
INCREMENTAL PLACEMENT FOR
FIELD-PROGRAMMABLE GATE ARRAYS

by

David Leong

B . A . S c , University of British Columbia, 2004

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF
T H E R E Q U I R E M E N T S FOR T H E D E G R E E OF

M A S T E R OF A P P L I E D S C I E N C E

in

T H E F A C U L T Y OF G R A D U A T E STUDIES

(Electrical and Computer Engineering)

UNIVERSITY OF BRITISH COLUMBIA
November, 2006

© David Leong, 2006

Abstract

As the logic capacity of FPGAs continues to increase with deep submicron technology,

performing a full recompilation for small iterative changes in a large design is an

extremely time-consuming and costly process. To address this issue, this thesis presents a

new incremental placement algorithm for F P G A s named "iPlace" that significantly

reduces the time required for recompilation. The iPlace algorithm is based on shifting,

compaction, and annealing. Key ideas from the algorithm include a placement super-grid

that is larger than the physical size of the F P G A . The super-grid allows insertion of

additional C L B s into areas with no free locations by CPU-efficient shifting. This is

followed by a compaction scheme to re-legalize C L B s that are shifted to illegal locations

outside of the physical size of the F P G A . The algorithm ends with a low-temperature

anneal to improve quality. This algorithm is capable of handling multiple design changes

across large regions of a F P G A . This is especially useful for hierarchical designs where

sub-circuits are re-used multiple times. If one such sub-circuit is modified, iPlace can

quickly produce a high quality incremental placement solution. For a single region of

design change, we found that iPlace is 34 to 260 times faster than the academic tool

Versatile Place and Route (VPR) in default mode. Compared to VPR ' s reduced-quality

"-fast" placement option, iPlace is 3 to 28 times faster with equivalent quality. For multiple

regions of design changes, iPlace is still 50-70 times faster compared to V P R in default

mode when up to 2/3 of the C L B s are modified; Compared to the "-fast" placement option,

iPlace is still 5-8 times faster. We believe that iPlace is the first academically available

incremental placement algorithm capable of handling significant changes to a netlist for

very large circuits.

ii

I

Table of Contents

Abstract i i

Table of Contents in

List of Tables v

List of Figures vi i i

Glossary x

Acknowledgements xi

Dedication.... x i i

1. Introduction 1
1.1. Contributions 2
1.2. Thesis Outline : 4

2. Background 5
2.1. F P G A Architecture 5
2.2. F P G A C A D Flow 10

2.2.1. Technology Mapping.... ... 11
2.2.2. Clustering 1.: 12
2.2.3. Placement 13
2.2.4. Routing 16

2.3. Incremental Placement Techniques 17
-s 2.4. Fast Placement Techniques...... 23

.3. iPlace Algorithm 25
3.1. Initial placement 26

1 3.2. Floor-planning ; 27
3.3. Expansion 28
3.4. Compaction I 32
3.5. Refinement '. 35
3.6. Additional Tuning Considerations : 38
3.7. Algorithm Conclusions : 40
3.8. Algorithm Limitations 40

4. Results : 43
4.1. Experimental Goals 43
4.2. Experimental Baseline 45
4.3. Single-Region Synthetic Benchmarks 48

4.3.1. Benchmark Formulation 48
4.3.2. Runtime Results 50
4.3.3. , Channel Width Results 52

iii

4.3.4. Critical Path Results 53
4.3.5. Placement Stability Results , 54
4.3.6. Conclusions for Synthetic Benchmarks ?. 55

4.4. Single-Region Re-synthesis Benchmarks 56
4.4.1. Benchmark Formulation 56
4.4.2. Runtime Results 57
4.4.3. Channel Width Results.... . . .59
4.4.4. Critical Path Results 60
4.4.5. Placement Stability Results 61
4.4.6. Conclusions for Single-Region Re-synthesis Benchmarks 62

4.5. Multi-Region Re-synthesis Benchmarks 63
4.5.1. Benchmark Formulation 63
4.5.2. Runtime Results 65
4.5.3. Channel Width Results 66
4.5.4. Critical Path Results 67
4.5.5. Conclusions for Multi-Region Re-synthesis, Benchmarks68

4.6. Experimental Conclusions : 69

5. Qualitative comparisons '• -r- 72

6. Conclusions and Future Work 74
6.1. Future work - • • • 76

6.1.1. Support for Macro Blocks 76
6.1.2. Support for Carry Chains 76
6.1.3. Smart Shifting... ..: 77
6.1.4. Analytical Placement Refinement Stage 77
6.1.5. Integration with Commercial tools 77
6.1.6. Incremental Routing 78

B I B L I O G R A P H Y 79

Appendix A : Single-Region Synthetic Benchmark Results 84

Appendix B : Single-Region Physical Re-Synthesis Benchmark Results 103

Appendix C: Multi-Region Physical Re-Synthesis Benchmark Results 107

List of Tables

Table 1 Altera Stratix Family of FPGAs : 9

Table 2 Synthetic 2.5 Benchmark Characteristics 48

Table 3 Synthetic 5 Benchmark Characteristics 49

Table 4 Synthetic 10 Benchmark Characteristics 49

Table 5 Synthetic 2.5d Benchmark Characteristics 49

Table 6 Synthetic 5d Benchmark Characteristics 49

Table 7 Runtime Speedup of iPlace relative to V P R default settings 50

Table 8 Runtime Speedup of iPlace relative to V P R "-fast" settings 50

Table 9 Runtime Speedup of iPlace relative to V P R "-superfast" settings 51

Table 10 Average Displacement Results for Synthetic Benchmark Circuits, Baseline V P R
Default /54

Table 11 Average Displacement Results for Synthetic Benchmark Circuits, iPlace 54

Table 12 PR 2.5 and 5 Benchmark Statistics 56

Table 13 PR 10 and 15 Benchmark Statistics 56

Table 14 Runtime Speedup of iPlace relative to V P R default settings 57

Table 15 Runtime Speedup of iPlace relative to V P R "-fast" settings : 57

Table 16 Runtime Speedup of iPlace relative to V P R "-superfast"(settings 58

Table 17 Average Displacement Results from PR Benchmark Circuits, V P R "Default". 61
r

Table 1.8 Average Displacement Results from PR Benchmark Circuits, iPlace 61

Table 19 Mult i Region 50 and 40 Benchmark Characteristics 63

Table 20 Mult i Region 30 and 20 Benchmark Characteristics 63

Table 21 Mult i Region 10 Benchmark Characteristics 63

Table 22 Runtime Speedup of iPlace relative to V P R default settings 65

Table 23 Runtime Speedup of iPlace relative to V P R "-fast" settings 65

Table 24 Runtime Speedup of iPlace relative to V P R "-superfast" settings 65

Table 25 Mult i Region Run-time Speedup Summary 69

Table 26 Overall Run-time Speedup Summary 75

Table 27 Single-Region Synthetic Benchmark Circuit Statistic- , 84

Table 28 Single-Region Synthetic Benchmark Circuit Statistic Cont' 85

Table 29 Single-Region Synthetic Benchmark Placement Results 86

Table 30 Single-Region Synthetic Benchmark Placement Results cont' 87

Table 31 Single-Region Synthetic Benchmark Placement Results cont' 88

Table 32 Single-Region Synthetic Benchmark Placement Results cont' 89

Table 33 Relative performance V P R "-default" versus iPlace 90

Table 34 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-default" versus iPlace Cont' 91

Table 35 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-default" versus iPlace Cont' : 92

Table 36 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-default" versus iPlace Cont' . 93

Table 37 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-fast" versus iPlace 94

Table 38 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-fast" versus iPlace Cont' , 95

Table 39 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-fast" versus iPlace Cont' .'. 96

Table 40 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-fast" versus iPlace Cont' 97

Table 41 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-superfast" versus iPlace 98

Table 42 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-superfast" versus iPlace Cont' 99

Table 43 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-superfast" versus iPlace Cont' 100

Table 44 Single-Region Synthetic Benchmark Placement Results: Relative performance
V P R "-superfast" versus iPlace Cont' 101

vi

Table 45 Single-Region Synthetic Benchmark Placement Results: Placement Stability for
V P R Baseline 102

Table 46 Single-Region Synthetic Benchmark Placement Results: Placement Stability for
iPlace ; 102

Table 47 Single-Region Physical Resynthesis Benchmark iPlace Placement Results... 103

Table 48 Single-Region Physical Resynthesis Benchmark Relative Performance, V P R
default versus iPlace 104

Table 49 Single-Region Physical Resynthesis Benchmark Relative Performance, V P R .
"-fast"versus iPlace 105

Table 50 Single-Region Physical Resynthesis Benchmark Relative Performance, V P R
"-super-fast" versus iPlace 106

Table 51 Mult i Region Physical Re-Synthesis Benchmark iPlace Placement Results... 107

Table 52 Mult i Region Physical Re-Synthesis Benchmark Relative Performance, V P R
default versus iPlace 108

Table 53 Mult i Region Physical Re-Synthesis Benchmark Relative Performance, V P R
"-fast" versus iPlace 109

Table 54 Mult i Region Physical Re-Synthesis Benchmark Relative Performance, V P R
"-super-fast" versus iPlace 110

vii

List of Figures

Figure 1 Island Style F P G A , 5

Figure 2 B L E and C L B . 6

Figure 3 F P G A Routing Architecture 8

Figure 4 F P G A C A D Flow 10

Figure 5 Simulated Annealing Algorithm 14

Figure 6 Initial Layout 26

Figure 7 Super-grid Expansion Pseudocode... 28

,• Figure 8 Super Grid Expansion 29

Figure 9 Multi-region floorplan handling 30

Figure 10 Compaction Regions 32

1 Figure 11 Compaction Pseudocode 33

Figure 12 Supergrid Compaction Moves 34

Figure 13 Final Legalized Solution 34

Figure 14 Channel Width tradeoff versus Alpha and Number of Swaps (S) 36

Figure 15 Critical Path tradeoff versus Alpha and Number of Swaps (S) .37

Figure 16 Channel Width versus Run-time Trade off while tuning iPlace.. 38

Figure 17 Critical Path versus Run-time Trade off while tuning iPlace 38

Figure 18 Stratix II F P G A layout 41

Figure 19 Handling Carry chains... 42

Figure 20: Minimum Routable C W versus Run Time for C L M A , Synthetic 52

Figure 21: Relaxed Critical Path versus Run Time for C L M A , Synthetic 53

Figure 22 M i n . Routable Channel Width vs. Run Time for C L M A , PR 59

Figure 23 Relaxed Critical Path versus Run Time for C L M A , PR 60

Figure 24 Minimum Routable C W versus Run Time for StdevOlO, M R 66

Figure 25 Relaxed Critical Path versus Runtime for StdevOlO, M R 67

\

ix

Glossary

Application Specific
Integrated Circuit (ASIC):

Basic Logic Element (BLE):

Computer Aided Design
(CAD) Tools:

Clustered Logic Blocks
(CLB) :

Field Programmable Gate
Array (FPGA):

iPlace:

A n integrated circuit designed for a specific purpose

Basic logic element of an F P G A that consists of a
K-input lookup table and a flip-flop.,

A set of software tools for designing systems,
semiconductor systems in particular

Logic Block of an F P G A , comprised of N B L E s
clustered together with fast local interconnect

A n integrated circuit containing programmable logic
elements and programmable routing. A n F P G A can be
programmed to implement any digital circuit

A n incremental placement tool designed for F P G A C A D
flows

Interconnect Resource
Aware Clustering (iRAC):

Look Up Table (LUT):

MicroElectronics
Corporation of North
Carolina (M C N C) Circuits:

F P G A clustering algorithm [25]

A memory cell capable of implementing any K-input, 1
output logic function.

A standard set of benchmark circuits used in the F P G A
academic community [66]

Minimum Routable Channel
Width (MRCW):

The minimum number of routing tracks per channel a
F P G A must have to successfully route a particular
circuit

T-V Pack:

Un/Do Pack:

F P G A clustering algorithm [8]

A n F P G A channel width reduction tool that can target
hard channel width constraints to achieve routing
closure [1]

Versatile Place and Route
(VPR):

A n academic placement and routing tool for FPGAs [32]

J x

Acknowledgements

First of all, J would like to thank my graduate supervisor, Dr. Guy Lemieux for having me

as his student. Even though I had a full time job aside from this Masters degree, he was

patient and supportive throughout the last two years. I am especially grateful for the times

Dr. Lemieux was willing to stay late to accommodate my working schedule. Without his

brilliant ideas and meticulous screening of my work, I could not have come this far.

I would also like to thank Marvin Tom for getting me started in the field of F P G A research.

Without his guidance and help, I would not have been able to quickly learn the intricate

details of conducting research. It was a pleasure to work with Marvin on Un/DoPack and

the I C C A D paper.

To my best friends, Derek, Patrick and Stephen1, thank you for the great times we have had

since elementary school. M y life would be very boring without your company.

Finally, I would like to thank Westgrid for providing the computational resources used to

perform the simulations for this thesis. The amount of computation required would not

have been possible without the use of the U B C Glacier cluster.2

1 In alphabetical order =) -
2 WestGrid is funded in part by the Canada Foundation for Innovation, Alberta

Innovation and Science, B C Advanced Education and the participating research
institutions. WestGrid equipment is provided by I B M , Hewlett Packard and SGI

Dedication

-To my family, thank you for all your support, patience and love during the last few

years.

xii

1. Introduction

Field Programmable Gate Arrays (FPGAs) are a specialized type custom integrated circuit.

FPGAs are capable of implementing any digital circuitry through the use of

reprogrammable look up tables and routing fabric. Compared to ASICs, F P GAs offer a

low cost alterative to designing digital circuitry. FPGAs allow designers to quickly

prototype and test a circuit on hardware, without the need for expensive mask and foundry

costs associated with ASIC designs. However, there are drawbacks of using F P GAs

compared to ASICs. ASICs offer much higher chip density, faster clock speeds as well as

lower power usage. The tradeoffs associated with ASICs and FPGAs depend on the sales

volume of the final product. ASICs are more suited to large volume, high performance

devices such as microprocessors. F P GAs on the other hand are more suitable for

medium-to-small volume devices or devices that require fast time to market.

As the logic capacity of FPGAs increases with deep submicron technology, the run time

required to compile and fit a high level design onto a target F P G A increases significantly.

Recompiling the design from scratch for small changes or localized improvements is a

time-consuming operation. For today's largest FPGAs, a full recompilation often requires

several hours to execute the entire F P G A C A D flow.

Often only a small section of the circuit is modified, thus raising the need for incremental

algorithms that can speed up the compilation process. The need for incremental algorithms

extends beyond small design changes. For circuits designed using design hierarchy,

multiple sub-circuits can be modified concurrently by several designers. The need for

incremental C A D techniques that can quickly integrate multiple changes together are
f • 1

necessary for fast turn around time. In addition, sub-circuits can be re-used multiple times

in a design. Modifications to one such sub-circuit require changes to multiple regions

across the F P G A . Incremental techniques must be able to handle the use cases outlined

above. In addition, incremental techniques must be scalable for small-to-large

modifications to ensure the most efficient use of development time. The resulting

incremental compilation for such use cases should be as high quality as compilation from

scratch.

1.1. Contributions

This thesis presents an incremental placement algorithm named "iPlace" to be used as part

of an incremental C A D flow. Our approach uses existing academic tools as a foundation

and extends them for incremental placement. Results from this work appeared in [1]. A

paper describing the algorithm details has been submitted for review [2].

The iPlace algorithm starts with an initial high-quality placement of a "before" circuit prior

to modification. For this, we use the default V P R placement algorithm. The "before" state

is^used as a reference solution for incremental placement. Next, iPlace finds a new

placement for the modified "after" circuit state. The "after" state is the new circuit to be

incrementally placed using iPlace. The iPlace algorithm produces the new placement

solution through four phases: (1) use the "before" state to produce an initial placement of

the unmodified C L B s , (2) insert modified C L B s by shifting into a super-grid, (3) compact

the super-grid by shifting to re-legalize placement, and (4) refine with a low-temperature

anneal. The super-grid is a placement grid that is extended beyond the bounds of the initial

F P G A device.

2

Three key ideas are present in the iPlace algorithm. The first idea is the use of

floor-planning constructs to constrain the initial placement of modified C L B s close to the

original placement "hole" left by the removal of some C L B s from the "before" state.

These floor-planning constraints are continuously modified as the algorithm executes. The

second idea is a "placement super-grid". The super-grid expands the entire placement

region as more C L B s are added than the "hole" permits. The third idea is the use of partial

design shifting during the expansion and compaction phases of the algorithm. Shifting

partial rows/columns of C L B s is much more CPU-efficient than relying upon individual

moves used in annealing-based approaches, particularly because annealing must also

measure the cost of each L E move before deciding. After the shifting, a low temperature

simulated annealing run is performed to improve the solution quality. This annealing step

is the slowest step. These steps combine to produce a fast and high quality incremental

placement algorithm

To measure the performance of the incremental placement algorithm, we developed three

sets of benchmarks. Each individual benchmark circuit has a "before" and "after" state.

The first set of benchmarks approximate incremental design changes where subregions of

a circuit are significantly modified in logic and structure but other regions are untouched.

This set is created using a synthetic circuit generator to mutate a selected subregion of the

circuit. These clones are re-stitched into the original circuit [3] [4]. The second benchmark

set approximates a physical resynthesis flow where the circuit is logically identical, but

functionally-equivalent changes are made within one local region. The second benchmark

set is automatically produced from a physical resynthesis C A D flow [1]. The third

benchmark set is a variation of the second, but scaled to include multiple regions of design

changes. This set, also produced using [1] is used to determine the ability of iPlace in
3

\

handling multiple design changes across large regions of the chip.

1.2. Thesis Outline

The remainder of this thesis is organized as follows. First, Chapter 2 wi l l present

background information on FPGAs and prior work related to incremental placement. Next,

Chapter 3 wil l describe the iPlace algorithm in detail. Chapter 4 wi l l present the results of

benchmarking iPlace with the three benchmark sets. Chapter 5 presents a qualitative

comparison of iPlace against existing fast and incremental approaches. Finally, Chapter 6

summarizes the key contributes and results of iPlace.

2. Background

This chapter presents the background information related to FPGAs and incremental

placement research. First, the hardware architecture and makeup of F P G A s wi l l be

presented. Second, the software C A D flow related to compiling designs for F P GAs wi l l be

discussed. Finally a summary of prior work related to incremental placement wi l l be

presented.

2.1. FPGA Architecture

•

•

ID 3 IS

•
CLB CL5 C L B CL5 I

C L B CLB CLB CLB [

CLB CLB C L B CLB [

1 CLB CLB CLB CLB [

•

•

•
•
•

Figure 1 Island Style FPGA [5]

Field Programmable Gate Arrays (FPGAs) are Very Large Scale Integrated (VLSI) circuits

that are capable of implementing any user designed digital circuit. F P G A s offer this
• 5

flexibility of through the use of reconfigurable Logic Elements (LE). The typical layout of

an F P G A circuit used by commercial devices such as Altera's Stratix [6] and Xil inx 's

Virtix [7] is shown in Figure 1. The layout style of the F P G A shown in Figure 1 is called an

Island Style Architecture. The Island Style F P G A consists of clusters of LEs called

Configurable Logic Blocks (CLB) . The C L B s are laid out in a rectangular array

surrounded by configurable routing wires in both the vertical and horizontal directions.

The Array Size of an F P G A is measured in terms of the number of C L B s spanning

horizontally and vertically. The name "Island" architecture comes from the fact that C L B s

"islands" are surrounded by a sea of configurable wires. Around the periphery of the chip

are Input/Output (10) pads to connect the F P G A to the rest a circuit design.

Logic Element and Clustered Logic Blocks (LE and CLB)

Figure 2 B L E and C L B [5]

The most basic element of a F P G A is the Basic Logic Element (B L E or LE) . The logic

element consists of a K-input look up table, a flip-flop and a multiplexer (Figure 2). The

k-input L U T is capable of implementing any k-input, 1 output combinational logic

function. A L U T is made of 2 K configuration bits that can be programmed to implement the

desired logic function. The flip-flop provides synchronous output for the logic function

6

Cluster

-H ULI.

Interconnect

PLC

implemented by the L U T . Finally, the multiplexer allows the selection of the

combinational or synchronous output for the B L E .

From prior research [8], it was shown that it is more efficient to pack multiple LEs into a

cluster called a Configurable Logic Block (CLB) . The structure of a C L B is shown in

Figure 2. Each cluster contains N LEs. The number N is typically 4 3 , 8 4, 105 or 166 logic

elements [6] [7]. Each L E within the cluster is interconnected to each other with fast local

interconnect. The number of inputs to a C L B I, is smaller than the maximum K * N because

LEs can share common inputs.The advantages of packing multiple LEs into a cluster

include reducing delay, reducing the amount of interconnect required, more dense F P G A

designs and improved C A D compilation runtime.

