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Abstract 

As the logic capacity of FPGAs continues to increase with deep submicron technology, 

performing a full recompilation for small iterative changes in a large design is an 

extremely time-consuming and costly process. To address this issue, this thesis presents a 

new incremental placement algorithm for F P G A s named "iPlace" that significantly 

reduces the time required for recompilation. The iPlace algorithm is based on shifting, 

compaction, and annealing. Key ideas from the algorithm include a placement super-grid 

that is larger than the physical size of the F P G A . The super-grid allows insertion of 

additional C L B s into areas with no free locations by CPU-efficient shifting. This is 

followed by a compaction scheme to re-legalize C L B s that are shifted to illegal locations 

outside of the physical size of the F P G A . The algorithm ends with a low-temperature 

anneal to improve quality. This algorithm is capable of handling multiple design changes 

across large regions of a F P G A . This is especially useful for hierarchical designs where 

sub-circuits are re-used multiple times. If one such sub-circuit is modified, iPlace can 

quickly produce a high quality incremental placement solution. For a single region of 

design change, we found that iPlace is 34 to 260 times faster than the academic tool 

Versatile Place and Route (VPR) in default mode. Compared to VPR ' s reduced-quality 

"-fast" placement option, iPlace is 3 to 28 times faster with equivalent quality. For multiple 

regions of design changes, iPlace is still 50-70 times faster compared to V P R in default 

mode when up to 2/3 of the C L B s are modified; Compared to the "-fast" placement option, 

iPlace is still 5-8 times faster. We believe that iPlace is the first academically available 

incremental placement algorithm capable of handling significant changes to a netlist for 

very large circuits. 
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1. Introduction 

Field Programmable Gate Arrays (FPGAs) are a specialized type custom integrated circuit. 

FPGAs are capable of implementing any digital circuitry through the use of 

reprogrammable look up tables and routing fabric. Compared to ASICs, F P GAs offer a 

low cost alterative to designing digital circuitry. FPGAs allow designers to quickly 

prototype and test a circuit on hardware, without the need for expensive mask and foundry 

costs associated with ASIC designs. However, there are drawbacks of using F P GAs 

compared to ASICs. ASICs offer much higher chip density, faster clock speeds as well as 

lower power usage. The tradeoffs associated with ASICs and FPGAs depend on the sales 

volume of the final product. ASICs are more suited to large volume, high performance 

devices such as microprocessors. F P GAs on the other hand are more suitable for 

medium-to-small volume devices or devices that require fast time to market. 

As the logic capacity of FPGAs increases with deep submicron technology, the run time 

required to compile and fit a high level design onto a target F P G A increases significantly. 

Recompiling the design from scratch for small changes or localized improvements is a 

time-consuming operation. For today's largest FPGAs, a full recompilation often requires 

several hours to execute the entire F P G A C A D flow. 

Often only a small section of the circuit is modified, thus raising the need for incremental 

algorithms that can speed up the compilation process. The need for incremental algorithms 

extends beyond small design changes. For circuits designed using design hierarchy, 

multiple sub-circuits can be modified concurrently by several designers. The need for 

incremental C A D techniques that can quickly integrate multiple changes together are 
f • 1 



necessary for fast turn around time. In addition, sub-circuits can be re-used multiple times 

in a design. Modifications to one such sub-circuit require changes to multiple regions 

across the F P G A . Incremental techniques must be able to handle the use cases outlined 

above. In addition, incremental techniques must be scalable for small-to-large 

modifications to ensure the most efficient use of development time. The resulting 

incremental compilation for such use cases should be as high quality as compilation from 

scratch. 

1.1. Contributions 

This thesis presents an incremental placement algorithm named "iPlace" to be used as part 

of an incremental C A D flow. Our approach uses existing academic tools as a foundation 

and extends them for incremental placement. Results from this work appeared in [1]. A 

paper describing the algorithm details has been submitted for review [2]. 

The iPlace algorithm starts with an initial high-quality placement of a "before" circuit prior 

to modification. For this, we use the default V P R placement algorithm. The "before" state 

is^used as a reference solution for incremental placement. Next, iPlace finds a new 

placement for the modified "after" circuit state. The "after" state is the new circuit to be 

incrementally placed using iPlace. The iPlace algorithm produces the new placement 

solution through four phases: (1) use the "before" state to produce an initial placement of 

the unmodified C L B s , (2) insert modified C L B s by shifting into a super-grid, (3) compact 

the super-grid by shifting to re-legalize placement, and (4) refine with a low-temperature 

anneal. The super-grid is a placement grid that is extended beyond the bounds of the initial 

F P G A device. 

2 



Three key ideas are present in the iPlace algorithm. The first idea is the use of 

floor-planning constructs to constrain the initial placement of modified C L B s close to the 

original placement "hole" left by the removal of some C L B s from the "before" state. 

These floor-planning constraints are continuously modified as the algorithm executes. The 

second idea is a "placement super-grid". The super-grid expands the entire placement 

region as more C L B s are added than the "hole" permits. The third idea is the use of partial 

design shifting during the expansion and compaction phases of the algorithm. Shifting 

partial rows/columns of C L B s is much more CPU-efficient than relying upon individual 

moves used in annealing-based approaches, particularly because annealing must also 

measure the cost of each L E move before deciding. After the shifting, a low temperature 

simulated annealing run is performed to improve the solution quality. This annealing step 

is the slowest step. These steps combine to produce a fast and high quality incremental 

placement algorithm 

To measure the performance of the incremental placement algorithm, we developed three 

sets of benchmarks. Each individual benchmark circuit has a "before" and "after" state. 

The first set of benchmarks approximate incremental design changes where subregions of 

a circuit are significantly modified in logic and structure but other regions are untouched. 

This set is created using a synthetic circuit generator to mutate a selected subregion of the 

circuit. These clones are re-stitched into the original circuit [3] [4]. The second benchmark 

set approximates a physical resynthesis flow where the circuit is logically identical, but 

functionally-equivalent changes are made within one local region. The second benchmark 

set is automatically produced from a physical resynthesis C A D flow [1]. The third 

benchmark set is a variation of the second, but scaled to include multiple regions of design 

changes. This set, also produced using [1] is used to determine the ability of iPlace in 
3 
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handling multiple design changes across large regions of the chip. 

1.2. Thesis Outline 

The remainder of this thesis is organized as follows. First, Chapter 2 wi l l present 

background information on FPGAs and prior work related to incremental placement. Next, 

Chapter 3 wil l describe the iPlace algorithm in detail. Chapter 4 wi l l present the results of 

benchmarking iPlace with the three benchmark sets. Chapter 5 presents a qualitative 

comparison of iPlace against existing fast and incremental approaches. Finally, Chapter 6 

summarizes the key contributes and results of iPlace. 



2. Background 

This chapter presents the background information related to FPGAs and incremental 

placement research. First, the hardware architecture and makeup of F P G A s wi l l be 

presented. Second, the software C A D flow related to compiling designs for F P GAs wi l l be 

discussed. Finally a summary of prior work related to incremental placement wi l l be 

presented. 

2.1. FPGA Architecture 

• 

• 

ID 3 IS 

• 
CLB CL5 C L B CL5 I 

C L B CLB CLB CLB [ 

CLB CLB C L B CLB [ 

1 CLB CLB CLB CLB [ 

• 

• 

• 
• 
• 

Figure 1 Island Style FPGA [5] 

Field Programmable Gate Arrays (FPGAs) are Very Large Scale Integrated (VLSI) circuits 

that are capable of implementing any user designed digital circuit. F P G A s offer this 
• 5 



flexibility of through the use of reconfigurable Logic Elements (LE). The typical layout of 

an F P G A circuit used by commercial devices such as Altera's Stratix [6] and Xil inx 's 

Virtix [7] is shown in Figure 1. The layout style of the F P G A shown in Figure 1 is called an 

Island Style Architecture. The Island Style F P G A consists of clusters of LEs called 

Configurable Logic Blocks (CLB) . The C L B s are laid out in a rectangular array 

surrounded by configurable routing wires in both the vertical and horizontal directions. 

The Array Size of an F P G A is measured in terms of the number of C L B s spanning 

horizontally and vertically. The name "Island" architecture comes from the fact that C L B s 

"islands" are surrounded by a sea of configurable wires. Around the periphery of the chip 

are Input/Output (10) pads to connect the F P G A to the rest a circuit design. 

Logic Element and Clustered Logic Blocks (LE and CLB) 

Figure 2 B L E and C L B [5] 

The most basic element of a F P G A is the Basic Logic Element ( B L E or LE) . The logic 

element consists of a K-input look up table, a flip-flop and a multiplexer (Figure 2). The 

k-input L U T is capable of implementing any k-input, 1 output combinational logic 

function. A L U T is made of 2 K configuration bits that can be programmed to implement the 

desired logic function. The flip-flop provides synchronous output for the logic function 

6 
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implemented by the L U T . Finally, the multiplexer allows the selection of the 

combinational or synchronous output for the B L E . 

From prior research [8], it was shown that it is more efficient to pack multiple LEs into a 

cluster called a Configurable Logic Block (CLB) . The structure of a C L B is shown in 

Figure 2. Each cluster contains N LEs. The number N is typically 4 3 , 8 4, 105 or 166 logic 

elements [6] [7]. Each L E within the cluster is interconnected to each other with fast local 

interconnect. The number of inputs to a C L B I, is smaller than the maximum K * N because 

LEs can share common inputs.The advantages of packing multiple LEs into a cluster 

include reducing delay, reducing the amount of interconnect required, more dense F P G A 

designs and improved C A D compilation runtime. 

3 X i l inx Virtex 
4 X i l inx Virtex II 
5 Altera Cyclone, Altera Stratix 
6 Altera Cyclone II 



Routing Architecture 

Connection 
BSock 

l'iii-T,i-rr\ihte' 
Connection 

Switch 

.. ... . : 

Segment 

Figure 3 FPGA Routing Architecture [5] 

The second component that makes up an F P G A is the routing architecture. The routing 

architecture is responsible for connecting the reconfigurable C L B s together to form the 

overall design. The routing architecture is comprised of three components: wires,%switch 

blocks and connection blocks [9]. A simplified view of the routing architecture is shown in 

Figure 3. First, wires are the core of the routing structure. Wires fi l l the vertical and 

horizontal channels in between rows/columns of C L B s . In commercial FPGAs , multiple 

length wires spanning 4, 8, 16 and 24 or greater number of C L B s [6] are provided for the 

different routing requirements of each net. Shorter wires are for local interconnection, 

whereas longer wires are designed to connect C L B s far apart with less delay. Wires can be 

can designed to carry signals bi-directionally or uni-directionally, although the latter has 

been shown to be faster and consume less area in recent research [10]. The second 

component is the switch block. The switch block connects vertical and horizontal wires so 

that signals can switch directions or extend the length of a wire past the length of a segment. 

