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ABSTRACT 

The ability to determine the brain's hemodynamic response without relying on an input 

function would be an extremely valuable asset in a large number of medical applications, 

and today, functional Magnetic Resonance Imaging (fMRI) is one of the leading methods 

in developing a better understanding of the human brain. Assuming the linear time-

invariant model for the observed fMRI response ([1], [2], [4]), this work provides an 

estimate of the hemodynamic brain response both on a regional and on an individual 

voxel level, as well as provides an estimate of the input signal that excited the brain's 

response. The solution to this problem is achieved using the Eigenvector-Based 

Algorithm for Multichannel Blind Deconvolution (EVAM) ([5], [6]) combined with 

Independent Component Analysis (ICA) [23]. The resulting estimate of the input signal 

produced by the proposed method could prove to be a valuable insight into the actual 

signal that triggered the brain during the experiment, and not the ideal signal that should 

have triggered it based on experimental observations. Also, contrary to previous works, 

no prior assumptions regarding the shape or order of the brain's response are made. 

When compared to non-blind identification algorithms traditionally used in the literature, 

the results show a significant improvement as the shape of the hemodynamic brain 

response conforms with current medical understandings. Furthermore, the estimated 

hemodynamic brain response is then used as a basis to determine active and inactive 

voxels. Two clustering methods, K-Means Clustering and Correlation-Based Clustering, 

are compared. Correlation-Based Clustering is found to be superior and is thus used to 

spatially map the active and inactive voxels. Spatial maps of important brain regions 



yield promising results where spatial sparseness is not characteristic of the images. 

Finally, a preliminary comparison between a healthy subject and a subject inflicted with 

Parkinson's disease yields promising differences, especially in the left primary cortex 

where very little activation was observed. Interestingly, symptoms of Parkinson's 

disease are thought to be a result of decreased stimulation of the motor cortex. Although 

no major medical conclusions can be made due to the risk of incorrectly attributing inter-

subject variability to differences due to Parkinson's disease, this preliminary comparison 

shows promising results that encourage future research in this area. 
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CHAPTER 1: LITERATURE REVIEW 

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive medical imaging 

technique that can be used to study brain anatomy and physiology. During an fMRI 

experiment, a subject lying in a cylindrical tube housed with a powerful electro-magnet 

will be asked to perform a certain cognitive task or to observe a certain stimulus [7]. 

Then, individual slices of the brain having a spatial resolution of a few millimeters are 

typically acquired at a rapid sampling rate of approximately 0.5 to 1Hz [17]. The 

difference between oxygenated hemoglobin which is diamagnetic and deoxygenated 

hemoglobin which is paramagnetic alters the T2* weighted MRI signal and thus is 

exploited by fMRI to detect neural activity in the brain ([24], [30]). This signal 

difference is known as the blood oxygen level-dependent (BOLD) hemodynamic 

response and is related to neuronal activity in response to environmental stimuli. The 

exact nature of the relationship between neural activity and the BOLD signal is known as 

neurovascular coupling and is a subject of ongoing research; however, studies show that 

hemodynamic changes are proportional to, and therefore constitute a linear measure of, 

neural activity [31]. 

Today, fMRI is one of the leading methods in developing a better understanding of how 

the brain functions and coordinates different regions to perform sensory, motor, and 

language-related tasks [13]. More importantly, fMRI is helping scientists understand the 

pathology of neural diseases and assess the effects and potential risks of medication, 

surgeries or other forms of treatment. Its most significant advantage is that it is 
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noninvasive and does not require injections of radioactive isotopes; thus, eliminating the 

risk of radiation inherent in other popular imaging techniques such as Computerized 

Tomography (CT) [15]. FMRI experiments can also be designed to have a very short 

scan time on the order of two minutes per run. Most importantly, compared to other 

common scanning methods, fMRI has unmatched spatial resolution, generally 1.5mm and 

as small as 1mm [15]. However, the temporal resolution is inherently limited, unless 

combined with high temporal resolution techniques such as EEG [15]. 

1.1 T H E LINEAR TIME-INVARIANT F M R I RESPONSE M O D E L 

The observed fMRI response can be modeled by a linear time-invariant model ([1], [2], 

[4]). According to this model, the response to an arbitrary sequence of stimuli is equal to 

the summation of responses to each individual stimulus. This can be represented 

mathematically as: 

y(t) = x(t)*h(t) + n(t) (1.1) 

where y(t) is the measured fMRI signal of a particular voxel (three-dimensional 

equivalent of a pixel), x(t) is a model of the input signal that stimulated the brain, h(t) is 

the brain's unknown hemodynamic response (HDR) to each individual stimulus, n(t) 

represents additive noise, and the symbol "*" is the linear convolution operator. [3] 

However, the fMRI signal is not sampled continuously in time. In fact, it is a discrete 

time signal determined by the repetition rate, TR. If the hemodynamic response is 
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assumed to have finite duration THDR and can be represented adequately by a piecewise 

constant function with a discretization interval of ATHDR , then the continuous time 

representation in equation (1.1) can be converted into the following discrete time matrix 

model [3]: 

where y is a 1 x N t p vector representing the measured time course of a single voxel and 

where Ntp is the number of time samples, h is a 1 x NHDR discrete-time vector 

representation of the continuous time hemodynamic response h(t) and where 

NHDR = THDR •/ A T H D R , and finally X is an N t p x N H D R stimulus convolution matrix. 

Essentially, X is a matrix operator representation of the time-discretized convolution with 

the continuous time signal representing the event sequence that stimulated the brain, x(t). 

The element in the n* row and mth column of the stimulus convolution matrix, X, is given 

It should be noted that it is desirable to choose the discretization interval, ATHDR , to be 

shorter than the fMRI sampling interval, TR, SO that the estimated hemodynamic brain 

response can be represented with a finer temporal resolution. [3] 

In the end, the final goal of the analysis is to obtain an accurate estimate of the 

hemodynamic brain response h(t), based on the measured fMRI signals y(t) and a model 

of the input signal x(t). This problem can be divided into three sub problems. Firstly, it 

y = Xh + n (1.2) 

by [3] 

(1.3) 
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is necessary to determine the optimal experimental design and correspondingly accurate 

model of x(t). Secondly, the observed fMRI must be carefully denoised to ensure 

accurate estimation of the brain's hemodynamic response. Once x(t) and y(t) are 

optimized and corrected, the analysis becomes analogous to a channel parameterization 

problem in communication theory in which one of many algorithms can be used to 

estimate the hemodynamic brain response, h(t). 

1.2 EXPERIMENTAL DESIGN AND OPTIMIZATION 

There are two main forms of fMRI experimental designs: block designs and event-related 

designs. In block designs, the trial types are blocked together and presented to the subject 

for an extended period of time (ex, AAAAA BBBBB AAAAA) [4]. However, recent 

advances in image acquisition have made it possible to exploit the high temporal 

resolution available in fMRI experiments in order to design event-related experiments. In 

these experiments, the stimulus is briefly presented to the subject in an interleaved, 

random fashion (ex, AABABBAB) ([11]). 

Researchers today are moving towards event-related experiments for optimal design [11]. 

Event-related designs improve temporal resolution such that it is possible to look at 

events on a shorter time scale [4]. They also allow researchers to capture temporal 

information related to the hemodynamic brain response [15]. Furthermore, event-related 

experiments are versatile in their design [4]. Most importantly, the random presentation 
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of stimuli reduces potential confounds such as habituation, learning, and anticipation [4]. 

However, there are several disadvantages to event-related designs. One obvious problem 

is the loss of signal-to-noise ratio due to the transient nature of the response and the time 

needed between trials. Although event-related designs avoid artifacts due to 

predictability, they are, in theory, statistically less powerful than block designs [7]. 

Another major problem with event-related designs is in determining the exact timing of 

the events in order to correlate them with their corresponding brain response. 

Unfortunately, researchers today mostly model the events with little consideration to 

timing errors [7]. While event-related experiments are optimal for estimating the 

hemodynamic brain response resulting from individual events, the traditional block-

related approach, which is also found in other imaging techniques such as Positron 

Emission Topography (PET), is optimal for detecting brain activity ([11], [28], [29]). 

A major area of research today involves the design of event-related experiments in order 

to optimize the accuracy of the estimated hemodynamic brain response. The stimulus 

onset asynchronies (SOAs), also known as the inter-stimulus intervals are the units of 

time between subsequent events [2]. It was once argued based on empirical evidence that 

the SOAs must be at least 15 seconds and that the accuracy of the hemodynamic brain 

estimate is based on the mean of SOAs used in the experimental design [38]. Today, it is 

believed that in general, the estimator efficiency depends not on the mean, but the 

distribution of SOAs ([2], [3]). Research also shows that smaller SOAs that are 

exponentially distributed are the most efficient ([2], [3]). More specifically, long mean 

SOAs of greater than twenty seconds result in similar estimator efficiencies regardless of 
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whether the SOAs are constant or variable [2], However, for shorter mean SOAs, the 

estimator efficiency of constant SOAs falls off dramatically while that of variable SOAs 

increases monotonically [2]. Despite these results, there is a practical limit on the 

minimal SOA that can be used due to the nonlinearities resulting from habituation that 

become prominent at very short SOAs [2]. Furthermore, very short SOAs of less than 

one second are not advisable as the predicted additive effects upon the Hemodynamic 

response of two closely occurring stimuli break down [4]. 

