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Abstract 

As CMOS technology continues to advance, device dimensions will continue to 

decrease, thus enabling the creation of circuits which operate at increasingly greater 

frequencies. However, this increase in operating frequency has resulted, in a reduced 

tolerance for circuit timing uncertainties. Therefore, techniques capable of measuring the 

timing characteristics of multi-GHz signals are needed to help address the growing number of 

timing problems found in modem CMOS circuits. For cost and accuracy reasons, embedded 

time interval measurement techniques which offer picosecond measurement accuracies and 

millisecond test-times are required to overcome these challenges. 

The( "sampling offset" based flash time-to-digital converter (SOTDC) is an embedded 

time interval measurement technique that has recently garnered much attention due to its 

attractive properties. These properties include sub-millisecond test times of multi-GHz 

signals, in addition to the potential for measurement accuracies in the order of picoseconds. 

However, the accuracy of an SOTDC is strongly dependent upon the capabilities of its 

calibration technique, and present SOTDC calibration techniques suffer from some very 

serious limitations. In fact, these limitations are so severe that present calibration techniques 

are impractical under realistic production test conditions. 
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This thesis presents the design and analysis of a novel embedded SOTDC calibration 

technique. The proposed calibration technique offers the potential for both sub-picosecond 

calibration accuracies and sub-100 millisecond calibration times. However, the main 

contribution of this work concerns the suitability of the proposed technique with a realistic 

production test environment. The capabilities of the proposed calibration technique have 

been proven using both mathematical analysis and behavioural modelling simulations. 
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Chapter 1 

Introduction 

As CMOS technology continues to advance, device dimensions will continue to 

decrease, thus enabling the creation of circuits which operate at increasingly greater 

frequencies. However, this increase in operating frequency has resulted in a decreased 

tolerance for circuit timing uncertainties. In addition, the behaviour of a circuit, and 

therefore the timing of its signals, is becoming increasingly sensitive to environmental 

influences. These environmental influences may disturb the operation of a circuit through a 

number of mechanisms. These mechanisms include capacitive and inductive coupling, as 

well as the injection of noise into the power-supply or the substrate of a CMOS circuit [1,2] . 

As these mechanisms are becoming increasingly prevalent in modem CMOS circuits, critical 

path signals are increasingly susceptible to unwanted timing variations. 

Unintended timing variations in a signal may cause a circuit to become non-functional. 

Therefore, the ability to detect, diagnose, and i f possible, repair timing problems is of the 

utmost importance i f the reliability of a CMOS circuit is to be guaranteed. However, 

detecting timing problems in multi-GHz signals can be a very challenging task due to the 

extremely short time intervals that must be measured. For example, a 10% deviation in the 

1 



period of a 10 GHz signal translates to a mere 10 ps. Without the ability to detect timing 

problems in multi-GHz signals, it is not possible to diagnose or repair them. As a result, 

techniques capable of detecting and diagnosing timing problems in multi-GHz signals are 

needed to help address the growing number of timing issues found in modern CMOS circuits. 

1.1 Time Interval Measurement 

The detection or diagnosis of a timing problem in a CMOS circuit is often accomplished 

with the help of a time interval (TI) measurement technique. TI measurement is a time 

domain analysis technique that is often used to deduce the timing characteristics of a signal 

by estimating its threshold crossings in the voltage domain [3], Many types of TI techniques 

exist, however they all share a common goal of quantifying the amount of uncertainty in the 

timing of a signal. Once this timing uncertainty has been quantified, predictions regarding 

the probability of a circuit's failure can be made. Timing uncertainty is usually referred to as 

"timing jitter" or "absolute jitter", which is defined as the deviation from the ideal timing of 

an event, and can be accumulated over many cycles [4, 5]. This definition is illustrated in 

Figure 1.1, where the amount of timing jitter in a signal under test (SUT) is indicated by the 

degree of uncertainty in the temporal location of a signal transition. 

Another useful definition that is illustrated in Figure 1.1 is that of the jitter budget or 

tolerance of a design, which is the maximum amount of timing jitter that can exist in a signal 

before the circuit fails to operate reliably. Two additional classifications of jitter exist, as 

Ideal Period 

SUT 

j Timing Jitter 

Figure 1.1: T i m i n g j i t te r in a signal under test (SUT). 
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illustrated in Figure 1.2. The first of these classifications is the most common of the three, 

and is known as "period" jitter. Period jitter is simply the deviation of a single period from 

its ideal value. The second classification is known as "cycle-to-cycle" jitter, and is a measure 

of the difference between adjacent cycles. 

Ideal Signal / \ / \ / \ / 

j « — T i T 2 T 3 

Actual Signal / \ / \ / \ / 

A B C 

Period Jitter: Ti - T 0 T 2 - T 0 T 3 - T 0 

Cycel-to-Cycle Jitter: T 2 - Ti T 3 - T 2 

( T i + T 2 ) ( T ^ T j + Ts) 
Timing Jitter: ^ - T 0 - 2 T 0 - 3T 0 

Figure 1.2: Three classifications of jitter. 

Each of the aforementioned types of jitter may contain both random and deterministic 

components, depending upon the source of the jitter. In any case, it is possible to predict the 

probability with which a signal will exceed a circuit's timing margins by constructing the 

probability density function (PDF) of the period jitter [6]. The PDF of a purely random 

source of period jitter is illustrated in Figure 1.3 (a). Inspection of Figure 1.3 (a) reveals that 

random period jitter can be characterized by a Gaussian distribution. Since a Gaussian 

distribution is unbounded, its peak-to-peak value (the difference between the shortest and 

longest cycles) is also unbounded, and is highly dependent upon the number of cycles 

measured. The 'PDF of period jitter resulting from both random and deterministic sources is 

illustrated in Figure 1.3 (b). The shape of this PDF is determined by the convolution of the 
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random and deterministic components' PDFs [7]. A s deterministic jitter is bounded in 

nature, its peak-to-peak value is also bounded. 

CC 
. Q 
O 

• ^ »J Jitter Budget / 
/ ^ v 1 Tolerance 

1 \ ' / "o\ J 
1 \ 1 

1 \ i __, • 

»J Jitter Budget / 
I Tolerance 

-15 -10 -5 0 5 10 

Period Jitter [ps] 

(a) 

15 -15 -10 -5 0 5 10 

Period Jitter [ps] 

(b) 

Figure 1.3: P D F of random period jitter (a), and a combination of random and 
deterministic period jitter (b). 

A s the function o f a time interval measurement technique is to accurately estimate the 

duration o f a time interval, multiple measurements o f a signal's period can be performed and 

subsequently compiled into a histogram. If this histogram is normalized by the number o f 

measurements performed, a P D F o f the signal's period jitter can be produced. However, 

before an accurate P D F can be produced, many cycles need to be measured [8]. This idea is 

illustrated in Figure 1.4, where the random period jitter o f a signal is estimated using three 

different histograms. Each histogram is drawn using an increasing number o f measurement 

results. 

in 
m 
o 
>» 
O 

CD 

Jitter Budget / 
Tolerance 

-15 -10 -5 0 5 10 
Period Jitter [ps] 

15 

# Cycles 
Measured 

n - N 3 

• - N 2 

NT < N 2 < N 3 

Figure 1.4: T h e growth of a random period jitter histogram as the number of 
measurement is increased. 
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Inspection of Figure 1.4 reveals that both the standard deviation and the peak-to-peak jitter of 

the histogram may vary as the number of measurement cycles is increased. Although a few 

thousand measurements are often sufficient to provide an accurate estimate of standard 

deviation, hundreds of thousands, or even millions of measurements are often required in 

order to make an accurate prediction of the peak-to-peak jitter in a multi-GHz signal. Such 

information is frequently used as a metric when determining the probability of circuit failure 

[8]. 

While many different time interval measurement techniques exist [9], the choice of 

which technique to employ for a given application ultimately depends on the measurement 

requirements. For instance, the measurement of period jitter at giga-bits-per-second (Gbps) 

data rates necessitates very accurate results, as the jitter budget at these speeds is extremely 

small. For example, the authors in [20] predict that measurement accuracies of 1 ps or less 

will be required for bit-error-rate (BER) testing of 10 Gbps integrated circuit (IC) pins. 

As previously mentioned, obtaining accurate jitter results may require a large number 

of measurements. Therefore, as signal data rates increase along with jitter measurement 

requirements, the total measurement time of TI measurement techniques continues to rise. 

As a result, only a select group of low test-time measurement techniques are feasible in a 

volume production test environment, where test time is directly related to product cost [10]. 

Signal amplitude sampling-based techniques [11] can be used to reconstruct the shape 

of a voltage-time waveform based on a number of voltage-time samples. While these 

techniques are not strictly "time interval" based jitter measurement techniques, they have 

been successfully used to measure jitter with picosecond accuracy [12]. However, signal 

amplitude sampling-based techniques typically require tens of seconds per measurement, 

which is far too much time for a volume production test environment [13]. High-frequency 

production testers can be used to measure jitter with picosecond accuracy in a matter of 

seconds [i4, 15, 16]. However, these testers generally cost millions of dollars. In addition, 

probing gigaHertz signals for off-chip measurement can introduce significant additional jitter 

[20]. Therefore, for cost and accuracy reasons, embedded (on-chip) time interval 
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measurement techniques which offer picosecond measurement accuracies and millisecond 

test-times are very useful tools to enable the cost-effective analysis of a growing number of 

timing problems found in modem CMOS circuits [17]. In fact, embedded time interval 

measurement techniques are currently the subject of research within both academia and 

industry [18]. • 

One new time interval measurement technique which has recently garnered much 

attention is the "sampling offset" based flash time-to-digital converter (SOTDC) [23]. This 

time-to-digital converter (TDC) offers sub-millisecond test times for gigaHertz signals, as 

well as the potential for picosecond measurement accuracies. However, the accuracy of an 

SOTDC is strongly dependent on the capabilities of its calibration technique. To date, no 

feasible embedded calibration technique for an SOTDC has been proposed. This thesis is 

focused on the design of a novel embedded calibration technique for SOTDCs which offers 

the potential for sub-picosecond calibration accuracies, and calibration times in the order of 

milliseconds. While specific reference to the calibration of an SOTDC is made, this 

calibration technique is applicable to any flash-based TDC. 

1.2 Thesis Organization 

This thesis consists of a total of six chapters. Important background information 

concerning the evolution of traditional flash-based TDCs into state-of-the-art SOTDCs is 

presented in Chapter 2. Three previously proposed SOTDC calibration techniques are 

described in Chapter 3, and the important limitations of each are investigated. Next, the 

embedded calibration technique proposed in this thesis is described in Chapter 4, followed by 

an analysis of its capabilities and limitations in Chapter 5. Finally, conclusions regarding the 

contribution of this thesis are presented in Chapter 6, along with a discussion of future work. 
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Chapter 2 

Flash-Based Embedded Time Interval 

Measurement Techniques 

Embedded time interval measurement can be performed using a variety o f techniques, 

and is often realized using a time-to-digital converter (TDC) . A T D C is a circuit that outputs 

a digital codeword when a time interval is applied to its input, as shown in Figure 2.1. The 

time interval to be measured, referred to from hereon as Td, is defined as the difference in 

time between the rising edge transitions o f two signals, which are traditionally referred to as 

START and STOP. This digital codeword, once interpreted, approximates the duration o f the 

time interval. 
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START o-

TDC 
8 

01101011 
STOP 

START . . . _ n 
STOP n _ . . . 

H 

Figure 2 .1 : T h e role of a T D C . 

While many different types of TDCs exist, they can all be evaluated against the 

following criteria: 

• Accuracy: 

How closely the interpreted digital codeword matches Td. 

• Resolution: 

The smallest measurable difference in Td. 

• Precision: 

The degree to which a set of measurements of the same Td agree. 

• Measurement rate: 

The maximum rate at which different T& can be applied to the T D C s input 

while still receiving correct codewords at its output. 

• Dynamic range: 

The ratio of the maximum to minimum Td measurable by the TDC. 

• Power and A r e a requirements: 

The area required to implement an on-chip TDC with certain accuracy, 

resolution, precision, measurement rate, and dynamic range specifications, in 

addition to the power consumed by this TDC. 
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As the accuracy, resolution, precision, dynamic range, and measurement rate 

requirements placed upon TDCs become increasingly stringent, trade-offs are necessary in 

order to construct a feasible TDC architecture. Many TDC architectures target a reduced 

measurement rate in order to meet the accuracy, resolution, and precision requirements. 

Examples of such TDCs include the Vernier oscillator-based TDC [19], and the 

undersampling-based TDC described in [20], However, this trade-off can be very costly for 

integrated circuit (IC) manufacturers, since the resulting increase in production test time 

increases overall production costs. 

This chapter examines the evolution of "flash" TDC architectures. The chapter begins 

with a description of the most primitive form of a flash TDC, and concludes with a 

presentation of the state-of-the-art in flash TDC design, where picosecond measurement 

resolutions are achievable. In general, Flash TDCs are capable of very high measurement 

rates. In fact, flash TDCs are capable of operating at or near the frequency of the signal or 

signals under test, from which the START and STOP signals are derived. Flash TDCs are 

analogous to flash analog-to-digital converters (ADCs), since their output codeword is 

determined in a single step by a bank of comparators [21]. Therefore, the flash TDC 

architecture is a very good candidate for embedded time interval measurement in both a 
i 

production test environment or in a customer application, where measurement time is of 

comparable importance to measurement accuracy, resolution, and precision. 

2.1 Single Delay Line-Based Flash TDC 

The most basic form of a flash TDC is the single delay line-based flash TDC, which is 

illustrated in Figure 2.2. This TDC architecture has two primary inputs, namely START and 

STOP, and a multitude of outputs, labelled Cj to CN in this embodiment. 
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START 

STOP 

IN1 OUT1 

ARBITER 1 

IN2 OUT2 

V 
IN1 OUT1 

ARBITER 2 

IN2 OUT2 

IN1 OUT1 

ARBITER N 

IN2 OUT2 

c 2 

-c=> c N 

Figure 2.2: Single delay line-based flash T D C . 

If we define the instant at which the START signal transitions from a low to a high 

logic level as tstart, and i f we define tstop analogously for the STOP signal, then we can 

describe Td in mathematical terms with the following equation: 

Pd tstop ~ t stop 1 start (2.1) 

As shown in Figure 2.2, the START signal is delayed by a single buffer as it propagates from 

one arbiter to the next. The delay of each buffer is equal to T. At each stage, an arbiter 

determines which of its two inputs was the first to transition from a low to a high logic level, 

i.e., the first to make a "positive" transition. If INI is the first to perform such a transition 

then OUT1 is set to a high logic level and OUT2 to a low logic level, and vice versa i f IN2 is 

the first to arrive. Figure 2.3 illustrates the operation of a single delay line-based flash TDC 
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consisting of 4 arbiters. This type of TDC can be referred to as a 4-bit single delay line-

based flash TDC. 

Arbiter 1 

{ IN1 
IN2 
C 2 

{ IN1 : I 
IN2 [ 
C 3 

{ IN1 —1 
IN2 I 
C 4 

Figure 2.3: Single delay line-based flash T D C timing waveform. 

As is shown in Figure 2.3, a single delay line-based flash TDC produces a 

thermometer code digital output (C4C3C2C1 = 1000). Td can be approximated by noting the 

location of the "0" to "1" transition in the output codeword. In the above example, Tj is 

shown to satisfy the following condition: 

2r<Td<3r (2.2) 

The resolution of this TDC is limited by the buffer delay, r. This buffer delay has a practical 

lower bound due to the physical constraints of the technology in which it is implemented. 

Therefore, for high-resolution applications, a single delay line-based flash TDC may be 

inadequate, 
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2.2 Vernier Delay Line-Based Flash T D C 

In order to overcome the resolution limitations o f a single delay line-based flash T D C , 

a second delay line can be added, as shown in the Vernier delay line-based flash T D C of 

Figure 2.4. 

START 

STOP 

V V 

IN1 OUT1 

ARBITER 1 

IN2 OUT2 

IN1 OUT1 

ARBITER 2 

IN2 OUT2 

Cl 

C 2 

IN1 OUT1 

ARBITER N 

IN2 OUT2 C N 

Figure 2.4: A Vernier delay line-based flash T D C . 

This second delay line is used to incrementally delay the STOP signal as it propagates 
( 

from one arbiter to the next, as is done to the START signal in the single delay line-based 

flash T D C . The delay o f each buffer in the START signal path is equal to Tj, whereas the 

delay o f each buffer in the STOP signal path is equal to T?. A n example o f the method o f ' 

operation o f a 4-bit Vernier delay line-based flash T D C is illustrated in Figure 2.5. 

12 



{ IN1 _f 
IN2 

C l _ 

Arbiter 2 

Arbiter 3 

Arbiter 4 

Figure 2.5: Vernier delay line-based flash T D C timing waveform. 

As shown in Figure 2.5, a Vernier delay line-based flash TDC also produces a 

thermometer code digital output (C4C3C2C1 =/1000). Td can be found using the same 

procedure described for the single delay line-based flash TDC, i.e., by noting the location of 

the "0" to "1" transition in the output codeword. In the example illustrated in Figure 2.5, Td 

is shown to satisfy the following condition: 

2(T1-T2)<Td<3(T1-T2) (2.3) 

The buffer delay difference, i.e., T/ - T2, where T) > T2, defines the resolution of a Vernier 

delay line-based flash TDC. Therefore, sub-gate delay resolution can be achieved with this 

architecture. 

