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‘Absti'act

- As CMOS technology continues to advance, device dimensions will continue to
decrease, thus enabling the creation of circuits which operate__ at increasingly greater
frequencies. However, this increase in operating frequency has resulted.in a reduced
tolerance for circuit timing uncertainties. Ther_efore, techniques capable of measuring the
timing characferistics of multi-GHz signals are needed to help address the growing number of
timing problems found in modermn CMOS circuits. For cost and accuracy reasons, embedded
time interval measurement techniques whic}l offer picosecond measurement accuracies and
mullisecond test-times are required to overcome these challenges.

The “sampling offset” based flash fime-to-digital converter (SOTDC) is an embedded
time interval measurement technique that has recently gamered much attention due to its
attractive properties. These prope'rﬁes include sub-millisecond test times of multi-GHz
signals, in addition to the potential for measurement accuracies in the order of picoséconds.
However, the accuracy of an SOTDC is strongly dependent upon the capabilities of its'
calibration technique,. and present SOTDC calibration techniques suffer from some very

serious limitations. In fact, these limitations are so severe that present calibration techniques

are impractical under realistic production test conditions.




This thesis presents the design and analysis of a novel embedded SOTDC calibration
technique. The proposed calibration technique offers the potential for both sub-picosecond
calil;ration accuracies and sub-100 millisecond calibration times. However, the main
contribution of this work concerns the suitability of the proposed technique with a realistic
production test environment. The capabilities of the proposed calibration technique have

been proven using both mathematical analysis and behavioural modelling simulations.
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Chapter 1

Introduction

As CMOS technology continues to advance, device dimensions will continue to
deérease, thus enabling the creation of circuits which operate at increasingly greater
frequencies. However, this increase in operating frequency has resulted in a decreased
tolerance for circuit timing uncertaivnties. In addition, the behaviour of a circuit, and
therefore the timing of its signals, is becoming increasingly sensitive to environmental
influences. These environmental influences may disturb the operation of a circuit through a
number of mechanisms. These mechanisms include capacitive and inductive coupling, as
well as the injection of noise into the power-supply or the substrate of a CMOS circuit [1, 2}.
As these mechanisms are bécoming increasingly prevalent in modern CMOS circuits, critical
path signals are increasingly susceptible to unwanted timing variations.

Unintended timing-variations in a signal may cause 4 circuit to become non-functional.

Therefore, the ability to detect, diagnose, and if possible, repair timing problems is of the

~ utmost importance if the reliability of a CMOS circuit is to be guaranteed. However,

detecting timing problems in multi-GHz signals can be a very challenging task due to the

extremely short time intervals that must be measured. For example, a 10% deviation in the




period of a 10 GHz signal translates to a mere 10 ps. Without the ability to detect timing
problems in multi-GHz signals, it is not possible to diagnose or ‘fepair them. As a result,
techniques capable of detecting and diagnosing timing problems in multi-GHz signals are

needed to help address the growing number of timing issues found in modern CMOS circuits.

1.1 Time Interval Measurement

The detection or diagnosis of a timing problem in a CMO_S circuit is often accomplished
with the help of a time interval (TI) measurement technique. TI measurement is a time
domain analysis technique that is often ﬁsed to deduce the timing characteristics of a signal
by estimating its threshold crossings in the voltage domain {3]. Many types of TI techniques
exist, however they all share a common goal of quantifying the amount of uncertainty in ‘the
timing of a signal. Once this timing uncertainty has been quantified, predictions regarding
the probability of a circuit’s failure can be made. Timing uncertainty is usually referred to as
“timing jitter” or “absoiute jitter”, which is defined as the deviation from the ideal timing of .
an event, and_cah be accumulated over many cycles [4, 5]. This definition is illustrated in
Figure 1.1, where the amount of timing jitter in a signal uﬁder test (SUT) is indicated by the

degree of uncertainty in the temporal location of a signal transition.

Ideal Period

;i;f g

fe— Jitter Budget /
(7] Tolerance
|

SUT

/ Timing Jitter

Figure 1.1: Timing jitter in a signal under test (SUT).

Another useful definition that is illustrated in Figure 1.1 is that of the jitter budget or
tolerance of a design, which is the maximum amount of timing jitter that can exist in a signal

- before the circuit fails to operate reliably. Two additional classifications of jitter exist, as
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illustrated in Figure 1.2. The first of these classifications is the most common of the three,
and is known as “period” jitter. Period jitter is simply fhe deviation of a single period from
its ideal value. The second classification is known as “cycle-to-cycle™ jitter, and 1s a measure
of the difference between adjacent cycles.

e

Ideal Signal /_\_/ \ / \ /7

= T e e To

Actual Signal  / \ f \ /_\_/—
A B ]

Period Jitter: Ti-To Ty-To T3-To

Cycel-to-Cycle Jitter: Ta-Ty Ts-To

(Ti+Ty) (T1+ T2+ Ty)
Timing Jitter: T-To -2T, - 3T,

Figure 1.2: Three classifications of jitter.

~ Each of the aforementioned types of jitter may contain both random and deterministic
components, depending upon the source of the jitter. In any case, it is possible to predict the
probability with which a signal will exceed a circuit’s timing mgrgins by constructing the
probability density function (PDF) of the period jitter [6]. The PDF of a purely random

source of period jitter is illustrated in Figure 1.3 (a): Inspection of Figure 1.3 (a) reveals that

random period jitter can be characterized by a Gaussian distribution. Since a Gaussian

distrtbution is unbounded, its peak-to-peak value (the difference between the shortest and
longest cycles) is also unbounded, and is highly dependent upon the number of cycles

measured. The 'PDF of period jitter resulting from both random and deterministic sources is

llustrated in Figure 1.3 (b). The shape of this PDF is determined by the convolution of the




random and deterministic components’ PDFs [7]. As deterministic jitter is bounded in

nature, its peak-to-peak value is also bounded.
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Figure 1.3: PDF of random period jitter (a), and a combination of random and
" deterministic period jitter (b). '

Aé the function of a time interval measurement technique is to accurately estimate the
duration of a time interval, multiple measurements of a signal’s period can be performed and
subsequently compiled into a histogram. If this histogrém is normalized by the number of
measurements perfonned, a PDF of the signal’s period jitter can be produced. However,
before an accurate PDF can be produced, many cycles need to be measured [8]. This idea is
illustrated in Figure 1.4, where the random period jitter of a signal is estimated using three
different histograms. Each histogram is drawn using an increasing number of measurement
results.

A le— I Jitter Budget/ _# Cycles

Tolerance Measured

Number of Cycles

-15 10 -5 0 5 10 15
Period Jitter [ps]

Figure 1.4: The growth of a random period jitter histogram as the number of
measurement is increased.




Inspection of Figure 1.4 reveals that both the standard deviation and the peak-to-peak jitter of
the histogram may vary as the number of measurement cycles is increased. Although a few
thousand measurements are often sufficient to provide an accurate estimate of standard
deviation, hundreds of thousands, or even millions of measurements are often required in
order to make an accurate prediction of the peak-fo-peak jitter in a rﬁulti-GHz signal. Such
.information 1s frequently used as a metric when determining the probability of circuit-failure
[8].

While many different time intérval measurement techniques exist [9], the choice of
which technique to employ for a given application ultimately depends on the measurement
requirements. ' For instance, the measurement of period jitter at giga-bits-per-second (Gbps)
‘data rates necessitatés very accurate results, as the jitter budget at these speeds is extremely
small. For example, the authors in [20] predict that measurement accuracies of 1 ps or less
will be required for bit-error-rate (BER) testihg of 10 Gbps integrated circuit (IC) pins.

As previously mentioned, obtaining accurate jitter results may require a large number
of measurements. Therefore, as signal data rates increase along with jitter measurement
requirerhents, the total measurement time of Tl measurement techniques continues to rise.
As a result, only a select group of low test-time measurement techniques are feasible in a
volume production teét environment, where test time is directly related to product cost [10].

Signal amplitude sampling-based techniques [11] can bé used to reconstruct the shape
of a voltage-time waveform based on a number of \‘JOItage-time samples. While these
techniques are not strictly “‘time interval” baséd jitter measurement techniques, they have
been successfully used to measure jitter with picosecond accuracy [12]. However, signal
amplitude sampling-based techniques typically require tens of seconds per measurement,
which is far too much time for a volume production test environment [13]. High-frequency
production testers can be use}d to measure jitter with picosecond accuracy in a matter of
seconds [14, 15, 16]. However, these testers generally cost millions of dollar§. In addition,

probing gigaHertz signals for off-chip measurement can introduce significant additional jitter

[20].  Therefore, for cost and accuracy reasons, embedded (on-chip) time interval




~

r‘neasurement»'techniques which offer picosecond measurement accuracies and millisecond
test-times are very useful tools to enable the cost-effective analysis of a growing number of
timing problems found in modern CMOS circuits [17]. In fact, embedded time interval
measurement techniques are currently the subject of research within both academia and
industry [18].

One new time interval measurement technique which has recently gamered much
attention is the “sampling offset” based flash time-to-digital converter (SOTDC) [23]. This
~ time-to-digital converter (TDC) offers sub-mi_llisecond test times for gigaHertz signals, as
well as the potential for picosecond measurement accuracies. However, the accuracy of an
SOTDC is strongly dependent on the capabilities of its calibration technique. To date, no
feasible embedded calibration technique for an SOTDC has been proposed. This thesis is
focused on the design of a novel embedded calibration technique for SOTDCs which offers
the potential for sub-picosecond calibration accuracies, and calibration times in the order of
milliseconds. While specific reference to the calibration of an SOTDC is made, this

calibration technique is applicable to any flash-based TDC.

1.2 Thesis Organization

This thesis consists of a total of six chapters. Important background information
conceming the evolution of tlladitional ﬂash-based.TDCs into state-of-the-art SOTDCs 1s
presented in Chapter 2. Three previously proposed SOTDC calibration techniques are
described in Chapter 3, and the important limitations of each are investigated. Next, the
embedded calibration technique proposed in ﬂ‘liS thesis is described in Chapter 4, followed by

an analysis of its capabilities and limitations in Chapter 5. Finally, conclusions regarding the

contribution of this thesis are presented in Chapter 6, along with a discussion of future work.




Chapter 2
Flash-Based Embedded Time Interval

- Measurement Techniques

Embedded time interval measurement can be performed using a variety of techniques,
and is often realized using a time-to-digital converter (TDC). A TDC is a circuit that outputs
a digital dodeword when a time interval 1s applied to its input, as shown in Figure 2.1. The
time interval to be measured, referred to from hereon as 7, is defined as the difference in
time between the rising edge transttions of two signals, which are traditionally referred to as

START and STOP. This digital codeword, once interpreted, approximates the duration of the

time interval.




following criteria:

START o— :
TDC —;8‘—D 01101011

STOP D

START __I_I_
Tosor o L

-
Figure 2.1: The role of a TDC.

While many different types of TDCs exist, they can all be evaluated against the

e  Accuracy:

How vclosely the interpreted digital codeword matches 7.
Resolution:

The smallest measurable difference in 7.
Precision:

- The degree to which a set of measurements of the same 75 agree.

Measurement rate:

The maximum rate at which different T,s can be applied to the TDC’s input
while still receiving correct codewords at its output.
Dynamic range:
The ratio of the maximum to minimum 7, measurable by the TDC.
Power and Area requirements:
The' aréa required to implement an on-chip TDC with certain accuracy,

resolution, precision, measurement rate, and dynamic range specifications, in

addition to the power consumed by this TDC.




As the accuracy, resolution, preciston, dynamic range, and measurement rate
requirements placed upon TDCs become increasingly stringent, trade-offs are necessary in
order to construct a feasible TDC architecture. Many TDC architectures target a reduced
measurement rate ih order to meet the accuracy, resolution, and precision requirements.
Examples of -such TDCs include the Vemier oscillator-based TDC [19], and the
undersampling-based TDC described in [20]. However, this trade-off can be very costly for
integrated circuit (IC) manufacturers, since the resulting increase in production test time
increases overall production costs. |

This chapter examines the evolution of “flash” TDC architectures. The chapter begins
with a description of the most primitive form ‘of a flash TDC, and concludes with a
presentétion of the state-of-the-art in flash TDC design, where picosecond measurement
resolutions are achievable. In general, Flash TDCs are capable of vefy high measurement-
rates. In fact, flash TDCs are capable of operating at or near the frequency of the signal or
signals under test, from which the START and STOP signals are derived. Flash TDCs are
analogous :co flash analog-to-digital converters (ADCs), since their output codeword is
determined in a single step by a bank of comparators [21]. Therefore, the flash TDC
architecture is a very good candidate for embedded time interval measurement in both a
production test environmlent or in a customer application, where measurement time is of

_comparable importance to measurement accuracy, resolution, and precision.

2.1 Single Delay Line-Based Flash TDC

The most basic form of a flash TDC is the single delay line-based flash TDC, which is

illustrated in Figure 2.2. This TDC architecture has two primary inputs, namely START and

STOP, and a multitude of outputs, labelled C; to Cy in this embodiment.




START Co—
STOP ——

INT OUT1

ARBITER 1

N2 ouT2 —C=> C4

IN1 OUT1

ARBITER 2

IN2 QUT2 f—L—> C32

|— IN1 OUT1

ARBITER N

IN2 OUT2 ——> CN

Figure 2.2: Single delay line-based flash TDC.

If we define the instant at which the START signal transitions from a low to a high
logic level as tyq, and if we define f,, analogously for the STOP signal, then we can

describe 7T; in mathematical terms with the following equation:

Td = tstop - sta;t (2 1)

As shown in Figure 2.2, the START signal is delayed by a single buffer as it propagates frorﬁ
one arbiter to the next. The delay of each buffer is equal to 7. At each stage, an' arbiter
determines which of its two inputs was the first to transition from a low to a hiéh logic level,
1.e., the first to make a “positive” transition. If IN/ is the first to perform such a transition

then OUT is'set to a high logic level and OUT2 to a low logic level, and vice versa if IN2 is

the first to arrive. Figure 2.3 illustrates the operation of a single delay line-based flash TDC




consisting of 4 arbiters. This type of TDC can be referred to as a 4-bit single delay line-

based flash TDC.

Arbiter 1

Arbiter 2

Arbiter 3

)t T e N mten
z

IN1 ]
Arbiter 4 IN2 |

Figure 2.3: Single delay line-based flash TDC timing waveform.

As is shown in Figure 2.3, a single delay line-based flash TDC produces a
thennométer code digital output (C4C3C,Cy = 1000). T, can be approximated by noting the
location of the “0” to “l” transition in the output codeword. In the above example, T is

shown to satisfy the following condition:

27<T;<37 | (2.2)

" The resolution of this TDC is limited by the buffer delay, z. This buffer delay has a practicai
lower bound due to the physical constraints of the technology in which it is implemented.

Therefore, for high-resolution applications, a single delay line-based flash TDC may be

./
inadequate,




2.2 Vernier Delay Line-Based Flash TDC

In order to overcome the resolution limitations of a single delay line-based flash TDC,

a second delay line can be added, as shown in the Vemier delay line-based flash TDC of

Figure 2.4.
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Figure 2.4: A Vernier delay line-based flash TDC.

This second delay line is used to incrementally delay the ST OP signal as it propagates

from one arbiter to the next, as is done to the START signal in the single delay line-based

flash TDC. The delay of each buffer in the START signal path is equal to TI,.whereas the

delay of each buffer in the STOP signal path is equal to 7. An example of the method of *

operation of a 4-bit Vernier delay line-based flash TDC is illustrated in Figure 2.5.
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Figure 2.5: Vernier delay line-based flash TDC timing waveform.

As shown in Figure 2.5, a Vemnier delay line-based flash TDC also produces a
thermometer code digital output (C4C3CC, =/1000). T, can be found using the same
procedure described for the single delay line-based flash TDC, 1.e., by noting the location of
the “0” to “1” transition in the output codeword. In the example illustrated in Figure 2.5, T4

is shown to satisfy the following condition:
At -n)<Ty<3(t-7) ‘ (2.3)

The buffer delay difference, 1.e., 7; - 75, where 7; > o, defines the resblution of a Vemier
delay line-based flash TDC. 'Iheref_cire, sub-gate delay resolution can be achieved with this
architecture.