Determining the total imaging time, the exact minimum interstimulus interval, as well as 

the optimal sequence and timing of events for optimal experimental design is still an area 

of ongoing research. One of the most promising recent advancements includes a 

quantitative objective criterion to help measure the efficiency of the biased maximum 

likelihood estimate in which variations of the total imaging time, and minimum 

interstimulus intervals can be varied for optimal experimental design [3]. This 

advancement is based on a criterion known as estimator efficiency, E , which is a measure 

of the expected accuracy of an estimator. Mathematically, estimator efficiency is defined 

as 

E = (H-H)2' (1.4) 

where H is the estimated value of H using the given estimator, and ||.. .|| represents 

expected value [3]. Maximizing estimator efficiency is critical in obtaining more 

accurate estimates of the hemodynamic, brain response. The significance of this criterion 

is further amplified by the fact that increasing estimator efficiency is equivalent to 



increasing the magnetic field of the fMRI scanner. Estimator efficiency depends on a 

number of factors including the nature of fMRI noise, the scan duration, the number and 

sequence of events as well as the number of sampling points in the estimate of the 

hemodynamic response [3]. To optimize the estimator efficiency researchers cannot 

easily change the nature of fMRI noise, but can manipulate experimental parameters to 

achieve an optimal design. 

A common method for choosing an optimal event-related sequence is to generate a large 

number of random sequences and to then use the one that yields maximum estimator 

efficiency from the large, but finite number of possible sequences. Unfortunately, 

obtaining this sequence can take a prohibitive amount of computational resources. Thus, 

researchers have recently extended the use of m-sequences (maximum length shift 

register sequences) from encryption and error-correcting to fMRI in order to define a 

class of sequences which provide estimator efficiencies superior to those of random 

sequences ([11], [27]). Moreover, this bonus is achieved at a low computational cost 

[11]. 

The discussion so far is regarding the design of the fMRI experiment in terms of the total 

scanning time, the interstimulus intervals, and the overall optimal sequence and timing of 

events. However, after optimally designing and conducting the experiment there is still 

the question of how to mathematically model the input signal, x(t). Accurate modelling 

of the input signal is a critical step in accurately estimating the brain's hemodynamic 

response. During the fMRI scan, the patient is stimulated or asked to perform certain 
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tasks at given time intervals in order to observe his/her reactions. The time at which 

these stimulations occur, and the strength of each stimulation are known and can be used 

to model the input function, x(t), as a sum of scaled and time-shifted delta functions 

centred at the onset of each event ([2], [3],[15]). The result is an estimate that appears as 

the one in Figure-1.1, and which corresponds to the data set used in this thesis. However, 

it is important to note that this model of the input signal is only an estimate that is based 

on the expected timing and strength of the subject's reactions based on the external 

environment and the design of the experiment. This expectation, although similar, is 

most certainly different than the actual signal that excites the human brain. 

-0.1 | 

-0.2 J 

n/oL_ 1 '—— 

0 50 100 150 
Time (seconds) 

Figure-1.1: An Example of the Designed Stimuli Input Signal (x(t)) 
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1.3 PREPROCESSING OF F M R I DATA 

A single functional magnetic resonance imaging signal is comprised of many signals 

resulting from various ongoing brain activities such as heart beat, breathing, and head 

motion. There are also less well understood sources including localized motion of brain 

tissue and low frequency drifts that can be measured in deceased brains [37]. In many 

other popular imaging techniques such as Positron Emission Tomography (PET), 

measurements represent physiological quantities that can be quantitatively compared with 

other measurements [36]. However, fMRI signals have neither a simple quantitative 

physiological explanation nor a well-defined reference for comparison. In fact, most 

fMRI experiments use the signal value at a given spatial location (voxel) during rest to be 

a reference point for comparison, despite the fact that this base control contains ongoing 

neural activity [15]. Thus, it is essential before analyzing fMRI signals to isolate the 

signals of interest, namely those task-related to the stimuli presented to the subject. 

The algorithms proposed in the literature to achieve this extraction can be divided into 

two main classes: (1) hypothesis-driven methods, and (2) data-driven methods. In the 

former, the time course of each voxel is tested against one or more hypotheses such as in 

the Cross-Correlation Method [15]. In the Cross-Correlation Method, a voxel's time 

course is simply cross-correlated with a signal describing the event-related experiment. 

The most popular software package that uses this approach is Statistical Parametric 

Mapping (SPM) ([24], [25], [33]). On the other hand, data-driven methods analyze the 

data and search for common features. Popular examples of this class are clustering 
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methods in the time domain and Independent Component Analysis (ICA) ([8], [9]). 

Hypothesis-driven methods are more commonly used; however, their main disadvantage 

they require the user to predict or model the behavioral signal based on a priori 

information, which is often difficult and inaccurate. Data-driven methods require no 

prior hypotheses and can be used to identify confounds such as head motion, or to 

validate a given model. However, data-driven methods may amplify intersubject 

variability due to their sensitivity to the underlying data structure. [15] 

In 1998, Independent Component Analysis (ICA) was first introduced as a powerful 

method in fMRI analysis [35]. ICA is a family of blind signal separation methods based 

on the assumption that signal sources are statistically independent. Besides assisting in 

the extraction of task-related activations embedded in the fMRI signal among the 

complex mixture of unknown brain signals, ICA has also allowed for the detection of 

unexpected responses to stimuli including random responses or transiently task related 

responses ([26],. If linear mixing is assumed, then the fMRI signal can be represented by 

a space time data matrix of measurements Xjt defined as [15] 

=I>,A+£;, (1-5) 

where j=l,...,J where J is the number of voxels, and t=l,...,T where T is the number of 

time points. The K independent components form the mixing matrix, A, and the source 

matrix, S, where the columns of A represent component maps and the rows of S represent 

time courses of the respective component maps. Finally, E represents spatially and 
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temporally white noise. In spatial ICA, the columns of the mixing matrix, A, are 

assumed to be statistically independent while in temporal ICA the rows of the source 

matrix, S, are assumed to be statistically independent [15]. The difference between the 

two approaches is substantial and to this day there is discussion on which method is better 

([39], [40], [41]). 

To completely determine the mixing matrix, A, and the source signals, S, higher order 

statistical methods are required. The most popular of these algorithms include Infomax, 

JADE, and FastICA [15]. Infomax and FastICA produce similar results. However, 

Infomax works well when looking for spatially independent patterns, but is less efficient 

when searching for temporally independent waveforms. Also, studies using FastICA 

uncovered varying quality in the correspondence between spatial and temporal modes 

depending on the spatial proximity between active regions [15]. 

The independent components can be ordered according to a statistical criterion or 

according to an a priori feature of interest. Often times the components are sorted 

according to the amount of variance explained [17]. Another common choice is ordering 

the components by comparing each component's time course with a mathematical 

description of the experimental stimuli. This comparison can be done by simple visual 

inspection or using cross-correlations [17]. Ordering the components by their frequency 

content or power spectrum has also proved to be efficient in identifying task-related 

components [8]. More elaborate methods include identifying components with 

asymmetric histograms or spatial clustering [15]. 

11 



1.4 ALGORITHMS USED TO ESTIMATE T H E HEMODYNAMIC BRAIN RESPONSE 

Sections 1.2 and 1.3 dealt with the issue of how to optimize and model the input signal 

and then how to denoise the measured fMRI response. After these critical preprocessing 

steps, the analysis becomes analogous to a channel parameterization problem in 

communication theory in which one of many algorithms can be used to estimate the 

hemodynamic brain response, h(t). In communications theory, several algorithms have 

been implemented to determine unknown channel parameters from a known input signal 

and a received output signal. Among the most popular algorithms extended from 

communication theory to medical image processing are: (1) Least Squares, (2) biased and 

unbiased Maximum Likelihood, and (3) blind deconvolution methods such as Cross 

Relations (CR), Iterative Quadratic Maximum Likelihood (IQML) and the Eigenvector-

Based Algorithm for Multichannel Blind Deconvolution (EVAM). ([20], [21], [22]) 

1.4.1 Least Squares Method 

By far, the most common method used to estimate the hemodynamic brain response is the 

traditional Least Squares method ([18], [20], [21], [23]). This method is based on the 

idea of minimizing an error cost function to obtain a solution to the unknown signal 

parameters. Assuming that there is an observed set of inputs, X, and outputs, Y, which 

can be described as 

Y = HX (1.6) 
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where H represents the true parameters, then it is possible to formulate the error equation as 

Y = HX + e (1.7) 

where e represents the error due to estimating H as H. The goal is to minimize the 

square of the error e. Thus, a cost function is formulated as follows 

J(H) = e2 = eTe = (Y-XH)T(Y-XH) (1.8) 

The optimal estimate of //will be the one to minimize this cost function. In other words, 

setting dJ I BH = 0 and solving fori/, the result is 

HLS=(XTXy'XTY (1.9) 

Therefore, to minimize the square error, the hemodynamic brain response can be 

estimated according to equation (7). In the fMRI case, and taking a univariate approach, 

X is the stimulus convolution matrix that models the set-up of the experiment, Y is the 

blood oxygenation level-dependent imaging (BOLD) response from the voxels over time, 

and H is a matrix of column vectors describing the hemodynamic response from each 

voxel. 