3 X i l inx Virtex
4 X i l inx Virtex II
5 Altera Cyclone, Altera Stratix
6 Altera Cyclone II

Routing Architecture

Connection
BSock

l'iii-T,i-rr\ihte'
Connection

Switch

.. :

Segment

Figure 3 FPGA Routing Architecture [5]

The second component that makes up an F P G A is the routing architecture. The routing

architecture is responsible for connecting the reconfigurable C L B s together to form the

overall design. The routing architecture is comprised of three components: wires,%switch

blocks and connection blocks [9]. A simplified view of the routing architecture is shown in

Figure 3. First, wires are the core of the routing structure. Wires fi l l the vertical and

horizontal channels in between rows/columns of C L B s . In commercial FPGAs , multiple

length wires spanning 4, 8, 16 and 24 or greater number of C L B s [6] are provided for the

different routing requirements of each net. Shorter wires are for local interconnection,

whereas longer wires are designed to connect C L B s far apart with less delay. Wires can be

can designed to carry signals bi-directionally or uni-directionally, although the latter has

been shown to be faster and consume less area in recent research [10]. The second

component is the switch block. The switch block connects vertical and horizontal wires so

that signals can switch directions or extend the length of a wire past the length of a segment.

The third component is the connection block. The connection block connects C L B s to their

adjacent wires. In bidirectional interconnect, the switch and connection blocks are often

fabricated using tri-state buffers or pass transistors, and controlled using sram

programming bits. In unidirection interconnect, the switch and connection blocks are

fabricated with multiplexers, tri-state buffers and controlled using sram. The routing

architecture is the predominant contributor to the F P G A die size, speed and power

requirements.

Commercial devices:

Part EP1S10 EP1S20 EP1S25 EP1S30 EP1S40 EP1S60 EP1S80
Logic Capacity 10,570 18,460 25,660 32,470 41,250 57,120 79,040
Channel Width 160 , 160 160 160 160 160 160

Table 1 Altera Stratix Family of FPGAs [6]

Commercial devices measure the logic capacity of a F P G A in terms of the number of the

number of LEs . The routing capacity is measured in terms of the number of routable wire

segments passing between adjacent C L B s . This fixed routing capacity is called the

Channel Width of a device. Commercial devices also contain multiplier and memory

blocks that are not within the scope of this work. Commercial devices are usually offered

as "families" of F P G A s , where the channel width remains the same within a family, but the

array size is increased to offer larger logic capacities for different family members. A n

example of an F P G A family from Altera is presented in Table 1. The latest F P G A s offered

by Altera and Xi l inx have logic capacities exceeding 200,000 LEs. [6][7][11]

9

2.2. FPGA CAD Flow

HDL Circuit

i
Synthesis

F P G A C A D
F L O W

r Technology
Mapping

f

I
Routing

Clustering

Placement

FPGA Programming bit stream

Figure 4 FPGA CAD Flow

To develop a circuit for use on a F P G A , designers use high level languages such as V H D L

or Verilog to describe the circuit behavior. A multi-stepped C A D flow is required to

compile the circuit description from the high level language description to programming

the LUTs and switches of the F P G A . This C A D flow consists of five steps. The first step is

. " ' . 10

synthesis. In this step, the circuit description is compiled from the high level language to a

network of Boolean equations and flip-flops. The synthesis step is common to both ASIC

and F P G A development. The F P G A specific portion of the C A D flow consists of

technology mapping, clustering, placement and finally routing. In this section, each step of

the F P G A C A D flow wil l be presented.

2.2.1. Technology Mapping

The first step in the F P G A C A D flow is technology mapping. In this step, the Boolean

network is mapped to the look-up table size of the F P G A . The goal of technology mapping

is to use as few LEs as possible to minimize logic usage and circuit delay. Technology

mapping algorithms minimize the delay of a circuit by minimizing the logic depth, which

is the longest path of a circuit. Several technology mapping algorithms are presented in

[12][13][14][15][17][18][19][20][21].

The most notable technology mapping algorithm for F P G A is FlowMap [12] [13]. The

FlowMap algorithm was revolutionary as the algorithm is able to produce a depth optimal

solution in polynomial complexity time. This algorithm is based on network flow

algorithms using the max-flow-min-cut theorem. The results reported in [12] shows that

FlowMap produces better critical path and area results compared to other technology

mapping algorithms at the time. Follow-ups to the FlowMap algorithm include CutMap

[14] [15] and D A O M a p [16] . CutMap improved on FlowMap by reducing logic

duplication. Logic duplication occurs during the FlowMap algorithm when a node is

encapsulated (duplicated) by multiple LUTs in the technology mapping solution, CutMap

is able to reduce the number of logic elements required by 20% compared to FlowMap

while maintaining depth-optimality in the solution.
11

2.2.2. Clustering

The second step in the F P G A C A D flow is clustering. In this step, the technology mapped

K-input LUTs are packed clusters of size N defined by the F P G A architecture. The goal of

clustering is to maximize utilization of the cluster resources, minimize delay and to reduce

the amount of interconnect required between clusters. Clustering algorithms can be

classified into three categories. The most common algorithms are bottom-up

[8][22] [23] [24][25]. Bottom up algorithms greedily builds each cluster by selecting a seed

L E and growing by individual LEs. The second type of clustering algorithm is top-down

[26] [27]. Top-down algorithms start with the entire technology mapped circuit, and

recursively partitions the circuit into bins until each bin reaches the cluster size. The final

type of clustering algorithm is depth optimal clustering [28] [29] [30]. Depth optimal

clustering minimizes delay in exchange for more logic use due to duplication.

Bottom up algorithms are the most common category employed for FPGAs , so the bottom

up approach wil l be discussed in this section. Bottom up algorithms begin each cluster by

selecting a seed L E based on an algorithm specific criterion. The algorithm then iteratively

selects the next most attractive L E using an attraction function to add to the cluster. Once a

cluster is full, a new seed is chosen for a new cluster. The process is repeated again until all

LEs are clustered.

Criticality(b) = \- S l a ° k (b) (1)
max_slack

. ,-, s - • , ^ ^ ^ nets(b)n nets(c)
Attractwn(b,c) = a*crit(c) + (l-a)* — — (2)

G

A widely cited academic F P G A bottom-up clustering algorithm is T-VPack [8]. T-VPack is

a timing aware algorithm that aims to minimize both the delay and the number of nets to
12

route. The seed for each cluster is chosen as the most timing critical L E . The equation to

calculate the criticality of an L E "b" is given in (1). Additional LEs are added to the cluster

using the attraction function shown in (2). Equation (2) shows that the attraction of an

element c to cluster b is a factor combining the criticality of the L E and the normalized 7

number of nets common with the current cluster contents. The weighting factor a balances

the importance of timing versus the number of nets absorbed into the cluster. The factor a

was experimentally determined in [8] to be 0.75.

Another bottom-up clustering algorithm is i R A C [25]. i R A C is a greedy clustering

algorithm that aims to minimize the number of nets to route for the computed clustering

solution. The premise of the algorithm is to encapsulate as many nets as possible within a

cluster, thus minimizing the number of nets required to route between clusters. i R A C also

includes a cluster input limiting component computed based on the Rent parameter [31] of

the cluster. The clustering algorithm used for this work is an i R A C replica produced for [1].

The i R A C replica excluded the input limiting component due to the limited improvement it

offered. This algorithm was selected for use with this thesis because it produces the lowest

routed channel widths and delay performance compared to TVPack [25].

2.2.3. Placement

The third step in the F P G A C A D flow is placement. In this step, the clustered LEs are

mapped to physical C L B locations on the F P G A . The goal of placement is to minimize

both the routing delays of regular nets and the delay of the critical path. The placement

engine must also be congestion aware to avoid over-usage of the routing resource, which

The number of nets in common is normalized to a constant G
13

could lead to an un-routable solution. There are. three general types of placement

algorithms. First, Simulated Annealing (SA) algorithms [5][32][33][34][35] are the most

common and based on a hill climbing approach. Second, Analytical Placement algorithms

[36][37] [38][39] solve the placement problem by using systems of equations. Analytical

Placement algorithms are good at finding approximate locations for C L B s , but due to the

discretization effects of mapping to an F P G A array, they often result in overlaps that need

to be removed through additional re-legalization steps. Finally, Min-Cut algorithms

[40][41][42] produce placement solutions using partitioning techniques. Simulated

Annealing algorithms are the most common in academic research and wi l l be presented in

more detail in this section.

1 Random_Placement();
2 temp = lnitial_Temperature();
3 Riimit = nx;
4
5 While(ExitConditionSatisfied() == false)
6 for(int i=0; i<inner_num; ++I)
7 move = Generate_Move();
8 AC = Calculate_Cost_Delta(move);
9 float r = rand(0,1);
10 if(A C < 0)
11 AcceptMove(move);
12 else if(r < e _ A C / T) (

13 AcceptMove(move);
14 end for
15 temp = UpdateTemperature(); //1 = a*t
16 riimit = UpdateRange();
17 Update_Net_Criticality();
18 end while

Figure 5 Simulated Annealing Algorithm

V P R is the academic F P G A C A D tool most' commonly used for F P G A research. The work

14

presented in this thesis is developed by extending the V P R simulated annealing placement

algorithm for incremental placement. V P R features an adaptive temperature cooling

schedule and range limiting techniques to produce excellent placement solutions.

The V P R simulated annealing algorithm is presented in Figure 5. The first step in the

placement process is to randomly place all C L B s onto the placement array. Next, the initial

temperature is determined by performing a number of test swaps equal to the number of

C L B s . The initial temperature for V P R is set as 20 times the standard deviation of the cost

evaluated during the test swaps. The initial range limit is set as the length or width of the

o
device .

AC = Z A T i m i " g - C o s t

 + , q . A) . A B B . C p s t (3)

Previous_Timing_Cost PreviousJBB_Cost

timing_cost = ^ delay{iy j) * crit(i, j)CE (4)
Vijecircuit

\fnets ,

bb_cost= + (5)
1 i=l

The simulated annealing algorithm works by performing inner_num number of swaps at

each temperature setting. For each swap, a random move is proposed by swapping the

placement position of two C L B s . If the swap results in a reduction in the placement cost,

the swap is accepted. If swap results in an increase in cost, a probabilistic acceptance is

used based on the e'AC/T where A C is the change in cost according to (3) and T is the current

temperature. Accepting bad moves is required for hil l climbing to avoid local minimums in

the cost function. Equation (3) is composed of 2 terms, a timing cost and a bounding box

cost. The factor X is a weighting factor to balance the importance of these costs. Each term

Assuming a square array. Commercial FPGAs are rectangular.
15

file:///fnets

is normalized to the total cost from the previous iteration. The timing cost shown in

equation (4) is a sum of the delay*net criticality product for each net. The net criticality is

defined as (1). The bounding box cost is the sum of the Manhattan distance for each net.

After inner_num number swaps are performed at each temperature range, the temperature

and range limit factors are updated. The temperature is degraded using an update factor a.

As the temperature is lowered during the annealing process, the e'AC/Tterm approaches 0 so

that fewer bad swaps are accepted for hill climbing. Both a and the range limit are

adaptively adjusted to keep the swap acceptance rate at -44%. The 44% acceptance rate

was shown to be the optimal hill climbing factor in [43].

0.005*cur cost
t< = (6)

num _ nets

The algorithm terminates when the exit criterion is met. The equation for calculating the

exit criteria in V P R is presented in (6)

2.2.4. Routing

The final step in the F P G A C A D flow is routing. In this step, routing resources are

assigned for each net of the circuit to connect the logic elements together based on the C L B

placement solution from the placement stage. The goal of routing is to minimize the delay

of the circuit and to avoid congestion in the routing resources. Routing algorithms can be

classified into two categories. First, two-step routers [44] [45][46][47] [48] break down the

routing process into two steps: global routing and detail routing. Second, single step

global-detail routers [49][50][51][52] perform both the global and detail routing together

as a single step. In global routing, the input-output pins and the routing channels are

assigned to a signal. In detail routing, each signal is assigned to specific routing track

16

within each channel. Two-step routers are used for A S I C designs because of routing

flexibilities. Single step global-detail routers are used for F P G A s due to the limited and

constrained routing resource architecture.

The academic C A D tool V P R [5][32] features a two step F P G A router using the

PathFinder routing algorithm [50]. PathFinder is an iterative routing algorithm based on

cost sharing and track negotiations. During the initial routing iteration, all nets are routed

via the lowest cost route. This produces overuse in popular tracks where multiple signals

are assigned to the same track, which is illegal for a routing solution. For each iteration, all

nets are ripped up and rerouted. Iteratively, the cost of the overused wire segments is

increased so that nets are forced to evaluate and use different routes wherever possible.

The algorithm terminates when there is no more overuse, forming a legal solution.

Cost(i) = Crit(i)*delay(i)+(l-Crit(i))*b(i)*h(i)*p(i) (7)

The V P R routing cost function is shown in (7). The cost function to route each net is based

on a combination of two terms. The first term represents the Elmore delay of the wire

segment. The second term is based on the base cost b(n), history cost h(n) and the present

cost p(n). The history cost represents a history of how congested a wire segment has been.

The present cost represents the present cost to use a wire segment. The present cost is

increased as the algorithm progresses to discourage over usage of wires. The weighting of

each term is dependent on the criticality of the net calculated using (1). Nets on the critical

path wi l l have a criticality factor close to 1. Based on (7), the critical path net wi l l be routed

on the path with lowest delay.

2.3. Incremental Placement Techniques

In a traditional F P G A "full compilation" process, the entire C A D flow must be executed i f
17

any changes are made to a circuit. To speed up this process, our flow takes an incremental

approach: only the changes to the netlist are propagated through clustering and placement,

and a full route is done at the end. For both incremental clustering and incremental

placement, a "reference solution" computed from the previous compilation is used to

identify changes and reduce the amount of new work. This section wil l briefly describe

both of these steps, but the focus is on incremental placement.

Incremental clustering initially starts with the previous list of C L B s , a list of unmodified

C L B s , and a list of unclustered logic elements. The unmodified C L B s are the same as

before (they contain the exact same logic elements). In contrast, modified C L B s arise

because some logic elements were deleted by a user logic change. Modified C L B s are

unclustered into its constituent LEs, and these are added to the pool of new LEs that were

. added by the user logic change. ,

Incremental clustering proceeds as follows. The unmodified C L B s are kept as-is. Due to

their greedy nature, clustering algorithms such as TVPack [8] and i R A C [25] can easily

treat these unmodified C L B s as an intermediate solution and continue grouping the

unclustered logic elements into new C L B s . Since all flip-flop locations in the entire circuit

are known, incremental clustering can still identify critical paths and remain timing-driven.

Our implementation uses the i R A C replica, since it produces good timing results and

requires the lowest channel width for routing. The clustering tool then proceeds to form

new C L B s using the new LEs and LEs from unmodified C L B s

Incremental placement initially starts with the previous placement of C L B s , a list of

unmodified C L B s , a list of removed C L B s , and a list of new C L B s . In the event of multiple
18

changes9, the list of new C L B s (and removed CLBs) is divided into a number of sub-lists,

one for each change or each instance. Optionally, a rectangular floorplan constraint for

each change can be given. If none is provided, the bounding box for each "removed C L B

sub-list" is computed and applied as a floorplan constraint to the corresponding "new C L B

sub-list". i

Incremental placement proceeds as follows. The unmodified C L B s are re-placed in their

previous location to preserve "spatial locality", i.e., physical closeness to their connected

neighbours. For each "region" of change, the placement locations previously occupied by

the removed C L B s are now left empty, thus leaving white space for the new C L B s . For the

new C L B s , two cases must be considered. If there are fewer new C L B s , they all fit in the

white space left behind and placement is "trivial". The second case to consider is when the

new C L B s exceed the removed C L B s . Since there is insufficient room, unmodified C L B s

must be moved to make room or new C L B s wi l l be placed far away. This is the key

problem to solve for incremental placement. To maintain placement locality, most

incremental placement algorithms temporarily allow overlap, which is when multiple

C L B s occupy the same physical location. Overlap results in an illegal solution which must

be fixed through a lengthy re-legalization step. Instead, iPlace immediately shifts other

C L B s out of the way and continues. This is called expansion. By the end, C L B s are often

pushed past of the limits of the array, which is also illegal. iPlace then re-legalizes by

compacting: it forcibly shifts available whitespace along the edges to where it is needed,

thus making room for the illegal C L B s . Finally, this legal placement is refined through

annealing.

9 Due to component re-use, multiple instances of the same circuit are treated as multiple
changes.

19

Incremental placement algorithms have not been widely published. Cong and Sarrafzadeh

[53] give high level overviews of the problems associated with incremental C A D ,

including placement. They note two separate needs for incremental placement: to optimize

an existing good placement for a new metric, or for handling the addition and removal of

logic or nets. iPlace is designed for the latter situation.

Previously published algorithms for incremental placement in F P GAs include work by

Singh and Brown [54], Suaris et al [55] and Togawa et al [56]. Both [54] and [55] are

intended to be used with physical resynthesis to assist with timing closure, while [56] is a

congestion- driven approach. A comparative summary follows.

The Singh and Brown placer, ICP [54], is primarily focused on improving timing through

small netlist changes, such as retiming register moves. As a result, it operates on changes at

the logic element (LE) level. Initially, ICP allows all LEs to be assigned to their preferred

location, which may be illegal, for best timing performance. Then, it iteratively moves

each L E , using a negotiation similar to PathFinder, to legalize conflicts and reduce timing

and estimated wiring costs. It considers individual L E moves, and evaluates the cost of

each one. Since it considers only a small number of moves, it is about 8 times faster than

V P R . In contrast, iPlace is about 60 times faster than V P R because it operates at the C L B

level and does not evaluate individual move costs when resolving illegal placements.

Instead, iPlace presumes that shifting imposes a minimal cost penalty during legalization

and uses simulated annealing at the end to improve or recover lost quality.

Suaris et al present an incremental placer in a framework called IPR [55] which has very
20

similar goals and operation to ICR However, IPR uses quadratic placement to assign initial

placements, which also results in overlaps. Like ICP, IPR also performs individual L E

moves and evaluates the cost of each one during legalization - however, the IPR costs

appear to be entirely timing-driven. No run-time results were reported for IPR; hence it

cannot be directly compared to iPlace.

Togawa et al present a congestion-driven incremental placer [56] that shifts overlapping

individual LEs to reduce global routing capacity. It avoids increases in channel width for

up to 20% changed LEs . In contrast, we have observed that iPlace can tolerate changes to

2/3 of all C L B s without inflating channel width, critical path or wirelength.

Previous work on incremental placement for standard cells includes papers by Choy et al

[57], J. L i et al [58], and Z. L i et al [59]. The two algorithms in [57] insert one cell at a time

by computing the most desired location and the lowest-cost shift sequence of the nearest

empty cell. The approach in [58] eliminates overlap by shifting entire floorplan rectangles;

however, it assumes significant whitespace gaps between rectangles. The approach in [59]

inserts one cell at a time into optimal position, and each time it legalizes by solving an

integer programming problem that determines how to shift the fewest cells the least

distance. Both [57] and [59] are meant for very small netlist changes and would likely be

too slow for use within iPlace. If an original floorplan is available, [58] would be useful.

However, iPlace does not presume any floorplanning - it constructs its own floorplan

constraints using information from the changed elements. ,

The final type of incremental placement algorithms are commercial tools such as Altera's

Quartus II and Xil inx 's ISE. These tools also support incremental compilation. The tools
21

have an advertised speedup of 2-3 times for the entire F P G A C A D flow when comparing

an incremental compilation versus a full compilation. The details of the algorithms

employed by the commercial tools are proprietary and not known in detail.

The approaches taken by previous incremental algorithms all involve solving the problem

of overlaps. The algorithms start with an initial best but illegal placement, then iteratively

resolves the illegal locations using different schemes until a valid placement is produced.

In comparison, iPlace approaches the overlap problem in a novel manner. Instead of

allowing overlaps in the first place, a C P U efficient shifting scheme is used to shift entire

rows or columns of C L B s to create more white space for insertion. The shifting is followed

by a fast and tuned simulated annealing (VPR) run for optimization.

22

/

2.4. Fast Placement Techniques

In addition to incremental placement techniques, fast placement techniques can also be

considered for incremental placement. Fast placement techniques sacrifice quality in

exchange for faster run time. Several fast placement techniques by Hauck et al. [60],

Sankar et al. [61] and Tessier [62] evaluate different algorithms and tradeoffs for faster

placement.