Calibration of a Vemier delay line-based flash TDC is done to ensure that the buffers
in each of the two delay lines proy'ide‘.the required delay, i.e., 7; or ;. Normally a delay-
locked-loop (DLL) bis used to accomplish this, ensuring that integral nonlinearity (INL) errors

in the converter are minimized [22]. However, the arbiters are most often constructed from

flip-flops, since a flip-flop is essentially an arbiter. While flip-flops make efficient arbiters,




their non-zero setup times may influence the buffer delay difference (7; - 7;) and hence
contribute to the TDC’s differential nonlinearity (DNL) error, as a DLL-based 9alibrati6n
technique cannot be used to perform stage-by-stage calibration. For example, there is no
impact on the measurement accuracy of the TDC as long as fhe flip-flops have identical setup
times, in which case they can be treated as a constant and removed from the measurement
results. 'Howe'ver, the setup times of flip-flops on the same semiconductor die can vary
significantly due to proces§ variations. For example, vanations as large as 50 ps have been
observed in a 0.35 um CMOS process [23]. As the resolution of a Vemier delay line-based
flash TDC is increased, the importance of a flip-flop’s setup time is amplified, as it is not
accounted for during calibration. Therefore, there exists a limit to how small the buffer delay
difference can be made before the variability between ﬂip-ﬂop setup times begins to add a.
significant level of error to the measurement results. For the measurement of 5 and 10 Gbps
data .rate signals, where the required accuracy is 10 ps or better, a Vemier delay line-based

flash TDC is inadequate [20].

2.3 Sampling Offset-Based Flash TDC

A novel concept discussed in [23] attempts to address the time interval measurement
accuracy requirements of 10 Gbps data rate signals and beyond. The author in [23] suggests
that a TDC with a resolution of 2 ps or less can be constructed by removing the buffers from
a Vemier delay line-based flash TDC, thereby .mal‘cing use of the inherent variations in the
setup times of the arbiters. This type of TDC, shown in Figure 2.6, is known as a “sampling
offset” TDC (SOTDC).
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Figure 2.6: Sampling offset-based flash TDC.

The term “sampling offset TDC” arises from the fact that a time interval is qué,ntized
using the difference in the setup times, or sampling offsets, of the arbiters, assuming they are
known. This is in contrast to a Vemier delay line-based TDC, which uses a difference in
buffer delays to quantize time. Instead of implementing the arbiters or “sampling elements”
with flip-flops, the author in [23] chose to use symmetric CMOS arbiters. A symmetric
CMOS arbiter schematic is drawn in Figure 2.7. This circuit arbitrates between two inputs,
INI and IN2, by determining which input was the first to 'perform a low to high transition,

1.€., a positive transition.
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Figure 2.7: Symmetric CMOS arbiter.

The operation of a symmetric CMOS arbiter relies on the use of positive feedback.
 With inputs IN/ and IN2 discharged low, transistors M3 and M6 remain in cutoff mode.
Therefore, the drains of M2 and M5 remain precharged high through transistors M1 and M4,
and outputs OUT! and OUT?2 remain predischarged low. Now, if IN/ is the first input to
perform a positive transition, current will flow &own the left-hand side of the arbiter as M3
leaves the cutoff mode of operation. If M1, M2, and M3 are properly sized, the voltage on
the drain of M2 will fall low enough to cause OUT! to switch. high. In addition, since the
drain of M2 is connected to the gate of M5, M5 will enter the cutoff region, in turn
maintaining a high voltage at thé drain of M5 and a low voltage at OUT2. It is this use of
positive feedback between transistors M2 and M5 that allows this arbiter to successfully
resolve picosecond-timing differences, as demonstrated in [24].

An arbiter such as the one illustrated in Figure 2.7 is said to be perfectly symmetric if
its left hand sfde behaves identically to its right hand side. As a consequence of this perfect
symmetry, its sampling offset (f,) is equal to zero seconds. An arbiter with a non-zero
sampling offset‘is said to be “biased" towards one of its inputs. Therefore, a perfectly
symmetric arbiter does not exhibit a bias towards either input. As a result, the first input to
transition from a low to a high logic level is always recorded as such, with the corresponding

output set to a high logic level. This behaviour is illustrated in Figure 2.8.
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Figure 2.8: Behaviour of a perfectly symmetric arbiter.

In Figure 2.8, two oscillators, oscA and oscB, are depicted as the inputs to a perfectly
symmetric arbiter. The frequency of oscA is slightly greater than that of oscB. Therefore, a
sequence of varying time intervals is generated from the rising edge transitions of the two
oscillators. If the temporal location of a rising edge transition of oscB is denoted as fosca),
and if foscA(,) is defined analogously for oscA, then each time interval can be expressed

mathematically as:

Ty = toscBey = toscag) (2.4)

!

The preceding definition allows for the sampling offset of the arbiter in Figure 2.8 to be

bound by the following inspection-based equation:
Tar<te<Tys _ 2.5)

A biased arbiter, however, exhibits a non-zero sampling offset. This bias can be the
result of transistor mismatches between the left and right hand sides of the arbiter, and is

ooften attributed to process variations. However, it can be useful to intentionally bias an
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arbiter, in which case the transistor mismatches are the result of design intent [25]. The
behaviour of a biased arbiter is illustrated in Figure 2.9, where a buffer delay (7. has been

inserted before input IN/ of a pe'rfectly symmetric arbiter in order to-mimic the behaviour of

a biased arbiter.
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: Figure 2.9: Behaviour ofa positively biased arbiter.

Analogously, the sampling offset of the arbiter in Figure 2.9 can be bound with the

- following inspection-based equation: -
Td2<tsos Td3 . (26)

In summary, inserting a buffer before input IN! of a perfectly symmetric arbiter results in an
arbiter that is biased by an amount equal to the delay of the buffer (74,). For this reason, this
type of arbiter is known as a “positively biased” arbiter.

" A typical SOTDC can be constructed from _severai positively biased arbiters, each

with a uniqué sampling offset. If the arbiters-are positioned within the SOTDC in order of

smallest £, to largest, then the output codeword will be in the form of a thermometer code.




Theref;)re, if a time interval, 7, where 7;> 0, 1s apphed to the SOTDC, then .the value of 74
can be approximated by noting the location of the “0” to “1” transition in the output
codeword. For example, assume an- SOTDC consisting of only 4 positively biased arbiters
exists. Now, ifa T 4 which is greater than the sampling offset of arbiters 1 and 2, but smaller
than that of arbiters 3 and 4, 1s applied to the SOTDC, then the output codeWord will look as
follows: C4C;~,C2C1 = 0011. Such an output codeword can be }lse(i to approkimate the value
of the applied time interval, 7,, as shown in Equation (2.7), where t,,; and ;.3 represent the .
sampling offsets of arbiters 2 and 3, respectivély.

Lso2 < Td < Is03 . (27)

If the sampling offsets of the arbiters are equally spaced, then the error in the above
approximation mﬁst be bounded by the resolution of the SOTDC, whicﬁ is defined as the step
size of the arbiter sampling offsets. The challenge associated with using an SOTDC for time
measurement lies in determining the sampling offsets of the arbiters, as without such
information it is impossible to extract useful data from the arbiter outputs. Several
calibration techniques have been developed in order to measure the sampling offsets of the

arbiters within an SOTDC. The merits and drawbacks of each are presented in the following

chapter, and a new calibration technique is proposed in Chapter 4.




Chapter 3
Embedded Calibration of a Sampling

Offset-Based Flash TDC

Present SOTDC calibration techniques suffer from some very serious limitations. The
most straightforward of these techniques require an accurately known sequence of closely
spaced T values, which for a picosecond resolution SOTDC is very difficult to generate on-
chip.‘ A more sophisticated technique, as described in [23], requires precise knowledge of the
mean sampling offset of the SOTDC arbiters. Unfortunately, such information is usually not
available. Another technique, as«descn'bed in [26], requires the use of an external signal
generator or an on-chip DLL in order to generate 7, values which are not necessarily closely
spaced, but .accurately known  nonetheless. Time interval accuracies in the order of
picoseconds are required for successful implementation of this technique, and therefore
dictate the use of only the most accurate signal generators or on-chip DLLs. In addition, this
technique employs two on-chip variable delay elements that must be calibrated with

picosecond accuracy in order to resolve any skew introduced between the output of the 7y
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generator and the input of the SOTDC, and is therefore not a complete solution. The

technique proposed in Chapter 4 1s exempt from any of these deficiencies.

3.1 Behaviour of a Non-Ideal Arbiter

Before the aforementioned.calibration techniques can be fully understood, a model
that incorporates thermal noise in an arbiter must be developed. Such a model has been
reported in [26]. This model suggests that the sampling offset of an arbiter is not a fixed
number\, but should instead be treated as a random variable that changes with time. -The
preceding implies that the sampling offset of an arbiter at a particular Iinstant in time can only
be described as having a certain probability of being a particular value. This “instantaneous”

sampling offset is denoted as ;.

3.1.1 A Model of Thermal Noise in an Arbiter

An ideal arbiter is assumed to have a deterministic output, i>.e., the arbiter’s output can
be predicfed exactly if its input is known. ' Therefore, a given 7,; will produce a consistent
output from an ideal arbiter. However, as discussed in [23, 27, 28], arbiters implemented
using CMOS circuit clements are not ideal, and therefore do not behave deterministically.
For example, thermal noise generated in the circuit elements of an arbiter can induce
nondeterministic behaviour. A model which illustrates the impact of thermal noise in an

arbiter has been developed in [29] and is illustrated in Figure 3.1.

, |
START = ® b INl OUT1 —f— C

I UNBIASED
ARBITER

|
STOP I:>| IN2 OUT2

Figure 3.1: Voltage domain model of thermal noise in a biased arbiter.
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V.oise 18 @ source of noise in the voltage domain, and is the result of thermal noise within the
arbiter’s circuit elements. This noise 1s assumed to be white Gaussian noise, with a standard
deviation of ©, and a mean of zero. However, a time domain model of thermal noise in an
aibiter 1s more useful for time interval measurement purposes, since with such a model it is
possible fo account for the impact of thermal noise in the time domain. A time domain model

has been developed in [23, 26], and is tllustrated in Figure 3.2.

r—-—-—— - - - --—-—-=- A
START IN1_ OUT1 —':> c

| | arere ||
STOP :;: — N2 ouT2 | :

Lo [

Figure 3.2: Time domain model of thermal noise in a biased arbiter.

With the time domaiP model, V,.is. has been replaced with 7,5, which functions as é variable
delay element. | A linear relationship between Vi and f,5. is assumed in [23, 26], which
allows for #,,. to be described by a Gaussian probabilify density function (PDF), with a
standard deviation of 6, and a mean of zero. Therefore, the time domain model of thermal
noise in an arbiter states that the sampling offset of an arbiter is not a single number, but

- rather a distribution of nurhbers that can be described with a Gaussian PDF. The mean of this

distribution is #;, and the standard deviation is &, The sampling offset of an arbiter according

to the time domain model of thermal noise in a biased arbiter is depicted in Figure 3.3.
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Figure 3.3: PDF of the sampling offset of a biased arbiter takihg into account thermal
' ’ noise. .

If the Gaussian PDF shown in Figure 3.3 is integrated over time, the Gaussian
cumulative density function (CDF) is produced. This is a useful function since it specifies
the probability with which #,, is less than or equal to a specific temporal value, as shown in

Figure 3.4, where the temiooral value of interest is 7.
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Figure 3.4: Gaussian CDF.

Therefore, according to the time domain model of thermal noise in an arbiter, the probability
that a given 7, is greater than or equal to the sampling offset of an arbiter is given by the

Gaussian CDF:

¢
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where erf(x) i.s the "error function", encountered when integrating a normalized Gaussian
function [23, 30].

It is interesting to note that the mean sampling offset of an arbiter, #,,, can be found
from either the PDF or the CDF of the arbiter’s sampling offset. Using the PDF of the
arbiter’s sampling offset, £, can be calculated by finding the mean of the distribution. The
CDF of the arbiter’s sampling offset can be used to find 7, by estimating the value of ¢ that

satisfies P(t;5, < £). = 0.5, as illustrated in Figure 3.5.
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Figure 3.5: Calculation of #,, from the CDF of the sampling offset of a non-ideal arbiter.

Of course, if both #,, and o, are known, then the PDF and the CDF of the arbiter’s sampling

offset are easily reproduced.

3.1.2 Non-Ideal Arbiters and Time Interval Measurement

An interesting observation concemiﬁg the sensitivity of an arbiter to time intervals
near £, can be explained with the use of Figure 3.6. The aforementioned figure depicts the
response of a symmetric CMOS arbiter with thermal noise to various, time intervals.
However, the x-axis in this ﬁ\gure has been altered to emphasize the extent to which the

arbiter’s output can vary with respect to the standard deviation of the thermal noise.
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Figure 3.6: Sensitivity of the output of an arbiter to G,.

From Figure 3.6 it can be seen that the output of an arbiter exhibits a strong sensitivity to
time intervals near the arbiter’s mean sampling bffset, tyo. In fact; a time interval equal to /4, -
30, almost always elicits a different response from the arbiter than one equal to ¢, + 30,
Therefore, the sensitivity of such an arbiter is highly dependent upon the standard deviation
of the thermal noise, 6. A test chip consisting of a 64-bit SOTDC has been fabricated in a
0.35 um CMOS, and is described in [23]. Measurements from this test chip report a ¢, of
0.35 picoseconds. This number suggests that a symmetric CMOS arbiter is suitable for time

interval measurement when picosecond accuracy is required.

3.2 Direct Calibration Technique

One very intuitive method to calibrate a sampling offset based flash TDC is to input a
sequence of increasing time intervals (7,s) into the SOTDC, beginning with a known time
interval. Each 7, should differ ‘from its predecessor by a constant amount of time, denoted as
t4. 4T“hei instantaneous sampling offset of each arbiter can then be estimated using the value of
the first 7y t9 produce a positive transition at the arbiter’s output. The calibration of an 8-bit
SOTDC is illustrated in Figure 3.7. In this figure, two oscillators of slightly different

frequency, denoted as oscA and oscB, generate the sequence of 7s.
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Figure 3.7: Direct SOTDC calibration technique.

The SOTDC shown in Figure 3.7 produces an 8-bit codeword for each 13 and this ,
codeword is generated from the concatenation of the arbiter outputs, Cs — C;. Normally the
arbiters are positioned ih order of smallest ¢, to largest. Under such a scenario, if ¢, 1s much
less than the difference in the sampling offsets of adjacent arbiters, then a theﬁnometer code
can be expected at the SOTDC output. As previously-mentibned, the instantaneous sampling
offset of an arbiter within the SOTDC can be estimated using the first 7; from the sequence

. of time intervals to produce a positive transition at the arbiter’s output, as shown in Figure

3.8.
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Figure 3.8: Response of an arbiter to a sequence of increasing time intervals.




Mathematically, the ¢, of an arbiter can be bound with the following equation:
Tapn < tiso< Tap (3.2)

where Ty; indicates the first 7,; to produce a positive transition at the arbiter’s output, and

Tas-1 indicates its predecessor. This equation can be rewritten as follows:
Tapy - t4< tiso < Tay ‘ . 33)
Therefore, a reasonéble estimate of ;, 1s:
tuo=Tay - 142 | (3.4)

The error in this estimate of ¢, 1s bound by + 7,/2.

While it is useful to know 7, the real objective of any SOTDC calibration technique
is to determine the mean sampling offset of an arbiter, #,. Therefore, repeating the process
depicted in Figure 3.7 multiple times may yield different yet useful results, as illustrated in

Figure 3.9.
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Figure 3.9: Response of an arbiter to several repetitions of a sequence of increasing 7.
A histogram of an arbiter’s response to N repetitions of a sequence of 7,5 can be

plotted by summing the number of times the arbiter’s output (C) is a logic ‘1 for each T}, as

shown in Figure 3.10. Since the variation in ¢, follows a Gaussian PDF, the histogram has
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the shape.of a Gaussian CDF, assuming a sufficient number of repetitions have been
performed. Now, if the histogram data is normalized and an appropriate curve fitting
function is used, such as a cubic spline function, a Gaussian CDF may be produced. From
this CDF the mean sampling offset of the arbiter (#,) can be determined. This is
accomplished by finding the point on the CDF curve for which the arbiter’s output is a logic
‘1” exactly half the time. The- temporal value that corresponds to this point is the estimatéd

mean sampling offset of the arbiter, or .
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Figure 3.10: Histogram and CDF of the output of an arbiter.

In order to produce an accurate Gaussian CDF from an arbiter’s response to a sequence of
increasing time intervals, f4 needs to be chosen carefully, as will be discussed in the

following section.