It is true that the Least Squares method presents an unbiased estimator, which is simple to 

implement and understand. However, it puts certain limitations on the definition of the 

stimulation convolution matrix, X, because it must be invertible. More importantly, due 

to the high temporal correlation that exists in fMRI noise, the Least Squares estimate is 
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less efficient than other estimates such as the Maximum Likelihood estimate discussed in 

the next section [4]. 

1.4.2 Maximum Likelihood Estimator 

The maximum likelihood estimator, for a linear model with Gaussian noise, is optimal in 

the sense that it has the smallest variance, or equivalently the greatest estimator 

efficiency, defined in equation (1.4), among all unbiased estimators ([2], [3]). An 

estimate of the hemodynamic response, HML , using the Maximum Likelihood method is 

given by 

As before, X and Y are known. The only new parameter in the equation is the noise 

covariance matrix, C [2]. This is a challenge to estimate because it varies across voxels, 

experimental runs, and subjects. However, a promising method for obtaining an accurate 

estimate of C is based on the original estimated hemodynamic brain response, HLS, 

obtained from the Least Squares method. An error term, e, is defined as [3] 

This error term is modeled as a Gaussian random variable with zero mean and noise 

covariance matrix C. Under the assumption of temporally uncorrected noise, where 

C = a2I, the Maximum Likelihood estimator is reduced to the Least Squares estimate [3]. 

Hml =(x rc- lxy lx rc- ]Y (1.10) 

e = Y - XH L S 
(1.11) 
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The Maximum Likelihood estimator can be taken a step further by incorporating a priori 

information about the expected shape of the hemodynamic brain response as a bias in the 

linear estimation. This requires carefully determining an Np-dimensional linear 

subspace, L, spanning all possible hemodynamic responses for a given experiment. 

Using this subspace, the hemodynamic response of an individual voxel, i, can be uniquely 

parameterized as 

where L is an Nh x N p matrix whose columns form an orthonormal basis for the subspace 

L and where Nh is the dimensionality of the embedding space while Np is the 

dimensionality f the subspace, and where the elements of p; are the projection of hj onto 

the corresponding basis vectors [2]. The resulting biased Maximum Likelihood estimate 

for the hemodynamic response is then [2] 

This biased estimator is generally more efficient than the unbiased version, especially if 

N p « Nh. However, this method must be used with caution as the resulting estimates of 

the hemodynamic brain response will be inaccurate and distorted unless they lie within 

the specified subspace for every event type, in every voxel, in every subject of the 

experiment [3]. 

hj = Lpi (1.12) 

HBML = L{U XT c;x XLYX
 U XT

 C-JY (1.13) 
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1.4.3 Blind Deconvolution Methods 

Blind deconvolution methods are unique in that they do not require information regarding 

the input signal, x(t), in order to obtain an estimate of the hemodynamic response, h(t). 

In such algorithms both the input signal and the hemodynamic brain response are treated 

as unknowns, and the basis assumption is that all channels are excited by the same input 

signal. Such algorithms have been used in the estimation of kinetic parameters in 

Positron Emission Tomography (PET) ([20], [21]). In PET, a sequence of images is 

acquired over time to track the regional uptake and washout of a radioactive isotope 

injected into a subject. The measured PET signal is a graph of the concentration of the 

isotope in the brain tissue over time, and is referred to as a time-concentration curve (TC) 

[21]. This signal can be linearly modelled as 

TC(t) = b(t).p(t) + n(t) (1.14) 

where b(t) is the blood input function, p(t) is the regional tissue response, n(t) represents 

additive noise, and the symbol "*" is the linear convolution operator ([20], [21]). The 

similarity between the above equation and equation (1.1) corresponding to fMRI analysis 

is apparent. Furthermore, as in fMRI, accurate modeling of the input signal is 

problematic. In fact, researchers in PET often resort to inaccurate, complicated and even 

health risky methods such as direct arterial blood sampling or cardiac blood pool to 

model the input function. As in fMRI, very little work has been done to estimate the 

brain's response without information regarding the input signal. 
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Researchers in PET that have extended blind deconvolution methods to medical imaging 

rely on a key assumption that opens the door to a wide range of algorithm choices. With 

certain assumptions, the data is fitted into a physiological two (or three) compartment 

model ([20], [21]). This assumption assumes the tissue response follows an exponential 

graph and reduces the problem to the determination of two unknown parameters. In other 

words, the tissue impulse response is given by 

h(t) = k,e-'k° (1.15) 

where the diagnostically clinical information provided by kt, the uptake constant, and ko, 

the washout constant is the only unknown ([20], [21]). This step allows the use of 

numerous algorithms such as the Cross Relation Method, Iterative Quadratic Maximum 

Likelihood, and the Eigenvector-Based Algorithm for Multichannel Blind Deconvolution. 

Of these three popular algorithms, only the latter is theoretically and computationally 

feasible without binding the shape of the hemodynamic brain response to a certain 

function group. 

1.5 PROBLEM STATEMENT 

The ability to determine the brain's hemodynamic response without relying on an input 

function would be an extremely valuable asset in a large number of medical applications. 

Assuming the linear time-invariant model for the observed fMRI response ([1], [2], [4]), 

this work will attempt to estimate the hemodynamic brain response both on a regional 
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and on an individual voxel level, as well as provide an estimate of the input signal that 

excited the brain's response. The solution to this problem will be achieved using the 

Eigenvector-Based Algorithm for Multichannel Blind Deconvolution (EVAM) ([5], [6]) 

combined with Independent Component Analysis (ICA) ([17] [23], [18]). The resulting 

estimate of the input signal that EVAM produces could prove to be a valuable insight into 

the actual signal that triggered the brain during the experiment, and not the ideal signal 

that should have triggered it based on experimental observations. Furthermore, unlike the 

limitation imposed in the PET case ([20], [21]), compartment modeling will not be 

implemented and thus there will be no prior assumptions regarding the shape or order of 

the brain's response. The results of this system will be compared with the traditional 

Least Squares Method. They will also be used to analyze subject responses on a regional 

and voxel-level. Two different clustering methods, K-Means and Correlation-Based 

Clustering, will be used to identify active and inactive voxels for spatial mapping. 

Finally, a comparison between the responses of healthy subjects and subjects diagnosed 

with Parkinson's disease will be compared. 
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CHAPTER 2: PROPOSED METHODS 

2.1 D A T A PREPROCESSING 

This chapter is a summary of the methods used to tackle the problem statement. 

However, before the algorithm is applied to real fMRI data, it is necessary, as previously 

discussed, to denoise the data. This preprocessing stage is covered in Section 2.1 and is 

divided into six sub-procedures: (1) Principal Component Analysis, (2) Independent 

Component Analysis, (3) selection of task-related components, (4) projection of the 

original data onto the task-related components, and finally (5) the definition of regions of 

interest. 

2.1.1 Principal Component Analysis 

The first step in the preprocessing procedure is to reduce the dimensions of the data to 

allow for analysis. This reduction is achieved using Principal Component Analysis. 

Principal Components Analysis (PCA) is a statistical technique that seeks to achieve 

dimension reduction by projecting the original data into a few orthogonal linear 

combinations (principal components) which identify key patterns that highlight the 

similarities and differences in the data. Such patterns can be very difficult to find in data 

sets of high dimension where the luxury of graphical representation is not available, and 

thus PCA is considered a powerful tool. [34] 

19 



Technically speaking, PCA is an orthogonal linear transformation that transforms the data 

to a new coordinate system such that the greatest variance by any projection of the data 

comes to lie on the first coordinate (called the first principal component), the second 

greatest variance on the second coordinate, and so on. PCA can be used to reduce the 

dimensions of a data set while retaining those characteristics of the data set that 

contribute most to its variance. This is achieved by keeping lower-order principal 

components and ignoring higher-order ones. [34] 

PCA has the advantage of being the optimal linear transformation in the sense of mean 

square error. This advantage, however, comes at the price of greater computational 

requirements if compared, for example, to the discrete cosine transform. Unlike other 

linear transforms, PCA does not have a fixed set of basis vectors, and its basis vectors 

depend on the given data set. [34] 

Mathematically, Y is defined as a t x v data matrix of measured voxel time courses where 

for the experiment used in this work t = 149 is the number of temporal observations in 

each voxel and v = 5074 is the number of voxels considered in the experiment. Principal 

Component Analysis will reduce the number of voxels from y to m. To achieve this, the 

following steps are executed. 