Hauck et al. [60] presents several fast placement techniques including partitioning,

force-directed and simulated annealing algorithms. The techniques were evaluated by their

run time versus critical path quality tradeoff. The best quality results were achieved with

simulated annealing (VPR). To reduce run-time, the inner_num parameter was varied to

reduce the number of swaps. B y reducing the run-time, it was found that a 20 times speed

up resulted in a 2x increase in critical path. It was also found that a 2.5 times speedup had a

1.34x increase in the critical path. Force-directed placement techniques had similar

run-time trade offs as simulated annealing. In comparison to iPlace, iPlace is capable of

60x speedup with no quality degradation. The approach of reducing the inner_num

parameter to reduce run-time is common between [60] and iPlace.

Sankar et al. [61] presents a fast placement technique based on multi-level clustering and

fast simulated annealing refinement. The algorithm performs recursive bottom up

clustering to form clusters of C L B s . After each stage of clustering, each cluster is

internally placed constructively and refined using a retuned simulated annealing algorithm

(VPR). Although only wire-length results were presented, the tool produced better quality
)

results compared to V P R (non-timing driving) in "-fast" mode with similar run time.

23

Tessier [62] presents the Frontier fast placement system used in conjunction with

pre-fabricated macro blocks. The Frontier approach is similar to Sankar et al. where

clustering is used to group C L B s [macro blocks for Frontier] prior to simulated annealing

refinement. The Frontier system was designed to place groups of pre-placed C L B s as

macro blocks. The Frontier system has a reported 17x speedup compared to commercial

Xi l inx software.

In summary, fast placement techniques employ a variety of different methods to speed up

the run-time. One common attribute to all three algorithms is the use of a retuned, fast

simulated annealing (VPR) refinement scheme to improve quality. This approach is also

adopted by iPlace to refine the incremental placement solution after the expansion and

compaction phases. The run time of these fast algorithms are comparable to iPlace'. The

main difference is the quality of the placements produced. iPlace is able to produce

placement solutions as high quality as complete placement from scratch. In comparison,

the fast placers trade the decreased runtime with significantly reduced quality.

24

3. iPlace Algorithm

This chapter provides an in depth explanation of the iPlace algorithm. The iPlace

algorithm is a 4 step approach to incremental placement. The core idea of the placer is

based on spatial locality. If an element was previously placed at a particular location, then

it is very likely that it should be placed at the exact same location (or nearby) after the

circuit has been modified. A second paradigm employed by iPlace is simplicity. iPlace

avoids the use of heavy computation for the first three phases, and only uses limited

annealing to cleanup the final solution. The limited use of annealing or other

computational intensive algorithms is key to iPlace's performance. The four phases of

iPlace are as follows:

1. Initial Placement and Floorplanning
2. Super-grid Expansion Placement
3. Compaction (Re-legalization)
4. Refinement by Low Temperature Annealing

The iPlace algorithm is implemented in the V P R framework. Three inputs are required for

the incremental placement process. The first input is an initial placement from the "before"

circuit state. The second input is a floorplan or rectangular region identifying

approximately where to place the changed elements. The third input is the modified or

"after" circuit state. iPlace identifies which C L B s are modified and which are unmodified

by comparing the first and third input data.

25

3.1. Initial placement

10

10

10

10

10

10

10

dl

e1

10

10

a2

b2

c2

d2

e2

10

10

a3

b3

c3

d3

e3

10

a4

b4

f3 i :f4

10 10

10

a5

b5

e5

f5

10

10

a6 h o

b6

c6 h o

d6 ,10

e6j h o

f6 .0

10

Figure 6 Initial Layout

The first phase of iPlace is to provide an initial placement for all unmodified C L B s by

examining the placement solution of the "before" circuit state. This step is pictorially

shown in Figure 6. The labelled cells represent unmodified C L B s ; these are initially placed

in their previous placement locations to maintain spatial locality. The hashed cells

represent C L B s that have been modified. These are removed from the initial placement,

leaving holes to be filled in later by the modified C L B s .

26

3.2. Floor-planning

The holes left behind by the removed elements are also the basis for floor planning. The

argument is that any modified C L B s should be placed where the holes were created to

preserve spatial locality. iPlace is actually capable of handling multiple modification

regions. For each hole left behind by a group of modified C L B s , a floorplan rectangle can

be generated to guide the replacement C L B s into that specific region. For the example in

Figure 6, a floorplan rectangle is generated at location (4, 3), with a size of 2x2.

* i

In this thesis, we are not overly concerned with the precise method of identifying a,

floorplan region as part of the incremental placement algorithm. Floorplans can also be

constructed with the following methods. First, C A D tools already allow designers to

floorplan the usage of a device. These constraints can be translated into incremental

floorplan regions based on the modifications made on the circuit. The use of design

hierarchies and SOC methods can also be used to create floorplan regions. The placement

region of each component in the hierarchy can be used to dictate the region specified for

incremental changes. Finally, incremental placement required for iterative re-synthesis

C A D flows are also supported by iPlace. Algorithms that target constraints such as the

most congested regions can directly translate the re-synthesized areas into floorplan

constraints. ; ^

27

3.3. Expansion

i n i t i a l _ p l a c e m e n t ()
s h i f t = 0 ;
f o r each f l o o r p l a n r e g i o n f •

\
f o r each m o d i f i e d CLB c of f l o o r p l a n f

i f num f r e e space i s 0
\ ' • '

s h i f t% 4 ' == 0 7 s h i f t r i g h t by 1
' ' s h i f t% 4 = = 1 7 s h i f t up by 1

s h i f t% 4 ==2 7 ' s h i f t l e f t by 1 .
s h i f t% 4 ==3 7 s h i f t down by 1
s h i f t I- i
e x p a n d _ a f f e c t e d _ f l o o r p l a n s ()

• 3 ' • • '

randomly p l a c e CLB c i n f l o o r p l a n n e d f r e e space
} ' .

}
place_any_un_f l o o r p l a n n e d _ c l b s () i.

Figure 7 Super-grid Expansion Pseudocode

The second phase of iPlace is the insertion of the modified C L B s into the placement grid.

Each modified C L B is associated with a floorplan region. The floorplan is used give a

rough initial location or area where the modified C L B should be placed. The number of

modified C L B s could exceed the number of free spaces available in the floorplan area. In

the expansion phase, a C P U efficient shifting scheme is used to overcome the limitation of

insufficient placement locations. This phase is called "expansion" because the shifting

allows C L B s to be shifted outside of the normal placement area. This increases or expands

the placement grid to create more room. We call the result a "super-grid ", which includes
• f

the original placement area and all of the outside areas. Precise pseudocode for this step is

shown in Figure 7. The algorithm wi l l be explained as follows using an example.

28

10

10

10

10

c2 c3

d1 62 63

c6

d6

e1 e2 e3 64 e5 e6

f3 f4 f5 f6
J

10 10 10 10 10 10

10

10

10

10

Figure 8 Super Grid Expansion

Referring to the example started in Figure 6, the cells c4, c5, d4 and d5 were marked for

removal. These cells wi l l now be replaced with cells i l to i7. Note that only four free

locations are available, but seven new blocks needs to be placed. Blocks i l to i4 are

randomly placed in the free locations without issue. However, there is insufficient room for

blocks i5 to i7. To solve the problem of inserting more elements than the amount of free

space available in the floorplan region, we use a virtual placement grid called a super-grid

29

that is larger than the physical F P G A size. If the region runs out of space, C L B s to the right

of the region, are shifted right by 1 C L B location and the floorplan rectangle is increased in

width by 1. This is shown in Figure 8, where c6 and d6 are shifted right to make room for i5

and i6. Once the right side is fully shifted by 1 position, the algorithm switches to shifting

C L B columns on the top side by 1 position upwards; this is shown in Figure 8 where a5 is

shifted up to make room for i7. Whenever needed, the supergrid size array is increased,

adding additional rows and columns. Note that the 10 locations just shift outwards but are

not reordered or increased in number. The super-grid allows the algorithm to shift C L B s to

locations outside of the normal placement area. This avoids the need for additional

calculations to re-shuffle free spaces within a limited placement area, but preserves the

relative placement of most C L B s with the intent of benefiting from the original spatial

locality.

,a1 U 1

a1 j2 |b1;
i j

J3 J 2

b1
I •, „,;, ,„

J4 i5
i

J4

i1 \2 c3 i1 J2 c3

i3 \4 d3 i3 i4 d3

Figure 9 Multi-region floorplan handling

Since iPlace is a multi-region incremental placement algorithm, it must be able to handle

multiple floor-planned areas supporting overlaps and expansion of each area individually.

To maintain placement locality, the shifting paradigm does not move any affected floor

30

plans when shifting is required. Instead, all affected floor plan regions increase in size

along the shifting rows or columns. This idea is graphically illustrated in Figure 9. Two

floor planned areas named i and j are shown. If placement region i was to expand upwards

by 1 row, floorplan j becomes affected. Instead of moving the entire region j upwards, only

the required columns are shifted up (jl and j3). Both regions i and j increase in size by 1

vertically. Note that regions i and j now overlap. The free element introduced is common to

both regions i and j . If region j required more space, it can take advantage of the shifting

done for region i and use the newly created free locations.

Observation 1: The shifting paradigm is C P U efficient. It does not need C P U intensive

cost function calculations or any sort of iterative location evaluation. The algorithm evenly

distributes the expansion across the four sides.

Observation 2: The amount of shifting required to expand a region is quite modest. For

example, to expand a 5x5 C L B region by 20%, only one shift on one side is required to

make it 5x6. The limited shifting maintains placement locality and does not significantly

disturb the overall relative ordering of C L B s in the original placement.

31

3.4. Compaction

Figure 10 Compaction Regions ,

The third phase of iPlace is to re-legalize the placement. After the super-grid expansion

phase, there could be C L B s located outside of the legal placement area defined by the

F P G A array size. One method to re-legalize all C L B s is to use an annealing algorithm.

However, this is a slow process and does not guarantee that all C L B s wil l eventually

converge to legal areas. Instead, we propose a simple and fast solution called "compaction"

to overcome this problem. Note that the super-grid can be partitioned into 9 sections like a

"#" sign, with the legal placement area at the centre. This is graphically shown in Figure 10

where "R" represents the Regular placement area, S represents Side and C represents

Comer. This leaves four corners and four sides to handle. The algorithm works by shifting

all of the free space (empty CLBs) spread throughout the legal placement region to one end.

The algorithm performs horizontal followed by vertical compaction to move free space to

the required side (or vice versa for different cases). For the four corners, compaction is

32

\

done to move the space to.the corner. For the four side cases, the free spaces are first

percolated to the required side. Acentroid position is calculated to estimate where the bulk

of the illegal cells are located. The free space is shifted to the centroid location to preserve

locality. The centroid location is calculated as the median position for all illegal C L B s

located on the side under consideration: Following compaction, the illegal cells are.

randomly re-inserted into the legal free space. The pseudocode for the compaction

algorithm is shown in Figure 11

f o r each i l l e g a l r e g i o n r
{
i f r i s corner

{
s h i f t a l l f r e e space t o corner
randomly move i l l e g a l c e l l s i n f r e e space
} .

i f r i s si d e
i {

s h i f t a l l f r e e space t o s i d e
f i n d c e n t r o i d of i l l e g a l placements i n r
s h i f t f r e e space to c e n t r o i d
randomly move i l l e g a l c e l l s i n f r e e space
} •

}

Figure 11 Compaction Pseudocode

33

a2

b2

d

d1

e1
<

g
a3 a4 b5

a5

a6

b6
j

,e6

1 a2

b2

d

d1

e1
<

\

g
b3 b4

a6

b6
j

,e6

1

1 c6

| d6

1

' r n
1

a2

b2

d

d1

e1
< 4

c2

d2

e2

c3

d3

e3 d4 e5

a6

b6
j

,e6

1

1 c6

| d6

1

' r n
1

a2

b2

d

d1

e1
<

f3 f4 f5 J6

1

1 c6

| d6

1

' r n
1

Figure 12 Supergrid Compaction Moves

a2 a3 a4 65 |a5
I i

a6

b2 b3 b4 b6

c2 c3 11

d1 d2 d3 i4 c6 d6

e1 e2 e3 d4

f3 f4 f5 f6 e5 e6

Figure 13 Final Legalized Solution

Continuing with the example from Figure 6 and Figure 8, the compaction process is

graphically shown in Figure 12. The block a5 is re-legalized by compacting the free space

from the top left corner. Note that the free space has percolated from the top left corner to

the locations below a5. The cells c6 and d6 are re-legalized by first compacting the free

space from the bottom left hand corner. This percolates the free space to the bottom right

hand corner. Next, cells e5 and e6 are compacted downwards to the bottom right hand

corner. The final legalized solution is shown in Figure 13.

3.5. Refinement

After the compaction step, we found that the average bounding box and critical path delays

were not ideal. In most cases, the bounding box cost reported by V P R was 20% larger than

a full placement from scratch. The estimated critical paths were also 10% higher. To refine

the solution, we added a low temperature annealing step to iPlace. The refinement phase

must not disturb the spatial locality property that iPlace is based upon, but must also be

able to perform limited hi l l climbing to optimize the modified C L B s . To accomplish this

task, we re-tuned various parameters within the simulated annealing algorithm of V P R . To

limit hi l l climbing, the initial temperature was lowered so that fewer "bad" swaps would

be accepted. To maintain spatial locality, the initial window range was lowered to focus the

swaps within a more localized area. To reduce and control the runtime, the number of

swaps per temperature range factor inner_num and the temperature degradation factor

alpha parameters were also tuned.

The initial temperature was selected as the first 44% acceptance rate cross oyer point

during the baseline initial placement. The 44% acceptance rate threshold was chosen based

on previous work in [43].
35

;'nner_nom*numblocks
number of swaps

Figure 14 Channel Width tradeoff versus Alpha and Number of Swaps (S)

Figure 14 shows the channel width quality trade off versus temperature degradation (alpha)

and the number of swaps inner_num f/J*numblocks per temperature range. A t very low

alpha factors, substantially more swaps are required to refine the solution. Very low values

represent a rapid cooling schedule. Even with a larger number of swaps, low alpha ranges

are unable to produce high quality solutions. There is a 10% channel width degradation

when comparing an alpha of 0.95 versus an alpha of 0.05 for a swap multiplier S of 10. A

more substantial 50% degradation is observed when an alpha value of 0.05 is used with

value S of 1. For the refinement stage of iPlace, a conservative alpha factor of 0.45-0.50

and an inner_num multiplier N of 1 to 3 would suffice to produce a high quality channel

placement with respect to channel width.

36

Critical Path (s)

/'nner_/7um*numblocks
number of swaps

Figure 15 Critical Path tradeoff versus Alpha and Number of Swaps (S)

Figure 15 shows the critical path trade off versus alpha and number of swaps N . The figure

shows that the critical path is somewhat noisy for varying values of alpha. The reasoning

behind this could be explained by the rapid cooling effect for lower values of alpha. If

insufficient hill-climbing is performed, then the solution could be easily trapped by local

minimums. This is especially important because iPlace bases the incremental solution on

prior placements. If the previous solution was sensitive to begin with, the incremental

placement could be greatly affected. From Figure 14, Figure 15 and other tuning trials (not

shown), it was determined that an alpha value of 0.7 or above produced the best results.

The final tuned parameters after simulation were found to be the following:

• Initial temperature of 44% acceptance rate from previous placement
• Initial window range of 12.5% of the F P G A width
• Temperature degrading factor alpha of 0.7
• Number of swaps per temperature range, inner_num of 1 to 3

37

Based on the tuning, the refinement phase optimizes the placement and produces a high

quality result that is comparable to a full placement. The run-time is also very short, and is

controllable via the inner_num parameter.

3.6. Additional Tuning Considerations

120

CD

CO
- C

O
JD
SI
B "3 o cc

115 h

110 h

105

100

95
10

VPR Baseline X
iPlace Post-Compaction Refinement Phases Only — O -

iPlace Pre and Post Compaction Refinement Phases - -G--

Q--SH

100

Run time (s)
1000

Figure 16 Channel Width versus Run-time Trade off while tuning iPlace

8.2

(/> 8.1

•£ 8 CO
C L

CO
O 7.9

7.8 o
X>
<D
X J5 7.7
CD
CC

7.6

7.5
10

VPR Baseline X .
iPlace Post-Compaction Refinement Phases Only —Q-—

iPlace Pre and Post Compaction Refinement Phases - o- -

100

Run time is)
1000

Figure 17 Critical Path versus Run-time Trade off while tuning iPlace

During the design and tuning of the iPlace algorithm, the amount of refinement using

38

simulated annealing was considered a crucial parameter. The refinement stage makes up

the bulk of the runtime but is required to produce the highest quality solutions. During the

! design and tuning of iPlace, it was also considered to have an additional refinement stage

in between the expansion and compaction stages. The goal of this additional refinement

stage was to reduce the amount of illegal C L B s located outside of the legal placement area.

The hope was that with fewer illegal C L B s , the amount of compaction required would be

minimized. The pre-compaction refinement stage used the same tuning parameters as the

post-compaction refinement stage. The initial temperature was lowered to the 44%

threshold, alpha was reduced to 0.7 and the inner_num parameter varied from 1 to 2 to

control the run-time. Tuning was done with 60,000 L U T synthetic circuits produced for

Figure 16 and Figure 17 shows the channel width and critical path versus run-time trade off

of having the additional refinement stage before compaction. Figure 16 shows the addition

of the pre-compaction refinement stage does help to lower the minimum routable channel

width. However, increasing the inner_num parameter for the post-compaction refinement

stage can make up for the loss of the pre-compaction refinement phase. The crossover

point at 100 seconds shows that the post-compaction stage alone can still achieve the same

results as having both the pre and post compaction refinement phases but with faster

runtime. Figure 17shows the critical path versus run-time for the same comparison. There

are no notable quality differences for the critical path results with the addition of the

pre-compaction refinement. Based on these results, it was decided to only have a

post-compaction refinement stage.

39

3.7. Algorithm Conclusions

This chapter has presented an incremental placement algorithm iPlace to be used as part of

an incremental C A D flow. The iPlace algorithm was designed based on the principles

spatial locality and efficient shifting algorithms. The four steps to the iPlace algorithm

include initial placement, controlled expansion, compaction and retuned simulated

annealing refinement. The initial placement phase places all unmodified C L B s at their

previous placement locations. The expansion phase uses floor-planning and shifting to

place all modified C L B s into an expanded placement grid. The compaction phase

re-legalizes the placement also by shifting. Finally, the refinement phase produces a high

quality incremental placement by cleaning up the intermediate solution with a fast and

retuned simulated annealing algorithm.

3.8. Algorithm Limitations

iPlace currently does not take into account that commercial F P GAs have carry chains and

hard macro blocks such, memories and multipliers. The current version of V P R is unable

to model such constraints. This section wil l present how we envision handling these cases

in the future.

40

Macroblocks, Memories and Multipliers:

M4K US12 OSP LASs DSP
Stefe Blades Blades Stats

Figure 18 Stratix II FPGA layout [63]

The layout of macro blocks are usually arranged as entire columns in the F P G A array. This

is graphically shown in Figure 18 with the layout of an Altera Stratix II F P G A . One way to

handle these cases is to divide the placement grid into multiple vertical stripes of C L B s .

Each stripe is bounded on the left and/or right by hard macro blocks. B y partitioning the

F P G A into multiple stripes, each partition can be considered separately for the shifting and

super-grid. Other shifting constraints can also be imposed on the shifting algorithm to

handle limitations such as the input positions to the macro blocks.

Carry Chains:

a1

b 4

d1

a2

i1

a3

fe3

a2

a1

b4

d1

i5

i1

i4

a3

i6

•63

i2

i3

Figure 19 Handling Carry chains

The second constraint currently not handled by iPlace is carry chains. Since carry chains

must remain tightly connected, the shifting process cannot destroy these placements. A

potential solution to this problem is to lock down the position of carry chains. Taking into

account the modest shifting requirements noted in the shifting algorithm, it is possible to

fix the carry chain placement location and shift the elements over the carry chain. This is

graphically shown in Figure 19. A pre-existing carry chain spans C L B s b l , b2 and b3. A n

incremental placement region is shown as the bounded box. If the region needs to be

expanded to accommodate more elements, the floorplan can be expanded beyond the carry

chain. The resulting placement does not disturb the carry chain but still allows for the

expansion paradigm. The implementation and evaluation of these suggested changes are

left for future work.

r 42

4. Results

This chapter details the experimental setup and the results obtained when incremental

placement is performed using the iPlace algorithm. First, an overview of the experimental

goals wi l l be presented. Second, the experimental process and setup wi l l be outlined. Third,

the benchmark setup and results for the Single-Region Synthetic benchmark (SYN) set

wi l l be presented. Fourth, the benchmark setup and results for the Single-Region Physical

Re-Synthesis benchmark (PR) set wi l l be presented. Last, Multi-Region Physical

Re-Synthesis benchmark (MR) set wi l l be presented. This chapter concludes with a

summary and discussion of the results for incremental placement using iPlace.