3.2.1 Analysis

As noted earlier, experi\mental results from a 64-bit SOTDC fabricated in a 0.35 um
CMOS process indicate that the standard deviation of the thermal noise in an arbiter is
approximately 0.35 picoseconds [23]. This result places an important bound on the size of #,4.
If the chosen t41s approximately equal to or less than G, then the histogram and the resulting

CDF constructed from the data cbllected during arbiter offset calibration will closely

‘resemble those shown in Figure 3.10. To further explain, Figure 3.11 may be of use. In this

figure, the time intervals used during calibration are plotted on the x-axis of the arbiter




sampling offset PDF. From this PDF a histogram of the arbiter’s output for each 7, input is
drawn. This histogram is drawn with the assumption that the number of repetitions (N) is
large enough to ensure that the collection of arbiter instantaneous sampling offsets produces

an arbiter sampling offset PDF that is nearly Gaussian.
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Figure 3.11: Histogram of the output of an arbiter when £4< G,

The key observation to be made here is that since #4 is approximately of the same magnitude
as oy, a histogram which closely resembles a Gaussian CDF can be drawn, and curve fitting
of this histogram to find the arbiter’s sainpling offset, as shown in Figure 3:10, can be done
with reasonable accuracy. |

However, if the chosen #4 is too large, then the histogram may fesemble the one

shown in Figure 3.12.
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Figure 3.12: Histogram of the output of an arbiter when 24 > Or
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It can be observed from Figure 3.12 that there exists only a small number of useful daté
points to which a curve can be fitted. Applying a curve fitting function to a small number of
data points inevitably leads to an error in the estimation of £, that is much larger than would
otherwise be obtainable if £4 had been properly chosen. The error in the estimation of f,,

known as the calibration error, 1s defined as:
tce = teso - [so (35)

As part of/‘ this thesis, a quantitative analysis of the relationship between 74 an.d f.. has
been performed usiﬁg a software model of the direct calibration technique, one that accounts
for thermal noise in an arbiter. This model has been constructed using Matlab, and accepts ¢4
and o, as parameters, in addition to the ¢, of each arbiter in the array. Using this information,
the model constructs a sequence of 7s that are applied to the inputs of the array of arbiters‘.
it is also possible to specify the number of repetitions (N) of the sequence of 7,5 via an
additional parameter. The output of this model is the root-mean-square (RMS) value of ¢,
. for the calﬁ)rated array of arbiters, estimatéd using a 6-th order polynomial fit of the arbiter
output histograms.

In order to ascertain the capabilities of the direct calibration technique over a range of
té values, several simulations were performed using the aforementioned model. In each case
the array was specified to be 100 arbiters long, and N was varied incrementally in powers of
10, beginning at .100 and ending at 1 000 000. In order to keep the results independen’; of ¢,

t4 and the RMS value of 7, are expressed.in terms of 6,. The results of eleven simulations for

five different values of N are shown in Figure 3.13.
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Figure 3.13: RMS ¢../0, vs. 14/G; using the direct calibration technique.

From Figure. 3.13 it can be observed that if 74 < 60, then the RMS value of f, is
approximately beunded by o©,, for any value of N. ‘However, as #4 continues to increase,I so
does the RMS value of 1... In fact, for ¢4 2 40;, the RMS value of ¢, increases linearly with
ty. By the time ¢4 reaches 100, the RMS value of . has already surpassed 26,. For an
SOTDC with a resolution of 1 ps, i.e., the sampling offset of each arbiter differs from that of
its neighbours by 1 ps, an RMS ¢, equal to o, may be tolerable, assuming G, = 0.35 ps.
However, an RMS £, equal to 26, (0.7 ps) may not be tolerable. Therefore, if such an
SOTDC is calibrated using the direct calibration technique, the required ¢4 may be less than
35 ps. This requirement may not be practical, as the accurate generation of known time
intervals with picosecond temporal resolution is very difficult to achieve on-chip.

One intriguiﬁg question which to this peint has remained unanswered is the
quantitative effect of thermal noise on the accuracy of the. arbiter sampling offset estimations
obtained using the direct calibration technique. This question can be answered by comparing
the RMS ¢, from Figure 3.13' with the theoretical RMS ¢, of a noise-free arbiter that is

calibrated using the direct calibration technique. To calculate the theorctical RMS ¢, of the
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direct calibration technique, the standard RMS formula for a continuous distribution, as

shown in Equation (3.6) [31], may be used.

J. P(ICB )tcezdtce

[ Ptteo)dtc,

RMS(t,,) = (3.6)

To solve Equation (3.6), the limits of integ;ation must be determined. In order to determine
the limits of integration, the curve fitting procedure used in/the direct calibration technique to
estimate the f,, of a noise-free arbiter must be understood.

The response of a noise-free arbiter to a sequence of 7,s is shown in Figure 3.14. As
shown in this figure, the hiétogra.m of this response resembles a discrete-time step function.
' Since there are only two useful data points to which a curve can be fitted, the most sensible

approach is to linearly interpolate between the two points in order to construct the CDF of the

arbiter’s sampling offset and approximate #,.
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Figure 3.14: Histogram and CDF of the output of a noise-free arbiter.

The error in this approximation, ., can be described mathematically by recognizing that the

sampling offset of a noise free arbiter is estimated as:

teso = (Tapy + Tag-p)/2 = Tagy- 142 (3.7
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where Ty indicates the first 7; to produce a positive transition at the arbiter’s output, 7./,
indicates its predecessor, and ty = T4y - T4 By noting that £, can fall anywhere in the

range Ty.1) to Ty, the calibration error is bound by thé following equation:
)2 <t Sty2 : (3.8)

This relationship is illustrated in Figure 3.15, where the actual sampling offset of an arbiter is

plotted versus its associated calibration error.
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Figure 3.15: ¢, versus Z., for a noise-free arbiter using direct calibration.

Now that the limits of integration have been found, the probability dénsity function of
t;. must bé determined before integration can be performed. Since the goal of this exercise 1s
to find the RMS calibration error of a noise-free grbiter for a given ¢4, the arbiter’s sampling
offset must fall in the range 7. to T4y with equal probability, otherwise the results would
be dependent on the actual value of the arbitet’s sampling offset. In addition, the integral of
this probability over the range -74/2 to't4/2 must be equal to 1, since the arbiter has a fixed

sampling offset that is greater than 74y but less than 7. These two conditions stipulate

that for -14/2 <t <t42, P(t.) = 1/t,, as shown in Figure 3.16.
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Figure 3.16: ¢, probability density function.

With this knowledge, the theoretical RMS ¢, of a noise-free arbiter calibrated using the direct

calibration technique can be calculated as shown in Equation (3.9).

Ia

J.P(tce)tcezdtce Z t
RMS(tge) = [F——— = | [ Pltog)teg dlee == (3.9)

[Plcrdre |, 23
. 2

Equation (3.9) is plotted in Figure 3.17 along side the RMS calibration error obtained using
the Matlab model described eariier, which incorporates the effects of thermal noise in an'
arbiter. It should be pointed out that the results of such a model can be highly dependent on
the distribution of the érbiter sampling offsets. For example, if the sampling offsets of an
array of arbiters fall in a very ﬁanow range, one that is much smaller than the minimum 4
qsed during simulation, then the RMS. calibration error may appear to be independent of G..
This result is intuitively wrong since the presence of thermal noise in an arbiter should result
in a Gaussian-like CDF, from which a more accurate estimation of 7, can be made. To
remove this dependency,. t4 was fixed during simulation,and o, was varied iﬁstead. The
sampling offsets of the array of 100 arbiters were then assigned fixed values uniformly
distributed over the range T di-) 10 Tap). This made for a fair comparison with the noise-free

scenarlo.
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Figure 3.17: RMS ¢../c; vs. t 4O using the direct calibration technique.

Inspection of Figure 3.17 reveals that for 2 < ¢t4/c, < 10, the presence of thermal noise
in an arbiter sighiﬁcantly increases the accuracy of the arbifer sampling 6ffset estimations
obtained using the direct calibration technique. This result is expected since the presence of
thermal noise in an arbiter cohtributes to a Gaussian-like CDF of the arbiter’s sampling
offset, from which a reasonably accurate estimation of #,, can be made. This is in contrast to
the ramp-like CDF of a noise-free arbiter, for which the best approximation is a straight line
interpolation, Which has a significantly larger RMS error.

Inspection of Figure 3.17 also reveals that the gain in accuracy from the presence of
thermal noise in an arbiter diminishes as t4/0; is decreased from 2. Further insight in to this
result can be acquired if Figure 3.17 is redrawn with logarithmic x and y axes, as shown in

Figure 3.18.

35




1000 -

100 =i
S 10 +— ——N=1e6
: —8-N=1eb5
R ] ——N=1ed
wn N=1e3
= —%—N= 162
m 0.1 ‘ =1e

) —o— Noise-free
0.01
- 0.001 .
0.1 1 10 100 1000

tA/O't

Figure 3.18: Log-log plot of RMS t../&; vs. £4/ &; using the direct calibration technique.

From Figure 3.18, it can be observed that when t/o, 1s decreased, the RMS value of
1./, reaches a saturation point somewhere in the range 0.2 < t40, < 1, depending upon the
number of repetitions performed. This implies that the actual RMS value of ¢, increases as
one moves deeper into the saturation region, since G, increases_ as one moves closer to the y-
axis, and the ratio of ¢, to G, is constant. By inspection of Figure 3.18, the rate at which the
RMS value of ¢, increases as t4/0; moves deeper into the saturation region is unclear. In
order to clarify this, actual values of ., can be obtained if ¢, is fixed to a particular value and
o; varied. For example, the rate at which the RMS value of 1. increases as 14/0; decreases
can be estimated erm Figure 3;19, where ¢4 has been fixed at 10 pé and o, has been varied.
The data required to plot Figure 3.19 is e}ctilally a special case of data displayed in Figﬁre

3.18. For this reason Figure 3.18 is a more useful plot in a general sense, but not as

convenient for a specific scenario.




100 [ o et SRR Ut N AR -
‘o ——N=1eb6
[72]
& —-a—N=1eb5
3 - —a—N=1e4
o e e tes
E - —+—N=1e2

0.1 - —»— Noise-free

0.01 R R 5 i
0.1 1 10 100
Oy [ps]

Figure 3.19: Log-log plot of RMS ¢, vs. 6, when t4= 10 ps, using the direct calibration,
' technique.

Through inspebtioﬁ of Figure 3.19 it is apparent that an optimal ratio between t4 and G, exists,
and is dependent upon the vaiue of N. This ratio has been found to hold true for any value of
t4. Therefore, by determining the value of G, that minimizes . for each of the five curves
displayed in Figure 3.19, it is possible to determine the optimal ratio of #,4 to o, given the
desired number of repetitions. The optimal ratios for five different values of N are

summarized in Table 3.1.

Table 3.1: Optimal ratio of ¢4 to o, given the number of repetitions performed.

N t4/ ©;
le2 2
le3 1
led 038
le5 0.6
le6 04
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This information can be used in the selection of t4 for the direct calibration technique. For
example, if ¢, is equal to 0.35 ps [23] and N = 1e5, the value of ¢, which would produce the
lowest #,, is 0.35 ps x 0.6 = 0.21 ps. Of course, the accurate generation of time intervals with
such a temporal resolution is a very difficult task. |
With this knowledge in hand, it is easier to explain why the gain in accuracy from the
presehce of thermal noise in an arbiter diﬁinishes as 140, 1s decreased from approximately 2.

" Through inspection of Figure 3.1\9, it can be seen that the farther oﬁe deviates from the
optimal ¢4/G; ratio, the larger the calibration error. For example, if 6, is much smaller than its
optimal value for a given t,4, hence much smaller than t,, the difference between /.. in this
" case and that of a noiseless arbiter calibrated using the same 74 becomes increasingly .
diminished. This result makes intuitive sense, since as o, becomes very small with respect to
t4, the CDF of the arbiter’s sampling offset becomes less Gaussian-like and more ramp-like
in appearance as the variation in the arbiter’s sampling offset becomes less significant.
Similarly, if G, is much larger than its optimal value for a given #,, hence much larger than ¢4,
t.. once again exceeds its minimum value. In this case the increased error can be attributed to
the incorrect use of a polynomial curve fitting function on the relatively linear histogram that

is produced.

3.2.2 Conclusions

In theory, the direct calibration technique can produce very accurate estimations of ,
given a s_ufﬁciently small t4. In fact, the accuracy of this technique is limited only by 74,
which may be determined by the frequency difference of two oscillators. However n
practice, this calibration technique has some very serious flaws. For example, any type of
oscillator will have some amount of phase noise, and therefore will not have a perfectly
stable frequency [32, 33]. Any instability in the frequency of either of the two oscillators can
result in an increased error in the estimate of fo. In fact, it may not even be possible to place

a bound on the error as the amount of phase noise in either oscillator may be unknown.
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Another problem‘ with this calibration technique concerns the requiremént that the
sequence of 7,5 must begin - with a known 7,; One way to accomplish this may involve the
use of an arbiter with a known sampling offset to detect alignment between the rising edge
transitions of the two oscillators. However, as discussed in [23], the sampling offset Qf a
reasonably sized arbiter may vary from its intendéd value by as much as 25 picoseconds. An
error of 25 picoseconds in the imitial 7; will propagate to the estimate of £, for each arbiter.
One way to alleviate this problem is to »oversize the transistors in the arbiter that is used for
alignmént. This wili help to reduce the arbiter’s sensitivity to process vanations. Hdwever,
even if an arbiter with a known sampling offset is used to detect alignment between the rising
edge transitions of the oscillators, there is still quantization error in the edge alignment of at
most ¢4 seconds due to the finite difference in fhe frequencies of the two oscillators. Also,
any mismatch in the START and STOP signal paths will introduce some skew between them,
and this-skew will alter the safnpling offset of the alignment arbiter by an unknown amount,
adding another error to the estimate of £,

While the direct calibration technique is conceptually rather simple, it is not used in
practice due to its many shortcomings; the most severe being the restrction placed on r4. The
accurate generation of known time intervals with picosecond resolution ié very difficult to
achieve on-chip, and therefore renders this calibration technique ineffective for embedded

applications.

3.3 Relative Offset Calibration Technique

A technique capable of determining the relative sampling offsets of an array of arbiters
is presented in [23, 25]. This techrﬁque analyzes the “bubbles” in the output codeword of an
SOTDC. ‘A codeword is said to be “bubble-free” if there is at most one location in the
podeword where adjacent bits differ. For example, an 8-bit “bubble-free” codeword may
look like the following: “00001111”. A codeword is said to contain a “bubble” if there are

three locations where adjacent bits differ, as shown in the following: codeword: “00101111”.

39




If fhere are more than three locations in a codeword where adjacent bits differ, then the
codeword is said to contain more than one “bubble”. |

“Bu.bbles” may appear in an SOTDC codeword when its resolution is comparable to G,
For example, if arbiters 4; and 4, havé sampling offsets of 100 ps and 101 ps, respectively,
and a 100.5 ps time interval\ is applied to the inputs of both arbiters, the most. probable
outcome 1s that A; will output a logic ‘1" and A, will outputa logic ‘0°. However, there is a
significant probability of the reverse scenario occurring, i.e., 4; outputs a logic ‘0" and A
output a logic ‘1°. If this experiment ié performed a sufficient number of times, this counter
intuitive outcome is inevitable, and will occur with a certain probability. The ratio of these
two probabilities can be used to determine the difference in the sampl'ing offsets of arbiters 4,
and 4,. For example, if the p}obability of the more likely outcome is denoted as P.a4x(10),
i.e., the output of 4,1s a logic ‘1’ and the output of 43 is a logic ‘0°, and the probability of the
less likely outcome is denoted as P4;42(01), then the ratio of these two probabilities, r =
P414(01)/ Py 1,4.2(10), depends only on 8, which is the ratio of the difference in the sampling
offsets of the two arbiters to 20y, 1.€., = (fa42 - fs0a1)/20:. The exact relationship between

these two ratios is derived in [23], where the follbwing equation is produced:

= Pia (01) _1+ J;é‘(epfcx(—§))
- Pp.»(10)  1- \/;5(eij‘cx(5))

(3.10)

The “erfcx” terms in the right hand side of thé preceding equation are inétances of the scaled
complementary etror function.

| In summary, the author in [23] proposes measuring r and inverting Equation (3.10) in
order to find the relative sampling offsets of a pair of arbiters in terms of 6. However, the
author does not present a viable on-chip solution for obtaining o, In addition, a critical
assumption about the mean sampling offset of the arbiters is made by the author, and is stated
in [25]. In this work the author states that if the absolute sampling offsets of the arbiters are

to be determined, then the mean sampling offset of the arbiters must be known. The author
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suggests that the mean sampling offset of a large number of arbiters can be predicted if the
sampling offsets of the arbiters are altered by>pro<':ess variation alone, i.¢., no attempt is made
during the design of the arbiters to differentiate their sampling offscts from one another. In
such a case the author predicts that the saﬁlpling offsets of the arbiters would follow a
Gaussian distribution, as shown in Figure 3.20, where the mean sampling offset, denoted as

Uso, 18 equal to the intended sampling offset of the arbiters.
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Figure 3.20: Gaussian distribution of arbiter sampling offsets due to process variation.