1. Start by ensuring the data matrix has zero empirical mean; thus, the empirical 

mean of the distribution must be subtracted from the data set. 
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2. Get the covariance matrix of the data set. 

3. Get the eigenvalues and corresponding eigenvectors, e; for i=l,.. .,v, of the 

covariance matrix. 

4. Order the eigenvectors from most significant to least significant, where the most 

significant eigenvector is the one that corresponds to the largest eigenvalue. 

5. Retain the first m eigenvectors where m is the new, reduced dimension of the data 

set. The choice of m is based on the number of components the user would like to 

ignore, and it is best determined by eliminating the eigenvectors whose 

corresponding eigenvalues are significantly smaller than the largest eigenvalue. 

In this work, m=50, as suggested in [15]. 

6. Form the feature vector, A, which is defined as a matrix whose columns are 

comprised of the first m eigenvectors. In other words, 

where Yi is the t x m reduced data matrix, and A is the v x m feature vector of 

eigenvectors used in the PCA reduction. 

A = [e, (2.1) 

Finally, the new, reduced data set will be: 

Yi = YA (2.2) 
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2.1.2 Applying ICA 

As shown in Chapter 1, Independent Component Analysis's strong reputation in 

effectively identifying task-related components made it an ideal choice in the 

preprocessing stage. ICA is applied to the fifty PCA components identified in the 

previous step. This can be described in a single equation as [23] 

S = YiA = YAA (2.3) 

where A is the mxm unmixing matrix, and Yj and Y are as defined in the Principal 

Component Analysis stage. Following this step, Infomax ICA was then used to separate 

the eigenimages into spatial independent components [23]. Finally, the corresponding' 

time courses were evaluated as 

TC(t) = Y]

T(A-Sy1 (2.4) 

where TC(t) is txm matrix of time courses, Yi is the mxt dimensionally-reduced data 

matrix defined by Principal Component Analysis, A is the ICA unmixing matrix, and S is 

the ICA source signal matrix. [23] 

2.1.3 Selection of Task-Related Components 

As discussed previously, various methods have been proposed to select which 

independent components are task-related or event-related and thus should be retained for 

further analysis. The selection of task-related components can be done by cross-
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correlations with the underlying event-related experiment, or by simple visual 

comparisons of the static spatial map and the associated time course to determine whether 

they are consistent with prior knowledge about brain activations [15]. However, a major 

problem of using the static spatial map to select task-related components is the risk of 

overfitting, because ICA may fragment a large area of activation into several sparse 

spatial maps, each with similar corresponding time courses [15]. Thus, in this work, the 

former method is preferred. 

From the time courses, TC(t), derived in the previous preprocessing step, only those that 

are deemed task-related will be selected. Naturally, task-related components will follow 

the signal model outlined in equation (1.2) as they will exhibit excitations according to 

the experimental design described in the model. To isolate these event-related 

components, the subsequent procedure is followed. 

1. Denote the i t h ICA component by the vector f,. 

2. If fj is event-related, then it is expected to follow a similar formulation to the form 

fi = Xei + ni (2.5) 

where X is the stimulus convolution matrix determined by the event sequence 

x(t), ej is the original event-related signal, and nj represents noise [15]. More 

specifically, X is a txt Toeplitz matrix representation of the time-domain input 

23 



signal, x(t) that models the experimental design. Using equation (2.3), each 

component vector is fitted to the model to estimate ei in the least-square sense. 

3. Next, the relative fitting error, di, is defined as [15] 

4. A graph of the relative fitting errors can then be used to determine the smallest 

errors whose corresponding ICA components should be retained, thus reducing 

the number of components from m to M. If the column components in S are 

sequentially ordered from most-task related to least-task related by the dj criterion, 

then this notion can be mathematically represented via the identity matrix I M as 

where Q is a m x M matrix equal to (IM, 0). 

2.1.4 Projection of the Original Data onto the Task-Related Components 

Now that a matrix, Si, containing all the task-related components has been determined, 

the final step in the preprocessing procedure is to project the original data onto these 

selected components. This projection is achieved using a single equation. 

(2.6) 

[23]: 

S! = S£2 (2.7) 

Y^,y2,...,yv] = S^S,y]STY (2.8) 
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where Y is the denoised data set, Si represents the M task-related components, and Y is 

the.original, noisy data set. It is important to note that the denoised data set has the same 

dimensions as the original data set, t x v. 

2.1.5 Defining Regions of Interest 

The discussion so far has involved applying the proposed methods to each voxel. 

However, before the data can be analyzed by a blind deconvolution method such as the 

Eigenvector Based Algorithm for Multichannel Blind Deconvolution, the data must be 

divided into a reasonable number of unknown and independent channels. One possibility 

is to treat the independent components from ICA as independent channels. Another 

choice is to define regions of interest based on medical knowledge and to treat each 

region of interest as a single channel. A region of interest (ROI) is a set of voxels 

grouped together based on medical understanding. Using the latter method of regions of 

interest, not independent components, proved to yield better results. Thus, eighteen 

regions of interest were kindly defined, manually, by Dr. Martin McKeown. Each region 

was treated as a single channel whose response is defined as 

5 > , ( o 

R ' ( 0 = J = L F " ( 2 ' 9 ) 

where r;(t) is the time response representing region i, N is the number of voxels manually 

defined in region i, and yi(t) is the fMRI signal corresponding to voxel i in the denoised 
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data matrix Y. These regional responses are the key input into the blind deconvolution 

algorithm described in Section 2.2. In the computation, all eighteen regions were used; 

however, in the analysis of results only three of the eighteen regions were considered as 

they were labeled as medically significant by the neurologist. These regions are: (1) the 

right cerebral hemisphere, (2) the left supplementary motor area, and (3) the left primary 

motor cortex. 

2.1.6 Implementation of Preprocessing Procedure 

The preprocessing procedure discussed in the previous sections was used to denoise the 

data and prepare it for further analysis by the Eigenvector Based Algorithm for 

Multichannel Blind Deconvolution. The program consists of several M-files written in 

Matlab. Figure-2.1 is a flowchart designed to summarize the procedural implementation. 

On the left-hand column of the figure there are short headings describing each step in the 

procedure, and to the right of each step is the exact code used to implement it. The 

complete code for each function is encapsulated for simplification. 
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Step in the 
Program 

Corresponding 
Code 

2: Apply Principal Component Analysis (PCA) 
(reduced to 50 components) 

5. Select task-related components 

3. Apply ICA on reduced components 

4. Get corresponding time courses of ICA 
components 

:? Jo;a Sgif or 3 a n e n O O 1 • ̂ •iti^fi^ 

J 

[e j q , r e d u c e d d a t a , r e s ] - - : p i c a ( R O I s _ r a w , i } 

[ w M a t y s M a t , aMat:} = m e x i c a ( r e d u c e d d a t a ) 

*tec!pgii ;re : duced d a t a i n v (wMat ;*-sMat) 

IllSlllftl:® 

^1 

6; Denoise the observations by projection Y d e n o i s e d = S * i n v (S ' * S ) *<S ' * R O I s r a w ; 

f;;|iii;;ir2>.s3v;;:E4:v r5, r6, r7, r8, r8, r9, r l 0 : , r l l 

pggg^^g;.(;Y^0endised)';. ,:: ' 

Figure-2.1: Flowchart Describing Implementation of the Preprocessing Stage 
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2.2 T H E EIGENVECTOR-BASED ALGORITHM FOR MULTICHANNEL BLIND DECONVOLUTION 

2.2.1 Introduction to the Algorithm 

The Eigenvector-Based Algorithm for Multichannel Blind Deconvolution (EVAM) is a 

high-complexity, high-performance algorithm suggested in 1995 by Gurelli et al. [5]. 

EVAM can be used to deconvolve an unknown, possibly colored, Gaussian signal that is 

observed through two or more unknown channels. The algorithm is capable of estimating 

the unknown orders and root (pole and zero) locations of the channel transfer functions as 

well as provide an estimate of the unknown input signal that excited the channels. The 

estimates of the channel transfer functions are acquired based on eigenvalue 

decomposition of a sample correlation matrix, and the input signal is estimated by 

multichannel finite impulse response (FIR) filtering. [5] 

There are other multichannel adaptive system identification algorithms in the literature 

that could have been implemented in this work, but many of these generally fail in 

accurately determining the roots and orders of the channels with sufficient accuracy. One 

important reason for this is that the performance surface may be highly ill-conditioned 

which leads to very slow convergence rates for stochastic gradient type algorithms. [5] 

Furthermore, when EVAM is compared with Separable Least Squares (SLS), one of the 

more traditional methods in the field, it proves to yield highly more accurate results. [5] 
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2.2.2 Unknown System Model 

EVAM involves two models: one of the unknown system and one of the adaptive system. 