Calibration of a Vernier delay line-based flash TDC is done to ensure that the buffers 

in each of the two delay lines provide the required delay, i.e., T; or r2. Normally a delay-

locked-loop (DLL) is used to accomplish this, ensuring that integral nonlinearity (INL) errors 

in the converter are minimized [22]. However, the arbiters are most often constructed from 

flip-flops, since a flip-flop is essentially an arbiter. While flip-flops make efficient arbiters, 
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their non-zero setup times may influence the buffer delay difference (z> - xi) and hence 

contribute to the TDCs differential nonlinearity (DNL) error, as a DLL-based calibration 

technique cannot be used to perform stage-by-stage calibration. For example, there is no 

impact on the measurement accuracy of the TDC as long as the flip-flops have identical setup 

times, in which case they can be treated as a constant and removed from the measurement 

results. However, the setup times of flip-flops on the same semiconductor die can vary 

significantly due to process variations. For example, variations as large as 50 ps have been 

observed in a 0.35 um CMOS process [23]. As the resolution of a Vernier delay line-based 

flash TDC is increased, the importance of a flip-flop's setup time is amplified, as it is not 

accounted for during calibration. Therefore, there exists a limit to how small the buffer delay 

difference can be made before the variability between flip-flop setup times begins to add a 

significant level of error to the measurement results. For the measurement of 5 and 10 Gbps 

data rate signals, where the required accuracy is 10 ps or better, a Vernier delay line-based 

flash TDC is inadequate [20]. 

2.3 Sampling Offset-Based Flash TDC 

A novel concept discussed in [23] attempts to address the time interval measurement 

accuracy requirements of 10 Gbps data rate signals and beyond. The author in [23] suggests 

that a TDC with a resolution of 2 ps or less can be constructed by removing the buffers from 

a Vernier delay line-based flash TDC, thereby making use of the inherent variations in the 

setup times of the arbiters. This type of TDC, shown in Figure 2.6, is known as a "sampling 

offset" TDC (SOTDC). 

14 



START 

STOP 

IN1 0UT1 

ARBITER 1 

IN2 0UT2 

IN1 0UT1 

ARBITER 2 

IN2 0UT2 

Cl 

C 2 

IN1 OUT1 

ARBITER N 

IN2 OUT2 

CN 

Figure 2.6: Sampl ing offset-based flash T D C . 

The term "sampling offset T D C " arises from the fact that a time interval is quantized 

using the difference in the setup times, or sampling offsets, of the arbiters, assuming they are 

known. This is in contrast to a Vernier delay line-based TDC, which uses a difference in 

buffer delays to quantize time. Instead of implementing the arbiters or "sampling elements" 

with flip-flops, the author in [23] chose to use symmetric CMOS arbiters. A symmetric 

CMOS arbiter schematic is drawn in Figure 2.7. This circuit arbitrates between two inputs, 

INI and IN2, by determining which input was the first to perform a low to high transition, 

i.e., a positive transition. 
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Figure 2.7: Symmetric CMOS arbiter. 

The operation of a symmetric CMOS arbiter relies on the use of positive feedback. 

With inputs INI and IN2 discharged low, transistors M3 and M6 remain in cutoff mode. 

Therefore, the drains of M2 and M5 remain precharged high through transistors M l and M4, 

and outputs OUT1 and OUT2 remain predischarged low. Now, if INI is the first input to 

perform a positive transition, current will flow down the left-hand side of the arbiter as M3 

leaves the cutoff mode of operation. If M l , M2, and M3 are properly sized, the voltage on 

the drain of M2 will fall low enough to cause OUT1 to switch,high. In addition, since the 

drain of M2 is connected to the gate of M5, M5 will enter the cutoff region, in turn 

maintaining a high voltage at the drain of M5 and a low voltage at OUT2. It is this use of 

positive feedback between transistors M2 and M5 that allows this arbiter to successfully 

resolve picosecond-timing differences, as demonstrated in [24]. 

An arbiter such as the one illustrated in Figure 2.7 is said to be perfecdy symmetric if 

its left hand side behaves identically to its right hand side. As a consequence of this perfect 

symmetry, its sampling offset (tso) is equal to zero seconds. An arbiter with a non-zero 

sampling offset is said to be "biased" towards one of its inputs. Therefore, a perfectly 

symmetric arbiter does not exhibit a bias towards either input. As a result, the first input to 

transition from a low to a high logic level is always recorded as such, with the corresponding 

output set to a high logic level. This behaviour is illustrated in Figure 2.8. 
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Figure 2.8: Behaviour of a perfectly symmetric arbiter. 

In Figure 2.8, two oscillators, oscA and oscB, are depicted as the inputs to a perfectly 

symmetric arbiter. The frequency of oscA is slightly greater than that of oscB. Therefore, a 

sequence of varying time intervals is generated from the rising edge transitions of the two 

oscillators. If the temporal location of a rising edge transition of oscB is denoted as toscB(i), 
and if toscA(i) is defined analogously for oscA, then each time interval can be expressed 

mathematically as: 

Td(i) — t, oscB(i) " 'oscA(i) (2.4) 

The preceding definition allows for the sampling offset of the arbiter in Figure 2.8 to be 

bound by the following inspection-based equation: 

Td2 < tso ^ Tdi (2.5) 

A biased arbiter, however, exhibits a non-zero sampling offset. This bias can be the 

result of transistor mismatches between the left and right hand sides of the arbiter, and is 

often attributed to process variations. However, it can be useful to intentionally bias an 
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arbiter, in which case the transistor mismatches are the result of design intent [25], The 

behaviour of a biased arbiter is illustrated in Figure 2.9, where a buffer delay (TM) has been 

inserted before input INI of a perfectly symmetric arbiter in order to mimic the behaviour of 

a biased arbiter. 

oscA 

oscB 

tso Tde l 

•CM 
Tde l 

I N 1 O U T 1 

ARBITER 

I N 2 O U T 2 

oscA 

oscB 

OUT1 

OUT2 

H H H 
I d1 d2 l d3 n 

Figure 2.9: Behaviour of a positively biased arbiter. 

Analogously, the sampling offset of the arbiter in Figure 2.9 can be bound with the 

following inspection-based equation: 

Td2 < tso ^ Td3 (2.6) 

In summary, inserting a buffer before input INI of a perfectly symmetric arbiter results in an 

arbiter that is biased by an amount equal to the delay of the buffer (T*/). For this reason, this 

type of arbiter is known as a "positively biased" arbiter. 

A typical SOTDC can be constructed from several positively biased arbiters, each 

with a unique sampling offset. If the arbiters are positioned within the SOTDC in order of 

smallest tso to largest, then the output codeword will be in the form of a thermometer code. 
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Therefore, if a time interval, Td, where Td > 0, is applied to the SOTDC, then the value of Td 

can be approximated by noting the location of the "0" to "1" transition in the output 

codeword. For example, assume an- SOTDC consisting of only 4 positively biased arbiters 

exists. Now, if a Td which is greater than the sampling offset of arbiters 1 and 2, but smaller 

than that of arbiters 3 and 4, is applied to the SOTDC, then the output codeword will look as 

follows: C4C3C2C1 = 0011. Such an output codeword'Can be used to approximate the value 

of the applied time interval, Td, as shown in Equation (2.7), where tS02 and tS03 represent the 

sampling offsets of arbiters 2 and 3, respectively. 

tso2<Td<tso3 (2.7) 

If the sampling offsets of the arbiters are equally spaced, then the error in the above 

approximation must be bounded by the resolution of the SOTDC, which is defined as the step 

size of the arbiter sampling offsets. The challenge associated with using an SOTDC for time 

measurement lies in determining the sampling offsets of the arbiters, as without such 

information it is impossible to extract useful data from the arbiter outputs. Several 

calibration techniques have been developed in order to measure the sampling offsets of the 

arbiters within an SOTDC. The merits and drawbacks of each are presented in the following 

chapter, and a new calibration technique is proposed in Chapter 4. 
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Chapter 3 

Embedded Calibration of a Sampling 

Offset-Based Flash T D C 

Present SOTDC calibration techniques suffer from some very serious limitations. The 

most straightforward of these techniques require an accurately known sequence of closely 

spaced Td values, which for a picosecond resolution SOTDC is very difficult to generate on-

chip. A more sophisticated technique, as described in [23], requires precise knowledge of the 

mean sampling offset of the SOTDC arbiters. Unfortunately, such information is usually not 

available. Another technique, as described in [26], requires the use of an external signal 

generator or an on-chip D L L in order to generate Td values which are not necessarily closely 

spaced, but accurately known nonetheless. Time interval accuracies in the order of 

picoseconds are required for successful implementation of this technique, and therefore 

dictate the use of only the most accurate signal generators or on-chip DLLs . In addition, this 

technique employs two on-chip variable delay elements that must be calibrated with 

picosecond accuracy in order to resolve any skew introduced between the output of the Td 
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generator and the input of the SOTDC, and is therefore not a complete solution. The 

technique proposed in Chapter 4 is exempt from any of these deficiencies. 

3.1 Behaviour of a Non-Ideal Arbiter 

Before the aforementioned calibration techniques can be fully understood, a model 

that incorporates thermal noise in an arbiter must be developed. Such a model has been 

reported in [26]. This model suggests that the sampling offset of an arbiter is not a fixed 

number, but should instead be treated as a random variable that changes with time. The 

preceding implies that the sampling offset of an arbiter at a particular instant in time can only 

be described as having a certain probability of being a particular value. This "instantaneous" 

sampling offset is denoted as tiso. 

3.1.1 A Model of Thermal Noise in an Arbiter 

An ideal arbiter is assumed to have a deterministic output, i.e., the arbiter's output can 

be predicted exactly if its input is known. Therefore, a given Td will produce a consistent 

output from an ideal arbiter. However, as discussed in [23, 27, 28], arbiters implemented 

using CMOS circuit elements are not ideal, and therefore do not behave deterministically. 

For example, thermal noise generated in the circuit elements of an arbiter can induce 

nondeterministic behaviour. A model which illustrates the impact of thermal noise in an 

arbiter has been developed in [29] and is illustrated in Figure 3.1. 

START IZ>| • © — J t , IN1 OUT1 

UNBIASED 
ARBITER 

t > c 

v, noise 

STOP rz>f IN2 OUT2 

L 
Figure 3.1: Voltage domain model of thermal noise in a biased arbiter. 
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Vnoise is a source of noise in the voltage domain, and is the result of thermal noise within the 

arbiter's circuit elements. This noise is assumed to be white Gaussian noise, with a standard 

deviation of o v and a mean of zero. However, a time domain model of thermal noise in an 

arbiter is more useful for time interval measurement purposes, since with such a model it is 

possible to account for the impact of thermal noise in the time domain. A time domain model 

has been developed in [23, 26], and is illustrated in Figure 3.2. 

START 

STOP noi-

IN1 OUT1 

UNBIASED 
ARBITER 

IN2 OUT2 

L 
Figure 3.2: Time domain model of thermal noise in a biased arbiter. 

With the time domain model, V„oise has been replaced with tnoise, which functions as a variable 

delay element. A linear relationship between V„oise and tnoise is assumed in [23, 26], which 

allows for tnoise to be described by a Gaussian probability density function (PDF), with a 

standard deviation of o, and a mean of zero. Therefore, the time domain model of thermal 

noise in an arbiter states that the sampling offset of an arbiter is not a single number, but 

rather a distribution of numbers that can be described with a Gaussian PDF. The mean of this 

distribution is tso and the standard deviation is ot. The sampling offset of an arbiter according 

to the time domain model of thermal noise in a biased arbiter is depicted in Figure 3.3. 
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Figure 3.3: P D F of the sampling offset of a biased arbiter taking into account thermal 
noise. 

I f the Gaussian P D F shown in Figure 3.3 is integrated over time, the Gaussian 

cumulative density function (CDF) is produced. This is a useful function since it specifies 

the probability with which tiso is less than or equal to a specific temporal value, as shown in 

Figure 3.4, where the temporal value o f interest is Td. 

1 • 

TD 

\ ~ 

VI 
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0 

Figure 3.4: Gaussian C D F . 

Therefore, according to the time domain model o f thermal noise in an arbiter, the probability 

that a given Td is greater than or equal to the sampling offset o f an arbiter is given by the 

Gaussian C D F : 

P(C = \) = P(tso<Td) = ^ 1 + erf 
7 \ 

crt42 (3.1) 
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where erf(x) is the "error function", encountered when integrating a normalized Gaussian 

function [23, 30]. 

It is interesting to note that the mean sampling offset of an arbiter, tso, can be found 

from either the PDF or the CDF of the arbiter's sampling offset. Using the PDF of the 

arbiter's sampling offset, ts0 can be calculated by finding the mean of the distribution. The 

CDF of the arbiter's sampling offset can be used to find tso by estimating the value of t that 

satisfies P(tiso < t) = 0.5, as illustrated in Figure 3.5. 

1 • 

vi 

S 0.5 -

o_ 

^ t S o Time [s] 

Figure 3.5: Calculation of tStt from the C D F of the sampling offset of a non-ideal arbiter. 

Of course, i f both tso and o~, are known, then the PDF and the CDF of the arbiter's sampling 

offset are easily reproduced. 

3.1.2 Non-Ideal Arbiters and Time Interval Measurement 

An interesting observation concerning the sensitivity of an arbiter to time intervals 

near tso can be explained with the use of Figure 3.6. The aforementioned figure depicts the 

response of a symmetric CMOS arbiter with thermal noise to various, time intervals. 

However, the x-axis in this figure has been altered to emphasize the extent to which the 

arbiter's output can vary with respect to the standard deviation of the thermal noise. 

24 



0 1 2 5 

Figure 3.6: Sensitivity of the output of an arbiter to at-

From Figure 3.6 it can be seen that the output of an arbiter exhibits a strong sensitivity to 

time intervals near the arbiter's mean sampling offset, tso. In fact, a time interval equal to tso -

3o, almost always elicits a different response from the arbiter than one equal to tso + 3ot. 

Therefore, the sensitivity of such an arbiter is highly dependent upon the standard deviation 

of the thermal noise, ot. A test chip consisting of a 64-bit SOTDC has been fabricated in a 

0.35 pm CMOS, and is described in [23]. Measurements from this test chip report a 0, of 

0.35 picoseconds. This number suggests that a symmetric CMOS arbiter is suitable for time 

interval measurement when picosecond accuracy is required. 

3.2 Direct Calibration Technique 

One very intuitive method to calibrate a sampling offset based flash TDC is to input a 

sequence of increasing time intervals (T<is) into the SOTDC, beginning with a known time 

interval. Each 7 j should differ from its predecessor by a constant amount of time, denoted as 

tA. The instantaneous sampling offset of each arbiter can then be estimated using the value of 

the first Trfto produce a positive transition at the arbiter's output. The calibration of an 8-bit 

SOTDC is illustrated in Figure 3.7. In this figure, two oscillators of slightly different 

frequency, denoted as oscA and oscB, generate the sequence of Ts-
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Figure 3.7: Direct S O T D C calibration technique. 

The S O T D C shown in Figure 3.7 produces an 8-bit codeword for each 7^ and this 

codeword is generated from the concatenation o f the arbiter outputs, C8 - C;. Normally the 

arbiters are positioned in order o f smallest tso to largest. Under such a scenario, i f 0, is much 

less than the difference in the sampling offsets o f adjacent arbiters, then a thermometer code 

can be expected at the S O T D C output. A s previously mentioned, the instantaneous sampling 

offset o f an arbiter within the S O T D C can be estimated using the first Td from the sequence 

o f time intervals to produce a positive transition at the arbiter's output, as shown in Figure 

3.8. 
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Figure 3.8: Response of an arbiter to a sequence of increasing time intervals. 
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Mathematically, the tiso of an arbiter can be bound with the following equation: 

Td(t-i) < tiso < Td(i) (3.2) 

where T^y indicates the first Td to produce a positive transition at the arbiter's output, and 

Td(i-i) indicates its predecessor. This equation can be rewritten as follows: 

Td(t)-tA< tiso<Td(i) N (3.3) 

Therefore, a reasonable estimate of tiso is: 

tiso = Td(i)-tJ2 (3.4) 

The error in this estimate of tiso is bound by ± tJ2. 

While it is useful to know tisa the real objective of any SOTDC calibration technique 

is to determine the mean sampling offset of an arbiter, tso. Therefore, repeating the process 

depicted in Figure 3.7 multiple times may yield different yet useful results, as illustrated in 

Figure 3.9. 

Repetit ion 1 Repeti t ion 2 Repeti t ion N 

o ^ o 0 
tiso Ta [s] t i S 0 T d [s] tjSo Td [s] 

Figure 3 . 9 : Response of an arbiter to several repetitions of a sequence of increasing Ts-

A histogram of an arbiter's response to N repetitions of a sequence of Ts can be 

plotted by summing the number of times the arbiter's output (C) is a logic ' V for each Td, as 

shown in Figure 3.10. Since the variation in tiso follows a Gaussian PDF, the histogram has 
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the shape of a Gaussian CDF, assuming a sufficient number of repetitions have been 

performed. Now, if the histogram data is normalized and an appropriate curve fitting 

function is used, such as a cubic spline function, a Gaussian CDF may be produced. From 

this CDF the mean sampling offset of the arbiter (tso) can be determined. This is 

accomplished by finding the point on the CDF curve for which the arbiter's output is a logic 

' 1 ' exactly half the time. The temporal value that corresponds to this point is the estimated 

mean sampling offset of the arbiter, or teso. 