For example, if an array of 64 arbiters, designed to be perfectly symmetric, is fabricated on a
single die, then the author predicts that the actual sampling offsets of the arbiters will follow
a Gaussian distribution with a mean of zero.

Several problems exist with this assumption. Firstly, since an SOTDC consists of a
finite number of arbiters, it is difficult to ensure that the sampling offsets will vary according
to a Géussian distribution. While it is true that a distribution which closely matches a
‘Gaussian may be obtainable if an SOTDC is constructed using a very large number of
arbiters, perhaps greater than 1000, the penalty to be paid in such a case is an excessive use
of silicon area. Also, each arbiter may be subject to some constant amount of process
variation which results in a common shift in the sampling offsets of all the arbiters. Such a

scenario is not accounted for in the preceding assumption and will therefore increase the error

in the estimations of the arbiter sampling offsets.




If the mean sampling offset of an array of arbiters cannot be determined with a
reasonable degree of confidence, then for the purpose of time interval measurement, the only
useful information that can be extracted from the arbiters is the amount of variation in a
series of time intervals. For example, thé standard deviation of .a series of time intervals
could be measured, however not the mean. Due to the aforementioned issues, the relative
offset calibration technique is more interesting from a theoretical perspective than a practical

one.

3.4 Added Noise Calibration Technique

A calibration technique based on-“added noise” has been described in [26]. This
technique is fundamentally identical to the direct calibration technique, with the exception of
one important-modiﬁcétion. Since O; has been measured to be approximately 0.35 ps [23],
the direct calibration technique re_quir.es the accurate generation of known time intervals with
picosecond tefnporal resolution. This is a very difﬁcult‘task to achieve on-chip. To better V
illustrate this fc;quirement, ten different values of 74 have been simulated using the Matlab
model described in section 3.2.1 with N = 100 000, while o, has been varied. The results of

these simulations are shown in Figure 3.21.
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Figure 3.21: Log-log plot of RMS ¢, vs. 6; when N = 100 000, using the direct calibration
technique.

From Figure 3,2-1 it can be seen that if 6, = 0.35 ps, 74 cannot be greater than 4 ps if ., is to
be kept below 1 ps. In reality, calibration accuracies greater than 1 ps are required for high-
_ resolution SOTDCs. While it is possible to increase N in order to alle;/iate some of the

restrictions placed on ¢,, demands placed on the ‘total calibration time usually limit N to 100

~000 or less [34].
In order to circumvent the restrictions placed on ¢4, the authors in [26] suggest adding

Gaussian temporal noise to the arbiters in an SOTDC.  In fact, the autﬁors advocate adding
| Gaussian temporal noise with a standard deviation much larger than ©,. A large amount of

Gaussian tempor_alb noise drastically alters the restrictions placed on the temporal resolution of

the time intervals.. For example, through inspection of Figure 3.21 it can be seen that if t4 =

1ps and o, = 0.35 ps, the predicted £ is 0.07 ps. Now if o, 1s increased to 17 ps, £, can .be

increased to 10 ps while still maintaining the same t,,. That is, a 49-fold increase in G; allows

for a 10-fold increase in 74 without an increase in N or 7.




In order to understand how the authors in [26] propose to add Gaussian temporal noise
to the arbiters in an SOTDC, a time domain model of thermal and added noise in a biased

arbiter must first be presented, as shown in Figure 3.22.
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Figure 3.22: Time domain model of added and thermal noise in a biased arbiter.

The added Gaussian noise is modelled with the inclusion of a second variable delay buffer.
Both the added Gaussian noise and the intrinsic thermal noise act to vary the sampling offset
of the arbiter, however to different extents. An 1illustration of the contribution of each noise

source, superimposed on one another, is shown in Figure 3.23.
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Figure 3.23: Arbiter sampling offset PDF with thermal and added noise.

Assuming the noise sources are independent, the standard deviation of the arbiter’s sampling

offset can be determined with the aid of the following equation:

Orotal =V O'rz + O'deed (3.11)
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If the standard deviation of the added noise is chosen to be much greater than that of the
thermal noise, 1.€., Guized >> Oy, then G,y can be accurately approximated as Gauded.

Instead of injecting Gaussian temporal noise directly. into the arbiters themselves, the
authors in [26] suggest modulating the time intervals. This clever idea provides a simple
mechanism to effectively vary the sampling offset of an arbiter acéording to a Gaussian
distribution without the need to aétually change the arbiter’s circuitry. Figure 3.24 tllustrates
how a CDF of an arbiter’s sampling offset is created from a sequence of time intervals, where
each time interval is distributed according to a Gaussian distribution with a standard

deviation of G,z
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Figure 3.24: Addition of Gaussian temporal noise to a sequence of time intervals in
order to create an arbiter sampling offset CDF.

* In order to generate a sequence of accurately known time intervals with Gaussian

~distributions, the authors in [26] propose the use of a configuration as illustrated in Figure
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3.25. In this configuration, a production tester or an on-chip DLL is used to generate the
accurately known time intervals. The time i’ntervals\ are then modulated by the Gaussian

control voltage of a variable delay buffer.

Vadded_noise

Production ® o SOTDC
Tester 1 1 START
OR

0, P2 lstop
On-Chip
DLL

Vbe

Figure 3.25: Added noise calibration technique implementation [26].

The feasibility of such an approach will be discussed in section 3.4.2.

3.4.1 Analysis

~ The authors in [26] have created a Matlab model of the added noise-based calibration

technique and have reported the results of a small number of simulations. These results are

displayed in Table 3.2.

Table 3.2: Reported results from Matlab simulation of the added noise-based
calibration technique (¢4 = 40 ps, o, = 250 ps, N = 100 000) [26].

Arbiter Offset [ps] Calibrated Offset [ps] Error [ps]
-35.00 -34.60 040
-18.31 o -17.91 0.40
-2.00 212 ‘ -0.12

5.00 530 030
6.00 ) 543 057
17.40 ‘ 17.10 -0.30
27.50 27.47 -0.03
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The authors in [26] have chosen to perform their simulations with 74 =40 ps, ¢, = 250 ps, and
N =100 000. Calculation of the RMS( error of the results in Table 3.2 yields 0.35 ps. This
result can be compared with the predi~ctions of the Matlab model of the ‘direct calibration
technique described in section 3.2.1. It should be noted that such a comparison is valid as the
added noise calibration technique is theoretically identical to the direct calibration technique.
The only difference between the two techniques is th¢ amount of Gaussian noise in an arbiter.

Using the Matlab model of the direct calibration technique described in section 3.2.1,
it is possible to plot the RMS ¢, versus G., when t, = 40 ps. Such a plot is shown in Figure

3.26.

100 -

10 ===

RMS(tee) [ps]

0.1 1 10 100 1000

O'total [pS]

Figure 3.26: Log-log plot of RMS ¢, vs. 6, when ¢4 =40 ps and N = 100 000, using the
model of the direct calibration technique described in section 3.2.1.

Inspection of Figure 3.26 reveals that according to the Matlab model described in section
3.2.1, the RMS value of ¢, is approximately 1 ps if 6, =250 ps. However, the authors in [26] |
present data with an RMS value of 0.35 ps. This discrepancy may be due to the fact that a
relatively small number of arbiters (7) have been simulated in [26], whereas 100 arbiters have

been simulated with the Matlab model described in section 3.2.1. Further inspection of
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Figure 3.26 reveals that according to the Matlab model described in section 321, it 1s
possible to obtain an i{MS value of ¢, as low as 0.3 ps when N = 100 000. However, in order
to do so, 6, must be reduced to 67 ps. This value agrees with the optimal ¢4 to G, ratio of 0.6
‘when N = 100 000, as shown in Table 3.1. Calculation of the ratio of ¢4 to o, used in [26]
produces a result of 0.16, indicating that ©, should be decreased in order to reduce the RMS
value of .. While' it may be true that 6, = 250 ps produces a relatively low RMS ¢, for the

arbiter sampling offsets specified in Table 3.2, this result may not hold true for a more
‘. general distribution of arbiter sampling offsets, such as the uniform distribution used in the
Matlab model described in section 3.2.1.

‘The amount of time required by the added noise-based calibration technique to
perform calibration is proportional to N and M, the number of repetitions and the number of
time intervals, respectively, and inversely proportional to f, the frequency at which the time
intervals are applied to the SOTDC START and STOP signals. This relationship is

summarized with the following equation [26].

MN (3.12)

tcal - f

This is the same amount of time required by the direct calibration technique. However, some

additional time is required to apply a curve fitting algorithm to the histogram data.

3.4.2 Conclusions

The added noise-based calibration technique proposed in [26] is useful in the sense
that it _allows the step size of the time intervals (£4) to be increased while still maintaining the
same level of calibration accuracy. However, this method does not alleviate the need for
accurately known time intervals. This is a significant issue as it infers that either the external
production tester or the on-chip DLL must generate-known time intervals with picosecond
accuracy. As the accuracy of the time intervals suffers, so does the accuracy of the

calibration results. For example, if all of the time intervals generated by the external tester or
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the on-chip DLL are 1 ps greater than their assumed values, then the RMS value of the
calibration error will increase by 1 ps. This error will propagate to the results of time interval
measurements made by the SOTDC. v

In addition, the on-chib variable.delay buffers must be calibrated in order fo ensure
that they do not add unwanted skew between @, and ®,, and also to ensure that a linear
relationship exists between the voltage of the control signals and the delay of the buffers. For
tﬁese reasons it can be said that the method of implementation of the added) noise-based
calibration technique proposed in [26] is neither an ideal nor a complete solution. The
SOTDC calibration technique proposed in Chapter 4 does not require knowledge of the time

intervals used for ca]ibratio_n.
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Chapter 4

Proposed SOTDC Calibration Technique

As discussed in Chapter 3, several SOTDC calibration techniques exist. However, it has
béen shown that all such techniques suffer from at least one serious limitation, thus rendering
these proposals either unfeasible or insufficiently accurate. In order to address the need for a
- feasible and accurate SOTDC calibration technique, a new calibration technique has been
developed. This technique levefages some of the advantages of the added noise-based

calibration technique, while omitting some of its limitations.

4.1 Simplified Proposed Calibration Technique

The calibration technique proposed in this thesis relies upon the availability of two
oscillators with a known frequency difference. That is, two oscillators, nélmely oscA and
oscB, are required. -If the frequency of oscA and oscB are denoted as f; and f3, respectively,

then the frequency difference of the two oscillators can be denoted as f4.

fa=1fs - fa 4.D




The same analysis can be performed in the time domain if the period of osc4 and oscB are
denoted as 7,4 and T, respectively, and the period difference of the two oscillators is denoted

as’TA.

] | :

Ty=T5-Ty4 ' - (42)

When oscA and oseB oscillate freely, the difference in time between the rising edge
transitions of each oscillator can be interpreted as a sequence of time intervals (T S), with
each time interval being 7, seconds shorter or longer than its predecessor, as shown in Figure

4.

OSCA ...| ’ ' '
CHTae HTe |Te HTa HTs

oscB ...l

Figure 4.1: Time intervals created by two free-running oscillators.

Figure 4.1 depicts the relative temporal locations of the rising and falling edge transitions of
‘0scA and oscB. These waveforms are drawn with the assumption that both oscillators are
perfecﬂy)stable, and fz < f3, or equivé]ently, Ty > T4. A perfectly stable oscillator is defined
as an oscillator that has a constant frequency, and hence a constant period. For the remainder
of this section, oscillators will be assumed to be perfectly stable. In addition; arbiters will be
assumed to be noise-free. Therefore, it will be assumed that the sampling offset of an arbiter
1s a constant value, independent of time. This assumption wi1,1 make the explanation of the
simplified proposed calibration technique easier to follow. The presence of temporal noise in
the sampling offset of an arbiter will be considered in section 4.2.

If the instant in time at which the output of oscB produces a rising edge transition is
denoted as .5, and if £,.4 is defined analogously for oscA, then each time fnterval can be

expressed mathematically as:
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Td(l) = toqu(l) - toscA({) ' (43)

where i denotes the i rising edge transition of an oscillator. Following this definition of a
time interval, a sequence of time intervals N elements long, i1.¢., Ts; . Ty, generated from the

output of oscA and oscB can be defined as shown in Equation (4.4).

Tay  ={Tasr, Tz, Tz, Ty ... Taver, Taw }; 1< <N

={Tar, Tas + Ta, Tay + 2T, Ty + 3T, ... Ty + (N-1)T4}; 1<i<N 4.4)

Through inspection of Equation (4.4) it can be seen that a general formula exists for the
duration of a time interval generated from the output of two oscillators of different frequency.

Such a formula is written in Equation (4.5), where i > 0.
Td(,) =T+ (-DT4 4.5)

Equation (4.5) describes a linearly increasing sequence of time intervals, as shown in Figure

42.
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Figure 4.2: Sequence of linearly increasing time intervals.

As discussed in Chapter 3, a periodic sequence of known time intervals can be used
to determine the sampling offsets of an array of arbiters. It is possible to generate a periodic

sequence of unknown time intervals from the output of two oscillators of different frequency

52




-

if T4y 1s restricted to a finite interval. For example, if T4; ts bound by the following

equation,
O<Td(,- STA - (46)

then a periodic sequence of time intervals can be generated if 7,4/7 4 is an integer. Figure 4.3
illustrates how a penodic sequence of time intervals can be produced from the output of two

oscillators of different frequency, where 74/7,=5.

Sy Sy S T

Td1 _Td2 Td3 Td4 TdS TdG Td7

oscB I

Figure 4.3: Periodic time intervals created by two free-running oscillators.

Inspection of Figure 4.3 reveals that 7gs = T and 77 = T2, or more generally, Tug =
Taps) fori> 5. Thérefore in general, if 7,/T41s an infeger, then a periodic sequence of time
intervals with 7,/T,4 unique values may be created from the output of two oscillators of
different frequency. There is no ﬁeed to physically impose a limit on the size of 7. This
limit naturally occurs if one oscillator is used as a reference edge generator, and the relative
temporal location of the other is used to indicate the duration of the time interval, as is
illustrated in Figure 4.3. Equation (4.5) can be rewritten to account for the pen'odic nature of
the time intervals generated from the output of two oscillators of different freQuency,

assuming 74/7 4 1s an integer.
Tap=Ta+[G-1)mod (Tu/Tg)] Ta; i>0 4.7

The penodic sequence of time intervals described by Equation (4.7) is plotted in Figure 4.4,

assuming 7,4/T,=15.
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Figure 4.4: Periodic sequence of time intervals generated from the output of oscA and
oscB assuming T4/T,=5.

Inspection of Equation (4.7) reveals that one of the time intervals génerated from the
output of two oscillators of different frequency must be accurafely known before the entire
sequence of time intervals can be predicted. However, without this information, the entire
sequence of time intervals is unknown, and therefore of no use to any of .the calibration
techniques discussed in Chapter 3. Their values could be determined if an arbiter with a _
known sampling offset is used to detect alignment between the two oscillators. However, if
it Was.possible to determine the sampling offset of an arbiter, then a calibration technique
would not be required in the first place. Even if such an arbiter was available, any
differences in the routing of the arbiter’s inputs 6ou1d significantly alter the arbiter’s
sampling offset. This in turn would affect the predicted values of the sequence of time
intervals, and thus the accuracy of the calibration technique. As a result, the only useful
information that can be directly extracted from a periodic sequence of unknown time
intervals is the temporal difference between arbiter sampling offsets. Thié can be
accomplished by counting the number of oscillator cycles elapsed between the “switching-

events” of two arbiters, as illustrated in Figure 4.5.
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Figure 4.5: Determining the relative sampling offsets of two arbiters.