4.1. Experimental Goals

Incremental Placement Runtime

The main goal to measure for iPlace is the placement Run-Time (RT) of the algorithm.

iPlace is an incremental placement algorithm targeted at reducing the placement run time

for iterative development. The main point of comparison wil l be the runtime required for

the baseline V P R toolset to perform a placement solution using default options. In addition,

the runtime of the V P R tool set using reduced-quality settings "-fast" (inner_num=l) and

"-superfast" (inner_num=0.125) modes wil l be contrasted. The "-fast" mode is a standard

option available in V P R . The "-superfast" mode was developed in this thesis to compare

results against very fast placement.

J
43

Minimal Routable Channel Width

The second quality to measure for iPlace wi l l be the Minimal Routable Channel Width

(M R C W) . The M R C W quality signifies the routability quality for a placement. This is an

important factor to consider because commercial F P G A devices have fixed channel widths.

If a bad incremental placement solution is created, this could lead to higher channel width
•J

requirements that cannot be satisfied by the device. To determine this quality, iPlace wil l

be compared against V P R in default, "-fast" and "-superfast" modes.

Relaxed Critical Path

The third quality to measure for iPlace is the relaxed Critical Path (CP). The relaxed

critical path is determined by routing the placement solution at 20% above the minimum

routable channel width. This ensures that no portions of the F P G A are severely routing

congested to obscure the true critical path. The critical path of a circuit is the longest delay

path that a signal has to traverse from an input to an output or between synchronous

i j flip-flops. The critical path determines the clock speed of a circuit, and thus its

performance. To determine this quality, iPlace wi l l be compared against V P R in default,

"-fast" and "-superfast" modes.

Placement Stability

The last quality to measure is placement stability. Placement stability is a measure of how

much the placement has been modified from the "before" circuit state to the "after" circuit

state. There is no standard way to measure this, so we have decided to measure the total

Euclidean distance traveled in the array ("before" position to "after") by all of the

unmodified C L B s . The goal of placement stability is to show that incremental placement

using iPlace results in a placement closely resembling the initial placement solution.
44

If an unmodified C L B remains in the same location in the "after" state, the cost for that

C L B is 0. For V P R placement from scratch results, we also considered that the array is

perfectly symmetrical, so we computed the distance cost total from all possible initial

orientations (rotates and flips) of the initial placement and took the lowest total distance.

For the iPlace results, we kept only the original orientation. The results presented for

placement stability wi l l be normalized to a "unit distance" measurement. The unit distance

is a summation of the Euclidian distance for all un-modified elements i f each element

traveled 1 unit horizontally and 1 unit vertically.

The placement stability quality wi l l be presented for the Single-Region Synthetic and

Physical Re-synthesis benchmarks. It wi l l not be presented for Multi-Region Physical

Re-synthesis benchmarks because significant portions of the circuit are modified.

4.2. Experimental Baseline

The iPlace incremental placement C A D flow is implemented as part of the academic tool

V P R [32] and TVPack. TVPack has been modified to include the i R A C [60] clustering

algorithm along with the ability to perform incremental re-clustering. The benchmark flow

consists of the following parameters and settings:

• Initial benchmark circuit clustering using the i R A C algorithm

• Initial high-quality placement using V P R in default mode

• Single-Region Synthetic benchmark set from Section 4.3

• Single-Region Physical Re-Synthesis benchmark set from Section 4.3

• Multi-Region Physical Re-Synthesis benchmark set from Section 4.4

• F P G A architecture with L U T size (k = 4), cluster size (N = 10), wire length (L = 4),
all buffered (bi-dir) routing, T S M C 180nm [64] (PR and S Y N benchmarks)

45

• F P G A architecture with L U T size (k = 6), cluster size (N = 16), wire length (L = 4), all
buffered (bi-dir) routing, T S M C 180nm [64] (MR benchmark)

• V P R flags: -verify_binary_search _pres_fac_mult 1.3 -max_ routerjterations 100,
relaxed run change: -pres_fac_mult 1.1

• Run-times are for placement only; initialization time is excluded

The benchmarks were incrementally re-clustered by keeping the original clustering

solutions for the unmodified C L B s and incrementally re-clustering the modified LEs into

modified C L B s . i R A C was used for all clustering because it produces the lowest routed

Y

channel widths and delay performance compared to TVPack [25]. The location of the

removed C L B s was used to produce a floorplan rectangle as additional input to iPlace.

The C A D flow used to measure the quality of the incremental placer is as follows. The

baseline circuits are first clustered using i R A C . The clustered circuits are then placed using

the default settings of V P R to obtain a high quality initial placement. Using this initial

placement and the floorplan from the benchmark circuit generation process, iPlace is used

to incrementally re-place the benchmark circuit. The placement speed of iPlace was varied

by setting the inner_num annealing parameter to 3, 2.5, 2,1.5 and 1. Lower values result in

faster annealing times, but this does not significantly affect quality.

For comparison, a placement from scratch was also performed using V P R . The inner_num

parameter was swept with values of 10, 1, 0.5, 0.25 and 0.125. Reducing this parameter

reduces the number of swaps that are performed at each temperature. A n inner_num value

of 10 is the "default" value for V P R . A n inner_num value of 1 is the default when V P R is

invoked with the "-fast" placement option. This produces slightly lower-quality

placements but increases run-time nearly 10 times. A new "-superfast" option was created
46

by setting the inner_num parameter to 0.125. Various other V P R parameters such as initial

temperature, range limit etc. were also studied to determine the reduction of run-time

versus placement quality trade-off. It was found that reducing inner_num provides the

most graceful degradation of placement quality versus run time improvement.

The results presented in this chapter consist of the runtime, minimum routable channel

width, relaxed critical path and a placement stability analysis. For every placement

generated, the V P R binary search routing option was invoked to determine the minimum

routable channel width. The relaxed critical path value was determined by routing the

placement with 20% more channel width than the minimum required.

A l l of the simulations were executed on a dedicated Pentium 4, 3 G H z server with 512MB

of R A M for each job 1 0 . Additional memory was not required for the size of the benchmark

circuits. Every placement was executed 5 times with 5 different random seeds to reduce the

noise in the results. Each datapoint result presented is an arithmetic average of these 5

executions.

1 0 Jobs were executed on Westgrid's Glacier cluster and scheduled according to the
torque queuing and load balancing system

47

4.3. Single-Region Synthetic Benchmarks

4.3.1. Benchmark Formulation

The single region synthetic benchmark set is designed to test the performance of the

incremental placer with incrementally modified logic. This benchmark set is generated by

selecting a subset of a circuit and replacing the subset with a synthetically generated

replacement. The synthetic generation and replacement process is discussed in [3] [4].

The process for selecting which elements should be modified is based on the initial

placement of the baseline circuit. A random rectangular region is selected and the C L B s

from that region are removed and replaced with a synthetic clone circuit. Three different

versions of the benchmarks were generated by selecting areas of 2.5%, 5% and 10% of the

total CLBs and replacing them with synthetic clones of identical size. For the 2.5% and 5%

cases, an additional circuit was generated by doubling the number of C L B s in the

replacement clone. In total, this produced 5 "after" circuit states for each original circuit.

The 2 doubling cases with 2.5% and 5% more logic were designed to test the iPlace

expansion and compaction schemes. The floorplan for this benchmark is the region

selected for re-synthesis.

Original
#CLB

Synthetic 2.5
New # CLB ACLB

CLMA 839 839 25
EX1010 107 107 2
MISEX3 140 140 3
PDC 458 458 15
SPLA 369 369 9

Table 2 Synthetic 2.5 Benchmark Characteristics

48

Original
#CLB

Synthetic 5
New # CLB ACLB

CLMA
EX1010
MISEX3
PDC
SPLA

839
107\
140
458
369

839 49
107̂ 9
140 9 '
458 25

. 369 22'

Table 3 Synthetic 5 Benchmark Characteristics

Original
#CLB

Synthetic 10
New # CLB ACLB

CLMA 839 839 99
EX1010 107 107 15
MISEX3 140 140 15
PDC 458 458 49
SPLA 369 369 49

Table 4 Synthetic 10 Benchmark Characteristics

Original
#CLB

Synthetic 2.5d
New # CLB ACLB

CLMA 839 899 109
EX1010 107 107 5
MISEX3 - 140 140 9
PDC 458 490 57
SPLA 369 408 64

Table 5 Synthetic 2.5d Benchmark Characteristics

Original
#CLB

Synthetic 5d
New # CLB ACLB

CLMA 839 967 227
EX1010 107 122 26
MISEX3 140 158 33
PDC 458 525 116
SPLA 369 440 120

Table 6 Synthetic 5d Benchmark Characteristics

Table 2 to Table 6 summaries the statistics for a subset of the synthetic benchmark circuits

created. The circuits Synthetic 2.5, 5 and 10 are the same sized clones for 2.5%, 5% and

10% rip out areas. The circuits synthetic 2.5d and 5d represent the 2.5% and 5% cut out

regions that are replaced with double the number of LEs . The table shows the total number

of C L B s for each of the original circuits, the new number of C L B s after the synthetic

process and the number of changed (delta) C L B s . This benchmark set demonstrates how

iPlace can produce high-quality incremental placements after design changes are made.

The synthetic benchmark process was executed for 20 of the largest M C N C circuits. In this

section, the results for a sample of 5 circuits were selected to show the effectiveness of

iPlace on a variety of circuit sizes. The full sets of results for the 20 M C N C circuits are

provided in Appendix A .

4.3.2. Runtime Results

Synthetic
Circuit

Syn-2.5 S y n - 5 Syn - 10 Syn - 2.5d Syn - 5d

C L M A 72.0 70.8 73.5 80.3 70.0
EX1010 77.6 75.0 77.0 69.0 76.2
MISEX3 - - - - - .

PDC 80.6 64.0 68.7 84.4 68.1 .
SPLA 75.7 55.5 44.8 84.0 51.2

Geometric Mean: 70.1

ible 7 Runtime Speedup of iPlace relative to VPR default settin

Synthetic
Circuit

Syn - 2.5 S y n - 5 Syn - 10 Syn - 2.5d Syn - 5d

C L M A 8.3 7.9 8.1 8.9 8.2
EX1010 9.2 8.6 8.8 8.2 8.8
MISEX3 - - • - - -

PDC 9.8 7.0 7.0 10.2 7.9
SPLA 8.7 6.8 5.0 9.7 6.0

Geometric Mean: 8.0

Table 8 Runtime Speedup of iPlace relative to VPR "-fast" settings

50

Synthetic
Circuit

Syn - 2.5 S y n - 5 Syn - 10 Syn-2.5d Syn - 5d

C L M A 1.7 1.8 1.7 1.9 2.0
EX1010 2.2 2.0 , 2.0 2.0 2.2
MISEX3 - - ' - -

PDC 2.2 1.8 2.0 2.6 1-9
SPLA 2.3 1.5 1.2 3.0 1.5

Geometric Mean: 1.9

Table 9 Runtime Speedup of iPlace relative to VPR "-superfast" settings

The runtime speedup achieved with iPlace when compared to V P R in default mode is

shown in Table 7 . iPlace is 51 to 84 times faster than V P R in default mode. There is a

significant run time improvement when incremental placement via iPlace is used. Table 8

and Table 9 show the speedup comparing iPlace to V P R "-fast" and "-superfast". There is a

geometric mean speed up of 8.0 and 1.9 for "-fast" arid "-superfast", respectively. It should

also be noted that there is no significant slow down for the increased size 2.5d and 5d

circuits. The run-time overhead incurred by the expansion and compaction phases are

negligible compared to the overall execution time. Entries with a ' - ' represent run-time

results that were too fast to be measured reliably (<200ms), so they are omitted from the

table.

i
j

51

4.3.3. Channel Width Results

59

~ 58 h

CD
57

56

55
CO

o
CD

5 54
iS
"3 53
O
^ 52
=3 ,
E 51
c

^ 50

49

Q\

SYN 2.5, VPR —
SYN 5, VPR —

SYN 10, VPR O
SYN 2.5d, VPR A

SYN 5d, VPR - - v -
SYN 2.5, iPlace X

SYN 5, iPlace — • —
SYN 10, iPlace -------

SYN 2.5d, iPlace
SYN 5d, iPlace - -

v

_ i i I _ I ' » • • i i i i i _

10 100
Run time (s)

1000

Figure 20: Minimum Routable CW versus Run Time for C L M A , Synthetic

Figure 20 shows the minimum routable channel width versus placement run time for

C L M A in the synthetic benchmark set. A channel width degradation of 15-20% is

observed with V P R as the run time (inner_num) is reduced. In contrast, iPlace produces

consistently high-quality solutions. The channel widths for iPlace exceed or are equivalent

to default V P R but with 2 orders in magnitude less in runtime. The main conclusion from

Figure 20 is that the iPlace curve is always below the V P R curve. This means that iPlace is

always able to produce better solutions than placement from scratch using V P R . The

results were similar for the other benchmark circuits. Full channel width results are

provided in Appendix A

52

4.3.4. Critical Path Results

c

4

3.75

3.5

£ 3.25

o

O
T3 2.75
CD
X

2 5
CD "

DC
2.25

SYN 2.5, VPR — X -
SYN 5, VPR —Q--

SYN 10, VPR •O-
SYN 2.5d, VPR A

SYN 5d, VPR - - V - -
SYN 2.5, iPlace —

SYN 5,
SYN 10,

SYN 2.5d,

Place
Place
Place

,t\r"V - v v '

SYN 5d, iP^Lace

1 1000 10 100
Run time (s)

Figure 21: Relaxed Critical Path versus Run Time for C L M A , Synthetic

The relaxed critical path results for the Synthetic C L M A benchmark set is presented in

Figure 21. The plot shows that there is a slight critical path degradation (<2%) when

comparing iPlace to V P R . When considering the two-orders of magnitude less in run-time

for iPlace, it is a small trade off for quality versus run-time. The overall results for all 20

M C N C circuits (Appendix A) show that the critical path results are on par for iPlace

relative to V P R . There is less than 1% degradation, which is within error margins. It should

also be noted from the previous section that V P R at reduced run-time had significant

channel width degradation. Because the relaxed critical path is calculated by routing the

circuits at 120% the minimum routable channel width, V P R at lower run-times had even

more tracks to route with. If the faster V P R placements were routed at the same channel

width as iPlace 1 1 , the V P R placement solutions would have to tradeoff routability for

higher critical path delays.

Commercial devices have a fixed channel widths
53

4.3.5. Placement Stability Results

Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean
clma 2.41 2.64 2.05 5.24 3.66 3.02
ex1010 2.36 1.96 2.47 2.84 2.86 2.48
misex3 1.78 2.33 1.72 1.80 2.62 2.02
pdc 4.01 3.09 2.24 4.64 4.41 3.55
spla 3.09 3.77 4.63 3.83 5.27 4.05

Geomean 2.93

Table 10 Average Displacement Results for Synthetic Benchmark Circuits, Baseline
VPR Default

Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean
clma 2.73 2.69 2.72 3.19 3.98 3.02
ex1010 1.53 1.60 1.52 1.88 1.50 1.60
misex3 1.35 1.47 1.47 1.50 2.14 1.57
pdc 2.11 2.11 2.14 2.91 3.05 2.43
spla 1.66 1.69 1.87 2.30 2.91 2.04

Geomean 2.06

Table 11 Average Displacement Results for Synthetic Benchmark Circuits, iPlace

The placement stability results for the single region synthetic benchmarks are presented in

Table 10 and Table 11. The results for V P R and iPlace are normalized to the unit (diagonal)

distance measurement. The results show that every unmodified C L B s wil l travel, on

average 2 unit distances when incrementally placed with iPlace. In contrast, V P R

placement from scratch wi l l travel 3 unit distances on average.

For the circuits Syn 2.5, 5 and 10, the placement stability results for iPlace are similar

across the different variations. This suggests that the iPlace placement solution is able to

more closely resemble the original placement solution even for different variations in the

synthetic flow. In comparison, placement solutions produced with V P R shows larger

fluctuation, meaning the placement solutions vary from one annealing run to another.

Another result to consider is to consider Syn 2.5 and 5 circuits versus Syn 2.5d and 5d

54

circuits. For iPlace, doubling the synthetic region increases the average displacement per

C L B by 0 to -1.0 units. Placement stability for V P R also increased by approximately the

same amount1 2, but the results still shows that iPlace produces placements with better

stability results.

Overall, the results suggest that iPlace does a good job at preserving placement stability.

The placement solution produced by iPlace more closely resembles the previous solution

when compared to placement from scratch.

4.3.6. Conclusions for Synthetic Benchmarks

The results presented for Single-Region Synthetic benchmarks show that iPlace is a fast

and high quality incremental placement algorithm. The full results for all 20 synthetically

modified M C N C circuits are presented in Appendix A . iPlace achieves a speedup of 70 i

times faster than placement using default V P R settings and 8 times faster than V P R with

"-fast" settings. The average of the normalized channel width comparing V P R default

placement and iPlace is 1.01. This suggests that iPlace is 1% better than V P R . The

placement stability results also show that iPlace is superior to V P R . Unmodified C L B s do

not travel as far from their previous placement location when incrementally placed with

iPlace. In summary, iPlace is 70 times faster than V P R default placement with no channel

width penalty and better placement stability results.

\ -

n Except for C L M A , the 19 other M C N C circuits had similar results.
55

4.4. Single-Region Re-synthesis Benchmarks

4.4.1. Benchmark Formulation

org. Physical Resynthesis 2.5 Physical Resynthesis 5

#CLB
New"

#CLB
ACLB

New
#CLB

A C L B

C L M A 839 846 32 851 57
EX1010 460 463 .12 467 32
MISEX3 140 N/A N/A 143 12
PDC 458 461 12 465 32
SPLA 369 372 12 376 32

Table 12 PR 2.5 and 5 Benchmark Statistics

Original Physical Resynthesis 10 Physical Resynthesis 15

#CLB
New

#CLB
ACLB

New
#CLB

ACLB

C L M A 839 857 87 876 182
EX1010 460 472 57 478 87
MISEX3 140 N/A N/A 147 32
PDC 458 470 57 476 87
SPLA 369 381 57 387 87.

Table 13 PR 10 and 15 Benchmark Statistics

The Single-Region Physical Resynthesis benchmark set is designed to test iPlace with

re-synthesis flows. This benchmark set is generated using the physical resynthesis C A D

flow presented in [1]. This flow is an iterative congestion reduction algorithm. It identifies

the most congested regions of a circuit and reduces the number of LEs packed per C L B in

that region. To generate a set of benchmark circuits, the flow selects the single most

congested area and reduces the maximum cluster utilization from 10 to 8 LEs . In effect,

this increases the number of C L B s in the changed region by 20%, but the final circuit is

still functionally-equivalent to the original. Five benchmark circuits form the original

"before" state. Four variations of each circuit were created by selecting a congested region

size of 2.5%, 5%, 10% and 15% the total number of C L B s in the circuit. The circuit
' 56

statistics for the total number of C L B s "after" reclustering, as well as the number of C L B s

in the changed region, are shown in Table 12 and Table 13. The floorplan is generated as

the congested region selected by"the C A D flow. Please note due to discretization effects

with the small circuit M I S E X 3 , the 2.5% and 10% were equivalent to the 5% and 15%

changes. Therefore, only the latter ones were used. This benchmark set helps demonstrate

how iPlace preserves placement quality when used within iterative improvement

algorithms.

4.4.2. Runtime Results

Physical
Resynthesis

Circuit
PR 2.5 PR 5 PR 10 PR 15

C L M A 70.3 64.8 76.9 67.9
EX1010 59.3 74.4 46.8 62,8
MISEX3 N/A - N/A 36.0
PDC 63.3 80.2 69.2 70.8
SPLA 257.0 106.5 109.5 44.8

Geometric Mean 71.9

Table 14 Runtime Speedup of iPlace relative to VPR default settings

Physical
Resynthesis

Circuit
PR 2.5 PR 5 PR 10 PR 15

C L M A 7.6 7.4 8.4 7.8
EX1010 6.7 8.4 5.4 7.2
MISEX3 N/A - N/A 4.0
PDC 6.8 8.4 7.8 8.2
SPLA 28.0 12.0 14.5 5.2

Geometric Mean 8.1

Table 15 Runtime Speedup of iPlace relative to VPR "-fast" settings

57

Physical
Resynthesis

Circuit
PR 2.5 PR 5 PR 10 PR 15

C L M A 1.7 1.7 1.9 1.5
EX1010 1.7 2.0 1.3 ... 1.7
MISEX3 N/A . - N/A -
PDC 1.8 2.0 2.0 2.2
SPLA 6.0 2.5 3.0 1.6

- Geometric Mean 2.0

Table 16 Runtime Speedup of iPlace relative to VPR "-superfast" settings

The normalized runtime speedups for the single region physical re-synthesis benchmarks

are presented in Table 14 to Table 16. Similar to the synthetic benchmarks from the

previous section, iPlace is significantly faster compared to V P R placement. When

comparing iPlace to V P R placement using default options, iPlace is 46 to 257 times faster.