The unknown system can be modeled as shown in the block diagram in Figure-2.2. 

x(t) 

C.Cz1) 
r.(t) 

ni(t) 

1 
YRi(t) 

-> y R2(t) 

CpCz1) 

nP(t) 

yRp(t) 

Figure-2.2: Block Diagram of the Unknown System Model 

All the channels are fed by the same input signal x(t), which may be wide-sense 

stationary and possibly colored Gaussian, or even nonstationary. The input signal can 

also be finite or infinite in duration. It is assumed that the number of channels, p, is 

greater than one. [5] Each channel of the unknown system is denoted by Cj(z_1) where 

c , ( z -V^n r '" = W (2-10) 
L»,(z ) 

and Nj(z"') and Dj(z_1) are polynomials in z"1 of orders Nj and Dj, respectively. It is 

assumed that the channel transfer functions Cj(z"') have no common poles or zeros, and 
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that both the orders and roots of the channels are unknown. The channel transfer 

functions may be non-minimum phase as well as non-causal. [5] 

The channel output signals are denoted by rj(t) where again i=l,.. .,p. These noiseless 

channel outputs are assumed to be excited solely by the input signal x(t). These signals 

are corrupted by additive noise ni(t), i=l,.. .,p. The noise processes are all assumed to be 

zero-mean white sequences with variances Oj , where the variances are allowed to be 

different for each channel to allow for a realistic model. [5] 

The noisy channel output signals, yi(t), are the only observations in this multichannel 

system, and are given by [5] 

yni(t) = ii(t) + nj(t) i = l,...,p (2.11) 

Using only these output signals, the algorithm must recover the original input signal, x(t), 

as well as determine the orders and roots of the channel transfer functions, Cj(z_1), 

i=l,.. .,p. The first step to achieving this is to develop a multichannel adaptive system 

based on the unknown system model. 

2.2.3 The Adaptive System Model 

EVAM is built on an adaptive system model where adaptive FIR channels are 

manipulated to minimize a cost function and then referred back to the unknown channel 
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functions. The basic multichannel adaptive system can be described by the block 

diagram in Figure-2.3. 

YRi(t) 

yR2(t) 

YRp(t) 

• E(W) 

Figure-2.3: Block Diagram of the Adaptive System Model 

The inputs to the adaptive system are the noisy channel outputs, yi(t), of the unknown 

system [5]. The adaptive channel transfer functions are finite impulse response (FIR) 

filters of order Oj . That is, 

WAz-}) = wlfi +w,.1z-1 +... + yvlj0z-°' i = l,...,p (2.12) 

where the coefficients w,̂  are adaptable via the algorithm. For convenience, a vector Wj 

is defined to represent the polynomial in equation (3) using only its coefficients [5]. That 

is, 

W, =[wlfitwi;i,...,wIJOi]T (2.13) 

If the coefficient vectors for all p channels are combined, then a vector of vectors, W, can 

be defined as [5] 
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W = [^,Wj2,...,WT? (2.14) 

The output of the adaptive system model is the error signal E(W). To define E(W), 

vectors Yj(t) are defined first as samples of the data [5] 

I,(0 = b,(0 ,̂0-l)v..,>',̂ -O,.)r (2.15) 

Combining these data vectors for all channels results in the composite data vector, Y(t), 

defined as [5] 

Y(t) = [Z(t)lY(t)r2,-,Z(t)T

p]T (2.16) 

Then, for the two-channel case, the mean-squared error (MSE) is [5]: 

E(K) = Y\KTY(t)2 (2.17) 
(=0 

where x is the length of the time interval. The error defined in equation (2.17), or other 

norms of it, can be minimized using an adaptive control method such as Recursive-Least 

Squares (RLS) or Least-Mean Squares (LMS). However, simulations show that 

stochastic gradient type algorithms, such as LMS, may have extremely poor performance, 

due mostly to large eigenvalue spread which leads to very slow convergence rates. On 

the other hand, although algorithms based on the least-squared method, such as RLS, are 

generally unaffected by the eigenvalue spread, they do not provide a method to estimate 

channel orders. [5] 
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2.2.4 Relation between Unknown and Adaptive Channel Roots 

There is a simple relation between the roots of the unknown channels in the Unknown 

System Model and the roots of the adaptive channels in the Adaptive System Model. If 

the adaptive channel orders are chosen such that, 

then the unique family of solutions for Wi(z_1) and W ẑ"1) that will result in an error 

where a is an arbitrary constant. Thus, if some vector W can be determined such that 

E(W) = 0, it would be trivial to obtain, by factorization, the unknown channel transfer 

functions, Cj(z~'). However, EVAM assumes that the channels orders, Ni, N2, Di, D2, are 

unknown and thus the adaptive filter orders cannot be chosen as in equation (2.19). 

Instead, EVAM assumes that the channel orders of the adaptive system can be 

overestimated such that [5] 

Wi = N2 + Di + K, and W2 = N i + D 2 + K 2 (2.20) 

where Ki and K2 are positive constants that account for the extraneous zeros ofWi(z') 

and W2(z"') respectively. Now with an overestimation of the orders, a similar relation as 

that in equation (2.19) is needed between the roots of the unknown system and that of the 

Oi = N 2 + Di and 0 2 = Ni + D2 (2.18) 

value of zero, E(W) = 0, will be given by [5] 

W2(z- l) = -aNl(z- x)D2(z- 1) 
(2.19) 

33 



adaptive system. To start, we note that the error signal will now have a measure of zero 

for the following set of adaptive channel transfer functions [5]: 

Wl(z- l) = aN2(z- l)D,(z- l)0l(z-') 
W2 (z_1) = -aNx (z~ l )D2 (z_1 )G2 (z_1) 

(2.21) 

where a is an arbitrary constant, and the polynomials G ẑ"1) and 02(z"') have orders Ki 

and K2 respectively. These polynomials have equal factorizations except for the fact that 

the one with the larger order has all of its extraneous zeros at the origin. Without loss of 

generality, assume that K2 > Ki, and define AK = (K2 - Ki). Since the polynomials have 

equal factorizations except for the extraneous zeros at the origin, we can then write [5]: 

where 0AK (Z"1) is a polynomial of order AK having all its roots at the origin. This then 

allows us to rewrite the family of solutions given in equation (2.21) as [5]: 

As before, in the case where the channel orders were known, the error signal will have a 

measure of zero only if the transfer functions of the adaptive channels are of the form in 

equation (2.23) where there will be K common zeros appearing at the same, arbitrary 

locations. The other zeros will be at different locations since EVAM assumes that there 

are no common poles or zeros between channels. [5] 

02(z-1) = e1(z-1)0AK(z-1) (2.22) 

Wl(z->) = aN2(z-')Dl(z- l)0l(z- 1) 
W2 (z-1) = -aN, (z-1 )D2 (z-1 )6X (z~ ] )0AK (z~ ]) 

(2.23) 
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In order to obtain the set of solutions of the form in equation (2.23), we define two 

important matrices: the data matrix, A y, and the sample correlation matrix, Ry [5]: 

^=[^ r(^l/(^-l)v..,^ r(l)] r[^/(r),^ 7'(r-l),...,7/(l)] (2.24) 

and 

Ry = A l A > (2.25) 

where Y R(t) is the composite data vector defined in (2.16). In addition, we define 

K = min{Kl, K2}. Mathematically, Ry will have exactly (K+l) zero eigenvalues and 

(K+l) orthonormal eigenvectors corresponding to these eigenvalues. We denote these 

eigenvectors by g j , i=l,...,(K+l). [5] 

The eigenvectors flj, i=l,.. .,(K+1) are partitioned into p blocks of equal length as in 

equation (2.14). These partitions are denoted by fly, i = 1,...,K+1, j=l,...,p. The 

equivalent polynomials of these vectors are defined as [5] 

QiAz~ly> = lij-\>z~X>->z~°1] i = l,.~,K + l and j = l,...,p (2.26) 

For the two channel case, these polynomials can then be rewritten as [5]: 

fiIJ(z-)=^l.[i>2-',...,z-^r 

Qu2{z- x) = ql2\,z-\...,z- 0 1] i=l,...,* + l 
(2.27) 
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This set of transfer functions provides a basis for the family of solutions for Wi(z") and 

W2(z"') given in (2.23). Thus, for a given i e {1,.. .,K}, the minimal roots of Qjj(z"1) and 

Qi,2(z"') will be at different locations, while the extraneous zeros will be at exactly the 

same locations in the complex-plane. This corollary is the basis of the Eigenvector-

Based Algorithm for Multichannel Blind Deconvolution. Further mathematical proofs of 

the above steps can be found in [5]. 

2.2.5 The Elimination of Extraneous Roots Using A Priori Information 

After obtaining a set of solutions for the adaptive channel transfer functions, the 

extraneous roots in the solution must be eliminated. However, no information is known 

about the channels, including their orders. In previous works [6], the channel orders were 

determined by limiting the brain response to fit a certain physiological model; thus, 

conforming it to a certain order. Since we chose not to apply this limitation, a new 

method was required to determine the filter order. At this point in the algorithm, two 

new inputs are entered into the program: (1) a range of filter orders to be tried, and (2) a 

rough estimate of the general shape of the input signal, x(t). This latter information about 

the input signal is used to iteratively reduce the orders of the adaptive channels until the 

extraneous roots are eliminated. 