In order to explain the meaning of an arbiter’s “switching-event”, an arbiter’s
response to two imporfant time intervals must be understood. As discussed in Chapter 2,
when a time interval which is less than the sampling offset of an arbiter (¢,,) is applied to its
inputs, the arbiter responds by asserting its QU2 output while maintaining a low logic level
on its QUT! output, i.e., OUTI = ‘0" and OUTZ =“1”. On the other hand, if a time interval
which is greater than or equal to the samplix}g offset of an arbiter is applied to its inputs, the ‘
arbiter responds by asserting its OUT/ output while mairitainin‘g a low logic level on its
OUT?2 output, i.e., OUTI = ‘1’ and OUT2 = ‘0’. Therefore, if a sequence of time intervals is
applied to the inputs of an arbifer, such as the one plotted in Figure 4.4, where T < £, and
Tap Z ts (O = T4/T 4 is an integer), then for some T < Tuy < Tap, the arbiter’s response will
change from QUTI = ‘O’ and OUT2 = °1" to OUT1 = *1” and OUT2 = “0°. This event is
known as the arbiter’s “switching-event”, and signifies that the arbiter’s sampling offset has
been sﬁrpassed or equalled by the most recently applied time interval, Ty;. Detecting the
switching-event of an arbiter is useful as the sampling offset of thevarbiter can then be
estimated as Tys.) < tso S Tap), where both Ty and T are unknown.

Inspection of Figure 4.5 reveals that the switching-event of Arbiter2 occurs seven
cycles after the switching-event of Arbiterl. From t};is information oﬁe might surmise that
the sampling offset” of Arbiter2 is greater than that of Arbiter] by 77, seconds, or
equivalently, £, =t + 774. Hox;vever, it might be incorrect to form t_his assumption. In

order to illustrate this point, Figure 4.6 may be of use. Inspection of Figure 4.6 reveals that
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the difference in the sampling offsets of Arbiter! and Arbiter2 may vary from nearly 67

seconds to almost 874 seconds, while still maintaining an oscillator cycle count of seven.

Arbiter1 Switching-Event Arbiter2 Switching-Event
0 1 2 3 4 5 6 7
Vel .

1:so‘l tsoZ
. g b; ® > -
Tar Taz Taz Tasa Tas Tas Tar Td_a Tge Time [s]

—

Ta

Figure 4.6: Variation in arbiter sampling offsets while still maintaining a constant cycle
count, '

Theréfore, the number of oscillator cycles elapsed between the switching-events of two
arbiters provides enough information to estimate the relétive temporal spacing between the
sampling offsets of the arbiters to within a range of 27T} seconds. Using the scenario
illustrated in Figure 4.5 as an example, Equation (4.8) describes the sampling offset of

Arbiter2 in terms of the sampling offset of Arbiter].
Lot T 6TA <oz < o1 + 8TA (48)

Until this point, only perfectly symmetric or positively biased arbiters have been
discussed. It is also possible to construct a negatively biased arbiter. The behaviour of a
negatively biased arbiter is illustrated in Figure 4.7. A buffer delay (7.;) has been inserted
before input /N2 of a perfectly symmetric arbiter in order to mimic the behaviour of a
negatively biased arbiter. However in reality, the sizes of transistéjrs within the arbiter are

usually altered in order to induce a bias.
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Figure 4.7: Behaviour of a negatively biased arbiter.

Inspection of Figure 4.7 reveals that the sampling offset of the illustrated arbiter is greater
than 7T but less than or equal to T, d;. Since T4 = toscB(i) - loscary, DOth Ty and Ty are negative. |
As the difference between T and T, is made increasingly small, the sampling offset of the
arbiter can be found to be equal to -7, as expected. _
Returning to the subject of Figure 4.5, it can be seen that the sampling offset of
Arbiter] is a negative number. In addition, it can be seen that the magnitude of #,; ibs greater
than that of ts02, Which 1s a positive. number. Now, if the inputs to Arbiter2 are somehow
reversed, and its switching-event is redefined to occur when its input response changes from
OUT! = ‘1" and QUT2 = “0’ to QUT! = ‘0’ and OUT2 = *1’, then the arbiter’s sampling
offset changes sign but not magnitude, as illustrated in Figure 4.8. This can be attributed to
the topology of a symmetric CMOS arbiter. A typical CMOS D flip-flop doé’s not share this ‘
property as its setup time is dependent upon the logic values of its present and previous

inputs.
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Figure 4.8: Behaviour of a positively biased arbiter (a), and a positively biased arbiter
: with reversed inputs (b).

This change in Sign is extremely useful, as it provides a method of obtaining a second
piece of information regarding the relationship between the sampling bffsets of Arbiter] and
Arbiter2. For example, if the inputs to Arbiterj are reversed while the inputs to Arbiterl
remain unchanged, the relative tempofal difference between the switching-events of the two
arbitérs changes. In fact, it decreases by exactly 2f,,. Therefore in thebry, the sampling
offset of Arbiter2 can be estimated if two pieces of information concerning the relative
temporal difference between the switching-events of Arbiter! and Arbiter2 are obtained. The
first piece of required information 1is the number of oscillator cycles elapsed between the
switching-events of the two arbiters, with the inputs to both arbiters as illustrated in Figure
4.3 (a). ’fhe second piece of required information is the number of oscillator cycles elaps'ed
between the switchinngvents of the two arbiters when the inputs to Arbiter2 are reversed, as
illustrated in Figure 4.8 (b). From this informatién, the sampling offset of Arbiter2 can be

estimated using Equation (4.9).
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t_ ., =lcycleCount —
s02 (y 2 (4.9)

—~ cycleCount

Arbiter2 _normal _inputs Arbiter2 _reversed _inputs

This\result is quite powerful as it demonstrates that it is possible to estimate the sampling
offset of an arbiter using two oscillators with aknown frequency difference, a counter circuit,
and a second arbiter wit-h an unknown sampling offset. The need to generate a sequence of
known time intervals has been eliminated.

In order to determine the theoretical accuracy of Equation (4.9), it would be helpful if
the example illustrated in Figure 4.5 included information concerning .the behaviour of
Arbiter2 when its inputs are reversed. However, this would require knowledge of the.
sampling offset of Arbiter2. Therefore, in order to deduce the accuracy of Equation (4.9), a
value must be chosen for #,,,. If £, is arbitrarily fixed at 27, then the number of oscillator
cycles elapsed between the sWitching-events of Arbiterl and Arbiter2, when the inputs to
Arbiter?2 are reversed, can be predicted. Under.normal circumstances, i.e., when the inputs to
Arbiter2 are notb,reversed, seven oscillator cycles are elapsed between the switching-events of
Arbiter] and Arbiter2. However, When fhe_inputs to Arbiter2 are reversed, its sampling
offset changes sign, and is therefore equal to -27,. Since each time interval differs by 74
seconds from its predecessor, a decrease in f,,,, of 47,4 seconds corresponds to a decrease of 4

oscillator cycles. Therefore, 3. oscillator cycles are elapsed between the switching-events of

Arbiter! and Arbiter2 when the inputs to Arbiter2 are reversed, as illustrated in Figure 4.9.
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Figure 4.9: Oscillator cycle count when the inputs to Arbiter2 are reversed.

While it is important to know the number of oscillator cycles elapsed between the
switching-events of Arbiter! and ArbitérZ, for the purposes of determining the accuracy of
Equation (4.9),‘it 1s more insightful to know the temporal fange of f;,, that produces an
oscillator cycle count of three. A simple modification of Equation (4.8), Which provides an
estimate of /£, in terms of #,; assuming the inputs to Arbiter2 are not reveréed, can yield
such results. Since it 1s-known that £,,> with reversed inputs i1s 474 seconds less than 7,
without re_versed inputs, 474 seconds can be subtracted from all of the terms in Equation (4.8)

to make the required modification, as shown below.

tsoI+6TA'4TA5ts02'4TA§tsol+8TA'4TA

Lo T 2TA S tsoZ_reversed_inputs Sthor t 4TA . (4 10)

A summary of the information contained in Equations (4.8) and (4.10) would be
useful in order to make a conclusion regarding the accuracy of Equation (4.9). Figure 4.10

serves as such a summary.
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Figure 4.10: Summary of the information obtained by counting the number of oscillator’
cycles elapsed between the switching-events of two arbiters.

Through inspection of Figure 4.10 it can be seen that different values of f,,; may satisfy the
relationships that have been found to exist between Arbiter] and Arbiter2. In fact, a range of
t0» values exist which satisfy the aforementioned relationships. In order to quantify the
accuracy of Equation (4.9), the worst-case error in the estimation of f,,; must be determined.
* The worst-case error occurs when the range of £, values which satisfies the aforementioned
relationships is maximized. The maximum and minimum difference .between tioz and -2

can be found through inspecﬁon of Figure 4.10, as shown be.low,

3T A <ls2~- tsoZ__reversed_inputs <5T 4
3TA <ts02 - ('tso2) < STA ‘

1.5T4<t;p2<2.5T4 . (4.11)

Comparison with the known value of 27 reveals that the error of the simplified proposed

calibration(technique can be bound as shown in Equation (4.12).

T2 <t <Ty2 ’ (4.12)

61




These error bounds are equivalent to those of the direct calibration technique as discussed in
Chapter 3, assuming a noise-free arbiter. If the RMS error of the simplified proposed
calibration technique is calculated assuming uniformly distributed arbiter sampling offsets,

then Equation (4.13) is produced.

Ty

243

- RMS(t,, )= (4.13)
This result is equivalent to the RMS calibration error of the direct calibration technique,
assuming noise-free arbiters as discussed in Chapter 3. Therefore, it can be concluded from
the preceding analys:is that for noise-free arbiters, the error of the simplified proposed

calibration technique is equivalent to that of the direct calibration technique.

4.2 Non-Ideal Arbiters and Added Noise

As discussed in Chapter 3, the sampling offset of a non-ideal arbiter is not a fixed
-number, but is instead characterized by a Gaussian probability density function. As a result,
twd identical time intervals can induce a different response from the same arbiter. However,
this fact can be exploited, as is done by the added noise-based calibration technique of
. Chapter 3, to improve.the'accuracy of the proposéd calibration technique. For example, if
Gaussian temporal noise with a sfandard deviation much larger than o, is added to the
sequence of time intervals, maﬁy oscillator cycle counts can be recorded and then averaged in
order to obtain a more accurate estimation of t,. In such a case, Equation (4.9) must be
rewritten as shown in Equation (4.14), where. N refers to the number of oscillator cycle
counts recorded when the arbiter’s inputs are connected normally (state S = 0) or reversed

(state S% 1).

t, = (totalecleCounvtS=0‘—totalecleCounts=l )ZT—]AV 4.14)

)
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In order to explain this assertion it is necessary to examine Figure 4.11, which
illustrates the PDF of each 7, within a sequence of 7,s. In addition, the sampling offsets of
two arbiters, £;; and f;,2, have been plotted along the x-axis. Note that both Figure 4.11 and
the analysis to follow are predicated on the assumption that the Gaussian temporal noise
added to each time interval is much greater than the intrinsic temporal noise within each
arbiter, as explained in section 3.4 and depicted in Figure 3.22. Consequently, the sampling

offset of an arbiter can be treated as a constant value.
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Figure 4.11: (a) PDF of several T;s belonging to a sequence of 75 (b) PDF of two Tus
(Note: the sampling offsets of two arbiters, £;,; and £,,;, are plotted along the x-axis of
both figures).

—

Through inspection of Figure 4.11 (a) it can be seen that the sampling offsets of o
Arbiter] and Arbiter2 are constant, while the instantaneous value of each time interval, i.¢.,
Ty to Ty, is nondeterministic. As a result, it is not possible to predict with absolute

certainty the response of either arbiter to any given time interval. Therefore, the number of

oscillator cycles elapsed between the switching-events of these two arbiters is also




nondeterministic. This phenomenon is the direct result of the addition of Gaussian témporal
noise to each time interval.

However, if a sufficient number of oscillator cycle counts are recbrded, then the
statistical properties of the added témporal noise can be leveraged to obtain a very accurate
estimation of f,. For example, if a histogram of each 7, is compiled while the oscillator
cycle counts are recorded, the histograms will more closely resemble a Gaussian distribution
as time progresses. If the histograms can be accurately modelled with a Gaussian PDF; then
it is possible to mathematically describe the probability of occurrence for any oscillator cycle
count. To further explain, Figure 4.11 (b) may be of use: This figure depicts the probability
with which T4, is greater than or equal to #,,, as well as the probability with which T 412 18
greater than or-equal to 2. With this sort of information it i1$ possible to construct an
equatioﬁ to determine the probability of any oscillator cycle count value. |

In order to construct such an equation it is first necessary to determine the probability
of the oscillator cycle counter being triggered by each 7,;. In the case of 7, this amounts to
the probability that T; is greater than or equal to f,.;, or P(Ty; > t,,;). The equation which
describes the probability of the oscillator cycle counter being triggered by 7, is only slightly
more complicated. The probability of such an event is equal to the i)robability that 7 is
greater than or equal to #,; and Ty is less than £, Therefore, this equation is dependent
“upon the outcome of two diétinct events, i.e., T, being greater than or equal to 7,,; and-T,;
being less than f,,;. However, since these events are independent, i.e., the value of 7, is not
dependent upon whether or not 7;; was less than 7, since the added temporal noise is
random, their probabilities can be dealt with individually. Mathematically these events are
known as _stétistically independent variablés [35, 36], and the probability of these two events
occurrihg can be solved as shown in Equation (4.15), where YA and B represent two

independent events, and ANB is the mathematical intersection of these two events.

P(AmB) =P(A) - P(B) | 4.15)
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_Therefore to summarize, the probability of the oscillator cycle counter being triggered by 7o

or T 1s formally expressed in Equations (4.16) and (4.17), respectively.

P(T4 tniggers) = P(Ta1 = tso1) ' (4.16)
P(Ty; triggers) = P(Tuz 2 toor N Ty < ts01)

= P(Tw2Z twr)  P(Ta; < tswr) 4 (4.17)

With this information in hand it is now possible to construct Equation (4.18), which can be
used to determine the probability of the oscillator cycle counter being triggered by any 7o,
which may be represented as T45. This equation follows directly from the preceding

analysis.

. : j-
P(Td(j) triggers) = P(Td(j) 2 tsal)‘HP(Td(i) <t.,) (4.18)
i=]

The following definitions must also accompany Equation (4.18).

1}, T,—t
P(T, 21,)==|1+erf| 4—5
’ 2{ [o-tatal\/i

P(Tu< i) =1-P(Ty2 1)

Now that it is possible to determine the probability of the oscillator cycle counter
being triggered by any 7, it is also possible to construct an equation to determine the
probability of a specific oscillator cycle count. Using an oscillator cycle count of 1 as an
example, many diﬁ‘erentvscenarios can be constructed to achieve this value. For example, the
counter could be triggered by 7,; and stdpped by T4, thus producing a count of 1. It is also

possible for the counter to be tn'ggeréd by 74 and stopped by T, 5, therefore producing the ‘

same result. In fact, it is theoretically possible for any T and its successor to start and stop




the counter respectively. This fact is described in Equation (4.19), where the mathematical

union of these individual events is represented with the symbol ‘U”.

P(Count=1)= P( [Ty triggers N Ty stops] U [T triggers (N Ty3 stops] ... 4.19)

U [Tas, triggers N Ty stops] )

While Equation (4.19) is mathematically concise, it is of no use in predicting the probability
of a specific oscillator cycle count unless the union of the events described in this equation
are known. In order to solve the aforementioned equation, the mathematical definition of the
union of two events must first be understood. Shown in Equation (4.20) is the definition of

the mathematical union operation.
P(AUB) = P(A) + P(B) - P(ANB) | (4.20)

However, Equation (4.20) can be simplified by noting that ééch of the events
described in Equation (4.19) are mutually exclusive, i.e., it is only possible for one event to
occur for any single oscillator cycle -count, and thus the intersections of these events are -
required to be zero. For example, if event A represents the scenario that 7 triggers the
oscillator cycle counter while 7, stops it, it is not possible for some other event B to occur,
which may représent the scenario under which 7, d} triggers the oscillator cycle counter and
T,s stops it. This can be reasoned logically by observing that, for example, if 7 is to trigger
the oscillator cycle counter then it is. not possible for 7, or any other 7, to re-trigger the
counter until it has been stopped. Similérly, if T stops the oscillator cycle counter then it is
not possible for Ts; or any other 7, to_stop the counter until it has been re-triggered.
Therefore, events A and B can be said f_o be mutually exclusive since they can never occur
simultaneously, and Equation (4.20) can be simplified to Equation (4.21), which describes

the probability 'of the union of two mutually exclusive events.