On average, iPlace is 71.9 times faster than V P R placement from scratch. Compared to the

faster placement "-fast" and "-superfast", iPlace is 8.1 and 2 times faster respectively. The

lone exception where V P R was faster than iPlace is for the M I S E X 3 V P R "-superfast"

versus iPlace results. iPlace had an average run-time of 0.2 seconds while V P R was too

fast to measure. A more accurate timer is needed to gauge the results for small circuits such

as M I S E X 3 . Entries with a ' - ' represent run-time results that were too fast to be measured

reliably (<200ms), so they are omitted from the table.

v
58

4.4.3. Channel Width Results

CD
a
a
CO
j=
O
_CD
-O
CC

o

56

55

54 h

53

52

51

•50

49

48

47

—i 1 1—r—i—r— - i 1 1 1 — i — i — r

PR 2.5, VPR —X-

A

PR 5, VPR —B~-
PR 10, VPR - - 0 - -
PR 15, VPR A

PR 2.5, iPlace X
PR 5, iPlace —

PR 10, iPlace
PR 15, iPlace . A-

• • i i i _ • • i • • • _ i i • 1 » i_

1 10 100
Run time (s)

1000

Figure 22 Min. Routable Channel Width vs. Run Time for C L M A , PR

Figure 22 shows the minimum routable channel width versus placement runtime for the

C L M A variants in this benchmark set. The reduction of the inner_num parameter for V P R

placement results in a 10% increase in the minimum routable channel width. The trade-off

for 10% channel width increase is a 40-fold decrease in run time. In comparison, iPlace is

consistently able to place the circuit with a channel width comparable to "default" V P R

placement but with vastly improved runtime (2 orders of magnitude). In fact, iPlace always

beats V P R in the quality/run-time tradeoff curve. For example, iPlace with an

inner_num-\ took 3.2 seconds, whereas V P R placement with inner_num=0.125 took 5.2

seconds and had significant quality degradation. Full channel width results for this

benchmark set are provided in Appendix B .

59

4.4.4. Critical Path Results

00
c

4

3.75

3.5 h

£ 3.25

CO
O 3 h

o
•O 2.75
CD

DC
2.25 h

—, , , ,— - I 1 1 I - 1 1—r—r—r

PR 2.5, VPR —
PR 5, VPR —{HI-

PR 10, VPR
PR 15, VPR A

PR 2.5, iPlace — t K —
PR 5, iPlace

PR 10, iPlace -------
PR 15, iPlace A

A A

1 10 100
Run time (s)

1000

Figure 23 Relaxed Critical Path versus Run Time for C L M A , PR

Figure 23 shows the relaxed critical path results for the C L M A circuits in the PR set. The

critical path for iPlace was sometimes worse than V P R by 3-4% for C L M A , but the

geometric mean of the critical path over all the circuits was on par. Figure 23 shows that

the critical path does not degrade with the reduction in run-time for both V P R and iPlace.

However, this may not hold true with real (fixed channel width) devices. For the V P R

results, the channel width increased by 20%, which means the relaxed critical path has

more tracks available to route, which may help the router optimize the critical path a bit

more. In comparison, iPlace uses a similar number of routing tracks for all cases, yet is still

able to preserve critical path delay. ,

60

4.4.5. Placement Stability Results

PR 2.5 PR 5 PR 10 PR15 Geomean
C L M A 2.94 3.38 5.30 2.82 3.49
EX1010 •2.74 2.56 2.54 3.25 2.76
MISEX3 N/A 2.26 N/A 2.58 2.42
PDC 5.14 . 3.41 4.43 4.48 4.32
SPLA 3.86 3.87 4.18 3.44 3.83

Geomean 3.29

Table 17 Average Displacement Results from PR Benchmark Circuits, VPR
"Default"

PR 2.5 PR 5 PR 10 PR15 Geomean
C L M A 2.74 2.76 4.46 2.94 3.15
EX1010 1.70 1.78 1.79 1.79 1.77
MISEX3 N/A 1.55 N/A 2.07 1.79
PDC 2.34 2.45 2.62 2.67 2.52
SPLA 1.76 1.93 1.88 2.25 1.95

Geomean 2.18

Table 18 Average Displacement Results from PR Benchmark Circuits, iPlace

The placement stability results for the Physical Re-Synthesis benchmark set are presented

in Table 17 and Table 18. The results show on average, iPlace travels 2.2 unit distance per

unmodified C L B compared to a distance of 3.3 for V P R placement from scratch. This

shows that iPlace does preserve the previous placement solution better than a V P R

placement from scratch. However, the results for the re-synthesis benchmark set were not

as good as the synthetic set. This is due to the nature of the re-synthesis process. The

congestion reduction flow always creates 20% more C L B s due to the white space insertion.

To make room for the newly created C L B s , iPlace must use the expansion and compaction

schemes to fit all of the C L B s into the floor-planned region. This causes the extra shifting

of the unmodified C L B s further away from their starting positions.

61

4.4.6. Conclusions for Single-Region Re-synthesis Benchmarks

The results presented for the single-region re-synthesis benchmark set also shows that

iPlace is a fast incremental placement algorithm that produces high quality incremental

placements. Overall, iPlace is -72 times faster than default V P R in default mode and about

~8 times faster than "-fast" mode while achieving with similar quality channel width (CW)

and critical path (CP) results. To push V P R even further, the "-superfast" mode

(inner_num=0.125) was also added for comparing iPlace and V P R . At this point, iPlace is

still twice as fast and does not show the quality degradation exhibited by V P R . Notice that

some run-time results were toofast to be measured reliably (<200ms), so they are omitted

from the table (shown as a dash). The full set of run-time, channel width and critical path,

quality results are provided in Appendix B .

62

4.5. Multi-Region Re-synthesis Benchmarks

4.5.1. Benchmark Formulation

org. Multi Region -50 Multi Region -40
#CLB • New Num. New Num.

#CLB ACLB Regions #CLB ACLB Regions
C L O N E 3151 3618 2233 135 3310 762 46
STDEVO 3148 3603 2218 114 3595 2208 114
STDEV010 3152 3463 1490 85 3278 588 37

Table 19 Multi Region 50 and 40 Benchmark Characteristics

org. Multi Region -30 Multi Region -20
#CLB New Num. New Num.

#CLB A C L B Regions #CLB ACLB Regions
C L O N E 3151 3265 560 29 3206 275 12
STDEVO 3148 3606 2224 116 3272 617 30
STDEV010 3152 3254 490 29 3193 202 9

Table 20 Multi Region 30 and 20 Benchmark Characteristics

org. Multi Region -10
#CLB New Num.

#CLB ACLB Regions
C L O N E 3151 3288 681 34
STDEVO 3148 3370 1087 50
STDEV010 3152 3237 425 . 20

Table 21 Multi Region 10 Benchmark Characteristics

The Multi-Region Physical Re-synthesis (MR) set of benchmarks is designed to test the

performance of the incremental placer with multiple incrementally modified regions.

Multi-region incremental placement allows designers to make changes in multiple parts of

a circuit and still be able to incrementally re-compile the design in a quick and efficient

manner. This set of benchmarks is also generated using the physical re-synthesis flow

outlined in [1]. Instead of identifying the most congested area, the flow also supports

identifying multiple congested regions. The circuits used for this experiment are

synthetically generated with varying levels of congestion. The size of each circuit is

-50,000 logic elements [1]. To create a family of benchmarks, 5 variations of 3 circuits

were created. The five variations are produced by targeting a percentage reduction of 10%,

20%, 30%, 40% and 50% in the minimal routable channel. This is accomplished by using a

re-synthesis algorithm to re-cluster parts of the circuit. The algorithm begins by identifying

the most congested C L B and marking a region within a Euclidian distance of 5. The C L B s

within the region becomes a congestion region. The algorithm then identifies the next most

congested unmarked region, it iterates to find all congested regions with routing

requirements higher than the targeted reduction. Each region can contain a maximum of 25

C L B s , but there may be fewer because regions can overlap. Each C L B can only belong to

one region. To achieve the reduction in channel width required, 3 white space LEs are

inserted into each cluster identified as congested, reducing the utilization from 16 to 13

LEs . This produces -20% increase in C L B s per region. The increase in the number of

C L B s means that iPlace must use the expansion paradigm to fit the increased number of

C L B s into regions that are too small. The floorplan for the multi-region benchmarks is

generated based on the identified congested regions. Note that due to overlapping

congested regions, some floorplan regions wil l overlap. The circuit statistics for the M R

set of benchmarks are shown in Table 19, Table 20 and Table 21. For each benchmark, the

total number of C L B s , the number of "depopulated" delta C L B s and the number of

changed regions are shown. This benchmark set shows that iPlace is capable of handling

multiple overlapping regions of various sizes.

64

4.5.2. Runtime Results

Multi-Region
Circuit

M R - 5 0 M R - 4 0 M R - 30 M R - 20 M R - 1 0

C L O N E 62.8 70.0 68.3 61.5 75.9
STDEVO 67.3 66.8 55.1 56.0 66.3
STDEV010 47.1 59.7 68.6 66.5 58.5

Geometric Mean 63.0

Table 22 Runtime Speedup of iPlace relative to VPR default settings

Multi-Region
Circuit

M R - 5 0 M R - 4 0 M R - 30 M R - 20 M R - 1 0

C L O N E 6.7 7.9 7.5 6.6 8.2
STDEVO 7.6 6.9 5.6 6.5 7.1
STDEV010 4.9 6.3 8.0 7.1 5.8

Geometric Mean 6.8

Table 23 Runtime Speedup of iPlace relative to VPR "-fast" settings

Multi-Region
Circuit

M R - 5 0 M R - 4 0 M R - 30 M R - 20 M R - 1 0

C L O N E 1.2 1.5 1.4 1.5 1.3
STDEVO 1.5 1.4 1.1 1.1 1.4
STDEV010 0.9 1.3 1.7 1.4 1.2

Geometric Mean 1.3

Table 24 Runtime Speedup of iPlace relative to VPR "-superfast" settings

The run time results for Multi-Region incremental placement are presented in Table 22,

Table 23 and Table 24. These results present the speedup achieved for V P R runtime in

default, "-fast" and "-superfast" modes versus iPlace run time. Compared against V P R in

default mode, iPlace is 63 times faster. Compared against "-fast" and "-superfast" modes,

iPlace is 6.8 and 1.3 times faster respectively. For large changes such as the circuits from

the Multi-Region - 50 benchmark set (Table 19), up to 2/3 of the circuit is physically

re-synthesized and requires re-placement. The results presented above show that the

speedup achieved by iPlace does not degrade significantly even for multiple regions

65

spanning 1/3 to 2/3 of the C L B s . The conclusion drawn from the speedup results is that

iPlace is a scalable algorithm capable of handling significant changes to a netlist even for

large 50,000 L U T circuits.

4.5.3. Channel Width Results

135
x :

— '

~0 130 h

0 3

£= 125 h

6 120 \-

_Q
-2 115
O

DC
£ 110 h
Z3
E .

'E 105 h

100

—i 1 1 r—i—i—i—j-

Q
A'.

MR 50, VPR
MR 40, VPR
MR 30, VPR
MR 20, VPR
MR 10, VPR

MR 50, iPlace
MR 40, iPlace
MR 30, iPlace
MR 20, iPlace
MR 10, iPlace

-X-

• - © • -
• A -

-v-

—1 I I I l _ _ J I I I l _ _

10 100 1000
Run time (s)

10000

Figure 24 Minimum Routable CW versus Run Time for StdevOlO, M R

Figure 24 shows the minimum routable channel width versus runtime for the StdevOlO

variants of the M R benchmark suite. Similar results were reached when compared to the

single region simulations. As run time is reduced for V P R placement from scratch, the

channel width quality degrades significantly. For a 40-50x speed increase, the channel

width quality degrades by -15%. In comparison, iPlace is two orders of magnitude faster

in run time compared to a full placement. The quality of the multi region incremental

placement is slightly degraded compared to a full placement. There is a 2-4% loss in

66

channel width quality in exchange for the speed up. Compared to a "-fast" placement,

iPlace produces similar quality results but is 6-8 times.faster. Results for the other M R

benchmark circuits were similar. iPlace consistently produces excellent channel width

results with significantly reduced, run-time.
i

4.5.4. Critical Path Results

7.75

to
S, 7.5

CO
Q_

"CO
•£ 7.25

6
"D
CD
X

CD '

rr

6.75

MR 50, VPR — K -
MR40, VPR —D--
MR30, VPR — O-
MR 20, VPR A.
MR 10, VPR --v-

MR 50, iPlace —
MR 40, iPlace ------
MR 30, iPlace-.—•--
MR 20, iPlaced
MR 10, iBtece — t -

v

_ i \ • • • i _ _ i i i i i _

10 100 1000
Run time (s)

10000

Figure 25 Relaxed Critical Path versus Runtime for StdevOlO, M R

Figure 25 shows the relaxed critical path delay results for the StdevOlO circuit in the M R

benchmark suite. Similar to the previous results, iPlace produces very competitive results

at a fraction of the time. The iPlace critical path results were on par when compared against

full and fast placement from scratch using V P R . Results for the other M R circuits were

similar. There is no significant critical path increase even for large circuits incrementally

placed with multiple modified regions.

67

4.5.5. Conclusions for Multi-Region Re-synthesis Benchmarks

The results for the Multi-Region Physical Re-synthesis benchmark set were presented in

this section. Findings for the M R benchmark set include a 63 times speedup in placement

run time when comparing iPlace to V P R in default mode with 2-4% loss in channel width

and critical path quality. When comparing the faster V P R "-fast" and "-superfast" modes,

iPlace is still 6.8 and 1.3 times faster respectively with on par or better quality for channel

width and critical path. A full summary of the multi-region results are presented in

Appendix C.

A key finding is that the quality of multi-region incremental placement does not degrade

even when a substantial percentage of the circuit is modified. From Table 19, the Multi

Region-50 set of circuits have 1/3 to 2/3 of the C L B s modified. However, iPlace is still

able to produce quality results due to floor-planning and controlled expansion.

68

4.6. Experimental Conclusions

This chapter has presented the benchmarking process and results obtained while

evaluating iPlace. The aspects used to measure the quality of the incremental placement

include the runtime speedup, the minimum routable channel width, the relaxed critical

path and the placement stability. '

Three benchmarking sets were produced to evaluate iPlace. The first two benchmark sets

are used to evaluate the effectiveness of iPlace for typical incremental placement use cases.

The third benchmark set is used to evaluate the scalability of iPlace. First, the Synthetic

benchmark set simulates design changes by replacing a section of the circuit with a

synthetic clone. Second, the Physical Re-synthesis benchmark re-synthesizes part of the

clustering solution in order to target a hard F P G A constraint. Third, the Multi-Region

Physical re-synthesis benchmark set scales the re-synthesis algorithm to multiple regions

of modification and to much larger benchmark circuits.

VPR "default" / VPR "-fast" / VPR "-superfast" /
Speedup iPlace iPlace iPlace

Single Region -
Synthetic 70.1 8 1.9

Single Region -
Physical Resynthesis 71.9 8.1 2.0

Multi-region -
Physical Resynthesis 63.0 6.8 1.3

Geometric Mean 68.2 7.6 1.7

Table 25 Multi Region Run-time Speedup Summary

A summary of the run-time speedup obtained with iPlace is presented in Table 25. Overall,

the results show that iPlace is significantly faster than placement using V P R . When

comparing iPlace to V P R in default mode, iPlace is 63 to 72 times faster in run time. There

was no obvious channel width or critical path quality degradation for the single region

69

benchmarks. For the multi-region benchmark set, a 2-4% quality degradation was

observed for channel width and critical path. In addition to comparing iPlace to a full

placement via V P R , comparisons were also made to the "-fast" (inner_num=l) and

"superfast"(inner_num=0.125) modes of operation. When comparing iPlace to V P R

"-fast", iPlace was 6.8 to 8 times faster. When comparing iPlace to V P R "-superfast",

iPlace was 1.3 to 2.0 times faster. In terms of quality, iPlace always produced on par results

compared "-fast" and was significantly better than "-superfast". It is also shown that iPlace

is a stable placement algorithm. On average, unmodified C L B s travel ~2 C L B units from

their previous placement location.

Observation3:

When examining the channel width to run-time trade off curves (Figure 20, Figure 22,

Figure 24), the iPlace curve is always positioned below the V P R curve. This indicates that

the quality versus run-time trade-off for iPlace is better than V P R . In fact, V P R

experiences up to 15-20% degradation in channel width quality as the run-time is reduced

by 100 times. In comparison, iPlace is able of producing V P R full placement quality

results with the two-orders less in magnitude in run time.

Observation 4:

There was no obvious routing quality degradation with iPlace for the range of inner_num

values used (1 to 3), but it was observed that values below 1 do provide lower quality

results. In fact, lowering inner_num too low is equivalent to omitting the annealing step

altogether. We observed roughly 10% critical path delay increase and 20% bounding box

cost increase when the low temperature annealing step is left out from iPlace. Without

annealing, the run time is too fast to measure.
70

Full Results

The full results obtained for the three benchmarking schemes are provided in Appendix A ,

Appendix B and Appendix C. The tables show the run time (RT), channel width (CW),

critical path (CP), total post-placement bounding box cost (Bbox) and the total

post-routing wirelength (WL) of iPlace. Normalized comparisons of V P R default, V P R

"-fast", V P R "-superfast" to iPlace are also provided. The columns ending in Q, such as

C W Q , show channel width (CW) quality (Q) normalized to iPlace.

71

5. Qualitative comparisons

We believe that there are no other general incremental placement algorithms available for

academic F P G A research, so we are unable to present head-to-head comparisons in terms

of runtime and quality results. Instead, this section wil l present a "qualitative" comparison

of relevant incremental placement algorithms and fast placement approaches.

The most relevant incremental placement algorithm is the Singh and Brown ICP placer

[54] 1 3 . The authors benchmarked the ICP placer with -15% modified LEs to several

M C N C circuits. The paper reported an 8x speedup compared to V P R . Also, they analyzed

the run-time complexity of the algorithm and reported that as the number of modified L E

increases, the algorithm wi l l eventually be slower than a full placement by V P R . In

comparison, this thesis has shown that iPlace is a scalable algorithm capable of handling

large multi-region modifications. iPlace achieves a 63 times speed up even when up to 2/3

of a circuit is modified and incrementally placed. The key differentiation between iPlace

and ICP is that iPlace uses floor-planning and partial design shifting. These simple

algorithms are C P U efficient compared to proposing and evaluating cost changes for every

L E or C L B swap.

Other incremental placement algorithms presented in Section 2.3 did not present speedup

results. We believe that iPlace is the first fully general purpose incremental placement

algorithm available for FPGAs . We hope that iPlace wil l be followed by future incremental

placement research that can be compared to the results found by this thesis.

1 3 We contacted the authors, but were unable to obtain benchmarks or source code for
comparison

72

Because there are no other suitable incremental F P G A placement results to compare, we

compare iPlace to other fast full-placement schemes. The ultra-fast placement algorithm

by Sankar achieves 52x speedup and increases bounding box cost 33% over default V P R

[61] 1 4. Mulpuri compared critical path versus runtime of different placement algorithms,

showing ~10x speedup reduces quality by -30% [60]. The Frontier system by Tessier

computes a good floorplan of pre-designed macro blocks followed by a low-temperature

anneal, improving both placement run-time by ~17x and critical path by -10% versus

Xi l inx software [62]. In contrast, this thesis achieves 35-260 times speedup with no

increase to critical path, channel width, or bounding box.

Overall, we believe that iPlace is a unique algorithm for incremental F P G A C A D flows. In

comparison to other F P G A incremental algorithms, iPlace is more scalable and faster when

compared to V P R . The results found in this thesis showed an approximate 60x speedup for

iPlace versus an 8x speedup for the ICP algorithm. Although academic research in this area

is limited, we hope future work wi l l provide additional comparisons. Compared to fast

placement algorithms, iPlace shows similar speedups but do not exhibit the quality

degradations suffered as a trade-off for speed. iPlace is able to generate the same high

quality placement as a full placement from scratch.