The third component is the connection block. The connection block connects C L B s to their 



adjacent wires. In bidirectional interconnect, the switch and connection blocks are often 

fabricated using tri-state buffers or pass transistors, and controlled using sram 

programming bits. In unidirection interconnect, the switch and connection blocks are 

fabricated with multiplexers, tri-state buffers and controlled using sram. The routing 

architecture is the predominant contributor to the F P G A die size, speed and power 

requirements. 

Commercial devices: 

Part EP1S10 EP1S20 EP1S25 EP1S30 EP1S40 EP1S60 EP1S80 
Logic Capacity 10,570 18,460 25,660 32,470 41,250 57,120 79,040 
Channel Width 160 , 160 160 160 160 160 160 

Table 1 Altera Stratix Family of FPGAs [6] 

Commercial devices measure the logic capacity of a F P G A in terms of the number of the 

number of LEs . The routing capacity is measured in terms of the number of routable wire 

segments passing between adjacent C L B s . This fixed routing capacity is called the 

Channel Width of a device. Commercial devices also contain multiplier and memory 

blocks that are not within the scope of this work. Commercial devices are usually offered 

as "families" of F P G A s , where the channel width remains the same within a family, but the 

array size is increased to offer larger logic capacities for different family members. A n 

example of an F P G A family from Altera is presented in Table 1. The latest F P G A s offered 

by Altera and Xi l inx have logic capacities exceeding 200,000 LEs. [6][7][11] 

9 



2.2. FPGA CAD Flow 

HDL Circuit 

i 
Synthesis 

F P G A C A D 
F L O W 

r Technology 
Mapping 

f 

I 
Routing 

Clustering 

Placement 

FPGA Programming bit stream 

Figure 4 FPGA CAD Flow 

To develop a circuit for use on a F P G A , designers use high level languages such as V H D L 

or Verilog to describe the circuit behavior. A multi-stepped C A D flow is required to 

compile the circuit description from the high level language description to programming 

the LUTs and switches of the F P G A . This C A D flow consists of five steps. The first step is 

. " ' . 10 



synthesis. In this step, the circuit description is compiled from the high level language to a 

network of Boolean equations and flip-flops. The synthesis step is common to both ASIC 

and F P G A development. The F P G A specific portion of the C A D flow consists of 

technology mapping, clustering, placement and finally routing. In this section, each step of 

the F P G A C A D flow wil l be presented. 

2.2.1. Technology Mapping 

The first step in the F P G A C A D flow is technology mapping. In this step, the Boolean 

network is mapped to the look-up table size of the F P G A . The goal of technology mapping 

is to use as few LEs as possible to minimize logic usage and circuit delay. Technology 

mapping algorithms minimize the delay of a circuit by minimizing the logic depth, which 

is the longest path of a circuit. Several technology mapping algorithms are presented in 

[12][13][14][15][17][18][19][20][21]. 

The most notable technology mapping algorithm for F P G A is FlowMap [12] [13]. The 

FlowMap algorithm was revolutionary as the algorithm is able to produce a depth optimal 

solution in polynomial complexity time. This algorithm is based on network flow 

algorithms using the max-flow-min-cut theorem. The results reported in [12] shows that 

FlowMap produces better critical path and area results compared to other technology 

mapping algorithms at the time. Follow-ups to the FlowMap algorithm include CutMap 

[14] [15] and D A O M a p [16] . CutMap improved on FlowMap by reducing logic 

duplication. Logic duplication occurs during the FlowMap algorithm when a node is 

encapsulated (duplicated) by multiple LUTs in the technology mapping solution, CutMap 

is able to reduce the number of logic elements required by 20% compared to FlowMap 

while maintaining depth-optimality in the solution. 
11 



2.2.2. Clustering 

The second step in the F P G A C A D flow is clustering. In this step, the technology mapped 

K-input LUTs are packed clusters of size N defined by the F P G A architecture. The goal of 

clustering is to maximize utilization of the cluster resources, minimize delay and to reduce 

the amount of interconnect required between clusters. Clustering algorithms can be 

classified into three categories. The most common algorithms are bottom-up 

[8][22] [23] [24][25]. Bottom up algorithms greedily builds each cluster by selecting a seed 

L E and growing by individual LEs. The second type of clustering algorithm is top-down 

[26] [27]. Top-down algorithms start with the entire technology mapped circuit, and 

recursively partitions the circuit into bins until each bin reaches the cluster size. The final 

type of clustering algorithm is depth optimal clustering [28] [29] [30]. Depth optimal 

clustering minimizes delay in exchange for more logic use due to duplication. 

Bottom up algorithms are the most common category employed for FPGAs , so the bottom 

up approach wil l be discussed in this section. Bottom up algorithms begin each cluster by 

selecting a seed L E based on an algorithm specific criterion. The algorithm then iteratively 

selects the next most attractive L E using an attraction function to add to the cluster. Once a 

cluster is full, a new seed is chosen for a new cluster. The process is repeated again until all 

LEs are clustered. 

Criticality(b) = \- S l a ° k ( b ) (1) 
max_slack 

. ,-, s - • , ^ ^ ^ nets(b)n nets(c) 
Attractwn(b,c) = a*crit(c) + (l-a)* — — (2) 

G 

A widely cited academic F P G A bottom-up clustering algorithm is T-VPack [8]. T-VPack is 

a timing aware algorithm that aims to minimize both the delay and the number of nets to 
12 



route. The seed for each cluster is chosen as the most timing critical L E . The equation to 

calculate the criticality of an L E "b" is given in (1). Additional LEs are added to the cluster 

using the attraction function shown in (2). Equation (2) shows that the attraction of an 

element c to cluster b is a factor combining the criticality of the L E and the normalized 7 

number of nets common with the current cluster contents. The weighting factor a balances 

the importance of timing versus the number of nets absorbed into the cluster. The factor a 

was experimentally determined in [8] to be 0.75. 

Another bottom-up clustering algorithm is i R A C [25]. i R A C is a greedy clustering 

algorithm that aims to minimize the number of nets to route for the computed clustering 

solution. The premise of the algorithm is to encapsulate as many nets as possible within a 

cluster, thus minimizing the number of nets required to route between clusters. i R A C also 

includes a cluster input limiting component computed based on the Rent parameter [31] of 

the cluster. The clustering algorithm used for this work is an i R A C replica produced for [1]. 

The i R A C replica excluded the input limiting component due to the limited improvement it 

offered. This algorithm was selected for use with this thesis because it produces the lowest 

routed channel widths and delay performance compared to TVPack [25]. 

2.2.3. Placement 

The third step in the F P G A C A D flow is placement. In this step, the clustered LEs are 

mapped to physical C L B locations on the F P G A . The goal of placement is to minimize 

both the routing delays of regular nets and the delay of the critical path. The placement 

engine must also be congestion aware to avoid over-usage of the routing resource, which 

The number of nets in common is normalized to a constant G 
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could lead to an un-routable solution. There are. three general types of placement 

algorithms. First, Simulated Annealing (SA) algorithms [5][32][33][34][35] are the most 

common and based on a hill climbing approach. Second, Analytical Placement algorithms 

[36][37] [38][39] solve the placement problem by using systems of equations. Analytical 

Placement algorithms are good at finding approximate locations for C L B s , but due to the 

discretization effects of mapping to an F P G A array, they often result in overlaps that need 

to be removed through additional re-legalization steps. Finally, Min-Cut algorithms 

[40][41][42] produce placement solutions using partitioning techniques. Simulated 

Annealing algorithms are the most common in academic research and wi l l be presented in 

more detail in this section. 

1 Random_Placement(); 
2 temp = lnitial_Temperature(); 
3 Riimit = nx; 
4 
5 While( ExitConditionSatisfied() == false ) 
6 for( int i=0; i<inner_num; ++I) 
7 move = Generate_Move(); 
8 AC = Calculate_Cost_Delta( move ); 
9 float r = rand(0,1); 
10 if( A C < 0 ) 
11 AcceptMove( move); 
12 else if( r < e _ A C / T ) ( 

13 AcceptMove( move); 
14 end for 
15 temp = UpdateTemperature(); //1 = a*t 
16 riimit = UpdateRange(); 
17 Update_Net_Criticality(); 
18 end while 

Figure 5 Simulated Annealing Algorithm 

V P R is the academic F P G A C A D tool most' commonly used for F P G A research. The work 
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presented in this thesis is developed by extending the V P R simulated annealing placement 

algorithm for incremental placement. V P R features an adaptive temperature cooling 

schedule and range limiting techniques to produce excellent placement solutions. 

The V P R simulated annealing algorithm is presented in Figure 5. The first step in the 

placement process is to randomly place all C L B s onto the placement array. Next, the initial 

temperature is determined by performing a number of test swaps equal to the number of 

C L B s . The initial temperature for V P R is set as 20 times the standard deviation of the cost 

evaluated during the test swaps. The initial range limit is set as the length or width of the 

o 
device . 

AC = Z A T i m i " g - C o s t

 + , q . A ) . A B B . C p s t ( 3 ) 

Previous_Timing_Cost PreviousJBB_Cost 

timing_cost = ^ delay{iy j) * crit(i, j)CE (4) 
Vijecircuit 

\fnets , 

bb_cost= + (5) 
1 i=l 

The simulated annealing algorithm works by performing inner_num number of swaps at 

each temperature setting. For each swap, a random move is proposed by swapping the 

placement position of two C L B s . If the swap results in a reduction in the placement cost, 

the swap is accepted. If swap results in an increase in cost, a probabilistic acceptance is 

used based on the e'AC/T where A C is the change in cost according to (3) and T is the current 

temperature. Accepting bad moves is required for hil l climbing to avoid local minimums in 

the cost function. Equation (3) is composed of 2 terms, a timing cost and a bounding box 

cost. The factor X is a weighting factor to balance the importance of these costs. Each term 

Assuming a square array. Commercial FPGAs are rectangular. 
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is normalized to the total cost from the previous iteration. The timing cost shown in 

equation (4) is a sum of the delay*net criticality product for each net. The net criticality is 

defined as (1). The bounding box cost is the sum of the Manhattan distance for each net. 