P(AUB) = P(A) + P(B) 4.21)
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With the preceding information in hand 1t is now possible to simplify Equation
(4.19), which describes the probability of an oscillator cycle count of 1. Equation (422) is

the result of this simplification. \

P(Count=1) = P([T4 triggers N Ty, stops] U [Ta; triggers N T3 stops] ...
U [T, tiggers N Ty stops])
= P(Ty triggers)-P(Ty; stops) + P(Ty; triggers)-P(T s stops) ... +

P(T g tri ggers)-P(T a4 Stops) : (4.22)

Finally, as shown in Equation (4.23), it is possible to write a simplified general equation to
dé_termine the probability of any oscillator cycle count. The symbol ‘M’ in Equation (4.23)

represents the index of the last 7 that is applied to the array of arbiters.

M-—j :
P(Count = j)= " P(I,, triggers)- P(T,, ; stops) (4.23)
i=l ’

The equation which describes the probability of a specific 7, stopping the oscillator cycle
counter is given in Equation (4.24). This follows directly from the analysis used while
writing the equation that specifies the probability of triggering the oscillator cycle counter,

which for the sake of convenience has been reproduced below.

i+j—-1 - :
P(Td(i+j) stops) = P(Td(i+j) 21.,,) HP(Td(k)_< Lso2) . ' 4.24)
k=i+l
. i-1 .
) P(Td(i) trlggers) = P(Td(i) 2 tsol ) ’ HP(Td(k) < t:ol) (425)
k=1

Now that it is possible to determine the probability of any oscillator cycle count, this
information can be used to plot the probability of a range of oscillator cycle counts when the

inputs to Arbiter2 are both reversed and normal, as shown in Figure 4.12.
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Figure 4.12: Probability of oscillator cycle counts when Arbiter2 has both normal and
reversed inputs.

Through inspection of Figure 4.12 it can be seen that the PDFs of the oscillator cycle counts
closely resemble Gaussian PDFs, which as stated earlier is the direct result of the addition of
Gaussian teinporal noise to the applied time intervals. Therefore, a good approximation of
the oscillator cycle count when the inputs to Arbiter2 are either reversed or normal can be -
obtained by calculating the mean of the appropriate PDF. If these mean oscillator cycle
counts are known, then estimating twice the sampling offset of Arbiter? is a matter of
calculating the difference in these mean values and mulﬁplying by T4 The result is written
in Equation. (4.26), where state S = 0 indicates that the arbiter’s inputs are connected

normally, and state S = 1 indicates that its inputs are reversed.

étso =(/uS=0—luS=l)TA (426) '
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Equation -(4.26) has been written with the assumption that the PDFs of the applied time
intervals are perfect Gaussians. Howéver, this assumption is only valid when an infinite
number of time intervals are applied to the arbiters. In normal circumstances only a finite
number of oscillator cycle counts can be recorded due to calibration time constraints. as well
as physical limitations such as the depth of the oscillator cycle counters. Therefore, to be of
any practical use, Equation (4.26) must be rewritten to account for these realities. Such an
equation has been written in Equation (4.27), where N refers to the number of oscillator cycle

counts recorded when S=0or 1.

4.27)

totalCycleCount g _, totalCycleCounty _, N
2t, = ~ - v T,

Next, Equation (4.27) can be rewritten to solve for the sampling offset of an arbiter, as shown

in Equation (4.28).

t, = (totalecleCountS=0 -—totalecleCounts=l)% : (4.28)

This equation is identical to Equation (4.14), and is therefore the core equation of the
proposed SOTDC calibration technique. An analysis of the accuracy of Equation (4.28) and

the proposed SOTDC calibration technique in general will be discussed in Chapter 5.

4.3 Oscillator\NonQIdealities

A

Until this poiht it has been assumed that two perfectly stable oscillators with éknown
frequency difference are available for use during SOTDC calibration, where 7,4/T4 is an
integer. These oscillators are necessary to prodﬁce a periodic sequence of time intervals.
H/o’wever, in reality it is quite difficult if not impossible to obtain a perfectly stable oscillator
with a precisely known frequency. E.ven if 1t was possible to build twb such oscillators, the

frequency of both would need to be chosen very carefully so as to ensure that a periodic

sequence of time intervals could be generated. For example, if the oscillators are named




oscA and oscB with periods of 7, and T, respectively, then 74/T 4, where T4 = Tp - T4, must
be an integer in order to produce a periodic sequence of time intefvals.

| One technique that could be used to eliminate the need for the aforementioned

oscillators is to lock both to the same feference frequency. For‘example, a single reference

frequency could be used to generate both osc4 and oscB by means of two Phase-Locked

Loops (PLLs) with different divisors. Figure 4.13 illustrates this technique.

Phase-Locked
Loop #1

fout = A = fi

| — oscA

Phase-Locked
Loop #2

fot=B-* finv

L 1— o0scB

Figure 4.13: PLL implementation of osc4 and oscB.

The output of the two PLLs illustrated above can be described by Equations (4.29) and
(4.30).

T.

fa=A fi, T,= 7” (4.29)
T.

3=B.f., Tp= —g— (4.30)

Now, as long as Equation (4.31) yields an integer result, i.c., O, then the sequence of time

intervals produced from oscA and oscB is guaranteed to repeat itself every QO+l time

_intervals.

(4.31)

o3 l:';N
I
()




Ty=Tg-T4 (4.32)
Substituting Equation (4.32) into Equation (4.31) produces Equation (4.33).

T, (433)

Further manipulation of Equation (4.33) by means of substituting Equations (4.29) and (4.30)

and then simplifying the result yields Equation (4.34).
A (4.34)

Analysis of Equation (4.34) indicates that it is possible to generate a periodic sequence of
time intervals by locking two PLLs to a single known reference frequenéyf’ The only caveat
to using this technique is that 4 and B (the PLL divisors) mu.st be chosen according to
Equation (4.34) such that the resulting O (the number of time inteﬁals before the sequence
repeats itself) 1S an integer. Furthér observation of this technique reveals that 74 does not
need to be calibrated or measured as it can be calculated as long as £, is known. Lastly, it is
possible to reverse the inpﬁt’s to the aI"ray of arbiters within the SOTDC by simply swapping

the di\}isors.of the two PLLs.

4.4 Implementation

The proposed SOTDC calibration technique can be implemented in a variety of ways,

oftentimes requiring only a few, relatively simple, modifications to a basic SOTDC. One

possible arrangement is illustrated in Figure 4.14. -
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‘Figure 4.14: Conceptual circuit view of the proposed calibration technique.
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The arbiters labelled “ARBITER I” through to “ARBITER N” in Figure 4.14 are respénsible
.for time interval measurement, and their sampling offsets must be calibrated. Two additional
arbiters, “REF ARBITER 1” and ‘.‘REF ARBITER 27, are required to realize the function of
Afbiter], i.e., to provide a fixed temporal reference point during calibration. As was the case
for Arbiterl, both arbiters are required to have negative sampling offsets, and thé magnitude
of their sampling offsets must exceed that of any arbiter that is used for time interval
measurement. Ideally, the sampling offsets of the two arbiters should be identical. In order
* to achieve such stringent matching requirements, the sizes of the transistors which comprise
the reference arbiters must be made very large, usually ten times that of a normal arbiter.
This will help to mitigate sampling offset dewviations caused by process, voltage, and
temperature variations.

As illustrated in Figure 4.14, the inpu;[s to REF ARBITER I are connected in an
opposite manner to'those of REF ARBITER 2. In addition, a multiplexer is used to select
between the outputs of the two arbiters, indicating that only one reference arbiter is used at
any given time. When S = ‘0", the sampling offset of REF ARBITER 1 is a negative number.
Therefore, its switching-event can be used as a temporal reference point from which it is
possible to trigger an oscillator cycle counter. However, when S = ‘1, the sampling offset of
REF ARBITER 1 chahges sign, thereby negating its role as a fixed temporal reference point.
Nevertheless, it is possible to create a fixed temporal reference point if REF ARBITER [ and
REF ARBITER 2 are used in tandem, as the sampling offset of REF ARBITER 2 should be
nearly identical to that of REF ARBITER [ when § = ‘0’ since its inputs are reversed in
comparison to those of REF ARBITER 1. However, in order to ensure that the temporal
reference point provided by REF ARBITER 1 is nearly identical to the one provided by REF
- ARBITER 2, special attention must be ;;aid when routing )the inputs to ‘these arbiters.
Otherwise, any mismatch in the input routings may result in a ;igniﬁcant difference bétween

the sampling offsets of the two arbiters.
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In order to de_:tect a reference arbiter switching-event, a “REFERENCE ARBITER

‘SWIT CHING-EVENT DETECTOR” block is required. This swifching-event detector samples

the output of the reference arbiter multiplexer on the rising edge of a delayedvversion of oscA.

When a switching-event is detected, the “DATA CAPTURE, STORAGE, AND OUTPUT”

| block is notified. This block consists of N oscillator cycle counters, one for each arbiter. The

notification triggers the couﬁters to begin counting on the rising edge of osc4. Each counter

continues to increment its count until a switching-event is detected at the output of its

respective arbiter. A more detailed circuit implementation of each of thé aforementioned
blocks can be found in Appendix A.

It is important to note that the oscillator cycle counters required by the proposed
calibration technique are almost always used in a basic SOTDC to quickly store the results of
a large number of time interval measurements. Therefore, fhese counters would not normally
increase the area of an SOTDC. However, it is possible to reduce the arca consumed by
these counters by sharing only one amongst the N arbiters and calibrating each arbiter
sequentially. It should also be mentioned that care must be taken when routing the START |
and STOP inputs of an SOTDC. Otherwise, électromagnetic coupling between these two
input lines may significantly alter the oscillator cycle counts, which would adversely affect
the accuracy of the proposed calibration technique. Lastly,-two additional circuits not
illustrated in Figure 4.14 are requifed' for successful implementation of the proposed
calibration technique. These circuits include a Gaussian noise generation circuit [37] and a

voltage-controlled delay buffer [38]. Together these circuits can Be used to generate and then
| convert Gaussian noise from the voltage to tﬁe time domain, which in turn is used to

modulate the time intervals applied to an SOTDC during calibration.

4.5 Summary

The practical benefit accrued from the use of the proposed calibration technique is the
ability to perform calibration without knowledge of the values of the time intervals applied to

the SOTDC during calibration. Only knowledge of the temporal difference between adjacent
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time intervals is required. This information can be acquired through the selecﬁon of a
reference frequency (f,) and PLL divisors (4 and B) according to Equation (4.34). In
addition, there is no need to apply a curve fitting function to the calibration results. Post-
processing of the results consists of simple subtraction, multiplication, and division
.operations.  Therefore, the post-processing requirements of the proposed calibration
technique are much less demanding than those of either the diréct or the added noise-based

calibration techniques. Chapter 5 will present a thorough analysis of the accuracy of the

proposed calibration technique.




Chapter 5

Results and Analysis

The proposed SOTDC calibration technique has been presénted in Chapter 4. This
presentation included a discussion of the proposed calibration technique’s principle of
operation as well as a conceptual circuit-based implémenfation. In addition, an equation was
presented to estimate the sampling offset of an arbiter assuming an absence of temporal noise
in both the arbiters and the time intervals. A theoretical bound was then placed on the error
-of the proposed calibration technique given an absence of temporal noise in both the arbiters
and the time intervals, and this bound was shown to be idéntical to that of the direct
calibration technique assuming the samé conditions. Next, the discussion progressed towards
the considération of thermal noise in the arbiters and Gaussian temporal noise in the sequence
of time intervals. A statistically-based mathematical equation was developed to gain further
insight into the operation of the proposed calibration technique in the presence of additive
Gaussian temporal noise. Eventuallgl it was shown that the equation used to estimate the
sampling offset of a noise-free arbiter could also be used to estimate the sampling offsét of an

arbiter exposed to Gaussian temporal noise.
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It was then mentioned that the practical benefit accrued from the use of the proposed
calibraﬁon téchnique is the ability to perform calibration without knowledge of the values of
the time intervals applied to the SOTDC during calibration. Only knowledge of the temporal
difference between subsequent time intervals is required, 1.e., T4 must be known. Lastly, it
was shown that 74 does not need to be calibrated or measured as it can be calculated as long
as the reference frequency and divisofs of the two PLLs which generate osc4 and oscB are
known. However, the error of the proposed calibration technique was not addressed in the

preceding discussion, as it is the topic of this chapter.

5.1 Theoretical Error Bounds

The statistically-based mathematical equations developed in Chapter 4 are reproduced
below. These equations were derived in order to gain further insight into the operation of
the proposed calibration technique in the presence of Gaussian temporal noise.

M~j

P(Count = j)= ZP(Td(,.) triggers)- P(T, ;, stops)
i=1

P(T, ., triggers) = P(Ty;, 2 t,,)- ﬁP(Td(k) <t,)
o
P(Ly, 510ps) = P(Lyiryy 2 153) - k[llP(Td(m L2
The symbol ‘M’ represents the index of the last 7} in the sequence of T that is applied to the
array of arbiters. In addition, the definitions of P(T}; 2 t,,) and P(7y < t,,) are reproduced
below, where the assumption has been made that the time intervals applied to the arbiters

have been altered to fit a Gaussian distribution with a standard deviation much larger than

that of the random temporal noise which is intrinsic to the arbiters, i.€., Gaawed >> Oy, and

therefore, Gomr = Caddea.




1 T,—1t
P(T, 21,)==|1+erf] ~t—2
‘ 2]\ . (o-toml’\/5

P(Tu<to)=1-P(Ta2ty)

These equations can be used to determine the probability of any oscillator cycle count
value. As stated in Chapter 4, estimating the sampling offset of an arbiter is then reduced to
finding the difference in the mean values of the oscillator cycle count PDFs when the inputs
to the arbiters are normal and_ reversed, and then multiplying the result by 7,42 as shown in
Equation (5.1). | |

TA

‘, =(ﬂS=o—us=1)7 (5.1)

i

However, one would only estimate the sampling offset of an arbiter using thése statistically-
basc;,d mathematical equations if they wanted to determine the theoretical error bounds of the
proposed calibration techhique. ‘This is true since the sampling offset of the arbiter in
question is a required parameter of these equations. In addition, the sampling offset
calculated using these equations is very likely to contain the smallest possible proposed
SOTDC calibration technique error given a particular value of 7, and Owrar. This assertion
can be explained by realizing that the PDFs of the time intervals applied to the arbiters are
assumed to be perfectly Gaussian when using the aforementioned equations. However, in
reality only a finite number of oscillator cycle counts can be recorded due to calibration time
constraints as well as physical limitations such as the depth of the oscillator cycle counters.
As a result, the PDFs of the time intervals applied to the arbiters during SOTDC calibration
are not perfectly Gaussian, and it is this deviation that introduces additional error into the
‘actual calibration results. |

In an effort to ascertain the theoretically smallest proposed SOTDC calibration

technique error, a Matlab model has been constructed using the statistically-based
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mathematical equations. This model provides the ability to calculate the minimum error of
the proposed SOTDC calibration technique for any value of T 4 and O The model has
been constructed using an array of 100 arbiters uniformly distributed across one T 4. This was
done to ensure that the results were independent of any particular sampling offset value. The
RMS calibration error of 100 arbiters calculated using four different 74 values and numerous

values of Gy 1 shown in Figure 5.1.

> —o—T»=1000ps
—o-TA=100ps
-a-Ta=10 ps
Ta=1 ps
1 10 100 1000 10000
Ootal [PS]
Figure 5.1: Minimum error of the proposed calibration technique across four different
T4 values.

Inspection of Figure 5.1 reveals that for each value of T4 there is a range of G values
which yield a dramatically lower calibration error (f..) than do the rest. In fact, it appears as
if this range of G,y values yields the lowest calibration error that is achievabie using the
proposed calibration technique. However, this percéived calibration error floor is the result
of a limitation in the numerical accuracy of the computer used to perform the calculations, -

and does not represent an actual limitation in the lowest achievable calibration error for a
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particular 74 value. The tl’L'lC limit may in fact.approach zero as the standard deviation of the
added temporal noise moves closer to some optimal value of Goar.

Inspection of Figure 5.1 also reveals that the'shape of the minimum error curve is
constant across all four T4 values. AS Giorar ié decreased from its optimal value the minimum
calibraition error increases sharply. However, as Gy is deéréased evon further, the minimum
calibration eﬁor eventually saturates. While it is true that the saturation value-is dependent
upon the actual value of 7, it can be shown that T4 and the saturation value scale
proportionally. ~ Analogously, as G 1S incfeased from its optimal value the minimum

.calibration error increases sharply and eventually saturates to a value that is proportional to
Ta.