Sankar used an older version of V P R that is not timing-driven.
73

6. Conclusions and Future Work

In this thesis, we have presented a new incremental placement algorithm iPlace that

significantly reduces the placement time for changes to an already placed circuit. The key

ideas contributing to this algorithm include the use of an initial placement, floor planning,

shifting and a placement super-grid. The iPlace algorithm consists of four steps. The first

step is the use of an initial placement and floor-planning. The second step is the insertion of

modified C L B s using the placement super-grid. The third step is the re-legalization of the

placement through compaction. The final step is a short simulated annealing refinement to

optimize the solution.

Three suites of benchmarks circuits were designed to determine the performance of iPlace.

First, the single-region synthetic set simulates design changes by significantly modifying a

region of logic using the Perturber + Mutator flow [3] [4]. Second, the single-region

physical re-synthesis set simulates a re-synthesis change to target a channel width

constraint. Using the Un/DoPack flow [1] where white space is inserted into fully packed

C L B s . Third, the multi-region physical re-synthesis benchmark set simulates multiple

design changes across multiple regions for large benchmark circuits. Multiple "congested"

regions were selected and depopulated using Un/DoPack to target a percentage reduction

in the minimum channel width.

VPR "default" / VPR "-fast" / VPR "-superfast" /
Speedup iPlace iPlace iPlace

Single Region -
70.1 8 1.9

Synthetic
70.1 8 1.9

Single Region -
71.9 8.1 2.0

Physical Resynthesis
71.9 8.1 2.0

Multi-region -
Physical Resynthesis 63.0 6.8 1.3

Geo.Mean 68.2 7.6 1.7

74

Table 26 Overall Run-time Speedup Summary

A summary of the results achieved using iPlace is presented in Table 26. Table 26 presents

the speedup achieved using iPlace compared to V P R in "default" mode, V P R in quality

reduced "-fast" mode and V P R in a newly created "-superfast" modes.

For single region synthetic benchmarks, it was found that iPlace is 70 times faster than

V P R in default mode with no channel width or critical path degradations. Even when

compared to the quality reduced "-fast" and "-superfast" modes of V P R , iPlace is still 8.0

and 1.9 times faster respectively.

For single region physical re-synthesis benchmarks, it was found that iPlace is 71.9 times

faster than V P R in default mode. The results and speedups observed for the single-region

physical re-synthesis benchmark set were similar to the single-region synthetic benchmark

sets.

When considering multi-region incremental placement, iPlace is a very competitive

algorithm. With 1/3 to 2/3 of a circuit modified, iPlace produces results with less than 4%

loss in quality but 63 times faster compared to a full V P R placement. Compared to V P R

"-fast" and "-superfast" placement, iPlace is 6.8 and 1.3 times faster with no loss in quality.

This shows that iPlace is an algorithm, capable of scaling to significant modifications

throughout a circuit.

On average, iPlace is 68.2 times faster than V P R in default mode with negligible

degradation in placement quality. This is a significant performance increase considering

that V P R in "-superfast" mode, which is still ~2x slower, results in a significant channel
75

width degradation of -15-20%.

Finally, we believe that iPlace is the first incremental placement algorithm for FPGAs

capable of handling multiple regions of incremental modification with substantial run-time

improvements and no quality degradations.

6.1. Future work

This thesis concludes with a summary of future follow up work to the iPlace algorithm.

The iPlace algorithm is currently implemented as part of V P R and lacks support for several

elements found in commercial FPGAs . Also, the algorithm is simplistic, and may be

improved upon with further extensions to the shifting, compaction and refinement phases.

Finally to provide an end to end incremental flow, incremental routing should also be

considered.

6.1.1. Support for Macro Blocks

Commercial FPGAs contain macro blocks^such as DSPs, memories and multipliers. The

current academic toolset available (VPR) has not been extended to model such elements.

Future research for FPGAs wi l l hopefully extend the academic framework to support such

elements. Once the underlying structures have been modeled, iPlace can then be modified

to implement the proposed solutions from Section 3.8 for macro blocks. The performance

and quality impact for macro blocks wi l l need to be investigated.

6.1.2. Support for Carry Chains

Similar to the support for macro blocks, current academic tools do not model carry chains.

Future research into carry chains wi l l hopefully extend the framework to support such
76

structures. The proposed solutions in Section 3.8 for carry chains can then be implemented,

so that the performance and quality tradeoffs can be examined.

6.1.3. Smart Shifting

The current iPlace algorithm relies on a simplistic shifting scheme for the expansion and

compaction phases. Extensions to the shifting scheme include more balanced shifting to

sides with more empty C L B s . Also shifting to take into account macro-blocks and carry

chains must also be examined. Changes to the shifting scheme must be considered

carefully. The run-time implications must be thoroughly examined so that the speed-up is

not degraded. In all, a "keep it simple" approach should be followed.

6.1.4. Analytical Placement Refinement Stage

Instead of using Simulated Annealing for the refinement phase of iPlace, other placement

algorithms can also be considered to optimize the solution. One example would be the use

of analytical placement algorithms such as [39] to make small changes.

6.1.5. Integration with Commercial tools

The current implementation of iPlace is tightly integrated into the TV-Pack and V P R C A D

flow. It would be interesting to port and adapt iPlace into commercial frameworks such as

Altera's Quartus II framework through the Quartus University Interface Program (QUIP)

package [65]. This wi l l enable the exploration of the performance of iPlace in a

commercial quality C A D environment with commercial F P G A architectures. Integration

with Quartus II was attempted, but it was discovered that the Quartus C A D flow performs

simultaneous clustering and placement. Imposing an external clustering constraint leads to

extremely long run times. Future work is required to optimize the integration between
77

iPlace and Quartus.

6.1.6. Incremental Routing

Placement and routing dominates the majority of the F P G A C A D flow. In order to fully

complement incremental placement, incremental routing is also necessary to produce an

end-to-end incremental C A D flow. For today's largest circuits, a full compilation could

take an entire workday,to complete. With end-to-end incremental compilation, this wi l l

hopefully reduce the compilation time necessary for incremental development.

One drawback to the iPlace approach is that it tends to shift most of the C L B s some

amount. This wi l l likely make the previous routing solution useless. Investigation into

placement shifting that can co-exist with incremental routing are needed.

78

BIBLIOGRAPHY

[I] M . Tom, D. Leong, G. Lemieux, "Un/DoPack: Re-Clustering of Large
System-on-Chip Designs with Interconnect Variation for Low-Cost FPGAs" ,
I C C A D , 2006

[2] D. Leong, G . Lemieux, "iPlace, an incremental placement algorithm", Submitted
to F P G A 2007.

[3] D. Grant, G. Lemieux, " A Semi-Synthetic Circuit Generation Technique for
Testing Incremental Placement and Incremental Routing Tools", FPT, 2006.

[4] D. Grant, G. Lemieux, "Terturber+Mutator: Semi-Synthetic Circuit Scaling for
Testing Incremental Place and Route Tools", submitted for review, IEEE
Transactions on Computer-Aided Design, 2006.

[5] V . Betz, J. Rose, and A . Marquardt, "Architecture and C A D for
Deep-Submicron FPGAs" , Kluwer Academic Publishers, Boston, 1999.

[6] D. Lewis, V . Betz, et al., "The Statix Routing and Logic Architecture", A C M
International Symposium on Field-Programmable Gate Arrays, pp. 12-20, February
2002.

[7] Xi l inx , Virtex-II Pro Platform FPGAs : Functional Description, ver. 2.0, June 13,
2002.

[8] A . Marquardt, V . Betz, and J. Rose, "Using Cluster-based Logic Blocks and
Timing-Driven Packing to Improve F P G A Speed and Density", A C M International
Symposium on Field-Programmable Gate Arrays, pp. 37-46, February 1999.

[9] G.Lemieux, D. Lewis, "Design of Interconnection Networks for Programmable
Logic", Springer 2004

[10] G. Lemieux, E. Lee, M . Tom, and A . Y u , v vDirectional and Single-Driver Wires
in F P G A Interconnect", IEEE International Conference on Field-Programmable
Technology, Brisbane, Australia, pp. 41-48, December 2004.

[II] Xi l inx Virtex-V Product Brochure:
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/Virtex-5_L
X_LXT_Product_Table.pdf

[12] J. Cong and Y . Ding, "FlowMap: A n Optimal Technology Mapping Algorithm
for Delay Optimization in Lookup-Table Based F P G A Designs", IEEE Trans, on
Computer-Aided Design, vol. 13, no. 1, pp. 1-12, January 1994.

[13] J. Cong, Y . Ding, "On Area/Depth Trade-off in LUT-Based F P G A Technology
Mapping", IEEE Transactions on V L S I Systems, V o l . 2, No. 2, pp. 137-148, June
1994.

79

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/Virtex-5_L

[14] J. Cong, and Y . Hwang, "Simultaneous Depth and Area Minimization in
LUT-Based F P G A Mapping", A C M International Symposium on
Field-Programmable Gate Arrays, Monterey, C A , pp. 68-74, February 1995.

[15] J. Cong, and Y . Hwang, "Structural Gate Decomposition for Depth-Optimal
Technology in LUT-based F P G A Designs", T O D A E S , V o l . 5, no. 3, July 2000.

[16] J.Cong and D.Chen, "DAOmap: A Depth-Optimal Area Optimization Mapping
Algorithm for F P G A Designs", I C C A D 2004 pp 752-759

[17] K.Karplus, "Xmap: A Technology mapper for table-loopup field
programmbable gate arrays", in Proc. 28 t h A C M / I E E E Design Automation
Conference, 1991. pp 240-243

[18] R.J.Francis, J.Rose, K.Chung, "Chortle: A technology mapping program for
lookup table based field programmable gate arrays", in Proc. 27 t h A C M / I E E E
Design Automation Conf, 1990, pp 613-619

[19] R.J.Framcis, J.Rose, Z. Vranesic, "Chortle-crf: Fast technology mapping for
lookup table-based FPGAs" , 28 t h , A C I / I E E E Design Automation Conference,
1991, pp.613-619

[20] R.Murgai, et al., "Logic synthesis algorithms for programmable gate arrays",
Proc 27 t h A C M / I E E E Design Automation Conference, 1990, pp 620-625

[21] R.Murgai, et al., "Improved logic synthesis algorithms for table look up
architectures", IEEE International Conference on Computer-Aided Design, Nov
1991, pp 564-567

[22] J. Cong, L . W . Hagen, and A . B . Kahng, "Random Walks for Circuit Clustering",
IEEE Conference on Application Specific Integrated Circuits, pp. 14.2.1-14.2.4,
June 1991.

[23] J. Cong and M . Smith, " A Parallel Bottom-up Clustering Algorithm with
Applications to Circuits Partitioning in V L S I Design", A C M / I E E E Design
Automation Conference, pp.755-60, 1993. .

[24] J. Cong and S.K. L im, "Edge Separability based Circuit Clustering with
Application to Circuit Pardoning", A C M / I E E E Asia South Pacific Design
Automation Conference, pp. 429-434, 2000.

[25] A . Singh and M . Marek-Sadowska, "Efficient Circuit Clustering for Area and
Power Reduction in F P G A s , " F P G A , 2002.

[26] L . W . Hagen and A . B . Kahng, "Combining Problem Reduction and Adaptive
Multi-Start: A New Technique for Superior Iterative Partitioning", IEEE
Transactions on Computer-Aided Design, pp. 709-717, 1997.

[27] D.J .H Huang and A . B . Kahng, "When Clusters Meet Partitions: New
Density-Based Methods for Circuit Decomposition", European Design and Test
Conference, pp. 60-64,1995.

80

[28] M . Dehkordi and S. D. Brown, "The Effect of Cluster Packing and Node
Duplication Control in Delay Driven Clustering", IEEE International Conference
on Field Programmable Technology, pp. 227-233, 2002

[29] R. Murgai, R: Brayton and A . Sangiavanni-Vincentelli, "On Clustering for
Minimum Delay/Area", IEEE International Conference on Computer Aided
Design, pp.6-9, 1991.

[30] H . Yang and D. Wong, "Circuit Clustering for Delay Minimization Under Area
and Pin Constraints", IEEE Transactions on Computer Aided Design, V o l . 16, No.
9, pp. 976-986, 1997.

[31] J. Pistorius and M . Hutton, "Placement Rent Exponent Calculation Methods,
Temporal Behavior and F P G A Architecture Evaluation", International Workhop on
System-Level Interconnect Prediction, pp 31-38, 2003

[32] A . Marquardt, V . Betz, and J. Rose, "Timing-Driven Placement for FPGAs" , .
A C M International Symposium on Field-Programmable Gate Arrays, Monterey,
C A , pp. 203-213, February 2000.

[33] S. Kirkpatrick, C. Gelatt, and M . Vecchi, "Optimization by Simulated
Annealing", Science, pp. 671-680, 1983.

[34] C. Sechen and A . Sangiovanni-Vincentelli, "TimberWolf Placement and
Routing Package", JSSC, pp. 510-522, 1985.

[35] M . Huang, F. Romeo, and A . Sangiovanni-Vincentelli, " A n Efficient General
Cooling Schedule for Simulated Annealing", International Conference on
Computer Aided Design, pp. 381-384, 1986.

[36] J. Kleinhans, G. Sigl, F. Johannes, and K . Antreich, "Gordian: V L S I Placement
byQuadratic Programming and Slicing Optimization", IEEE Transactions on
Computer-Aided Design, pp. 356-365, 1991.

[37] G . Sigl, K . Dol l and F. Johannes, "Analytical Placement: A Linear or Quadratic
Objective Function?", A C M / S I G D A Design Automation Conference, pp. 427-432,
1991. ' •

[38] B . Riess, K . Dol l , and F. Johannes, "Partitioning Very Large, Circuits Using
Analytical Placement Techniques", A C M / S I G D A Design Automation Conference,
pp. 646-651, 1994.

[39] K . Vorwerk, A . Kennings, A . Vannelli, "Engineering Details of a Stable
force-Directed Placer", A C M / I E E E International Conference on Computer Aided
Design, pp. 573-580, Nov. 7-11, 2004.

[40] A . Dunlop and B . Kernighan, " A Procedure for Placement of Standard-Cell
V L S I Circuits", IEEE Transactions on Computer-Aided Design, pp. 92-98, 1985.

[41] D. Huang and A . Kahng, "Partitioning-Based Standard-Cell Global Placement
with an Exact Objective," A C M Symposium on Physical Design, pp. 18-25, 1997.

81

[42] J. Rose, W. Snelgrove and Z . Vranesic, " A L T O R : A n Automatic Standard Cell
Layout Program", Canadian Conference on V L S I , pp. 169-173, 1985.

[43] J.Lam, J M Delosme, "Performance of a New Annealing Schedule", D A C , 1988

[44] J.S. Rose, "Parallel Golbal Routing for Standard Cells", IEEE Transactions on
Computer Aided Design, pp. 1085-1095, 1990.

[45] Y . Chang, S. Thakur, K . Zhu, and'D. Wong, " A New Global Routing Algorithm
for FPGAs" , International Conference on Computer Aided Design, pp. 356-361,
1994.

[46] S. Brown, J. Rose, Z .G . Vranesic, " A Detailed Router for Field-Programmable
Gate Arrays", IEEE Transactions on Computer Aided Design, pp. 620-628, 1992.

[47] G. Lemieux, S. Brown, " A Detailed Router for Allocating Wire Segments in
FPGAs" , A C M Physical Design Workshop, pp. 215-226, 1993.

[48] G. Lemieux, S. Brown, D. Vranesic, "On Two-Step Routing for FPGAs" , A C M
Symposium on Physical Design, pp. 60-66, 1997.

[49] M . Placzewski, "Plane Parallel A * Maze Router and Its Application to FPGAs" ,
A C M Design Automation Conference, pp. 691-697, 1990.

[50] L . McMurchie, and C. Ebeling, "PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs" , A C M / S I G D A International Symposium
on Field-Programmable Gate Arrays, Monterey, C A , pp. 111-117, February 1995.

[51] Y . - L . Wu, M . Marek-Sadowska, " A n Efficient Router for 2-D
Field-Programmable Gate Arrays", European Design Automation Conference, pp.
412-416, 1994.

[52] Y . -S . Lee, A . Wu, " A Performance and Routability Driven Router for FPGAs
Considering Path Delays", A C M Design Automation Conference, pp. 557-561,
1995.

[53] J. Cong, M . Sarrafzadeh, "Incremental Physical Design," International
Symposium on Physical Design, 2000, pp. 84-92.

[54] D. Singh, S. Brown, "Incremental Placement for Layout Driven Optimizations
on FPGAs , " I C C A D 2002, pp 752-759.

[55] P. Suaris, L . L i u et al, "Incremental Physical Resynthesis for Timing
Optimization," F P G A , 2004, pp. 99-108.

[56] N . Togawa, K . Hagi, M . Yanagisawa, " A n Incremental Placement and Global
Routing Algorithm for Field Programmable Gate Arrays," A S P - D A C , 1998.

[57] C.S. Choy, T.S. Cheung, K . K . Wong, "Incremental layout placement
modification algorithms," IEEE T C A D , Apr i l 1996, pp 437-445.

82

[58] J. L i , J. Y u , H . Miyashita, " A n Incremental Placement Algorithm for Building
Block Layout Design Based on the 0_tree Non-Slicing Representation," Int'l.
Conf. on Communications, Circuits and Systems, 2004. pp 1248-1252

[59] Z . L i , W . Wu, X Hong, J. Gu, "Incremental Placement Algorithm for standard
Cell Layout," IEEE ISCAS, 2002, pp 883-886 V o l 2.

[60] C. Mulpuri, S. Hauck, "Runtime and Quality Tradeoffs in F P G A Placement and
Routing," F P G A , 2001.

[61] Y . Sankar, J. Rose, "Trading Quality for Compile Time: Ultra-fast Placement for
FPGAs , " F P G A , 1999.

[62] R. Tessier, "Fast Placement Approaches for F P G A s , " A C M Trans, on Design
Automation of Electronic Systems, Apri l , 2002, pp 284-305.

[63] Altera Stratix II, http://www.al.tera.com/products/devices/stratix2/st2-i ndex.jsp

[64] G. Lemieux, D. Lewis, "Circuit Design of F P G A Routing Switches", F P G A ,
2002

[65] Quartus University Interface Program (QUIP),
http://www.altera.corn/education/univ/research/unv-quip.html

[66] Saeyang Yan, "Logic Synthesis and Optimization Benchmarks User Guide,
Version 3.0", M C N C , Research Triangle Park, N C , Jan 1991.

