Figure 4.9 Time plot of the FLDA estimated signals (panel a) based on samples
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immune cells CD3*CD4int in proportion to PBMC (aliquot “2Activation’). The

purpled striped box indicates the time range where data was analyzed via FLDA.
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It was also noted that two other subsets of immune cells: CD3* and
CD3+*CD4*, representing immune cell populations closely related to cells with the
phenotype CD3+*CD4int did not exhibit discriminative patterns between the aGvHD
and the non-GvHD patients. Multiple readings from the CD3* immune cell
population all had approximately 86% sensitivity but only 33% specificity (Table 4.1).
In the time plot of CD3* immune cell population (Figure 4.11), the proportion values
were high from both the aGvHD and non-GvHD patients. The subset of immune
cells CD3*CD4int was not analyzed via FLDA because of insufficient data.

Regardless, its raw data time plot did not exhibit discriminative pattern (Figure 4.12).

All four subsefs of ‘immune cells: CD3*CD4*CD8p* (Figﬁfe 4.6), CDB*CDLPN
(Figure 4.9), CD3* (Figure 4.11), and CD3*CD4* (Figure 4.12) exhibited a rapid
decrease in their proportion values between 7 and 21 days post-transplant folléwed
by an increase. A common trend was observed in the four aforementioned subsets
of immune cells and was more apparent in the latter two. However, it should be
noted that this trend was present from most immune cell populations identified in

the present study (data not shown).
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414 Static sample size analysis

The FLDA classifier built using the immune cells CD3*CD4*CD8f* was the
best classifier with consistent pattern observed in both the FLDA estimated signals
and the raw data time plots (Figures 4.4 and 4.6). Values obtained closest to the 21
days post-transplant, when the accounted absolute weight value was largest, were
used for the static sample size calculation. Even though the FLDA weight value was
the largest at seven days post—transplant, the group separation observed around 21
days post-transplant were deemed more reliable because there was no available data
from nqn-GV:HD patients between seven and teﬁ days post-transplant. Different
sizes éf thésirﬁﬁlateci aGvHD and non-GvHD datasets were tested; Tﬁe present
study compared- data between 21 aGvHD and three non—GvHDv patieﬁts and had an
estimated 29% power at 90% confidence level. The unbalanced risk of aGvHD
developments among HSCT patients severely compromised the analytical power.
In order to achieve a study with 82% power at 90% confidence level, approximately

38 aGvHD and 18 non-GvHD patients will be required (Table 4.2).

Table 4.2 Estimated power of study via the static sample size calculation using

CD3*CD4+*CD8f* proportion values from samples taken closest to 21 days post-

transplant.

aGvHD Non-GvHD | Power estimated | Power estimated

patients | patients "~ | from aGvHD from non-GvHD | Average

required | required (a<0.1) (a<0.1) power (a<0.1)

) 3 29% 48% | 39%

200 . - 10 |- 49% 77% | - - 63%
30 15 62% 92% 77 %
38| 18 ' 69% | 95% 82%
40 20 73% 96 % 85%
42 21 73% 97% 85%
46 23 77 % 98 % 87 %
48 24 77% 99% 88%
50 25 79% 99% 89%
52 26 81% 99% 90%
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4.2  Classifiers for the onset of chronic graft versus host disease

: .Only top ranking classifiers from the proportion dataset using samples taken
between 21 and 0 days prior to aGvHD diagnosis (Table 4.3) are described below.
All others are described in Appendix 1. The complete validation results for all
subsets of immune cells in each time range are listed in Table J.1 - ]J.3 for the

proportion dataset and Tables J.4 - ].6 for the concentration dataset.

4.21 Inconsistent classifiers by pattern outlier

Even though there were more FLDA classifiers with high sensitivity and
specificity for the onset of cGvHD compared to aGvHD (Chapter 4), only a fraction
of the top ranking classifiers exhibited comparable patterns in both FLDA estimated
signals and raw data time plots. From the time range of 21 to 0 days prior to aGvHD
diagnosis, all the subsets of immune cells with putative discriminative patterns in
their raw dadta time plots exhibited opposite FLDA signal patterns between groups.
All other-top classifiers were deemed inconsistent due to the presence of pa&ern

outliers (Table 4.3).

The classifier built using the immune cells 45SRA*CD3* had an estimated 71%
sensitivity and 86% specificity. However there was no clear separation between
most of the individual FLDA estimated signals (Figure 4.13a). Only two patients (#6
and #12) had proportion values above 30% between 20 and 7 days prior to aGvHD
diagnosis (Figuré 4.13b). These values caused the overall FLDA global base values
(cross dots, Figure 4.13a) to rise thus separating the two groups.
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. Table 4.3 Validation results for the top ranking subsets of immune cells from the FLDA classification between the

: aGVvHD & ¢GvHD and GvHD only patlents usmg samples taken between 21 and 0 days prior to anHD diagnosis.

CD3-CD4dim

;| Immune cells Aliquot Sensitivity | Specificity | Accuracy Pattern types
CD45+*CD33-CD15*CD14- | Myeloids . 71% 100% 88% |
45ROCD3-CD4dim rest/act T helper 86% 86% 86% |
45RACD3- rest/act T suppressor 86% 86% 86% |

| CD3 3Activation ' 71% 89% 81%
45RACD3-CD4dim rest/act T helper 86% 71% 79%
45RACD3- rest/act T helper 71% 86% 79% .

CD3 rest/act T helper 86% 71% 79% ;I;}r’l :‘;te FLDA
CD3- rest/act T suppressor 71% 86% 79%
CD3-CD8- rest/act T suppressor 71% 86 % 79%
CD3- 2Activation 71% 78% 75%
CD3- T cells 71% 78% 75%
CD3* rest/act T helper 71% 71% 71%
CD3* rest/act T suppressor 71% 71% 71%
45RACD3* rest/act T helper 71% 86% 79%
CD4dim rest/act T helper 86% 71% 79%
45RACD3* rest/act T suppressor 71% 86% 79% | pattern outlier
CD3-44* 25 1Activation 71% 78% 75%
3Activation 71% 78% 75%
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Figure 4.13 Time plot of the FLDA estimated signals (panel a) and raw data (panel

b) based on samples taken between 21 and 0 days prior to aGvHD diagnosis for
the immune cells 45RA*CD3* in proportion to PBMC (%).
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4.2.2 Opposite estimated signals between groups

All 13 subsets of immune cells exhibiting consistent patterns between their
FLDA estimated and raw data time plots, displayed exactly opposite FLDA signal
patterns between the two patient groups. The top two classiﬁers exhibiting this
pattern were CD45*CD33-CD15*CD14- and 45RO*CD3-CD4dim.  The FLDA signals
between the two patienté groups were the exact opposite of each other (Figures 4.14a
and 4.15a). However, this pattern could not be easily identified in the local or

extended raw data time plots for either subset of immune cells (Figures 4.14b and
4.15b).

4.2.3 Static sample size analysis

The FLDA classifier built using the immune cells 45RO*CD3-CD44im based on
samples taken between 21 and 0 days prior to aGvHD diagnosis had the highest
sensitivity (86%) and second highest specificity (86%) among the consistent top
ranking (Table 4.3). In this casé, the largest and the most reliable group separation
were determined to be around 7 days prior to aGvHD diagnbsis. . Consequently,
values obtained closest to that time were used for the static sample size calculation
with éciual sizes for aGvHD & ¢GvHD and aGvHD only simulated datasets (Table
4.4). The present study with seven aGvHD & ¢GvHD and nine aGvHD only
patients had an estimated 50% power at 90% confidence level. In order to achieve a
study with 81% power at 90% confidence level, approximately 23 aGvHD & cGvHD
and 23 aGvHD only patients will be required.
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Figure 4.14 Time plot of the FLDA estimated signals (panel a) based on samples
taken between -21 and 0 days from anHD and time plot of the raw data (panel b)
based on samples taken between -21 and 21 days from aGvHD diagnosis for the
immune cells CD45*CD33-CD15*CD14- in proportion to PBMC. The aGvHD
diagnosis day is labelled at day 0.
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Table 4.4 Estimated power of study via the static sample size calculation using

45RO*CD3-CD4dim proportion values from samples taken closest to 7 days prior to

aGvHD diagnosis.

aGvHD & aGvHD only | Power estimated | Power estimated | Average
cGvHD patients | patients from aGvHD & | from aGvHD power
required required c¢GvHD (a<0.1) | only (a<0.1) (a<0.1)

7 9 67 % 34 % 50%

10 10 78% 35% 56 %

- 15 15 '91% 49% 70%

20 20 97 % 58 % 77 %

23 23 98 % 63 % 81%

25 25 99% 68 % 83%

30 30 100% 74% 87%

35 35 100% 79% 90%

40 40 100% 84% 92%

45 45 100% 88% 94%

50 50 100% 91% 95%

60 60 100% 95% 97 %
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CHAPTER 5 DISCUSSION

For many patients diagnosed with hematopoietic disorders, HSCT is the only
curative treatment [1]. However, the risk of developing fatal GvHD makes it the
major limiting factor for broader application of the HSCT procedure [1]. Currently,
there is no definitive diagnosis method, standard for treatment or treatment
assessment, and very little understanding on the disease’s pathophysiologic
mechanism.

High-throughput genomic experiments have been useful in elucidating many
diseases or conditions [79, 80, 108, 109]. Previous microarray studies have suggested
multiplé gene expression patterns associated with the onset of GvHD, however none
were found to be statistically significant [110-114]. Proteomic methods such as
surface-enhanced laser desorption ionization time-of-flight (SELDI-TOF) [115] and
capillary electrophoresis coupled mass spectrometry (CE-MS) [116] have been
utilized in studying GvHD [117, 118]. Both were pilot studies and further work is
needed to link the peptides identified with known proteins in order to infer their
role in the immune system and GvHD manifestation. Compared to genomic
methods such as microarrays, proteomic methods and FCM have the advantage of

visualizing physical characteristics of cells such as protein functions directly.

N The main hypothesis of the present study was that one or more immune cell
populations with differential temporal patterns that correlate to the onset of either
aGvHD or cGvHD could be identified and potentially be used to predict the disease.
The present dataset had the complexity of a microarray data with a large number of
immune cell population abundances that were screened for their potential
discriminative powers for either aGvHD or cGvHD. The present study was a pilot
project with the main objective of assembling a temporal analysis pipeline for the

~ high-throughput clinical FCM dataset. To the best of my knowledge, there is no
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ekistir{g temporal analysis pipeline purposely designed for large-scale FCM data.
Consequently, the majority of the discussion is devoted to experimental and
analytical difficulties of the present study and corresponding improvements for a
future one. In sections 5.1 to 5.3, obstacles from each step of the analysis pipeline
(Figure 2.1): QA, data transformation, and temporal classification are discussed.
Then possible predictive models and pathophysiologic mechanism for aGvHD and
cGVvHD are examined in section 5.4. A list of specific recommendations to improve
the efficiency of future studies where current GvHD models will be validated is

discussed in section 5.5.

51  Quality assurance

QA is an essential step in the analysis of any high-throughput dataset [119-
121], probably more so in the case of clinical data with limited samples. The
assumption of the QA test used in this study was that distributions of common
intensities from different aliquots of the same sample should be similar [3]. Two
aliquots were identified as outliers in the QA test on ungated data (Figﬁre 3.1).
Whereas 29 aliquots were identified as outliers in the QA on gated CD3* and CD3-
live MNC populations (Table 3.1). Among the outliers, I observed both intensity
shift (Figures 3.4 and 3.5), density or ECDF shape difference (Figures 3.2 and 3.3), or
the combination of both (Figure 3.6). A simple intensity shift might indicate a
different concentration of reagents during the staining procedure in the well
corresponding to the outlier aliquot [3]. However, sources for other distribution
differences were less understood. While further study is required to investigate the
precise causes of outliers and unusual trends discussed below, they indicated
Potential‘_compli_cations’ with the FC-HCS technique [2]. At the end, based on the
QA test results, approximately 1.8% of the dataset were removed from subseqﬁent
analyses because the differences observed might not be biologically but

experimentally motivated.
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5.1.1 Quality assurance on ungated and gated data

Analyzing both ungated and gated data each had their own advantages.
Ungated data offered QA assessment without the interference of manual gating. On
the other hand, the QA test on géted data provided an assessment of the gate quality.
In addition, the QA test on the gated data provided an assessment of the population
data that were used in the subsequent FCM analyses. There was no ovérlap of

outliers identified in the two parts of the QA test.

For QA visualization, FSC was observed to have more informative patterns
than SSC in the QA test of ungated data [3]; while both FSC and SSC displayed
similar patterns and were both useful in QA test of gated data (Figures 3.2 and 3.3).
FSC and SSC, which are strongly influenced by cell size and granularity respectively,
are often used together in FCM gating to identify and exclude dead cells from
further analyses (Figure 1.1a). Dead cells and debris that were excluded in the gated
data have a very broad SSC intensity range and overlap with the relatively narrow
SSC intensity range from MNC (Figure 5.1). Thus, the FSC intensity was more
informative than the SSC intensity in the ungated data because more variations were
observed from different cell types. Many unusual patterns might only be visible
after removal of“dead cells and debris via the gating procedure. Visualization using
the CD3 intenéity was proven to be the least informative in outlier identification as
more variations were expected and observed because of the sensitivity of the

antibody and the limited number of aliquots available (Figure F.1).
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Figure 5.1 A pictorial example of FSC vs. SSC dot plot from a normal peripheral
blood sample (adapted from [122]).

Outliers and other unusual patterns were frequently found in either CD3* or
CD3- population but rarely both (Table 3.1). These observations could be related to
the fact that CD3* and CD3- gates represented two different immune cell populations.
The gated data only included live PBMCs that were divided into CD3* and CD3-
populations. CD3 and TCR are exclusively expressed on 70% to 80% peripheral
blood T cells [123]. Thus, CD3*and CD3- populations represented T cells and non-T
cells among the PBMC populations. Future studies are needed to determine why
these two cell populations behave differently and if certain cell population is more

prone to experimental errors.

The trends observed among the outliers (Table 3.1) and unusual patterns
(Tables 3.2 and 3.3) indicated possible non-random plating effects. Many outliers
were mapped to aliquots plated close to each other or cluster of aliquots in the
middle of the plate (Table 3.4). These trends potentially indicate: 1. Improper

washing leading to false reading from cluster of wells and wells in the middle; 2.
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Contamination affectmg multiple wells next to each other; 3 Edge drylng causing
false readlngs from wells at the edges; 4. Different reagent or cell concentratlons
among wells; and 5. Different logarithmic compensations. The unusual pattern from
the two rest/ act aliquots (Table 3.3 and Figure 3.8) which were often mapped to a
separate plate may also suggest noticeable differences in readings from different
plates or effects of different sample storage time. Further examination of the FCM
gates from the FSC-SSC contour graphs (Figure 3.7) indicate that the occurrences
(Table 3.2) of unusually large variations (Figure 3.6) among all aliquots could result
from interference of dead cells or a minimal amount of viable cells in patient
samples. From a sample with a minimal amount of viable cells, the proportion of
any subgates may be incorrect because there are not enough cells in the sample to

represent the overall population properly. -

5.1.2 'Qﬁalify'éésﬁrance via raw data time plots

. Raw data time plots used in the visualization of FLDA classification may also
‘be used as an additional QA test. Biologically, it is impossible to have an abrupt
increase in either PBMC proportion or cell concentration such as the two peaks
observed from patient #6 at 53 and 90 days post-transplant (Figures 4.6 and 4.9b).
Upon visual inspection of the gated FCM data (Figure 4.10), I discovered that these
abrupt increases were the result of an experimental error likely from a minimal
amount of viable cells in the FSC-SSC gate. While the QA test via raw data time
plots could be very useful in identifying experimental errors, it would require long
time-series data. In addition, implementation of this QA test to large-scale data

would. require further studies on the rate of immune _responses to establish a

threshold for the rate of increase from a biological standpoint.




5.1.3 Robustness of the flow cytometry high content screening technique
Unfortunately, not all the trends mentioned above were always consistent in
their distribution in the plates. There was only enough evidence to suggest possible
plating effects but not to confirm it. Further studies are required to investigate the
robustness of the FC-HCS technique [2], to elucidate the precise causes of these
outliers, and to improve the present QA test procedure. Preferably, a larger quantity
of samples from healthy individuals would provide a larger number of aliquots for
outlier identification and a lower likelihood for occurrences of minimal viable cells
to be used for future studies. Frequencies of outliers observed in different antibody-
fluorochrome intensity, different location within a plate and between plates could be
used to validate the current results. Furthermore, a larger number of aliquots may
be used to determine the overall experimental variations among aliquots. Statistical
tests such as the analysis of variance and visualizations such as box plots [124] in
addition to the existing visualization methods for the outlier identification could
potentially identify bias caused by the current manual visualization. Fortunately,
some of the potential causes for these outliers such as difference in reagent
concentrations and different sample storage time between plates can be easily
avoided with an organized experiment design and a smooth instrumental pipeline.
In addition, a simple procedure of random plating as discussed in section 5.5.1 may

be used to combat effects of these potential plating effects.

5.2  Dataissues
5.2.1 Patients

The present dataset is consisted of a heterogeneous group of patients (Table
2.1). Two patient grouping comparisons using prior GvHD diagnosis knoWIedge
were selected to train FLDA classifiers. The comparisons were also designed to

conserve the study population where the main factor was the onset of aGvHD or

cGvHD.
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The first patient group comparison between aGvHD and non-GvHD patients
was devised to idéntify subsets of immune cells with patterns that correlate with the
onset of aGvHD. All 21 patients who were diagnosed with aGvHD were included.
However, only four out of seven patients not affected by aGvHD or cGvHD were
included (Table 2.1). Three patients who were not diagnosed with aGvHD prior to
their death before 100 days post-transplant were omitted from the analyses. This
strict selection was chosen because I can only be certain that patients would not have
developed aGvHD if there were information available past 100 days post-transplant,
when most aGvHD diagnoses were made. The 100 days post-transplant is generally
recognized as the cut-off for aGVHD diagnosis; however, it is possible to diagnose
aGvHD after 100 days post-transplant [39]. Please be noted that one of the
remaining four non-GvHD patients was often omitted in the FLDA analysis because

of lack of data.

The second patient group comparison between aGvHD & cGvHD and ,-
aGVvHD only patients was devised to identify subsets of immune cells with patterns
that correlate with the onset of cGvHD which occurred weeks or months after the
diagnosis of aGvHD. Among the 21 patients who were diagnosed with aGvHD,
seven patients were later diagnosed with cGvHD and were included in the aGvHD
& cGvHD dataset. However, only nine out of 14 were considered as aGvHD only
patients because I could not be sure of patients who died or withdrew from the
study after their aGvHD diagnoses (n=5) that they would not have developed
c¢GVHD. " De novo cGvHD patients were not considered. While diagnoses for both
aGvHD and c¢GvHD are not definitive, a retrospective study in cGvHD diagnosis
was, perf.ormed:by Vogelsang and colleagues in 2001 and found 25% misdiagnoses

on active cGvHD [125].

Errors from incorrect patient groups from either false cut off diagnosis time

or misdiagnoses [35, 125] could be exaggerated in the present study due to the
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limited number of patient available and cause inconsistent classifiers. These
exaggerated inconsistent classifiers may be avoided with an external test dataset
with an adequate number of patients. However, the sensitivity and specificity of the
new diagnostic model created using a dataset with potential rhisdiaghoses will be
limited by the accuracy of the present diagnostic methods. Tolerance to

misdiagnoses is discussed further in section 5.5.6.

5.2.2 Sampling time ranges

The three time ranges were selected to present patterns before and during the
full clinical manifestation of aGvHD. These patterns were in turn analyzed via
FLDA in order to identify immune cell populations that can predict either aGvHD or
cGvHD. I decided that the time range most suitable for predicting the onset of
aGvHD was between 7 and 21 days post-transplant. Classifiers found in this time
aGvHD patients were diagnosed prior to 21 days post-transplant (Figure 4.1). The
erHD diagnosis rate for the present study was comparable with previous studies
where most aGvHD .diagnosis is made within the first 100 days and most
prominently between 14 and 42 days post-transplant [15]. The other two time
ranges: 21 to 0 days prior to aGvHD diagnosis and 0 to 21 days post-aGvHD
diagnosis were selected to reflect patterns occurring immediately before and after
the aGvHD diagnosis. Molecular changes leading to or result of aGvHD may
contribute to ¢GvHD manifestation at a later date as cGvHD may be a continuation
of aGvHD [36]. For predicting the onset of cGvHD, the time range before the
aGvHD diagnosis was selected because predictions would not be confounded by

different aGvHD treatments. All three time ranges were purposely designed to be

short in order to avoid loss of synchronization and smoothing requirements.




5.2.3 Proportion and concentration flow cytometry datasets

Both the proportion and concentration datasets were tested because they
might contribute different insights into the immune responses. Previous GvHD
studies have used both proportion (either to PBMC or chimerism) [30] and
concentration values [27, 28]. However, more errors and thus more inconsistent
classifiers were expected in the concentration datasets because different samples
sometimes taken at different time were used to estimafe the immune cell
concentration. These errors could be avoided for future studies with a coordinated

sample quahtity standard. -

5.3 Temporal analysis

Static analyses using rates of immune cell population changes from patients
at multiple time points were performed. The rates of changes were extensively
screened by a combination of dimension reduction via between group analysis [126]
and hierarchical clustering via hierarchical ordered partitioning and collapsing
hybrid [127]. However, the static approach failed to analyze the current dataset
properly because of missing values, lack of synchronization events, and diverse
patlent response time (Table 2.1, Appendix A). Because of these shortconungs,
undertook a temporal approach for the present study. While temporal analy51s has
been suggested to be more efficient in analyzing biological process occurring across
time [46], there are a limited number of available algorithms. During my temporal
analysis investigation, I encountered three main challenges in adapting a suitable
temporal analysis method for the current dataset:

1. Tolerance for missing values and non-uniform sampling time

2. Short vs. long time-series data

3. Limited number of samples




Using an excerpt of the current dataset, and combinativons. of basis order and
knot plaeerrrente, I determined that B-spline with a linear basis and Weekly knot
placements wes most reflective to the raw data pattern (Figures 3.9 and 3.10). A B-
spline fitted with basis order two best reflected the actual raw data especially for
short time-series dataset such as the one used in the present study (Figure 3.9).
Weekly knot placement was selected to fit the weekly sampled dataset because
flexible knot placement was not compatible with the FLDA algorithm. While
discrepancies between B-spline and raw data patterns were minimized, they could
still exist and be exaggerated in a short time-series dataset with various sampling

rates and missing values among the study patient population.

Srmllar to most of the existing temporal algorithms, FLDA was intended for
long tlme-serles data with more than eight time points [128] Yet it was difficult to
analyze a time range Ionger than three weeks (assumed one time pomts per week)
without the possible loss of synchronization. In addition, usage of a long time-series
data in the present clinical dataset with diverse patients’ response time would
require potentially biased smoothing and registration procedures. As a pilot study,
short time-series data were purposely selected. However, short time-series data
highlighted effects of missing values (Figure 4.2) and pattern outliers (Figure 4.13)
resulting in inconsistent FLDA classifiers. While LOOCV might over-estimate the
classification accuracy [76], it does reflect, to a certain degree, the overall stability of
the classifiers. Unfortunately, the influence of pattern outliers to the FLDA global
base values was still observed (Table 4.3 and Figure 4. 13) There are many p0551b1e
causes -for these visually extreme pattern outliers from either the proportlon or the
concentration dataset and they may be remedied by improvements discussed in

section 5.5. | '

Slightly different LOOCV results and FLDA classifier patterns from

redundant readings such as the CD3* immune cell population (Table 4.1 and
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Appendices H & J) demonstrated the instability of the FLDA classification with the
limited number of patients available to the present study. These errors may be
remedied by an external validation with large and separate testing dataset as
proposed for future studies (Section 5.5). Ideally, continuous discriminative patterns
between two groups of patients are preferred. Hvowelver,_‘ visually clear

discriminative pattern spanning a few day are sufficient to be identified by FLDA.

54  Predicting the onset of graft versus host disease

The biological motivation behind this study was to identify subsets of
immune cells that may be used as molecular predictors of either aGvHD or cGvHD
before the full clinical manifestation. All the top ranking classifiers and their
corresponding subsets of immune cells might serve as potential GvHD diagnostic
markers even if they do not correspond to known immune cell populations.
Without knowing their function in the immune system, one limitation is that these
s‘ubs‘ets~ gcﬁ)f ‘jrr_lrﬂnune cells could not be used to elucidate GvHD ' pathophysiologic
mechainisml Léck of éorrection for multiple testing resulting in pbséible' incorrect
classifiers, should .-be noted with the findings discussed below which must be

validated via a future study (section 5.5).

5.4.1 Acute graft versus host disease

All the consistent top ranking classifiers for aGvHD were based on the
proportion dataset (Tables 4.1 and H1-H3). The three top ranking classifiers from
the concentration dataset were inconsistent due to missing values and pattern
outliers (Appendix G). This was expected because there were more errors in the
concentration dataset. Interestingly, all but two top ranking classifiers from the
proportion détaset, target CD3* T cells or T cell subsets (Table 4.1).- Apért- from the
inconsistent classifier CD24imCD16*CD56*CD3- based on samples taken Between 7
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and 21 days post-transplant (Figure 4.2), the only top ranking classifier targeting
non-T cells (CD3-) were CD3- and CD24imCD16*CD56-CD3- based on samples taken
between 0 and 21 days post-aGvHD diagnosis. All the CD3* and its subsets (Table
4.1) displayed similar patterns with higher PBMC proportion values and greater
fluctuation in the aGvHD patients when compared to the non-GvHD patients
(Figures 4.4, 4.6, 4.8, 49, G.1, G.4, and G.5). Because all viable cells were divided
into CD3* and CD3- cell populations (Figure 4.7), for the proportion dataset the CD3-
cell populatlon displayed the exact opposite pattern with higher PBMC proportlon
values from the non-GvHD patients (Figures G.2 and G.3). Higher. proportlon of
CD3* immune. cells in " the PBMC represents hlgher numbers of T cells in the
peripheral blood that could be the result of inflammatory response toward the

‘foreign’ host tissues.