When estimating the hemodynamic brain response of a subject, the input signal is not 

completely unknown and mysterious. The time at which the experimental stimulations 

occur, and the strength of each stimulation are known and can be used to model the input 
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function, x(t), as a sum of time-shifted and scaled delta functions centered at the onset of 

each event. This estimate can easily be obtained from the experimental setup, and a 

sample of such a function was previously graphed in Figure-1.1. However, it is important 

to note that this model of the input signal is only an estimate that is based on the expected 

timing and strength of the subject's reactions based on the external environment and the 

design of the experiment. This expectation, although similar, is most certainly different 

than the actual signal that excites the brain. Contrary to other methods in the literature 

([15], [2], [3]), this estimate of the input signal will be indirectly used in the algorithm 

only as useful a priori information to optimize the solution, and not to directly estimate 

the hemodynamic brain response. 

Naturally, EVAM's estimate of the input signal, x(t), should follow a similar shape to the 

model. It should be excited at similar time intervals and with similar strengths. To 

achieve this criterion, the algorithm iteratively reduces the orders of the adaptive channel 

transfer functions until the difference between EVAM's estimated input signal and the 

model of the input signal achieves a minimum. The difference is measured based on the 

normalized projection misalignment (NPM) value which is defined as 

NPM = 

,X X, 
X~(-jr-)x 

X X 
(2.28) 

where |...| represents the norm of the enclosed vector. NPM values closer to zero are 

preferred. This final step of comparing between x(t) and x(t) to reduce the order of the 
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channel transfer functions, and thus eliminate their extraneous roots, serves several 

important advantages. Firstly and most importantly, a certain model for the tissue 

response is no longer assumed as in previous works. For example, in Riabkov et al. [20], 

a two-compartment tissue model was assumed and thus the order of the channels was 

automatically set to two. However, using this method, there is no longer a need to limit 

the order of the channels to fit a certain model, and any errors due to the incorrect choice 

of the channel orders are eliminated. This is especially important when we note that the 

underestimation or overestimation of the orders has a strong and direct effect on the 

estimates of the channel responses. Figure-2.4 shows an example to illustrate this point. 
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Figure-2.4: Effect of Choosing Incorrect Filter Order 

Thus, by choosing the correct filter order, the algorithm is capable of exactly 

reconstructing the channel's frequency response. On the other hand, by choosing an 

order of 13 rather than 16, a drastic difference is observed, although the error in the filter 

order is only about 20%. On a similar note, an overestimation of the order will also result 

in inaccurate results as seen in the final graph. 
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Besides the ability to correctly determine the correct filter order for each channel, thus, 

eliminating any errors due to incorrect filter order, this step in the algorithm serves a 

number of other important advantages. As mentioned in previous works [6], it is 

important to make appropriate use of the a priori information available about the input 

signal. It would in fact be wasteful not to make use of this information in order to 

enhance the results. It is important to note that because the input signal x(t) is limited in 

its accuracy as an experimental expectation, it is also used in the algorithm with 

limitations. It is not directly used to calculate the brain response as in non-blind 

identification methods, and is used only as a guide to help enhance the results by 

eliminating extraneous roots. 

2.2.6 Algorithm Implementation 

The sections above described the theory behind the modified version of the Eigenvector 

Based Algorithm for Multichannel Blind Deconvolution. This section is concerned with 

taking the theory described above and implementing it as several M-files in Matlab. To 

start, the user must provide the algorithm with the five inputs listed below and described 

in more detail in the following paragraph: 

1. the denoised channel outputs of the unknown system Y(t), 

2. an overestimation of the channel lengths No, 

3. an estimated difference, AN0, between the overestimation and actual 

channel lengths, 
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4. a range of orders to be tried by the algorithm, 

5. an estimate of the overall shape of the input signal, x(t). 

The first input is obtained from the fMRI signals after passing through the preprocessing 

theory described in the previous chapter. The denoised data is fed into the algorithm as a 

composite data vector as defined in equation (2.16). The selection criterion for the 

second input, No, is still under investigation. However, it must be at least greater than the 

largest expected order, which requires some a priori information regarding the maximum 

value the channel orders can be [5]. In other words, No > max{Oi, O2, . . -,Op>} where p is 

the number of channels in the system. The order reduction amount, ANo, is used to 

reduce the impulse response of the adaptive channels such that the new length will be 

Ni = No - ANo. The selection criterion for ANo is arbitrary. However, it can be better 

determined by observing a plot, in ascending order, of the eigenvalues of the sample 

correlation matrix, Ry, and checking for the number of smallest eigenvalues [5]. Finally, 

the last input into the system is the sum of time-shifted and scaled delta functions used to 

describe the time and strength of the experimental stimulations. An example of such a 

function was previously illustrated in Figure-1.1. 

Using the four inputs described, the program will execute the steps outlined below in 

order to provide the user with an estimate of: (1) the input signal that stimulated the 

brain, x(t), (2) the channel orders of the unknown system, O;, (3) and the channel 

frequency responses, hj(f) where i=l,.. .,p. 
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1. To start, set the initial lengths of the adaptive filters to No. 

2. From the composite data vector, Y(t), calculate the (2No x 2No) sample 

correlation matrix, Ry, as defined in equation (2.25). 

3. Find the (Ko+1) eigenvalues of the sample correlation matrix, Ry, that are 

significantly smaller than the other eigenvalues, where Ko = ANo+1. In this work, 

significantly smaller was defined in the code as less than 0.1% of the maximum 

eigenvalue. 

4. Denote the corresponding eigenvectors of the (Ko+1) largest eigenvalues as <_ 

where i=l,...,Ko+l. 

5. Define a matrix, M, as [5]: 

1,1 1,2 

(2.29) 

M M 

where each sub-matrix is defined as [5]: 
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MkJ = 

1>® o 
o 

qk(N0-AN0) qk(N0-AN0-l) 

q(N0-AN0+l) q(N0-AN0) £ 4 ( 3 ) 

£*W>). 
0 
0 

qk(N0-l) ... ? t ( A ^ 0 + 2 ) £ t ( A t f 0 + l ) 

<7,TO ? , (A t f „+2 ) 

0 £ t ( ^ o ) £ 4(AA^ 0+3) 

0 ? , ( J V „ ) 
(2.30) 

and where £k(j) denotes the j t h entry of the vector gk and the first entry starts at 1. 

6. Define a new matrix F=MTM, and calculate the smallest eigenvector s 

corresponding to the smallest eigenvalue of the matrix F. 

7. Partition the vector s into p vectors of equal length where p is the number of 

channels in the system. The length of each partition will then naturally be Ni. 

These partitions are the coefficients representing the adaptive channel's transfer 

functions, hj(f) for i= 1,... ,p. 

8. After zero padding and applying the inverse of the filter in the frequency domain, 

obtain an estimate of the input signal x(t) using equation (2.31) [5]. 
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x(t) = yl(t)*h1(t) + y2(t)*h2(t) (2.31) 

9. Loop through steps three to eight for all orders, Oj, within the range defined by 

the user. Retain the channel order, Oi, that results in the strongest relation 

between x(t) and x(t). The strength of the relation is measured based on the 

NPM value defined in equation (2.28). This order, O;, and its corresponding 

channel transfer functions and estimated input signal, will be the outputs of the 

system. 

10. The results from the EVAM algorithm can be extended further by combining 

them with the Least Squares Method previously described in Section 1.4.1. In 

this case, the input signal obtained as an output of the EVAM algorithm, x(t), will 

be used along with the denoised fMRI observations, Y, to determine the 

hemodynamic brain response of each individual voxel, according to equation 

(1.9). 

2.2.7 Algorithm Testing 

To test the robustness of the proposed algorithm, a set of simulated data was created. 

This data was produced by: (1) randomly creating four fictitious channels of order 16 

each, (2) using the estimate of the input signal, x(t), found in a real data set and graphed 

in Figure-1.1, (3) convolving each channel with the input signal x(t) to obtain four signals 
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used as input into the system. Below is a graphical illustration of the procedure used to 

create the simulated data, using Channel Two as an example. 

Second Channel's Simulated Brain Response (h2(t)) 

Time (seconds) 

Figure 2.5: Graphical Representation of the Data Simulation Procedure 

If the four signals created above are inputted into the system as the channel outputs, Y(t), 

along with an overestimation of the channel lengths, No = 25, an estimated difference 

between the overestimation and actual channel lengths, AN0 = 3, as well as a range of 
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orders to be tried by the algorithm, (5 - 23), the system is able to perfectly reconstruct the 

channel signals (NPM = 10"15), and closely reconstruct the input signal (NPM = 0.242). 

The results are shown in the following two figures, using Channel Two as an example. 