83

http://www.al.tera.com/products/devices/stratix2/st2-i
http://www.altera.corn/education/univ/research/unv-quip.html

Appendix A : Single-Region Synthetic Benchmark Results

Original Synthetic 2.5 Synthetic 5

#CLB New # CLB ACLB New # CLB ACLB
alu4 153 153 3 153 9
apex2 188 188 9 188 9
apex4 127 127 3 127 9
bigkey 171 171 9 171 9
clma 839 839 25 839 "49
des 160 160 9 . 160 9 -
diffeq 150 150 3 150 9
dsip 137 137 ' 3 137 9
elliptic 361 • 361 9 361 25
ex5p 107 107 2 107 9
exlOlO 460 460 15 460 25
frisc 356 356 9 356 25
misex3 140 140 3 140 9
pdc 458 458 15 458 25
s298 194 194 9 194 9
S38417 641 641 25. 641 35
S38584 645 645 25 645 35
seq 175 175 9 175 9
spla 369 369 9 369 22
tseng 105 105 3 105 9

Table 27 Single-Region Synthetic Benchmark Circuit Statistic

Original

#CLB

Synthetic 10

New # CLB ACLB

Synthetic 2.5d

New # CLB ACLB

Synthetic 5d
New #
CLB ACLB

alu4 153 153 ' 15 153 9 175 37
apex2 188 188 25 202 23 221 58
apex4 127 127 15 127 9 127 15
bigkey 171 171 25 . 171 8 ^ 171 25
clma 839 839 99 899 109 967 227
des 160 160 24 173 22 192 56
diffeq 150 150 22 166 25 150 24
dsip 137 137 15 137 9 137 15
elliptic 361 361 49 361 25 361 49
ex5p 107 107 15 107 5 122 26
exlOlO 460 460 46 496 61 460 46
frisc 356 356 35 356 25 356 35 '
misex3 140 140 15 140 9 158 33
pdc 458 458 49 490 57 525 116
s298 194 194 25 194 9 194 25
s38417 641 641 81 692 86 767 207
S38584 645 645 79 645 35 777 213 •
seq 175 175 25 175 9 208 57 •
spla 369 369 49 408 64 440 120
tseng 105 105 14 105. 9 105 15

Table 28 Single-Region Synthetic Benchmark Circuit Statistic Cont'

85

Synthetic circuits
RT (s) CW

iPlace (inner_
CP (ns)

num=l)

Bbox WL (*104)
alu4 p25 0.2 32' 13.49 68.5 0.88

p5 0.2 32.8 13.15 69.2 0.89
plO 0 33 15.42 69.0 0.89
p25d 0 32.8 .' 12.93 69.3 0.88
p5d 0 32 14.99 78.6 1.02

apex2 p25 0.4 42.4 14.34 107.4 1.46
p5. 0 42.4 14.66 107.8 1.47

* plO 0.4 42 14.20 107.7 1.46
p25d 0.2 41.6 15.69 116.5 1.60
p5d 0.2 42.8 17.11 126.1 1.71

apcx4 ' p25 0 45 13.72 76.8 1.04
p5 0.2 44.4 12.58 77.1 1.04
plO 0 44.8 12.58 76.4 1.03
p25d 0 44.8 13.42 76.7 . 1.04
p5d 0 , 44.2. 13.08 77.1 1.03

bigkey p25 0.4 41.8 6.13 63.8 0.90
P5 0.4 42.4 6.62 63.6 0.90
plO 0.4 40.2 6.15 65.1 0.92
p25d 0.2 42.2 6.20 63.5 0.90
P5d 0 41 6.26 65.7 0.92

clma p25 3 51.8 27.02 ' 528.8 6.76
p5 3 51.2 26.4? 529.5 6.78
plO 3 52.2 26.88 536.9 6.88
p25d 3 • 50.6 30.91 572.7 7.23
p5d 4 54.2 31.97 644.4 8.26

Table 29 Single-Region Synthetic Benchmark Placement Results

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time .
W L Total WireLength
WLQ WireLength Quality

Synthetic circuits
RT (s) cw

iPlace (inner_num=l)
CP (ns) Bbox WL (*104)

des p25 0 50.6 10.91 64.8 1.00
p5 0.2 51 10.87 65.1 1.00
plO 0 48.6 10.82 67.1 1.04
p25d 0.2 50.6 12.35 72.5 s 1.10
p5d 0 46.8 13.29 77.8 1.16

diffeq p25 0.2 22 18.94 47.1 . 0.62
p5 0.2 22.2 19.29 46.9 0.61
plO ' 0 23.8 19.38 49.0 0.65
p25d 0 23.2 19.48 52.1 0.67
p5d 0 22.6 19.38 48.5 0.64

dsip p25 0 •37.2 6.32 45.8 0.66
p5 0 37.2 6.38 46.0 0.66
plO 0 37 6.35 46.2 0.67
p25d 0.4 37.4 6.32 46.1 0.66
p5d 0.2 ' 37.2 6.43 46.4 0.67

elliptic p25 0.2 36.4 24.47 157.3 2.06
p5 0.4 38.2 24.96 159.7 2.06
plO 0.4 37.6 24.45 161.8 2.10
p25d 0 36.2 24.26 159.8 2.07
p5d 0.6 37.6 24.97 • 161.0 " 2.09

ex5p p25 0.2 . 44.2 14.19 63.4 0.89
p5 0 44.8 13.12 63.6 0.90
plO 0 43.6 15.76 63.4 0.88
p25d 0 44 15.14 63.4 0.89
P5d 0 43.6 14.64 70.6 0.99

Table 30 Single-Region Synthetic Benchmark Placement Results cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to-iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ . WireLength Quality

87

Synthetic circuits
RT (s) CW

iPlace (inner_num=l)
CP (ns) Bbox WL (*104)

exlOlO p25 1 47 17.82 277.8 3.66
p5 1 46.6 16.85 276.3 3.63
plO 1 46.4 16.81 277.3 3.64
p25d 1.2 46.2 18.03 299.5 3.95
p5d 1 47 17.11 279.1 3.68

frisc p25 0.6 47.4 30.59 197.5 2.64
p5 1 46.8 29.53 . 198.6 2.65
plO 0.6 48.4 28.11 199.4 2.64
p25d 1 47.6 28.87 199.5 . 2.64
p5d 0.6 47.2 28.83 200.5 2.67

misex3 p25 0 37.4 11.39 71.1 0.94
p5 0 37.6 13.72 71.3 0.94
plO 0. 37.6 11.73 71.2 0.94
p25d 0 38.6 13.33 72.1 0.96
p5d 0 37.6 13.74 81.0 1.08

pdc p25 1 61.4 19.79 348.6 4.67
p5 1.2 62 18.88 348.4 4.64
plO 1.2 60.6 21.02 347.2 4.65
p25d 1 61.2 25.25 367.6 4.93
p5d 1.4 61.6 23.00 402.8 5.34

s298 p25 0 26.2 24.79 71.4 0.85
p5 0 25.8 23.16 71.6 0.86
plO 0.2 26 23.74 71.5 0.85
p25d 0.4 25.8 23.41 71.4 0.85
p5d 0 26.8 23.60 72.4: 0.87

Table 31 Single-Region Synthetic Benchmark Placement Results cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation i
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

Synthetic circuits
RT(s) cw

iPlace (inner.

CP (ns)

num=l)

Bbox WL (*104)
S38417 p25 1.2 30.4 18.16 241.7 3.00

p5 1.8 30 17.97 239.8 2.96
plO 1.8 31!2 18.61 243.5 3.04
p25d 2 . 30.6 18.41 263.1 3.30
p5d 2 38.8 22.81 318.1 3.89

s38584 p25 1 32.4 14.84 239.9 2.96
p5 2.2 31.8 15.27 240.3 2.97
plO 1.2 33.4 15.51 241.5 2.99
p25d 1.6 33 15.31 241.0 2.98
p5d 2 37.6 19.51 312.6 3.82

seq p25 0 40.4 12.19 98.0 1.33
PS 0.2 40.4 12.51 98.5 1.33
plO 0.4 40.6 14.12 98.6 1.33
p25d 0.4 40.8 13.29 98.6 1.33
p5d 0.4 40.8 14.73 116.4 1.56

spla p25 0.6 51.6 17.29 230.6 3.11
p5 0.8 . 51.8 19.24 230.8 3.13
plO 1 51 17.69 230.4 3.13
p25d 0.6 49.8 19.58 250.5 3.37
P5d 1.2 53.8 20.80 289.1 3.84

tseng p25 0 21.2 16.42 31.1 0.41
P5 0 21 16.49 30.9 0.41
plO 0 21.4 16.42 32.3 0.43
p25d 0 21.2 16.35 31.5 0.42
p5d 0 21.8 16.49 32.2 0.44

Table 32 Single-Region Synthetic Benchmark Placement Results cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
B B Q Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
W L Q WireLength Quality

Synthetic circuits
Speedup

VPR
CWQ

"default"
CPQ

/ iPlace
BBQ WLQ

alu4 p25 33.00 1.01 0.94 0.99 0.98
P 5 35.00 , 0.99 0.98 0.98 ' 0.99
p10 0.97 0.84 0.99 . 0.97
p25d i' - 0.99 0.98 0.99 1.00
p5d - 0.98 0.96 0.96 0.95

apex2 p25 30.00 0.98 1.00 0.99 0.99
p5 - 0.99 0.93 0.99 0.97
p10 30.00 1.00 . 0.98 0.98 0.99
p25d 67.00 0.98 0.99 0.98 0.97
p5d 78.00 0.99 0.93 0.98 0.98

apex4 p25 - 0.97 0.94 " 0.99 0.98
p5 34.00 1.00 1.00 0.99 0.98
p10 - 0.98 0.99 0.99 . 0.98
p25d - 1.00 1.20 0.99 0.98
p5d - 1.00 0.99 0.99 0.98

bigkey p25 42.00 1.02 1.03 0.97 0.97
p5 43.00 1.02 0.93 0.97 0.98
p10 45.50 1.03 1.00 0.97 0.99
p25d 84.00 0.95 0.99 0.96 0.98
p5d - 1.04 0.99 0.95 0.96

clma p25 72.00 0.97 0.95 0.98 0.97
p5 70.80 0.96 0.97 0.99 0.98
p10 73.53 0.98 0.96 0.98 0.98
p25d 80.27 1.00 0.89 0.98 0.97
p5d 69.95 1.00 0.99 0.98 0.97

Table 33 Relative performance VPR "-default" versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

\

Synthetic circuits
Speedup

VPR
CWQ

"default" / iPlace
CPQ BBQ WLQ

des p25 - "1.00 1.00 0.98 0.97
p5 89.00 1.00 1.01 0.98 0.98

. p10 1.07 1.00 0.97 , 0.97
p25d 102.00 0.93 0.96 0.97 0.96
p5d - 1.09 0.89 0.96 0.98

diffeq p25 39.00 1.01 1.00 , 0.96 0.97
p5 40.00 1.02 0.97 0.97 1.00
p10 - 1.00 0.98 0.97 0.96
p25d - 0.99 0.99 0.96 0.97
p5d - 0.99 0.98 0.98 0.99

dsip p25 - 1.04 0.98 0.99 0.99
p5 - 1.05 0.98 0.98 0.99
p10 - 1.04 0.98 0.98 0.99
p25d 34.00 1.05 0.98 0.98 0.99'
p5d 69.00 1.04 0.95 0.98 0.98

elliptic p25 175.00 1.03 1.26 1.00 1.00
p5 89.00 1.00 0.95 0.99 1.01
p10 93.50 0.99 0.98 1.00 1.00
p25d - 1.03 0.99 1.00 / 0.99
p5d 60.67 1.01 0.96 1.00 1 1.00

ex5p p25 32.00 1.00 0.91 0.99 0.98
P 5 - 0.96 1.10 . .0.99 0.97
p10 - 1.01 0.82 0.99 1.00
p25d - 0.98 0.88 0.99 0.99
p5d - 0.98 0.94 0.98 0.98 '

Table 34 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-default" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

91

Synthetic circuits Speedup
VPR

CWQ
"default"

CPQ
/ iPlace

BBQ WLQ
ex1010 p25 77.60 0.99 0.91 0.99 0.99

p5 75.00 0.99 0.95 0.99 1.00
p10 77.00 1.03 • 0.97 0.99 0.99
p25d 69.00 1.00 1.04 0.98 0.97
p5d 76.20 1.01 0.99 0.99 0.99

frisc p25 80.67 0.95 0.94 0.97 0.96
p5 46.20 0.98 0.98 0.97 0.96
p10 78.67 0.96 0.99 0.98 0.96
p25d 47.00 0.95 0.99 0.97 0.97 .
p5d 79.33 0.98 0.97 0,97 0.96

misex3 p25 - 1.01 1.17 0.99 0.98
p5 - 0.99 0.83 0.99 0.99
p10 - 0.99 1.09 0.99 0.99
p25d - 0.97 0.85 0.99 0.98
p5d - 0.99 1.44 0.98 0.99

pdc p25 80.60 1.00 1.08 0.99 0.97
p5 64.00 0.98 1.27 0.99 0.98
p10 68.67 1.01 0.96 0.99 0.97
p25d 84.40 0.98 0.78 0.98 0.98
p5d 68.14 1.01 0.97- 0.99 0.98

s298 p25 - 0.97 0.93 0.98 0.99
P5 - 0.99 0.99 0.98 0.98
p10 38.00 0.98 0.99 0.98 0.98
p25d 19.00 0.97 1.01 0.98 . 0.99
p5d - 0.95 0.99 0.97 0.97

Table 35 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-default" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

Synthetic circuits Speedup
VPR

CWQ
"default" / iPlace

CPQ BBQ WLQ
S38417 p25 73.67 1.00 0.94 0.99 0.99

p5 50.67 1.01 0.96 0.98 0.99
p10 50.22 0.99 1.02 0.98 0.97
p25d 49.10 0.98 0.93 0.97 0.97
P 5d 63.60 0.91 0.95 0.96 0.96

S38584 p25 104.40 1.08 0.98 0.96 0.95
p5 48.55 1.03 0.96 0.96 , 0.96
p10 90.17 0.96 0.97 0.95 ' 0.95
p25d 65.75 1.04 0.95 0.96 0.95
p5d 76.90 1.03 0.97 0.93 0.94

seq p25 - 1.00 0.99 • 0.99 1.00
p5 61.00 1.00 1.07 • 0.99 0.99
p10 30.50 0.99 0.83 0.99 0.99
p25d 29.50 1.00 1.01 0.99 0.99
p5d 36.00 0.99 0.93 0.98 0.98

spla p25 75.67 0.98 0.96 0.99 0.99
P 5 55.50 0.99 0.90 1.00 0.98
p10 44.80 1.01 0.97 1.00 0.98
p25d 84.00 1.03 0.92 1.00 1.00 ,
p5d 51.17 0.98 0.96 0.98 0.97

tseng p25 - 1.00 1.00 0.98 0.99
p5 - 1.0.1 1.00 0.98 1.00
p10 - 1.02 1.01. 0.98 0.97
p25d - 1.01 1.00 0.97 0.98
p5d - 1.00 0.99 0.97 0.97

Geo. Mean 58.47 1.00 0.98 0.98 0.98

Table 36 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-default" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

) -

93

Synthetic circuits Speedup CWQ
VPR "-fast" / iPlace

CPQ BBQ WLQ
alu4 p25 5.00 0.99 0.95 0.99 0.99 -

p5 5.00 0.99 0.98 1.00 1.01
p10 / - 0.98 0.88 0.99 1.00
p25d - 1.01 1.14 1.00 1.01
p5d - 0.99 1.03 0.98 0.97

apex2 p25 4.00 1.00 1.06 1.00 1.00
p5 - 1.00 0.95 1.00 1.00
p10 2.50 1.00 0.97 1.00 1.02
p25d 8.00 1.00 1.01 0.98 0.99
p5d 10.00 V 0.97 0.98 0.99 0.98

apex4 p25 . - 0.97 1.03 1.00 0.99
p5 5.00 1.00 0.97 1.00 1.00
p10 - 0.99 1.00 1.00 0.99
p25d - 1.00 1.01 1.00 0.99
p5d - 1.02 1.03 1.01 1.00

bigkey p25 5.00 0.97 1.02 1.02 1.02
p5 5.00 1.07 0.93 1.02 1.02
p10 5.00 1.10 1.02 1.02 1.02
p25d 10.00 0.99 0.99 1.02 1.01
p5d - 0.99 0.99 1.01 1.02

clma p25 8.27 1.02 0.94 1.01 1.00
p5 7.93 1.00 0.97 1.01 1.00
p10 8.13 1.01 0.93 1.01 0.99
p25d 8.87 1.02 0.89 1.00 0.99
p5d 8.15 0.99 0.96 0.99 0.98

Table 37 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-fast" versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality ;

Quality Experimental result relative to iPlace .
RT Average Run time.of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

\

94

\

Synthetic circuits
Speedup CWQ

VPR "-fast" / iPlace
CPQ BBQ WLQ

des p25 - 0.96 0.99 1.03 1.02
p5 10.00 1.00 1.00 1.02 1.01
p10 - 1.04 1.01 1.01 1.01
p25d 12.00 0.99 0.97 1.01 1.01
p5d - • 0.98 0.93 1.00 1.01

diffeq p25 5.00 1.03 1.01 0.99 0.99
p5 4.00 1.02 0.98 1.00 1.01
p10 - 1.03 1.00 1.01 1.00
p25d - 1.02 1.00 0.99 1.00
p5d - 1.05 1.00 1.02 1.03

dsip p25 - 1.04 1.00 1.01 1.01
P 5 - 1.05 0.96 1.01 1.02
p10 - 1.04 0.97 1.01 1.02
p25d 5.00 1.03 .0.97 1.01 1.02
p5d 8.00 1.04 0.98 1.01 1.01

elliptic p25 22.00 1.03 1.01 1.03 1.03
p5 10.00 1.01 0.96 1.02 1.02
p10 10.00 1.02 0.99 1.03 1.02
p25d - 1.05 1.01 1.03 1.04
p5d 7.33 1.02 0.95 1.02 1.03

ex5p p25 5.00 0.99 0.94 1.00 1.00
p5 0.99 1.01 1.00 0.99
p10 - 1.02 0.83 1.01 1.01
p25d - 1.00 0.86 1.00 0.99
p5d - 0.99 0.97 1.00 1.00

Table 38 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR-"-fast" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT i Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

Synthetic circuits
Speedup CWQ

VPR "-fast" / iPlace
CPQ BBQ WLQ

ex1010 p25 9.20 1.04 0.95 1.01 1.01
p5 8.60 1.03 0.95 1.00 1.01
p10 8.80 1.03 0.98 1.00 1.00
p25d 8.17 1.03 1.05 1.00 0.99
p5d 8.80 1.01 0.95 1.01 1.00

frisc p25 9.00 0.99 0.97 1.01 „ 1.00
p5 5.00 1.02 0.98 1.00 1.00
p10 9.00 v 0.99 0.99 1.00 1.01
p25d 5.60 0.97 0.97 0.99 0.99
p5d 9.33 1.01 0.99 1.00 1.00

misex3 p25 - 1.02 1.02 1.00 1.00
p5 - 1.01. 0.91 1.00 1.00
p10 - 1.00 0.98 1.00 1.00
p25d - 0.98 1.03 0.99 1.00 •
p5d - 0.99 0.97 0.99 1.00

pdc p25 9.80 0.99 0.96 1.00 1.00
p5 7.00 0.97 1.35 1.00 0.99
p10 7.00 1.03 0.95 1.01 1.00
p25d 10.20 0.99 0.76 0.99 0.98
p5d 7.86 1.03 1.06 1.01 1.00

s298 p25 - 0.98 0.95 1.00 1.01
P 5 - 1.02 0.99 1.00 0.99
p10 5.00 0.98 0.99 1.00 1.00
p25d 2.00 1.02 0.99 1.00 1.00
p5d - 0.98 0.98 0.99 1.00

Table 39 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-fast" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

96

Synthetic circuits
Speedup CWQ

VPR "-fast" / iPlace
CPQ BBQ WLQ

S38417 p25 8.83 1.03 0.96 1.03 . 1.03
p5 5.89 1.05 1.00 1.04 1.04
p10 5.56 1.06 i 0.95 1,03 1.02
p25d 5.60 1.03 0.93 1.03 1.02
p5d 7.40 0.92 0.95 1.00 1.00

S38584 p25 12.00 0.98 1.00 1.00 1.00
p5 5.73 1.03 1.00 1.00 1.00

t p10 10.33 0.96 1.01 1.00 1.00
p25d 7.38 0.95 0.95 1.00 1.01
p5d 8.40 1.04 0.97 0.98 0.98

seq p25 - 1.00 0.97 1.00 1.01
P 5 7.00 1.00 0.98 1.00 1.01
piO 3.00 1.00 0.84 1.00 1.01
p25d 4.00 0.99 1.08 0.99 1.01
p5d 4.00 1.01 0.98 0.99 0.99

spla p25 8.67 1.00 1.23 1.01 1.01
p5 6.75 0.99 0.91 1.01 1.00
p10 5.00 1.02 1.07 1.01 1.00
p25d 9.67 1.04 0.92 1.01 1.01
p5d 6.00 1.01 1.04 1.00 0.99

tseng p25 - ' 1.06 1.00 1.01 1.03
p5 - 1.01 1.00 1.01 1.03
p10 1.01 1.00 1.01 1.01
p25d - 1.04 1.01 1.01 1.02
p5d - 0.98 1.01 1.01 1.02

Geo. Mean 6.85 1.01 0.98 1.00 1.01

Table 40 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-fast" versus iPlace Cont'

Legend:
Results with Run time too fast to measure

Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

Synthetic circuits
Speedup

VPR
CWQ

"-superfast"
CPQ

/ iPlace
BBQ WLQ

alu4 p25 2.00 1.08 1.05 1.04 1.04
p5 1.00 1.05 1.16 1.05 1.05 .
p10 - 1.02 0.94 1.03 .1.03
p25d - 1.04 1.05 1.04 1.06
p5d ' - 1.07 1.01 1.04 1.04

apex2 p25 0.50 1.05 1.06 1.05 1.07
P 5 - 1.06 0.97 1.05 1.07
p10 1.00 1.09 1.01 1.05 1.07
p25d 4.00 1.02 1.03 1.03 1.03
p5d 4.00 1.07 0.98 1.05 1.06

apex4 p25 • - 1.02 0.97 1.04 1.03
P 5 2.00 1.03 1.05 1.03 1.03
p10 - 1.02 1.04 1.04 1.03
p25d - 1.02 1.01 1.04 1.04
p5d . - 1.05 0.94 1.03 1.03

bigkey p25 1.00 0.98 1.00 1.10 1.08
p5 1.50 0.88 0.95 1.10 1.07
p10 0.50 0.96 1.01 1.10 1.08
p25d - 0.99 1.04 1.10 1.08
p5d - 0.97 1.00 1.08 1.06

clma p25 1.73 1.10 0.96 1.11 1.10
p5 1.80 1.13 0.98 1.13 1.12
p10 1.73 1.10 0.96 1.11 1.10
p25d 1.87 1.11 0.90 1.09 1.09
p5d 2.00 1.08 0.95 1.08 1.08