Figure 3.10: H is togram and C D F of the output of an arbi ter . 

In order to produce an accurate Gaussian CDF from an arbiter's response to a sequence of 

increasing time intervals, iA needs to be chosen carefully, as will be discussed in the 

following section. 

3.2.1 A n a l y s i s 

As noted earlier, experimental results from a 64-bit SOTDC fabricated in a 0.35 pm 

CMOS process indicate that the standard deviation of the thermal noise in an arbiter is 

approximately 0.35 picoseconds [23]. This result places an important bound on the size of tA. 

If the chosen tA is approximately equal to or less than <5t, then the histogram and the resulting 

CDF constructed from the data collected during arbiter offset calibration will closely 

resemble those shown in Figure 3.10. To further explain, Figure 3.11 may be of use. In this 

figure, the time intervals used during calibration are plotted on the x-axis of the arbiter 
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sampling offset PDF. From this PDF a histogram of the arbiter's output for each Td input is 

drawn. This histogram is drawn with the assumption that the number of repetitions (N) is 

large enough to ensure that the collection of arbiter instantaneous sampling offsets produces 

an arbiter sampling offset PDF that is nearly Gaussian. 

N Measurements 

JiLJiL 
T d [s] 

F igure 3.11: Histogram of the output of an arbiter when t& < ot-

The key observation to be made here is that since tA is approximately of the same magnitude 

as O/, a histogram which closely resembles a Gaussian CDF can be drawn, and curve fitting 

of this histogram to find the arbiter's sampling offset, as shown in Figure 3:10, can be done 

with reasonable accuracy. 

However, i f the chosen tA is too large, then the histogram may resemble the one 

shown in Figure 3.12. 

N Measurements 

tA -=>- Td[s] 

F igure 3.12: Histogram of the output of an arbiter when > ct. 

T d [s] 
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It can be observed from Figure 3.12 that there exists only a small number of useful data 

points to which a curve can be fitted. Applying a curve fitting function to a small number of 

data points inevitably leads to an error in the estimation of tso that is much larger than would 

otherwise be obtainable if tA had been properly chosen. The error in the estimation of tso, 

known as the calibration error, is defined as: 

tce teso - tso (3.5) 

As part of this thesis, a quantitative analysis of the relationship between tA and tce has 

been performed using a software model of the direct calibration technique, one that accounts 

for thermal noise in an arbiter. This model has been constructed using Matlab, and accepts tA 

and o~, as parameters, in addition to the tso of each arbiter in the array. Using this information, 

the model constructs a sequence of 7^ that are applied to the inputs of the array of arbiters. 

It is also possible to specify the number of repetitions (N) of the sequence of Ts via an 

additional parameter. The output of this model is the root-mean-square (RMS) value of tce 

for the calibrated array of arbiters, estimated using a 6-th order polynomial fit of the arbiter 

output histograms. 

In order to ascertain the capabilities of the direct calibration technique over a range of 

tA values, several simulations were performed using the aforementioned model. In each case 

the array was specified to be 100 arbiters long, and N was varied incrementally in powers of 

10, beginning at 100 and ending at 1 000 000. In order to keep the results independent of o,, 

tA and the RMS value of tce are expressed in terms of o,. The results of eleven simulations for 

five different values of N are shown in Figure 3!13. 
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Figure 3.13: RMS tce/atvs. tjatusing the direct calibration technique. 

From Figure 3.13 it can be observed that i f tA ^ 6a,, then the R M S value of tce is 

approximately bounded by a,, for any value of N . "However, as tA continues to increase, so 

does the R M S value of tce. In fact, for tA > 4o~,, the R M S value of tce increases linearly with 

tA. By the time tA reaches 10a,, the RMS value of tce has already surpassed 2a,. For an 

SOTDC with a resolution of 1 ps, i.e., the sampling offset of each arbiter differs from that of 

its neighbours by 1 ps, an RMS tce equal to a, may be tolerable, assuming a, = 0.35 ps. 

However, an R M S tce equal to 2a, (0.7 ps) may not be tolerable. Therefore, i f such an 

SOTDC is calibrated using the direct calibration technique, the required tA may be less than 

3.5 ps. This requirement may not be practical, as the accurate generation of known time 

intervals with picosecond temporal resolution is very difficult to achieve on-chip. 

One intriguing question which to this point has remained unanswered is the 

quantitative effect of thermal noise on the accuracy of the arbiter sampling offset estimations 

obtained using the direct calibration technique. This question can be answered by comparing 

the RMS tce from Figure 3.13 with the theoretical RMS tce of a noise-free arbiter that is 

calibrated using the direct calibration technique. To calculate the theoretical R M S tce of the 
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direct calibration technique, the standard RMS formula for a continuous distribution, as 

shown in Equation (3.6) [31], may be used. 

RMS(tce) = 
\P{tce)t, ce dtce 

\P(tce)dtc 

(3.6) 

To solve Equation (3.6), the limits of integration must be determined. In order to determine 

the limits of integration, the curve fitting procedure used in the direct calibration technique to 

estimate the tso of a noise-free arbiter must be understood. 

The response of a noise-free arbiter to a sequence of Ts is shown in Figure 3.14. As 

shown in this figure, the histogram of this response resembles a discrete-time step function. 

Since there are only two useful data points to which a curve can be fitted, the most sensible 

approach is to linearly interpolate between the two points in order to construct the CDF of the 

arbiter's sampling offset and approximate tso. 

Normalize Data P 

O 
Curve Fit tL 

0.5 

Td[S] Td[s] 

Figure 3.14: Histogram and C D F of the output of a noise-free arbiter. 

The error in this approximation, tce, can be described mathematically by recognizing that the 

sampling offset of a noise free arbiter is estimated as: 

teso - (Td(i) + Td(i-l))l2 - Td(j) - tJ2 (3.7) 
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where Td(i) indicates the first Td to produce a positive transition at the arbiter's output, Td(i-i) 

indicates its predecessor, and tA = Td(t) - Td(i-i). By noting that tso can fall anywhere in the 

range Td(i-i) to T^, the calibration error is bound by the following equation: 

-tJ2<tce<tJ2 (3.8) 

This relationship is illustrated in Figure 3.15, where the actual sampling offset of an arbiter is 

plotted versus its associated calibration error. 

Figure 3.15: tso versus tce for a noise-free arbiter using direct calibration. 

Now that the limits of integration have been found, the probability density function of 

tce must be determined before integration can be performed. Since the goal of this exercise is 

to find the RMS calibration error of a noise-free arbiter for a given tA, the arbiter's sampling 

offset must fall in the range Td(t-i) to 7 ^ with equal probability, otherwise the results would 

be dependent on the actual value of the arbiter's sampling offset. In addition, the integral of 

this probability over the range -tJ2 to tJ2 must be equal to 1, since the arbiter has a fixed 

sampling offset that is greater than Tdp-t) but less than 7 ^ . These two conditions stipulate 

that for-tJ2 < tce < tJ2, P(tce) = \ltA as shown in Figure 3.16. 
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Figure 3.16: tce p robabi l i ty density function. 

With this knowledge, the theoretical RMS tce of a noise-free arbiter calibrated using the direct 

calibration technique can be calculated as shown in Equation (3.9). 

jP(tce)tce

2dtce=-^= (3.9) 

2 

Equation (3.9) is plotted in Figure 3.17 along side the RMS calibration error obtained using 

the Matlab model described earlier, which incorporates the effects of thermal noise in an 

arbiter. It should be pointed out that the results of such a model can be highly dependent on 

the distribution of the arbiter sampling offsets. For example, if the sampling offsets of an 

array of arbiters fall in a very narrow range, one that is much smaller than the minimum tA 

used during simulation, then the RMS calibration error may appear to be independent of GT. 

This result is intuitively wrong since the presence of thermal noise in an arbiter should result 

in a Gaussian-like CDF, from which a more accurate estimation of tso can be made. To 

remove this dependency, tA was fixed during simulation, and ot was varied instead. The 

sampling offsets of the array of 100 arbiters were then assigned fixed values uniformly 

distributed over the range T^.]) to 7^. This made for a fair comparison with the noise-free 

scenario. 
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Figure 3.17: R M S tcelo, vs. tJot using the direct calibration technique. 

Inspection of Figure 3.17 reveals that for 2 < tJot £ 10, the presence of thermal noise 

in an arbiter significantly increases the accuracy of the arbiter sampling offset estimations 

obtained using the direct calibration technique. This result is expected since the presence of 

thermal noise in an arbiter contributes to a Gaussian-like CDF of the arbiter's sampling 

offset, from which a reasonably accurate estimation of tso can be made. This is in contrast to 

the ramp-like CDF of a noise-free arbiter, for which the best approximation is a straight line 

interpolation, which has a significantly larger RMS error! 

Inspection of Figure 3.17 also reveals that the gain in accuracy from the presence of 

thermal noise in an arbiter diminishes as tj<5, is decreased from 2. Further insight in to this 

result can be acquired if Figure 3.17 is redrawn with logarithmic x and y axes, as shown in 

Figure 3.18. 
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Figure 3.18: Log- log plot of R M S tcJcrtvs. tjat using the direct calibration technique. 

From Figure 3.18, it can be observed that when tjo, is decreased, the RMS value of 

tcJot reaches a saturation point somewhere in the range 0.2 S tjat S 1, depending upon the 

number of repetitions performed. This implies that the actual RMS value of tce increases as 

one moves deeper into the saturation region, since <5t increases as one moves closer to the y-

axis, and the ratio of tce to c, is constant. By inspection of Figure 3.18, the rate at which the 

RMS value of tce increases as tJot moves deeper into the saturation region is unclear. In 

order to clarify this, actual values of tce can be obtained i f tA is fixed to a particular value and 

o ( varied. For example, the rate at which the RMS value of tce increases as tjat decreases 

can be estimated from Figure 3.19, where tA has been fixed at 10 ps and a, has been varied. 

The data required to plot Figure 3.19 is actually a special case of data displayed in Figure 

3.18. For this reason Figure 3.18 is a more useful plot in a general sense, but.not as 

convenient for a specific scenario. 
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Figure 3.19: Log- log plot of R M S tce vs. a , when tA = 10 ps, using the direct calibration, 
technique. 

Through inspection o f Figure 3.19 it is apparent that an optimal ratio between tA and a, exists, 

and is dependent upon the value o f N . This ratio has been found to hold true for any value o f 

tA. Therefore, by determining the value o f a, that minimizes tce for each o f the five curves 

displayed in Figure 3.19, it is possible to determine the optimal ratio o f tA to a, given the 

desired number o f repetitions. The optimal ratios for five different values o f N are 

summarized in Table 3.1. 

Table 3.1: Opt imal ratio of tA to at given the number of repetitions performed. 

N 
le2 
le3 
le4 
le5 
le6 

tAIOt 
2 
1 

0.8 
0.6 
0.4 
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This information can be used in the selection of tA for the direct calibration technique. For 

example, i f O", is equal to 0.35 ps [23] and N = le5, the value of tA which would produce the 

lowest tce is 0.35 ps x 0.6 = 0.21 ps. Of course, the accurate generation of time intervals with 

such a temporal resolution is a very difficult task. 

With this knowledge in hand, it is easier to explain why the gain in accuracy from the 

presence of thermal noise in an arbiter diminishes as tJot is decreased from approximately 2. 

Through inspection of Figure 3.19, it can be seen that the farther one deviates from the 

optimal tjo, ratio, the larger the calibration error. For example, i f G, is much smaller than its 

optimal value for a given tA, hence much smaller than tA, the difference between tce in this 

case and that of a noiseless arbiter calibrated using the same tA becomes increasingly 

diminished. This result makes intuitive sense, since as o, becomes very small with respect to 

tA, the CDF of the arbiter's sampling offset becomes less Gaussian-like and more ramp-like 

in appearance as the variation in the arbiter's sampling offset becomes less significant. 

Similarly, i f a, is much larger than its optimal value for a given tA, hence much larger than tA, 

tce once again exceeds its minimum value. In this case the increased error can be attributed to 

the incorrect use of a polynomial curve fitting function on the relatively linear histogram that 

is produced. 

3.2.2 Conclus ions 

In theory, the direct calibration technique can produce very accurate estimations of tso 

given a sufficiently small tA. In fact, the accuracy of this technique is limited only by tA, 

which may be determined by the frequency difference of two oscillators. However in 

practice, this calibration technique has some very serious flaws. For example, any type of 

oscillator will have some amount of phase noise, and therefore wil l not have a perfectly 

stable frequency [32, 33]. Any instability in the frequency of either of the two oscillators can 

result in an increased error in the estimate of tso. In fact, it may not even be possible to place 

a bound on the error as the amount of phase noise in either oscillator may be unknown. 
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Another problem with this calibration technique concerns the requirement that the 

sequence of Ts must begin with a known Tj. One way to accomplish this may involve the 

use of an arbiter with a known sampling offset to detect alignment between the rising edge 

transitions of the two oscillators. However, as discussed in [23], the sampling offset of a 

reasonably sized arbiter may vary from its intended value by as much as 25 picoseconds. An 

error of 25 picoseconds in the initial Tj will propagate to the estimate of tso for each arbiter. 

One way to alleviate this problem is to oversize the transistors in the arbiter that is used for 

alignment. This will help to reduce the arbiter's sensitivity to process variations. However, 

even i f an arbiter with a known sampling offset is used to detect alignment between the rising 

edge transitions of the oscillators, there is still a quantization error in the edge alignment of at 

most tA seconds due.to the finite difference in the frequencies of the two oscillators. Also, 

any mismatch in the START and STOP signal paths will introduce some skew between them, 

and this skew will alter the sampling offset of the alignment arbiter by an unknown amount, 

adding another error to the estimate of tso. 

While the direct calibration technique is conceptually rather simple, it is not used in 

practice due to its many shortcomings; the most severe being the restriction placed on tA. The 

accurate generation of known time intervals with picosecond resolution is very difficult to 

achieve on-chip, and therefore renders this calibration technique ineffective for embedded 

applications. 

3.3 Relative Offset Calibration Technique 

A technique capable of determining the relative sampling offsets of an array of arbiters 

is presented in [23, 25]. This technique analyzes the "bubbles" in the output codeword of an 

SOTDC. A codeword is said to be "bubble-free" i f there is at most one location in the 

codeword where adjacent bits differ. For example, an 8-bit "bubble-free" codeword may 

look like the following: "00001111". A codeword is said to contain a "bubble" if there are 

three locations where adjacent bits differ, as shown in the following codeword: "00101111". 
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If there are more than three locations in a codeword where adjacent bits differ, then the 

codeword is said to contain more than one "bubble". 

"Bubbles" may appear in an SOTDC codeword when its resolution is comparable to a,. 

For example, if arbiters A; and A2 have sampling offsets of 100 ps and 101 ps, respectively, 

and a 100.5 ps time interval is applied to the inputs of both arbiters, the most probable 

outcome is that Aj will output a logic '1' and A2 will output *a logic '0'. However, there is a 

significant probability of the reverse scenario occurring, i.e., Ai outputs a logic '0' and A2 

output a logic ' 1'. If this experiment is performed a sufficient number of times, this counter 

intuitive outcome is inevitable, and will occur with a certain probability. The ratio of these 

two probabilities can be used to determine the difference in the sampling offsets of arbiters A/ 

and A2. For example, if the probability of the more likely outcome is denoted as PAIA2(10), 

i.e., the output of ̂ 4; is a logic ' 1' and the output of A2 is a logic '0', and the probability of the 

less likely outcome is denoted as PAJA2(01), then the ratio of these two probabilities, r = 

PAIA2(01)/PAIA2(10), depends only on S, which is the ratio of the difference in the sampling 

offsets of the two arbiters to 2oh i.e., S = (tSQA2 - tSOAi)/2dt. The exact relationship between 

these two ratios is derived in [23], where the following equation is produced: 

R = J W Q J ) _\ + ̂ 8{erfcx{-8)) 
PAIAIW) l-4^8{erfcx{d)) 

The "erfcx" terms in the right hand side of the preceding equation are instances of the scaled 

complementary error function. 

In summary, the author in [23] proposes measuring r and inverting Equation (3.10) in 

order to find the relative sampling offsets of a pair of arbiters in terms of a,: However, the 

author does not present a viable on-chip solution for obtaining a,. In addition, a critical 

assumption about the mean sampling offset of the arbiters is made by the author, and is stated 

in [25]. In this work the author states that if the absolute sampling offsets of the arbiters are 

to be determined, then the mean sampling offset of the arbiters must be known. The author 
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suggests that the mean sampling offset of a large number of arbiters can be predicted i f the 

sampling offsets of the arbiters are altered by process variation alone, i.e., no attempt is made 

during the design of the arbiters to differentiate their sampling offsets from one another. In 

such a case the author predicts that the sampling offsets of the arbiters would follow a 

Gaussian distribution, as shown in Figure 3.20, where the mean sampling offset, denoted as 

Uso, is equal to the intended sampling offset of the arbiters. 

Figure 3.20: Gaussian distribution of arbiter sampling offsets due to process variation. 

For example, i f an array of 64 arbiters, designed to be perfectly symmetric, is fabricated on a 

single die, then the author predicts that the actual sampling offsets of the arbiters wil l follow 

a Gaussian distribution with a mean of zero. 