After inner_num number swaps are performed at each temperature range, the temperature 

and range limit factors are updated. The temperature is degraded using an update factor a. 

As the temperature is lowered during the annealing process, the e'AC/Tterm approaches 0 so 

that fewer bad swaps are accepted for hill climbing. Both a and the range limit are 

adaptively adjusted to keep the swap acceptance rate at -44%. The 44% acceptance rate 

was shown to be the optimal hill climbing factor in [43]. 

0.005*cur cost .... 
t< = (6) 

num _ nets 

The algorithm terminates when the exit criterion is met. The equation for calculating the 

exit criteria in V P R is presented in (6) 

2.2.4. Routing 

The final step in the F P G A C A D flow is routing. In this step, routing resources are 

assigned for each net of the circuit to connect the logic elements together based on the C L B 

placement solution from the placement stage. The goal of routing is to minimize the delay 

of the circuit and to avoid congestion in the routing resources. Routing algorithms can be 

classified into two categories. First, two-step routers [44] [45][46][47] [48] break down the 

routing process into two steps: global routing and detail routing. Second, single step 

global-detail routers [49][50][51][52] perform both the global and detail routing together 

as a single step. In global routing, the input-output pins and the routing channels are 

assigned to a signal. In detail routing, each signal is assigned to specific routing track 

16 



within each channel. Two-step routers are used for A S I C designs because of routing 

flexibilities. Single step global-detail routers are used for F P G A s due to the limited and 

constrained routing resource architecture. 

The academic C A D tool V P R [5][32] features a two step F P G A router using the 

PathFinder routing algorithm [50]. PathFinder is an iterative routing algorithm based on 

cost sharing and track negotiations. During the initial routing iteration, all nets are routed 

via the lowest cost route. This produces overuse in popular tracks where multiple signals 

are assigned to the same track, which is illegal for a routing solution. For each iteration, all 

nets are ripped up and rerouted. Iteratively, the cost of the overused wire segments is 

increased so that nets are forced to evaluate and use different routes wherever possible. 

The algorithm terminates when there is no more overuse, forming a legal solution. 

Cost(i) = Crit(i)*delay(i)+(l-Crit(i))*b(i)*h(i)*p(i) (7) 

The V P R routing cost function is shown in (7). The cost function to route each net is based 

on a combination of two terms. The first term represents the Elmore delay of the wire 

segment. The second term is based on the base cost b(n), history cost h(n) and the present 

cost p(n). The history cost represents a history of how congested a wire segment has been. 

The present cost represents the present cost to use a wire segment. The present cost is 

increased as the algorithm progresses to discourage over usage of wires. The weighting of 

each term is dependent on the criticality of the net calculated using (1). Nets on the critical 

path wi l l have a criticality factor close to 1. Based on (7), the critical path net wi l l be routed 

on the path with lowest delay. 

2.3. Incremental Placement Techniques 

In a traditional F P G A "full compilation" process, the entire C A D flow must be executed i f 
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any changes are made to a circuit. To speed up this process, our flow takes an incremental 

approach: only the changes to the netlist are propagated through clustering and placement, 

and a full route is done at the end. For both incremental clustering and incremental 

placement, a "reference solution" computed from the previous compilation is used to 

identify changes and reduce the amount of new work. This section wil l briefly describe 

both of these steps, but the focus is on incremental placement. 

Incremental clustering initially starts with the previous list of C L B s , a list of unmodified 

C L B s , and a list of unclustered logic elements. The unmodified C L B s are the same as 

before (they contain the exact same logic elements). In contrast, modified C L B s arise 

because some logic elements were deleted by a user logic change. Modified C L B s are 

unclustered into its constituent LEs, and these are added to the pool of new LEs that were 

. added by the user logic change. , 

Incremental clustering proceeds as follows. The unmodified C L B s are kept as-is. Due to 

their greedy nature, clustering algorithms such as TVPack [8] and i R A C [25] can easily 

treat these unmodified C L B s as an intermediate solution and continue grouping the 

unclustered logic elements into new C L B s . Since all flip-flop locations in the entire circuit 

are known, incremental clustering can still identify critical paths and remain timing-driven. 

Our implementation uses the i R A C replica, since it produces good timing results and 

requires the lowest channel width for routing. The clustering tool then proceeds to form 

new C L B s using the new LEs and LEs from unmodified C L B s 

Incremental placement initially starts with the previous placement of C L B s , a list of 

unmodified C L B s , a list of removed C L B s , and a list of new C L B s . In the event of multiple 
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changes9, the list of new C L B s (and removed CLBs) is divided into a number of sub-lists, 

one for each change or each instance. Optionally, a rectangular floorplan constraint for 

each change can be given. If none is provided, the bounding box for each "removed C L B 

sub-list" is computed and applied as a floorplan constraint to the corresponding "new C L B 

sub-list". i 

Incremental placement proceeds as follows. The unmodified C L B s are re-placed in their 

previous location to preserve "spatial locality", i.e., physical closeness to their connected 

neighbours. For each "region" of change, the placement locations previously occupied by 

the removed C L B s are now left empty, thus leaving white space for the new C L B s . For the 

new C L B s , two cases must be considered. If there are fewer new C L B s , they all fit in the 

white space left behind and placement is "trivial". The second case to consider is when the 

new C L B s exceed the removed C L B s . Since there is insufficient room, unmodified C L B s 

must be moved to make room or new C L B s wi l l be placed far away. This is the key 

problem to solve for incremental placement. To maintain placement locality, most 

incremental placement algorithms temporarily allow overlap, which is when multiple 

C L B s occupy the same physical location. Overlap results in an illegal solution which must 

be fixed through a lengthy re-legalization step. Instead, iPlace immediately shifts other 

C L B s out of the way and continues. This is called expansion. By the end, C L B s are often 

pushed past of the limits of the array, which is also illegal. iPlace then re-legalizes by 

compacting: it forcibly shifts available whitespace along the edges to where it is needed, 

thus making room for the illegal C L B s . Finally, this legal placement is refined through 

annealing. 

9 Due to component re-use, multiple instances of the same circuit are treated as multiple 
changes. 
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Incremental placement algorithms have not been widely published. Cong and Sarrafzadeh 

[53] give high level overviews of the problems associated with incremental C A D , 

including placement. They note two separate needs for incremental placement: to optimize 

an existing good placement for a new metric, or for handling the addition and removal of 

logic or nets. iPlace is designed for the latter situation. 

Previously published algorithms for incremental placement in F P GAs include work by 

Singh and Brown [54], Suaris et al [55] and Togawa et al [56]. Both [54] and [55] are 

intended to be used with physical resynthesis to assist with timing closure, while [56] is a 

congestion- driven approach. A comparative summary follows. 

The Singh and Brown placer, ICP [54], is primarily focused on improving timing through 

small netlist changes, such as retiming register moves. As a result, it operates on changes at 

the logic element (LE) level. Initially, ICP allows all LEs to be assigned to their preferred 

location, which may be illegal, for best timing performance. Then, it iteratively moves 

each L E , using a negotiation similar to PathFinder, to legalize conflicts and reduce timing 

and estimated wiring costs. It considers individual L E moves, and evaluates the cost of 

each one. Since it considers only a small number of moves, it is about 8 times faster than 

V P R . In contrast, iPlace is about 60 times faster than V P R because it operates at the C L B 

level and does not evaluate individual move costs when resolving illegal placements. 

Instead, iPlace presumes that shifting imposes a minimal cost penalty during legalization 

and uses simulated annealing at the end to improve or recover lost quality. 

Suaris et al present an incremental placer in a framework called IPR [55] which has very 
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similar goals and operation to ICR However, IPR uses quadratic placement to assign initial 

placements, which also results in overlaps. Like ICP, IPR also performs individual L E 

moves and evaluates the cost of each one during legalization - however, the IPR costs 

appear to be entirely timing-driven. No run-time results were reported for IPR; hence it 

cannot be directly compared to iPlace. 

Togawa et al present a congestion-driven incremental placer [56] that shifts overlapping 

individual LEs to reduce global routing capacity. It avoids increases in channel width for 

up to 20% changed LEs . In contrast, we have observed that iPlace can tolerate changes to 

2/3 of all C L B s without inflating channel width, critical path or wirelength. 

Previous work on incremental placement for standard cells includes papers by Choy et al 

[57], J. L i et al [58], and Z. L i et al [59]. The two algorithms in [57] insert one cell at a time 

by computing the most desired location and the lowest-cost shift sequence of the nearest 

empty cell. The approach in [58] eliminates overlap by shifting entire floorplan rectangles; 

however, it assumes significant whitespace gaps between rectangles. The approach in [59] 

inserts one cell at a time into optimal position, and each time it legalizes by solving an 

integer programming problem that determines how to shift the fewest cells the least 

distance. Both [57] and [59] are meant for very small netlist changes and would likely be 

too slow for use within iPlace. If an original floorplan is available, [58] would be useful. 

However, iPlace does not presume any floorplanning - it constructs its own floorplan 

constraints using information from the changed elements. , 

The final type of incremental placement algorithms are commercial tools such as Altera's 

Quartus II and Xil inx 's ISE. These tools also support incremental compilation. The tools 
21 



have an advertised speedup of 2-3 times for the entire F P G A C A D flow when comparing 

an incremental compilation versus a full compilation. The details of the algorithms 

employed by the commercial tools are proprietary and not known in detail. 

The approaches taken by previous incremental algorithms all involve solving the problem 

of overlaps. The algorithms start with an initial best but illegal placement, then iteratively 

resolves the illegal locations using different schemes until a valid placement is produced. 

In comparison, iPlace approaches the overlap problem in a novel manner. Instead of 

allowing overlaps in the first place, a C P U efficient shifting scheme is used to shift entire 

rows or columns of C L B s to create more white space for insertion. The shifting is followed 

by a fast and tuned simulated annealing (VPR) run for optimization. 
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2.4. Fast Placement Techniques 

In addition to incremental placement techniques, fast placement techniques can also be 

considered for incremental placement. Fast placement techniques sacrifice quality in 

exchange for faster run time. Several fast placement techniques by Hauck et al. [60], 

Sankar et al. [61] and Tessier [62] evaluate different algorithms and tradeoffs for faster 

placement. 