Even though there is no precedent on a B-spline temporal pattern as
predictive model for GvHD; the observation of higher proportions of T cells after
HSCT in the aGvHD patients is comparable with other studies [27-29]. The current
findings combined with other previous GvHD studies suggest that GvHD is a
complex disease. While T cells’ critical involvement in aGvHD (Figure 1.2) is proven’
by significantly less aGvHD occurrences in T cell depleted BMT [20-26], the exact
subset of T cells with predictive pattern is yet to be identified. .. |

The most persistent correlation to the onset of aGvHD was observed from fhe
immune cells CD3*CD4*CD8p* and its subpopulation CD3+*CD4+*CD83*CD8* (Table
4.1). These two subsets of immune cells were higher and had greater fluctuation in
the aGvHD patients, compared to the non-GvHD patients after BMT (Figures 4.4
and 4.8). This pattern was found to persist until 120 days post-transplant (Figure
4.6). FCM data in the contour graphs (Figure 4.5) confirmed the FLDA results.
Interestingly, none of the related CD3* immune cell populations with the presence

of CD4 or CD8/CD8p but not both exhibited similar pattern or had high estimated
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sens1t1v1ty and spec1f1c1ty (Table 4.1). A future study with suff1c1ent power (sectlon
5.5.2) will need to determlne the validity of the classifiers CD3+CD4+CD8[5+(CD8+) as
predlc.tors of aGvHD.

The two subsets of immune cells CD3*CD4*CD8p*(CD8*) target cell
populations that co-express CD4, CD8af heterodimers and CDaa homodimers.
These specific phenotypes might contain an unusual group of double positive (DP) T
cells and putatively suggest that the key T cell subtype for the prediction and
development of aGvHD could be this ﬁnusual T cell subset. This also explains why
the CD3* and CD3- immune cell populations were not identified as a top classifier
based on samples taken between 7 and 21 days post-transplant (Table J.1). Large
CD3* proportlon values were observed from both patient groups rlght after BMT
(Flgure 4. 11) could be the result of residual recipient T cells which are know to
survive the preparative treatments [129, 130]. If so, there would only be a miniral
impact on the DP T cells because of its low abundance and may not exist in the

recipient priof to the BMT proceduré [131-133].

The most prominent theory on T cell maturation suggests that T cell
maturation is limited to thymus [133] (Figure 5.2). After the intense screening for
the MHC restriction and self-tolerance, more than 95% immature DP T cells are
killed via apoptosis. The remaining cells develop into mature singlé positive T cells
(either CD3+*CD4-CD8* or CD3*CD4*CD8-) and are exported into peripheral blood.
Consequently, DP T cells are not normally expected to occur in peripheral blood.
However, this distinction was contradicted by many reports of peripheral DP T cells
in humans ,.‘[134-140].1 The proportion values of DP T cells observed in the present
dataset from the non-GvHD patients agreed with previous studies that most healthy
individuals had less than 3% peripheral DP-T cells [134, 137]. Increased DP T cells
have l.)een. pfeviously observed in older individuals [138, 139] and individuals with

viral infections [135, 140].
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Figure 5.2 T cells development and maturation.

The origin and function of DP T cells are still not understood. Two DP T cell
pathways have been proposed [131]: premature release from thymus and
extrathymic maturation [141-143]. While premature release of DP T cells from
thymus is more likely in a HSCT patient where thymus damages from either the
preparative treatments or aGvHD have been reported [37]; the DP T cell population
observed in the present study (Figure 4.7) appears to express lower levels of CD4
than typical immature thymocytes [144]. Thus, it is more likely that the DP T cells
observed are mature antigen specific cells of extrathymic origin [145] and may play a
role in the aGvHD manifestation. DP T cells may consist of two or more functional
subgroups [135, 146, 147]. Consequently, future studies are needed to define the
activation and differentiation status of the DP T cell population using additional

markers (section 5.5.4).
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The CD24mCD16*CD56-CD3- classifier, though targeting non-T cells,
exhibited a similar pattern with higher PBMC proportion values from the aGvHD
patients, compared to the non-GvHD patients between 0 and 21 days post-aGvHD
diagnosis (Figure G.3). The combination of CD3-and CD16* exclusively targets NK
cells [148]. However, previous studies on NK cells only distinguished two major
NK cell subsets, both usually associated with CD2* or CD2br: CD56b* and CD564im
[149, 150]. The subset of immune cells CD24imCD16*CD56-CD3- most likely targeted
a NK cell subset similar to the highly dysfunctional NK subset CD56-CD16* detected
in HIV. patients [151]. In vitro functional study of NK cell subset CD56-CD16* [151]
suggested that expansion of CD56-NK cells cause impaired NK cell function with
lower cytotoxoic activity and cytokines production. Presently, there is no existing

study on the CD56° NK cells and its possible role in GvHD development.

Another unknown cell type with the CD3*CD4int phenotype (Figures 4.9 and
G.4) also exhibited a similar pattern to CD3* cells based on samples taken between 0
and 21 days post-aGvHD diagnosis (Table H.3). The closest known T cell subtype
with a similar phenotype is that of helper T cells (CD3*CD4*). Their main function
in the immune response is to secrete cytokines responsible for proliferation and
differentiation of T cells [133]. In the present study, CD3*CD4* temporal patterns at
any time range were not found to correlate with the onset of aGvHD (Figure 4.12).
Further study is required to determine if CD3*CD4intcells are a distinct immune cell

population and their functions in the immune systems.

5.4.2 Acute graft versus host disease prediction model using CD3*CD4*CD8*
The FLDA classifier built using immune cells CD3+*CD4*CD8f* and samples

taken between 7 and 21 days post-transplant, had the highest sensitivity (86%) and

specificity (100%) among the consistent classifiers. Classification of a new patient

. with sampled time points at 7, 14, and 21 days post-transplant, can be made using
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the following model (Figure 5.3). Based on Equation 1.4, linear discriminant value

can be'calculated with Equation 5.1.

4.0

3.5 1 //’”_

3.0 1 -

2.5 -

2.0 1

1.5 ~
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Proportion CD3+ CD4+ CD8f+

—— Gilobal base values
—@— Test data: patient #1

0.5 A

0-0 ] . T T T ) 4 ) T
6 -8 10 12 14 16 18 20 22

Days post-transplant
Figure 5.3 An example of FLDA classification using immune cells

CD3+*CD4+*CD8p* in proportion to PBMC

0.2718
a, =—1.0823 0.0123 -0.1767-(X —2.2034)
2.3000

Equation 5.1 The aGvHD prediction formula for patient data sampled at 7, 14,
and 21 days post-transplant
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0.92
In a resubstitution example, patient# 1 with observed values X =2.77 had an
' 3.63

estimated linear discriminant value of -0.9. Based on the linear classification rule,

patient #1 who was diagnosed with aGvHD at 26 days post-transplant and with &,

smaller than zero, is classified into the aGvHD class, a true positive (Figure 5.3). The

detail calculation of the weight values is available in Appendix K.

1o \

5.4.3 Chronic graft versus host disease

None of the consistent top classifiers for cGvHD exhibited patient group
separation as clearly as the top ranking classifiers for aGvHD (section 5.4.1). Among
the 13 (eight unique) FLDA classifiers that exhibited the opposite FLDA signal
pattern (Table 4.3), none was comparable to prior cGvHD studies (Figure 1.3). None
of these discriminative patterns was observed after aGvHD diagnosis probably

because of different patient responses to various treatments (Table ].3).

During the FLDA analysis process, random experimental errors from each
sqmplplyye,rfe 'estimated and removed in the final FLDA classification. This could be
the reason why these FLDA signal patterns exhibiting the opposite signal pattern
(Figures 4.14a, 4.15a, and 1.2a) could not be easily identified in the correSponding
raw data time plots (Figures 4.14b, 4.15b, and 1.2b). Another plausible explanation is
- an over-correction from FLDA, which could be amplified because of the limited
number of patients available. However, the fréquent occurrence of this opposite

FLDA signals pattern between the patient groups suggested potential cGvHD

diagnosis markers that will require further investigations.




All the classifiers exhibiting the opposite FLDA signals pattern are built from
subsets-of immune cells representing heterogeneous T cell (CD3+) and non-T cell
(CD3-) subsets. The one common CD marker among all these immune cell subsets:
CD45*CD33-CD15*CD14-, 45ROCD3-CD4dim, 45RACD3- , 45RACD3-CD4dim, and
45RACD3- (Table 4.1) is CD45 (RO/RA). CD45 is one of the major accessory
molecules in immune response and functions as a protein tyrosine phosphatases
[152]. The relationship between these immune cell subsets and <¢GvHD

manifestation is not known.

The classifier built from immune cells CD3*CD4int, based on samples taken
between 0 and 21 days from aGvHD diagnosis, was identified as one of the top
ranking classifier for cGvHD (Table ].3). The same subset of immune cells was also
identified as one of the top ranking classifiers for aGvHD (Table 4.1). Here the
PBMC. proportion values for CD3*CD4int were generally higher in the aGvHD only
patients compared to the aGvHD & ¢cGvHD patients (Figure 1.3). Like the classifier
using CD3*CD4int for aGvHD prediction, the relationships between this unknown
cell population with the CD3*CD4int phenotype and the development of cGvHD is
not yet defined.

5.4.4 Chronic graft versus host disease prediction model using 45RO*CD3
CD4dim '

- The FLDA classifier built using immune cells: 45RO*CD3r CD4dim in
proportlon to PBMC and samples taken between 21 and 0 days prior to aGvHD
diagnosis, had the highest estimated 86% sensitivity and 86% specificity (Table 4.3),
excluding the inconsistent classifiers. Classification of a new patient with sampled
time points at 21, 15, 7, and 0 days prior to aGvHD diagnosis can be made using the

following model (Figure 5.4). Based on Equation 1.4, linear discriminant value can
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be calculated by multiplying the new values with the determined weight values (at

each time point) (Equation 1.3):

24_.
2 |
20
18 -

16

14 -

12 A1

10 A

Proportion 45RO+ CD3- CD4dim

—— Global base values
—@— Test data: patient #19

T T T T T

T-20° -15 -10 -5 o 0

Days from aGvHD diagnosis

Figure-5.4 An-example of FLDA classification using immune cells 45RO*CD3-
CD4dim jn proportion to PBMC.

5.8992
_ 15.0097
a, =0.0762 -0.1436 0.1191 0.1091-| X —

14.2864

20.4889

Equaﬁon 5.2 The cGvHD prediction formula for patient data sampled at 21, 15, 7
and 0 days prior to aGvHD diagnosis
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133

23.4
In a resubstitution example, patient #19 with observed values X = 126 has

13.6

an estimated linear discriminant value of -1.59. Based on the linear classification
rule, patient #19 who was diagnosed with both aGvHD and c¢cGvHD and with a

negative &, , is classified into the aGvHD & c¢GvHD class, a true positive (Figure 5.4).

The detail calculation of the weight values is available in Appendix L. .

55 Recommended improvements ‘

'The main objéctives of the present pilot study were to assemble a novel
temporal analysis pipeline for the high-throughput clinical FCM data and
recommend improvements in preparation for future studies. While 1 have
demonstrated the applicability of the analysis pipeline (Figure 2.1), there are seven
practical and two tentative improvements needed to achieve better efficiency and

power for future studies.

5.5.1 Random plating

The first recommendation for experiment procedures is random plating. The
results of the QA test on the current dataset presented possible plating effects (Table
3.4). While further analysis (section 5.1.3) is required to elucidate the plating effects,
random plating [153] will aid in minimiiing the likelihood that changes observed
are due to plating arrangements. For example, if samples taken prior to BMT are
always plated in the first two columns, then it will not be clear if changes observed

from these samples are from biological changes or the edge drying effect.
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55.2 Patient recruitment

Tile fsecond' recommendation is to increase patient recruitment in order to
achieve a sufficient power. The estimated power to detect any 'sp.ecifi'c change for
this pilot stidy was understandably low. In the comparison between aGvHD and
non-GvHD patients using the immune cells CD3*CD4*CD8f*, the analysis was
estimated to have 29% power at 90% confidence level (Table 4.2). In the comparison
between aGvHD & c¢GvHD and aGvHD only patients, using the immune cells
45RO*CD3-CD4dim, the analysis was estimated to have 50% power at 90% confidence
level (Table 4.4). |

Based on the present data, there was 68% chance of the recruited patients
developing aGvHD and 13% chance of patients not affected aGvHD including early
withdraws and fatality rate before 100 days post-transplant. This unbalanced
number of aGvHD and non-GvHD patients could partially be the result of biased
patient recruitments. Generally, patients with higher risks for disease ‘are more
inclined to enrol in studies [154]. Among the recruited aGvHD patients, there was
33% chance of developing cGvHD and 43% chance of being free of cGvHD including
early withdraws and fatality rate. Overall, I estimate that 100 HSCT patients should
result in 68 aGvHD and 13 non-GvHD cases; and 22 aGvHD & ¢GvHD and 29
aGvHD only cases. This will support an analysis with approximately 80% power at
90% confidence level for both patient group comparisons (Tables 4.2 and 4.4). This
increased patient recruitment will also improve tolerance to the normality
assumption in the FLDA. In addition, sample collection can be organized in a fufure
study so the MNC concentration and immune cell proportions may be determined
using the same sample in order to minimize errors in the concentration dataset.

Another set of 100 HSCT patients would allow external validation (section 5.5.7).
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5.5.3 Sampling rate

The third recommendation is to increase sampling rate immediately before
and after BMT. In the present study, patients were sampled weekly. Multiple
potential immune cell populations exhibiting discriminative patterns that may
predict both aGvHD and ¢cGvHD manifestations could be found following the BMT,
between 7 and 21"d§ys -post-tréﬁéplant (Tables H.1 and J.1). | .

The ideal sampling rate capturmg immune cell population changes is daily.
Flow Cytometry is capable of capturing changes as small as 0.1% in the sample
population [155]. In animal models, average daily turnover rates of T cells, B cells
and NK cells under viral infections are 2, 3, and 3% [156]. The T cells’ response to
viral infection in mice can be detected in one to two days post-infection, reaching
maximum by five to six days post-infection [157]. It may not be possible to establish
a long-term rapid sampling rate for future studies. However, frequent sampling
within the first two or three weeks of BMT, when patients might still be available in
the hospital, may yield an informative dataset. The temporal analysis pipeline
(Flgure 2. 1) requlres a minimum of two samples per patient. The samplmg rate can
be non-uniform because of the robustness of the pipeline. Aside from the increased
sampling rate around BMT, efforts should be made to obtain samples for the ends of
the selected time range. Although the analysis pipeline was designed for clinical
data with missing values and non-uniform sampling time, missing values still

affected eligibility of the dataset to be included in the temporal analysis.

5.5.4 Additional markers
The fourth recommendation is to include markers specifically for the
identification of the DP T cells and separation between host and donor origin

immune cells. From the pilot study, I have found that immune cell populations

CDS"ClD4+CD8[3+ and CD3*CD4*CD8B+*CD8* exhibited a pattern of higher PBMC
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propof't'iton values and greater ﬂuctuatioﬁ from the aGvHD patients, when compare
to the non-GvHD patients (Figures 4.6 and 4.7). Marker such as CDla [134, 158]
may be incorporated to distinguish thymocytes and mature T cells. Additional
marker such as CD69, CD56, CD38, CD27, CD28, CD134, CXCR3, and CD62L will
help to determine the exact origin and functional phenotype of the DP T cells and

facilitate the efforts of validating current findings.

Additional experimental methods to separate immune cells of donor or
recipient origins may also be necessary. The apparent DP T cell population was
identified asa potential aGvHD marker from its pattern between 7 and 21 days post-
transplant. During this time, the donor and the residual recipient immune cell
chimerism has been documented in both human [129, 130] and mouse [159] models.
Separation of immune cells’ origin will aid in elucidating functions of T cells and T
cell subset and their roles in the_ GvHD manifestation. Furthermore, the separation

may also be useful in validating patterns of possible immune reconstruction (Figures

411 and 4.12).

5.5.5 Additional statistic tests

There are also three recommendations to improve the current analytical
procedure (Figure 2.1)." The first recommendation is the addition of statistical tests
to the manual QA test and the FCM gating procedure. In the present study, outliers
were identified from the QA test solely based on visual inspection. Conventional
statistical tests.such as analysis of variance and box plots to the current QA test may
help to éliminate some biases. However, these tests are more efficient in identifying
differences in distribution shifts instead of distribution shapes. Statistical tests such
as the functional arbitrary covariance tests of shape [160] may be tested on its
sensitivity to FCM QA testing using known samples (section 5.1.3) or simulated data.

In this study, the FCM gating was performed manually by one or two -parameters
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visualization with prior biological knowledge. These manual visual analyses were
subjective and time consuming. Efforts have been made to improve gating
efficiency and robustness. A recently developed feature-guided clustering
algorithm [161] might be applicable in both QA and gating of high-throughput FCM

dataset.

5.5.6 Graft versus host disease grades

The second recommendation for analytical improvement is the addition of
GvHD grade in the analysis in order to accommodate GvHD misdiagnoses. At
present, aGvHD and ¢GvHD diagnoses are ambiguous especially for mild forms of
aGvHD (grade I) and ¢cGvHD (limited). There are many reports on GvHD grading
schemes [162-172] and their uncertain reproducibility [173, 174]. While the
reproducibility might be remedied by a clinical algorithm [175], it will not decrease

misdiagnoses. ’

Many previous aGvHD studies [29, 30] omitted patients diagnosed wifh
grades I or Il aGvHD from analyses so as to avoid interferences from misdiagnoses.
This option was attempted for the present study resulting in similar or higher
predictive powers from the top classifiers (Table 4.1). For future studies, I propose
an addition of fuzzy clustering algorithm [176, 177] or mixture model based
classification [178] to the temporal analysis pipeline in order to accommodate GvHD
grades and misdiagnoses. It is important to predict not only the development of
GvHD but also its severity. Many studies have suggested that due to the beneficial
graft versus leukemia effects, only moderate or severe GVHD should be treated [154].
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5.5.7 External validation

The third analytical recommendation is the implementation of external
validation, which would only be possible if there are enough patients recruited to
separate into a training dataset and a testing dataset. Two sets of 100 HSCT patients
as the training and testing dataset for FLDA are recommended. Another set of 100
HSCT patients may be required for the multiparametric approached described
below. Currently, LOOCYV, which over-estimates classifier accuracy, is used to

validate and rank FLDA classifiers without correction for multiple testing. |

5.5.8 Multiparametric approach

The first tentative recommendation is an additional multiparametric analysis.
Previous [81] and current studies have suggested a very complex GvHD
manifestation. Presently, temporal classifiers from different subsets of immune cells
were interpreted individually as there is no multiparametric temporal analysis
algorithm available. However, preliminary results from Support Vector Machines
(SVMs) analyses on the linear discriminant values from multiple FLDA classifiers
indicated that predictive powers of these classifiers could be combined to achieve a

better accuracy.

A SVM defines the best linear separating hyperplane between different
classes of the training dataset projected into a high dimensional space. In the
preliminary analysis, linear discriminant values from FLDA classifiers predicting the
onset of aGvHD were obtained through resubstitution. Linear discriminant values
representing weighted distances between the test data and the classifier, were then
normalized to the range {-1, 1} using Equation 5.3 in preparation for the SVM
analysis. Correlation-based feature selection method [179] was performed in Weka
[180] to seiect a subset of the temporal classifiers by comparing the individual

predictive power of the classifiers and the degree of redundancy between them. The
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three top ranking classifiers selected based on LOOCV sensitivity and specificity
were among the 11 classifiers selected using this feature selection method.
Normalized linear discriminant values from these 11 classifiers were visually
different between the aGvHD and non-GvHD patients (Figure 5.5). Individually,
the best LOOCV estimated accuracy among these 11 classifiers was 86% sensitivity
and 100% specificity. LOOCV estimated accuracy from the SVM [181] classifier of
all 11 classifiers was 100% sensitivity and 100% specificity. Albeit resubstitution for
the FLDA classifiers and LOOCYV for the SVM classifier could result in a severe over-
estimation in the final SVM’s accuracy; the preliminary results suggest the

applicability of SVM to combine predictive powers of multiple FLDA classifiers:

. a, <0,a, /min(a)
a =
" la, >0,a, /max(@) .

- Equation 5.3 Normalization function for the linear discriminant values
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Normalized linear discriminant values
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Figure 5.5 Parallel coordinates plot of the normalized linear discriminant values
from the 11 FLDA classifiers selected via the correlation-based feature selection

method.

5.5.9 Long time series analysis

The second tentative recommendation is an evaluation of additional long
time series analyses. A long time series analysis would utiliz.ei the maximum
amount of data and could be useful in elucidating the GvHD pathophysiologic

mechanism occurring over time at different rates among patients. Also, most spline-
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based methods including FLDA may perform more efficiently on long time series
data [128]. Even though on average 15 weeks of data were available from each
patient in the present dataset, I found the risk of desynchronization and needs for
biased smoothing and registration procedures outweighed the benefits of a long
time series analysis for this pilot study. However, for future studies, it might be
possible to perform long time series analysis if detailed patient information such as

GvHD progression can be incorporated into the registration procedure [48].

56  Conclusion

This pilot project achieved its objectives. The temporal énalysis pipeline
(Figure 2.1) was designed and implemented on the high-throughput clinical FCM
data. Results of the QA test identify potential experiment errors. The screening of
the current limited dataset by the temporal pipeline identified several potential
aGvHD and c¢GvHD diagnosis markers including rare forms of T cells. In the
present study, the most promising pattern was immune cells with CD3+*CD4*CD8p*
(CD8*) phenotype which had higher proportion values and greater fluctuation from
the aGvHD patients, compared to the non-GvHD patients (Figures 4.4 and 4.6).
Multiple unknown immune cell subsets including 45RO*CD3-CD4dim (Table 4.3)
exhibited opposite FLDA estimated signal patterns (Figures 4.14 and 4.15) between
the aGvHD & cGvHD and the aGvHD only patients.

While there was a high risk of false positives in the classification due to the
limited number of available patients and errors from multiple testing, the current
results demonstrated the applicability of the temporal analysis pipeline to the high-
throughput clinical FCM data and the applicability of SVMs to combine multiple
temporal classifiers’ predictive powers. They also demonstrated the benefits of large
scaled FCM study and temporal analysis. Large scale FCM study possibly combined

with automatic gating process [161] would eliminate biases from prior knowledge
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and could be very useful in elucidating GvHD. For instance, the DP T cells were
never purposely included in other studies because they were not expected to exist

based on the known T cell maturation mechanism (Figure 4.11).