Second Channel's Actual & Estimated Brain Response (h2(t)) 

Figure-2.6: Comparison between the Actual and the Estimated Brain Response and Input 

Signal in Channel Two of the Simulated Data 
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Time (seconds) 

Figure-2.7: Comparison between the Actual and the Estimated Measured Response 

in Channel Two of the Simulated Data 

More tests were performed to test the robustness of the program to noise. The noise 

parameters are chosen to yield a signal-to-noise ratio (SNR) of approximately -15dB [23] 

in order to replicate the SNR level observed in real fMRI data, where SNR is defined as 

m o ^ ( s i g n a l p o w e r ) 
noise power 

In this highly corrupted signal, the system is less efficient, but still performs reasonably 

well as shown in Figure-2.8 where the normalized projection magnitude between the 
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actual and estimated brain response is 0.0155. Also, the correlation coefficient between 

the estimated and actual brain response is found to be 0.69. 

Figure-2.8: Comparison between the Actual and the Estimated System Responses 

in Channel Two of the Simulated Data with SNR= - 15dB 

For comparison, a similar test was performed, but after adding white Gaussian noise with 

an SNR=15dB, in which case the program is able to closely reconstruct the channel 

signals (NPM = 0.003). The correlation coefficient between the estimated and actual 

brain response is also found to be very high at 0.95. Furthermore, in all test cases, 

including the ones with highly corrupted signals, the program is able to return the correct 

filter order. 
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Figure-2.9: Comparison between the Actual and the Estimated System Responses 

in Channel Two of the Simulated Data with SNR = +15dB 

After testing the program to ensure that it performs accurately, in the absence and 

presence of noise, to calculate the input signal, x(t), the correct order of the channels, O, 

and the channel signals, hj(f) for all channels i within reasonable and acceptable 

correlation coefficients and NPM values, the same system was applied to real fMRI data 

sets for analysis. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 DESCRIPTION OF D A T A SET 

The real data sets used in this work are a complement of Dr. Martin McKeown from the 

Neurology Department at the University of British Columbia. There are two sets of data, 

one from a healthy subject and one from a subject inflicted with Parkinson's disease. 

Parkinson's disease is a chronic and progressive degenerative disorder of the nervous 

system that impairs a patient's motor skills and speech. The disease is characterized by 

muscle rigidity, tremor, a slowing of physical movement, and, in extreme cases, a loss of 

physical movement and language problems. The primary symptoms are a result of 

decreased stimulation of the motor cortex by the basal ganglia, which is normally caused 

by insufficient formation of dopamine. Parkinson's disease is considered idiopathic; 

however, in some cases, it is a result of drugs, genetic mutation, or head trauma. [19] 

In the current event related fMRI study, patients inflicted with Parkinson's disease and 

age matched controls squeeze a pressure responsive bulb to match three different levels 

of force amplitude (5, 25, and 50% of maximum voluntary contraction) as quickly and as 

accurately as possible. The participants are guided by a screen in the scanner which 

displays bar graphs representing the desired and actual force amplitudes. The experiment 

duration is 298 seconds (149 TR intervals) and each random event lasts for two seconds 

where the inter-stimulus interval (rest period) is ten seconds. Finally, it is important to 

note that the label of the x-axis in all the figures of Chapter 3, refers to time in terms of 

the sampling index, not absolute time. 
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3.2 OUTPUTS OF T H E PROPOSED ALGORITHM 

The algorithm described in Chapter 2 was applied on the real data set described in 

Section 3.1. There are three main outputs to the algorithm: (1) an estimate of the input 

signal that excited the brain, (2) an estimate of the hemodynamic brain response in each 

brain region, and (3) an estimate of the channel orders. The estimated input signal is 

shown in Figure-3.1 along with the modeled input signal for comparison. As expected, 

we note a difference between the two signals as one represents the signal that presumably 

excited the brain while the other is an estimate of the signal that actually stimulated the 

brain. 

Ir.pjt Signal Modeled by Experimental Setup 

Figure-3.1: Comparison between the Modeled Brain Excitation Signal and the Estimated 

Brain Excitation Signal 
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The hemodynamic brain response estimated for each region is discussed in the following 

section. However, for reference, a sample of the estimated convolved signal and the 

measured and denoised fMRI signal are graphed in Figure-3.2. As seen, the proposed 

method closely follows the original fMRI signal. 

Time (seconds) 

Figure-3.2: Actual and Convolved fMRI Response 

3.3 COMPARISON OF E V A M RESULTS WITH LEAST SQUARES ESTIMATES 

The hemodynamic brain response obtained using the Eigenvector Based Algorithm for 

Multichannel Blind Deconvolution is compared with the hemodynamic brain response 

obtained using the traditional and popular Least Squares Method discussed in Section 
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1.4.1. A significant improvement is noted in the actual shape of the estimated 

hemodynamic brain response. In the Least Squares case, spurious multiple peaks are 

present. This is in contrast to the response estimated by EVAM where as expected, there 

is a single peak corresponding to the blood flow increase to meet oxygen demand 

resulting from the subject's response to the experimental stimulus. This period of blood 

flow increase reaches a peak and is then followed by a fall back to baseline which is often 

accompanied by a small post-stimulus undershoot. This medical understanding is well 

depicted in virtually all the EVAM responses. Figure 3.3 illustrates this comparison 

between the two methods for six of the eighteen regions of interest. The red signal 

corresponds to the response estimated by EVAM and the green signal is the response by 

Least Squares. 
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Figure-3.3: Comparison Between the Estimated Brain Response Using EVAM and 

Using the Least Squares Method 

3.4 CLUSTERING OF ACTIVE AND INACTIVE VOXELS 

The hemodynamic brain response obtained in the previous sections can be analyzed to 

determine the probability of activation in individual voxels. Previous work involves 

clustering directly on the fMRI time series using a variety of techniques [12]. Some of 

these techniques include the t-test implemented in SPM, the non-parametric Kolmogorov-

Smirnov test, and various types of clustering methods including crisp clustering such as 

in k-means, fuzzy clustering such as in c-means, and soft competitive learning such as in 
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neural gas [12]. In a study by Barth et al. [10], fifty runs were performed on simulated 

data where among several parameters, the correlation coefficient between the center of 

the found activation cluster and the center of the known activation region was compared 

for different clustering methods. They found that neural gas and k-means clustering 

exhibited the best performance compared to six other clustering methods. Although the 

k-means algorithm is a simple method with a fast convergence, it has a number of 

limitations based on its underlying parametric assumptions. Thus, recently, many 

researchers have moved towards using the correlation between the measured fMRI signal 

and the signal modeling the experimental stimuli in order to determine whether an 

individual voxel is active [12]. However, all these contributions perform clustering 

directly on the fMRI data series, and a serious limitation of this is the high noise level in 

the raw data, which leads to stability problems and which does not necessarily group data 

according to similarity in response to experimental stimuli. 

Thus, in this work we suggest extending two of the more powerful clustering methods 

previously suggested, to identify active and inactive voxels based not on the measured 

fMRI signal, but on the estimated hemodynamic brain response. One of the main 

motivations behind this choice is an observation of the individual voxel responses 

estimated from the algorithm described in Chapter 2. The voxel response is either a 

shape resembling that of the expected brain response, or another shape resembling a 

random, small-magnitude signal. To illustrate this observation, the hemodynamic brain 

responses of six random voxels are graphed below. It should be noted that all six voxels 

are located within a single brain region. This suggests that activity should not be labeled 
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and studied simply on a regional basis, but at the more-detailed voxel level. In Figure-

3.4, the first row shows samples of active voxels that exhibit the shape of the expected 

hemodynamic brain response previously discussed in Section 3.3. The second row 

illustrates the variety of low-magnitude, random signals characteristic of the inactive 

voxels. 

Figure-3.4: Illustration of Active and Inactive Voxels 

Thus, a quick visual inspection of the estimated hemodynamic brain responses gives 

immediate insight into voxel activity. For comparison, the measured fMRI response of 

these voxels is graphed in Figure-3.5 to exhibit the difficulty of obtaining such an insight 

from the raw fMRI data. This is true even after the preprocessing procedure. In Figure-

3.5, the response from voxel 4, defined as active from the previous figure, and the 
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response from voxel 53, defined as inactive from the previous figure, are shown. Despite 

this significant improvement, an automatic method is still required to cluster the data as it 

is impractical to go through thousands of voxels per data set to visually and manually 

identify active voxels. 

Figure-3.5: Difficulty of Visually Identifying Active and Inactive Voxels Based on the 

Measured fMRI Time Response 

3.4.1 K-Means Clustering 

The first method used to cluster the active and inactive voxels is the K-Means Clustering 

Method because of its popularity in fMRI analysis as well as its efficient performance as 
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shown by Barth et al [10]. K-Means Clustering is a method that partitions a given data 

set into k mutually exclusive, single level clusters. As described in Matlab, each 

observation in the data set is treated as an object having a location in space. Based on 

these locations, the K-Means Method uses a two-phase iterative algorithm to minimize 

the sum of point-to-centroid distances, summed over all k clusters. The algorithm starts 

by finding a partition in which objects within each cluster are as close to each other as 

possible, and as far from objects in other clusters as possible. Then, each cluster in the 

partition is defined by its member objects and its centroid. The centroid for each cluster 

is the point to which the sum of distances from all objects in that cluster is minimized. 