Hauck et al. [60] presents several fast placement techniques including partitioning, 

force-directed and simulated annealing algorithms. The techniques were evaluated by their 

run time versus critical path quality tradeoff. The best quality results were achieved with 

simulated annealing (VPR). To reduce run-time, the inner_num parameter was varied to 

reduce the number of swaps. B y reducing the run-time, it was found that a 20 times speed 

up resulted in a 2x increase in critical path. It was also found that a 2.5 times speedup had a 

1.34x increase in the critical path. Force-directed placement techniques had similar 

run-time trade offs as simulated annealing. In comparison to iPlace, iPlace is capable of 

60x speedup with no quality degradation. The approach of reducing the inner_num 

parameter to reduce run-time is common between [60] and iPlace. 

Sankar et al. [61] presents a fast placement technique based on multi-level clustering and 

fast simulated annealing refinement. The algorithm performs recursive bottom up 

clustering to form clusters of C L B s . After each stage of clustering, each cluster is 

internally placed constructively and refined using a retuned simulated annealing algorithm 

(VPR). Although only wire-length results were presented, the tool produced better quality 
) 

results compared to V P R (non-timing driving) in "-fast" mode with similar run time. 
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Tessier [62] presents the Frontier fast placement system used in conjunction with 

pre-fabricated macro blocks. The Frontier approach is similar to Sankar et al. where 

clustering is used to group C L B s [macro blocks for Frontier] prior to simulated annealing 

refinement. The Frontier system was designed to place groups of pre-placed C L B s as 

macro blocks. The Frontier system has a reported 17x speedup compared to commercial 

Xi l inx software. 

In summary, fast placement techniques employ a variety of different methods to speed up 

the run-time. One common attribute to all three algorithms is the use of a retuned, fast 

simulated annealing (VPR) refinement scheme to improve quality. This approach is also 

adopted by iPlace to refine the incremental placement solution after the expansion and 

compaction phases. The run time of these fast algorithms are comparable to iPlace'. The 

main difference is the quality of the placements produced. iPlace is able to produce 

placement solutions as high quality as complete placement from scratch. In comparison, 

the fast placers trade the decreased runtime with significantly reduced quality. 
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3. iPlace Algorithm 

This chapter provides an in depth explanation of the iPlace algorithm. The iPlace 

algorithm is a 4 step approach to incremental placement. The core idea of the placer is 

based on spatial locality. If an element was previously placed at a particular location, then 

it is very likely that it should be placed at the exact same location (or nearby) after the 

circuit has been modified. A second paradigm employed by iPlace is simplicity. iPlace 

avoids the use of heavy computation for the first three phases, and only uses limited 

annealing to cleanup the final solution. The limited use of annealing or other 

computational intensive algorithms is key to iPlace's performance. The four phases of 

iPlace are as follows: 

1. Initial Placement and Floorplanning 
2. Super-grid Expansion Placement 
3. Compaction (Re-legalization) 
4. Refinement by Low Temperature Annealing 

The iPlace algorithm is implemented in the V P R framework. Three inputs are required for 

the incremental placement process. The first input is an initial placement from the "before" 

circuit state. The second input is a floorplan or rectangular region identifying 

approximately where to place the changed elements. The third input is the modified or 

"after" circuit state. iPlace identifies which C L B s are modified and which are unmodified 

by comparing the first and third input data. 
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3.1. Initial placement 
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Figure 6 Initial Layout 

The first phase of iPlace is to provide an initial placement for all unmodified C L B s by 

examining the placement solution of the "before" circuit state. This step is pictorially 

shown in Figure 6. The labelled cells represent unmodified C L B s ; these are initially placed 

in their previous placement locations to maintain spatial locality. The hashed cells 

represent C L B s that have been modified. These are removed from the initial placement, 

leaving holes to be filled in later by the modified C L B s . 
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3.2. Floor-planning 

The holes left behind by the removed elements are also the basis for floor planning. The 

argument is that any modified C L B s should be placed where the holes were created to 

preserve spatial locality. iPlace is actually capable of handling multiple modification 

regions. For each hole left behind by a group of modified C L B s , a floorplan rectangle can 

be generated to guide the replacement C L B s into that specific region. For the example in 

Figure 6, a floorplan rectangle is generated at location (4, 3), with a size of 2x2. 

* i 

In this thesis, we are not overly concerned with the precise method of identifying a, 

floorplan region as part of the incremental placement algorithm. Floorplans can also be 

constructed with the following methods. First, C A D tools already allow designers to 

floorplan the usage of a device. These constraints can be translated into incremental 

floorplan regions based on the modifications made on the circuit. The use of design 

hierarchies and SOC methods can also be used to create floorplan regions. The placement 

region of each component in the hierarchy can be used to dictate the region specified for 

incremental changes. Finally, incremental placement required for iterative re-synthesis 

C A D flows are also supported by iPlace. Algorithms that target constraints such as the 

most congested regions can directly translate the re-synthesized areas into floorplan 

constraints. ; ^ 
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3.3. Expansion 

i n i t i a l _ p l a c e m e n t ( ) 
s h i f t = 0 ; 
f o r each f l o o r p l a n r e g i o n f • 

\ 
f o r each m o d i f i e d CLB c of f l o o r p l a n f 
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\ ' • ' 

s h i f t% 4 ' == 0 7 s h i f t r i g h t by 1 
' ' s h i f t% 4 = = 1 7 s h i f t up by 1 
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s h i f t I- i 
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} ' . 

} 
place_any_un_f l o o r p l a n n e d _ c l b s () i. 

Figure 7 Super-grid Expansion Pseudocode 

The second phase of iPlace is the insertion of the modified C L B s into the placement grid. 

Each modified C L B is associated with a floorplan region. The floorplan is used give a 

rough initial location or area where the modified C L B should be placed. The number of 

modified C L B s could exceed the number of free spaces available in the floorplan area. In 

the expansion phase, a C P U efficient shifting scheme is used to overcome the limitation of 

insufficient placement locations. This phase is called "expansion" because the shifting 

allows C L B s to be shifted outside of the normal placement area. This increases or expands 

the placement grid to create more room. We call the result a "super-grid ", which includes 
• f 

the original placement area and all of the outside areas. Precise pseudocode for this step is 

shown in Figure 7. The algorithm wi l l be explained as follows using an example. 
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Figure 8 Super Grid Expansion 

Referring to the example started in Figure 6, the cells c4, c5, d4 and d5 were marked for 

removal. These cells wi l l now be replaced with cells i l to i7. Note that only four free 

locations are available, but seven new blocks needs to be placed. Blocks i l to i4 are 

randomly placed in the free locations without issue. However, there is insufficient room for 

blocks i5 to i7. To solve the problem of inserting more elements than the amount of free 

space available in the floorplan region, we use a virtual placement grid called a super-grid 
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that is larger than the physical F P G A size. If the region runs out of space, C L B s to the right 

of the region, are shifted right by 1 C L B location and the floorplan rectangle is increased in 

width by 1. This is shown in Figure 8, where c6 and d6 are shifted right to make room for i5 

and i6. Once the right side is fully shifted by 1 position, the algorithm switches to shifting 

C L B columns on the top side by 1 position upwards; this is shown in Figure 8 where a5 is 

shifted up to make room for i7. Whenever needed, the supergrid size array is increased, 

adding additional rows and columns. Note that the 10 locations just shift outwards but are 

not reordered or increased in number. The super-grid allows the algorithm to shift C L B s to 

locations outside of the normal placement area. This avoids the need for additional 

calculations to re-shuffle free spaces within a limited placement area, but preserves the 

relative placement of most C L B s with the intent of benefiting from the original spatial 

locality. 
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Figure 9 Multi-region floorplan handling 

Since iPlace is a multi-region incremental placement algorithm, it must be able to handle 

multiple floor-planned areas supporting overlaps and expansion of each area individually. 

To maintain placement locality, the shifting paradigm does not move any affected floor 
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plans when shifting is required. Instead, all affected floor plan regions increase in size 

along the shifting rows or columns. This idea is graphically illustrated in Figure 9. Two 

floor planned areas named i and j are shown. If placement region i was to expand upwards 

by 1 row, floorplan j becomes affected. Instead of moving the entire region j upwards, only 

the required columns are shifted up (jl and j3). Both regions i and j increase in size by 1 

vertically. Note that regions i and j now overlap. The free element introduced is common to 

both regions i and j . If region j required more space, it can take advantage of the shifting 

done for region i and use the newly created free locations. 

Observation 1: The shifting paradigm is C P U efficient. It does not need C P U intensive 

cost function calculations or any sort of iterative location evaluation. The algorithm evenly 

distributes the expansion across the four sides. 

Observation 2: The amount of shifting required to expand a region is quite modest. For 

example, to expand a 5x5 C L B region by 20%, only one shift on one side is required to 

make it 5x6. The limited shifting maintains placement locality and does not significantly 

disturb the overall relative ordering of C L B s in the original placement. 
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3.4. Compaction 

Figure 10 Compaction Regions , 

The third phase of iPlace is to re-legalize the placement. After the super-grid expansion 

phase, there could be C L B s located outside of the legal placement area defined by the 

F P G A array size. One method to re-legalize all C L B s is to use an annealing algorithm. 

However, this is a slow process and does not guarantee that all C L B s wil l eventually 

converge to legal areas. Instead, we propose a simple and fast solution called "compaction" 

to overcome this problem. Note that the super-grid can be partitioned into 9 sections like a 

"#" sign, with the legal placement area at the centre. This is graphically shown in Figure 10 

where "R" represents the Regular placement area, S represents Side and C represents 

Comer. This leaves four corners and four sides to handle. The algorithm works by shifting 

all of the free space (empty CLBs) spread throughout the legal placement region to one end. 