Potential problems from the experimental and analytic procedures were
identified and seven potential improvements recommended. They were:

1. Random plating

2. Increase patient recruitment, ideally two sets of 100 HSCT patients for
training and testing purposes respectively

3. Increase sampling rate especially after the BMT procedure

4. Addition of markers targeting differentiation and function status of T cells

5. Addition of statistic tests to both the QA test and the FCM gating

_procedure to the existing visualization methods
' 6. Including GvHD grades in the temporal analysis in order to accommodate

-GvHD diagnosis errors

7. External validation for classifiers

As expected, none of the classifiers yielded significant correlation to the onset
of either aGvHD or ¢GvHD. A future study made more efficient by these

recommendations will be required to validate the current findings.
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APPENDICES

Appendix A. Patient information on maximum GvHD grade, GvHD diagnosis in

days post-transplant and patient-donor relationship

Max aGvHD ¢GvHD Donor-
Patient | aGvHD post- post- patient
# | grade |transplant | transplant | relationship | Comments
: Last contact 187 days post-
1 3 26 MUD transplant
2 0 SIB
» Expired 61 days post-
3 4 23 MUD transplant
: Expired 278 days post-
4 0 SIB transplant
5 3 59 SIB
6 3 19 SIB
Expired 89 days post-
7 3 39 SIB transplant
8 0 122 SIB
9 3 43 211 SIB
10 1 11 MUD
11 1 68 273 SIB
12 3 22 SIB
13 3 48 SIB
14 2 28 MUD | Relapsed
15 w2 - 19 - 98 " SIB
Expired 74 days post-'
16 2 10 MUD transplant
17 0 - SIB Relapsed
; Expired 54 days post-
18 0 SIB transplant
19 2 77 446 SIB
Expired 55 days post-
20 0 SIB transplant
21 3 54 294 MUD
22 3 32 223 SIB
Last contact < 100 days post
23 3 22 SIB transplant
24 3 37 SIB
Expired 89 days post-
25 1 44 SIB transplant
26 0 117 SIB
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aGvHD

Max " ¢GVvHD Donor-
Patient | aGvHD post- post- patient
# grade | transplant | transplant | relationship | Comments
27 2 31 SIB
28 1 51 177 MUD
Expired 97 days post-
29 0 SIB transplant
30 0 104 SIB
Last contact 109 days post-
31 0 ‘SIB transplant; Relapsed
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Appendix B. List of the subsets of immune cells from each of the ten aliquots

Aliquots

Immune cells

1 Activation

SSC,FSC/CD3 PerCP*

SSC,FSC/CD3 PerCP+/CD44-CD25

SSC,FSC/CD3 PerCP*/CD44-CD25*

SSC,FSC/CD3 PerCP+/CD44*CD25*

SSC,FSC/CD3 PerCP*/CD44*CD25*/ CD69*

SSC,FSC/CD3 PerCP*/CD44*CD25

SSC,FSC/CD3 PerCP-

SSC,FSC/CD3 PerCP-/CD44*CD25*

SSC,FSC,/CD3 PerCP-/CD44*CD25* / CD69*

SSC,FSC/CD3 PerCP-/CD44-CD25-

SSC,FSC/CD3 PerCP-/CD44+CD25

2 Activation

SSC,FSC/CD3 PerCP*

SSC,FSC/CD3 PerCP* / CD4br

SSC,FSC/CD3 PerCP+/CD4int

SSC,FSC/CD3 PerCP*/CD8gdim

SSC,FSC/CD3 PerCP+/CDgbr

SSC,FSC/CD3 PerCP-

SSC,FSC/CD3 PerCP-/ CD4dim

SSC,FSC,/CD3 PerCP-/CDA-CDS-

SSC,FSC/CD3 PerCP-/ CD8low

3 Activation

SSC,FSC/CD3 PerCP*

SSC,FSC/CD3 PerCP*/CD4br

SSC,FSC/CD3 PerCP*/CD4int

SSC,FSC/CD3 PerCP*/CD8dim

SSC,FSC/CD3 PerCP*/CD8br

SSC,FSC/CD3 PerCP-

SSC,FSC/CD3 PerCP-/CD4dim

SSC,FSC/CD3 PerCP-/CD4-CD8-

SSC,FSC/CD3 PerCP-/ CD8low

SSC,FSC/CD3 PerCP-/CD8low/CD122hi

B cells

SSC,FSC/CD20*

SSC,FSC/CD22*

SSC,FSC/CD22+*CD20*

SSC,FSC/CD20+CD19*
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Aliquots

Immune cells

Myeloids

SSC,FSC/CD33+CD45*

SSC,FSC/CD33+CD45*/CD15*CD14*

SSC,FSC/CD33+CD45dim

SSC,FSC/CD33+CD45dim/CD15*CD14*

SSC,FSC/CD33*CD45dim / CD15lowCD14low

SSC,FSC/CD33+CD45dim /CD15*CD14-

SSC,FSC/CD45*CD33-

SSC,FSC/CD45+CD33-/CD15*CD14-

NK cells

SSC,FSC/CD2-CD16*

SSC,FSC/CD2-CD16+/CD56*CD3-

SSC,FSC/CD2-CD16*/CD3*CD56

SSC,FSC/CD2-CD16*/CD56-CD3-

SSC,FSC/CD2dimCD16*

SSC,FSC/CD2dimCD16*/CD56*CD3-

SSC,FSC/CD2dimCD16*/CD3+*CD56-

SSC,FSC/CD2dimCD16* / CD56-CD3-

SSC,FSC/CD2+*CD16*

SSC,FSC/CD2+*CD16*/CD56*CD3-

SSC,FSC/CD2+*CD16*/CD3*CD56

SSC,FSC/CD2+CD16*/CD56-CD3-

SSC,FSC/CD2+*CD16

SSC,FSC/CD2+CD16-/ CD56+*CD3-

SSC,FSC/CD2+CD16-/CD3+*CD56-

SSC,FSC/CD2+*CD16-/CD56-CD3-

T cells

SSC,FSC/CD3 PerCP*

SSC,FSC/CD3 PerCP+/CD4*CD8p-

SSC,FSC/CD3 PerCP*/CD4+*CD83*

SSC,FSC/CD3 PerCP+/ CD4*CD8*/CD8*

SSC,FSC/CD3 PerCP*/CD4+*CD8p*/CD8* (proportion of CD3*
cells)

SSC,FSC/CD3 PerCP*/CD8B*CD4-

SSC,FSC/CD3 PerCP*/CD8*CD8p-

SSC,FSC/CD3 PerCP+/CD8p+CD8*

SSC,FSC/CD3 PerCP*/CD8p+CD8low

SSC,FSC/CD3 PerCP*/CD8pdimCD8-

SSC,FSC/CD3 PerCP-

SSC,FSC,/CD3 PerCP-/ CD4lowCD8low

SSC,FSC/CD3 PerCP-/CD8*CD8f-




Aliquots

Immune cells

T cells

SSC,FSC/CD3 PerCP-/ CD8dimCD8:

rest/activate T
helper

SSC,FSC/CD3 PerCP*

SSC,FSC/CD3+*CD4*

SSC,FSC/CD3+CD4-

SSC,FSC/45ROCD3*

SSC,FSC/45ROCD3+/CD4*

SSC,FSC/45ROCD3*/CD4-

SSC,FSC/45ROCD3* / CD4low

SSC,FSC/45RACD3*

SSC,FSC/45RACD3*/CD4*

SSC,FSC/45RACD3*/CD4-

SSC,FSC/45RACD3* / CD4low

SSC,FSC/CD3 PerCP-

SSC,FSC/CD4dim

SSC,FSC/CD3-CD4-

SSC,FSC/45ROCD3-

SSC,FSC/45ROCD3-/ CD4dim

SSC,FSC/45RACD3-

SSC,FSC/45RACD3-/ CD4dim

rest/activate T
suppressor

SSC,FSC/CD3 PerCP*

SSC,FSC/CD3+CD8*

SSC,FSC/CD3+*CD8-

SSC,FSC/45ROCD3*

SSC,FSC/45ROCD3*/CD8*

SSC,FSC/45ROCD3+ /CD8-

SSC,FSC/45ROCD3* / CD8low

SSC,FSC/45RACD3+

SSC,FSC/45RACD3*/CD8*

SSC,FSC/45RACD3*/CD8

SSC,FSC/45RACD3+/CD8low

SSC,FSC/CD3 PerCP-

SSC,FSC/CD8*CD3-

SSC,FSC/CD3-CD8-

SSC,FSC/45ROCD3-

SSC,FSC/45RACD3-

SSC,FSC/45RACD3-/CD8*




Aliquots Immune cells

SSC,FSC/CD3 Per(CP*

SSC,FSC/CD3 PerCP*/TCRab*CD5*

SSC,FSC/CD3 PerCP*/TCRab*CD5*/TCRab*TCRgd*
SSC,FSC/CD3 PerCP*/TCRgd*CD5*

SSC,FSC/CD3 PerCP*/TCRab*CD5

SSC,FSC/CD3 PerCP*/TCRab*CD5-/ TCRab*TCRgd* |
SSC,FSC/CD3 PerCP*/TCRab*CD5-/ TCRgd-CD5
SSC,FSC/CD3 PerCP-

SSC,FSC/CD3 PerCP-/CD5*

SSC,FSC/CD3 PerCP-/ TCRab*CD5*

SSC,FSC/CD3 PerCP-/ TCRab*CD5-

SSC,FSC/CD3 PerCP-/ TCRab*TCRgd-/CD5*
SSC,FSC/CD3 PerCP-/ TCRab*CD5-/ TCRab*TCRgd*
SSC,FSC/CD3 PerCP-/ TCRab*CD5/ TCRgd-CD5-
SSC,FSC/CD3 PerCP-/ TCR*CD5*

SSC,FSC/CD3 PerCP-/ TCRab*TCRgd-/CD5-

TCR

**the ‘/’ indicates each level of the sequential gating.




Appendix C. PERL script fixFCS.pl for enforcing FCS file compatibility from FlowJo into rflowcyt

#!usr/bin/perl

#fixFCS v0.7.pl

#Written by Shang-Jung (Jessica) Lee

#BC Cancer Research Centre

#lLast updated: December 13, 2006
#Maintainer: Jessica Lee <jlee@bccrc.ca>

#Please be noted that Immune cell populations and measurements were used interchangeably in the
PERL codes/documentation

#This PERL script reads in the FCS files from FlowJo (Tree Star, Inc, Oregon)

#It then creates a new FCS files with necessary modifications to be successfully read 1nto R via
rflowcyt

#NOTE: information on experiment details, samples labels may be lost!!

#Folder and files are selected based on its names. User can modify this selection in the regular
expression located below the comment "####### USER MODIFY HERE"

- #This script will also have updated header with new bytes information

#Tested on FCS version 2.0 exported from FlowJo version 6.3.4

- #Tested with rflowcyt version 1.4.0 on R (windows 2.3.0) .

#0n Windows XP (Pentium 4 CPU, 1.00GB of RAM), it takes less than 1 minute to search through 500
files and modify/create 200 files.

#Please report all bugs and suggestions to <jlee@bccrc.cax

use warnings;

use strict;

use File::Find;
use Storable;

use Getopt::Long;
use bytes ();



http://fixFCS.pl

HAHAHFHBHHAH
### MAIN ###
C HHHEHEHE R
#opens log file to record status and errors
open (OUTFILElog, ">>fixFCS.log") or die ("Cannot open output file: $!");
print (OUTFILElog "\n\nSTART TIME: " . scalar localtime() . "\n");
#selects folder with the FCS files to be modified
&SELECT FOLDER () ; :
close (OUTFILElog) or die ("Cannot close output file: $!");

HHHAHHAHHAH AR H A H RS R R R R R e e

#sub SELECT_ FOLDER

#selects one or all subfolders within the current location based on user specification
#calls subroutine SELECT FILES internally

sub SELECT_ FOLDER { _ ' _ _

print ("Subfolder name or \'all\' for all subfolders (based on the default selection criteria,
p#): ")

chomp (my $SuserFolder = <STDIN>) ;

if ($userFolder =~ m/all$/i){ #select all folders
my @folderNames;
find sub {push @folderNames, $File::Find::name if -d}, '.';
foreach my $folderPos (O.hs#folderNames){

####### USER MODIFY HERE for selecting folder/file
if ($folderNames [$folderPos] =~ m|\./(p[\d]l+)|){
&SELECT_FILES ("s1m);
}
}
}

else{ #select specific folder



file:///n/nSTART

if (-d SuserFolder) {
&SELECT FILES ("$userFolder");
}

else({
print OUTFILElog "END PROGRAM: cannot find folder SuserFolder\n";
die ("Cannot find folder S$userFolder: $!");

}
} 4

} #sub SELECT FOLDER

BHAEHHAHHEHHEHHEHHEH USRS U R H A U U HA R R B

#sub SELECT FILES

#selects the correct FCS files based on its naming scheme

#calls subroutine FIX internally .

#INPUT: name and location (optional) of the subfolder where FCS files are located

sub SELECT_ FILES ({

my $patientFolder = shift(e_);

my @FCSfiles;

#find all files in folder..

find sub {push @FCSfiles, $File::Find::name}, "./$patientFolder";

my %fixed;

my %toBeFix;

#in order to save time, skip any FCS file that was already fixed (ie a corresponding FCS file
with the modified data exists (+ "_fixed")) '

foreach my $currentFile (@FCSfiles) {

if (! ($currentFile =~ m/\. /)){ . :
if ($currentFile =~ m/(.+) fixed\.fcs/){ ####### USER MODIFY HERE for selecting /
excluding files
$fixed{"s1"} = "ScurrentFile";
elsif ($currentFile =~ m/(.+)\.fcs/){
$toBeFix{"$1"} = "ScurrentFile";

}

8CL




}
}

foreach my $key (keys %toBeFix) {

if (!(exists($fixed{skey}))){ '
print (OUTFILElog "fixing: $toBeFix{$key}\n");
&FIX ("$toBeFix{Skey}");

}

else({ '
print (OUTFILElog "FIXED: S$toBeFix{$key}\n");

}

} #foreach file .
} #sub SELECT FILES

HHEHHHHHEHH G HAHHH B R R HE U R R R
#sub FIX

#removes the unwanted keywords in the FCS file

#updates bytes information in the header

#creates a new FCS file with necessary modificaiton

#INPUT: name and location (optional) of the FCS file

sub FIX {
my ScurrentFile = shift(e@ );
my SnewFileName = "ScurrentFile";

$newFileName =~ s/\.fcs/_fixed.fcs/; ####### USER MODIFY HERE for naming scheme
my S$keywords;

my Stemp;
#reading in the BINARY file
open (INFILE, "<:raw", "$ScurrentFile") or die ("Cannot open input file: $!");
binmode (INFILE);
until (eof INFILE) {
Stemp .= <INFILE>;




.

#remove SFIL (not necessary)

#if (SentireText =~ m|\$FIL.+\.£cs\\\SNEXTDATA|) {
#SentireText =~ s|\SFIL.+\.£fcs\\\SNEXTDATA|\\\SNEXTDATA| ;
#print (OUTFILElog "remove \SFIL\n");
#}
#femoVe SBTIM. . .BDSNPAR....BDSPIN...
if (Stemp =~ m| (\\\SDATATYPE\\.{1,2})\\\SBTIM\\.+\\BD\SNPAR.+\\BD\$PIN.+ (\\\$PIN) |) {

print (OUTFILElog "remove \SBTIM...BD\SNPAR\n");
Stemp =~ s|(\\\$DATATYPE\\.{1,2})\\\sBTIM\\.+\\BD\$NPAR.+\\BD\$91N.+(\\\$P1N)|$1$2|;

}

#remove $BEGINDATA (not necessary)

#determine the old byte infomration

my %oldBytes;

my $newHeader;

1f ($segments[0]=~ m/(FCS\A\.\d) (.+)3/) {
SnewHeader = $1;
$oldBytes{"original"} = "" . $2;

$oldBytes{"start keyword"} = substr($oldBytes{"original"},0,12);
$oldBytes{"end keyword"} = substr($oldBytes{"original"},12,8);
$oldBytes{"start data"} = substr($oldBytes{"original"},20,8);
$oldBytes{"end data"} = substr($oldBytes{"original"},28,8);

$oldBytes{"s0s0"} = substr($oldBytes{"original"},36);
#make sure that the digits between the old byte and the new byte information are the
same

if ((length($oldBytes{"start keyword"})-length($bytes{"start keyword"})) >=0){
for (1..(length($oldBytes{"start keyword"})-length ($bytes{"start keyword"}))) {
$newHeader .= " ";}
$newHeader .= $bytes{"start keyword"};

}

else{print (OUTFILElog "Error: over size limit\n"); return();}




f ((length($oldBytes{"end keyword"})-length ($bytes{"end keyword"})) >=0) {

for (1..(length( $oldBytes{"end keyword"}) -length ($bytes{"end keyword"}))) {
$newHeader = omo B

$newHeader . $bytes{"end keyword"};

}

else{print (OUTFILElog "Error: over size limit\n"); return();}
if ((length($oldBytes{"start data"})-length(Sbytes{"start data"}))>=0) {
for (1..(length( $oldBytes{"start data"}) -length ($bytes{"start data"}))){
$newHeader L= o
$newHeader . $bytes{"start data"};
}
else{print (OUTFILElog "Error: over size limit\n"); return() ; }

if ((length($oldBytes{"end data"})-length(sbytes{"end data"}))>=0) {
for (1..(length($oldBytes{"end data"})-length ($bytes{"end data"}))) {
$newHeader .= " ";}
$newHeader .= $bytes{"end data"};

}

else{print (OUTFILElog "Error: over size limit\n"); return();}
$newHeader .= $oldBytes{"s0s0"};

#replace old header with the new one
open (OUTFILE, ">$newFileName") or die ("Cannot open output file: $!")

binmode (OUTFILE) ;
print (OUTFILE "" . $newHeader . $spaces40 . S$segments[l] . $spaces40 . $segments(2]);

close (OUTFILE) or die ("Cannot close output file: $i");

}
}

else {
print
return() ;

}

} #sub FIX

(OUTFILElog "ERROR: Cannot locate header in the FCS file ($currentFile)\n");




Appendix D. PERL script viz_days.pl for flow cytometry data transformation

#!usr/bin/perl
use strict;

use warnings;

use File::Find;
use Storable;

use Getopt::Long;

#viz days.pl

#Written by Shang-Jung (Jessica) Lee

#BC Cancer Research Centre

#Last updated: July 14, 2006
#Maintainer: Jessica Lee <jlee@bccrc.cas>

#Please be noted that Immune cell populations and measurements were
used interchangeably in the PERL codes/documentation

#This PERL script reads in files containing flow cytometry data and
clinical data

##acute GVvHD diagnosis time in days post-transplant from file

"GvHD _days_p31l.txt" via subroutine GVHD_DAY

##flow cytometry data files (for each patient, each available
aliquot) in the specified subfolder via subroutine FILES

##sampling time points for each patient in file

"sampling time_p31l.txt" via subroutine SAMPLING TIME

#H#MNC values estiamted from different samples of the same patient
population from files "JL_MNC.txt" via subroutine READ MNC

#It combines these files and user specified information such as
excerpt time range

#New files are created grouplng samples from patients taken at
specific time range into individual file for each available
measurement in subroutine 'visualization'

#make a subfolder named 'visualization' if it does not exist

if (!-d ".\\\\visualization") {mkdir ".\\\\visualization" or die
("Cannot make subfolder visualization");}
my $log = ".\\visualization\\log viz.txt"; #lot file

#Pre-specified parameters

#average aGvHD diagnosis in days post-transplant, used in the data
transformation of non-GvHD data from days post-transplant into days
from aGvHD diagnosis

my $averageGVHD = 36;

#input files:

#GVHD diagnosis day

my $gvhd diagnosis_inputFile = "GvHD_days_p3l.txt";

if (-e $gvhd diagnosis inputFile) {die ("Cannot find flle

$gvhd diagnosis_inputFile");}

#sampling time points

my $sampling inputFile = "sampling time p3l.txt";
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http://viz_days.pl
file:////visualizationWlog_viz.txt

if (-e $sampling inputFile) {die ("Cannot find file:
$sampling inputFile") ;}
#mnc values

my $mnc inputFile = "JL_MNC.txt";

if (-e $mnc_inputFile) {die ("Cannot find file: S$mnc_inputFile");}
HHHHH AR A HEREHEH

### sub MAIN ###

HAHEHBRHSHHFHERH

my Sreference;
#user specified option: time in days from transplantation or aGvHD

diagnosis
GetOptions('r|reference=s'=>\$reference);
if(!$reference || ! ($reference =~ m/transplant]|gvhd/i))

die ("Usage: perl visualization.pl -r <post - \"transplant\" or
\ " thd\ ney . '
}

#open lot file to record status and errors
open (OUTFILElog, ">$log") or die ("Cannot open output file: $!");

#obtain data from files by calling the various subroutines
#read in raw flow cytometry data file as exported from FlowJo
my @temp = &FILES(); ’

my %data = %${$templ[0]}; #data

my %ann = %{$temp[l]}; #measurement names

#read in sampling time poits for each patient in days post-
transplant

my %samplingTime = %{&SAMPLING TIME() };

#read in GvHD diagnosis in days post-transplant

my %GVHDdays = %{&GVHD DAY () };

#read in the mnc values

my %MNC = %{&READ MNC() };

HHSHAHAHEHAH A HAH RS HSHEHEH
#change time scale:
#1f user choose acute GvHD diagnosis as a point of reference
(instead of the transplantation), changes the days in sampling time,
data, and mnc '
#time is originally recorded in days post-transplant
if ($reference =~ m/gvhd/i) {
print "changing sampling time and data to reflect time post-
aGVHD\n";
my %tempData;
my %tempMNC;
foreach my $tempPatient (keys %GVHDdays) {
#get the GVHD diagnosed day (days post-transplant) for each
patient
#if the patient was never diagnosed with GvHD (GVHDday = 0),
average GvHD day which is set at the beginning of the script is used
my $gvhd = 0 + $GVHDdays{$tempPatient};
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if ($gvhd ==0) { :
$GVHDdays{S$tempPatient} = 0 + $averageGVHD;
$gvhd = 0 + SaverageGVHD;

}

#change the day in samplingTime
if (exists ($samplingTime{S$tempPatient})) {
foreach (0..$#{$samplingTime{$tempPatient}}) {
$samplingTime{StempPatient}[$ ] = '
$samplingTime{$tempPatient} [$ ] - $gvhd;

else{print (OUTFILElog "###Cannot find the following patient
in samplingTime: $tempPatient\n");}

#change the day in data
if (exists($data{$tempPatient})) {
foreach my S$tempGroup (keys %{$data{StempPatient}}) {
foreach my $tempMeasurement (keys
s{$data{stempPatient}{$tempGroup}}) {
foreach (keys
%{$data{StempPatient }{StempGroup} {$tempMeasurement}}) {

$tempData{$tempPatient}{$tempGroup} {$tempMeasurement } {0+ ($_ -

$gvhd)} = 0 + $data{StempPatient}{$tempGroup}{StempMeasurement}{$_};

1)

else{print (OUTFILElog "###Cannot find the following patient
in data: $tempPatient\n");}

#change the day in MNC
if (exists ($MNC{S$tempPatient})) {
foreach my $MNCday (keys %{$MNC{S$tempPatient}})
$tempMNC{$tempPatient} {0+ ($MNCday-$gvhd)} =
0+$MNC{$tempPatient} {SMNCday};
b
else{print (OUTFILElog "Cannot find the following patient in
MNC: $tempPatient\n");}

} #foreach patient
%data = %tempData;
$MNC=%tempMNC;

} .

HHHAHHBH AU HHA S HH AR H A S U R
#get MNC sampling day for each patient into the array
$MNC{patient}{"array"}
foreach my $patientToArray (keys %MNC) {
foreach my $dayToArray (keys %{$MNC{S$patientToArray}}) {
push (@{$MNC{$patientToArray}{"array"}}, 0 + $dayToArray);

@{$SMNC{$patientToArray}{array}} = sort {$a<=>$b}
@{$MNC{$patientToArray}{array}};}
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HHHHSHAHAHFHAHSH S H B HEH A HAH BB HA R HA RS

#user input time range (post-transplant or post-aGVHD)

my @rangeDays;

print ("Specify time range (interger in DAYS) separated by \', 6 \'.
Leave this empty for the maximum available time range: ");

chomp (my S$Sinput = <STDIN>) ;

my @userSpecifyRange;

if ($input) {

@userSpecifyRange = split(",", $input);

SrangeDays [0] = 0 + SuserSpecifyRange[0];
$rangeDays[1] = 0 + $userSpecifyRange[1];}
else{ : -

#determine the earliest and the latest day in sampling time
my Searliest = 100;
my $latest = -100;
foreach (keys %samplingTime) {
foreach (@{$samplingTime{$ }}) {
if ($earliest > $ ) {Searliest = + $ ;}
if ($latest < $ ) {$latest = 0 + $_;}
}
}

SrangeDays [0] $earliest;
SrangeDays[l] = $latest;

}

HEHHHHHHHH A S GG HEHHH#H
#MAIN PRINT OUT

foreach my $group (keys %ann) {
foreach my $measurement (keys %{$ann{"$group"}}) {

my StempGroup = "" . S$Sgroup;

$tempGroup =~ s/\s|-//g;

my StempMeasurement = "" . $measurement;
$tempMeasurement =~ s~/|\&~~g;
$tempMeasurement =~ s/\s/_/g;
$tempMeasurement =~ s/\+/plus/g;
StempMeasurement =~ s/-/minus/g;

#subfolder visualization, convert possible minus sign (from
the time range) to "minus"

my $subfolderl = ".\\visualization\\asis_" . S$reference
" d" . $rangeDays[0] . "_d" . $rangeDays[l]; $subfolderl =~ s/-
/minus/g;

‘my $subfolder2 = ".\\visualization\\mnc " . Sreference . "_d"

$rangeDays[0] . " _d" . $rangeDays[1l]; $subfolder2 =~ s/-/minus/g;

#make the subfolder if they did not exist already

if (!-d $subfolderl){mkdir Ssubfolderl or die "Cannot make
subfolder $subfolderl"}; :

if (!-d $subfolder2){mkdir $subfolder2 or die "Cannot make
subfolder $subfolder2"}; )

##HHAVE NOT implemented to delete all existing files in the
subfolder
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my S$fileAsis = "$subfolderi\\" . StempGroup . "_"

$tempMeasurement . ".txt";
my $f£ileMNC = "$subfolder2\\" . StempGroup . " "
StempMeasurement . ".txt";

open (OUTFILEAsis, ">$fileAsis") or die ("Cannot open output
file ($fileAsis): $!"); ‘

open (OUTFILEMNC, ">$fileMNC") or die ("Cannot open output
file($£ileMNC): $1");

print (OUTFILEAsis "time"); print (OUTFILEMNC "time");

foreach (sort {$a<=>$b} keys %samplingTime) { #print header
(patients) :
print (OUTFILEAsis "\tp$ "); print (OUTFILEMNC "\tp$_");

} |

print (OUTFILEAsis "\n"); print (OUTFILEMNC "\n");

foreach my S$currentDay ($rangeDays[0]..S$rangeDays([1]) {
print (OUTFILEAsis "$currentDay"); print (OUTFILEMNC
"ScurrentDay") ;
foreach my S$patient (sort {$a<=>$b} keys %samplingTime) {

my $currentProportion;

. if (exists($data{$patient}) &&
exists($data{$patient}{$group}) &&
exists($data{$patient}{$group}{$measurement}) &&
exists($data{$patient}{$group} {$measurement}{$currentDay})) {

$currentProportion = 0 +
$data{$patient}{Sgroup}{Smeasurement}{$currentDay};

#matching MNC value at the closest sampling time to the
current day .

my @closest = &CLOSEST("S$currentDay",
\@{$MNC{$patient}{array}});

my ScurrentMNC;

if (exists($MNC{$patient}) &&
exists (SMNC{$patient}{$closest[1]})) {

$currentMNC = 0 + SMNC{$patient}{$closest([1]};
}

if (defined($currentProportion)){

" print (OUTFILEAsis "\t" . S$ScurrentProportion);
if (defined($currentMNC)) {
' print (OUTFILEMNC "\t" . (S$ScurrentProportion *
ScurrentMNC) ) ;
else {
print (OUTFILEMNC "\t");
else{

print (OUTFILEAsis "\t");
print (OUTFILEMNC "\t");




} #patient
print (OUTFILEAsis "\n"); print (OUTFILEMNC "\n");
} #current week
close (OUTFILEAsis) or die ("Cannot close output file: $!");

close (OUTFILEMNC) or die ("Cannot close output file: $!");
} #measurement

} #group
close (OUTFILElog) or die ("Cannot close output file: $!");
HEHHHHSH S HEHEHEHE R R R A A R R R
#sub GVHD DAY
#read in GVHD diagnosis day (post-transplant) from the specified
file $gvhd diagnosis_ inputFile
#return hash %aGvHD
##S$aGVHD{patient number (number only)} => aGVHD diagnosis day (zero
if the patient was not diagnosed with aGVHD)

sub GVHD_DAY {
my $input = "$gvhd diagnosis_inputFile";

#storing parsed GvHD diagnosis day data into hash %aGvHD
my %aGVHD;

print "performing subroutine GVHD DAY...\n";
open (INFILE, "$input") or die ("Cannot open input file: $!");
until (eof INFILE) {

chomp (my $newText = <INFILE>);