Several problems exist with this assumption. Firstly, since an SOTDC consists of a 

finite number of arbiters, it is difficult to ensure that the sampling offsets will vary according 

to a Gaussian distribution. While it is true that a distribution which closely matches a 

Gaussian may be obtainable i f an SOTDC is constructed using a very large number of 

arbiters, perhaps greater than 1000, the penalty to be paid in such a case is an excessive use 

of silicon area. Also, each arbiter may be subject to some constant amount of process 

variation which results in a common shift in the sampling offsets of all the arbiters. Such a 

scenario is not accounted for in the preceding assumption and will therefore increase the error 

in the estimations of the arbiter sampling offsets. 
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If the mean sampling offset o f an array o f arbiters cannot be determined with a 

reasonable degree o f confidence, then for the purpose o f time interval measurement, the only 

useful information that can be extracted from the arbiters is the amount o f variation in a 

series o f time intervals. For example, the standard deviation o f a series o f time intervals 

could be measured, however not the mean. Due to the aforementioned issues, the relative 

offset calibration technique is more interesting from a theoretical perspective than a practical 

one. 

3.4 Added Noise Calibration Technique 

A calibration technique based on "added noise" has been described in [26]. This 

technique is fundamentally identical to the direct calibration technique, with the exception o f 

one important modification. Since a, has been measured to be approximately 0.35 ps [23], 

the direct calibration technique requires the accurate generation o f known time intervals with 

picosecond temporal resolution. This is a very difficult task to achieve on-chip. To better 

illustrate this requirement, ten different values o f tA have been simulated using the Matlab 

model described in section 3.2.1 with N = 100 000, while a, has been varied. The results o f 

these simulations are shown in Figure 3.21. 
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Figure 3.21: Log- log plot of R M S tce vs. ot when N = 100 000, using the direct calibration 
technique. 

From Figure 3.21 it can be seen that i f a, = 0.35 ps, tA cannot be greater than 4 ps i f tce is to 

be kept below 1 ps. In reality, calibration accuracies greater than 1 ps are required for high-

resolution SOTDCs. While it is possible to increase N in order to alleviate some of the 

restrictions placed on tA, demands placed on the total calibration time usually limit N to 100 

AOOOorless [34]. 

In order to circumvent the restrictions placed on tA, the authors in [26] suggest adding 

Gaussian temporal noise to the arbiters in an SOTDC. In fact, the authors advocate adding 

Gaussian temporal noise with a standard deviation much larger than o,. A large amount of 

Gaussian temporal noise drastically alters the restrictions placed on the temporal resolution of 

the time intervals. For example, through inspection of Figure 3.21 it can be seen that i f tA = 

lps and at = 0.35 ps, the predicted tce is 0.07 ps. Now i f o, is increased to 17 ps, tA can be 

increased to 10 ps while still maintaining the same tce. That is, a 49-fold increase in o~, allows 

for a 10-fold increase in tA without an increase in N or tce. 
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In order to understand how the authors in [26] propose to add Gaussian temporal noise 

to the arbiters in an SOTDC, a time domain model of thermal and added noise in a biased 

arbiter must first be presented, as shown in Figure 3.22. 

START C Z > 

t, 
IN1 OUT1 
U N B I A S E D 

A R B I T E R 

i=> c 
•noise_added '•noise.Jhermal t s o 

STOP cz>L IN2 OUT2 
L 

Figure 3.22: T i m e domain model of added and thermal noise in a biased arbiter. 

The added Gaussian noise is modelled with the inclusion of a second variable delay buffer. 

Both the added Gaussian noise and the intrinsic thermal noise act to vary the sampling offset 

of the arbiter, however to different extents. An illustration of the contribution of each noise 

source, superimposed on one another, is shown in Figure 3.23. 

Figure 3.23: A r b i t e r sampling offset P D F with thermal and added noise. 

Assuming the noise sources are independent, the standard deviation of the arbiter's sampling 

offset can be determined with the aid of the following equation: 

Time [s] t, •so 

(3.11) 
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If the standard deviation of the added noise is chosen to be much greater than that of the 

thermal noise, i.e., oadded
 > : > G,, then atolai can be accurately approximated as <5added-

Instead of injecting Gaussian temporal noise directly, into the arbiters themselves, the 

authors in [26] suggest modulating the time intervals. This clever idea provides a simple 

mechanism to effectively vary the sampling offset of an arbiter according to a Gaussian 

distribution without the need to actually change the arbiter's circuitry. Figure 3.24 illustrates 

how a CDF of an arbiter's sampling offset is created from a sequence of time intervals, where 

each time interval is distributed according to a Gaussian distribution with a standard 

deviation of Gadded. 
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Figure 3.24: Addition of Gaussian temporal noise to a sequence of time intervals in 
order to create an arbiter sampling offset CDF. 

In order to generate a sequence of accurately known time intervals with Gaussian 

distributions, the authors in [26] propose the use of a configuration as illustrated in Figure 
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3.25. In this configuration, a production tester or an on-chip D L L is used to generate the 

accurately known time intervals. The time intervals are then modulated by the Gaussian 

control voltage of a variable delay buffer. 

Figure 3.25: Added noise calibration technique implementation [26]. 

The feasibility of such an approach will be discussed in section 3.4.2. 

3.4.1 Ana lys i s 

The authors in [26] have created a Matlab model of the added noise-based calibration 

technique and have reported the results of a small number of simulations. These results are 

displayed in Table 3.2. 

Table 3.2: Reported results from Matlab simulation of the added noise-based 
calibration technique (tA = 40 ps, a , = 250 ps, N = 100 000) [26]. 

Arbiter Offset [ps] Calibrated Offset [psl Error [ps] 
-35.00 
-18.31 
-2.00 
5.00 
6.00 
17.40 
27.50 

-34.60 
-17.91 
-2.12 
5.30 
5.43 
17.10 
27.47 

0.40 
0.40 
-0.12 
0.30 
-0.57 

•-0.30 
-0.03 
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The authors in [26] have chosen to perform their simulations with tA = 40 ps, O, = 250 ps, and 

N = 100 000. Calculation of the R M S error of the results in Table 3.2 yields 0.35 ps. This 

result can be compared with the predictions of the Matlab model of the direct calibration 

technique described in section 3.2.1. It should be noted that such a comparison is valid as the 

added noise calibration technique is theoretically identical to the direct calibration technique. 

The only difference between the two techniques is the amount of Gaussian noise in an arbiter. 

Using the Matlab model of the direct calibration technique described in section 3.2.1, 

it is possible to plot the RMS tce versus a, when tA - 40 ps. Such a plot is shown in Figure 

3.26. 

100 - L . , , , . ; , , : , „ : , „ , , , 

0.1 A 1 1 : : ' ' ' | : L ± l i i l | , 

0.1 1 10 100 1000 

CJtotal [ P S ] 

Figure 3.26: Log-log plot of R M S tce vs. a, when tA = 40 ps and N = 100 000, using the 
model of the direct calibration technique described in section 3.2.1. 

Inspection of Figure 3.26 reveals that according to the Matlab model described in section 

3.2.1, the R M S value of tce is approximately 1 ps i f c, = 250 ps. However, the authors in [26] 

present data with an R M S value of 0.35 ps. This discrepancy may be due to the fact that a 

relatively small number of arbiters (7) have been simulated in [26], whereas 100 arbiters have 

been simulated with the Matlab model described in section 3.2.1. Further inspection of 
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Figure 3.26 reveals that according to the Matlab model described in section 3.2.1, it is 

possible to obtain an RMS value of tce as low as 0.3 ps when N = 100 000. However, in order 

to do so, a, must be reduced to 67 ps. This value agrees with the optimal tA to a, ratio of 0.6 

when N = 100 000, as shown in Table 3,1. Calculation of the ratio of tA to a, used in [26] 

produces a result of 0.16, indicating that o, should be decreased in order to reduce the R M S 

value of tce. While it may be true that ot = 250 ps produces a relatively low R M S tce for the 

arbiter sampling offsets specified in Table 3.2, this result may not hold true for a more 

general distribution of arbiter sampling offsets, such as the uniform distribution used in the 

Matlab model described in section 3.2.1. 

The amount of time required by the added noise-based calibration technique to 

perform calibration is proportional to N and M , the number of repetitions and the number of 

time intervals, respectively, and inversely proportional to f, the frequency at which the time 

intervals are applied to the SOTDC START and STOP signals. This relationship is 

summarized with the following equation [26]. 

_MN (3.12) 
= / 

This is the same amount of time required by the direct calibration technique. However, some 

additional time is required to apply a curve fitting algorithm to the histogram data. 

3.4.2 Conclus ions 

The added noise-based calibration technique proposed in [26] is useful in the sense 

that it allows the step size of the time intervals (tA) to be increased while still maintaining the 

same level of calibration accuracy. However, this method does not alleviate the need for 

accurately known time intervals. This is a significant issue as it infers that either the external 

production tester or the on-chip D L L must generate known time intervals with picosecond 

accuracy. As the accuracy of the time intervals suffers, so does the accuracy of the 

calibration results. For example, i f all of the time intervals generated by the external tester or 
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the on-chip D L L are 1 ps greater than their assumed values, then the R M S value of the 

calibration error will increase by 1 ps. This error will propagate to the results of time interval 

measurements made by the SOTDC. 

In addition, the on-chip variable delay buffers must be calibrated in order to ensure 

that they do not add unwanted skew between 0 i and 02, and also to ensure that a linear 

relationship exists between the voltage of the control signals and the delay of the buffers. For 

these reasons it can be said that the method of implementation of the added^ noise-based 

calibration technique proposed in [26] is neither an ideal nor a complete solution. The 

SOTDC calibration technique proposed in Chapter 4 does not require knowledge of the time 

intervals used for calibration. 
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Chapter 4 

Proposed SOTDC Calibration Technique 

As discussed in Chapter 3, several SOTDC calibration techniques exist. However, it has 

been shown that all such techniques suffer from at least one serious limitation, thus rendering 

these proposals either unfeasible or insufficiently accurate. In order to address the need for a 

feasible and accurate SOTDC calibration technique, a new calibration technique has been 

developed. This technique leverages some of the advantages of the added noise-based 

calibration technique, while omitting some of its limitations. 

4.1 Simplified Proposed Calibration Technique 

The calibration technique proposed in this thesis relies upon the availability of two 

oscillators with a known frequency difference. That is, two oscillators, namely oscA and 

oscB, are required. T f the frequency of oscA and oscB are denoted a s ^ and fs, respectively, 

then the frequency difference of the two oscillators can be denoted as/A-

/A=/B -/A (4-1) 

50 



The same analysis can be performed in the time domain i f the period of oscA and oscB are 

denoted as TA and TB, respectively, and the period difference of the two oscillators is denoted 

as TA. 
) 

TA=TB-TA (4.2) 

When oscA and oscB oscillate freely, the difference in time between the rising edge 

transitions of each oscillator can be interpreted as a sequence of time intervals (Ts), with 

each time interval being TA seconds shorter or longer than its predecessor, as shown in Figure 

4.1. 

• HTD1 HTD2 l T d 3 HTD4 HTDS 

o s c B ...I 

Figure 4.1: Time intervals created by two free-running oscillators. 

Figure 4.1 depicts the relative temporal locations of the rising and falling edge transitions of 

oscA and oscB. These waveforms are drawn with the assumption that both oscillators are 

perfecdy\table, and/B </A, or equivalently, TB> TA. A perfectly stable oscillator is defined 

as an oscillator that has a constant frequency, and hence a constant period. For the remainder 

of this section, oscillators will be assumed to be perfectly stable. In addition, arbiters will be 

assumed to be noise-free. Therefore, it will be assumed that the sampling offset of an arbiter 

is a constant value, independent of time. This assumption wil l make the explanation of the 

simplified proposed calibration technique easier to follow. The presence of temporal noise in 

the sampling offset of an arbiter will be considered in section 4.2. 

If the instant in time at which the output of oscB produces a rising edge transition is 

denoted as toscB, and i f toscA is defined analogously for oscA, then each time interval can be 

expressed mathematically as: 
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Tcl(i) — toscB(0 ' toscA(i) (4.3) 

where / denotes the i t h rising edge transition of an oscillator. Following this definition of a 

time interval, a sequence of time intervals N elements long, i.e., Tdi TJN, generated from the 

output of oscA and oscB can be defined as shown in Equation (4.4). 

Tdo) •— {Tdi, Td2, Td3, Td4, • • • TdN-i, TdN}', 1<'<N 

= {Tdi, TdI + TA TdI + 2TA, Tdl + 3TA ...TdI + (N-l)^}; 1</ <N (4.4) 

Through inspection of Equation (4.4) it can be seen that a general formula exists for the 

duration of a time interval generated from the output of two oscillators of different frequency. 

Such a formula is written in Equation (4.5), where / > 0. 

Td(i) = Tdi + (i-l)?4i (4.5) 

Equation (4.5) describes a linearly increasing sequence of time intervals, as shown in Figure 

4.2. 

1 2 3 4 5 6 7 8 9 10 11 

Figure 4.2: Sequence of l inearly increasing t ime intervals. 

As discussed in Chapter 3, a periodic sequence of known time intervals can be used 

to determine the sampling offsets of an array of arbiters. It is possible to generate a periodic 

sequence of unknown time intervals from the output of two oscillators of different frequency 
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i f Tj(i) is restricted to a finite interval. For example, i f 7 ^ is bound by the following 

equation, 

0 < Td(0 < TA 
(4.6) 

then a periodic sequence o f time intervals can be generated i f TAITA is an integer. Figure 4.3 

illustrates how a periodic sequence o f time intervals can be produced from the output o f two 

oscillators o f different frequency, where 7^/7^ = 5. 

OSCA 

OSCB 

<— <— « «-

T d i d2 T d 3 I d4 I d5 T r i 

»• « — 

d6 d7 

Figure 4.3: Periodic time intervals created by two free-running oscillators. 

Inspection o f Figure 4.3 reveals that Td6 = Tdl and Td7 = Td2, or more generally, Td(o = 

Td(i-5) for / > 5. Therefore in general, i f TAITA is an integer, then a periodic sequence o f time 

intervals with TAITA unique values may be created from the output o f two oscillators o f 

different frequency. There is no need to physically impose a limit on the size o f T^,). This 

limit naturally occurs i f one oscillator is used as a reference edge generator, and the relative 

temporal location o f the other is used to indicate the duration o f the time interval, as is 

illustrated in Figure 4.3. Equation (4.5) can be rewritten to account for the periodic nature o f 

the time intervals generated from the output o f two oscillators o f different frequency, 

assuming TA/TA is an integer. 

Td(i) = Tdl +.[(/ - 1) mod (TA/TA)) TA; i > 0 (4.7) 

The periodic sequence o f time intervals described by Equation (4.7) is plotted in Figure 4.4, 

assuming TAITA = 5. 
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Figure 4.4: Periodic sequence of time intervals generated from the output of oscA and 

oscB assuming TJT^ = 5. 

Inspection of Equation (4.7) reveals that one of the time intervals generated from the 

output of two oscillators of different frequency must be accurately known before the entire 

sequence of time intervals can be predicted. However, without this information, the entire 

sequence of time intervals is unknown, and therefore of no use to any of the calibration 

techniques discussed in Chapter 3. Their values could be determined i f an arbiter with a 

known sampling offset is used to detect alignment between the two oscillators. However, i f 

it was possible to determine the sampling offset of an arbiter, then a calibration technique 

would not be required in the first place. Even i f such an arbiter was available, any 

differences in the routing of the arbiter's inputs could significantly alter the arbiter's 

sampling offset. This in turn would affect the predicted values of the sequence of time 

intervals, and thus the accuracy of the calibration technique. As a result, the only useful 

information that can be directly extracted from a periodic sequence of unknown time 

intervals is the temporal difference between arbiter sampling offsets. This can be 

accomplished by counting the number of oscillator cycles elapsed between the "switching-

events" of two arbiters, as illustrated in Figure 4.5. 
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Figure 4.5: Determining the relative sampling offsets of two arbiters. 

In order to explain the meaning o f an arbiter's "switching-event", an arbiter's 

response to two important time intervals must be understood. A s discussed in Chapter 2, 

when a time interval which is less than the sampling offset o f an arbiter (tso) is applied to its 

inputs, the arbiter responds by asserting its OUT2 output while maintaining a low logic level 

on its OUT] output, i.e., OUT1 = ' 0 ' and OUT2 = T ' . On the other hand, i f a time interval 

which is greater than or equal to the sampling offset o f an arbiter is applied to its inputs, the 

arbiter responds by asserting its OUT1 output while maintaining a low logic level on its 

OUT2 output, i.e., OUT1 = ' 1 ' and OUT2 = ' 0 ' . Therefore, i f a sequence of time intervals is 

applied to the inputs o f an arbiter, such as the one plotted in Figure 4.4, where Tdi < tso, and 

TdQ ^ tso (Q = TA/TA is an integer), then for some Tdi < Td® 2 TdQ, the arbiter's response w i l l 

change from OUT1 = ' 0 ' and OUT2 = ' 1 ' to OUT1 = ' 1 ' and OUT2 = ' 0 ' . This event is 

known as the arbiter's "switching-event", and signifies that the arbiter's sampling offset has 

been surpassed or equalled by the most recently applied time interval, Td(i). Detecting the 

switching-event o f an arbiter is useful as the sampling offset o f the arbiter can then be 

estimated as Td(i-i) < tso ^ Tdp), where both Td(i-i) and Td(t) are unknown. 