The algorithm performs horizontal followed by vertical compaction to move free space to 

the required side (or vice versa for different cases). For the four corners, compaction is 
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done to move the space to.the corner. For the four side cases, the free spaces are first 

percolated to the required side. Acentroid position is calculated to estimate where the bulk 

of the illegal cells are located. The free space is shifted to the centroid location to preserve 

locality. The centroid location is calculated as the median position for all illegal C L B s 

located on the side under consideration: Following compaction, the illegal cells are. 

randomly re-inserted into the legal free space. The pseudocode for the compaction 

algorithm is shown in Figure 11 

f o r each i l l e g a l r e g i o n r 
{ 
i f r i s corner 

{ 
s h i f t a l l f r e e space t o corner 
randomly move i l l e g a l c e l l s i n f r e e space 
} . 

i f r i s si d e 
i { 

s h i f t a l l f r e e space t o s i d e 
f i n d c e n t r o i d of i l l e g a l placements i n r 
s h i f t f r e e space to c e n t r o i d 
randomly move i l l e g a l c e l l s i n f r e e space 
} • 

} 

Figure 11 Compaction Pseudocode 
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Continuing with the example from Figure 6 and Figure 8, the compaction process is 

graphically shown in Figure 12. The block a5 is re-legalized by compacting the free space 

from the top left corner. Note that the free space has percolated from the top left corner to 

the locations below a5. The cells c6 and d6 are re-legalized by first compacting the free 

space from the bottom left hand corner. This percolates the free space to the bottom right 

hand corner. Next, cells e5 and e6 are compacted downwards to the bottom right hand 

corner. The final legalized solution is shown in Figure 13. 

3.5. Refinement 

After the compaction step, we found that the average bounding box and critical path delays 

were not ideal. In most cases, the bounding box cost reported by V P R was 20% larger than 

a full placement from scratch. The estimated critical paths were also 10% higher. To refine 

the solution, we added a low temperature annealing step to iPlace. The refinement phase 

must not disturb the spatial locality property that iPlace is based upon, but must also be 

able to perform limited hi l l climbing to optimize the modified C L B s . To accomplish this 

task, we re-tuned various parameters within the simulated annealing algorithm of V P R . To 

limit hi l l climbing, the initial temperature was lowered so that fewer "bad" swaps would 

be accepted. To maintain spatial locality, the initial window range was lowered to focus the 

swaps within a more localized area. To reduce and control the runtime, the number of 

swaps per temperature range factor inner_num and the temperature degradation factor 

alpha parameters were also tuned. 

The initial temperature was selected as the first 44% acceptance rate cross oyer point 

during the baseline initial placement. The 44% acceptance rate threshold was chosen based 

on previous work in [43]. 
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Figure 14 Channel Width tradeoff versus Alpha and Number of Swaps (S) 

Figure 14 shows the channel width quality trade off versus temperature degradation (alpha) 

and the number of swaps inner_num f/J*numblocks per temperature range. A t very low 

alpha factors, substantially more swaps are required to refine the solution. Very low values 

represent a rapid cooling schedule. Even with a larger number of swaps, low alpha ranges 

are unable to produce high quality solutions. There is a 10% channel width degradation 

when comparing an alpha of 0.95 versus an alpha of 0.05 for a swap multiplier S of 10. A 

more substantial 50% degradation is observed when an alpha value of 0.05 is used with 

value S of 1. For the refinement stage of iPlace, a conservative alpha factor of 0.45-0.50 

and an inner_num multiplier N of 1 to 3 would suffice to produce a high quality channel 

placement with respect to channel width. 
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Critical Path (s) 

/'nner_/7um*numblocks 
number of swaps 

Figure 15 Critical Path tradeoff versus Alpha and Number of Swaps (S) 

Figure 15 shows the critical path trade off versus alpha and number of swaps N . The figure 

shows that the critical path is somewhat noisy for varying values of alpha. The reasoning 

behind this could be explained by the rapid cooling effect for lower values of alpha. If 

insufficient hill-climbing is performed, then the solution could be easily trapped by local 

minimums. This is especially important because iPlace bases the incremental solution on 

prior placements. If the previous solution was sensitive to begin with, the incremental 

placement could be greatly affected. From Figure 14, Figure 15 and other tuning trials (not 

shown), it was determined that an alpha value of 0.7 or above produced the best results. 

The final tuned parameters after simulation were found to be the following: 

• Initial temperature of 44% acceptance rate from previous placement 
• Initial window range of 12.5% of the F P G A width 
• Temperature degrading factor alpha of 0.7 
• Number of swaps per temperature range, inner_num of 1 to 3 
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Based on the tuning, the refinement phase optimizes the placement and produces a high 

quality result that is comparable to a full placement. The run-time is also very short, and is 

controllable via the inner_num parameter. 

3.6. Additional Tuning Considerations 
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Figure 16 Channel Width versus Run-time Trade off while tuning iPlace 
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Figure 17 Critical Path versus Run-time Trade off while tuning iPlace 

During the design and tuning of the iPlace algorithm, the amount of refinement using 
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simulated annealing was considered a crucial parameter. The refinement stage makes up 

the bulk of the runtime but is required to produce the highest quality solutions. During the 

! design and tuning of iPlace, it was also considered to have an additional refinement stage 

in between the expansion and compaction stages. The goal of this additional refinement 

stage was to reduce the amount of illegal C L B s located outside of the legal placement area. 

The hope was that with fewer illegal C L B s , the amount of compaction required would be 

minimized. The pre-compaction refinement stage used the same tuning parameters as the 

post-compaction refinement stage. The initial temperature was lowered to the 44% 

threshold, alpha was reduced to 0.7 and the inner_num parameter varied from 1 to 2 to 

control the run-time. Tuning was done with 60,000 L U T synthetic circuits produced for 

Figure 16 and Figure 17 shows the channel width and critical path versus run-time trade off 

of having the additional refinement stage before compaction. Figure 16 shows the addition 

of the pre-compaction refinement stage does help to lower the minimum routable channel 

width. However, increasing the inner_num parameter for the post-compaction refinement 

stage can make up for the loss of the pre-compaction refinement phase. The crossover 

point at 100 seconds shows that the post-compaction stage alone can still achieve the same 

results as having both the pre and post compaction refinement phases but with faster 

runtime. Figure 17shows the critical path versus run-time for the same comparison. There 

are no notable quality differences for the critical path results with the addition of the 

pre-compaction refinement. Based on these results, it was decided to only have a 

post-compaction refinement stage. 

39 



3.7. Algorithm Conclusions 

This chapter has presented an incremental placement algorithm iPlace to be used as part of 

an incremental C A D flow. The iPlace algorithm was designed based on the principles 

spatial locality and efficient shifting algorithms. The four steps to the iPlace algorithm 

include initial placement, controlled expansion, compaction and retuned simulated 

annealing refinement. The initial placement phase places all unmodified C L B s at their 

previous placement locations. The expansion phase uses floor-planning and shifting to 

place all modified C L B s into an expanded placement grid. The compaction phase 

re-legalizes the placement also by shifting. Finally, the refinement phase produces a high 

quality incremental placement by cleaning up the intermediate solution with a fast and 

retuned simulated annealing algorithm. 

3.8. Algorithm Limitations 

iPlace currently does not take into account that commercial F P GAs have carry chains and 

hard macro blocks such, memories and multipliers. The current version of V P R is unable 

to model such constraints. This section wil l present how we envision handling these cases 

in the future. 
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Macroblocks, Memories and Multipliers: 

M4K US12 OSP LASs DSP 
Stefe Blades Blades Stats 

Figure 18 Stratix II FPGA layout [63] 

The layout of macro blocks are usually arranged as entire columns in the F P G A array. This 

is graphically shown in Figure 18 with the layout of an Altera Stratix II F P G A . One way to 

handle these cases is to divide the placement grid into multiple vertical stripes of C L B s . 

Each stripe is bounded on the left and/or right by hard macro blocks. B y partitioning the 

F P G A into multiple stripes, each partition can be considered separately for the shifting and 

super-grid. Other shifting constraints can also be imposed on the shifting algorithm to 

handle limitations such as the input positions to the macro blocks. 
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Figure 19 Handling Carry chains 

The second constraint currently not handled by iPlace is carry chains. Since carry chains 

must remain tightly connected, the shifting process cannot destroy these placements. A 

potential solution to this problem is to lock down the position of carry chains. Taking into 

account the modest shifting requirements noted in the shifting algorithm, it is possible to 

fix the carry chain placement location and shift the elements over the carry chain. This is 

graphically shown in Figure 19. A pre-existing carry chain spans C L B s b l , b2 and b3. A n 

incremental placement region is shown as the bounded box. If the region needs to be 

expanded to accommodate more elements, the floorplan can be expanded beyond the carry 

chain. The resulting placement does not disturb the carry chain but still allows for the 

expansion paradigm. The implementation and evaluation of these suggested changes are 

left for future work. 
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4. Results 

This chapter details the experimental setup and the results obtained when incremental 

placement is performed using the iPlace algorithm. First, an overview of the experimental 

goals wi l l be presented. Second, the experimental process and setup wi l l be outlined. Third, 

the benchmark setup and results for the Single-Region Synthetic benchmark (SYN) set 

wi l l be presented. Fourth, the benchmark setup and results for the Single-Region Physical 

Re-Synthesis benchmark (PR) set wi l l be presented. Last, Multi-Region Physical 

Re-Synthesis benchmark (MR) set wi l l be presented. This chapter concludes with a 

summary and discussion of the results for incremental placement using iPlace. 

4.1. Experimental Goals 

Incremental Placement Runtime 

The main goal to measure for iPlace is the placement Run-Time (RT) of the algorithm. 

iPlace is an incremental placement algorithm targeted at reducing the placement run time 

for iterative development. The main point of comparison wil l be the runtime required for 

the baseline V P R toolset to perform a placement solution using default options. In addition, 

the runtime of the V P R tool set using reduced-quality settings "-fast" (inner_num=l) and 

"-superfast" (inner_num=0.125) modes wil l be contrasted. The "-fast" mode is a standard 

option available in V P R . The "-superfast" mode was developed in this thesis to compare 

results against very fast placement. 

J 
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Minimal Routable Channel Width 

The second quality to measure for iPlace wi l l be the Minimal Routable Channel Width 

( M R C W ) . The M R C W quality signifies the routability quality for a placement. This is an 

important factor to consider because commercial F P G A devices have fixed channel widths. 

If a bad incremental placement solution is created, this could lead to higher channel width 
•J 

requirements that cannot be satisfied by the device. To determine this quality, iPlace wil l 

be compared against V P R in default, "-fast" and "-superfast" modes. 