#first row contains patient number and second row is the aGVHD

diagnosis day (post-transplant)
my @values = split("\t", S$SnewText);
if (evalues) {
my Spatient;

if ($values[0] =~ m/([\d]l+)/){
my S$temp = $1;
$temp =~ s/7°0+//g; #remove any zero at the beginning

$patient = 0 + S$temp;
}
else {
print (OUTFILElog "###CANNOT find patient number in
GVHD DAY: @values\n"); :
die ("Cannot find patient number in GVHD DAY\n") ;
}
if ($values[1] =~ m/([\dl+)/){
$aGVHD{"$patient"} = 0 + $1;
}
else({
print (OUTFILElog "###Cannot find aGVHD diagnosis day in
GVHD_DAY for patient $patient from @values\n");
die ("Cannot find aGVHD diagnosis day in GVHD DAY\n");

Iy |

close (INFILE) or die ("Cannot close input file: $!");
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return {\%aGVHD) ;
| ,
HHBHAHAHAHEH AR HAH AT I A H A H T H A A R R
#sub FILES
#read in the raw flow cytometry data files in the user-specified
subfolder
#flow cytometry data files were exported from flowJo
#flow cytometry data file naming scheme:
##the name of the file indicate patient number and aliquot name
##E# 'patient number' ‘'patient initial' 'year'-'aligquot name'.txt
#flow cytometry data file format:
##first row includes sampling time in days post-transplant
##first column indicates the measurement name
#assumptions:
##same measurement (or comparable measurements) have the same name
##did NOT assume that the measurement were listed in any order
#ireturn two hashes: %data and %ann
##%data
###Sdata{patient number (number only) } {measurement group
name } {measurement name}{time in day post-transplant} => acutal
measurement in % from FlowJo
##%ann :
###Sann{measurement group name}{measurement name}

sub FILES({
my (%data, %ann); :
print ("performing subroutine FILES....\n");

#iprompt for name of the subfolder
print ("Specify folder name containg the raw data files: ");
chomp (my $dataFolder = <STDIN>) ;
if (!-d "$dataFolder") {
die ("INVALID folder name entered!\n");

}

#find the all files in the specified subfolder
my @fileNames;
find sub {push @fileNames, $File::Find::name if !-d},
" \\$dataFolder";
foreach my $file (@fileNames) {
#derive patient number and aliquot name from the file name
my ($patient, S$group);
if ($file =~ m|E\#([\Al+)\s[\wl*\s[\dl*(.+)\.txt$|){
" Spatient = 0 + $1;°

$group = "$2"; Sgroup =~ s/\.jo-1//; S$group =~ s/°-//;

open (INFILE, "$file") or die ("Cannot open input file:
$im);
print (OUTFILElcg "Reading file: $file\n");

#header with measurement names in the first column ([1,1]
is always "sample")
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chomp (my S$header = <INFILE>) ;
my @titles = split("\t", Sheader);
foreach (0..$#titles) {

my S$measurement = "$titles[$ 1";

#clean up the measurement name

$measurement =~ s|*\"*\SSC,, FSC/]|]|;

$measurement =~ s|,Freq. of Parent\"*$|ofParent|;
$measurement =~ s|,Freq. of,SSC, FSC\"*$|ofLiveCells]|;
$measurement =~ s|,Freqg\..of,CD3.+erCP\+*$|ofTcells|;
$measurement =~ s| [\s]PexCP||;

$measurement =~ s|\s||g;

Stitles[$_ 1 = "Smeasurement”;

}

until (eof INFILE) {
chomp (my Stext = <INFILE>) ;
my @values = split("\t", Stext)
if (evalues) { ,
#sampling day post-transplant in the first row (d# or
#d)
my Sday;
if ($values[0] =~ m/(-*[\dl+)d/ | S$values[0] =~ m/d(-
*[\dl+) /) {
$day = 0 + $1;
}
else(
print (OUTFILElog "CANNOT FIND: $values[0]\n");
}
foreach my $count (1..S$#Hvalues) {
f ($values [$count] =~ m/[\d]/){ #could be empty

$data{"$patient"}{"Sgroup"}{"stitles[Scount]"}{"Sday"} = 0 +
svalues [Scount] ;
$ann{"Sgroup"}{"Stitles[Scount] " }++;

}

} #until

close (INFILE) or die ("Cannot close input file: s$!");
} #patient number and measurement group name from file name
else{
print (OUTFILElog "###CANNOT find patient number and/or
measurement group name from the file name $file\n")
}
} #foreach file
if (!%data || !%ann){die ("No data/annotation");}
return (\%data, \%ann);

HHEHFHAHAHEHAHAHEHEHEH AR H R R R e R
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#sub SAMPLING TIME
#read in the sampling time for each patients (raw data is not used
becuase not all measurements from one patlents are available on all
the time points etc)
#input file: sampling time p31.txt
#fill in hash data complex: %samplingTime => saved as
samplingTime.hash :
#@samplingTime{patient number, 1-31} => sorted (from small to large)
sampling time (day post transplant)
#return \%samplingTime
sub SAMPLING TIME ({
my S$samplingTimeFileName = "samplingTime.hash";
my $input = "$sampling inputFile";
my %samplingTime;
print "performing subroutine SAMPLING TIME..... \n";
open (INFILE, "$input") or die ("Cannot open input file: $!");
until (eof INFILE) {
chomp (my $newText = <INFILE>) ;
my @values = split ("\t", S$newText);
if (@values)
#first row is the patient numbers
my $patient;

if ($values[0] =~ m/([\dl+)/){
my Stemp =-351;
Stemp =~ s/°0+//g; #get rid of extra zero in front of the

patient number (01->1)
$patient = 0 + Stemp;
}
else { _
print (OUTFILElog "###CANNOT find patinet number in
SAMPLING TIME: @values\n") ;
die ("Cannot find patient number!");
}
foreach my S$count (1..$#values) {
if ($values[$count] =~ m/[\d]l/) {push
@{$samplingTime{"$patient”}}, 0 + $values([$count];}

@{$samplingTime{"$patient"}} = sort {$a <=> $b}
@{$samplingTime{"Spatient"}};
I8
close (INFILE) or die ("Cannot close output file: $!")
return (\%samplingTime) ;

HHEHFHAHAH AR H S HAH RIS A H R H T H A A R R R R B

#sub READ MNC

#read in the mnc values from the specified file $mnc_inputFile
#return hash %MNC

##format: $MNC{patient number}{sampling time in days post-transplant}
=> mnc value {(in mm3)

sub READ MNC {
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my $MNC;
open (INFILE, "$mnc_ inputFile") or die ("Cannot open input file:
$1")
my $title = <INFILE>;
until (eof INFILE) {
chomp (my $newText = <INFILE>) ;
my @cols = split ("\t", SnewText) ;
#cols [0] => patient number
#cols[l] => sample date
#cols[2] => MNC value
#fcols [3] => BMT date
#cols[4] => days post-transplant
#SMNC{patient number}{days post-transplant} = MNC value
if ($cols[2] && $cols[0]){ #if both patient number and MNC
value exist
SMNC{0+$cols [0] } {0 + $cols[4]} = 0 + S$cols[2];
b}
close (INFILE) or die ("Cannot close input file: $!");
return (\%MNC) ;

HHAHHEHHAHHAHARHABHAHHFH A S HAHH AR AR HA S HE R R AR R S
#sub CLOSEST
#INPUT: a target value and an array
#finds the value in the array that is closest to the target value
#returns two values: position of the closest value inside the array
and the actual closest value
HAHEHHAHSHHFH B HEHH
### sub CLOSEST ###
FHEHFHAEHAHAHAHHEHY
sub CLOSEST {
ny S$target = shift(e );
my @array = @{shift(e )};
if ($Sarray[$#array] <= Starget) {

return ("S$#array", "Sarray([S#arrayl");
) .
elsif ($array[0] >= S$target) {return("0", "Sarray[0]");}
else( : ‘

foreach my $position (0..$#array) {
my Selement = $Sarrayl[$position]; »
. if ($Selement == $target) {return("$position", "Selement");}

elsif ($element>S$target) {
mny S$fromLarge = abs($Selement-S$target);
ny $fromSmall = abs($Starget-Sarray([$Sposition-1]);
if ($fromLarge<$fromSmall) {return("$position",

"Selement") ; }

else{return(($position-1), $array[$position-11);}}}}}
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Appendix E. PERL script FLDA_MATLAB.pl for creating MATLAB commands
performing FLDA analysis

#!usr/bin/perl
use warnings;

use strict;

use File::Find;
use Storable;

use Getopt::Long;
use Tie::File;
use POSIX;

#FLDA_MATLAB.pl

#Written by Shang-Jung (Jessica) Lee

#BC Cancer Research Centre

#Last updated: August 21, 2006
#Maintainer: Jessica Lee <jlee@bccrc.ca>

#Please be noted that Immune cell populations and measurements were
used interchangeably in the PERL codes/documentation

#this script read in the text files (each file represent different
measurement/population) prepared from the viz days.pl

#it then outputted the necessary MATLAB commands to perform FLDA
classification to each measurements (that qualified, see filter
below) .

#FLDA or functional linear discriminant analysis:

## James, G.M. and Hastie, T.J. (2001) Functional linear
discriminant analysis for irregular sampled curves. Journal of the
Royal Statistical Society, Series B. 63(3): 533-550.

## FLDA was implemented in MATLAB by Simon Dablemont
<Dablemont@dice.ucl.ac.be>

## for everyting related to FLDA (ie setting different parameters
such as grid, B-spline order and knots, please refer to the
published paper and manuals available in Dr. Gareth James' website
<http://www-rcf.usc.edu/~gareth/>

#user is able to select:

"##1. where the data are located

##2. which population to analyze (by chosing the approprite file)
or all files in the specified folder

##3. FLDA parameter: grid range (a time range that covers all the
data selected)

##4. FLDA parameter: grid interval

##5. FLDA parameter: B-spline order (norder)

" ##6. FLDA parameter: number of B-spline knots (which will be placed
uniformly covering the grid

##7. Different pre-set patient comparisons

FHHEFHHHHA R AR R AR R R S
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#user inputs for data and FLDA parameters
#then checks that inputs (mostly format) are correct

#specify subfolder name where the data are located

print ("Specify the subfolder name: ");

chomp (my $folder = <STDIN>) ; N

print ("Specify the file name or \"all\" for all files in the
specified subfolder: ");

chomp (my $fileName = <STDIN>);

my SuserFile =.".\\$folder\\$fileName“;
#check if the specified subfolder and file exists

if (!(-e $userFile) && $userFile =~ m/"all$/i) {die "Cannot find
input file: S$SuserFile";} ,

#grid range {(or time range)

print ("Specify grid range (#,#): ");

chomp (my SuserInput grid = <STDIN>) ;

my @grid = split(",", S$SuserInput grid);
#icheck if the correct grid format is used
if (!(scalar(@grid) == 2)){die ("Incorrect grid: S$SuserInput grid");}

print ("Specify grid interval: ");

chomp (my $Sby = <STDIN>) ;

#check if grid is given as number

if ($by =~ m/\D/){die ("Incorrect grid interval: $by");}
#B-spline basis order and knot number

print ("Specify norder and nbreaks (#,#): ");

chomp (my S$userInput_ orderBreaks = <STDIN>);

my @orderBreaks = split(",", $SuserInput_ orderBreaks);

#check if correct order breaks format is used

if (! (scalar (@orderBreaks) == 2)){die ("Incorrect order and breaks:
‘$userInput orderBreaks") ;}

#select patient comparison
print ("Specify the group membership comparison to use\n");

print ("'1l' for aGVHDCGVHD(7) vs. aGVHDlived(9) vs. healthy4 (4)\n'2"’
for aGVHD(21) vs. healthy4 (4)\n")

print ("'3' for aGVHDcGVHD(7) vs. aGVHDlived(9)\n'4' for aGVHD(21)
vs. non aGVHD(7)\n'5' for aGvHDcGvHD (7) vs. aGvHD (14)\n");

print ("group membership comparison: ") ;

chomp (my $comparison = <STDIN>) ;
check if the correct comparision number is given

if (! ($comparison == 1 || S$comparison == | | $Scomparison ==3 ||
$comparison == 4 || $comparison == 5)){die ("Invalid comparison
choice") ;}

#MAY 31, 2006

## leave-one-out cross-validation does not work for comparision
between more than two classes

if ($comparison == 1){die ("Leave-one-out cross-validation does not
work for comparision between mroe than two classes");}

#initialized @compareGroups based on the comparison chosen
#EHH##E##HYOU CAN MODIFY/CREATE NEW COMPAREGROUPS BY ADDING HERE
my @compareGroups;
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if ($comparison ==1){ #'l' for aGVHDcGVHD(7) vs aGVHDlived(9) vs
healthy4 (4) .
@compareGroups = (["aGVHDcGVHD"],
["aGVHDlived"],
["healthy4"],) ;}

elsif ($comparison == ){ #'2' for aGVHD(21) vs healthy4(4)\n")
@compareGroups = (["aGVHDcGVHD", "aGVHDlived", "aGVHDdied"],
["healthy4"],);}
elsif(scompariéon ==3){ #'3' for aGVHDcGVHD(7) vs aGVHDlived(9)
@conipareGroups = (["aGVHDcGVHD"],
["aGVHDlived"],) ;}
elsif (Scomparison==4){ #'4' for aGVHD(21) vs non aGVHD(7)\n")
@compareGroups = (["aGVHDcGVHD", "aGVHDlived", m"aGVHDdied"],
["healthy4", "healthyDied"]l,);}
elsif ($comparison==5){ #5' for aGvHDcGVHD (7) vs. aGVvHD all (14)
@compareGroups = (["aGVHDcGVHD'"],
["aGVHDlived", "aGVHDdied"],);}
else{die ("###ERROR: incorrect comparison chosen");}

#open OUTFILES

#outfiles are created within the specified subfolder

#file names includes comparison number, order, and kntos

#An MATLAB code file (.m) and log file (.log) are created

open (OUTFILE, ">.\\\\S$folder\\\\FLDA comparison$comparison"

" order$orderBreaks [0]" . " breaks$orderBreaks[1l]" . ".m") orxr die
("Cannot open output file: $i");

open (OUTFILElog, ">.\\\\$folder\\\\FLDA comparison$comparison"

" order$SorderBreaks[0]" . " breaks$orderBreaks([1]" . ".log") or die
("Cannot open output file: $!");

#create subfolder "data" and "images" 1f they are not already
existed! (These folders are required for FLDA)

if (!1-d ".\\\\$folder\\\\data") {mkdir ".\\\\$folder\\\\data" or die
("Cannot make subfolder data");}

if (1-d ".\\\\$folder\\\\images") {mkdir ".\\\\$folder\\\\images" or
die ("Cannot make subfolder images");}

#determine which files to be processed
#the selected file's name must matched the preset naming scheme
#'aliquot name' 'measurement name'.txt
#exclude files from the subfolders data and image (which have a very
similar naming scheme)
if (SuserFile =~ m/alls$/i){

my @fileNames;

find sub {push @fileNames, $File::Find::name if !-d},
" \\s$foldexr";

foreach my $f (@fileNames) {

if ($f =~ m|$folder [\\/I1+(.+)\.txt$| && ! ($f =~
m~[\\/]data|images [\\/]~)) {
EMAIN("SE");
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}
}
}
else{
if ($userFile =~ m|$folder [\\/1+(.+)\.txts|)
&MAIN ("SuserFile") ;
} #if '
else{
die ("File SuserFile does not have the correct naming scheme");

}
N

close (OUTFILE) or die ("Cannot close output file: $im);
close (OUTFILElog) or die ("Cannot close output file: $!");

HAHHHAHHS R HEREH
### sub MAIN ###
HEHHSHHH S HSHEHS
sub MAIN ({

#class information

HHEHHAHHHHHHEFHHHH#H#H#YOU CAN MODIFY/CREATE NEW PATIENT GROUPS
HERE

" my %class;

$class{"aGVHDcGVHD" } {"p9"} = "po"; $class{"aGVHDcGVHD" } {"p11i"}
= "pll"; $class{"aGVHDcGVHD" } {"pl5"} = "pl5";
$class{"aGVHDcGVHD" } {"p19"} = "pl9"; - $class{"aGVHDcGVHD"}{"p21i"} =
"p21"; $class{"aGVHDcGVHD" } {"p22"} = "p22";
$class{"aGVHDcGVHD" } {"p28"} = "p28";

$class{"aGVHDlived"}{"pl"} = "pl"; $class{"aGVHDlived" }{"p5"}
= "p5"; $class{"aGVHDlived"}{"p6"} = "pé";
$class{"aGVHDlived"}{"pl0"} = "plo"; $class{"aGVHDlived"}{"pl2"} =
"pl2n; $class{"aGVHDlived" }{"pl3"} = "pl3";
Sclass{"aGVHDlived"}{"pl4"} = "pla"; S$class{"aGVHDlived"}{"p24"} =
"p24n; $class{"aGVHDlived"}{"p27"} = "p27";

$class{"aGVHDdied" }{"p3"} = "p3"; $class{"aGvHDdied" }{"p7"} =
"p7";  Sclass{"aGVHDdied"}{"pi6"} = "pie"; :
$class{"aGVHDdied" } {"p23"} = "p23"; $class{"aGVHDdied" } {"p25"} =
"p25";

$class{"healthy4"}{"p2"} = "p2"; $class{"healthy4"}{"pa"} =
"pan; $class{"healthy4a"}{"pl7"} = "pl7";
$class{"healthy4"}{"p31"} = "p31";

$class{"denovocGVHD" } {"p8"} = "p8";
$class{"denovocGVHD" }{"p26"} = "p26"; $class{"denovocGVHD"}{"p30"}
= ||p30",.

$class{"healthyDied"}{"pl8"} = "pl8";
$class{"healthyDied"}{"p20"} = "p20"; Sclass{"healthyDied"}{"p29"}
llp29ll; !

my $inFile = shift(@_); #name of the current processed file
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print (OUTFILElog "\nprocessing: $inFile\n");

print (OUTFILE "%%%MEASUREMENT: $inFile%%%\nclc\nclear
all\nclose all\n"); '

my $measurement = "$1";

#read data from file in the specific folder

my %data = %{&READTABLE ("$inFile") };

#load individual patient's data into variables in matlab

#SomitPatients{$patient} = "reason", only include patients with
less than 2 values and more than 1 ' :

#not patients without any value because they are not included in
%data

my %omitPatients = %{&LOAD DATA(\%data, \@grid, sby)};

#check if any of the patient is not in the intput file
#if not, delete the patient in %class and inlucde the patient in
omitPatients
foreach my S$tempGroup (keys %class) {
foreach (keys %{$class{$tempGroup}}) {

if (! (exists($data{s_}))){
delete $class{"S$tempGroup"}{"$ "};
$omitPatients{"$ "} = "is not in the input file";

}

if (exists($omitPatients{$ })) {
delete S$class{"StempGroup"}{"$ "};
}
}
}

foreach (keys %omitPatients) { »
print (OUTFILElog "OMIT: $ is omitted $SomitPatients{$_}\n");
} . .

print (OUTFILE "%omit patients: " . join (", ",
keys (¥omitPatients)) . "\n");

#determine 1f there is enough data to perform FLDA, if not, skip
to the next file

my @chkNumDataResults = &CHK NUM DATA (\%class, \@compareGroups,
\%$data) ;

if ($chkNumDataResults[1l] =~ m/NO, (.+)/){
print (OUTFILElog "SKIP: $inFile is ignored because$l\n");
return ();

}

my %acceptedPatientsPerGroup = %{shift (@chkNumDataResults)};

HHERHFHHAR U AR
#PERFORMING FLDA WITH DATA
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'

#group data based on the specified groups in %class, then based
on the comparison type chosen, further group the data to fit the
FLDA format

- &GROUP_DATA(\%class, \@compareGroups,
\%acceptedPatientsPerGroup) ;

#initialized flda parameters

&FLDA PARAMETERS (\@grid, $by, \@orderBreaks);

#Running FLDA and writing data, parameters and results into text
file .

&FLDA ("$measurement", "S$comparison", \@orderBreaks);

#group data for leave one out validation

my $validationFileName = &LEAVEONEOUT (\@compareGroups, \%class,
\%acceptedPatientsPerGroup, "S$comparison", \@orderBreaks,
"Smeasurement") ;

HEHEHH RSB HEHH SRS S HEHHEH#JEND PERFORMING FLDA WITH DATA

HEHHHHEHEHEH A H AR AR H IR

#iread existing FLDA results from the current measurement from
subfolder data

#NOT IMPLEMENTED WHEN YOU ARE PERFORMING FLDA ANALYSIS WITH DATA via
subroutine GROUP_DATA, FLDA_ PARAMETERS, and FLDA

# &READ FLDA_RESULTS ("$measurement", "$comparison",
@orderBreaks) ;- ‘

#determine knots time index
# my $knotRanges = %{&KNOTS POSITIONS (\@grid, \@orderBreaks)};

HHEFHAHHAHAFHAHHAHHAH AT HAHHFEND

#determine how many values were observed per each compared
gruops of patients. This is used to represnt how reliable a FLDA
analysis is.

my %valuePerKnot = %{&VALUE PER KNOT (\%data, \%class,
\@compareGroups, \@grid, \@orderBreaks)};

#determine weights

#table output with weights and its reliability

&WEIGHT ON KNOTS (\e@grid, \@orderBreaks, "S$comparison",
"Smeasurement", \%valuePerKnot, "$validationFileName") ;

} #sub MAIN

H4HA S H

### SUB READTABLE ###

HHHHH SSRGS HHH

#INPUT: '

##1) file name ($)

#OUTPUT:

##1) \%currentData

### ScurrentData{p#}{time in #} -> value
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#FUNCTIONS:
## read in the specified tab-deliminted data text file
## input data file naming scheme: "group name" "measurement
name" . txt
## file format:
### columns -> patient (identified by patient number)
### row -> time in weeks
### values are actual (average) values of that measurement from the
patient at that time range.
sub READTABLE {
my %currentData;
my $inFileName = shift (@ );
open (INFILE, "$inFileName") or die ("Cannot open input file:
$1");
chomp (my $titleText = <INFILE>) ;
my @titles = split("\t", S$titleText);
until (eof INFILE) {
chomp (my $text = <INFILE>) ;
my @values = split("\t", Stext);
foreach my $pos (1..$#titles) {
if (defined($values[$pos]) && $values[$pos] =~ m/[\d]/){
#ScurrentData{patient}{time} = measured proportion value
$currentData{$titles [$pos] } {Svalues0]} = 0 +
$values [$pos] ; }

}
}

close (INFILE) or die ("Cannot close input file: $!");
return (\%currentData) ;

HEHHAHSHA R H SR HHERAH
### SUB LOAD DATA ###
HAHRHEHHFH B HE RS HEHE
#INPUT:
##1) \%currentData (from sub READTABLE)
##2) @grid (grid begins at $grid[0] and ends at $grid[1l])
##3) the interval of the grid
#OUTPUT: _
##1) \%omitPatients
### SomitPatients{p#} -> numbers of values available
#FUNCTIONS:a
## print to OUTFILE
## commands to load individual patient's data
### pH#H.y = a vector containing values for patient #
### p#.timeindex = a vector containing the time index of the patient
# relative to the specified grid
### p#.curve = a vector of zeros with equal length to p#.y
### determine which patient (if number of available wvalues is <2) is
omitted
sub LOAD DATA {
#omit patient if there are less than 2 values available
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my %omitPatients;
my %currentData = %{shift(@ )};
my @currentGrid = @{shift(@ )};
my $currentBy = shift(@ );
print (OUTFILE "userGrid = [$currentGrid[0]" . ":$currentBy"
", $currentGrid[1]1\';\n");
foreach my $patient (keys $%currentData) {
ny (@y, @timeindex);
foreach my $time (sort {$a<=>$b} keys’
${$currentData{$patient}}) {
push (@y, 0 + $currentData{$patient}{$time})

i

push (@timeindex, (((S$time - $currentGridl[0])/ScurrentBy)

+ 1));

} #foreach time

print (OUTFILE "S$Spatient" . ".y = [" . join (", ", @y)

IN';\n");

print (OUTFILE "Spatient" . ".timeindex = [" . join (", ",
@timeindex) . "]I\';\n");

print (OUTFILE "$patient"™ . ".curve = ones(length($patient"
".y), 1);\n\n");

if (scalar(@y) < 2){$omitPatients{"$patient"} = "for having
less the three available values (" . scalar(ey) . ")";}

} #foreach patient
return(\%omitPatients) ;
} #sub

HHEH R
### sub CHK NUM DATA ###
FHEHAHAHFHAHAHEHA B RS RS
#INPUT:
##%class (from MAIN)
##@compareGroups (global)
##%data (from READTABLE)
#OUTPUT:
##\%acceptedPatientsNum (number of accepted patients per group
##"enough" or "NO" to indicate if there 1s enough data to run FLDA
#FUNCTIONS:
##determine if there is enough patients to run flda
###pateints with less than 2 values available is omitted
###There must be at least 3 patients included in each class
##tdetermine if there is enough time point to fit the nbreaks
specified
##ie if nbreaks is 4, there must be at least one patient with 4
available data points
sub CHK NUM DATA {

my %currentClass = %{shift(@ )};

my @compareGroups = @{shift(@ )};

my $currentData = %{shift(e@ )};

#determine how many qualified patients there are in each group
#patient is omitted if there are less than 2 values available
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my %acceptedPatientsNum;
foreach my $group (keys %currentClass) {
foreach my $okPatients (keys %{$currentClass{"$group"}}) {
$acceptedPatientsNum{"$group"} ++;
}