In order to understand why the minimum calibration error changes the way it does as
Cotar 18 varied from its optimal value, a plot of the oscillator cycle count PDFs for numerous
Cotar Values may prove useful. Such plots are shown in Figure 5.2 and Figure 5.3.
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Figure 5.2: Oscillator cycle counts PDFs for several different values of Grorats all of which
' are < Coprima (T4 = 10 ps).




Inspection of Figure 5.2 reveals that as G,/ 15 decreased from its optimal value, the oscillator
cycle count ?DFS become less Gaussian and begin to more closely resemble a unit impulse.
In fact, if G is reduced to O ps, as is the case with the simplified proposed calibration
technique discussed in section 4.1, the oscillator cycle count PDF transforms into an ideal
unit impulse.. This makes intuitive sense as the oscillator cycle‘coﬁnt must be a constant
value when there is a complete absence of temporal noise in an arbiter. As discussed in
section 4.1 and dertved in section 3.2.1, the RMS calibration error of the proposed SOTDC
éali_bration technique can be obtained using the following equation when G0 = 0 ps:
_ Ty
RMS(t,,) = PN

This assertion can be verified by comparing the results obtained from the preceding equation
with those plotted in Figure 5.1 when G << Goprimar. In summary, the minimum calibration
error of the proposed SOTDC calibration technique increases as O 1S decreased from its
optimal value. This phenomenon can be explained by observing that the mean value of an
oscillator cycle count PDF approaches a whole number as G,y is decreased from its optimal
Value,. thereby increasing the calibration error for arbiters with sampling offsets that are not
integer multiples of 74.

| Inspection of Figure 5.3 reveals that as Gy is increased from its optimal value, the

oscillator cycle count PDFs become less Gaussian and eventually converge to an

exponentially decaying curve.
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Figure 5.3: Oscillator cycle counts PDFs for several different values of Ororats all of which
are 2 Coprimat (4= 10 ps).

Equation (5.2) has been written to mathematically describe the oscillator cycle count PDF
curve When Gio > |tso_arbiter = Lso_ref arbiterl, WHETE o arbirer TEPTESENLS the sampling offset of the
arbiter under calibration and £, rer arsirer the sampling offset of the arbiter used as an unknown

temporal reference point. The variable » represents the oscillator cycle count value.

P(n) = %el"(“)("‘l) T n>0 (5.2)

Equation (5.2) indicates that the probability of a barticular oscillator cycle count value is
éxactly half that of its predecessor. It is also evident from the preceding equation that an
Qscillator cycle count equal to one occfirs with a probé.bility of 0.5 when Giorar >> |tso_arviter -
Lso_ref arviter]-  These two facts can be explained by realizing that once the oscillator cycle
counter has been triggered by a particular time interval, i.e., a time ‘interval that is >
tso_ref arbiter has been applied to the arbiters, any subsequent time interval may exceed fso_arbiter
with a probability of 0.5. This behaviour is a direct result of the relationship between the

added temporal noise and the difference between the sampling offset of the reference arbiter
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and that of the arbiter under calibration, ie., G,o,a1‘>> \tso_arbiter = tso_ref arbiter]. Assuming the

added temporal noise is purely random, i.e.., its future behaviour is not dependent upon its
past., and Ouorar >> |tso arbiter - tx;,_,ef_ arbiter], the probability of a particular oscillator cycle count

can £h6n be found using Equation (5.3). |

Jj-!

P(COllnl = .]) = P(Td(j) 2 tsoharbiter) : HP(Td(k) < tso_arbiter)
. k=1

1 J .
=|—1;j>0
(2j /z (5.3)

Returning to the discussion of the shape of the minimum calibration error curve
(Figure 5.1) when Goar = Oopiimar, 1t 1S now possible to predict the value at which the curve
saturates. For example, it is now understood that when G >> |tso arbiter = tso_ref arbiter], the

shape of the oscillator cycle count PDF is always an exponentially decaying curve. In fact,

’

this is true regardless of the orientation of the arbiter’s inputs, i.€., normal or reversed, as the

- logic presented in the previous paragraph applies to either situation. To be more precise, as

long as Gyowar >> |fso_arbiter = Iso_ref arbiter] hOlds true, then the oscillator cycle count PDF is always
an exponentially decaying curve fhat can be described using Equation (5.2) or (5.3).
However, this infers that the estimation of the arbiter’é sampling offset s always equal to
zero, as shown below, where S = OIindicates the arbiter’s inputs are connected in a normal

manner, and S = 1 indicates that they are reversed.

Lo :(/1s=o _:Us=1)Z2A‘=(O)T7A:0
If the arbiter’s estimated sampling offset converges to zero as Gy 1S increased to the point
WheTe 1t 1S >> |t5o arbiter = Lso_ref arbites|, then the calibration error must saturate at the value of the
arbiter’s sarhpling offset. In fact, this can be observed in Figure 5.1, where each curve
saturates at the RMS value of the sampli/ng. offsets of the 100 arbiters specified in the

aforementioned Matlab model. The saturation value changes from one curve to the next
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since the sampling offséts of the arbiters.are variable as they Have been intentionally chosén
to always span one 7,  This ensures that( the results are independent of any particular
sampling offset value. Further iﬁspection of Figure 5.1 corroborates the assertion that the
saturation value of the calibration error is equal to the RMS value of the arbiters’ sampling
offsets, as it can be seen that the saturation values are broportional to 74

At this point it 'is instrucﬁve to remind the reader that the recommended
implementation of the proposed SOTDC calibration technique does not employ aitemate
routing in order to reverse an arBiter’s inputs. Instead, the divisors of the two PLLs used to

produce the calibration oscillators are swapped to achieve the same effect.

5.2 Realistic Error Bounds

" Now that the theoretical capabilities of the proposed calibration technique have been
presented, it is possible to discuss the accuracy of the proposed calibration technique under a
more realistic set of conditions. Under such a scenario, the assumption that the PDFs of the
time intervals are perfect Gaussians 1s no longer justified, as a practical SOTDC calibration
technique must operate within a finite amount of time. A restriction on the total calibration
timve places a limit on the number of measurements pérformed during calibration, or in the
case of the proposed calibration technique, results in a finite number of oscillator cycle‘
counts that can be recorded. A finite number of oscillator cycle counts translates into time
interval PDFs that are no longer ideal Gaussians, and as these time intervals become less
Gaussian, so then do the PDFS of the oscillator cycle counts. Finally, as the PDFs of the
oscillator cycle counts become less Gaussian, a greater error is introduced into the arbiter
sampling offset estimation. This is true since a corﬁponént of the equation used to estimate
the sampling offset of an arbiter involves calculating the mean value of the oscillator cycle

counts when the inputs to the arbiter are both reversed and normal, as shown in Equation

(5.4).




(5.4)

' totalCycleCount_ totalCycleCount;_ \ | T,
= - -
- so N N 2

It is possible to test the assertion that the error of the 'proposed SOTDC calibration

technique should decrease as the PDFs of the oscillator cycle counts become more Gaussian. v

For example, it has been shown that the PDF of a random variable approaches that of a
Gaussian distribution as the number of trials ncreases [39].l Therefore, it would seem logical
for the errof of the proposed SOTDC calibration technique to decrease as the number of
measurement repetitions is increased. In an effort to validate this theory, a behavioural
Matlab model representation of the proposed SOTDC calibration technique has been
constructed. The decision to construct the model usi‘ng Matlab as opposed to a circuit-based
simulation environment was made on the basis of simulation time. The Matlab model was
found to execute simulations up to 100 times faster than the circuit-based model, As the
circuit-based model did not provide any additional insight into the capabilities‘of the
proposéd SOTDC calibration technique, _it was decided to collect all data using the Matlab
model.

The input to the aforementioned Matlab model consists of the following four

parameters:

e The number of arbiters in the SQTDC.

o T4 the temeoral difference in tﬁe periods of the two oscillators that are used to
calibrate the SOTDC.

® O the standard deviation of an arbiter’s safnpling offset. This number includes
‘the Gaussian temporal noise that is added to the output of one of the calibration
oscillators, in addition to the Gaussian temporal noise that is intrinsic to each

arbiter.

e N: the number of measurement repetitions.
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These four parameters can be used to predict the RMS calibration error (¢,.) of the estimated
sampling offsets of an array of arbiters. To ensure that the results of this model are
independent of any particular samplihg offset value, the sampling offsets of the arbiters have

been uniformly distributed across.one 7s. The model’s method of operation can be described

as illustrated in Figure 5.4.
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Figure 5.4: Flowchart describing the method of operation of the proposed SOTDC
calibration technique Matlab model.
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Each ‘Matlab ‘simulation produces an array of oscillator cycle counter values; where
the length of the array is equal to the number of arbiters in the simuiéted SOTDC. In order to
obtain the RMS calibration error of the estimated sampling offsets, two distinct simulations
must be performed, each consisting of N measurement repetitions. The first simulation is
performed with the SOTDC’s oscillator inputs connected in a normal manner, while the other
with the inputs effectively reversed. Therefore, the first simulation yields the number of
oscillator cycles elapsed between the switching-events of the reference arbiter and the arbiter
under calibration, while the second simulation yields the number of oscillator cycles elapsed
when the inputs to the arbiter under calibration are reversed. The two oscillator cycle counter
value arrays produced by these simulations can then Be used to calculate the estimated arbiter
sampling offsets. Equation (4.28), which for the sake of convenience has been reproduced
below, should be used to compute the estimated arbiter sampling offsets.

t, = (gotalecleCount s—o —totalCycleCount; _, )ETAN

Lastly, the RMS calibration error can be determined using the array of estimated arbiter
‘sampling offsets.

| As stated earlier, the error of the proposed SOTDC calibration technique is expected
to decrease as the number of measurement repetitions is increased. This conjecture was
formed Based on two interrelated assumptionsj the first of which states that the mean value of
an oscillator cycle count PDF will deviate from that of an ideal Gaussian, even when an
optimal value of Grorar is used. The seéond assumption states that this deviation should
decrease as the number of measurement repetitions is increased. Fortunately, it is now
possible to validate thi:s conjecture usin[g the Matlab model of the proposed SOTDC
calibration technique. | |

The aforementioned model has been used to produce three oscillator cycle count .

‘histograms, each of which have been generated using a differént_ number of measurement

88




repetitions. In addition, an optimal value of G, has been used, while only one arbiter was

simulated. These histograms are shown in Figure 5.5.
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Figure 5.5: Three oscillator cycle count histograms, generated using a different number
' of measurement repetitions.

As it is difficult to visibly discern the, mean values of these histograms, their pertinent

properties have been compiled into Table 5.1.

Table 5.1: Properties of the oscillator cycle count histograms illustrated in Figure 5.5.

N Mean [ps] Standard Deviation [ps] Error [ps]

1000 412560 - ' 4.440 0.5150
10 000 41.0178 4.450 : 0.3135
100 000 41.0037 ' ‘ 4.547 . 0.0184

Analysis of the results presented in Table 5.1 reveals that ‘while increasing the number of

measurement repetitions from 1 000 to 100 000 doesn’t appear to drastically alter the mean
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value or standard deviation of the oscillator cycle coﬁnt histograms, the RMS error of the
_estimated arbiter sampling offset is observed to decrease by more than a factor of twenty-
five. In addition, the histograms can be seen to converge towards a Gaussian distribution as
the number of measurement repetitions is increased. In summary, the results of Table 5.1

| demonstrate that relatively small deviations in the mean value of an oscillator cycle count
‘PDF can have a significant impact on the accuracy of the estimated value of an arbiter
sampling offset. However, the magnitude of these deviations, and hence the error they
introduce into the estimated arbiter sampling offset, can be drastically decreased by
increasing the number of measurement repetitions.

Now that the Matlab model bf the proposed SOTDC calibration technique has been
showﬁ to yiéld sensible results, it is possible to perform a more thorough error analysis. For
example, it is now possible to compare the error of the proposed calibration technique, given

(a certain number of measurement repetitions, with the minimum error calculated using the
statistically-based mathematical equations.presented in section 5.1. One way to perform this
éompan'son would ir_n‘/olve: plotting the realistic error of the proposed calibration technique
alongside the theoretical results of Figure 5.1. Indeed, suéh a.plot has been created, as shown

in Figure 5.6, where the RMS calibration error of 100 arbiters have been calculated using

numerous values of 6., while 74 has been fixed at 10 ps.
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Figure 5.6: Comparison of the theoretical and realistic RMS error of the proposed
calibration technique when 7,4 =10 ps.

Through inspection of Figure 5.6 it is possible to form numerous insights regarding
the capabilities of the proposed SOTDC calibration technique in addition to the correctness
of the two Matlab models that have been created .in order to predict its behaviour. Firstly, it -
can be observed that the realistic and theoretical calibration errors saturate at the same value
when Gy 15 decreased or increased from its optimal value. This fact serVeé fo further
increase the credibility of the two Matlab models, which together predict the theoretical and
practical capabilities of the proposed SOTDC calibration technique, as these models employ
completely different algofithms. Secondly, it can be observed that both -models produce
similar optimal values of G Howevér,' the-range of optimal G/ values produced by the
realistic modql is wider than that of the theoretical model. This can be explained by realizing

that a practical implementation of the proposed SOTDC calibration technique is subject to

two different sources of error, whereas a theoretical implementation is only subject to one.




For example, both models predict that the calibration error will increase aé Ototal 1S moved
farther from its obtir_nal valué. The effects of a non-optimal 6,4 value on an oscillator cycle
count PDF: are depicted in Figure 5.2 and Figure 5.3. However, only the realistic model is
capable of predicting the effects of a ﬁnitg numi)er of measurement repetitions on an
oscillator cycle count PDF, and hence the calibration results, as depicted in_ Figure 55
Therefore, as Gy 1s brought close to its optimal value, fhe realistic model predicts that the
. largest contributor to an arbiter’s calibration error is the finite ‘numl.)er of measurement
repetitions. As a result, arbiter calibration performed using a finite number of measurement
repetitions is shown tc‘> produce a muc/:h higher errorjthan is otherwise theoretically possible.
Conversely, as Gar is moved farther from is its optimal value, an arbiter’s calibration error is
predicted to be dominated‘ by the non-optimal Gy value.

Perhaps the most useful insight that éan be learned through inspection of Figure 5.6
concemns the relationship between the RMS error of the estimated arbiter sampling offsets
and the number of measurement repetitions. It can be seen that in general, increasing the
number of measurement repetitions does indeed decrease the RMS error of the estimated
arbiter sampling offsets. However, since the temporal noise that is added to the butput of one
of the calibration oscillators is random in nature, and therefore cannot be guaranteed to
conform to a Gaussian distribution ovér finite time intervals, it is possible for the RMS error
to actually increase as the number of measurement repetitions is increased. Nevertheless, the
probability of this scenario quickly diminishes as the number of m.easurement repetitions 1s
further increased. This assertion can be supported by examining Figure 5.7, which depicts

J

the three non-ideal curves shown in Figure 5.6 over an optirﬁal range of Oy values. Also

shown in Figure 5.7 are three linear approximations to the aforementioned data sets.
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Figure 5.7: The RMS error of the proposed calibration technique when T,=10 PS,
plotted for three different number of measurement repetitions (N).

While it can be observed from Figure 5.7 that it is possible for a tenfold increase in
the number of measurement repetitions to have little positive effect on the RMS calibration
error of the arbiter sampling offsets, it can also be seen that a one hundredfold increase will
almost certainly provide a substantial reduction in this error. For example, if the linear
approximations are evaluated at G, = 30 ps, which is the optimal value of G, predicted by
the statistically-based model, the resulting RMS calibration errors are approximately 0.3 ps,
0.06 ps, and 0.02 ps when N =1 000, 10 000, and 100 000, respectively. Therefore, a fifteen
fold reduction in the RMS calibration error of the arbiter sampling offsets is observed when
the number of measurement repetitions is increase& by a factor of one hundred. However, it
should be reiterated that due to the random nature of the temporal noise that is used to vary
the éscillator time intervals, this improvement may vary significantly from one calibration to

the next. While it is possible to reduce this random vanation by fitting the oscillator cycle

counts histogram to-a Gaussian PDF curve before calculating its mean, similar to what is




perfonﬁed' as part of the Added Noise calibration technique of section 3 .4, this would require
a far more onerous post-processing step Without contributing a meaningful improvement in
calibration accuracy. As a final observation of Figure 5.7, it can'be seen that it is possible to
achieve an RMS calibrationl error well below 0.1 ps when T4 = 10 ps through increasing the
number of measurement repetitions to 100 000.