Relaxed Critical Path 

The third quality to measure for iPlace is the relaxed Critical Path (CP). The relaxed 

critical path is determined by routing the placement solution at 20% above the minimum 

routable channel width. This ensures that no portions of the F P G A are severely routing 

congested to obscure the true critical path. The critical path of a circuit is the longest delay 

path that a signal has to traverse from an input to an output or between synchronous 

i j flip-flops. The critical path determines the clock speed of a circuit, and thus its 

performance. To determine this quality, iPlace wi l l be compared against V P R in default, 

"-fast" and "-superfast" modes. 

Placement Stability 

The last quality to measure is placement stability. Placement stability is a measure of how 

much the placement has been modified from the "before" circuit state to the "after" circuit 

state. There is no standard way to measure this, so we have decided to measure the total 

Euclidean distance traveled in the array ("before" position to "after") by all of the 

unmodified C L B s . The goal of placement stability is to show that incremental placement 

using iPlace results in a placement closely resembling the initial placement solution. 
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If an unmodified C L B remains in the same location in the "after" state, the cost for that 

C L B is 0. For V P R placement from scratch results, we also considered that the array is 

perfectly symmetrical, so we computed the distance cost total from all possible initial 

orientations (rotates and flips) of the initial placement and took the lowest total distance. 

For the iPlace results, we kept only the original orientation. The results presented for 

placement stability wi l l be normalized to a "unit distance" measurement. The unit distance 

is a summation of the Euclidian distance for all un-modified elements i f each element 

traveled 1 unit horizontally and 1 unit vertically. 

The placement stability quality wi l l be presented for the Single-Region Synthetic and 

Physical Re-synthesis benchmarks. It wi l l not be presented for Multi-Region Physical 

Re-synthesis benchmarks because significant portions of the circuit are modified. 

4.2. Experimental Baseline 

The iPlace incremental placement C A D flow is implemented as part of the academic tool 

V P R [32] and TVPack. TVPack has been modified to include the i R A C [60] clustering 

algorithm along with the ability to perform incremental re-clustering. The benchmark flow 

consists of the following parameters and settings: 

• Initial benchmark circuit clustering using the i R A C algorithm 

• Initial high-quality placement using V P R in default mode 

• Single-Region Synthetic benchmark set from Section 4.3 

• Single-Region Physical Re-Synthesis benchmark set from Section 4.3 

• Multi-Region Physical Re-Synthesis benchmark set from Section 4.4 

• F P G A architecture with L U T size (k = 4), cluster size (N = 10), wire length (L = 4), 
all buffered (bi-dir) routing, T S M C 180nm [64] (PR and S Y N benchmarks) 
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• F P G A architecture with L U T size (k = 6), cluster size (N = 16), wire length (L = 4), all 
buffered (bi-dir) routing, T S M C 180nm [64] (MR benchmark) 

• V P R flags: -verify_binary_search _pres_fac_mult 1.3 -max_ routerjterations 100, 
relaxed run change: -pres_fac_mult 1.1 

• Run-times are for placement only; initialization time is excluded 

The benchmarks were incrementally re-clustered by keeping the original clustering 

solutions for the unmodified C L B s and incrementally re-clustering the modified LEs into 

modified C L B s . i R A C was used for all clustering because it produces the lowest routed 

Y 

channel widths and delay performance compared to TVPack [25]. The location of the 

removed C L B s was used to produce a floorplan rectangle as additional input to iPlace. 

The C A D flow used to measure the quality of the incremental placer is as follows. The 

baseline circuits are first clustered using i R A C . The clustered circuits are then placed using 

the default settings of V P R to obtain a high quality initial placement. Using this initial 

placement and the floorplan from the benchmark circuit generation process, iPlace is used 

to incrementally re-place the benchmark circuit. The placement speed of iPlace was varied 

by setting the inner_num annealing parameter to 3, 2.5, 2,1.5 and 1. Lower values result in 

faster annealing times, but this does not significantly affect quality. 

For comparison, a placement from scratch was also performed using V P R . The inner_num 

parameter was swept with values of 10, 1, 0.5, 0.25 and 0.125. Reducing this parameter 

reduces the number of swaps that are performed at each temperature. A n inner_num value 

of 10 is the "default" value for V P R . A n inner_num value of 1 is the default when V P R is 

invoked with the "-fast" placement option. This produces slightly lower-quality 

placements but increases run-time nearly 10 times. A new "-superfast" option was created 
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by setting the inner_num parameter to 0.125. Various other V P R parameters such as initial 

temperature, range limit etc. were also studied to determine the reduction of run-time 

versus placement quality trade-off. It was found that reducing inner_num provides the 

most graceful degradation of placement quality versus run time improvement. 

The results presented in this chapter consist of the runtime, minimum routable channel 

width, relaxed critical path and a placement stability analysis. For every placement 

generated, the V P R binary search routing option was invoked to determine the minimum 

routable channel width. The relaxed critical path value was determined by routing the 

placement with 20% more channel width than the minimum required. 

A l l of the simulations were executed on a dedicated Pentium 4, 3 G H z server with 512MB 

of R A M for each job 1 0 . Additional memory was not required for the size of the benchmark 

circuits. Every placement was executed 5 times with 5 different random seeds to reduce the 

noise in the results. Each datapoint result presented is an arithmetic average of these 5 

executions. 

1 0 Jobs were executed on Westgrid's Glacier cluster and scheduled according to the 
torque queuing and load balancing system 
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4.3. Single-Region Synthetic Benchmarks 

4.3.1. Benchmark Formulation 

The single region synthetic benchmark set is designed to test the performance of the 

incremental placer with incrementally modified logic. This benchmark set is generated by 

selecting a subset of a circuit and replacing the subset with a synthetically generated 

replacement. The synthetic generation and replacement process is discussed in [3] [4]. 

The process for selecting which elements should be modified is based on the initial 

placement of the baseline circuit. A random rectangular region is selected and the C L B s 

from that region are removed and replaced with a synthetic clone circuit. Three different 

versions of the benchmarks were generated by selecting areas of 2.5%, 5% and 10% of the 

total CLBs and replacing them with synthetic clones of identical size. For the 2.5% and 5% 

cases, an additional circuit was generated by doubling the number of C L B s in the 

replacement clone. In total, this produced 5 "after" circuit states for each original circuit. 

The 2 doubling cases with 2.5% and 5% more logic were designed to test the iPlace 

expansion and compaction schemes. The floorplan for this benchmark is the region 

selected for re-synthesis. 

Original 
#CLB 

Synthetic 2.5 
New # CLB ACLB 

CLMA 839 839 25 
EX1010 107 107 2 
MISEX3 140 140 3 
PDC 458 458 15 
SPLA 369 369 9 

Table 2 Synthetic 2.5 Benchmark Characteristics 
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Original 
#CLB 

Synthetic 5 
New # CLB ACLB 

CLMA 
EX1010 
MISEX3 
PDC 
SPLA 

839 
107\ 
140 
458 
369 

839 49 
107̂  9 
140 9 ' 
458 25 

. 369 22' 

Table 3 Synthetic 5 Benchmark Characteristics 

Original 
#CLB 

Synthetic 10 
New # CLB ACLB 

CLMA 839 839 99 
EX1010 107 107 15 
MISEX3 140 140 15 
PDC 458 458 49 
SPLA 369 369 49 

Table 4 Synthetic 10 Benchmark Characteristics 

Original 
#CLB 

Synthetic 2.5d 
New # CLB ACLB 

CLMA 839 899 109 
EX1010 107 107 5 
MISEX3 - 140 140 9 
PDC 458 490 57 
SPLA 369 408 64 

Table 5 Synthetic 2.5d Benchmark Characteristics 

Original 
#CLB 

Synthetic 5d 
New # CLB ACLB 

CLMA 839 967 227 
EX1010 107 122 26 
MISEX3 140 158 33 
PDC 458 525 116 
SPLA 369 440 120 

Table 6 Synthetic 5d Benchmark Characteristics 

Table 2 to Table 6 summaries the statistics for a subset of the synthetic benchmark circuits 

created. The circuits Synthetic 2.5, 5 and 10 are the same sized clones for 2.5%, 5% and 

10% rip out areas. The circuits synthetic 2.5d and 5d represent the 2.5% and 5% cut out 

regions that are replaced with double the number of LEs . The table shows the total number 

of C L B s for each of the original circuits, the new number of C L B s after the synthetic 



process and the number of changed (delta) C L B s . This benchmark set demonstrates how 

iPlace can produce high-quality incremental placements after design changes are made. 

The synthetic benchmark process was executed for 20 of the largest M C N C circuits. In this 

section, the results for a sample of 5 circuits were selected to show the effectiveness of 

iPlace on a variety of circuit sizes. The full sets of results for the 20 M C N C circuits are 

provided in Appendix A . 

4.3.2. Runtime Results 

Synthetic 
Circuit 

Syn-2.5 S y n - 5 Syn - 10 Syn - 2.5d Syn - 5d 

C L M A 72.0 70.8 73.5 80.3 70.0 
EX1010 77.6 75.0 77.0 69.0 76.2 
MISEX3 - - - - - . 