}

#determine how many qualified patients they are in each class
my $maxNumData = 0;
foreach my $numGroup (0..$#compareGroups){ #each class
my $groupNumCheck = 0;
foreach (@{S$compareGroups [$numGroup] }){ #groups within class
if (exists ($acceptedPatientsNum{"$ "})) {$groupNumCheck =
$groupNumCheck + $acceptedPatientsNum{"$_"};} #there are instances
when the whole group of patient is missing (so it won't be in
%acceptedPatient sNum ‘
foreach my $patient (keys %{S$currentClass{"$ "}}) {
my $numDataPerPatient = 0;
foreach my $time (keys %{$currentData{"$patient"}}) {
SnumDataPerPatient ++;
}

if (SnumDataPerPatient > $maxNumData){$maxNumData =0 +
$numDataPerPatient; }

}

if ($groupNumCheck < 3){return (\%acceptedPatientsNum, "NO,
less than 3 available patients in a class");}

}

if (smaxNumData < $orderBreaks[1]){return (\%acceptedPatientsNum,

"NO, nbreaks $orderBreaks[l] > max time points $maxNumData");}
return (\%acceptedPatientsNum, "encugh") ;
} #sub

HHRAHEHBAHAHHAHHRHAHES

### sub GROUP DATA ###

HAHAHERHAHSHHAHHAHEHHE

#INPUT:

##1) \%class, class information in a hash

### Sclass{group/class}{p#} => p#

##2) comparison chosen

##3) %omitPatients from sub LOAD_DATA

#OUTPUT : '

## none

#FUNCTIONS:

## print to OUTFILE

## group each patient data into the pre-specified gruop
### group.y = [p#.y', p#.y']";

### group.timeindex = [p#.timeindex', pH.timeindex']"';a
### group.curve = [p#.curve'+l, pH.curve'+2]';

### group.num -> number of available patients in that group
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## further group the grouped data based on the comparison chosen,
into format sutable for FLDA

### class = [ones(group.num, 1) + increment];
### curve = [group.curve' + S$increment] ;
### timeindex = [group.timeindex'..];

### class = [group.y',...];
### data.y = vy;
### data.timeindex = timeindex
### data.curve = curve
### data.class = class
sub GROUP_DATA { ‘
my %currentClass = %{shift(e )};
my @compareGroups = @{shift(@ )};
my %acceptedPatientsNum = %{shift(@ )};
foreach my $group (keys %acceptedPatientsNum) {

print (OUTFILE "S$group" . ".num = " .
(0+$acceptedPatientsNum{"$group"}) . ";\n");
my (@groupTimeindex, @groupY, @grouplurve) ;
my $n = -1;
foreach (keys %{$currentClass{"$group"}}) {
Sn ++;
push (@groupTimeindex, "$ " . ".timeindex\'");
push (@groupY, "$ " . ".y\'");
push (@groupCurve, "$ " . ".curve\'s+ $n");

}

#group data into the pre-specified groups

print (OUTFILE "$group" . ".timeindex = [" . join (", ",
@groupTimeindex) . "1\';\n");

print (OUTFILE "$group" . ".y = [" . join (", ", @groupY)
"IN \n")

print (OUTFILE "$group" . ".curve = [" . join (", ",
@groupCurve) . "I\';\n");

} #each group

#further group the grouped data into format sutiable for FLDA

#group the grouped data based on the comparison chosen

#first print out matlab commands for each of the following
variables: class, curve, timeindex, and vy

- #then print out matlab commands to combine the above variables

into variable data (ie data.y, data.class, etc)

my (@tempY, @tempClass, @tempCurve, @tempTimeindex) ;

my Sincrement = 0; '

foreach my $numGroup (0..$#compareGroups) {

foreach (@{$compareGroups [$numGroup] }) {

push (@tempy, "$ " . ".y\'");

push (@tempTimeindex, "$ " . ".timeindex\'");

push (@tempClass, "ones($_ " . ".num, 1)\' + $numGroup") ;
push (@tempCurve, "$ " . ".curve\' + S$Sincrement");

if (! (exists(SacceptedPatientsNum{$ }))) {
print "###ERROR: cannot find group $ in accepted
patients number\n";
die("cannot find group $_ in accepted patients number");
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}

Sincrement = S$increment + $acceptedPatientsNum{$_};
#individual patient's class
foreach (keys 9{$currentclass{$ Fh |

print (OUTFILE "$ " . ".class = " . ($numGroup + 1)

1" ; \I’l" )

}
}

print (OUTFILE "data.class = [" . join (", ", @tempClass)
"I\';\n");

print (OUTFILE "data.curve = [" . join (", ", @tempCurve)
"IN \n") '

print (OUTFILE "data.timeindex = [" . join(", ",
@tempTimeindex) . "]I\';\n")

print (OUTFILE "data.y = [" . join(", ", @tempY) . "I\';\n");
} #sub

HAHFHHAHAH B HEH B HAHHRHHRHS

### sub FLDA PARAMETERS ###

###########################

#INPUT:

##1) @currentGrid (grid begins at $grid[0] and ends at $grid[1])
##2) the interval of the grid

##3) @currentOrderBreaks -> ScurrentOrderBreaks[0] = order,
ScurrentOrderBreaks [1] = number of breaks;

#OUTPUT :

## none

#FUNCTIONS:

## print to OUTFILE
## initialized all the necessary FLDA parameters such as:
### userGrid, nbreaks, norder, nbasis, g, G, pert, p, h, tol, maxit
## commands to check p, g and h value making sure that they are
within range
sub FLDA_PARAMETERS {

my @currentGrid = @{shift(@ )};

my ScurrentBy = shift(e );

my @currentOrderBreaks = @{shift (@ )};

print (OUTFILE "\%nbreaks: number of
breaks\nnbreaks= $currentOrderBreaks [1] ; \n")

print (OUTFILE "\%norder: order of the spline
(degree+1) \nnorder=ScurrentOrderBreaks [0] ; \n") ;

print (OUTFILE "\%nbasis: number of basis
functions\nnbasis=nbreaks+norder-2;\n")

print (OUTFILE "\%q: dimensionof the spline basis (g-2 equally
spaced knots)\ng=nbasis;\n")

print (OUTFILE "\%G: number of
cluster\nG=1length (unique (data.class)) ;\n") ;

print (OUTFILE "\%pert: small adjustment (ridge
regression) \npert=0.1;\n")
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print (OUTFILE "\%p: rank constraint on the gammas !!
p<=g\np=1;\n") ;

print (OUTFILE "\%h: dimension of .alpha !! h <= min(p, G-1) G=
number of clusters\nh=1;\n");

print (OUTFILE "\%minimum relative change for loops (log
likelihood or 'sum of squares)\ntol = 0.001;\n");

print (OUTFILE "\%maximum number of iterations\nmaxit=50;\n");

print (OUTFILE "if p>g\nfprintf(\'error on p »>gq (Nb of basis) g
= %3i, p = %31 \\n\',qg,p)\nreturn\nend\n") ;

print (OUTFILE "max h = min(p,G-1);\nif h > min(p,G-
1) \nfprintf(\'error on h > min(p,K-1)\\th=%3i\\tmin(p, G-
1)=%3i\\n\',h,max_h) \nreturn\nend\n\n") ;

} #sub

HERHHHHHHHEHEEEHE

### sub FLDA ####

HEHHH S HEGHHHHHHE

#INPUT:

##1) name of the current measurement
##2) number of the current comparison

##3) @currentOrderBreaks -> $currentOrderBreaks[0] = order,
ScurrentOrdexrBreaks [1l] = number of breaks;

#OUTPUT:

## none

#FUNCTIONS:

## print to OUTFILE
## matlab commands for running the fldafit and fldapred using the
previously initiailzed parameters and data
## matlab commands to print the data, fitting parameters, and
prediction results into individual text files
sub FLDA ({

my ScurrentMeasurement = shift(@ );

my $currentComparison = shift(@ );

my @currentOrderBreaks = @{shift(e )};

#FLDA

print (OUTFILE " [flda.parameters, flda.vars, flda.S, £flda.Fulls,
flda.likenew] = ...\n"); '

print (OUTFILE "fldafit (data, norder, nbreaks, h, p, pert, maxit,
userGrid, tol);\n"); ' )

print (OUTFILE "[flda.Calpha, flda.alphahat, flda.classpred,
flda.distance] = ...\n");

print (OUTFILE "fldapred(flda.parameters, flda.vars, flda.S,

flda.Fulls, flda.likenew, data);\n\n");

#icount the error rate
print (OUTFILE "\%classl = data.class == 1;\n\%class2 =
data.class == 2;\n");
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file:///ntol
file:///nreturn/nend/n
file:///nfprintf
file:///nreturn/nend/n/n

print (OUTFILE "\%error.TP

sum(flda.classpred(classl)

1);\n");
print (OUTFILE "\%error.FN = sum(flda.classpred(classl) ==
) ;\n");
print (OUTFILE "\%error.FP = sum(flda.classpred(class2) ==
1);\n");
print (OUTFILE "\%error.TN = sum(flda.classpred(class2) ==
) i \n")
#print out error rate to file "error...txt"
my SdlmwriteFile = "\%\'.\\error comparison$currentComparison"
" Order$currentOrderBreaks [0]" . "BreaksS$ScurrentOrderBreaks([1]"
".tXt\'";
my $dlmwriteParameter = "\%\'-append\', \'newline\', \'pc\',

\'delimiter\', \'\'";

#print into text files
print (OUTFILE "dlmwrite (\'.\\data\\S$currentMeasurement"

" comparison$currentComparison" . " Order$currentOrderBreaks[0]"
"Breaks$currentOrderBreaks [1]" . " class.txt\', data.class,
NVANNEN ) \nt) ;

print (OUTFILE "dlmwrite(\'.\\data\\S$currentMeasurement"
" comparison$currentComparison" . " Order$currentOrderBreaks [0]"
"BreaksScurrentOrderBreaks [1]" . "_curve.txt\', data.curve,
VAN EN ) \n")

print (OUTFILE "dlmwrite(\'.\\data\\S$currentMeasurement"
" comparison$currentComparison" . " Order$currentOrderBreaks([0]"
"Breaks$currentOrderBreaks [1]" . " timeindex.txt\',6 data. tlmelndex
\VANEN ) A\nt)

print (OUTFILE "dlmwrite(\'.\\data\\S$currentMeasurement"
" comparison$currentComparison" . "_Order$currentOrderBreaks[0]"
"Breaks$currentOrderBreaks [1]" . " _y.txt\', data.y, \'\\t\')\n")

print (OUTFILE "dlmwrite{\'.\\data\\S$currentMeasurement"
" comparison$currentComparison" . "_Order$currentOrderBreaks[0]"
"Breaks$currentOrderBreaks [1]" . " lambdazero.txt\',
flda.parameters.lambdazero, \'\\t\')\n")

print (OUTFILE "dlmwrite (\'.\\data\\$currentMeasurement"
" comparison$currentComparison" . " Order$currentOrderBreaks[0]"
"BreaksScurrentOrderBreaks [1]" . " Lambda.txt\',
flda.parameters.Lambda, \'\\t\')\n");

print (OUTFILE "dlmwrite (\' \\data\\$currentMeasurement"
" comparison$currentComparison" . " Order$currentOrderBreaks[0]"
"Breaks$ScurrentOrderBreaks [1]" . " alpha.txt\',
flda.parameters.alpha, \'\\t\')\n")

print (OUTFILE "dlmwrite (\'.\\data\\ScurrentMeasurement"
" comparison$currentComparison" . " Order$currentOrderBreaks[0]™
"Breaks$currentOrderBreaks [1]" . " Theta.txt\’,
flda.parameters.Theta, \'\\t\')\n")

print (OUTFILE "dlmwrite (\'.\\data\\$currentMeasurement"
" comparison$currentComparison" . " Order$currentOrderBreaks[0]"




"BreaksS$ScurrentOrderBreaks [1] "
flda.parameters.sigma,

print
" comparison$currentComparison”
"Breaks$ScurrentOrderBreaks [1]"
NANEN ) \nm) ;

print (OUTFILE "dlmwrite (\'
" comparison$currentComparison"
"Breaks$ScurrentOrderBreaks [1] "

\M\EV ) \nt) 5

print (OUTFILE "dlmwrite (\'
" comparison$currentComparison"
"Breaks$ScurrentOrderBreaks [1] "
ARANNARDAN L

print (OUTFILE "dlmwrite (\'
" comparison$currentComparison"
"BreaksScurrentOrderBreaks [1]"
N \\EN)\n") ;

print (OUTFILE "dlmwrite (\'
" comparison$currentComparison”
"Breaks$currentOrderBreaks [1]"
AN EN ) \nt)

print (OUTFILE "dlmwrite (\'
" comparison$currentComparison"
"Breaks$currentOrderBreaks [1]"

VANEN ) \n")

print (OUTFILE "dlmwrite (\'

" comparison$currentComparison"

"BreaksScurrentOrdexrBreaks [1]"
print (OUTFILE "dlmwrite (\'

" comparison$currentComparison®

"BreaksScurrentOrderBreaks [1] "

\VA\NEN ) \n\n") ;

} #sub

HEHEHHEHEH B HE S HEHS SRS
### sub LEAVEONEOUT ###
HEHEHEEHE G HH SRS
#INPUT:

" sigma.txt\',

AN\ eN D) \n") ;
(OUTFILE "dlmwrite(\'.

\\data\\ScurrentMeasurement™"
" Order$currentOrderBreaks [0] "
" D.txt\', flda.parameters.D,

.\\data\\ScurrentMeasurement"

" Orders$currentOrderBreaks [0] "
"_gamma.txt\', flda.vars.gamma,

.\\data\\$currentMeasurement"

" Order$currentOrderBreaks [0] "
" Calpha.txt\', flda.Calpha,

.\\data\\$currentMeasurement"

" Orders$currentOrderBreaks [0] "
" alphahat.txt\', flda.alphahat,

.\\data\\$currentMeasurement"

" Order$currentOrderBreaks (0] "
" classpred.txt\', flda.classpred,

.\\data\\$currentMeasurement"

" Order$currentOrderBreaks [0]"
" distance.txt\', flda.distance,

.\\data\\S$ScurrentMeasurement"

" Order$currentOrderBreaks [0] " .
" s.txt\', flda.s, \'\\t\")\n");

\\data\\$currentMeasurement"

" Order$currentOrderBreaks[0]"
" FullS.txt\', flda.Fulls,

##1) @compareGroups ($compareGroups[O..#1][O..#2]=> group name) #1
is the number of groups to compared and #2 indicates how many

subgroup group #1 is consists of

##2) %class information
##3) %acceptedPatientsPerGroup

($acceptedPatientsPerGroup{group name}

=> number of patients in the group

#OUTPUT :
#4#1)

#FUNCTIONS:

name of the validation file



file:////data

## print to file
## FLDA commands to assemble leave-one-out data based the the
previously specified class and comparison information
## Then run fldafit on the training dataset (dataset -1 patient) and
fldapred on the determined parameters and the one patient data
sub LEAVEONEOUT {
my @compareGroups = @{shift(@ )};
my %currentClass = %{shift(@ )};
my %acceptedPatientsPerGroup = %{shift(e )};
my ScurrentComparison = shift (@ );
my @currentOrderBreaks = @{shift(e@ )};
my ScurrentMeasurement shift (e );
my %leavePatients;
my $increament = 0;

print (OUTFILE
"validation.TP=0;\nvalidation.FN=0;\nvalidation.FP=0;\nvalidation.TN
=0;\n")
ficreate leave one out data
LEAVECLASS: foreach my $leaveClass (keys %currentClass) {
my $leaveClassInCompare = 0;
foreach (0..S$#compareGroups) {
foreach (@{$compareGroups[$ 1}){
if ($_ =~ m/"SleaveClass$/) {$leaveClassInCompare ++;}
}
}
if ($leaveClassInCompare == 0) {next LEAVECLASS;}
foreach my $leavePatient (keys %{$currentClass{$leaveClass}})
#assemble the class data - the leave patient
my (@leaveClassY, @leaveClassTimeindex, @leaveClassCurve,
@leaveClassClass) ;
mny $leaveN = -1;
foreach my $notLeavePatient (keys
%{$currentClass{$leaveClass}}){

if ($notLeavePatient =~ n/*$leavePatient$/)) {
$leaveN ++;
push (@leaveClassY, "$notLeavePatient" . ".y\'");
push (@leaveClassCurve, "SnotleavePatient"
" . curve\' + $leaveN"); : '
‘ push (@leaveClassTimeindex, "S$notLeavePatient”
" . timeindex\'")
}
}
print (OUTFILE "tempCurve = [" . join(", ",
@leaveClassCurve) . "]';\n")
my (@tempY, @tempTimeindex, @tempClass, @tempCurve) ;
my $increment = 0;

foreach my $numGroup (0..$#compareGroups) {
foreach my $group (@{$compareGroups [$numGroup] }) {

if ($group =~ m/"$leaveClass$/) {
push (@tempY, @leaveClassY);
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push (@tempTimeindex, @leaveClassTimeindex) ;

push (@tempCurve, " (témpCurve + S$Sincrement)\'");

push (@tempClass, "ones($group" . ".num -1, 1)\' +
$numGroup") ;

Sincrement = $increment +

$acceptedPatientsPerGroup{$group} -1;

else(
push (@tempY, "S$Sgroup" . ".y\'");
push (@tempTimeindex,. "$group" . ".timeindex\'");
push (@tempClass, "ones($group" . ".num, 1)\' +
SnumGroup") ;
push (@tempCurve, " ($group" . ".curve +
Sincrement) '") ;
Sincrement = S$increment +
$acceptedPatientsPerGroup{$group} ;
} #else :
} #foreach my $group
} #foreach $numGroup

#commands to bulid the leavep# data
print (OUTFILE "leave$leavePatient" . ".class
join(", ", @tempClass) . "I\';\n");
print (OUTFILE "leaveS$SleavePatient" . ".curve = ["
join(", ", @tempCurve) . "1\';\n");
print (OUTFILE "leave$leavePatient” . ".timeindex = ["
join(", ", @tempTimeindex) . "]\';\n");
print (OUTFILE "leave$leavePatient" . ".y = [" . join(", ",
@tempY) . "]J\';\n");

[ll

#FLDA commands

print (OUTFILE " [leave$leavePatient" . ".parameters,
leaveS$leavePatient" . ".vars, leave$SleavePatient” . ".S,
leave$leavePatient”" . ".FullS, leave$leavePatient" . ".likenew]
= ...\n");

print (OUTFILE "fldafit (leaveS$SleavePatient, norder,
nbreaks, h, p, pert, maxit, userGrid, tol);\n");

print (OUTFILE "[leave$leavePatient" . ".Calpha,
leaves$leavePatient" . ".alphahat, leaveS$leavePatient" . ".classpred}
leave$leavePatient" . ".distancel = ...\n");

print (OUTFILE "fldapred(leaveS$leavePatient"
" .parameters, leave$leavePatient" . ".vars, leave$leavePatient"
". S, leaveS$SleavePatient” . ".FullS, leaveS$leavePatient" . ".likenew,

$leavePatient) ;\n");

#determine the correctness

print (OUTFILE "if ($leavePatient" . ".class == 1) &&
($leavePatient” . ".class == leave$leavePatient" . ".classpred)\n");

print (OUTFILE "validation.TP=validation.TP+1;\nend\n");

print (OUTFILE "if ($leavePatient" . ".class == 1) &&
($leavePatient" . ".class ~= leave$leavePatient" . ".classpred)\n");

print (OUTFILE "validation.FN=validation.FN+1;\nend\n");
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print (OUTFILE "if ($leavePatient™ . ".class == 2) &&

($leavePatient" . ".class ~= leaveS$leavePatient" . ".classpred)\n");
print (OUTFILE "validation.FP=validation.FP+1;\nend\n");
print (OUTFILE "if ($leavePatient" . ".class == 2) &&

($leavePatient" . ".class == leave$leavePatient" . ".classpred)\n");

print (OUTFILE "validation.TN=validation.TN+1; \nend\n") ;

} #foreach $leavePatient
} #foreach $leaveClass

#print out leave-one-out cross-validation result
my SdlmwriteFile = '
"\'.\\validation comparison$currentComparison"

" Order$currentOrderBreaks [0]" . "BreaksS$ScurrentOrderBreaks([1]"
n .tXt\'";
my SdlmwriteParameter = "\'-append\', \'newline\', \'pc\',

\'delimiter\', \'\'";

print (OUTFILE "dlmwrite (3dlmwriteFile, \'S$ScurrentMeasurement\',
$dlmwriteParameter) \n") ;

print (OUTFILE "dlmwrite (SdlmwriteFile, wvalidation.TP,
$dlmwriteParameter)\n") ;

print (OUTFILE "dlmwrite ($dlmwriteFile, validation.FN,
$dlmwriteParameter)\n") ; :

print (OUTFILE "dlmwrite ($dlmwriteFile, wvalidation.FP,
$dlmwriteParameter) \n") ;

print (OUTFILE "dlmwrite (SdlmwriteFile, wvalidation.TN,
SdlmwriteParameter) \n\n\n") ;

return ("$dlmwriteFile") ;
} .

HHHHAHHH AR HHH SRS HEHF U HEH

### sub READ FLDA RESULTS ###

HHSHAHAH ARG HHHAHH BB HIHAHIHEH

#INPUT:

#1. measurement name

#OUTPUT: none

#FUNCTIONS:

#read in the FLDA results written in subfolder data

#restore all the wvariables created during the FLDA process

sub READ FLDA RESULTS ‘
print (OUTFILE "%read in all FLDA parameters back from subfolder

'data'\n") ;

my ScurrentMeasurement = shift (@ );
my SpartialFileName = "$currentMeasurement" . " comparison"
shift(e_) . "_Order" . shift(e_ ) . "Breaks" . shift(e_ );

#print MATLAB command speciify the current measurement
print (OUTFILE "measurement = \'$partialFileName\';\n");
#data '
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print (OUTFILE " [data.class] = dlmread([\'.\\data\\\',
measurement, \' class.txt\'],\"\\t\');\n");

print (OUTFILE " [data.curve] = dlmread([\'.\\data\\\',
measurement, \' curve.txt\'],\'\\t\");\n");

print (OUTFILE " [data.timeindex] = dlmread([\'.\\data\\\',
measurement, \'_timeindex.txt\'],\'\\t\');\n");

print (OUTFILE " [data.y] = dlmread([\'.\\data\\\', measurement,
\'oyeexteN T, N\N\EN ) s \nt)

#flda.parameters

print (OUTFILE " [flda.parameters.lambdazero] =
dlmread ([\'.\\data\\\', measurement,
\' lambdazero.txt\'],\'\\t\');\n");

print (OUTFILE " (flda.parameters.Lambda] =
dlmread ([\'.\\data\\\', measurement, \' Lambda.txt\'],\'\\t\");\n");

print (OUTFILE " [flda.parameters.alphal = dlmread([\'.\\data\\\',
measurement, \'_alpha.txt\'],\'\\t\"');\n");

print (OUTFILE " {flda.parameters.Thetal
measurement, \' Theta.txt\'],\'\\t\');\n");

print (OUTFILE " [flda.parameters.sigmal
measurement, \' sigma.txt\'],\'\\t\");\n");

print (OUTFILE " [flda.parameters.D] = dlmread([\'.\\data\\\',
measurement, \' D.txt\'],\'\\t\");\n");

#fother FLDA variables

dlmread ([\'.\\data\\\"',

dlmread ([\'.\\data\\\"',

print (OUTFILE "[flda.vars.gamma] = dlmread([\'.\\data\\\',
measurement, \' gamma.txt\'],\'\\t\');\n");
print (OUTFILE " [flda.S] = dlmread([\'.\\datal\\\', measurement,

V'S txt\'], A\ \\EV ) 5 \n") ;

print (OUTFILE " [flda.Fulls] = dlmread([\'.\\data\\\',
measurement, \'_FullS.txt\'l,\'\t\');\n");

print (OUTFILE " [flda.Calpha] = dlmread([\'.\\data\\\',
measurement, \' Calpha.txt\'],\'\\t\');\n");

print (OUTFILE " [flda.alphahat] = dlmread([\'.\\data\\\',
measurement, \' alphahat.txt\'],\'\\t\');\n");

print (OUTFILE " [flda.classpred] = dlmread([\'.\\data\\\',
measurement, \' classpred.txt\'],\'\\t\');\n");

print (OUTFILE " ([flda.distance] = dlmread([\'.\\data\\\',
measurement, \' distance.txt\'],\'"\\t\"');\n");

print (OUTFILE "\n");
} #sub read flda results

HEHAHEHHEHS RS RHSHH RS
### sub VALUE PER KNOT ###
HEAHSH S SRS S HE S S
#INPUT: ‘

#1. \%data

#2. \%class

#3. \@compareGroups

#4. \@currentGrid

#5. \@currentOrderBreaks
#OUTPUT :
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#\¥valuePerKnot
#$valuePerKnot { $knot#} {$class#} {expected} => expected number of
values '
#S$valuePerKnot { $knot#} {$class#}{observed} => observed number of
values
#only include class# that has the smallest observed number of value
for that knot
#FUNCTIONS
sub VALUE_PER KNOT {

my $currentData = %{shift(@ )};

my %currentClass = %{shift(e )};

my @currentCompareGroups = @{shift(e@ )};

my @currentGrid = @{shift(@ )};

my @currentOrderBreaks = @{shift(e )};

my S$halfInterval = floor(((ScurrentGridl[1l] -
ScurrentGrid[0] )/ (ScurrentOrderBreaks [1] -1))/2);

my %tempValuePerKnot;
my %valuePerKnot;

for (my Spos = $ScurrentGrid[0]; S$pos <= ScurrentGrid[l]; $pos +=
((ScurrentGrid[1] - S$currentGrid[0])/($currentOrderBreaks[1]-1))) {
print OUTFILElog "GRID: S$pos\n";"
foreach my $numClass (0..$#currentCompareGroups) {
foreach my $group (@{$currentCompareGroups [$numClass]}) {
foreach my $patient (keys %{$currentClass{$group}}) {
foreach my $time (keys %{$currentData{Spatient}})
print OUTFILElog "TIME: S$time\n";
if ($time <= $pos + $halfInterval && Stime >= $pos
- S$halfInterval) {
$tempValuePerKnot {$pos} {$numClass} {"observed"}