Inspection o f Figure 4.5 reveals that the switching-event o f Arbiter2 occurs seven 

cycles after the switching-event o f Arbiterl. From this information one might surmise that 

the sampling offset' o f Arbiter2 is greater than that o f Arbiterl by 7TA seconds, or 

equivalently, tS02
 = tsoi + 77^. However, it might be incorrect to form this assumption. In 

order to illustrate this point, Figure 4.6 may be o f use. Inspection o f Figure 4.6 reveals that 
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the difference in the sampling offsets of Arbiter! and Arbiter2 may vary from nearly 6T& 

seconds to almost 87/s seconds, while still maintaining an oscillator cycle count of seven. 

Arbi ter l Switching-Event Arbiter2 Switching-Event 

0 1 2 3 4 5 6 7 

i-1 1-4 
• 

Tdi Td2 Td3 Td4 Td5 T d 6 Td7 Td8 Tdg Time [s] 

i > 

Figure 4.6: Variat ion in arbiter sampling offsets while still maintaining a constant cycle 

Therefore, the number of oscillator cycles elapsed between the switching-events of two 

arbiters provides enough information to estimate the relative temporal spacing between the 

sampling offsets of the arbiters to within a range of 2TA seconds. Using the scenario 

illustrated in Figure 4.5 as an example, Equation (4.8) describes the sampling offset of 

Arbiter2 in terms of the sampling offset of Arbiterl. 

Until this point, only perfectly symmetric or positively biased arbiters have been 

discussed. It is also possible to constmct a negatively biased arbiter. The behaviour of a 

negatively biased arbiter is illustrated in Figure 4.7. A buffer delay (Tdei) has been inserted 

before input IN2 of a perfectly symmetric arbiter in order to mimic the behaviour of a 

negatively biased arbiter. However in reality, the sizes of transistors within the arbiter are 

usually altered in order to induce a bias. 

count. 

tsoi + 67^ < tSQ2 < tsoi + 87^ (4.8) 
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Figure 4.7: Behaviour of a negatively biased arbi ter . 

Inspection of Figure 4.7 reveals that the sampling offset of the illustrated arbiter is greater 

than Tdi but less than or equal to Td2- Since Td(j) = tOSCB(i) - toscA(i), both Tdi and T<j2 are negative. 

As the difference between Tdi and Td2 is made increasingly small, the sampling offset of the 

arbiter can be found to be equal to -Tdei, as expected. 

Returning to the subject of Figure 4.5, it can be seen that the sampling offset of 

Arbiter! is a negative number. In addition, it can be seen that the magnitude of tsoi is greater 

than that of tso2, which is a positive number. Now, i f the inputs to Arbiter2 are somehow 

reversed, and its switching-event is redefined to occur when its input response changes from 

OUTl = 'V and OUT2 = ' 0 ' to OUTl = ' 0 ' and OUT2 = ' F , then the arbiter's sampling 

offset changes sign but not magnitude, as illustrated in Figure 4.8. This can be attributed to 

the topology of a symmetric CMOS arbiter. A typical CMOS D flip-flop does not share this 

property as its setup time is dependent upon the logic values of its present and previous 

inputs. 
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Figure 4.8: Behaviour of a positively biased arb i ter (a), and a positively biased arb i ter 
w i th reversed inputs (b). 

This change in sign is extremely useful, as it provides a method of obtaining a second 

piece of information regarding the relationship between the sampling offsets of Arbiter! and 

Arbiter!. For example, i f the inputs to Arbiter2 are reversed while the inputs to Arbiter! 

remain unchanged, the relative temporal difference between the switching-events of the two 

arbiters changes. In fact, it decreases by exactly 2tso2. Therefore in theory, the sampling 

offset of Arbiter! can be estimated i f two pieces of information concerning the relative 

temporal difference between the switching-events of Arbiter 1 and Arbiter2 are obtained. The 

first piece of required information is the number of oscillator cycles elapsed between the 

switching-events of the two arbiters, with the inputs to both arbiters as illustrated in Figure 

4.8 (a). The second piece of required information is the number of oscillator cycles elapsed 

between the switching-events of the two arbiters when the inputs to Arbiter2 are reversed, as 

illustrated in Figure 4.8 (b). From this information, the sampling offset of Arbiter2 can be 

estimated using Equation (4.9). 
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2tso2 = [cycleCoimt Arbiter! _ normal _ inputs TA)- [cycleCoimt Arbiter! _ reversed _ inputs 

t fycleCount Arbiter! _ normal _ inputs — cycleCoimt Arbiterl _ reversed _ inputs 
(4.9) 

This xresult is quite powerful as it demonstrates that it is possible to estimate the sampling 

offset o f an arbiter using two oscillators with a known frequency difference, a counter circuit, 

and a second arbiter with an unknown sampling offset. The need to generate a sequence o f 

known time intervals has been eliminated. 

In order to determine the theoretical accuracy o f Equation (4.9), it would be helpful i f 

the example illustrated in Figure 4.5 included information concerning the behaviour o f 

Arbiterl when its inputs are reversed. However, this would require knowledge o f the 

sampling offset o f Arbiterl. Therefore, in order to deduce the accuracy o f Equation (4.9), a 

value must be chosen for tso2. I f tso2 is arbitrarily fixed at 27^, then the number o f oscillator 

cycles elapsed between the switching-events o f Arbiterl and Arbiter2, when the inputs to 

Arbiterl are reversed, can be predicted. Under normal circumstances, i.e., when the inputs to 

Arbiter2 are not reversed, seven oscillator cycles are elapsed between the switching-events o f 

Arbiterl and Arbiterl. However, when the inputs to Arbiterl are reversed, its sampling 

offset changes sign, and is therefore equal to -2TA. Since each time interval differs by TA 

seconds from its predecessor, a decrease in tso2 of 47^ seconds corresponds to a decrease o f 4 

oscillator cycles. Therefore, 3-oscillator cycles are elapsed between the switching-events o f 

Arbiterl and Arbiterl when the inputs to Arbiterl are reversed, as illustrated in Figure 4.9. 
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F igure 4.9: Osci l lator cycle count when the inputs to Arbiter2 are reversed. 

While it is important to know the number o f oscillator cycles elapsed between the 

switching-events o f Arbiterl and Arbiter!, for the purposes o f determining the accuracy of 

Equation (4.9), it is more insightful to know the temporal range o f tso2 that produces an 

oscillator cycle count o f three. A simple modification o f Equation (4.8), which provides an 

estimate o f tso2 in terms o f tsol assuming the inputs to Arbiter2 are not reversed, can yield 

such results. Since it is known that tso2 with reversed inputs is 4TA seconds less than tso2 

without reversed inputs, <\TA seconds can be subtracted from all o f the terms in Equation (4.8) 

to make the required modification, as shown below. 

tsoi + 6TA - 47'A < tso2 - 4TA < tsoI + %TA - 4TA 

tsol 27̂4. ^ tso2_reversed_inputs — ^sol (4.10) 

A summary o f the information contained in Equations (4.8) and (4.10) would be 

useful in order to make a conclusion regarding the accuracy o f Equation (4.9). Figure 4.10 

serves as such a summary. 
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Figure 4.10: S u m m a r y of the information obtained by counting the number of oscillator 
cycles elapsed between the switching-events of two arbiters. 

Through inspection of Figure 4.10 it can be seen that different values of tso2 may satisfy the 

relationships that have been found to exist between Arbiterl and Arbiter2. In fact, a range of 

tso2 values exist which satisfy the aforementioned relationships. In order to quantify the 

accuracy of Equation (4.9), the worst-case error in the estimation of tso2 must be determined. 

The worst-case error occurs when the range of tso2 values which satisfies the aforementioned 

relationships is maximized. The maximum and minimum difference between tso2 and -tso2 

can be found through inspection of Figure 4.10, as shown below. 

Comparison with the known value of IT A reveals that the error of the simplified proposed 

calibration^technique can be bound as shown in Equation (4.12). 

3TA < tso2 - {-tso2) < 5TA 

l.5TA<tso2<2.5TA (4.11) 

-772 < tce < TJ2 (4.12) 
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These error bounds are equivalent to those of the direct calibration technique as discussed in 

Chapter 3, assuming a noise-free arbiter. If the RMS error of the simplified proposed 

calibration technique is calculated assuming uniformly distributed arbiter sampling offsets, 

then Equation (4.13) is produced. 

RMS(tce) = (4.13) 

This result is equivalent to the R M S calibration error of the direct calibration technique, 

assuming noise-free arbiters as discussed in Chapter 3. Therefore, it can be concluded from 

the preceding analysis that for noise-free arbiters, the error of the simplified proposed 

calibration technique is equivalent to that of the direct calibration technique. 

4.2 Non-Ideal Arbiters and Added Noise 

As discussed in Chapter 3, the sampling offset of a non-ideal arbiter is not a fixed 

number, but is instead characterized by a Gaussian probability density function. As a result, 

two identical time intervals can induce a different response from the same arbiter. However, 

this fact can be exploited, as is done by the added noise-based calibration technique of 

Chapter 3, to improve the accuracy of the proposed calibration technique. For example, i f 

Gaussian temporal noise with a standard deviation much larger than o, is added to the 

sequence of time intervals, many oscillator cycle counts can be recorded and then averaged in 

order to obtain a more accurate estimation of tso. In such a case, Equation (4.9) must be 

rewritten as shown in Equation (4.14), where TV refers to the number of oscillator cycle 

counts recorded when the arbiter's inputs are connected normally (state S = 0) or reversed 

(state 5=1). 

T 
tso = {totalCycleCount s = 0 — totalCycleCount s =,)—— (4.14) 
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In order to explain this assertion it is necessary to examine Figure 4.11. which 

illustrates the P D F o f each Td within a sequence o f Ts- In addition, the sampling offsets o f 

two arbiters, tso! and tso2, have been plotted along the x-axis. Note that both Figure 4.11 and 

the analysis to follow are predicated on the assumption that the Gaussian temporal noise 

added to each time interval is much greater than the intrinsic temporal noise within each 

arbiter, as explained in section 3.4 and depicted in Figure 3.22. Consequently, the sampling 

offset o f an arbiter can be treated as a constant value. 

(a) X I 

to 
xi 
o 

(b) X I 
ca 
xi 
o 

Tdi T d 2 Td3 T d 4 

tsoi 

P( Td2 < t s „ , ) P( T d 2 £ t s oi ) 

/ 

Tdio Tdn T d i 2 Tdi3 

t S 02 

P( Tal2 < tso2 ) P( Tdl2 S W ) 

T d [ s ] 

T d 2 

tsoi 

T d [ s ] 
t. so2 

Figure 4.11: (a) P D F of several Ts belonging to a sequence of Ts (b) P D F of two Ts 
(Note: the sampling offsets of two arbiters, tsol and tso2, are plotted along the x-axis of 

both figures). 

Through inspection o f Figure 4.11 (a) it can be seen that the sampling offsets o f 

Arbiterl and Arbiter2 are constant, while the instantaneous value o f each time interval, i.e., 

Tdi to Tdi3, is nondeterministic. A s a result, it is not possible to predict with absolute 

certainty the response o f either arbiter to any given time interval. Therefore, the number o f 

oscillator cycles elapsed between the switching-events o f these two arbiters is also 
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nondeterministic. This phenomenon is the direct result of the addition of Gaussian temporal 

noise to each time interval. 

However, i f a sufficient number of oscillator cycle counts are recorded, then the 

statistical properties of the added temporal noise can be leveraged to obtain a very accurate 

estimation of tso. For example, i f a histogram of each Td is compiled while the oscillator 

cycle counts are recorded, the histograms will more closely resemble a Gaussian distribution 

as time progresses. If the histograms can be accurately modelled with a Gaussian PDF, then 

it is possible to mathematically describe the probability of occurrence for any oscillator cycle 

count. To further explain, Figure 4.11 (b) may be of use. This figure depicts the probability 

with which Td2 is greater than or equal to tsol, as well as the probability with which Tdi2 is 

greater than or equal to tso2. With this sort of information it is possible to construct an 

equation to determine the probability of any oscillator cycle count value. 

In order to construct such an equation it is first necessary to determine the probability 

of the oscillator cycle counter being triggered by each Td. In the case of Tdi this amounts to 

the probability that Tdi is greater than or equal to tsol, or P(Tdi > tsol). The equation which 

describes the probability of the oscillator cycle counter being triggered by Td2 is only slightly 

more complicated. The probability of such an event is equal to the probability that Td2 is 

greater than or equal to tso, and Tdi is less than tsoi. Therefore, this equation is dependent 

upon the outcome of two distinct events, i.e., Td2 being greater than or equal to tsol zn&Sdi 

being less than tsol. However, since these events are independent, i.e., the value of Td2 is not 

dependent upon whether or not Tdi was less than tso, since the added temporal noise is 

random, their probabilities can be dealt with individually. Mathematically these events are 

known as statistically independent variables [35, 36], and the probability of these two events 

occurring can be solved as shown in Equation (4.15), where A and B represent two 

independent events, and A H B is the mathematical intersection of these two events. 

P(AfYB) = P(A) • P(B) (4.15) 
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V 

Therefore to summarize, the probability of the oscillator cycle counter being triggered by Tdi 

or Td2 is formally expressed in Equations (4.16) and (4.17), respectively. 

P(Td! triggers) = Y(Tdl > tso,) 

P(Td2 triggers) = Y(Td2 > tsol fl Td, < tso!) 

= P(T*2 * tsoi) • ?(Tdl < tsol) 

With this information in hand it is now possible to construct Equation (4.18), which can be 

used to determine the probability of the oscillator cycle counter being triggered by any Td, 

which may be represented as Td0). This equation follows directly from the preceding 

analysis. 

P(TdU) triggers) = P(TdU) > t„,) • f[p(Tm < tsoX) ( 4 A 8) 
1=1 

The following definitions must also accompany Equation (4.18). 

P(Td>tS0) = ± 

?(Td<tS0) = l- ~P(Td>tSo) 

Now that it is possible to determine the probability of the oscillator cycle counter 

being triggered by any T V it is also possible to construct an equation to determine the 

probability of a specific oscillator cycle count. Using an oscillator cycle count of 1 as an 

example, many different scenarios can be constructed to achieve this value. For example, the 

counter could be triggered by Td! and stopped by Td2, thus producing a count of 1. It is also 

possible for the counter to be triggered by Td2 and stopped by Td3, therefore producing the 

same result. In fact, it is theoretically possible for any Td and its successor to start and stop 

(4.16) 

(4.17) 

l + erf 
fT -t A 

1 d
 lso 

V ° ' t o t a l ^ J 
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the counter respectively. This fact is described in Equation (4.19), where the mathematical 

union o f these individual events is represented with the symbol ' U ' . 

P(Count = 1) = F([Tdl triggers fl Td2 stops] U [Td2 triggers fl Tdi stops] .. . (4.19) 

U [TdM-i triggers fl TM stops]) 

Whi le Equation (4.19) is mathematically concise, it is o f no use in predicting the probability 

o f a specific oscillator cycle count unless the union o f the events described in this equation 

are known. In order to solve the aforementioned equation, the mathematical definition o f the 

union o f two events must first be understood. Shown in Equation (4.20) is the definition o f 

the mathematical union operation. 

P(AUB) = P(A) + P(B) - P(AflB) (4.20) 

However, Equation (4.20) can be simplified by noting that each o f the events 

described in Equation (4.19) are mutually exclusive, i.e., it is only possible for one event to 

occur for any single oscillator cycle count, and thus the intersections o f these events are 

required to be zero. For example, i f event A represents the scenario that Td! triggers the 

oscillator cycle counter while Td2 stops it, it is not possible for some other event B to occur, 

which may represent the scenario under which Td2 triggers the oscillator cycle counter and 

Tdi stops it. This can be reasoned logically by observing that, for example, i f TdI is to trigger 

the oscillator cycle counter then it is not possible for Td2 or any other Td to re-trigger the 

counter until it has been stopped. Similarly, i f Td2 stops the oscillator cycle counter then it is 

not possible for Td3 or any other Td to stop the counter until it has been re-triggered. 

Therefore, events A and B can be said to be mutually exclusive since they can never occur 

simultaneously, and Equation (4.20) can be simplified to Equation (4.21), which describes 

the probability o f the union o f two mutually exclusive events. 

P(AUB) = P(A) + P(B) (4.21) 
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With the preceding information in hand it is now possible to simplify Equation 

(4.19), which describes the probability of an oscillator cycle count of 1. Equation (4.22) is 

the result of this simplification. \ 

P(Count = 1) = P( [Tdi triggers D Td2 stops] U [Td2 triggers D Td3 stops] ... 

U [TdM-i triggers f) T^M stops]) 

= F(Td! triggers)P(rrf2 stops) + V(Td2 triggers)-P(rrf5stops) ... + 

P(TdM-i triggers)-P(7W stops) {A.22) 

Finally, as shown in Equation (4.23), it is possible to write a simplified general equation to 

determine the probability of any oscillator cycle count. The symbol 'M' in Equation (4.23) 

represents the index of the last Tjthat is applied to the array of arbiters. 