PDC 80.6 64.0 68.7 84.4 68.1 . 
SPLA 75.7 55.5 44.8 84.0 51.2 

Geometric Mean: 70.1 

ible 7 Runtime Speedup of iPlace relative to VPR default settin 

Synthetic 
Circuit 

Syn - 2.5 S y n - 5 Syn - 10 Syn - 2.5d Syn - 5d 

C L M A 8.3 7.9 8.1 8.9 8.2 
EX1010 9.2 8.6 8.8 8.2 8.8 
MISEX3 - - • - - -

PDC 9.8 7.0 7.0 10.2 7.9 
SPLA 8.7 6.8 5.0 9.7 6.0 

Geometric Mean: 8.0 

Table 8 Runtime Speedup of iPlace relative to VPR "-fast" settings 
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Synthetic 
Circuit 

Syn - 2.5 S y n - 5 Syn - 10 Syn-2.5d Syn - 5d 

C L M A 1.7 1.8 1.7 1.9 2.0 
EX1010 2.2 2.0 , 2.0 2.0 2.2 
MISEX3 - - ' - -

PDC 2.2 1.8 2.0 2.6 1-9 
SPLA 2.3 1.5 1.2 3.0 1.5 

Geometric Mean: 1.9 

Table 9 Runtime Speedup of iPlace relative to VPR "-superfast" settings 

The runtime speedup achieved with iPlace when compared to V P R in default mode is 

shown in Table 7 . iPlace is 51 to 84 times faster than V P R in default mode. There is a 

significant run time improvement when incremental placement via iPlace is used. Table 8 

and Table 9 show the speedup comparing iPlace to V P R "-fast" and "-superfast". There is a 

geometric mean speed up of 8.0 and 1.9 for "-fast" arid "-superfast", respectively. It should 

also be noted that there is no significant slow down for the increased size 2.5d and 5d 

circuits. The run-time overhead incurred by the expansion and compaction phases are 

negligible compared to the overall execution time. Entries with a ' - ' represent run-time 

results that were too fast to be measured reliably (<200ms), so they are omitted from the 

table. 

i 
j 
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4.3.3. Channel Width Results 
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Figure 20: Minimum Routable CW versus Run Time for C L M A , Synthetic 

Figure 20 shows the minimum routable channel width versus placement run time for 

C L M A in the synthetic benchmark set. A channel width degradation of 15-20% is 

observed with V P R as the run time (inner_num) is reduced. In contrast, iPlace produces 

consistently high-quality solutions. The channel widths for iPlace exceed or are equivalent 

to default V P R but with 2 orders in magnitude less in runtime. The main conclusion from 

Figure 20 is that the iPlace curve is always below the V P R curve. This means that iPlace is 

always able to produce better solutions than placement from scratch using V P R . The 

results were similar for the other benchmark circuits. Full channel width results are 

provided in Appendix A 
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4.3.4. Critical Path Results 
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Figure 21: Relaxed Critical Path versus Run Time for C L M A , Synthetic 

The relaxed critical path results for the Synthetic C L M A benchmark set is presented in 

Figure 21. The plot shows that there is a slight critical path degradation (<2%) when 

comparing iPlace to V P R . When considering the two-orders of magnitude less in run-time 

for iPlace, it is a small trade off for quality versus run-time. The overall results for all 20 

M C N C circuits (Appendix A ) show that the critical path results are on par for iPlace 

relative to V P R . There is less than 1% degradation, which is within error margins. It should 

also be noted from the previous section that V P R at reduced run-time had significant 

channel width degradation. Because the relaxed critical path is calculated by routing the 

circuits at 120% the minimum routable channel width, V P R at lower run-times had even 

more tracks to route with. If the faster V P R placements were routed at the same channel 

width as iPlace 1 1 , the V P R placement solutions would have to tradeoff routability for 

higher critical path delays. 

Commercial devices have a fixed channel widths 
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4.3.5. Placement Stability Results 

Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean 
clma 2.41 2.64 2.05 5.24 3.66 3.02 
ex1010 2.36 1.96 2.47 2.84 2.86 2.48 
misex3 1.78 2.33 1.72 1.80 2.62 2.02 
pdc 4.01 3.09 2.24 4.64 4.41 3.55 
spla 3.09 3.77 4.63 3.83 5.27 4.05 

Geomean 2.93 

Table 10 Average Displacement Results for Synthetic Benchmark Circuits, Baseline 
VPR Default 

Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean 
clma 2.73 2.69 2.72 3.19 3.98 3.02 
ex1010 1.53 1.60 1.52 1.88 1.50 1.60 
misex3 1.35 1.47 1.47 1.50 2.14 1.57 
pdc 2.11 2.11 2.14 2.91 3.05 2.43 
spla 1.66 1.69 1.87 2.30 2.91 2.04 

Geomean 2.06 

Table 11 Average Displacement Results for Synthetic Benchmark Circuits, iPlace 

The placement stability results for the single region synthetic benchmarks are presented in 

Table 10 and Table 11. The results for V P R and iPlace are normalized to the unit (diagonal) 

distance measurement. The results show that every unmodified C L B s wil l travel, on 

average 2 unit distances when incrementally placed with iPlace. In contrast, V P R 

placement from scratch wi l l travel 3 unit distances on average. 

For the circuits Syn 2.5, 5 and 10, the placement stability results for iPlace are similar 

across the different variations. This suggests that the iPlace placement solution is able to 

more closely resemble the original placement solution even for different variations in the 

synthetic flow. In comparison, placement solutions produced with V P R shows larger 

fluctuation, meaning the placement solutions vary from one annealing run to another. 

Another result to consider is to consider Syn 2.5 and 5 circuits versus Syn 2.5d and 5d 
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circuits. For iPlace, doubling the synthetic region increases the average displacement per 

C L B by 0 to -1.0 units. Placement stability for V P R also increased by approximately the 

same amount1 2, but the results still shows that iPlace produces placements with better 

stability results. 

Overall, the results suggest that iPlace does a good job at preserving placement stability. 

The placement solution produced by iPlace more closely resembles the previous solution 

when compared to placement from scratch. 

4.3.6. Conclusions for Synthetic Benchmarks 

The results presented for Single-Region Synthetic benchmarks show that iPlace is a fast 

and high quality incremental placement algorithm. The full results for all 20 synthetically 

modified M C N C circuits are presented in Appendix A . iPlace achieves a speedup of 70 i 

times faster than placement using default V P R settings and 8 times faster than V P R with 

"-fast" settings. The average of the normalized channel width comparing V P R default 

placement and iPlace is 1.01. This suggests that iPlace is 1% better than V P R . The 

placement stability results also show that iPlace is superior to V P R . Unmodified C L B s do 

not travel as far from their previous placement location when incrementally placed with 

iPlace. In summary, iPlace is 70 times faster than V P R default placement with no channel 

width penalty and better placement stability results. 

\ -

n Except for C L M A , the 19 other M C N C circuits had similar results. 
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4.4. Single-Region Re-synthesis Benchmarks 

4.4.1. Benchmark Formulation 

org. Physical Resynthesis 2.5 Physical Resynthesis 5 

#CLB 
New" 

#CLB 
ACLB 

New 
#CLB 

A C L B 

C L M A 839 846 32 851 57 
EX1010 460 463 .12 467 32 
MISEX3 140 N/A N/A 143 12 
PDC 458 461 12 465 32 
SPLA 369 372 12 376 32 

Table 12 PR 2.5 and 5 Benchmark Statistics 

Original Physical Resynthesis 10 Physical Resynthesis 15 

#CLB 
New 

#CLB 
ACLB 

New 
#CLB 

ACLB 

C L M A 839 857 87 876 182 
EX1010 460 472 57 478 87 
MISEX3 140 N/A N/A 147 32 
PDC 458 470 57 476 87 
SPLA 369 381 57 387 87. 

Table 13 PR 10 and 15 Benchmark Statistics 

The Single-Region Physical Resynthesis benchmark set is designed to test iPlace with 

re-synthesis flows. This benchmark set is generated using the physical resynthesis C A D 

flow presented in [1]. This flow is an iterative congestion reduction algorithm. It identifies 

the most congested regions of a circuit and reduces the number of LEs packed per C L B in 

that region. To generate a set of benchmark circuits, the flow selects the single most 

congested area and reduces the maximum cluster utilization from 10 to 8 LEs . In effect, 

this increases the number of C L B s in the changed region by 20%, but the final circuit is 

still functionally-equivalent to the original. Five benchmark circuits form the original 

"before" state. Four variations of each circuit were created by selecting a congested region 

size of 2.5%, 5%, 10% and 15% the total number of C L B s in the circuit. The circuit 
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statistics for the total number of C L B s "after" reclustering, as well as the number of C L B s 

in the changed region, are shown in Table 12 and Table 13. The floorplan is generated as 

the congested region selected by"the C A D flow. Please note due to discretization effects 

with the small circuit M I S E X 3 , the 2.5% and 10% were equivalent to the 5% and 15% 

changes. Therefore, only the latter ones were used. This benchmark set helps demonstrate 

how iPlace preserves placement quality when used within iterative improvement 

algorithms. 

4.4.2. Runtime Results 

Physical 
Resynthesis 

Circuit 
PR 2.5 PR 5 PR 10 PR 15 

C L M A 70.3 64.8 76.9 67.9 
EX1010 59.3 74.4 46.8 62,8 
MISEX3 N/A - N/A 36.0 
PDC 63.3 80.2 69.2 70.8 
SPLA 257.0 106.5 109.5 44.8 

Geometric Mean 71.9 

Table 14 Runtime Speedup of iPlace relative to VPR default settings 

Physical 
Resynthesis 

Circuit 
PR 2.5 PR 5 PR 10 PR 15 

C L M A 7.6 7.4 8.4 7.8 
EX1010 6.7 8.4 5.4 7.2 
MISEX3 N/A - N/A 4.0 
PDC 6.8 8.4 7.8 8.2 
SPLA 28.0 12.0 14.5 5.2 

Geometric Mean 8.1 

Table 15 Runtime Speedup of iPlace relative to VPR "-fast" settings 
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Physical 
Resynthesis 

Circuit 
PR 2.5 PR 5 PR 10 PR 15 

C L M A 1.7 1.7 1.9 1.5 
EX1010 1.7 2.0 1.3 ... 1.7 
MISEX3 N/A . - N/A -
PDC 1.8 2.0 2.0 2.2 
SPLA 6.0 2.5 3.0 1.6 

- Geometric Mean 2.0 

Table 16 Runtime Speedup of iPlace relative to VPR "-superfast" settings 

The normalized runtime speedups for the single region physical re-synthesis benchmarks 

are presented in Table 14 to Table 16. Similar to the synthetic benchmarks from the 

previous section, iPlace is significantly faster compared to V P R placement. When 

comparing iPlace to V P R placement using default options, iPlace is 46 to 257 times faster. 