++;
print OUTFILElog "adding; knot S$pos from clas
SnumClass\n";
}
else{
$tempValuePerKnot {$pos} {$numClass} { "observed"}
+= 0;

}
} .
$tempValuePerKnot {$pos}{$numClass} {"expected" }++;
} #foreach knot
} #foreach patient in current class
} #foreach group in current compare groups
} #foreach compared class in current compare groups

foreach my $printKnot (sort {S$Sa<=>$b} keys %tempValuePerKnot) {
my S$smallestObserved = 100;
my $smallestObservedClass;
foreach my $printClass. (0..$#currentCompareGroups) {
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if ($tempValuePerKnot{$printKnot}{$printClass}{"observed"}
<= $smallestObserved) {
_ SsmallestObserved = 0 +
$tempValuePerKnot {$printKnot } {$printClass}{"observed"};
print OUTFILElog "new small observed from knot:
SprintKnot is
$tempValuePerKnot {$printKnot } {$printClass}{observed}\n";
SsmallestObservedClass = 0 + $printClass;
}
else(
print OUTFILElog "wrong: knot SprintKnot from class
SprintClass has " . .
$tempValuePerKnot {$printKnot } {$printClass}{"observed"} . "\n";

}

$valuePerKnot {$printKnot}{"observed"} = $smallestObserved;

print OUTFILElog "smallest observed at knot S$printKnot is
$smallestObserved from class $smallestObservedClass\n";

$valuePerKnot {$printKnot } { "expected"} =
$tempValuePerKnot {$printKnot } {$smallestObsexrvedClass}{"expected"};

}

return (\%valuePerKnot) ;
} #sub

HHBAHEHBEHEHH B HAHHAHE RS
### sub WEIGHT ON KNOTS ###
HHBAHEHBHHEHH RS H AR B HIHHE
#INPUT:
#1. \egrid ,
#2. \@orderBreaks
#3. Scomparison
#4. Smeasurement
#5. \%valuePerKnot
#OUTPUT: none
#FUNCTIONS:
#print out MATLAB commands needed to determine weight using the
knots distribution
#print
sub WEIGHT ON_ KNOTS ({
my @currentGrid = @{shift(e )};
my @currentOrderBreaks = @{shift(e )};
my $currentComparison = shift (@ );
my $currentMeasurement = shift (@ );
my %currentValuePerKnot = %${shift(e ) };
my S$dlmwriteFile = shift(e );
print (OUTFILE "currentTimeIndex = int32([1:((ScurrentGrid[1]-

ScurrentGrid[0] )/ (ScurrentOrderBreaks [1] -1)) : (ScurrentGrid[1] -
ScurrentGrid [0]1+1)1\");\n");
print (OUTFILE "Sij = flda.FullS(currentTimeIndex, :);\n");
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print (OUTFILE "N = 1;\n");

print (OUTFILE "h = size(flda.parameters.alpha, 2);\n");
print (OUTFILE "K = size(flda.parameters.alpha, 1);\n");
print (OUTFILE "Calpha = zeros(N,h,h);\n");

print (OUTFILE "n = length(currentTimeIndex) ;\n");

print (OUTFILE "Sigma = flda.parameters.sigma * eye (n) + Sij *

flda.parameters.Theta * diag(flda.parameters.D) *
flda.parameters.Theta\' * Sij\';\n");

print (OUTFILE "InvCalpha = flda.parameters.Lambda\' * Sij\'
inv(Sigma) * Sij * flda.parameters.Lambda;\n");

print (OUTFILE "Calpha{(l, :, :) = .inv(InvCalpha);\n");
print (OUTFILE "[u,v,w] = size(Calpha);\n");
print (OUTFILE "Cpart = reshape(Calpha(l,:,:),v,w);\n");

print (OUTFILE "Weights = Cpart * flda.parameters.Lambda\' =*
Sij\' * inv(Sigma);\n");
print (OUTFILE "\%dlmwrite ($dlmwriteFile,
\'$currentMeasurement\', \'-append\', \'newline\', \'pc\',
\'delimiter\', \'\")\n");
print (OUTFILE "dlmwrite ($dlmwriteFile, Weights, \'-append\'’
\'newline\', \'pc\', \'delimiter\', \'"\\t\'")\n");
my @printObserved;
my @printExpected;
foreach my $sortedKnot (sort {$a<=>$b} keys
$currentValuePerKnot) {
push (@printObserved,
$currentValuePerKnot {$sortedKnot} {"observed"}) ;
push (@printExpected,
$currentValuePerKnot { $sortedKnot } {"expected"}) ;

}

print (OUTFILE "dlmwrite ($dlmwriteFile, [" . join(", ",
@printObserved) . "1, \'-append\', \'newline\', \'pc\',
\'delimiter\', \'\\t\")\n");

print (OUTFILE "dlmwrite ($dlmwriteFile, [" . join(", ",

@printExpected) . "1, \'-append\', \'newline\', \'pc\',
\'delimiter\', \'\\t\")\n");
print (OUTFILE "\n\n"); -

} #sub

*

7

162




Appendix F. QA on gated data using CD3 as the common intensity

The general variations observed in many CD3-PerCP density plots (Figure F.1)
prevent their use as a QA test for the dataset. However, density plots of CD3-PerCP
intensity were screened for gate quality control. An example of CD3- gate is shown
Figure F.2 where small peaks with the CD3-PerCP intensity higher than 200 may
indicate inclusion of CD3* cells in the CD3- gate.

0.020
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3Activation

TCR

T cells

rest/act T helper
rest/act T suppressor
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I

Density of cells
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|

0.005

0.000

CD3-PerCP intensity

Figure F.1 Density plot of the CD3-PerCP intensity using CD3* cell population
from seven aliquots of patient #6’s 76 days post-transplant sample. There is no

visible outlier.
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Figure F.2 Density plot of the CD3-PerCP intensity using CD3* cell population
from seven aliquots of patient #6’s -6 days post-transplant sample shown as an
example of gate quality control.
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Appendix G. Other top ranking classifiers for the onset of aGvHD

In the FLDA analysis of the proportion dataset using samples taken between
21 and 0 days prior to aGvHD diagnosis, there were six unique subsets of immune
cells with an estimated sensitivity and specificity both higher than 70% (Table H.2).
They included the immune cells CD3*CD4*CD8p* and CD3*CD4+*CD8{3+CD8,
previously identified as the top ranking classifiers based on samples taken between
7 and 21 days post-transplant (Table 4.1). All the CD3* and related subsets of
immune cells exhibited the same pattern whereas the CD3-immune cell population

exhibited the opposite pattern.

The CD3* and its related sﬁbsets of immune cells such as CD3*CD44- CD25-
exhibited a pattern similar to that observed between aGvHD and non-GvHD
patients from immune cells CD3*CD4*CD8[* between 7 and 21 days post-transplant.
Time plots of the immune cells CD3*CD44-CD25 (Figure G.1) are shown as
examples. In the FLDA estimated signals time plot for the immune cells CD3+*CD44-
CD25- (Figure G.1a), the aGvHD patients had higher signals than the non-GvHD
patients did. From the raw data time plot from -21 to 21 days from aGvHD
diagnosis (Figure G.1b), there was a consistent pattern in the raw data within the
same time range. However, this pattern did not carry over after aGvHD was

diagnosed.

The CD3- immune cell population (two readings from aliquots “1Activation’
and ‘2Activation’) exhibited a patfern opposite to the CD3*immune cell population.
In the FLDA estimated signals time plot, the aGvHD patients had lower signals than
the non-GvHD patients did (Figure G.2a). A consistent pattern was also observed in

the raw data time point within the same time range (Figure G.2b).
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Figure G.1 Time plot of the FLDA estimated signals (panel a) based on samples
taken between -21 and 0 days from aGvHD and time plot of the raw data (panel b)
based on samples taken between -21 and 21 days from aGvHD diagnosis for the
immune cells CD3+*CD44-CD25- in proportion to PBMC. The aGvHD diagnosis
day is labelled at day 0.
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Figure G.2 Time plot of the FLDA estimated signals (panel a) based on samples
taken between -21 and to 0 days from aGvHD and time plot of the raw data (panel
b) based on samples taken between -21 and to 21 days from aGvHD diagnosis for
the immune cells CD3 - (aliquot “1Activation’) in proportion to PBMC. The date
of aGvHD diagnosis is labelled as day 0.
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In the FLDA analysis of the proportion dataset using samples taken between
0 and 21 days from aGvHD diagnosis, only three classifiers were found to have
sensitivity and specificity both higher than 70% (Table H3) They were
CD2dmCD16*CD56-CD3-, CD3*CD4it  (from  aliquot ‘3Activation’) and
CD3*CD4+*CD8BCD8* in proportion to the CDS* cells (not PBMC). All three
classifiers exhibited similar patterns to that of the CD3* T cells described in the

previous section.

The FLDA classifier built from immune cells CD2dmCD16*CD56-CD3- using
samples taken between 0 and 21 days from aGvHD diagnosis had an estimated 78%
sensitivity and 100% specificity. The FLDA estimated signals time plot (Figure G.3a)
displayed a pattern of higher signals from the aGvHD patients compared to the non-
GvHD patients, which was consistent with its corresponding raw data time plot

(Figure G.3b). However, this pattern was not observed before aGvHD diagnosis
(Figure G.3b).

The FLDA classifier built from immune cells CD3*CD4int (from aliquot
‘3Activation’) using samples taken between 0 and 21 days from aGvHD diagnosis
had an estimated 72% sensitivity and 100% specificity. The FLDA estimated signals
time plot (Figure G.4a) displayed a pattern of higher signals from the aGvHD
patients compared to the non—GVHD patients. The separation between the two
groups of patients was smaller than the one observed in the FLDA estimated signals
for the immune cells CD3*CD4*CD8f* based on samples taken between 7 and 21
days post-transplant (Figure 4.4). Nevertheless, this pattern was consistent with its
corresponding raw data time plot (Figure G.4b). A similar pattern was also
observed in the .raw data time plot before the aGvHD diagnosis, outside the
analyzed time fange. However, FLDA classifier using the same subset of immune
cells based samples taken between 21 and 0 days prior to aGvHD diagnosis had only
an estimated 57% sensitivity and 67 % specificity (Table H.2).

168




)

FLDA estimated signals - proportion (%)

aGvHD
- : ‘ = : —== non-GvHD
0 B 10 15 20 x  FLDA classifier global base values
Days from aGvHD diagnosis
b 30
70 4 \//

50 1 \ <N
0 k . oA Oy
0 "Qii‘ﬁg & AR

30 Z A \
20 - ’—‘/;'/:“: .?;:(A ” g <
L 7N e s N

PBMC proportion (%)
" |

— S~
v e — —~
10 - e - ) O~ p - 5
=z - ZF S~/ aGvHD
e o
0 - = === non-GvHD
20 10 0 10 20

Days from aGvHD diagnosis
Figure G.3 Time plot of the FLDA estimated signals (panel a) based on samples
taken between 0 and 21 days from aGvHD and time plot of the raw data (panel b)
based on samples taken between -21 and 21 days from aGvHD diagnosis for the
immune cells CD2dimCD16+*CD56-CD3- in proportion to PBMC. The date of
aGvHD diagnosis is labelled as day 0.
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The FLDA classifier built from the proportion of the immune cells
CD3+CD4+CD8[3+CD8+ relative to the total CD3* cells (instead of the usual PBMCs)
using samples between 0 and 21 days from aGvHD diagnosis had an estimated 72%
sensitivity and 100% specificity. Like most of classifiers previously described, it
exhibited a pattern where both FLDA signals and the raw CD3* cells proportion
were higher from the aGvHD patients, compared to the non-GvHD patients (Figure
G.5). Even though the immune cell abundance was recorded in proportion to CD3*
cells, it exhibited a similar pattern to CD3*CD4*CD8p+*CD8* in proportion to PBMC
(Figure 4.8).

In the FLDA analysis of the concentration dataset using samples taken from
all three time ranges, there were only three claésifiers with their estimated sensitivity
and specificity both higher than 70% (Tables H4 - H.6). Overall, there was very
little correlation between the classifiers accuracies from the proportion and
concentration datasets (r = 0.02). The top ranking classifiers from the concentration
dataset were: _

1. .CD2*CD16*, based on samples taken between 7 and 21 days post-

transplant (data not shown)

2. CD3-CD44+*CD25%, based on samples taken between 21 and 0 days prior to

aGvHD diagnosis (data not shown) |

3. CD45*CD33-, based on samples taken between 21 and 0 days prior to

aGvHD diagnosis (Figure G.6)
These ciassifiers were all inconsistent due to pattern outliers as described in

details in Chapter 4.
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Appendix H. Summaries of LOOCYV results for the FLDA analyses between aGvHD and non-GvHD patients

Table H.1 Validation results for qualified subsets of immune cells in proportion to PBMC (%) from the FLDA

classification between aGvHD and non-GvHD patients using samples taken from 7 to 21 days post-transplant.

Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+CD25 86| - 33 79
CD3-CD44*CD25*CD69* 100 0 85
CD3-CD44+*CD25* 94 0 80
CD3-CD44-CD25- 67 67 67
Sts 1Activation 81 0 71
CD3+*CD44-CD25* 57 33 54
CD3+CD44+*CD25*CD69* 24 67 29
CD3+CD44+*CD25* 81 0 71
CD3+*CD44-CD25 81 33 75
CD3* 90 33 83
CD3-CD4dim 86 0 75
CD3-CD8low 57 0 50
CD3-CD4-CD8- 95 33 88
CD3- 86 0 75
CD3*CD4br 2Activation 86 33 79
CD3+CD4int 81 100 83
CD3+*CD8br 81 33 75
CD3+CD8dim 67 0 58
CD3* 86 33 79




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 81 0 71
CD3-CD8low 62 0 54
CD3-CD4-CD8- 95 33 88
CD3- 86 0 75
CD3+*CD4br 3Activation 86 33 79
CD3*CD4int 76 67 75
CD3+CD8br 81 33 75
CD3+CD8gdim 81 33 75
CD3* 90 33 83
CD22+CD20* B cells 95 0 83
CD22* 100 -0 88
CD33+CD454imCD15owCD14low 100 67 96
CD33*CD454imCD15*CD14- 62 0 54
CD33+*CD454imCD15*CD14* 67 0 58
CD33+CD45dim ' Myeloids 81 0 71
CD33+CD45*CD15*CD14* 90 0 79
CD33+CD45* 95 0 83
CD45+*CD33-CD15*CD14 67 0 58
CD45+*CD33- 86 0 75
CD2dimCD16*CD3*CD56- 81 33 75
CD2dimCD16*CD56*CD3- 90 100 92
CD2dimCD16*CD56-CD3- 90 0 79
CD2dimCD16* NK cells 90 0 79
CD2-CD16*CD3*CD56- 86 33 79
CD2-CD16*CD56*CD3- 81 33 75
CD2-CD16*CD56-CD3- 67 33 62




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16* 52 67 54
CD2+CD16-CD3*CD56 86 33 79
CD2+CD16-CD56*CD3- 71 0 62
CD2+CD16-CD56-CD3- 71 0 62
CD2+CD16 NK cells 90 33 83
CD2+CD16*CD3+*CD56 67 67 67
CD2+CD16*CD56*CD3- 71 0 62
CD2+CD16*CD56-CD3- 95 33 88
CD2+*CD16* 76 0 67
CD3-CD4lowCD8plow 90 0 79
CD3-CD8d4mCD8- 90 0 79
CD3-CD8+*CD8f3- 67 0 58
CD3- 86 0 75
CD3+*CD4+*CD8- 90 33 83
CD3+*CD4+*CD8f* 86 | 100 88
CD3+*CD8pdimCD8- 90 0 79
T cells
CD3*CD8p*CD4 81 33 75
CD3+*CD8p*CD8low 57 0 50
CD3+*CD8p+CD8* 81 33 75
CD3*CD8*CD8- 81 33 75
CD3+ 90 33 83
CD3*CD4+*CD8p+*CD8* 71 100 75
CD3+*CD4+*CD8B+CD8* (proportion ofCD3* cells) 48 33 46
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3- 86 0 75
CD3-CD5TCRab*TCRgd- 76 0 67
CD3-CD5TCRab* TCR 86 0 75
CD3-CD5TCRab*TCRgd* 50 0 43
CD3-CD5 TCRab*TCRgd- 85 0 74




Table H.2 Validation results for qualified subsets of immune cells in proportion to PBMC (%) from the FLDA

classification between aGvHD and non-GvHD patients using samples taken between 21 and 0 days prior to aGvHD

diagnosis.

Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44*CD25 90 33 83
CD3-CD44*CD25*CD69* 76 33 70 |
CD3-CD44*CD25* 88 33 80
CD3-CD44-CD25 57 33 54
DS 1Activation 71 100 75
CD3*CD44-CD25* 62 33 58
CD3*CD44*CD25*CD69* 57 100 62
CD3*CD44+*CD25* 43 0 38
CD3*CD44-CD25 76 100 79
CD3* 71 - 100 75
CD3-CD4dim 71 0 62
CD3-CD8low 67 0 58
CD3-CD4-CD8 62 0 54
CD3- 71 100 75
CD3+*CD4br 2Activation 62 67 62
CD3*CD#4int 57 100 62
CD3*CD8br 76 100 79
CD3*CD8dim 43 33 42
CD3* 71 100 75
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim ' 71 0 62
CD3-CD8low 71 0 62
CD3-CD4-CD8- 67 0 58
CD3- 67 100 71
CD3*CDA4br 3Activation 62 67 62
CD3*CD4int 57 67 58
CD3+CD8br 67 100 71
CD3+CD@8dim 38 0 33
CD3* 67 100 71
CD22+CD20* B cells 90 0 79
CD22+ 81 0 71
CD33+CD454mCD15lwCD14low 90 33 83
CD33+*CD454imCD15+*CD14- 95 33 88
CD33+*CD454mCD15*CD14* 81 0 71
CD33+*CD45dim | Myeléi i 90 0 79
CD33+CD45*CD15*CD14* 76 0 67
CD33+*CD45* 71 0 62
CD45+*CD33-CD15*CD14- 81 0 71
CD45+*CD33- 71 0 62
CD2dimCD16*CD3*CD56- 43 67 46
CD2dimCD16*CD56*CD3- 52 33 50
CD2dimCD16*CD56-CD3- 76 0 67
CD2dimCD16* NK cells 67 0 58
CD2-CD16*CD3+*CD56 90 33 83
CD2-CD16*CD56*CD3- 86 33 79
CD2-CD16*CD56-CD3- 38 33 38
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16* 38 0 : 33
CD2*CD16-CD3*CD56 67 67 67
CD2*CD16-CD56*CD3- 95 0 83
CD2+*CD16CD56-CD3- 67 0 58
CD2+CD16- NK cells 86 33 79
CD2+CD16*CD3+*CD56 52 67 54
CD2+CD16*CD56*CD3- 90 33 83
CD2*CD16*CD56-CD3- 86 67 83
CD2+CD16* 76 0 67
CD3+*CD4*CD8p+CD8* 71 100 75
CD3+*CD4+*CD8+*CD8* (proportion of CD3* cells) 57 100 62
CD3-CD4lewCDB83low 76 0 67
CD3-CD8dimCD8- 90 67 88
CD3-CD8*CD8p- 86 0 75
CD3- 67 100 71
CD3+CD4+*CD8p- T cells 57 67 58
CD3+*CD4+*CD8f* 67 100 71
CD3+CD8pdimCD8- 48 100 54
CD3*CD8p+*CD4 67 100 71
CD3*CD8p+CD8low 81 67 79
CD3*CD8p*CD8* 67 100 71
CD3*CD8*CD8p- 71 100 75
CD3* 67 100 71




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3- 76 100 79
CD3-CD5TCRab*TCRgd- 86 0 75
CD3-CD5-TCRab* TCR 76 33 71
CD3-CD5TCRab*TCRgd* 80 0 70
CD3-CD5TCRab*TCRgd- 65 33 61

181




Table H.3 Validation results for qualified subsets of immune cells in proportion to PBMC (%) from the FLDA

classification between aGvHD and non-GvHD patients using samples taken between 0 and 21 days from aGvHD

diagnosis.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+*CD25 72 33 67
CD3-CD44+CD25*CD69* 62 67 63
CD3-CD44+*CD25* 81 0 68
CD3-CD44-CD25- 67 0 57
CD3- . 94 0 81
CD3*CD44-CD25* 1Activation 44 33 13
CD3+CD44+*CD25*CD69* 56 100 62
CD3*CD44+CD25* 78 0 67
CD3+*CD44-CD25- 72 33 67
CD3* 94 33 86
CD3-CD4dim 78 33 71
CD3-CD8low 83 0 71
CD3-CD4-CD8- 94 0 81
CD3- 94 0 81
CD3+*CD4br 2Activation 89 0 76
CD3+CD4int 67 100 71
CD3+CD8pr 50 67 52
CD3*CDgdim 94 33 86
CD3* 94 0 81




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 72 67 71
CD3-CD8low 61 0 52
CD3-CD4-CD8- 100 0 86
CD3- 94 0 81
CD3+CD4br 3Activation 83 0 71
CD3+CD4int - 72 100 76
CD3+CD8br 61 67 62
CD3*CD8dim 89 33 81
CD3* 94 0 81
CD22+*CD20* B cells 94 67 90
CD22* 94 0 81
CD33+CD454imCD15lowCD14low 72 33 67
CD33*CD454mCD15*CD14 44 33 43
CD33+CD454mCD15+*CD14* 33 100 43
CD33*CD45dim Myeloi ds 33 - 100 43
CD33+CD45*CD15*CD14* 89 0 76
CD33+CD45* 56 33 52
CD45+CD33-CD15*CD14- 100 0 86
CD45*CD33- 72 0 62
CD2dimCD16*CD3*CD56- 83 0 71
CD2dimCD16*CD56*CD3- 50 0 43
CD2dimCD16*CD56-CD3- 78 100 81
CD2dimCD16* NK cells 78 33 71
CD2-CD16*CD3*CD56 94 33 86
CD2-CD16*CD56*CD3- 72 0 62
CD2-CD16*CD56-CD3- 89 33 81
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16* 89 33 81
CD2+*CD16-CD3*CD56 89 33 81
CD2+CD16-CD56*CD3- 89 33 81
CD2+*CD16-CD56:CD3- 67 0 57
CD2+CD16- NK cells 89 0 76
CD2*CD16*CD3*CD56 50 67 52
CD2+*CD16*CD56*CD3- 83 33 76
CD2+*CD16*CD56-CD3- b 0 81
CD2+CD16* 28 0 24
CD3*CD4*CD8B+CD8* 67 67 67
CD3*CD4*CD8B*CD8* (proportion of CD3* cells) 72 100 76
CD3-CD4lowCD8plow 78 67 76
CD3-CD8p4mCD8- 78 0 67
CD3-CD8*CD8p- 72 0 62
CD3- 94 33 86
CD3*CD4*CD8f- 89 0 76
T cells
CD3+*CD4+*CD8p* 72 67 71
CD3*CD8p4mCD8- 56 100 62
CD3*CD83+*CD4 56 33 52
CD3*CD8p*CD8low 83 0 71
CD3+*CD8B+*CD8* 56 67 57
CD3*CD8*CD8f- 72 33 67
CD3* 100 0 86




Immune cells

Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3- 94 0 81
CD3-CD5TCRab*TCRgd- 89 0 76
CD3-CD5TCRab* TCR 67 33 62
CD3-CD5 TCRab*TCRgd* 39 33 38
CD3-CD5 TCRab*TCRgd- 72 0 62
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Table H.4 Validation results for qualified subsets of immune cells in concentration (mm?3) from the FLDA

classification between aGvHD and non-GvHD patients using samples taken from 7 to 21 days post-transplant.

Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+CD25 76 33 71
CD3-CD44+*CD25*CD69* 100 0 85
CD3-CD44+CD25* 100 0 85
CD3-CD44-CD25 43 67 46
CD3- . 76 67 75
CD3*CD44-CD25* 1Activation 52 67 54
CD3+CD44+CD25*CD69* 81 67 79
CD3+*CD44+*CD25* 71 0 62
CD3+*CD44-CD25 43 67 46
CD3* 43 67 46
CD3-CD4dim 67 67 67
CD3-CD8low 67 33 62
CD3-CD4-CD8- 81 33 75
CD3- 71 67 71
CD3+CD4br 2Activation 81 67 79
CD3*CD4int 33 100 42
CD3+CD8br 43 67 46
CD3+*CD8dim 33 67 38
CD3* 52 67 54




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 67 67 e 67
CD3-CD8low 71 33 67
CD3-CD4-CD8- 86 33 79
CD3- 71 67 71
CD3*+*CD4br 3Activation 86 67 83
CD3+CD4int 43 67 46
CD3+CD8br 52 67 54
CD3+CD8gdim 57 33 54
CD3+ 57 67 58
CD22*CD20* _ B cells 62 100 67
CD22+ 95 33 88
CD33+CD454imCD15lew(CD14low 100 33 92
CD33+CD454imCD15*CD14- 71 33 ' 67
CD33+*CD454imCD15*CD14* 71 0 62
CD33+CD45dim M éloi ds 71 0 62
CD33*CD45*CD15°CD14* y 76 33 71
CD33+*CD45* : 76 67 75
CD45*CD33-CD15*CD14 81 67 79
CD45+*CD33- 81 67 79
CD2dimCD16*CD3*CD56 38 100 46
CD2dimCD16*CD56*CD3- 43 67 46
CD2dimCD16*CD56-CD3- 71 67 71
CD2dimCD16* NK cells 71 67 71
CD2-CD16*CD3+*CD56 90 0 79
CD2-CD16*CD56*CD3- 95 0 83
CD2-CD16*CD56CD3- 76 33 71




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16* 76 33 71
CD2+*CD16-CD3*CD56 52 33 50
CD2+*CD16-CD56*CD3- 100 33 92
CD2+*CD16-CD56-CD3- 76 33 71
CD2*CD16 NK cells 90 0 79
CD2+*CD16*CD3*CD56 52 100 58
CD2*CD16*CD56*CD3- 90 0 79
CD2*CD16*CD56-CD3- 86 67 83
CD2*CD16* 76 100 79
CD3*CD4+*CD8p+*CD8* 48 67 50
CD3*CD4*CD8p+*CD8* (proportion of CD3* cells) 48 33 46
CD3-CD4lowCD8plow 76 67 75
CD3-CD8pdimCD8- 76 67 75
CD3-CD8*CD8p- 71 67 71
CD3 76 67 75
CD3*CD4+*CD8p- 81 67 79
T cells
CD3*CD4+*CD8f3* 43 0 38
CD3*CD8pdimCD8- 38 0 33
CD3+*CD8p+*CD4- 52 100 58
CD3+*CD8p*CD8low 90 33 83
CD3+*CD8p+*CD8* 52 100 58
CD3+*CD8*CD8f3- 38 67 42
CD3* 57 67 58




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3- 76 67 75
CD3-CD5TCRab*TCRgd- 86 67 83
CD3-CD5TCRab* TCR 67 67 67
CD3-CD5TCRab*TCRgd* 75 0 65
CD3-CD5TCRab*TCRgd- 75 67 74




Table H.5 Validation results for qualified subsets of immune cells in concentration (mm3) from the FLDA

classification between aGvHD and non-GvHD patients using samples taken between 21 and 0 days prior to aGvHD

diagnosis.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+CD25- 90 0 79
CD3-CD44+CD25*CD69* 59 67 60
CD3-CD44+CD25* 82 100 85
CD3-CD44-CD25 ' 62 67 62
CD3- . 81 33 75
CD3*CD44-CD25* 1Activation 67 0 58
CD3+*CD44+*CD25*CD69* 95 67 92
CD3*CD44+CD25* 95 0 83
CD3*CD44-CD25 57 67 58
CD3* L S 62 | 33 58
CD3-CD4dim 76 0 67
CD3-CD8glow 62 0 54
CD3-CD4-CD8- - 76 67 75
CD3- ' 81 33 75
CD3*CD4br 2Activation 81 33 75
CD3*CD4int | 38 67 42
CD3*CD8r ' 48 67 50
CD3*CD8dim 81 33 75
CD3* 67 33 62




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 71 0 62
CD3-CD8low 62 0 54
CD3-CD4-CD8- 76 67 75
CD3- 81 33 75
CD3+*CD4br 3Activation 86 0 75
CD3+*CD4int 57 67 58
CD3+*CD8br 43 67 46
CD3+*CD8dim 76 67 75
CD3* 71 67 71
CD22+*CD20* B cells 76 0 67
CD22* 81 0 71
CD33+CD454imCD15wCD14low 100 33 92
CD33+*CD454mCD15*CD14- 90 33 83
CD33*CD454imCD15*CD14* 86 0 75
| CD33+CD45dim Myeloids - 86 33 79|
CD33+CD45*CD15+*CD14* 81 0 71
CD33+CD45* 76 0 67
CD45+CD33-CD15*CD14- 95 67 92
CD45+*CD33- 71 100 75
CD2dimCD16*CD3+CD56 24 67 29
CD2dimCD16*CD56*CD3- 76 0 67
CD2dimCD16*CD56-CD3- 86 0 75
CD2dimCD16* NK cells 76 0 67
CD2-CD16*CD3*CD56 95 33 88
CD2-CD16*CD56*CD3- 95 0 83
CD2-CD16*CD56-CD3- 81 67 79
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2CD16* 81 67 79
CD2+*CD16-CD3*CD56 81 67 79
CD2*CD16-CD56*CD3- 100 33 92
CD2*CD16CD56-CD3 76 0 67
CD2+*CD16 NK cells 86 67 83
CD2*CD16*CD3*CD56 62 33 58
CD2+*CD16*CD56*CD3- 81 33 75
CD2*CD16*CD56-CD3- 86 33 79
CD2+*CD16* 86 67 83
CD3+*CD4*CD8p*CD8* 48 100 54
CD3*CD4*CD8p+*CD8* (proportion of CD3* cells) 52 67 54
CD3-CD4lowCD8plow 90 0 79
CD3-CD8pdimCD8- 95 33 88
CD3-CD8*CD8p- 67 67 67
CD3- ' 81 33 75
CD3+*CD4+*CD8f3- 86 33 79
T cells
CD3+*CD4*CD8f* 43 67 46
CD3*CD8pdimCD8- 43 33 42
CD3*CD8p*CD4 48 100 54
CD3+*CD8p+*CD8low 100 33 92
CD3*CD8p+*CD8* - 48 100 54
CD3*CD8*CD8p- 48 33 46
CD3* 67 67 67




Immune cells

Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3- 81 33 75
CD3-CD5TCRab*TCRgd- 81 67 79
CD3-CD5TCRab* TCR 95 33 88
CD3-CD5TCRab*TCRgd* 90 0 78
CD3-CD5TCRab*TCRgd- 95 33 87




Table H.6 Validation results for qualified subsets of immune cells in concentration (mm?3) from the FLDA

classification between aGvHD and non-GvHD patients using samples taken between 0 and 21 days from aGvHD

diagnosis.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+CD25 72 33 67
CD3-CD44+*CD25*CD69* 50 67 53
CD3-CD44+*CD25* 62 0 53
CD3-CD44-CD25 67 33 62
CD3- o 61 100 67
CD3*CD44-CD25* 1Activation 39 33 38
CD3+*CD44+*CD25*CD69* 33 100 43
CD3+*CD44+*CD25* 72 0 62
CD3+*CD44-CD25- 78 33 71
CD3* 89 33 81
CD3-CD4dim 61 67 62
CD3-CD8low 56 0 48
CD3-CD4-CD8- 67 33 62
CD3- 44 100 52
CD3+*CD4br 2Activation 100 33 90
CD3+CD4int 56 67 57
CD3+CD8br 78 33 71
CD3+*CD8dim 94 33 86
CD3* 94 33 86




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 67 67 67
| CD3-CD8low 72 0 62
CD3-CD4-CDS8- 67 33 62
CD3- 44 100 52
CD3+CD4br 3Activation 100 33 90
CD3+CD4int 83 67 81
CD3+CD8br 78 33 71
CD3+CD8gdim 94 33 86
CD3+ 94 33 86
CD22+CD20* B cells 94 0 81
CD22+ : 100 0 86
CD33+*CD454imCD15lwCD14low 22 67 29
CD33+CD454imCD15*CD14- 50 33 48
CD33*CD454imCD15+*CD14* 22 100 33
CD33+CD45dim ' Myeloids 28 100 38
CD33*CD45*CD15*CD14* 50 67 52
CD33+*CD45* 56 67 57
CD45*CD33-CD15*CD14- 100 0 86
CD45*CD33- 94 33 86
CD2dimCD16*CD3*CD56 83 67 81
CD2dimCD16*CD56*CD3- 50 0 43
CD2dimCD16*CD56-CD3- 44 100 52
CD2dimCD16* NK cells 44 100 52
CD2-CD16*CD3+*CD56 89 0 76
CD2-CD16*CD56*CD3- 78 33 71
CD2-CD16*CD56-CD3- 83 67 81




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16* 83 67 81
CD2+CD16-CD3*CD56 100 33 90
CD2+CD16:CD56*CD3- 83 0 71
CD2+*CD16-CD56-CD3- 100 33 90
CD2+*CD16- NK cells 100 33 90
CD2*CD16*CD3*CD56 61 33 57
CD2*CD16*CD56*CD3- 72 0 62
CD2*CD16*CD56-CD3- 89 0 76
CD2+*CD16* 67 33 62
CD3+CD4*CD83*CD8* 83 33 76
CD3*CD4+*CD8p*CD8* (proportion of CD3* cells) 56 100 62
CD3-CD4lewCD8low 39 100 48
CD3-CD8pdimCD8- 78 33 71
CD3-CD8+*CD8f3- 67 0 57
CD3- 44 100 52
CD3+*CD4+*CD8p- T cells 100 33 90
CD3+*CD4+*CD8f* 72 33 67
CD3+*CD8pdimCD8- 61 67 62
CD3+*CD8p*CD4 78 33 71
CD3*CD8CD8low 83 0 71
CD3+*CD8p*CD8* 72 67 71
CD3+*CD8*CD83- 94 33 86
CD3* 94 33 86




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3- 50 100 57
CD3-CD5TCRab*TCRgd- 61 67 62
CD3-CD5'TCRab* TCR 44 100 52
CD3-CD5'TCRab*TCRgd* 44 100 52
CD3-CD5-TCRab*TCRgd- 50 100 57




Appendix I. Other top ranking classifiers for the onset of cGvHD

Many top ranking classifiers designed to predict or elucidate the onset and
progression of cGvVHD exhibited inconsistent patterns compared to its raw data
patterns. An example of the inconsistent classifiers was shown in Section 5.1. In the
FLDA analysis of the concentration dataset using samples taken between 7 and 21
days post-transplant, only one type of pattern: a sudden increase from aGvHD only
patients, was observed. The FLDA classification built from the subset of immune
cells 45RA*CD3*CD8low in cell concentration (Figure 1.1) was used as an example of
this pattern. The classifier had an estimated 86% sensitivity and 71% specificity
(Table J.4). The FLDA estimated signals from the aGvHD only patients increased at
15 days post-transplant and became higher than the aGvHD & cGvHD patients
around 21 days post-transplant (Figure I.1a). This pattern was consistent with the
raw data plotted from 0 to 100 days post-transplant (purpled striped area, Figure
I.1b). In the extended raw data time plot, four out of the seven available non-GvHD
patient datasets suddenly increased around 15 to 55 days post-transplant (Figure
I.1b). Similar patterns were also observed from other classifiers such as CD3
TCRab*CD5* and CD2dimCD16*CD3*CD56- (data not shown) but with a lower
estimated sensitivity and specificity (Table J.4).
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Figure I.1 Time plot of the FLDA estimated signals (panel a) based on samples
taken between 7 and 21 days post-transplant and time plot of the raw data (panel
b) based on samples taken between 0 and 100 days post-transplant for the
immune cells 45RA*CD3+*CD8!°% in proportion to PBMC (%). The purple striped

box indicates the time range where data was analyzed via FLDA.
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In the FLDA analysis of the concentration dataset using samples taken
between 21 and 0 days prior to aGvHD diagnosis, only one subset of immune cells
exhibited a consistent classifier exhibiting opposite FLDA signal pattern. The top
classifier was 45RA*CD3-CD4dim (Figure 1.2). The FLDA classifier had an estimated
86% sensitivity and 71% specificity (Table ].5). Its FLDA signals were the opposite
between the patients groups (Figure 1.2a). However, this pattern could not be easily
identified in the local or extended raw data time plots for either subset of immune

cells (Figure 1.2b).
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Figure .2 Time plot of the FLDA estimated signals (panel a) based on samples
taken between -21 and 0 from aGvHD diagnosis and time plot of the raw data
(panel b) based on samples taken between -21 and 21 days from aGvHD diagnosis
for the immune cells 45RA*CD3-CD4dim jn concentration (mm?3). The date of
aGvHD diagnosis is labelled as day 0.




In the FLDA analysis of the proportion dataset using samples taken between
0 and 21 days post-aGvHD diagnosis, the FLDA classifier built from the immune
cells CD3*CD4t (aliquot ‘2Activation’) had a pattern of higher values from the
aGvHD only patients (Figure 1.3). The classifier predicting the onset of cGvHD had
an estimated 83% sensitivity and 89% specificity (Table J.3). The same subset of
immune cells was also identified as top ranking classifier in the comparison between
aGvHD and non-GvHD patients (section 4.1.3). In the FLDA estimated signals time
plot (Figure 1.3a), proportion values from the aGvHD only patients started with
higher values at the beginning of the analyzed time range and steadily decreased, |
while the values from the aGvHD & ¢GvHD patients increased. In the raw data
time plot from -21 to 21 days from aGvHD diagnosis (Figure 1.3b), values from the
aGvHD patients were generally higher across time points, when compared to the

aGvHD & cGvHD patients.
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Figure 1.3 Time plot of the FLDA estimated signals (panel a) based on samples
taken between 0 and 21 days from aGvHD diagnosis and time plot of the raw data
(panel b) based on samples taken between -21 and 21 days from aGvHD diagnosis
for the immune cells CD3*CD4int (aliquot 2Activation”) in proportion to PBMC
(%). The date of aGvHD diagnosis is labelled as day 0.




Appendix J. Summaries of LOOCYV results for the FLDA analyses between aGvHD & ¢GvHD and aGvHD only

patients

Table J.1 Validation results for qualified subsets of immune cells in proportion to PBMC (%) from the FLDA

classification between aGvHD & cGvHD and aGvHD only patients using samples taken from 7 to 21 days post-

transplant.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
'CD3-CD44+*CD25 43 67 56
CD3-CD44+*CD25*CD69* 100 43 71
CD3-CD44*CD25* 86 43 64
CD3-CD44-CD25 71 56 62
CD3- 29 22 25

| CD3+*CD44-CD25* 1Activation 57 67 62
CD3+CD44+*CD25 57 22 38
CD3+*CD44+*CD25*CD69* 86 67 75
CD3+*CD44+*CD25* 86 44 62
CD3+*CD44-CD25 14 56 38
CD3* 43 11 25
CD3-CD4dim 57 67 62
CD3-CD8low 57 22 38
CD3-CD4-CD8- 86 44 62
CD3- 2Activation 43 33 38
CD3+CD4br 57 56 56
CD3+CD4int 86 67 75
CD3+CD8pbr 43 56 50




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)

ggg:CDSdlm 2Activation ;g 58 ig
CD3-CD4dim 57 67 62
CD3-CD8low 43 22 31
CD3-CD4-CD8- 86 44 62
CD3- 29 22 25
CD3+CD4br 3Activation 86 67 75
CD3*CD4int 71 44 56
CD3*CD8br 43 67 56
CD3+*CD8dim 71 44 56
CD3* 29 22 25
CD20+*CD19* 57 56 56
CD22+*CD20* B cells 29 67 50
CD22+ 71 33 50
CD33+CD45dimCD15lwCD14low 29 44 38
CD33*CD454mCD15*CD14- 57 11 31
CD33+CD454imCD15*CD14* 71 78 75
CD33+CD45dim Myeloids 14 11 12
CD33+CD45*CD15*CD14* 29 44 38
CD33+CDA45* 14 44 31
CD45*CD33-CD15*CD14- 29 78 56
CD45*CD33- 57 11 31
CD2dimCD16*CD3*CD56- 57 78 69
CD2dimCD16*CD56*CD3- 71 56 62

, NK cells

CD2dimCD16*CD56-CD3- - 29 67 50
CD2dimCD16* 29 44 38




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)

CD2-CD16*CD3*CD56 86 89 88
CD2-CD16*CD56*CD3- 71 33 50
CD2-CD16*CD56-CD3- 57 44 50
CD2-CD16* 43 44 44
CD2+*CD16-CD3*CD56 57 33 44
CD2+*CD16-CD56*CD3- NK cells 14 0 6
CD2+*CD16-CD56-CD3- 29 44 38
CD2*CD16 71 44 56
CD2+*CD16*CD3*CD56 71 44 56
CD2*CD16*CD56*CD3- 29 44 38
CD2+CD16*CD56-CD3- 57 33 44
CD2+*CD16* 71 44 56
45RA*CD3-CD4dim 0 0 0
45RA*CD3- 0 14 7
45RA*CD3+CD4low 57 43 50
45RA*CD3*CD4- 71 71 71
45RA*CD3+CD4* 14 43 29
45RA*CD3* 57 57 57
45RO*CD3-CD4dim rest/act T 14 43 29
45RO*CD3- helper 29 57 43
45RO*CD3*CD4low 43 71 57
45RO*CD3*CD4 86 71 79
45RO*CD3+CD4* 57 43 50
45RO*CD3* 29 43 36
CD3- 43 29 36
CD3*CD4- 57 57 57




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)

CD3*CD4* 57 43 50
CD3+ rest/actT 29 57 43
CD4dim helper 14 14 14
CD3-CD4- 29 43 36
45RA+*CD3-CD8 - 0 . 14 7
45RA*CD3- 0 0 0
45RA*CD3*CD8low 57 71 64
45RA+CD3+*CD8- ’ 29 57 43
45RA+*CD3+*CD8* 71 43 57
45RA*CD3* 57 57 57
45RO*CD3- 29 57 43
45RO*CD3*CD8low 71 57 64
45RO*CD3*CD8- rest/act T 29 57 13

suppressor

45RO*CD3*CD8* : 57 43 50
45RO*CD3* ' ' ' 14 43 29
CD3- 29 29 29
CD3+*CD8- 43 57 50
CD3*CD8* 71 43 57
CD3+ 14 43 29
CD8+*CD3- ' 57 0 29
CD3-CD8§- 29 43 - 36
CD3+*CD4*CD83+*CD8* 57 56 56
CD3*CD4*CD8B+*CD8* (proportion of CD3* cells) 43 44 44
CD3-CD4lowCD8plew T cells 29 78 56
CD3-CD8pdimCD8- 29 67 50
CD3-CD8*CD8p- 43 22 31




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3 43 33 - 38
CD3+*CD4+*CD8p- 57 56 56
CD3+*CD4+*CD8f* 57 33 44
CD3+*CD8pdimCD8- 57 78 69
CD3*CD8f*CD4- T cells 43 | 67 56
CD3*CD8p+CD8low 100 - 22 56
CD3+*CD8p*CD8* - 43 67 56
CD3+*CD8+*CD8p- 29 11 19
CD3* 14 0 6
CD3-CD5* 57 50 54
CD3- 29 22 25
CD3-CD5TCRab*TCRgd- 57 44 50
CD3-CD5 TCRab* 0 56 31
CD3-CD5 TCRab*TCRgd* 43 44 44
CD3-CD5TCRab*TCRgd- 14 44 | 31
CD3-TCR*CD5* 71 67 69
CD3* TCR 57 22 38
CD3*CD5TCRab* 100 11 50
CD3*CD5TCRab*TCRgd* 71 11 38 |
CD3+*CD5TCRab*TCRgd- 100 11 50
CD3+*CD5*TCRab* 71 38 53
CD3*CD5*TCRab*TCRgd* 57 25 40
CD3*CD5*TCRgd* 71 38 53




Table ]J.2 Validation results for qualified subsets of immune cells in proportion to PBMC (%) from the FLDA
classification between aGvHD & ¢GvHD and aGvHD only patients using samples taken between 21 and 0 days prior

to aGvHD diagnosis.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+CD25 _ 71 78 75
CD3-CD44+*CD25*CD69* 71 29 50
CD3-CD44+*CD25* 86 29 57
CD3-CD44-CD25 ' 14 11 12
CD3- ' 71 67 69
CD3*CD44-CD25* 1Activation 71 ' 56 62
CD3+*CD44+*CD25 - 57 11 31
CD3+CD44+CD25*CD69* 86 33 56
CD3*CD44+*CD25* 29 33 31
| CD3*CD44-CD25 . - 57 56 56
CD3+* 71 56 62
CD3-CD4dim 71 67 69
CD3-CD8low 43 44 44
CD3-CD4-CD8- ' 57 33 44
CD3- 71 78 75
CD3+CD4br 2Activation 57 44 50
CD3*CD4int 86 44 62
CD3*CD8br 43 89 69
CD3+CD8gdim 71 44 56
CD3 71| 56 62




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim _ 71 ’ 78 75
CD3-CD8lew 43 33 38
CD3-CD4-CD8- 57 33 44
CD3- 71 89 81
CD3*CD4br 3Activation 57 56 56
CD3*CD4int 86 56 69
CD3*CD8pbr 57 89 75
CD3+CD8dim 71 33 50
CD3* 71 56 62
CD20+*CD19* 43 22 31
CD22+CD20* B cells 43 100 75
CD22* 86 .44 62
CD33+CD454imCD15lewCD14low 86 22 50
CD33+*CD454imCD15*CD14 57 56 56
CD33+CD454mCD15*CD14* ' 71 11 38
CD33+CD45dim Myeloids 71 33 50 -
CD33+*CD45*CD15*CD14* 71 56 62
CD33+CD45* 71 67 69
CD45*CD33-CD15*CD14- 71 100 88
CD45*CD33- 86 56 69
CD2dimCD16*CD3*CD56- 86 56 69
CD2dimCD16+*CD56*CD3- 57 56 56
CD24dimCD16*CD56-CD3- NK cells 57 78 69
CD2dmCD16* 71 56 62
CD2-CD16*CD3*CD56 71 33 50
CD2-CD16*CD56*CD3- ' 71 56 62




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16*CD56-CD3 71 56 62
CD2-CD16* 57 56 56
CD2+CD16-CD3*CD56 57 56 56
CD2+*CD16-CD56*CD3- 14 44 31
CD2*CD16-CD56-CD3- NK cells 29 0 12
CD2+CD16 - 71 67 69
CD2+CD16*CD3*CD56 86 22 50
CD2+CD16*CD56*CD3- 57 56 56
CD2+CD16*CD56-CD3- 57 56 56
CD2+CD16* 57 11 31
45RA+*CD3-CD4dim 86 71 79
45RA*CD3- 71 86 79
45RA*CD3+CD4low 86 43 64
45RA+*CD3+CD4- 57 86 71
45RA*CD3*CD4* 57 57 57
45RA+*CD3* 71 86 79
45RO*CD3-CD4dim 86 86 86
45RO*CD3- rest/act T 86 57 71|
45RO*CD3+CD4low helper 57 43 50
45RO*CD3+CD4- 57 86 71
45RO*CD3+CD4+ 57 57 57
45RO*CD3* 57 43 50
CD3- 86 71 79
CD3+*CD4- 57 71 64
CD3+*CD4* 57 57 57
CD3* 71 71 71
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD4dim 86 71 79
CD3-CD4- 43 57 50
45RA*CD3-CDB rest/act T 13 29 36
suppressor
45RA*CD3- 86 86 86
45RA*CD3+CD8low 43 29 36
45RA+*CD3*CD8- 71 57 64
45RA*CD3+*CD8* 57 86 71
45RA+CD3* 71 86 79
45RO*CD3- 71 43 57
45RO*CD3+CD8low 29 43 36
45RO*CD3*CD8- 71 57 64
45RO*CD3+*CD8* rest/act T 57 86 71
45RO*CD3* suppressor 57 71 64
CD3- 71 86 79
CD3+*CD8& 71 57 64
CD3+*CD8* 57 100 79
CD3* 71 71 71
CD8*CD3- 43 29 36
CD3-CD§- 71 86 79
CD3*CD4*CD8p+*CD8* 43 44 44
CD3*CD4*CD8p+*CD8* (proportion of CD3* cells) 57 44 50
CD3-CD4lewCD8low . 57 56 56
CD3-CD8B4imCD8- T cells 57 67 62
CD3-CD8*CD8f3- 14 22 19
CD3- 71 78 75
CD3*CD4*CD8f- 71 56 62




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3+*CD4+*CD8f* 14 44 31
CD3*CD8pdimCD8- 57 67 62
CD3+CD8p+*CD4- 43 78 62
CD3*CD8p+*CD8low T cells 100 22 56
CD3+*CD8p+*CD8* 43 89 69
CD3+*CD8*CD8p- 43 56 50
CD3* 57 56 56
CD3-CD5* - 43 33 38
CD3- 71 67 69
CD3-CD5TCRab*TCRgd- 29 44 38
CD3-CD5TCRab* 86 67 75
CD3-CD5TCRab*TCRgd* 43 67 56
CD3-CD5TCRab*TCRgd- 86 67 75
CD3-TCR*CD5* 71 67 69
CD3* TCR 57 56 56
CD3+*CD5TCRab* 86 0 38
CD3+*CD5 TCRab*TCRgd* 57 33 44
CD3+*CD5TCRab*TCRgd- 86 11 44
CD3*CD5*TCRab* 29 62 47
CD3*CD5*TCRab*TCRgd* 86 50 67
CD3*CD5*TCRgd* 57 75 67




Table J.3 Validation results for qualified subsets of immune cells in proportion to PBMC (%) from the FLDA
classification between aGvHD & ¢cGvHD and aGvHD only patients using samples taken between 0 and 21 days from

aGvHD diagnosis.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+*CD25 33 44 40
CD3-CD44+CD25*CD69* 83 43 62
CD3-CD44*CD25* 83 43 62
CD3-CD44-CD25 50 44 47
CD3- 50 44 47
CD3+CD44-CD25* 1Activation 67 22 40
CD3+*CD44*CD25 83 44 60
CD3+CD44+CD25*CD69* 33 56 47
CD3+CD44+*CD25* 0 44 27 |
| CD3+CD44-CD25- - - 67 56 60
CD3+ 50 44 47
CD3-CD4dim 17 33 27
CD3-CD8low 17 33 27
CD3-CD4-CD8- 33 56 47
CD3- 17 44 33
CD3+CD4br 2Activation 17 22 20
CD3+CD4int 83 89 87
CD3+*CD8br 17 67 47
CD3+*CD8gdim 67 33 47
CD3* 0 44 27




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 17 22 20
CD3-CD8low 33 44 40
CD3-CD4-CD8- 33 22 27
CD3- 17 56 40
CD3+CD4br 3Activation 17 33 27
CD3+*CD4int 67 78 73
CD3*CD8br 17 67 47
CD3+CD8gdim 50 22 33
CD3* 17 56 40
CD20*CD19* 33 78 60
CD22+CD20* B cells 17 89 60
CD22+ 33 56 47
CD33+*CD454mCD15lew(CD14low 50 78 67
CD33+*CD454imCD15*CD14- 33 78 60
CD33+*CD454mCD15*CD14* 33 89 67
CD33+*CD45dim Myeloids 33 89 67
CD33+*CD45*CD15*CD14* 0 22 13
CD33+*CD45* 0 22 13
CD45*CD33-CD15*CD14- 33 44 40
CD45*CD33- 17 44 33
CD2dimCD16*CD3+*CD56 83 44 60
CD24dimCD16*CD56+*CD3- 67 44 53
CD2dimCD16*CD56-CD3- NK cells 33 44 40
CD2dimCD16* 33 56 47
CD2-CD16*CD3*CD56 83 22 47
CD2-CD16*CD56*CD3- 33 33 33