Table 41 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-superfast" versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT ' Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ • WireLength Quality

Synthetic circuits
Speedup

VPR
CWQ

"-superfast" / iPlace
CPQ BBQ WLQ

des p25 - • 0.95 1.02 1.13 1.12
p5 - 0.93 1.03 1.14 1.12
p10 - 0.99 1.05 1.11 1.11
p25d 2.00 0.94 0.97 1.11 1.10
p5d - 0.91 0.94 1.11 1.09

diffeq p25 2.00 1.15 0.99 1.12 1.12
P5 - 1.13 0.98 1.12 1.14
p10 - 1.08 1.00 1.10 1.08
p25d - 1.16 0.98 1.11 1.10
p5d - 1.14 0.98 1.11 1.09

dsip p25 - 1.04 0.96 1.11 1.10
P5 - 1.03 0.96 1.11 1.11
p10 - 1.01 0.98 1.10 1.09
p25d 1.00 1.02 0.97 1.10 1.08
P 5d 1.00 1.02 0.97 1.10 1.07

elliptic p25 6.00 1.12 1.03 1.12 1.11
p5 3.00 1.07 1.00 1.11 1.12
p10 2.50 1.10 1.02 1.12 1.12
p25d - 1.13 1.01 1.12 1.12
p5d 2.00 1.11 1.06 1.11 1.12

ex5p p25 1.00 1.04 0.98 1.05 1.03
p5 1.03 1.13 . 1.05 1.03
p10 - 1.03 0.88 1.05 1.05
p25d - 1.04 0.94 1.04 1.04
p5d - 1.01 1.04 1.05 1.05

Table 42 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-superfast" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

Synthetic circuits Speedup
VPR "

CWQ
-superfast" / iPlace

CPQ BBQ WLQ
ex1010 p25 2.20 1.06 0.95 1.05 1.04

p5 2.00 1.12 , 1.01 1.08 1.09
p10 2.00 1.06 0.97 1.05 1.05
p25d 2.00 1.09 0.96 1.07 1.06
p5d 2.20 v 1.08 0:95 1.06 1.06

frisc p25 2.67 1.07 1.00 1.09 1.09
P5 1.80 1.09 1.00 1.09 1.08
p10 2.00 1.07 1.02 1.10 1.11
p25d 1.40 1.07 1.00 1.09 1.09
p5d 2.33 1.10 0.99 1.09 1.09

misex3 p25 - 1.04 1.18 1.04 1.05 ^
p5 . - 1.05 0.95 1.04 1.06
p10 - 1.06 1.09 1.04 1.05
p25d - 1.03 1.02 1.03 1.03
p5d - 1.05 1.00 1.04 1.05 .

pdc p25 2.20 1.07 1.06 1.06 1.06
P 5 1.83 1.07 1.35 1.07 1.07
p10 2.00 1.09 1.00 1.08 1.06
p25d 2.60 1.05 0.81 1.05 1.05
p5d 1.86 1.08 0.96 1.07 1.07

s298 p25 - 1.04 0.94 1.06 1.05
p5 - 1.07 1.01 1.05 1.04 ,
p10 1.05 0.99 1.05 • 1.06
p25d 1.00 1.06 0.97 1.05 1.05
p5d - 1.03 0.98 1.05 1.04

Table 43 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-superfast" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT , Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

100

Synthetic circuits
Speedup

VPR
CWQ

"-superfast"
CPQ

/ iPlace
BBQ WLQ

S38417 p25 2.17 1.20 0.94 1.20 1.20
p5 1.33 1.21 0.96 1.24 1.23
p10 1.44 1.21 0.97 1.20 1.18
p25d 1.50 1.14 0.98 1.16 1.15
p5d 1.90 1.07 0.98 1.19 1.18

S38584 p25 3.20 •1.14. . 1.02 1.16 1.16
p5 1.45 1.13 0.98 1.14 1.14
p10 2.33 1.10 1.04 1.12 1,12
p25d 2.00 1.14 0.98 1.16 1.15
p5d 1.90 1.14 0.99 1.14 1.16

seq p25 - 1.06 1.03 1.05 1.06
p5 2.00 1.06 1.01 1.05 1.06
p10 1.00 1.06 0.90 1.05 1.06
p25d 1.50 1.07 0.97 1.06 1.08
p5d 1.00 1.08 1.00 1.06 1.08

spla p25 2.33 1.08 1.11 1.09 1.09
P5 1.50 1.07 0.96 1.10 1.09
p10 1.20 1.09 0.97 1.08 1.08
p25d 3.00 1.09 1.02 1.09 1.08
p5d 1.50 1.09 0.99 1.07 1.06

tseng p25 - 1.08 1.02 1.11 1.12
p5 - 1.08 1.03 1.11 1.12
p10 - 1.08 1.0 V 1.10 1.09
p25d - 1.07 1.02 1.10 1.11
p5d - 1.10 1.01 . 1.10 1.10

Geo. Mean 1.75 1.06 1.00 1.08 1.08

Table 44 Single-Region Synthetic Benchmark Placement Results: Relative
performance VPR "-superfast" versus iPlace Cont'

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

Synthetic
Circuit Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean

alu4 2.24 3.28 -3.64 3.08 2.33 2.86
apex2 1.22 1.23 1.54 1.75 2.18 1.55
apex4 2.53 2.29 2.65 2.13 2.49 2.41
bigkey 4.75 4.60 4.13 3.92 4.91 4.45
clma 2.41 2.64 2.05 5.24 3.66 3.02
des 4.09 4.29 4.80 4.47 4.92 4.50
diffeq 2.86 2.67 2.55 3.58 2.86 2.88
dsip 2.88 2.56 2.45 2.11 2.64 2.51
elliptic , 4.27 4.97 3.37 4.78 3.13 4.03
ex5p 2.38 2.54 1.86 2.02 2.68 2.27
exlOlO 2.36 1.96 2.47 2.84 2.86 2.48
frisc 2.73 2.73 3.69 2.56 2.34 2.78
misex3 1.78 2.33 1.72 1.80 2.62 2.02
pdc 4.01 3.09 2.24 4.64 4.41 3.55
s298 2.47 2.05 2.35 2.71 1.73 2.23
s38417 4.36 3.94 3.22 4.55 5.30 4.22
s38584 5.02 4.89 6.27 4.59 6.40 5.38
seq 1.90 1.77 1.77 2.23 2.83 2.07
spla 3.09 3.77 4.63 3.83 5.27 4.05
tseng 2.99 3.25 3.02 3.50 2.72 3.08

Geomean 2.97
Table 45 Single-Region Synthetic Benchmark Placement Results: Placement

Stability for VPR Baseline

Synthetic
Circuit Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean

alu4 1.57 1.54 1.65 1.55 2.33 1.71
apex2 1.39 1.34 1.40 2.00 2.35 1.65
apex4 1.99 1.96 1.81 2.05 1.79 1.92
bigkey 1.28 1.29 1.42 1.25 1.51 1.35
clma 2.73 2.69 2.72 3.19 3.98 3.02
des 1.23 1.15 1.50 2.31 2.84 1.69
diffeq 1.53 1.47 1.76 2.33 1.60 1.71
dsip 0.99 1.11 1.23 1.13 1.17 1.12
elliptic 2.28 2.41 2.40 2.36 2.37 2.36
ex5p 1.55 1.55 1.31 1.57 2.59 1.66
exlOlO 1.53 1.60 1.52 1.88 1.50 1.60
frisc 2.84 2.80 2.82 2.92 2.83 2.84
misex3 1.35 1.47 1.47 1.50 2.14 1.57
pdc 2.11 2.11 2.14 2.91 3.05 2.43
s298 2.15 2.32 2.39 2.33 2.36 2.31
s38417 2.15 2.16 2.43 2.81 . 3.69 2.59
s38584 2.46 2.40 2.60 2.36 4.75 2.80
seq 1.61 1.66 1.67 1.53 2.80 1.81
spla 1.66 1.69 1.87 2.30 2.91 2.04
tseng 1.05 1:10 1.12 1.25 1.42 1.18

Geomean 1.89
Table 46 Single-Region Synthetic Benchmark Placement Results: Placement

Stability for iPlace

102

Appendix B: Single-Region Physical Re-Synthesis Benchmark Results

Single-Region iPlace (inner_num=l)

Physical Resynthesis
Benchmark

Circuit

RT
(s)

C W CP
(ns)

Bbox W L
*104

clma - 2.5 3.0 49.4 26.2 528 6.83
clma - 5 3.4 48.6 27.9 529 6.76
clma -10 3.0 49.4 26.8 535 6.83
clma -15 3.4 50.6 26.6 546 6.99
exlOlO - 2.5 1.2 46.4 16.2 278 3.66
exlOlO- 5 1.0 46.8 16.5 281 3.71
exlOlO -10 1.6 46.2 16.6 283 3.71
exlOlO -15 1.2 45.0 16.8 284 3.71
misex3 - 5 - 37.6 12.3 73 0.95
misex3 -15 0.2 35.8 12.7 75 1.01
pdc - 2.5 1.2 60.4 22.3 349 4.65
pdc - 5 1.0 61.0 19.3 352 4.67
pdc -10 1.0 60.2 21.1 353 4.67
pdc -15 1.0 59.8 19.9 356 4.71
spla - 2.5 0.2 50.6 16.4 231 3.10
spla - 5 0.4 51.0 17.4 234 3.14
spla -10 0.4 51.0 17.4 235 3.15
spla -15 1.0 50.2 16.7 239 3.19
Geo. Mean ' 1.0 49.5 18.9 282 3.72

Table 47 Single-Region Physical Resynthesis Benchmark iPlace Placement Results

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
WL • Total WireLength
WLQ WireLength Quality

103

Single-Region V P R ' default" / iPlace

Physical Resynthesis
Benchmark

Speedup CWQ CPQ BBQ W L Q

Circuit

clma - 2.5 70.3 0.97 1.00 0.98 0.97
clma - 5 64.8 1.00 0.91 0.98 0.98
clma -10 76.9 1.00 0.93 0.98 0.98
clma -15 67.9 0.96 0:96 0.98 0.97
exlOlO - 2.5 59.3 1.00 0:99 0.99 0.99
exlOlO - 5 74.4 0.99 1.09 0.98 0.98
exlOlO -10 46.8 1.00 1.00 0.99 0.98
exlOlO -15 62.8 1.00 0.99 0.99 0.98
misex3 - 5 - 0.98 0.97 0.99 1.00
misex3 -15 36.0 0.97 1.00 0.97 0.96
pdc - 2.5 63.3 0.99 0.84 0.98 0.97
pdc - 5 80.2 0.98 1.01 0.98 0.98
pdc -10 69.2 0.98 0.96 0.98 0.97
pdc -15 70.8 0.99 0.94 0.99 0.98
spla - 2.5 257.0 1.01 1.02 1.00 0.99
spla - 5 106.5 0.98 1.02 0.99 0.97
spla -10 109.5 0.99 1.22 0.99 0.98
spla -15 44.8 0.98 0.99 0.99 0.98
Geo. Mean 71.9 0.99 0.99 0.99 0.98

Table 48 Single-Region Physical Resynthesis Benchmark Relative Performance,
VPR default versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

104

Single-Region VPR "-fast" / iPlace
Physical

Resynthesis Speedup CWQ CPQ BBQ WLQ
Benchmark

Circuit

clma - 2.5 7.6 1.01 0.97 1.00 0.98
clma - 5 7.4 1.02 0.89 1.01 1.01
clma -10 8.4 1.03 0.93 1.01 1.01
clma -15 7.8 0.98 1.03 1.01 0.99
exlOlO - 2.5 6.7 1.02 1.04 1.00 0.99
exlOlO - 5 8.4 1.00 1.03 1.00 0.99
exlOlO -10 5.4 ^ 1.00 1.02 1.00 1.00
exlOlO -15 7.2 1.02 0.99 1.00 1.00
misex3 - 5 0.99 0.93 0.99 1.00
misex3 -15 4.0 0.97 0.92 0.98 0.97
pdc - 2.5 6.8 1.00 0.84 1.00 0.99
pdc - 5 8.4 1.00 1.03 0.99 0.99
pdc -10 7.8 1.00 0.88 1.00 0.99
pdc -15 8.2 1.00 0.94 0.99 0.99
spla - 2.5 28.0 1.03 1.09 1.01 1.00
spla - 5 12.0 1.01 1.02 1.01 0.99
spla -10 14.5 1.00 1.07 1.01 1.00
spla -15 5.2 1.01 1.04 1.00 0.99
Geo. Mean 8.1 1.01 0.98 1.00 0.99

Table 49 Single-Region Physical Resynthesis Benchmark Relative Performance,
VPR "-fasf'versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ- Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality / Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

X.

105

)

Single-Region VPR "-superfast" / iPlace
Physical

superfast"

Resynthesis Speedup CWQ CPQ BBQ WLQ
Benchmark

Circuit

clma - 2.5 1.7 1.08 0.96 1.09 1.08
clma - 5 1.7 1.14 0.95 1.12 1.11
clma -10 1.9 1.12 0.96 1.11 1.11
clma -15 1.5 1.08 - 1.06 1.11 1.09
exlOlO - 2.5 1.7 1.11 1.02 1.07 1.07
exl010-5 2.0 1.07 1.09 1.07 1.06
exlOlO -10 1.3 1.08 1.02 1.06 1.06
exlOlO -15 1.7 1.12 1.02 1.08 1.08
misex3 - 5 . - 1.04 1.08 1.03 1.04
misex3 -15 - 1.03 1.03 1.02 1.02
pdc - 2.5 1.8 1.09 0.85 1.06 1.06
pdc - 5 2.0 1.07 1.14 1.06 1.07
pdc -10 2.0 1.07 1.03 1.06 1.07
pdc-15 2.2 1.06 1.16 1.05 1.05
spla - 2.5 6.0 1.08 1.13 1.07 1.07
spla - 5 2.5 1.05 0.99 1.07 1.06
spla-10 3.0 1.07 1.05 1.08 1.07
spla -15 . 1-6 1.06 1.23 1.08 1.08
Geo. Mean 2.0 1.08 1.04 1.07 1.07

Table 50 Single-Region Physical Resynthesis Benchmark Relative Performance,
VPR "-super-fast" versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path" Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

106

Appendix C: Multi-Region Physical Re-Synthesis Benchmark Results

Multi Region iPlace(inner_num=1)

Physical-
Resynthesis
Benchmark

Circuit RT
(s)

CW CP
(ns)

Bbox
*103

WL
*10 5

clone - 50 72.2 111.0 72.4 4.32 5.30
clone - 40 57.2 110.0 72.5 3.90 4.87
clone - 30 64.8 114.2 72.1 3.87 4.85
clone - 20 57.6 117.4 71.2 3.79 4.77
clone -10 58.0 112.8 71.9 3.90. 4.88
stdevO - 50 60.8 92.6 74.4 4.27 5.22
stdevO - 40 63.0 90.6 72.4 4.20 5.15
stdevO - 30 76.2 92.0 74.2 4.26 5.21
stdevO - 20 71.0 95.6 74.1 3.91 4.85
stdevO -10 59.8 93.6 73.0 4.00 4.96
StdevOlO-50 89.0 140.2 75.8 4.23 5.26
StdevOlO-40 66.0 140.0 74.3 4.04 5.08
StdevOlO-30 63.8 142.0 75.0 4.03 5.07
StdevOlO-20 56.4 150.6 74.0 3.93 4.98
StdevOlO-10 70.4 144.4 74.3 4.01 5.05
Geo. Mean 65.2 114.6 73.4 4.04 5.03

Table 51 Multi Region Physical Re-Synthesis Benchmark iPlace Placement Results

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

107

Multi Region
Physical-

Resynthesis
Benchmark

Circuit

VPR "default" / iPlace

Speedup CWQ CPQ BBQ WLQ

clone - 50
clone - 40
clone - 30
clone - 20
clone -10

62.8 0.92 0.99 0.92 0.92
70.0 0.97 1.02 0.96 0.96
68.3 0.96 1.00 0.96 0.96
61.5 0.98 0.98 0.96 0.96
75.9 0.98 0.98 0.95 0.95

stdevO - 50
stdevO - 40
stdevO - 30
stdevO - 20
stdevO -10

67.3 0.92 0.95 0.94 0.95
66.8 0.97 0.98 0.97 0.97
55.1 0.96 0.97 0.96 0.96
56.0 0.96 0.95 0.95 0.96
66.3 0.96 0.96 0.95 0.95

StdevOlO-50
StdevOlO-40
StdevOlO-30
StdevOlO-20
StdevOlO-10

47.1 0.97 0.96 0.96 0.96
59.7 0.98 0.97 0.96 0.96
68.6 0.98 0:98 0.96 0.97
66.5 0.99 0.98 0.97 0.96
58.5 0.97 0.97 0.95 0.96

Geo. Mean 63.0 0.96 0.98 0.96 0.96

Table 52 Multi Region Physical Re-Synthesis Benchmark Relative Performance,
VPR default versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality . Experimental result relative to iPlace
RT Average, Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

108

Multi Region
Physical-

Resynthesis
Benchmark .

Circuit

VPR "-fast" / iPlace Multi Region
Physical-

Resynthesis
Benchmark .

Circuit Speedup CWQ C P Q B B Q WLQ

clone-50 6.7 0.96 0.98 0.96 0.96
clone -40 7.9 1.00 0.98 0.99 0.99
clone -30 7.5 1.00 0.99 0.99 0.98
clone-20 6.6 1.00 1.00 0.99 0.99
clone -10 8.2 1.01 0.99 0.99 0.98
stdevO - 50 7.6 1.00 0.98 0.99 0.98
stdevO - 40 6.9 1.03 1.00 1.01 1.00
stdevO-30 5.6 0.98 0.97 0.98 0.98
stdevO - 20 6.5 1.00 0.95 0.99 0.99
stdevO -10 7.1 1.00 0.96 0.99 0.99
StdevOlO-50 4.9 1.00 0.99 1.00 0.99
StdevOlO-40 6.3 0.99 0.98 0.98 0.98
StdevOlO-30 8.0 1.02 1.00 0.99 0.99
StdevOlO-20 7.1 1.00 ^"098" 0.99 0.99
StdevOlO-10 5.8 1.00 0.99 0.99 0.98
Geo. Mean 6.8 1.00 0.98 0.99 0.99

Table 53 Multi Region Physical Re-Synthesis Benchmark Relative Performance,
VPR "-fast" versus iPlace

Legend:
- Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

109

Multi Region
Physical-

Resynthesis
Benchmark

Circuit

VPR "-superfast" / iPlace Multi Region
Physical-

Resynthesis
Benchmark

Circuit Speedup CWQ C P Q B B Q WLQ

clone - 50 1.2 1.11 L J L 0 3 _ 1.11 1.09

clone -40 1.5 1.11 1.04 1.11 1.10

clone-30 1.4 1,15 1.03 1.14 1.12

clone - 20 1.5 1.10 1.03 1.14 1.11

clone-10 1.3 1.12 1 . 0 0 1 ""1.11 " 1.09

stdevO - 50 1.5 1.14 0.98 1.10 1.08

stdevO - 40 1.4 1.21 1.03 1.14 1.11

stdevO - 30 1.1 1.23 1,01 1.13 1.11

stdevO-20 1.1 ^ J / I 9 _ 0.97 1.13 1.11

stdevO-10 1.4 1.17 1.00 1.12 1.10

StdevOlO-50 0.9 1.13 0.98 1.15 1.13

StdevOlO-40 1.3 1.14 [Too] 1.12

StdevOlO-30 1.7. 1.10 0.99 ! 3 i l 1.10

StdevOlO-20 1.4 1.11 0.99 1.12 1.11

StdevOlO-10 1.2 1.10 0.99 1.11 1.10

Geo. Mean 1.3 1.14 1.00 1.12 1,11

Table 54 Multi Region Physical Re-Synthesis Benchmark Relative Performance,
VPR "-super-fast" versus iPlace

Legend:
— Results with Run time too fast to measure
Bbox Total bounding box
BBQ Bounding Box Quality
CP Critical Path
CPQ Critical Path Quality
CW Channel Width
CWQ Channel Width Quality
Quality Experimental result relative to iPlace
RT Average Run time of the simulation
Speedup Speed up in placement time
W L Total WireLength
WLQ WireLength Quality

110