M-j 
P(Count = / ) = ] £ P(Td(i) triggers) • P(Td0+n stops) ( 4 23) 

The equation which describes the probability of a specific Td stopping the oscillator cycle 

counter is given in Equation (4.24). This follows directly from the analysis used while 

writing the equation that specifies the probability of triggering the oscillator cycle counter, 

which for the sake of convenience has been reproduced below. 

P{Tm+j)stops) = P{Td^j)>tso2y f[P{Tdik)<tso2) ( 4 24) 
k= i+1 

• P(Td0) triggers) = P(Td(l) > tso]) -Y[P{Td{k) < tml) ( 4 . 2 5 ) 

Now that it is possible to determine the probability of any oscillator cycle count, this 

information can be used to plot the probability of a range of oscillator cycle counts when the 

inputs to Arbiter2 are both reversed and normal, as shown in Figure 4.12. 
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Figure 4.12: Probability of oscillator cycle counts when Arbiter2 has both normal and 
reversed inputs. 

Through inspection of Figure 4.12 it can be seen that the PDFs of the oscillator cycle counts 

closely resemble Gaussian PDFs, which as stated earlier is the direct result of the addition of 

Gaussian temporal noise to the applied time intervals. Therefore, a good approximation of 

the oscillator cycle count when the inputs to Arbiter2 are either reversed or normal can be 

obtained by calculating the mean of the appropriate PDF. If these mean oscillator cycle 

counts are known, then estimating twice the sampling offset of Arbiter2 is a matter of 

calculating the difference in these mean values and multiplying by The result is written 

in Equation (4.26), where state S = 0 indicates that the arbiter's inputs are connected 

normally, and state 5=1 indicates that its inputs are reversed. 

2 ' „ ={Ms=o-Ms-i)T* (4.26) 
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Equation (4.26) has been written with the assumption that the PDFs of the applied time 

intervals are perfect Gaussians. However, this assumption is only valid when an infinite 

number of time intervals are applied to the arbiters. In normal circumstances only a finite 

number of oscillator cycle counts can be recorded due to calibration time constraints as well 

as physical limitations such as the depth of the oscillator cycle counters. Therefore, to be of 

any practical use, Equation (4.26) must be rewritten to account for these realities. Such an 

equation has been written in Equation (4.27), where N refers to the number of oscillator cycle 

counts recorded when S = 0 or 1. 

It, 
totalCycleCount s = 0 

N 
totalCycleCount s 

N 
r A (4.27) 

Next, Equation (4.27) can be rewritten to solve for the sampling offset of an arbiter, as shown 

in Equation (4.28). 

tso = [totalCycleCounts=0 - totalCycleCounts = i ) ^ ^ " (4.28) 

This equation is identical to Equation (4.14), and is therefore the core equation of the 

proposed SOTDC calibration technique. An analysis of the accuracy of Equation (4.28) and 

the proposed SOTDC calibration technique in general will be discussed in Chapter 5. 

4.3 Oscillator Non-Idealities 

Until this point it has been assumed that two perfectly stable oscillators with a known 

frequency difference are available for use during SOTDC calibration, where TAITA is an 

integer. These oscillators are necessary to produce a periodic sequence of time intervals. 

However, in reality it is quite difficult i f not impossible to obtain a perfectly stable oscillator 

with a precisely known frequency. Even i f it was possible to build two such oscillators, the 

frequency of both would need to be chosen very carefully so as to ensure that a periodic 

sequence of time intervals could be generated. For example, i f the oscillators are named 
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oscA and oscB with periods of TA and TB, respectively, then TA/TA, where TA = TB - TA, must 

be an integer in order to produce a periodic sequence of time intervals. 

One technique that could be used to eliminate the need for the aforementioned 

oscillators is to lock both to the same reference frequency. For example, a single reference 

frequency could be used to generate both oscA and oscB by means of two Phase-Locked 

Loops (PLLs) with different divisors. Figure 4.13 illustrates this technique. 

' i n 

Phase-Locked 
Loop #1 

fout — A * f j n 

r 

Phase-Locked 
Loop #1 

fout — A * f j n 

Phase-Locked 
Loop #2 

fout = B • f n 

r 

Phase-Locked 
Loop #2 

fout = B • f n 

o s c A 

o s c B 

Figure 4.13: P L L implementation of oscA and oscB. 

The output of the two PLLs illustrated above can be described by Equations (4.29) and 

(4.30). 

fA~ A - fin, TA — —— 
A 

JB — B - fir,; TB -
B 

(4.29) 

(4.30) 

Now, as long as Equation (4.31) yields an integer result, i.e., Q, then the sequence of time 

intervals produced from oscA and oscB is guaranteed to repeat itself every Q+l time 

intervals. 

T 
1 A = Q 

(4.31) 
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TA=TB-TA 
(4.32) 

Substituting Equation (4.32) into Equation (4.31) produces Equation (4.33). 

TA (4.33) 

T -T 
1B 1A 

Further manipulation of Equation (4.33) by means of substituting Equations (4.29) and (4.30) 

and then simplifying the result yields Equation (4.34). 

B 

Analysis of Equation (4.34) indicates that it is possible to generate a periodic sequence of 

time intervals by locking two PLLs to a single known reference frequency.' The only caveat 

to using this technique is that A and B (the PLL divisors) must be chosen according to 

Equation (4.34) such that the resulting Q (the number of time intervals before the sequence 

repeats itself) is an integer. Further observation of this technique reveals that TA does not 

need to be calibrated or measured as it can be calculated as long as fin is known. Lastly, it is 

possible to reverse the inputs to the array of arbiters within the SOTDC by simply swapping 

the divisors of the two PLLs. 

4.4 Implementation 

The proposed SOTDC calibration technique can be implemented in a variety of ways, 

oftentimes requiring only a few, relatively simple, modifications to a basic SOTDC. One 

possible arrangement is illustrated in Figure 4.14. 
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Figure 4.14: Conceptual circuit view of the proposed calibration technique. 

72 



The arbiters labelled "ARBITER 7" through to 'ARBITER N" in Figure 4.14 are responsible 

for time interval measurement, and their sampling offsets must be calibrated. Two additional 

arbiters, "REF ARBITER 7" and "REF ARBITER 2", are required to realize the function o f 

Arbiter], i.e., to provide a fixed temporal reference point during calibration. A s was the case 

for Arbiterl, both arbiters are required to have negative sampling offsets, and the magnitude 

o f their sampling offsets must exceed that o f any arbiter that is used for time interval 

measurement. Ideally, the sampling offsets o f the two arbiters should be identical. In order 

to achieve such stringent matching requirements, the sizes o f the transistors which comprise 

the reference arbiters must be made very large, usually ten times that o f a normal arbiter. 

This w i l l help to mitigate sampling offset deviations caused by process, voltage, and 

temperature variations. 

A s illustrated in Figure 4.14, the inputs to REF ARBITER 1 are connected in an 

opposite manner tothose o f REF ARBITER 2. In addition, a multiplexer is used to select 

between the outputs o f the two arbiters, indicating that only one reference arbiter is used at 

any given time. When S = ' 0 ' , the sampling offset o f REF ARBITER 1 is a negative number. 

Therefore, its switching-event can be used as a temporal reference point from which it is 

possible to trigger an oscillator cycle counter. However, when S = ' 1', the sampling offset o f 

REF ARBITER 1 changes sign, thereby negating its role as a fixed temporal reference point. 

Nevertheless, it is possible to create a fixed temporal reference point i f REF ARBITER 1 and 

REF ARBITER 2 are used in tandem, as the sampling offset o f REF ARBITER 2 should be 

nearly identical to that o f REF ARBITER 1 when S = ' 0 ' since its inputs are reversed in 

comparison to those o f REF ARBITER 1. However, in order to ensure that the temporal 

reference point provided by REF ARBITER 1 is nearly identical to the one provided by REF 

ARBITER 2, special attention must be paid when routing the inputs to these arbiters. 

Otherwise, any mismatch in the input routings may result in a significant difference between 

the sampling offsets o f the two arbiters. 
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In order to detect a reference arbiter switching-event, a "REFERENCE ARBITER 

SWITCHING-EVENT DETECTOR" block is required. This switching-event detector samples 

the output of the reference arbiter multiplexer on the rising edge of a delayed version of oscA. 

When a switching-event is detected, the "DATA CAPTURE, STORAGE, AND OUTPUT' 

block is notified. This block consists of N oscillator cycle counters, one for each arbiter. The 

notification triggers the counters to begin counting on the rising edge of oscA. Each counter 

continues to increment its count until a switching-event is detected at the output of its 

respective arbiter. A more detailed circuit implementation of each of the aforementioned 

blocks can be found in Appendix A . 

It is important to note that the oscillator cycle counters required by the proposed 

calibration technique are almost always used in a basic SOTDC to quickly store the results of 

a large number of time interval measurements. Therefore, these counters would not normally 

increase the area of an SOTDC. However, it is possible to reduce the area consumed by 

these counters by sharing only one amongst the TV arbiters and calibrating each arbiter 

sequentially. It should also be mentioned that care must be taken when routing the START 

and STOP inputs of an SOTDC. Otherwise, electromagnetic coupling between these two 

input lines may significantly alter the oscillator cycle counts, which would adversely affect 

the accuracy of the proposed calibration technique. Lastly,-two additional circuits not 

illustrated in Figure 4.14 are required for successful implementation of the proposed 

calibration technique. These circuits include a Gaussian noise generation circuit [37] and a 

voltage-controlled delay buffer [38]. Together these circuits can be used to generate and then 

convert Gaussian noise from the voltage to the time domain, which in turn is used to 

modulate the time intervals applied to an SOTDC during calibration. 

4.5 Summary 

The practical benefit accrued from the use of the proposed calibration technique is the 

ability to perform calibration without knowledge of the values of the time intervals applied to 

the SOTDC during calibration. Only knowledge of the temporal difference between adjacent 
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time intervals is required. This information can be acquired through the selection o f a 

reference frequency (//„) and P L L divisors (A and B) according to Equation (4.34). In 

addition, there is no need to apply a curve fitting function to the calibration results. Post

processing o f the results consists o f simple subtraction, multiplication, and division 

operations. Therefore, the post-processing requirements o f the proposed calibration 

technique are much less demanding than those o f either the direct or the added noise-based 

calibration techniques. Chapter 5 w i l l present a thorough analysis o f the accuracy o f the 

proposed calibration technique. 
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Chapter 5 

Results and Analysis 

The proposed SOTDC calibration technique has been presented in Chapter 4. This 

presentation included a discussion of the proposed calibration technique's principle of 

operation as well as a conceptual circuit-based implementation. In addition, an equation was 

presented to estimate the sampling offset of an arbiter assuming an absence of temporal noise 

in both the arbiters and the time intervals. A theoretical bound was then placed on the error 

of the proposed calibration technique given an absence of temporal noise in both the arbiters 

and the time intervals, and this bound was shown to be identical to that of the direct 

calibration technique assuming the same conditions. Next, the discussion progressed towards 

the consideration of thermal noise in the arbiters and Gaussian temporal noise in the sequence 

of time intervals. A statistically-based mathematical equation was developed to gain further 

insight into the operation of the proposed calibration technique in the presence of additive 

Gaussian temporal noise. Eventually it was shown that the equation used to estimate the 

sampling offset of a noise-free arbiter could also be used to estimate the sampling offset of an 

arbiter exposed to Gaussian temporal noise. 
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It was then mentioned that the practical benefit accrued from the use of the proposed 

calibration technique is the ability to perform calibration without knowledge o f the values o f 

the time intervals applied to the S O T D C during calibration. Only knowledge o f the temporal 

difference between subsequent time intervals is required, i.e., TA must be known. Lastly, it 

was shown that TA does not need to be calibrated or measured as it can be calculated as long 

as the reference frequency and divisors o f the two P L L s which generate oscA and oscB are 

known. However, the error o f the proposed calibration technique was not addressed in the 

preceding discussion, as it is the topic o f this chapter. 

5.1 Theoretical Error Bounds 

The statistically-based mathematical equations developed in Chapter 4 are reproduced 

below. These equations were derived in order to gain further insight into the operation o f 

the proposed calibration technique in the presence o f Gaussian temporal noise. 

M-j 
P(Count = j) = YjP(Td(i) triggers)-P(Td(i+J) stops) 

1=1 

P(Tdfi) triggers) = P(Tm > tsol)-f[P(TdW< tsJ 

P(Td{!+}) stops) = P(Td{HD>tso2)- f\P(Td(k)<tso2) 
k= i+l 

The symbol ' M ' represents the index of the last Td in the sequence o f TdS that is applied to the 

array o f arbiters. In addition, the definitions o f P(Td S tso) and P(7# < tso) are reproduced 

below, where the assumption has been made that the time intervals applied to the arbiters 

have been altered to fit a Gaussian distribution with a standard deviation much larger than 

that o f the random temporal noise which is intrinsic to the arbiters, i.e., a added Cf,, and 

therefore, a,otai ~ oadded-
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P{Td>(so) = ^ 

?(Td<tso)=\--p(Td>tso) 

These equations can be used to determine the probability of any oscillator cycle count 

value. As stated in Chapter 4, estimating the sampling offset of an arbiter is then reduced to 

finding the difference in the mean values of the oscillator cycle count PDFs when the inputs 

to the arbiters are normal and reversed, and then multiplying the result by TJ2 as shown in 

Equation (5.1). 

T 
' » = t a = o - / ^ = i ) y (5-1) 

However, one would only estimate the sampling offset of an arbiter using these statistically-

based mathematical equations i f they wanted to determine the theoretical error bounds of the 

proposed calibration technique. This is true since the sampling offset of the arbiter in 

question is a required parameter of these equations. In addition, the sampling offset 

calculated using these equations is very likely to contain the smallest possible proposed 

SOTDC calibration technique error given a particular value of TA and oto/fl/. This assertion 

can be explained by realizing that the PDFs of the time intervals applied to the arbiters are 

assumed to be perfectly Gaussian when using the aforementioned equations. However, in 

reality only a finite number of oscillator cycle counts can be recorded due to calibration time 

constraints as well as physical limitations such as the depth of the oscillator cycle counters. 

As a result, the PDFs of the time intervals applied to the arbiters during SOTDC calibration 

are not perfectly Gaussian, and it is this deviation that introduces additional error into the 

actual calibration results. 

In an effort to ascertain the theoretically smallest proposed SOTDC calibration 

technique error, a Matlab model has been constructed using the statistically-based 

1 + erf 
'' T -t ^ 
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mathematical equations. This model provides the ability to calculate the minimum error of 

the proposed SOTDC calibration technique for any value of TA and o,oto/. The model has 

been constructed using an array of 100 arbiters uniformly distributed across one TA. This was 

done to ensure that the results were independent of any particular sampling offset value. The 

RMS calibration error of 100 arbiters calculated using four different TA values and numerous 

values of o,otai is shown in Figure 5.1. 

1E-15 -I 1 • • —I -I , 
1 10 100 1000 10000 

Ototal [PS] 

Figure 5.1: M i n i m u m error of the proposed calibration technique across four different 
TA values. 

Inspection of Figure 5.1 reveals that for each value of TA there is a range of atoto/ values 

which yield a dramatically lower calibration error (tce) than do the rest. In fact, it appears as 

if this range of atotai values yields the lowest calibration error that is achievable using the 

proposed calibration technique. However, this perceived calibration error floor is the result 

of a limitation in the numerical accuracy of the computer used to perform the calculations, 

and does not represent an actual limitation in the lowest achievable calibration error for a 
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particular TA value. The true limit may in fact approach zero as the standard deviation o f the 

added temporal noise moves closer to some optimal value o f o t o t o / . 

Inspection o f Figure 5.1 also reveals that the'shape o f the minimum error curve is 

constant across all four TA values. A s atoto/ is decreased from its optimal value the minimum 

calibration error increases sharply. However, as <5to,ai is decreased even further, the minimum 

calibration error eventually saturates. Whi le it is true that the saturation value is dependent 

upon the actual value o f TA, it can be shown that TA and the saturation value scale 

proportionally. Analogously, as r j t o t o / is increased from its optimal value the minimum 

calibration error increases sharply and eventually saturates to a value that is proportional to 

TA. 

In order to understand why the minimum calibration error changes the way it does as 

ototal is varied from its optimal value, a plot o f the oscillator cycle count PDFs for numerous 

Gtotai values may prove useful. Such plots are shown in Figure 5.2 and Figure 5.3. 
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Figure 5.2: Oscillator cycle counts PDFs for several different values of Ototat, all of which 
are < a„ptimai (TA = 10 ps). 
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Inspection of Figure 5.2 reveals that as o,olai is decreased from its optimal value, the oscillator 

cycle count PDFs become less Gaussian and begin to more closely resemble a unit impulse. 

In fact, i f Oiotd is reduced to 0 ps, as is the case with the simplified proposed calibration 

technique discussed in section 4.1, the oscillator cycle count PDF transforms into an ideal 

unit impulse. This makes intuitive sense as the oscillator cycle count must be a constant 

value when there is a complete absence of temporal noise in an arbiter. As discussed in 

section 4.1 and derived in section 3.2.1, the RMS calibration error of the proposed SOTDC 

calibration technique can be obtained using the following equation when <5lolai = 0 ps: 

RMS(tce)~ T a 

2V3 

This assertion can be verified by comparing the results obtained from the preceding equation 

with those plotted in Figure 5.1 when o, o t o/ « cjoptimai. In summary, the minimum calibration 

error of the proposed SOTDC calibration technique increases as o t o t o / is decreased from its 

optimal value. This phenomenon can be explained by observing that the mean value of an 

oscillator cycle count PDF approaches a whole number as o t o t a / is decreased from its optimal 

value, thereby increasing the calibration error for arbiters with sampling offsets that are not 

integer multiples of TA. 