In order to understand the repeatability of the aforementioned results and their
reliance on the chosen value of T, three additional plots have been created, each using a
different value of 7, Figure 5.8 depicts four data sets which are very similar to the ones
shown in Figure 5.7, however in this case T, has been increased to 100 ps. Three key
observations can be made from inspection of Figure 5.8. Firstly, increasing the number of
measurement repetitions from 1 000 to 100 000 i‘s observed to decrease the RMS calibration
error by approximately a factor of ten. ThiS result 1s In /agreement with what was observed
when 7, =10 ps. Secondly, a tenfold increase in the RMS calibration error is observed
across all three measurement repetition values when compared with the results obtained when
T, = 10 ps. Thirdly, and | following directly from the two previous observations,
apprdximately the same RMS calibration error is achieved with 100 000 measurcment
repetitioné_ when T4 = 100 ps as is achieved with 1 000 measuréments when T4 = 10 ps.
Therefore, és Tais inéreased by a factor of ten, the number of measurement repetitions must

be increased by a factor of one hundred in order to maintain the same calibration accuracy.
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Figure 5.8: Comparison of the theoretical and realistic RMS error of the proposed
calibration technique when 74= 100 ps.

Depicted in Figure 5.9 are four additional data sets produced when T,4is further increased to 1
ns. Once again, the same three key observations can be made. For example, increasing the -
" number of measurement repetitions by a factor of one hundred is shown to yield nearly a ten
fold decrease in RMS calibration error. However, the predicted RMS calibration error is still
approximately ten times greater than what was shown to be possible when 74 = 100 ps,v
assuming the same number of measurement repetitions are performed. Lastly, in order to
achieve the same RMS calibration error as was predicted when 74= 100 ps, the number of
measurement repetitions must be increased by a factor of one huﬁdred. Figure 5.10 depicts

the RMS calibration error of the proposed technique when 74= 1 ps:
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Figure 5.9: Comparison of the theoretical and realistic RMIS error of the proposed
calibration technique when 7,=1 ns.
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Figure 5.10: Comparison of the theoretical and realistic RMS error of the proposed
calibration technique when 7,4=1 ps.
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Inspection of Figure 5.10 reveals that it 1s possible to achieve an RMS calibration error as
low as 2 fs when 100 000 measurement repetitions are used. While calibration accuracies in
the order of ferﬁtoseconds are certainly impressive, it is unclear what repercussions this level
of accuracy will have on the required calibration time.

It is possible to calculate the calibration time for any value of 74 or N. The amount of
time requiréd by the proposed calibration technique to perform calibration is proportional to
N and M, the number of measurement repetitions and the number of time intervals per
measurement repetition, respectively, and inversely proportional to fp, the frequéncy at which
the time intervals are applied to the START and STOP inputs of an SOTDC. To obtain the
total calibration time, this result must then be multiplied by a factor of two. This is true since
the calibration procedure is not complete until the oscillator cycle counts have been captured
using both the normmal and the reversed orientations of the SOTDC’s inputs. This relationship

is summarized in Equation (5.5).

tm,=2MV ' (5.5)
o fB

While Fquation (5;5) can be used to calculate the reduired calibration time of the
propésed calibration technique, it is not useful when predictihg the impact of a particular
value of T4 on the total calibration time. A more convenient form éf Equation (5.5) can be
derived by recognizing that M, the number of time intervals per ‘measurement repetition, is

actually equivalent to 0, as shown in Equation (5.6).

TA

M=-=
T,

=Q ' (5.6)

As discussed in Section 4.3, O is an integer chosen through careful selection of 4 and B, the

PLL divisors, according to Equation (5.7).
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Therefore, after substituting Equation (5.6) into Equation (5.5), a new calibration time

expression is produced, as shown in Equation (5.8).

, __2N_ _ 2N _20N
“ fAfBTA. fA_fB fB

(5.8)

While any one of the three relationships of Equation (5.8) can be used to calculate the

total calibration time, it is most sensible to use an expression that does not include 74 as a
.

parameter. This is true since T, is actually a function of the chosen calibration oscillator
parameters, 1.€., fi,, A, and B, and is therefore not independently _seleéted. As previously
mentioned, the calibration oscillators must prodube a periodic sequence of time intervals,
which can only be achieved through careful selection of the PLL divisors according to
Equation (5.7). Once f;, and the PLL divisors have been chosen, T4 can be calculated
according to Equation (5.9). '

1, = !
Qfa

5.9

If the chosen calibration oscillator parameters yield an unacceptable value of 74 for the given
accuracy constraints, then one or all of f;,, A, and B must be reselected.. Table 5.2 contains
four sets of PLL divisors that can be used to produce four different T4 values, each differing

from its predecessor by approximately a factor of ten.

J

Table 5.2: Four PLL divisors (4 and B) and their corresponding T4 values (f;; = 50 kH).

A B o T, [ps]
3335 2668 4 149931
4191 4064 32 149.13
5397 5376 256 14.47
8196 8192 2048 1.19
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Using the data contained in Table 5.2 it is possible to calculate the required calibration time
of the proposed calibration technique over a range of 7,4 values spanning approximately 1.2
ps to 1.5 ns. Table 5.3 contains the resultant calibration times, with each T value calculated

across three different measurement repetitions numbers (N).

Table 5.3: Time required to calibrate an SOTDC, assuming the PLL divisors of Table
5.2 (fin = SO kH) [s].

T4 [ps] _
_ - 14993 1491 14.5 1.2
1000 | 598E-05 3.15E-04 1.90E-03 1.00E-02
N | 10000 | 598E-04 3.15E-03 1090E-02 1.00E-01
100 000 | 598E-03 3.15E-02 190E-01 1.00E+00

With this information in hand it is now possible to determine the effect that varying
the value of 7,4 has on both the calibration time and accuracy of the proposed calibration

techmque. To this end, the data contained in Table 5.3 has been plotted alongside a subset of

the data illustrated in Figure 5.6 through Figure 5.10 inclusive. .
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Figure 5.11: The effect of varying 74 on the calibration time (tcwr) and the calibration
error (z.) (calculated using} an optimal value of Gy).

It 1s immediately evideht by inspection of Figure 5.11 that the calibration error is adversely
affected by an increase in the value of 74, while just the opposité is true of the calibration
time. While both observations are intuitive and have been supported either in theory or
simulation, it is important to note that the trade-off which exists between calibration time and
accuracy does have an intersection point, i.¢., it is possible to assign an equal weighting to,
both calibration time and accuracy. However, since this intersection point is a function of N,
the number of measurement repetitions, no universally optimal value of 7, exists. In fact, it
can be observed from Figure 5.11 that the intersection points of the calibration time and error
data sets decrease as N is lowered, while they é.lso occur at lower values of 7. Therefore, if
both calibration time and error are of equal importance, then.it is possiblé to minimize béth
by reducing the number of measurement repetitibns employéd during calibration in addition

to appropnately reducing 7.

N
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While 1t is possible to reduce the calibration time and error of the f)roposed
- calibration technique by lowering both N and 74, the latter may require careful consideration.
For_éxa.mple, as shown in Table 5.2, both PLL divisors (4 and B) must be increased in order
to. produce a lower vélue of T4, assuming the PLL input frequency (f;,) remains constant.
While the desired frequency synthesis can be achieved by increasing the depth of the
counters in the PLL fe_:edback path or by employing a cascaded PLL structure, a more serious
issue of unwanted temporal noise may exist. For example, as 7, i1s decreased, the time
intewals produced by the outputs of the two calibration oscillators could begin to deyiate
substantially from their intended distributions, depending upon the nature of the unwanted
temporal noise. Therefore, there may be a practicél limit to how far T4 can be lowered before

unwanted temporal noise begins to limit the calibration accuracy of the proposed calibration

technique.
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Chapter 6

Conclusions and Future Work

As CMOS technology continues to advance, circuit timing problems are begoming more
common and yet more difficult to diagnose. As a result, several sophisticated embedded time
mterval measurement techniques héve been proposed to help‘address this growing problem.
Perhaps the most promising of measurement techniques is the “sampling offset”-based flash
“ time-to-digital converter (SOTDC). This embedded time intgrvaf measurement technique is
capable of picosecond measurement accuracies in additton to millisecond test-times.
However, the accuracy of an SOTDC is strongly dependent upon the capabiljties of its
calibration technique, and present SOTDC calibration techniques suffer from some very
serious limitations. In fact, these limitations are so severe that present calibration techniques

are impractical under realistic production test conditions. .

6.1 Summary and Contributions

In order to address the need for a feasible and accurate embedded SOTDC calibration
technique, a new calibration technique ‘has been proposed. This technique leverages the

advantages of the added noise-based calibration technique, while doing away with its
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limitations. The proposed calibration technique’s method of operation can be described as
follbws:

1) Two PLLs, each with carequy chosen divisors, are locked to a single known -
reference frequericy and used t‘o generate a periodic sequence of time intervals.

2) The output of one PLL is modulated such that its period distribution confoﬁns toa
Gaussian PDF, whose standard deviation has been appropriately selected.

3) A counter is then used to store the number of PLL clock cycles that are elapsed
between the switching-events of a reference arbiter and the arbiter under calibration.
Several thbusand measurements are acqumulated by the counter in order to increase
the accuracy of the estimated arbiter sampling offset.

4) The PLL divisors are then swapped in order to effectively reverse the inputs to the
arbiter under calibration, and the counter is once again uséd to store the number of
PLL clock cycles that are elapsed between the switching-events of a reference arbiter
and the arbiter under calibration. |

5) The sampling offset of the arbitey under calibration is then estimated by performing

simple mathematical operations on the captured counter values.

The main contribution of the proposed calibration technique is the ability to perform
calibration without knowledge of the values of the time intervals applied to the SOTDC
during calibration. Only knowledge of the temporal difference between adjacent time
intervals 1s required. This information can be acquired through the selection of a reference
frequency and PLL divisors according to Equation (4.34). Iﬁ addition, there is no need to
apply a curve fitting function to the calibration results. Post-processing of the results consists
of simple subtraction, multiplication, and division operation’s. Therefore, the post-processing
requirements of the proposed calibration technique are mﬁch less de.manding than those of
either the direct or the added noise-based calibration techniques.

In order to understand the capabilities of the proposed calibration technique, a set of

statistically-based mathematical équations were derived. These equations were used to
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predict the estimated sampling offset of an arbiter calibrated usir_rg trle proposed SOTDC
calibration technique, and thus to determine the theoretical accuracy of this technique. These
results were then cornpared to those of a behavioural Matlab model of the proposed
calibration technique. It was concluded that the accuracy of the proposed technique is
determined by the number of measurement repetitions performed during calibration,
assuming a ﬁxed value of 74 and an appropnate value of G,,. Finally, it was shown that it is
possible to obtain both sub-picosecond calibration accuracies and sub-100 millisecond
calibration times, while still placing realistic demands on the time intervals used during
calibration, and hence the calibration oscillators. Therefore, the desirable features of the
added noise-based calibration technique, i.e., sub-picosecond calibration accuracies using
realistic time interval resolutions, have been maintained, however the impractical

implementation requirements of such a technique have been eliminated.

6.2 Future Work

While the SOTDC calibration technique proposed in this thesis has been discussed in
‘some detail, the opportunity for further investigation remains possible. The following

subsections present three avenues of future work.

6.2.1 The impact of non-idealities

While it has been assumed over the course of this thesis that thermal noise is the only
source of noise in an ra,rbrter, in realty this is not the case. An arbiter fabricated in a modern
CMOS process is subjected to several different sources of noise, eaoh of which need to be
considered in order to truly understand the potentral of the proposed calibration technique.
For example, power supply and substrate noise may alter the sampling offset of an arbiter in -
an unpredictable manner. However; it remains to be seen whether the resulting sampling

offset variation would be significant enough to impact the recorded number of oscillator

cycle counts, and hence the accuracy of the proposed technique. This is true since the




temporal noise that is added to each time interval, or equivalently to the arbiters themselves,
may be so large as to dominate over the undesirable noise sources.

Similarly, it has been assumed during the course of this thesis that it is possible to
generate a periodic sequ.ence of time intervals by locking two PLLs to a stable reference
frequency. However, as shown in Table 5.2, the divisors employed in each PLL may bé in
the order of several thousand. While it is possible to achieve the desired frequency synthesis
by employing a cascaded PLL structure, the resultant output signals may contain a significant
amount of unwanted phase noise. Again, the effect of the undesired phase noise may depend
upon the extent to whicﬁ the time intervals are intentionally modulated. However, in order to

understand the potential of the proposed calibration technique, the limitations imposed by

PLL phase noise must be identified.

6.2.2 Circuit implementation

In order to prove the viability of the proposed calibration technique, a .working
implementation must first be demonstrated. One possible embodiment of the proposed
calibration technique can be found in Appendix A, along with the schematics of a 16-bit
SOTDC circuit. As shown in Appendix A, the output of each arbiter, including the reference
arbiter, is sampled using a delayed version of one of the calibration oscillators (PLLs). The
reference arbiter is sampled in order to detect its switching-event, which is then used to
trigger the 16 24-bit oscillator cycle counters of the arbiters under calibration. However, an
additional counter is {equired in order to- determine the. correct switching-event of the
reference arbiter, as the addition of temporal noise to the time intervals can induce a false
reference arbiter switching-event. Therefore, a éounter is used as a shift-register to store the
sampled output of the reference arbiter over 24 cycles. * This data can then be used to -
determine the number of oscillafor cycles for which the reference arbiter output has been
sampled as logic ‘0. |

In theory, as the number of consecutive ‘0’s in the shift-register grows, it becomes

increasingly likely for a valid reference arbiter switching-event to occur. However, this




¢

hypothesis has not been proven mathematically or experimentally, and 1s therefore a )
candidate for further exploration. Similarly, it should be demonstrated expenmentally that a
reference arbiter with'a constant sampling offset, irrespective of the orientation of its inputs,

can be constructed from two over-sized symmetric CMOS arbiters with matched layouts.

1 6.2.3 Addiﬁonal applications and SOTDC improvements

While the primary focus of this thesis has been the calibration of an SOTDC, the
proposed calibration technique may be useful in a wide variety of applications. For example,
the proposed calibration technique may be used to accuratély calibrate the delay of a variable
delay line, instead of the sampling offset of a symmetric CMOS arbiter. Analogously, the
proposed calibration technique may be used to measure the delay of an inverter driving a
known load. Such information is often helpful when estimating the strength of a CMOS
process, which i-n turn can be used fo calibrate the bias currents of analog circuitry on a
shared die [18]. |

Lastly, a conventional SOTDC, such as the one .presented in this thesis, is
characterized by a limitéd dynamic range, i.e., the ratio of the maximum to the minimum
measurable time interval is generally less than one hundred. Hov\vever, it may be possible to
greatly extend the dynamic range of an SOTDC, and therefore to increaée its scope. For
example, instead of using a single SOTDC to measure a long time intérval, it 1s conceivable
that two SOTDCs could be used to divide the time interval into smaller, more manageable
units; i.e., ones that do not exceed the dynamic range of either SOTDC. Under such a
scenario, it would then be possible to measure the entire time interval by alternating between
the two SOTDCs when measuring the reduced time intervals. The creation of the reduced
time intervals may be achieved by pre-empting t/he STOP signal of the active SOTDC before
its dynamic range has been exceeded, while sirﬁultaneously iniiiating the measurement of a
new time interval on the alternate SOTDC by triggering its START signal. Once this process

has terminated, the counters within the two SOTDCs may be analysed in order to estimate the
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value of the entire time interval. However, this proposal has not been formally investigated,

and as such is a candidate for future examination.
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vAppen'dixA
Circuit Implementation of Proposed

Calibration Technique and 16-bit SOTDC

This appendix contains the schematics of a conventional 16-bit SOTDC circuit, in

addition to those of the proposed calibration techniqué.
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16-to-1 Qutput Mux

16 24-bit qounters

1 Arbiter Counter Trigger circuit

+ 16 Arbiter Control circuits

1 Ref Arbiter Sampling circuit
+ 16 Arbiter Sampling circuits

1 Reference Arbiter .
+ 16 SOTDC Arbiters

HEry

Figure A.11: Layout view of a 16-bit SOTDC and proposed calibration circuit in
0.35 um CMOS (L = 1930 um, W = 690 um). '
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