Finally, an iterative algorithm is used to move objects between clusters until the sum of 

distances from each object to its cluster centroid is minimized, over all clusters. 

The K-Means Clustering Method is applied to each of the eighteen brain regions to 

identify the active and inactive voxels in each. Of the eighteen regions, only sixteen 

could be clustered because two regions were less than fifteen voxels each, and thus did 

not contain enough voxels for clustering using the K-Means method. In three brain 

regions, the clustering was effective in identifying two unique clusters that exhibit clearly 

different mean responses. In these regions, a manual check reveals that the rate of 

incorrect classifications, where an inactive voxel is classified as active or vice versa, does 

not exceed 20%. To illustrate, the mean of the hemodynamic brain responses in each 

cluster of Region 1 is graphed in Figure-3.6. As expected, one cluster exhibits the shape 

of the hemodynamic brain response, while the other cluster shows a random signal 

response representing inactivity. 
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Figure 3.6: Mean Response of the Two Clusters in Region Fifteen where the K-Means 

Clustering Method was Effective 

However, using the K-Means Clustering Method, thirteen of the eighteen regions showed 

an ineffective separation of voxels. In these regions, the mean of the two clusters are 

similar, to the extent that the active cluster is indistinguishable from the inactive cluster. 

In such cases, the rate of incorrect classifications is higher than 50%. One such example 

is displayed in Figure-3.7. Due to this high rate of inaccuracy, a new method was 

explored. 
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Figure 3.7: Mean Response of the Two Clusters in Region Five where the K-Means 

Clustering Method was Ineffective 

3.4.2 Correlation-Based Clustering 

The correlation coefficient between two random variables indicates the strength and 

direction of a linear relationship between them. Mathematically, the correlation 

coefficient, px Y, between two variables X and Y, with corresponding expected values 

|4,x and ay is obtained by dividing their covariance by the product of their standard 

deviations, ax and ay, as shown in equation 3.1. 

cov(X,Y) _ E ( ( X - J U X ) ( Y - M Y ) ) 
PX Y — — \->-1) 

(Jy<Jy C>yO-y 



where E(...) is the expected value operator and cov(...) represents covariance. Its values 

range between -1 and +1, and by the Cauchy-Schwarz Inequality, the correlation 

coefficient cannot exceed one. Values closer to +1 indicate an increasing linear 

relationship while those closer to -1 represent a decreasing linear relationship. Recent 

studies consider the absolute values of the correlation coefficient between the measured 

fMRI time response and the modeled experimental input signal to determine voxel 

activation. 

In this work, the correlation coefficient for each voxel is a measure of the linear 

dependence between the voxel's estimated hemodynamic brain response and the mean 

brain response of the region of interest it is contained within. At first, the hemodynamic 

brain response estimated by EVAM was used instead of the mean response of the region 

of interest. However, because most of the voxels in a region are active, the latter choice 

yielded either the same or better results. There is an apparent improvement in the 

clustering based on correlation as compared to the clustering based on the K-Means 

method as thirteen regions showed an effective separation of active and inactive voxels, 

in comparison with three regions in the K-Means case. Furthermore, the correlation 

clustering method was able to cluster the small regions which were a problem in the K-

Means method. Figure-3.8 is a visual comparison between the two methods for two 

example regions where the mean response of each cluster within the region is plotted for 

each clustering method. 
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Figure 3.8: Mean Response of the Two Clusters in Region Thirteen for the K-Means and 

Correlation Clustering Methods 

For reference, the example of poor K-Means clustering in region five shown in the 

previous section is plotted again here with its corresponding correlation-based clustering. 

Although the correlation clustering in this example is not as efficient as in other regions, 

it illustrates the improvement in results that exists even in difficult regions. 
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Figure 3.9: Mean Response of the Two Clusters in Region Five for the K-Means and 

Correlation Clustering Methods 

3.4.3 Spatial Mapping of Active and Inactive Voxels 

The results from the clustering methods can be analyzed on a spatial level by mapping the 

active and inactive voxels onto the magnetic resonance image of the subject's brain. The 

three regions of biological interest in this study, the right cerebral hemisphere, the left 

supplementary motor area, and the left primary motor cortex, are the ones chosen for 

spatial analysis. One comprehensive slice is chosen for each region and the active voxels 

are shown in yellow while the inactive voxels are shown in blue. Before the three regions 
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of interest are shown, a figure showing all the active and inactive voxels for two 

comprehensive brain slices is shown. 

Figure 3.10: All Active and Inactive Voxels in the Comprehensive Brain Slices 16 and 20 

Figure 3.11: Active and Inactive Voxels in the Right Cerebral Hemisphere 
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Figure 3.12: Active and Inactive Voxels in the Left Supplementary Motor Area 

Figure 3.13: Active and Inactive Voxels in the Left Primary Motor Cortex 



The resulting images are promising as they show a clustered, not sparse, distribution. In 

other words, as expected based on current medical understandings, the voxels responding 

to the experimental stimuli are spatially grouped and not distributed across the brain. We 

also notice complementary reactions in the right and left hemispheres of the brain as 

shown in the first two images. 

3.5 COMPARISON BETWEEN H E A L T H Y AND PARKINSON'S DISEASED PATIENT 

A preliminary comparison was made between a Parkinson's diseased patient and a 

healthy subject. The comparison is illustrated in Figure-3.13 where the left column 

indicates the responses of the diseased patient in the right cerebral hemisphere, the left 

supplementary motor area, and the left primary motor cortex respectively, while the right 

column is the corresponding reactions in the healthy patient. Primarily, we notice a 

major difference in the left primary motor cortex where there is very little activation in 

the diseased patient. Interestingly, symptoms of Parkinson's disease are thought to be a 

result of decreased stimulation of the motor cortex by the basal ganglia, which is 

normally caused by insufficient formation of dopamine. Although the results support this 

theory, no major conclusions can be made at this stage due to the risk of incorrectly 

attributing inter-subject variability to differences due to Parkinson's disease. However, 

these promising results are an encouraging step to proceed with further research in this 

area. 
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Figure 3.14: Preliminary Comparison between Parkinson's Diseased Patient Responses 

(Left Column) and Healthy Subject Responses (Right Column) 
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CHAPTER 4: CONCLUSION 

The ability to determine the brain's hemodynamic response without relying on an input 

function would be an extremely valuable asset in a large number of medical applications, 

and today, functional Magnetic Resonance Imaging (fMRI) is one of the leading methods 

in developing a better understanding of the human brain. Assuming the linear time-

invariant model for the observed fMRI response ([1], [2], [4]), this work provided an 

estimate of the hemodynamic brain response both on a regional and on an individual 

voxel level, as well as provided an estimate of the input signal that excited the brain's 

response. This was achieved using the Eigenvector-Based Algorithm for Multichannel 

Blind Deconvolution (EVAM) ([5], [6]) combined with Independent Component 

Analysis (ICA) used for preprocessing [23], 

Thus, in contrast to previous literature, the brain's excitation signal was not modeled 

according to the experimental setup, but was instead treated as an unknown in the blind 

deconvolution problem. The resulting estimate of the input signal produced by the 

proposed method could truly help eliminate the issues arising from inaccurately modeling 

the excitation signal. It could also prove to be a valuable insight into the actual signal 

that triggered the brain during the experiment, and not the ideal signal that should have 

triggered it based on experimental observations. 

In this work, no physiological models or prior assumptions regarding the shape or order 

of the brain's response were made. When compared to non-blind identification 

algorithms traditionally used in the literature, the results show a significant improvement 
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as the shape of the hemodynamic brain response conforms with current medical 

understandings. 

Furthermore, the estimated hemodynamic brain response was used as a basis to determine 

active and inactive voxels. Two clustering methods, K-Means Clustering and 

Correlation-Based Clustering, were compared, and correlation-Based Clustering was 

found to be superior and was thus used to spatially map the active and inactive voxels in 

each brain region. Spatial maps of important brain regions yielded promising results 

where spatial sparseness was not characteristic of the images, and regions of 

activity/inactivity were closely clustered. Finally, a preliminary comparison between a 

healthy subject and a subject inflicted with Parkinson's disease yielded promising 

differences, especially in the left primary motor cortex where the diseased patient showed 

little activation. Although this observation cannot be generalized at this stage, it 

interestingly conforms with current medical hypotheses regarding the cause of the disease 

symptoms, and these promising results are most certainly an encouraging step to proceed 

with further research in this area. 

Future Considerations 

Most certainly the next most important step is applying the proposed algorithm on more 

fMRI data sets to compare the responses of healthy subjects and patients suffering from 

Parkinson's disease. This will allow for meaningful medical conclusions to be made as 

the trend between the individual comparisons is observed. Other areas for future 
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consideration include considering other data reduction methods that are more efficient 

than Principal Component Analysis. Other more efficient clustering methods may also be 

analyzed. 
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