Inspection of Figure 5.3 reveals that as o~toto/ is increased from its optimal value, the 

oscillator cycle count PDFs become less Gaussian and eventually converge to an 

exponentially decaying curve. 
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Figure 5.3: Oscillator cycle counts P D F s for several different values of ototai, all of which 

are > C5optimai (TA = 10 ps). 

Equation (5.2) has been written to mathematically describe the oscillator cycle count PDF 

curve when ototai» \tso_arbuer - tSo_ref_arbuer\, where tso_arbiter represents the sampling offset of the 

arbiter under calibration and tso_ref_arbiter the sampling offset of the arbiter used as an unknown 

temporal reference point. The variable n represents the oscillator cycle count value. 

p ( „ ) = I e m ( o . 5 ) ( n - . ) / n > Q 

2 
(5.2) 

Equation (5.2) indicates that the probability of a particular oscillator cycle count value is 

exactly half that of its predecessor. It is also evident from the preceding equation that an 

oscillator cycle count equal to one occurs with a probability of 0.5 when a t o to/ » \tso_arbuer -
tso_ref_arbiter\- These two facts can be explained by realizing that once the oscillator cycle 

counter has been triggered by a particular time interval, i.e., a time interval that is > 

tso_ref_arbuer has been applied to the arbiters, any subsequent time interval may exceed tso_art,iler 

with a probability of 0.5. This behaviour is a direct result of the relationship between the 

added temporal noise and the difference between the sampling offset of the reference arbiter 
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and that of the arbiter under calibration, i.e., C5totai » \tso_arbiter - Uo_refjxrbuer\- Assuming the 

added temporal noise is purely random, i.e., its future behaviour is not dependent upon its 

past, and o~toto/ » \tso_arbiter - tso_ref_arbiler\, the probability of a particular oscillator cycle count 

can then be found using Equation (5.3). 

P{Count=j) =P(Td(J)>tm arbiter)-f[P{Td{k)<tS0 arhiter) 
k=\ 

f i V 
= -z ; J>O 

V2y (5.3) 

Returning to the discussion of the shape of the minimum calibration error curve 

(Figure 5.1) when <5,otal > ooptimal, it is now possible to predict the value at which the curve 

saturates. For example, it is now understood that when alotai » \tso_arbiter - tso_ref_arbiter\, the 

shape of the oscillator cycle count PDF is always an exponentially decaying curve. In fact, 

this is true regardless of the orientation of the arbiter's inputs, i.e., normal or reversed, as the 

logic presented in the previous paragraph applies to either situation. To be more precise, as 

long as a,otai » \tso_arbiter- ts0_ref arbiter] holds true, then the oscillator cycle count PDF is always 

an exponentially decaying curve that can be described using Equation (5.2) or (5.3). 

However, this infers that the estimation of the arbiter's sampling offset is always equal to 

zero, as shown below, where S = 0 indicates the arbiter's inputs are connected in a normal 

manner, and S = 1 indicates that they are reversed. 

< - = f a - o - A - i ) y = ( 0 ) ^ = 0 

If the arbiter's estimated sampling offset converges to zero as Gtotai is increased to the point 

where it is » \tso_arbiter- tso_ref_arbiter\, then the calibration error must saturate at the value of the 

arbiter's sampling offset. In fact, this can be observed in Figure 5.1, where each curve 

saturates at the RMS value of the sampling offsets of the 100 arbiters specified in the 

aforementioned Matlab model. The saturation value changes from one curve to the next 
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since the sampling offsets of the arbiters are variable as they have been intentionally chosen 

to always span one TA. This ensures that the results are independent of any particular 

sampling offset value. Further inspection of Figure 5.1 corroborates the assertion that the 

saturation value of the calibration error is equal to the RMS value of the arbiters' sampling 

offsets, as it can be seen that the saturation values are proportional to TA. 

At this point it 'is instructive to remind the reader that the recommended 

implementation of the proposed SOTDC calibration technique does not employ alternate 

routing in order to reverse an arbiter's inputs. Instead, the divisors of the two PLLs used to 

produce the calibration oscillators are swapped to achieve the same effect. 

5.2 Realistic Error Bounds 

' Now that the theoretical capabilities of the proposed calibration technique have been 

presented, it is possible to discuss the accuracy of the proposed calibration technique under a 

more realistic set of conditions. Under such a scenario, the assumption that the PDFs of the 

time intervals are perfect Gaussians is no longer justified, as a practical SOTDC calibration 

technique must operate within a finite amount of time. A restriction on the total calibration 

time places a limit on the number of measurements performed during calibration, or in the 

case of the proposed calibration technique, results in a finite number of oscillator cycle 

counts that can be recorded. A finite number of oscillator cycle counts translates into time 

interval PDFs that are no longer ideal Gaussians, and as these time intervals become less 

Gaussian, so then do the PDFs of the oscillator cycle counts. Finally, as the PDFs of the 

oscillator cycle counts become less Gaussian, a greater error is introduced into the arbiter 

sampling offset estimation. This is true since a component of the equation used to estimate 

the sampling offset of an arbiter involves calculating the mean value of the oscillator cycle 

counts when the inputs to the arbiter are both reversed and normal, as shown in Equation 

(5.4). 
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(totalCycleCount \ r 
5 = 0 

N 

totalCycleCount s =, 

N 
T 

(5.4) 

It is possible to test the assertion that the error of the proposed SOTDC calibration 

technique should decrease as the PDFs of the oscillator cycle counts become more Gaussian. 

For example, it has been shown that the PDF of a random variable approaches that of a 

Gaussian distribution as the number of trials increases [39]. Therefore, it would seem logical 

for the error of the proposed SOTDC calibration technique to decrease as the number of 

measurement repetitions is increased. In an effort to validate this theory, a behavioural 

Matlab model representation of the proposed SOTDC calibration technique has been 

constructed. The decision to construct the model using Matlab as opposed to a circuit-based 

simulation environment was made on the basis of simulation time. The Matlab model was 

found to execute simulations up to 100 times faster than the circuit-based model, As the 

circuit-based model did not provide any additional insight into the capabilities of the 

proposed SOTDC calibration technique, it was decided to collect all data using the Matlab 

model. 

The input to the aforementioned Matlab model consists of the following four 

parameters: 

• The number of arbiters in the SOTDC. 

• T^. the temporal difference in the periods of the two oscillators that are used to 

calibrate the SOTDC. 

• Gtotai the standard deviation of an arbiter's sampling offset. This number includes 

the Gaussian temporal noise that is added to the output of one of the calibration 

oscillators, in addition to the Gaussian temporal noise that is intrinsic to each 

arbiter. 

• N: the number of measurement repetitions. 
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These four parameters can be used to predict the R M S calibration error (tce) o f the estimated 

sampling offsets o f an array o f arbiters. To ensure that the results o f this model are 

independent o f any particular sampling offset value, the sampling offsets o f the arbiters have 

been uniformly distributed across one TA. The model's method o f operation can be described 

as illustrated in Figure 5.4. 
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Start Simulation 

• Create arbiter array 
• Reset calibration oscillators 
• Reset and enable all oscillator 

cycle counters 

j r 
• Advance oscillators 1 cycle 

-j> • Add Gaussian temporal noise to 
output of oscA 

Advance^oscillators 1 cycle 
Add Gaussian temporal noise to 
output of oscA 
Increment enabled oscillator 
cycle counters 

! * 
• For each arbiter: 

- Disable oscillator cycle 
counter if Td> /„, 

NO 

Re-enable disabled 
oscillator cycle counters 

NO 

Reference arbiter 
switching event 

^occurred?,, 

YES 

Completed all 
measurements? 

YES 

Capture values of 
oscillator cycle counters 

End Simulation 

Figure 5.4: Flowchart describing the method of operation of the proposed SOTDC 
calibration technique Matlab model. 
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Each Matlab simulation produces an array of oscillator cycle counter values, where 

the length of the array is equal to the number of arbiters in the simulated SOTDC. In order to 

obtain the RMS calibration error of the estimated sampling offsets, two distinct simulations 

must be performed, each consisting of N measurement repetitions. The first simulation is 

performed with the S O T D C s oscillator inputs connected in a normal manner, while the other 

with the inputs effectively reversed. Therefore, the first simulation yields the number of 

oscillator cycles elapsed between the switching-events of the reference arbiter and the arbiter 

under calibration, while the second simulation yields the number of oscillator cycles elapsed 

when the inputs to the arbiter under calibration are reversed. The two oscillator cycle counter 

value arrays produced by these simulations can then be used to calculate the estimated arbiter 

sampling offsets. Equation (4.28), which for the sake of convenience has been reproduced 

below, should be used to compute the estimated arbiter sampling offsets. 

tso - [totalCycleCounts = 0 - totalCycleCounts = 

Lastly, the RMS calibration error can be determined using the array of estimated arbiter 

sampling offsets. 

As stated earlier, the error of the proposed SOTDC calibration technique is expected 

to decrease as the number of measurement repetitions is increased. This conjecture was 

formed based on two interrelated assumptions; the first of which states that the mean value of 

an oscillator cycle count PDF will deviate from that of an ideal Gaussian, even when an 
v . . . 

optimal value of o total is used. The second assumption states that this deviation should 

decrease as the number of measurement repetitions is increased. Fortunately, it is now 

possible to validate this conjecture using the Matlab model of the proposed SOTDC 

calibration technique. 

The aforementioned model has been used to produce three oscillator cycle count 

histograms, each of which have been generated using a different number of measurement 
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repetitions. In addition, an optimal value o f ctotai has been used, while only one arbiter was 

simulated. These histograms are shown in Figure 5.5. 

Histogram of Oscillator Cycle Counts 
CO 150 I 1 1 T 1 1 

Cycle Count 
Histogram of Oscillator Cycle Counts 

Cycle Count 

Figure 5.5: Three oscillator cycle count histograms, generated using a different number 
of measurement repetitions. 

A s it is difficult to visibly discern the,mean values o f these histograms, their pertinent 

properties have been compiled into Table 5.1. 

Table 5.1: Properties of the oscillator cycle count histograms illustrated in Figure 5.5. 

N Mean fps] Standard Deviation fps] Error fpsl 
1 000 41.2560 4.440 0.5150 

10 000 41.0178 4.450 0.3135 
100 000 41.0037 4.547 0.0184 

Analysis o f the results presented in Table 5.1 reveals that while increasing the number o f 

measurement repetitions from 1 000 to 100 000 doesn't appear to drastically alter the mean 
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value or standard deviation o f the oscillator cycle count histograms, the R M S error o f the 

estimated arbiter sampling offset is observed to decrease by more than a factor o f twenty-

five. In addition, the histograms can be seen to converge towards a Gaussian distribution as 

the number o f measurement repetitions is increased. In summary, the results o f Table 5.1 

demonstrate that relatively small deviations in the mean value o f an oscillator cycle count 

P D F can have a significant impact on the accuracy o f the estimated value o f an arbiter 

sampling offset. However, the magnitude o f these deviations, and hence the error they 

introduce into the estimated arbiter sampling offset, can be drastically decreased by 

increasing the number o f measurement repetitions. 

N o w that the Matlab model o f the proposed S O T D C calibration technique has been 

shown to yield sensible results, it is possible to perform a more thorough error analysis. For 

example, it is now possible to compare the error o f the proposed calibration technique, given 

<a certain number o f measurement repetitions, with the minimum error calculated using the 

statistically-based mathematical equations.presented in section 5.1. One way to perform this 

comparison would involve plotting the realistic error o f the proposed calibration technique 

alongside the theoretical results o f Figure 5.1. Indeed, such a plot has been created, as shown 

in Figure 5.6, where the R M S calibration error o f 100 arbiters have been calculated using 

numerous values o f atora/ while TA has been fixed at 10 ps. 
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Figure 5 . 6 : Comparison of the theoretical and realistic R M S error of the proposed 
calibration technique when TA = 1 0 ps. 

Through inspection of Figure 5.6 it is possible to form numerous insights regarding 

the capabilities of the proposed SOTDC calibration technique in addition to the correctness 

of the two Matlab models that have been created i n order to predict its behaviour. Firstly, it 

can be observed that the realistic and theoretical calibration errors saturate at the same value 

when a total is decreased or increased from its optimal value. This fact serves to further 

increase the credibility of the two Matlab models, which together predict the theoretical and 

practical capabilities of the proposed SOTDC calibration technique, as these models employ 

completely different algorithms. Secondly, it can be observed that both models produce 

similar optimal values of a total- However, the range of optimal <stotai values produced by the 

realistic model is wider than that of the theoretical model. This can be explained by realizing 

that a practical implementation of the proposed SOTDC calibration technique is subject to 

two different sources of error, whereas a theoretical implementation is only subject to one. 
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For example, both models predict that the calibration error will increase as CW/ is moved 

farther from its optimal value. The effects of a non-optimal Otolai value on an oscillator cycle 

count PDF are depicted in Figure 5.2 and Figure 5.3. However, only the realistic model is 

capable of predicting the effects of a finite number of measurement repetitions on an 

oscillator cycle count PDF, and hence the calibration results, as depicted in Figure 5.5. 

Therefore, as <3totai is brought close to its optimal value, the realistic model predicts that the 

largest contributor to an arbiter's calibration error is the finite number of measurement 

repetitions. As a result, arbiter calibration performed using a finite number of measurement 
J 

repetitions is shown to produce a much higher error than is otherwise theoretically possible. 

Conversely, as a to to/ is moved farther from is its optimal value, an arbiter's calibration error is 

predicted to be dominated by the non-optimal ololai value. 

Perhaps the most useful insight that can be learned through inspection of Figure 5.6 

concerns the relationship between the R M S error of the estimated arbiter sampling offsets 

and the number of measurement repetitions. It can be seen that in general, increasing the 

number of measurement repetitions does indeed decrease the RMS error of the estimated 

arbiter sampling offsets. However, since the temporal noise that is added to the output of one 

of the calibration oscillators is random in nature, and therefore cannot be guaranteed to 

conform to a Gaussian distribution over finite time intervals, it is possible for the RMS error 

to actually increase as the number of measurement repetitions is increased. Nevertheless, the 

probability of this scenario quickly diminishes as the number of measurement repetitions is 

further increased. This assertion can be supported by examining Figure 5.7, which depicts 

the three non-ideal curves shown in Figure 5.6 over an optimal range of <5totai values. Also 

shown in Figure 5.7 are three linear approximations to the aforementioned data sets. 
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Figure 5.7: T h e R M S error of the proposed calibration technique when TA = 10 ps, 
plotted for three different number of measurement repetitions (N). 

While it can be observed from Figure 5.7 that it is possible for a tenfold increase in 

the number of measurement repetitions to have little positive effect on the R M S calibration 

error of the arbiter sampling offsets, it can also be seen that a one hundredfold increase wil l 

almost certainly provide a substantial reduction in this error. For example, i f the linear 

approximations are evaluated at <5totai = 30 ps, which is the optimal value of a,olai predicted by 

the statistically-based model, the resulting RMS calibration errors are approximately 0.3 ps, 

0.06 ps, and 0.02 ps when N = 1 000, 10 000, and 100 000, respectively. Therefore, a fifteen 

fold reduction in the R M S calibration error of the arbiter sampling offsets is observed when 

the number of measurement repetitions is increased by a factor of one hundred. However, it 

should' be reiterated that due to the random nature of the temporal noise that is used to vary 

the oscillator time intervals, this improvement may vary significantly from one calibration to 

the next. While it is possible to reduce this random variation by fitting the oscillator cycle 

counts histogram to a Gaussian PDF curve before calculating its mean, similar to what is 
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performed as part of the Added Noise calibration technique of section 3.4, this would require 

a far more onerous post-processing step without contributing a meaningful improvement in 

calibration accuracy. As a final observation of Figure 5.7, it can be seen that it is possible to 

achieve an RMS calibration error well below 0.1 ps when TA = 10 ps through increasing the 

number of measurement repetitions to 100 000. 

In order to understand the .repeatability of the aforementioned results and their 

reliance on the chosen value of TA, three additional plots have been created, each using a 

different value of TA. Figure 5.8 depicts four data sets which are very similar to the ones 

shown in Figure 5.7, however in this case TA has been increased to 100 ps. Three key 

observations can be made from inspection of Figure 5.8. Firstly, increasing the number of 

measurement repetitions from 1 000 to 100 000 is observed to decrease the R M S calibration 

error by approximately a factor of ten. This result is in agreement with what was observed 

when TA= \0 ps. Secondly, a tenfold increase in the RMS calibration error is observed 

across all three measurement repetition values when compared with the results obtained when 

TA = 10 ps. Thirdly, and following directly from the two previous observations, 

approximately the same R M S calibration error is achieved with 100 000 measurement 

repetitions when TA= 100 ps as is achieved with 1 000 measurements when TA= 10 ps. 

Therefore, as TA is increased by a factor of ten, the number of measurement repetitions must 

be increased by a factor of one hundred in order to maintain the same calibration accuracy. 