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16*CD56-CD3- 33 33 33
CD2-CD16* 17 44 33
CD2+*CD16-CD3*CD56 33 22 27
CD2+*CD16-CD56*CD3- 0 67 40
CD2+CD16-CD56-CD3- NK cells 67 56 60
CD2*CD16 50 67 60
CD2+CD16*CD3+*CD56 50 67 60
CD2+*CD16*CD56*CD3- 50 22 33
CD2+CD16*CD56-CD3- 50 56 53
CD2+*CD16* 50 56 53
45RA*CD3-CD4dim 33 14 23
45RA*CD3- 50 43 46
45RA*CD3+CD4low 17 43 31
45RA*CD3+CD4- 33 57 46
45RA*CD3+CD4* 0 43 23
45RA*CD3* 33 57 46
45RO*CD3-CD4dim 33 14 23
45RO*CD3- rest/act T 33 43 38
45RO*CD3+CD4low helper 0 43 23
45RO*CD3+*CD4- 0 57 31
45RO*CD3*CD4* 33 14 23
45RO*CD3* 50 43 46
CD3- 50 43 46
CD3+*CD4- 50 71 62
CD3+*CD4* 17 57 38
CD3* 50 43 46
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD4dim K rest/act T 17 14 15
CD3-CD4- helper 17 43 31
45RA*CD3-CD8 33 57 46
45RA*CD3- ' 33 43 38
45RA*CD3+*CD8low : 83 86 85
45RA*CD3+*CD8- ’ 17 14 15
45RA+*CD3+*CD8* 50 71 62
45RA*CD3* 50 86 69
45RO*CD3- 17| 43 31
45RO*CD3*CD8low 83 57 69
45RO*CD3*CDS8- rest/act T 50 29 38
suppressor
45RO*CD3+*CD8* 50 86 69
45RO*CD3+* 67 57 62
CD3- ' 67 43 54
CD3*CD8- ' ' ' 33 ' 43 ' 38
CD3*CD8* 33 71 54
CD3* 67 43 54
CD8*CD3- : 33 43 38
CD3-CD8§- 67 43 54
CD3+CD4*CD8f3+*CD8* 0 33 20
CD3*CD4+*CD8p*CD8* (proportion of CD3* cells) 0 11 7
CD3-CD4lowCD8low 50 44 47
CD3-CD8pdimCD8- T cells 33 56 47
CD3-CD8+*CD8f3- 17 33 27
CD3- 33 44 40
CD3+*CD4+*CD8p- 50 - 44 47




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3+*CD4+*CD8f* 0 44 27
CD3*CD8pdimCD8- 17 56 40
CD3+*CD8p+CD4- 17 56 40
CD3+CD8p+CD8low T cells 100 22 53
CD3+CD8p+CD8* 17 56 40
CD3+CD8*CD8f- 67 11 33
CD3* 33 44 40
CD3-CD5* 33 33 33
CD3- 0 56 33
CD3-CD5"TCRab*TCRgd- 50 67 60
CD3-CD5TCRab* 33 56 47
CD3-CD5TCRab*TCRgd* 100 33 60
CD3-CD5TCRab*TCRgd- 17 67 47
CDS'TCR’“CDS+ TCR 100 33 67 |
CD3* 0 56 33
CD3*CD5TCRab* 83 67 73
CD3+*CD5TCRab*TCRgd* 67 56 60
CD3*CD5TCRab*TCRgd- 83 44 60
CD3*CD5*TCRab* 50 75 64
CD3+*CD5*TCRab*TCRgd* 50 62 57
CD3+*CD5*TCRgd* 17 50 36
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Table J.4 Validation results for qualified subsets of immune cells in concentration (mm3) from the FLDA

classification between aGvHD & ¢GvHD and aGvHD only patients using samples taken from 7 to 21 days post-

transplant.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44+CD25 29 67 50
CD3-CD44+*CD25*CD69* 71 29 50
CD3-CD44+CD25* 71 14 43
CD3-CD44-CD25 86 33 56
CD3- 57 22 38
CD3*CD44-CD25* 1Activation 57 33 44
CD3+*CD44+CD25 57 44 50
CD3+*CD44*CD25*CD69* 86 33 56
CD3+*CD44+CD25* 57 33 44
CD3*CD44-CD25 - 86 33 56
CD3* 71 22 44
CD3-CD4dim 57 44 50
CD3-CD8low 57 11 31
CD3-CD4-CD8- 86 22 50
CD3- 57 33 44
CD3*CD4br 2Activation 43 22 31|
CD3+CD4int 86 44 62
CD3+CD8br 71 22 44
CD3+CD8dim 71 33 50
CD3* 71 22 44




Immune cells - Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 43 44 44
CD3-CD8low 57 33 44
CD3-CD4-CD8- 86 22 50
CD3- 57 33 44
CD3+CD4br ‘ 3Activation 43 22 31
CD3+CD4int 86 44 62
CD3*CD8br ’ 71 33 50
CD3+CDgdim 86 33| 56
CD3+ , 71 33 50
CD20*CD19* 57 22 38
CD22+CD20+ B cells 86 33 56
CD22+ ' , 71 22 44
CD33+CD454imCD15lowCD14low 29 78 56
CD33+CD454mCD15*CD14- 29 0 12
CD33+CD454imCD15*CD14* ‘ ‘ 57 33 44
CD33+CD45dim Myeloids 71 0 31
CD33+*CD45+*CD15*CD14* 29 56 44
CD33+CD45* 29 56 44
CD45+*CD33-CD15+*CD14- 57 44 50
CD45+CD33- 57 22 38
CD2dimCD16+*CD3+CD56- 86 56 69
CD2dimCD16+*CD56+*CD3- 57 33 44
CD2dimCD16+*CD56-CD3- NK cells 29 _ 33 31
CD2dimCD16* 43 33 38
CD2-CD16*CD3+CD56r : 100 67 81
CD2-CD16*CD56+*CD3- 71 44 56




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16*CD56-CD3- 71 22 44
CD2-CD16* 71 22 44
CD2+*CD16-CD3*CD56 43 0 19
CD2+*CD16-CD56*CD3- 57 22 38
CD2+CD16-CD56-CD3- NK cells 57 33 44
CD2*CD16 57 0 25
CD2+CD16*CD3+*CD56- 71 33 50
CD2*CD16*CD56*CD3- 57 22 38
CD2+*CD16*CD56:CD3- 57 33 44
CD2+*CD16* 71 44 56
45RA+*CD3-CD4dim 57 43 50
45RA*CD3- 57 43 50
45RA*CD3+CD4low 57 71 64
45RA*CD3+CD4- 71 57 64
45RA*CD3+*CD4* 43 71 57
45RA*CD3* 57 71 64
45RO*CD3-CD4dim 71 29 50
45RO*CD3 rest/act T 86 29 57
45RO*CD3*CDA4low helper 71 57 64
45RO*CD3+CD4- 86 57 71
45RO*CD3+CD4* 71 43 57
45RO*CD3* 86 43 64
CD3- 71 29 50
CD3+*CD4- 100 43 71
CD3+*CD4* 71 43 57
CD3+ 71 43 57




Immune cells Aliquot ‘Sensitivity (%) | Specificity (%) | Accuracy (%)
CD4dim rest/act T 71 29 50
CD3-CD4- helper 71 43 57
45RA+*CD3-CD8 57 29 43
45RA+*CD3- 57 29 43
45RA*CD3*CD8low 86 71 79
45RA*CD3*CD8- 57 71 64 |
45RA*CD3*CD8* 57 43 50
45RA*CD3* 43 71 57
45RO*CD3- 86 43 64
45RO*CD3+CD8low 86 57 71
45RO*CD3*CDS: rest/act T 100 15 71
suppressor
45RO*CD3+CD8* 86 43 64
45RO*CD3* 100 43 71
CD3- 71 29 50
CD3*CD8- 86 43 64
CD3*CD8* 57 14 36
CD3+ 86 43 64
CD8*CD3- 57 29 43
CD3-CD8- 71 29 50
CD3+*CD4+*CD8p*CD8* 71 33 50
CD3+*CD4+*CD8B*CD8* (proportion of CD3* cells) 57 22 38
CD3-CD4lowCD8low 86 33 56
CD3-CD8pdimCD8- T cells 43 56 50
CD3-CD8*CD83- 57 11 31
CD3- 57 33 44
CD3+*CD4+*CD8- 71 33 50
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3*CD4+*CD8p* 71 44 56
CD3+*CD8pdimCD8- 71 44 56
CD3*CD8*CD4- 57 22 38
CD3+*CD8p*CD8low T cells 86 44 62
CD3+*CD8p*CD8* 71 33 50
CD3*CD8*CD83- 71 33 50
CD3* 71 33 50
CD3-CD5* 71 33 54
CD3- 57 33 44
CD3-CD5TCRab*TCRgd- 57 11 31
CD3-CD5 TCRab* 71 33 50
CD3-CD5 TCRab*TCRgd* 57 22 38
CD3-CD5TCRab*TCRgd- 71 33 50
CD3-TCR*CD5* 100 67 85
CD3+ TCR 57 | 11 31
CD3*CD5TCRab* 100 33 62
CD3*CD5TCRab*TCRgd* 71 44 56
CD3*CD5TCRab*TCRgd- 100 11 50
CD3+*CD5*TCRab* 57 12 33
CD3*CD5*TCRab*TCRgd* 71 38 53
CD3*CD5*TCRgd* 71 0 33
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Table J.5 Validation results for qualified subsets of immune cells in concentration (mm3) from the FLDA
classification between aGvHD & ¢cGvHD and aGvHD only patients using samples taken between 21 and 0 days prior
to aGvHD diagnosis. 4 '

Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44*CD25 71 78 75
CD3-CD44*CD25*CD69* ‘ 86 29 57
CD3-CD44+*CD25* - 100 29 64
CD3-CD44-CD25 57 22 38
CD3- 57 33 44
CD3+*CD44-CD25* 1Activation 57 22 38
CD3+CD44+*CD25 14 11 12
CD3+*CD44*CD25*CD69* 14 56 38
CD3+CD44*CD25* 29 44 38
CD3+*CD44-CD25 - 43 56 50
CD3* 0 33 19
CD3-CD4dim | 71 78 75
CD3-CD8low 57 33 44
CD3-CD4-CD8- 29 22 . 25
CD3- 71 33 50
CD3+*CD4br 2Activation 14 44 31
CD3+CD4int 86 33 56
CD3+CD8br 29 67 50
CD3+*CD8dim 57 | 0 25
CD3* 43 56 50




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 71 78 75
CD3-CD8low 57 33 44
CD3-CD4-CD8- 29 22 25
CD3- 71 33 50
CD3*CD4br 3Activation 14 56 38
CD3+CD4int 71 56 62
CD3+CD8br ' 29 67 50
CD3+*CD8gdim 57 22 38
CD3+ 43 67 56
CD20+*CD19+ _ 71 11 38
CD22+CD20* B cells 57 100 81
CD22* 71 11 38
CD33+*CD454imCD15lwCD14low 86 22 50
CD33+CD454imCD15*CD14- 57 33 44
CD33+*CD454mCD15*CD14* ' ' - 86 1 44
CD33+CD45dim Myeloids 86 11 44
CD33+CD45*CD15*CD14* 43 56 50
CD33+*CD45* 57 67 62
CD45*CD33-CD15*CD14- : 29 67 50
CD45*CD33- 0 33 19
CD24mCD16*CD3*CD56- 86 11 44
CD2dimCD16*CD56*CD3- 43 44 44
CD2dimCD16*CD56-CD3- NK cells 71 44 56
CD2dimCD16* 71 44 56
CD2-CD16*CD3*CD56- 86 11 44
CD2-CD16*CD56*CD3- 86 33 56




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16*CD56-CD3- 86 22 50
CD2-CD16* 86 22 50
CD2+*CD16-CD3*CD56 29 78 56
CD2+CD16-CD56*CD3- 71 67 69
CD2+CD16-CD56-CD3- NK cells 57 22 38
CD2+CD16 14 44 31
CD2+CD16*CD3*CD56- 29 44 38
CD2+*CD16*CD56*CD3- 71 33 50
CD2*CD16*CD56-CD3- 57 56 56
CD2+*CD16* 43 11 25
45RA*CD3-CD4dim 86 71 79
45RA+*CD3- 86 14 50
45RA+*CD3+*CD4low 86 29 57
45RA*CD3+CD4- 43 71 57
45RA+*CD3+*CD4* ‘ - 14 ' 0 7
45RA*CD3* 14 29 21
45RO+*CD3-CD4dim 71 57 64
45RO*CD3- rest/act T 71 57 64
45RO*CD3+CDA4low helper 86 14 50
45RO*CD3*CD4- 43 57 50
45RO*CD3+*CD4* 43 43 43
45RO*CD3* 0 0 0
CD3- ' 71 43 57
CD3+*CD4- 14 57 36
CD3+*CD4* 43 57 50
CD3* 14 57 36




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD4dim rest/act T 71 29 50
CD3-CD4 helper 43 29 36
45RA*CD3-CD8 86 29 57
45RA*CD3- 86 14 50
45RA*CD3+*CD8low 71 14 43
45RA*CD3*CD8- 14 14 14
45RA*CD3*CD8* 57 43 50
45RA*CD3* 43 43 43
45RO*CD3- 100 43 71
45RO*CD3*CD8low 71 29 50
45RO*CD3*CDS: rest/act T 71 29 50
suppressor
45RO*CD3*CD8* 29 57 43
45RO*CD3* 29 14 21
CD3- 71 43 57
CD3+*CD8- 71 43 57
CD3+*CD8* 29 57 43
CD3* 14 14 14
CD8*CD3- 86 43 64
CD3-CD8- 71 43 57
CD3+*CD4+*CD8p+*CD8* 29 56 44
CD3+*CD4*CD8p*CD8* (proportion of CD3* cells) 29 56 44
CD3-CD4low(CD8f3low 100 44 69
CD3-CD8fdimCD8- T cells 86 56 69
CD3-CD8*CD8f- 57 44 50
CD3- 71 44 56
CD3*CD4*CD8p- 29 44 38




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3+CD4*CD8f* 14 44 31
CD3*CD8pdimCD8- 29 44 38
CD3+*CD8p*CD4- 29 67 50
CD3*CD8p+*CD8low T cells 71 44 56
CD3+*CD8p+*CD8* 29 67 50
CD3+*CD8*CD8f- 43 56 50
CD3* ' 29 67 50
CD3-CD5* 14 50 31
CD3- 71 44 56
CD3-CD5TCRab*TCRgd- 43 67 56
CD3-CD5TCRab* 100 33 62
CD3-CD5TCRab*TCRgd* 86 33 56
CD3-CD5 TCRab*TCRgd- 100 33 62
CD3-TCR*CD5* 100 17 62
CD3+ TR 29 56 | 44
CD3*CD5TCRab* 86 22 50
CD3*CD5TCRab*TCRgd* 86 33 56
CD3*CD5TCRab*TCRgd- 71 11 38
CD3*CD5*TCRab* 29 50 40
CD3*CD5*TCRab*TCRgd* 43 50 47
CD3*CD5*TCRgd* 43 0 20
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Table J.6 Validation results for qualified subsets of immune cells in concentration (mm?3) from the FLDA

classification between aGvHD & cGvHD and aGvHD only patients using samples taken between 0 and 21 days from

aGvHD diagnosis.
Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD44*CD25 50 11 27
CD3-CD44+*CD25*CD69* 100 29 62
CD3-CD44+*CD25* 100 29 62
CD3-CD44-CD25 50 78 67
CD3- 83 33 53
CD3+CD44-CD25* 1Activation 33 11 20
CD3+CD44+*CD25 67 44 53
CD3+*CD44+*CD25*CD69* 100 33 60
CD3+*CD44*CD25* : 100 33 60
CD3+*CD44-CD25 - : - 83 44 60
CD3* 67 44 53
CD3-CD4dim 50 22 33
CD3-CD8low 50 67 60
CD3-CD4-CD8- 100 22 53
CD3- 100 33 60
CD3+*CD4br 2Activation 17 11 13
CD3+CD4int 100 ‘ 22 53
CD3+CD8pbr 67 78 73
CD3+CD8dim 83 33 53
CD3* 67 44 53




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3-CD4dim 33 22 27
CD3-CD8low 67 56 60
CD3-CD4-CD8- 83 22 47
CD3- 100 44 67
CD3+*CD4br 3Activation 17 22 20
CD3*CD4int 100 22 53
CD3*CD8gbr 67 78 73
CD3+CDgdim 83 33 53
CD3* 67 56 60
CD20*CD19* 0 56 33
CD22+CD20* B cells 17 67 47
CD22* 83 44 60
CD33+CD45dimCD15lowCD14low 50 89 73
CD33*CD454mCD15*CD14- 50 67 60
CD33+CD454imCD15*CD14* 50 89 73
CD33*CD45dim Myeloids 50 78 67
CD33+CD45*CD15+*CD14* 67 44 53
CD33*CD45* 33 33 33
CD45+*CD33-CD15*CD14- 83 89 87
CD45+*CD33- 83 78 80
CD2dimCD16*CD3*CD56 100 44 67
CD2dimCD16*CD56*CD3- 67 33 47
CD2dimCD16*CD56-CD3- NK cells 83 11 40
CD2dimCD16* 83 22 47
CD2-CD16*CD3*CD56 100 44 67
CD2-CD16*CD56*CD3- 50 33 40
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Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD2-CD16*CD56-CD3- 83 33 53
CD2-CD16* 83 44 60
CD2+CD16-CD3*CD56 50 56 53
CD2+*CD16-CD56*CD3- 17 78 53
CD2+*CD16-CD56-CD3- NK cells 83 33 53
CD2+CD16 67 67 67
CD2+*CD16*CD3*CD56 33 56 47
CD2+*CD16*CD56*CD3- 33 44 40
CD2+*CD16*CD56-CD3- 50 78 67
CD2+CD16* 67 44 53
45RA*CD3-CD4dim 83 14 46
45RA*CD3- 100 43 69
45RA*CD3+*CD4low 83 43 62
45RA*CD3+*CD4 67 71 69
45RA*CD3+*CD4* 0 - 43 23
45RA*CD3* 50 43 46
45RO*CD3-CD4dim 67 29 46
45RO*CD3- rest/act T 50 14 31
45RO*CD3+*CD4low helper 50 29 38
45RO*CD3*CD4- 50 86 69
45RO*CD3*CD4* 50 43 46
45RO*CD3* 67 57 62
CD3 100 43 69
CD3+*CD4 83 71 77
CD3+*CD#4* 17 29 23
CD3* 83 57 69




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD4dim rest/act T 67 14 38
CD3-CD4- . helper 100 57 77
45RA+*CD3-CD8 50 71 62
45RA*CD3- 100 43 69
45RA*CD3+CD8low ’ 67 57 62
45RA*CD3+CD8- 33 43 38
45RA*CD3+*CD8* 83 71 77
45RA*CD3* 83 57 69
45RO*CD3- 67 29 46
45RO*CD3+CD8low : 100 57 77
45RO*CD3*CDS: rest/act T 67 29 16
suppressor
45RO*CD3+CD8* 67 100 85
45RO*CD3+ . 67 57 62
CD3- 100 43 69
CD3+*CD8- ’ _ 33| 14 23
CD3*CD8* 83 86 85
CD3* 67 57 62
CD8*CD3- 67 71 69
CD3-CD8- 83 29 54
CD3+*CD4+*CD83+CD8* 33 67 53
CD3*CD4*CD8p+*CD8* (proportion of CD3* cells) 50 44 47
CD3-CD4lowCD8low 83 44 60
CD3-CD8pdimCD8- T cells 67 22 40
CD3-CD8*CD8p- - 50 56 53
-| CD3- 100 44 67
CD3+CD4*CD8- 17 11 13




Immune cells Aliquot Sensitivity (%) | Specificity (%) | Accuracy (%)
CD3*CD4*CD8f* 33 33 33
CD3+CD8BdimCD8- 33 44 40
CD3*CD8f+CD4 50 78 67
CD3+*CD8pB+CD8low T cells 100 11 47
CD3*CD8p*CD8* 50 78 67
CD3+*CD8*CD8f- 83 11 40
CD3* 33 67 53
CD3-CD5* 50 67 58
CD3- 100 44 67
CD3-CD5TCRab*TCRgd- 83 67 73
CD3-CD5 TCRab* 67 22 40
CD3-CD5TCRab*TCRgd* 83 44 60
CD3-CD5TCRab*TCRgd- 67 11 33
CD3-TCR*CD5* 100 50 75
CD3* ' TeR - 67 67 67
CD3+*CD5'TCRab* 100 33 60
CD3*CD5 TCRab*TCRgd* 100 56 73
CD3+*CD5TCRab*TCRgd- 83 11 40
CD3*CD5*TCRab* 100 50 71
CD3*CD5*TCRab*TCRgd* 50 75 64
CD3*CD5*TCRgd* 50 75 64




Appendix K. FLDA classification model for the onset of aGvHD

The FLDA classifier built using immune cells CD3*CD4*CD8f* and samples taken
between 7 and 21 days post-transplant, had the highest sensitivity (86%) and

specificity (100%) among the consistent classifiers.

The unknown parameters in the signal plus noise model (Equation 1.1) were
estimated using the training dataset via the EM algorithm. The training dataset is
consists of observed values Y, included 21 aGvHD and 3 non-GvHD patients with
samples taken between 7 and 21 days post-traﬁsplant. Linear B-splines with weekly

knot placement were used to model the observed data. At the end, the observed

values were divided into different elements:

—6.6980
1. A, =—2.4241 for each knot;
—-0.6519
1.7458
. -2.5267 .
2. Class signals A, A =—0.4414 for each knotand ¢, = 5 5267 for each class
0.9158 .

3. A B-spline matrix denoting these first three parameters for each j (columns)
representing each knot (j = 7, 14, 21) and each i (rows) representing each time unit (j

=7,8,9, ... 21) (values were rounded to two decimal place).
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~0.15 042 -0.44
~0.18 036 —0.33
-021 03 -021
~024 024 -0.1
~027 018  0.02
-03 012 0.3
~0.33 006 025

S,=-036 0 036
~033 -0.06 0.25
~030 -0.12 0.13
~027 -0.18 0.02
~024 -024 -0.1
~021 -03 -021
~0.18 -036 —0.33
~0.15 —0.42 —0.44

4.. For the test data pl with samples taken at 7, 14, and 21 days post-transplant:

~0.15 042 —0.44
S,=-036 0 036
~0.15 -042 -0.44

Weight values can be determined using the estimated parameters from the FLDA
classifier via Equation 1.3.
weigh=-1.0823 0.0123 -0.1767, for each sampled time point.

0.2718
Global base values S, 4, =2.2034
2.3000

5. Classification of p1 can be made using Equation 1.4. If the linear discriminant
value is negative, new data will be classified into the aGvHD patient group and vice

versa for non-GvHD patient group.
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0.92
| For example, for a new patient with values X =2.77 from samples taken at 7, 14,
3.63

and 21 days post-transplant, the linear discriminant value &, =weight - (X —S,4,) is

calculated to -0.9. The new patient is classified into the aGvHD class (&, < 0).
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Appendix L. FLDA classification model for the onset of cGvHD

The FLDA classifier built using immune cells 45RO*CD3-CD4dimin proportion to
PBMC and samples taken between 21 and 0 days prior to aGvHD diagnosis, had the
highest estimated 86% sensitivity and 86% specificity (Table 4.1), excluding the

inconsistent classifiers.

The unknown parameters in the signal plus noise model (Equation 1.1) weré
estimated using the training dataset via the EM algorithm. The training dataset is
consists of observed values Y, included 7 aGvHD & ¢cGvHD and 7 aGvHD only

patients with samples taken between 21 and 0 prior to aGvHD diagnosis. Linear B-
splines with weekly knot placement were used to model the observed data. At the

end, the observed values were divided into different elements:

—66.4930
~10.1525
° T _16.8377
~13.1379

for each knot;
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0.1042
-7.3447 ' -3.0568

2. Class signalsAa,, A = for each knotand «; = for each class
-4.2339 3.0568

2.8252

3. The first three parameters are denoted by the specified B-spline matrix for each j
(columns) representing each knot (j = -21, -14, -7, and 0) and each i (rows)
representing each time unit (j = -21, -19, -18, -17, ... and 0) (values were rounded to
two decimal place).

~0.09 02 -043 04
~0.12 021 -034 03
~0.14 022 -026 02
~0.17 023 -0.18 0.1
~0.19 024 -0.10 0
~022 025 -0.02 -0.1
024 026 006 -02
-027 027 014 -029
-027 019 014 -021
-027 0.12 014 -0.13

=027 004 014 -0.04

77027 -0.04 014 0.04
~027 -0.12 0.14 0.13
-027 -0.19 014 021
~027 -027 0.14 029
~024 -026 0.06 02
-022 -025 -0.02 0.1
-0.19 -024 -01 0
~0.17 -023 -0.18 -0.1
~0.14 -022 -026 -02
~0.12 -021 -034 -03
~0.09 -02 -043 -04
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4. For the test data p19 with samples taken at 21, 15, 7, and 0 days prior to aGvHD
diagnosis}

-0.09 02 -043 040

-024 026 0.06 -0.20

Sy =
-027 -027 0.14 0.29
-0.09 -020 -043 -04

Weight values specific to these sampled time points can be determined using the
estimated parameters from the FLDA classifier via Equation 1.3.
weight = 0.0762 —-0.1436 0.1191 0.1091, for each sarhpled time point.

5.8992
15.0097
14.2864
20.4889

Global base values S, 4, =

5. Classification of p19 can be made using Equation 1.4. If the linear discriminant
value is negative, new data will be classified into the aGvHD & cGvHD patient

group and vice versa for aGvHD only patient group.

13.3
_ ) 4
For example for a new patient with values X = 126 from samples taken at 21, 15, 7

13.6
and 0 days prior to aGvHD diagnosis, the linear discriminant value

@, =weight - (X — S, 4,) is calculated to -1.59. The new patient is classified into the

aGvHD & c¢GvHD group (&, > 0).
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