94 



( 

tn 
CL 

1000 

100 
10 

1 
0.1 

0.01 

0.001 

0.0001 

1E-05 

1E-06 

1E-07 

1E-08 

1E-09 

1E-10 

1E-11 

1E-12 

1E-13 

1E-14 

1E-15 

10 100 

Ototal [PS] 

: - -

3 S B H Q S HE 

JJ 

iIiiplIljlpS|I|:: lilll:lEE|l:::EJ3::li? Elzl=l=i=lllliil|! 

i ' 

: : ^ ™ E : i ~ E E E E : : ^ 

• - -

_ ~ * _ ~ Emit ihirlzlllSlsi! l l l l p l p p p l p l 

-a- Ideal Model 
- © - N = 100 000 
- * - N = 10 000 
- e - N = 1 ooo 

1000 10000 

Figure 5.8: Comparison of the theoretical and realistic R M S error of the proposed 
calibration technique when TA = 100 ps. 

Depicted in Figure 5.9 are four additional data sets produced when TAis further increased to 1 

ns. Once again, the same three key observations can be made. For example, increasing the 

number of measurement repetitions by a factor of one hundred is shown to yield nearly a ten 

fold decrease in R M S calibration error. However, the predicted R M S calibration error is still 

approximately ten times greater than what was shown to be possible when TA= 100 ps, 

assuming the same number of measurement repetitions are performed. Lastly, in order to 

achieve the same RMS calibration error as was predicted when TA= 100 ps, the number of 

measurement repetitions must be increased by a factor of one hundred. Figure 5.10 depicts 

the R M S calibration error of the proposed technique when TA = 1 ps. 
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Figure 5.9: Comparison of the theoretical and realistic RMS error of the proposed 
calibration technique when TA = 1 ns. 
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Figure 5.10: Comparison of the theoretical and realistic RMS error of the proposed 
calibration technique when TA = 1 ps. 
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Inspection of Figure 5.10 reveals that it is possible to achieve an R M S calibration error as 

low as 2 fs when 100 000 measurement repetitions are used. While calibration accuracies in 

the order of femtoseconds are certainly impressive, it is unclear what repercussions this level 

of accuracy will have on the required calibration time. 

It is possible to calculate the calibration time for any value of TA or N . The amount of 

time required by the proposed calibration technique to perform calibration is proportional to 

N and M , the number of measurement repetitions and the number of time intervals per 

measurement repetition, respectively, and inversely proportional to fB, the frequency at which 

the time intervals are applied to the START and STOP inputs of an SOTDC. To obtain the 

total calibration time, this result must then be multiplied by a factor of two. This is true since 

the calibration procedure is not complete until the oscillator cycle counts have been captured 

using both the normal and the reversed orientations of the S O T D C s inputs. This relationship 

is summarized in Equation (5.5). 

2MN 
tcai = —r- (5-5) 

JB 

While Equation (5.5) can be used to calculate the required calibration time of the 

proposed calibration technique, it is not useful when predicting the impact of a particular 

value of TA on the total calibration time. A more convenient form of Equation (5.5) can be 

derived by recognizing that M , the number of time intervals per measurement repetition, is 

actually equivalent to Q, as shown in Equation (5.6). 

M = ^ = Q (5.6) 
- ' A 

As discussed in Section 4.3, Q is an integer chosen through careful selection of A and B, the 

P L L divisors, according to Equation (5.7). 
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0= 1 

A _ } (5.7) 
B 

Therefore, after substituting Equation (5.6) into Equation (5.5), a new calibration time 

expression is produced, as shown in Equation (5.8). 

27V _ 27V _ 2QN 
^cal ~ r r r p — r _ r ~ r (5-8) 

JAJB^A JA JB JB 

While any one of the three relationships of Equation (5.8) can be used to calculate the 

total calibration time, it is most sensible to use an expression that does not include TA as a 

parameter. This is true since TA is actually a function of the chosen calibration oscillator 

parameters, i.e.,f/„, A, and B, and is therefore not independently selected. As previously 

mentioned, the calibration oscillators must produce a periodic sequence of time intervals, 

which can only be achieved through careful selection of the PLL divisors according to 

Equation (5.7). Once fin and the PLL divisors have been chosen, TA can be calculated 

according to Equation (5.9). 

T--k (59) 

If the chosen calibration oscillator parameters yield an unacceptable value of TA for the given 

accuracy constraints, then one or all offin, A , and B must be reselected. Table 5.2 contains 

four sets of PLL divisors that can be used to produce four different TA values, each differing 

from its predecessor by approximately a factor of ten. 

Table 5.2: Four P L L divisors (A and B) and their corresponding TA values (fm = 50 kH). 

A B Q TA Ips] 
3335 2668 4 1 499.31 
4191 4064 32 149.13 
5397 5376 256 14.47 
8196 8192 2048 1.19 
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Using the data contained in Table 5.2 it is possible to calculate the required calibration time 

of the proposed calibration technique over a range o f TA values spanning approximately 1.2 

ps to 1.5 ns. Table 5.3 contains the resultant calibration times, with each TA value calculated 

across three different measurement repetitions numbers (N). 

Table 5.3: Time required to calibrate an SOTDC, assuming the PLL divisors of Table 
5.2Gk = 50kH)[s]. 

^ IPs! 
1 499.3 149.1 14.5 1.2 

1 000 5.98E-05 3.15E-04 1.90E-03 1.00E-02 
N 10 000 5.98E-04 3.15E-03 1.90E-02 1.00E-01 

100 000 5.98E-03 3.15E-02 1.90E-01 1.00E+00 

W i t h this information in hand it is now possible to determine the effect that varying 

the value o f TA has on both the calibration time and accuracy o f the proposed calibration 

technique. To this end, the data contained in Table 5.3 has been plotted alongside a subset o f 

the data illustrated in Figure 5.6 through Figure 5.10 inclusive. . 
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Figure 5.11: The effect of varying TA on the calibration time (tcai) and the calibration 
error (tce) (calculated using an optimal value of Gtotai)-

It is immediately evident by inspection o f Figure 5.11 that the calibration error is adversely 

affected by an increase in the value o f TA, while just the opposite is true o f the calibration 

time. Whi le both observations are intuitive and have been supported either in theory or 

simulation, it is important to note that the trade-off which exists between calibration time and 

accuracy does have an intersection point, i.e., it is possible to assign an equal weighting to 

both calibration time and accuracy. However, since this intersection point is a function o f N , 

the number o f measurement repetitions, no universally optimal value o f TA exists. In fact, it 

can be observed from Figure 5.11 that the intersection points o f the calibration time and error 

data sets decrease as N is lowered, while they also occur at lower values o f TA. Therefore, i f 

both calibration time and error are o f equal importance, then it is possible to minimize both 

by reducing the number o f measurement repetitions employed during calibration in addition 

to appropriately reducing TA-
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While it is possible to reduce the calibration time and error o f the proposed 

calibration technique by lowering both N and TA the latter may require careful consideration. 

For example, as shown in Table 5.2, both P L L divisors (A and B) must be increased in order 

to produce a lower value o f TA, assuming the P L L input frequency (fin) remains constant. 

Whi le the desired frequency synthesis can be achieved by increasing the depth o f the 

counters in the P L L feedback path or by employing a cascaded P L L structure, a more serious 

issue o f unwanted temporal noise may exist. For example, as 7^ is decreased, the time 

intervals produced by the outputs o f the two calibration oscillators could begin to deviate 

substantially from their intended distributions, depending upon the nature o f the unwanted 

temporal noise. Therefore, there may be a practical l imit to how far TA can be lowered before 

unwanted temporal noise begins to limit the calibration accuracy o f the proposed calibration 

technique. 
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Chapter 6 

Conclusions and Future Work 

As CMOS technology continues to advance, circuit timing problems are becoming more 

common and yet more difficult to diagnose. As a result, several sophisticated embedded time 

interval measurement techniques have been proposed to help address this growing problem. 

Perhaps the most promising of measurement techniques is the "sampling offset"-based flash 

time-to-digital converter (SOTDC). This embedded time interval measurement technique is 

capable of picosecond measurement accuracies in addition to millisecond test-times. 

However, the accuracy of an SOTDC is strongly dependent upon the capabilities of its 

calibration technique, and present SOTDC calibration techniques suffer from some very 

serious limitations. In fact, these limitations are so severe that present calibration techniques 

are impractical under realistic production test conditions. 

6.1 Summary and Contributions 

In order to address the need for a feasible and accurate embedded SOTDC calibration 

technique, a new calibration technique has been proposed. This technique leverages the 

advantages of the added noise-based calibration technique, while doing away with its 
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limitations. The proposed calibration technique's method o f operation can be described as 

follows: 

1) Two P L L s , each with carefully chosen divisors, are locked to a single known 

reference frequency and used to generate a periodic sequence o f time intervals. 

2) The output o f one P L L is modulated such that its period distribution conforms to a 

Gaussian P D F , whose standard deviation has been appropriately selected. 

3) A counter is then used to store the number o f P L L clock cycles that are elapsed 

between the switching-events o f a reference arbiter and the arbiter under calibration. 

Several thousand measurements are accumulated by the counter in order to increase 

the accuracy o f the estimated arbiter sampling offset. 

4) The P L L divisors are then swapped in order to effectively reverse the inputs to the 

arbiter under calibration, and the counter is once again used to store the number o f 

P L L clock cycles that are elapsed between the switching-events o f a reference arbiter 

and the arbiter under calibration. 

5) The sampling offset o f the arbiter under calibration is then estimated by performing 

simple mathematical operations on the captured counter values. 

The main contribution o f the proposed calibration technique is the ability to perform 

calibration without knowledge o f the values o f the time intervals applied to the S O T D C 

during calibration. Only knowledge o f the temporal difference between adjacent time 

intervals is required. This information can be acquired through the selection o f a reference 

frequency and P L L divisors according to Equation (4.34). In addition, there is no need to 

apply a curve fitting function to the calibration results. Post-processing o f the results consists 

o f simple subtraction, multiplication, and division operations. Therefore, the post-processing 

requirements o f the proposed calibration technique are much less demanding than those o f 

either the direct or the added noise-based calibration techniques. 

In order to understand the capabilities o f the proposed calibration technique, a set o f 

statistically-based mathematical equations were derived. These equations were used to 

103 



predict the estimated sampling offset of an arbiter calibrated using the proposed SOTDC 

calibration technique, and thus to determine the theoretical accuracy of this technique. These 

results were then compared to those of a behavioural Matlab model of the proposed 

calibration technique. It was concluded that the accuracy of the proposed technique is 

determined by the number of measurement repetitions performed during calibration, 

assuming a fixed value of TA and an appropriate value of 0"toto/. Finally, it was shown that it is 

possible to obtain both sub-picosecond calibration accuracies and sub-100 millisecond 

calibration times, while still placing realistic demands on the time intervals used during 

calibration, and hence the calibration oscillators. Therefore, the desirable features of the 

added noise-based calibration technique, i.e., sub-picosecond calibration accuracies using 

realistic time interval resolutions, have been maintained; however the impractical 

implementation requirements of such a technique have been eliminated. 

6.2 Future Work 

While the SOTDC calibration technique proposed in this thesis has been discussed in 

some detail, the opportunity for further investigation remains possible. The following 

subsections present three avenues of future work. 

6.2.1 T h e i m p a c t o f n o n - i d e a l i t i e s 

While it has been assumed over the course of this thesis that thermal noise is the only 

source of noise in an arbiter, in realty this is not the case. An arbiter fabricated in a modem 

CMOS process is subjected to several different sources of noise, each of which need to be 

considered in order to truly understand the potential of the proposed calibration technique. 

For example, power supply and substrate noise may alter the sampling offset of an arbiter in 

an unpredictable manner. However, it remains to be seen whether the resulting sampling 

offset variation would be significant enough to impact the recorded number of oscillator 

cycle counts, and hence the accuracy of the proposed technique. This is true since the 
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temporal noise that is added to each time interval, or equivalently to the arbiters themselves, 

may be so large as to dominate over the undesirable noise sources. 

Similarly, it has been assumed during the course o f this thesis that it is possible to 

generate a periodic sequence o f time intervals by locking two P L L s to a stable reference 

frequency. However, as shown in Table 5.2, the divisors employed in each P L L may be in 

the order o f several thousand. Whi le it is possible to achieve the desired frequency synthesis 

by employing a cascaded P L L structure, the resultant output signals may contain a significant 

amount o f unwanted phase noise. Again , the effect o f the undesired phase noise may depend 

upon the extent to which the time intervals are intentionally modulated. However, in order to 

understand the potential o f the proposed calibration technique, the limitations imposed by 

P L L phase noise must be identified. 

6.2.2 C i r c u i t i m p l e m e n t a t i o n 

In order to prove the viability o f the proposed calibration technique, a working 

implementation must first be demonstrated. One possible embodiment o f the proposed 

calibration technique can be found in Appendix A , along with the schematics o f a 16-bit 

S O T D C circuit. A s shown in Appendix A , the output o f each arbiter, including the reference 

arbiter, is sampled using a delayed version o f one o f the calibration oscillators (PLLs ) . The 

reference arbiter is sampled in order to detect its switching-event, which is then used to 

trigger the 16 24-bit oscillator cycle counters o f the arbiters under calibration. However, an 

additional counter is required in order to determine the correct switching-event o f the 

reference arbiter, as the addition o f temporal noise to the time intervals can induce a false 

reference arbiter switching-event. Therefore, a counter is used as a shift-register to store the 

sampled output o f the reference arbiter over 24 cycles. This data can then be used to 

determine the number o f oscillator cycles for which the reference arbiter output has been 

sampled as logic ' 0 ' . 

In theory, as the number o f consecutive '0's in the shift-register grows, it becomes 

increasingly l ikely for a valid reference arbiter switching-event to occur. However, this 
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hypothesis has not been proven mathematically or experimentally, and is therefore a 

candidate for further exploration. Similarly, it should be demonstrated experimentally that a 

reference arbiter with'a constant sampling offset, irrespective o f the orientation o f its inputs, 

can be constructed from two over-sized symmetric C M O S arbiters with matched layouts. 

6.2.3 Additional applications and SOTDC improvements 

W h i l e the primary focus o f this thesis has been the calibration o f an S O T D C , the 

proposed calibration technique may be useful in a wide variety o f applications. For example, 

the proposed calibration technique may be used to accurately calibrate the delay o f a variable 

delay line, instead o f the sampling offset o f a symmetric C M O S arbiter. Analogously, the 

proposed calibration technique may be used to measure the delay o f an inverter driving a 

known load. Such information is often helpful when estimating the strength o f a C M O S 

process, which in turn can be used to calibrate the bias currents o f analog circuitry on a 

shared die [1.8]. 

Lastly, a conventional S O T D C , such as the one presented in this thesis, is 

characterized by a limited dynamic range, i.e., the ratio o f the maximum to the minimum 

measurable time interval is generally less than one hundred. However, it may be possible to 

greatly extend the dynamic range o f an S O T D C , and therefore to increase its scope. For 

example, instead o f using a single S O T D C to measure a long time interval, it is conceivable 

that two S O T D C s could be used to divide the time interval into smaller, more manageable 

units; i.e., ones that do not exceed the dynamic range o f either S O T D C . Under such a 

scenario, it would then be possible to measure the entire time interval by alternating between 

the two S O T D C s when measuring the reduced time intervals. The creation o f the reduced 

time intervals may be achieved by pre-empting the STOP signal o f the active S O T D C before 

its dynamic range has been exceeded, while simultaneously initiating the measurement o f a 

new time interval on the alternate S O T D C by triggering its START signal. Once this process 

has terminated, the counters within the two S O T D C s may be analysed in order to estimate the 
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value o f the entire time interval. However, this proposal has not been formally investigated, 

and as such is a candidate for future examination. 
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Appendix A 

Circuit Implementation of Proposed 

Calibration Technique and 16-bit SOTDC 

This appendix contains the schematics of a conventional 16-bit SOTDC circuit, in 

addition to those of the proposed calibration technique. 
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gure A . l : Top-level schematic of the proposed S O T D C calibration circuit 

(1-bit of 16-bit S O T D C illustrated). 
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Figure A . 2 : Schematic of the Reference Arbiter Sampling circuit 

("refarbitersampled"). 
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Figure A .3: Schematic of the Arbiter Array Counter Trigger circuit 

("ref_arbitef_countef_trig"). 
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Figure A .4 : Schematic of the Arbiter Sampling circuit ("arbitersampled"). 
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Figure A.5: T h e output of a positively biased arbiter when two free-running oscillators 
of different frequency, oscA and oscB, are applied to its inputs 

(TA = 1 ns, T& = 20 ps). 
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Figure A.6: The sampled output of a positively biased arbiter when two free-running 
oscillators of different frequency, oscA and oscB, are applied to its inputs 

(TA = 1 ns, = 20 ps, sampling delay = 50 ps). 
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Figure A .7 : Schematic of the Arbiter Counter Control circuit 
("arbitercountercontrol"). 
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Figure A .8 : Schematic of the Arbiter circuit ("arbitertO")-
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Figure A.9 : Schematic of the 24-bit Counter circuit ("24b_counter"). 
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16-to-1 Output Mux 

16 24-bit counters 

1 Arbiter Counter Trigger circuit 
+ 16 Arbiter Control circuits 

1 Ref Arbiter Sampling circuit 
+ 16 Arbiter Sampling circuits 

1 Reference Arbiter 
+ 16 SOTDC Arbiters 

Figure A . l l : Layout view of a 16-bit S O T D C and proposed calibration circuit in 
0.35 um C M O S (L = 1930 um, W = 690 um). 
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