On average, iPlace is 71.9 times faster than V P R placement from scratch. Compared to the 

faster placement "-fast" and "-superfast", iPlace is 8.1 and 2 times faster respectively. The 

lone exception where V P R was faster than iPlace is for the M I S E X 3 V P R "-superfast" 

versus iPlace results. iPlace had an average run-time of 0.2 seconds while V P R was too 

fast to measure. A more accurate timer is needed to gauge the results for small circuits such 

as M I S E X 3 . Entries with a ' - ' represent run-time results that were too fast to be measured 

reliably (<200ms), so they are omitted from the table. 

v 
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4.4.3. Channel Width Results 
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Figure 22 Min. Routable Channel Width vs. Run Time for C L M A , PR 

Figure 22 shows the minimum routable channel width versus placement runtime for the 

C L M A variants in this benchmark set. The reduction of the inner_num parameter for V P R 

placement results in a 10% increase in the minimum routable channel width. The trade-off 

for 10% channel width increase is a 40-fold decrease in run time. In comparison, iPlace is 

consistently able to place the circuit with a channel width comparable to "default" V P R 

placement but with vastly improved runtime (2 orders of magnitude). In fact, iPlace always 

beats V P R in the quality/run-time tradeoff curve. For example, iPlace with an 

inner_num-\ took 3.2 seconds, whereas V P R placement with inner_num=0.125 took 5.2 

seconds and had significant quality degradation. Full channel width results for this 

benchmark set are provided in Appendix B . 
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4.4.4. Critical Path Results 
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Figure 23 Relaxed Critical Path versus Run Time for C L M A , PR 

Figure 23 shows the relaxed critical path results for the C L M A circuits in the PR set. The 

critical path for iPlace was sometimes worse than V P R by 3-4% for C L M A , but the 

geometric mean of the critical path over all the circuits was on par. Figure 23 shows that 

the critical path does not degrade with the reduction in run-time for both V P R and iPlace. 

However, this may not hold true with real (fixed channel width) devices. For the V P R 

results, the channel width increased by 20%, which means the relaxed critical path has 

more tracks available to route, which may help the router optimize the critical path a bit 

more. In comparison, iPlace uses a similar number of routing tracks for all cases, yet is still 

able to preserve critical path delay. , 
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4.4.5. Placement Stability Results 

PR 2.5 PR 5 PR 10 PR15 Geomean 
C L M A 2.94 3.38 5.30 2.82 3.49 
EX1010 •2.74 2.56 2.54 3.25 2.76 
MISEX3 N/A 2.26 N/A 2.58 2.42 
PDC 5.14 . 3.41 4.43 4.48 4.32 
SPLA 3.86 3.87 4.18 3.44 3.83 

Geomean 3.29 

Table 17 Average Displacement Results from PR Benchmark Circuits, VPR 
"Default" 

PR 2.5 PR 5 PR 10 PR15 Geomean 
C L M A 2.74 2.76 4.46 2.94 3.15 
EX1010 1.70 1.78 1.79 1.79 1.77 
MISEX3 N/A 1.55 N/A 2.07 1.79 
PDC 2.34 2.45 2.62 2.67 2.52 
SPLA 1.76 1.93 1.88 2.25 1.95 

Geomean 2.18 

Table 18 Average Displacement Results from PR Benchmark Circuits, iPlace 

The placement stability results for the Physical Re-Synthesis benchmark set are presented 

in Table 17 and Table 18. The results show on average, iPlace travels 2.2 unit distance per 

unmodified C L B compared to a distance of 3.3 for V P R placement from scratch. This 

shows that iPlace does preserve the previous placement solution better than a V P R 

placement from scratch. However, the results for the re-synthesis benchmark set were not 

as good as the synthetic set. This is due to the nature of the re-synthesis process. The 

congestion reduction flow always creates 20% more C L B s due to the white space insertion. 

To make room for the newly created C L B s , iPlace must use the expansion and compaction 

schemes to fit all of the C L B s into the floor-planned region. This causes the extra shifting 

of the unmodified C L B s further away from their starting positions. 
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4.4.6. Conclusions for Single-Region Re-synthesis Benchmarks 

The results presented for the single-region re-synthesis benchmark set also shows that 

iPlace is a fast incremental placement algorithm that produces high quality incremental 

placements. Overall, iPlace is -72 times faster than default V P R in default mode and about 

~8 times faster than "-fast" mode while achieving with similar quality channel width (CW) 

and critical path (CP) results. To push V P R even further, the "-superfast" mode 

(inner_num=0.125) was also added for comparing iPlace and V P R . At this point, iPlace is 

still twice as fast and does not show the quality degradation exhibited by V P R . Notice that 

some run-time results were toofast to be measured reliably (<200ms), so they are omitted 

from the table (shown as a dash). The full set of run-time, channel width and critical path, 

quality results are provided in Appendix B . 
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4.5. Multi-Region Re-synthesis Benchmarks 

4.5.1. Benchmark Formulation 

org. Multi Region -50 Multi Region -40 
#CLB • New Num. New Num. 

#CLB ACLB Regions #CLB ACLB Regions 
C L O N E 3151 3618 2233 135 3310 762 46 
STDEVO 3148 3603 2218 114 3595 2208 114 
STDEV010 3152 3463 1490 85 3278 588 37 

Table 19 Multi Region 50 and 40 Benchmark Characteristics 

org. Multi Region -30 Multi Region -20 
#CLB New Num. New Num. 

#CLB A C L B Regions #CLB ACLB Regions 
C L O N E 3151 3265 560 29 3206 275 12 
STDEVO 3148 3606 2224 116 3272 617 30 
STDEV010 3152 3254 490 29 3193 202 9 

Table 20 Multi Region 30 and 20 Benchmark Characteristics 

org. Multi Region -10 
#CLB New Num. 

#CLB ACLB Regions 
C L O N E 3151 3288 681 34 
STDEVO 3148 3370 1087 50 
STDEV010 3152 3237 425 . 20 

Table 21 Multi Region 10 Benchmark Characteristics 

The Multi-Region Physical Re-synthesis (MR) set of benchmarks is designed to test the 

performance of the incremental placer with multiple incrementally modified regions. 

Multi-region incremental placement allows designers to make changes in multiple parts of 

a circuit and still be able to incrementally re-compile the design in a quick and efficient 

manner. This set of benchmarks is also generated using the physical re-synthesis flow 

outlined in [1]. Instead of identifying the most congested area, the flow also supports 



identifying multiple congested regions. The circuits used for this experiment are 

synthetically generated with varying levels of congestion. The size of each circuit is 

-50,000 logic elements [1]. To create a family of benchmarks, 5 variations of 3 circuits 

were created. The five variations are produced by targeting a percentage reduction of 10%, 

20%, 30%, 40% and 50% in the minimal routable channel. This is accomplished by using a 

re-synthesis algorithm to re-cluster parts of the circuit. The algorithm begins by identifying 

the most congested C L B and marking a region within a Euclidian distance of 5. The C L B s 

within the region becomes a congestion region. The algorithm then identifies the next most 

congested unmarked region, it iterates to find all congested regions with routing 

requirements higher than the targeted reduction. Each region can contain a maximum of 25 

C L B s , but there may be fewer because regions can overlap. Each C L B can only belong to 

one region. To achieve the reduction in channel width required, 3 white space LEs are 

inserted into each cluster identified as congested, reducing the utilization from 16 to 13 

LEs . This produces -20% increase in C L B s per region. The increase in the number of 

C L B s means that iPlace must use the expansion paradigm to fit the increased number of 

C L B s into regions that are too small. The floorplan for the multi-region benchmarks is 

generated based on the identified congested regions. Note that due to overlapping 

congested regions, some floorplan regions wil l overlap. The circuit statistics for the M R 

set of benchmarks are shown in Table 19, Table 20 and Table 21. For each benchmark, the 

total number of C L B s , the number of "depopulated" delta C L B s and the number of 

changed regions are shown. This benchmark set shows that iPlace is capable of handling 

multiple overlapping regions of various sizes. 
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4.5.2. Runtime Results 

Multi-Region 
Circuit 

M R - 5 0 M R - 4 0 M R - 30 M R - 20 M R - 1 0 

C L O N E 62.8 70.0 68.3 61.5 75.9 
STDEVO 67.3 66.8 55.1 56.0 66.3 
STDEV010 47.1 59.7 68.6 66.5 58.5 

Geometric Mean 63.0 

Table 22 Runtime Speedup of iPlace relative to VPR default settings 

Multi-Region 
Circuit 

M R - 5 0 M R - 4 0 M R - 30 M R - 20 M R - 1 0 

C L O N E 6.7 7.9 7.5 6.6 8.2 
STDEVO 7.6 6.9 5.6 6.5 7.1 
STDEV010 4.9 6.3 8.0 7.1 5.8 

Geometric Mean 6.8 

Table 23 Runtime Speedup of iPlace relative to VPR "-fast" settings 

Multi-Region 
Circuit 

M R - 5 0 M R - 4 0 M R - 30 M R - 20 M R - 1 0 

C L O N E 1.2 1.5 1.4 1.5 1.3 
STDEVO 1.5 1.4 1.1 1.1 1.4 
STDEV010 0.9 1.3 1.7 1.4 1.2 

Geometric Mean 1.3 

Table 24 Runtime Speedup of iPlace relative to VPR "-superfast" settings 

The run time results for Multi-Region incremental placement are presented in Table 22, 

Table 23 and Table 24. These results present the speedup achieved for V P R runtime in 

default, "-fast" and "-superfast" modes versus iPlace run time. Compared against V P R in 

default mode, iPlace is 63 times faster. Compared against "-fast" and "-superfast" modes, 

iPlace is 6.8 and 1.3 times faster respectively. For large changes such as the circuits from 

the Multi-Region - 50 benchmark set (Table 19), up to 2/3 of the circuit is physically 

re-synthesized and requires re-placement. The results presented above show that the 

speedup achieved by iPlace does not degrade significantly even for multiple regions 
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spanning 1/3 to 2/3 of the C L B s . The conclusion drawn from the speedup results is that 

iPlace is a scalable algorithm capable of handling significant changes to a netlist even for 

large 50,000 L U T circuits. 

4.5.3. Channel Width Results 
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Figure 24 Minimum Routable CW versus Run Time for StdevOlO, M R 

Figure 24 shows the minimum routable channel width versus runtime for the StdevOlO 

variants of the M R benchmark suite. Similar results were reached when compared to the 

single region simulations. As run time is reduced for V P R placement from scratch, the 

channel width quality degrades significantly. For a 40-50x speed increase, the channel 

width quality degrades by -15%. In comparison, iPlace is two orders of magnitude faster 

in run time compared to a full placement. The quality of the multi region incremental 

placement is slightly degraded compared to a full placement. There is a 2-4% loss in 
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channel width quality in exchange for the speed up. Compared to a "-fast" placement, 

iPlace produces similar quality results but is 6-8 times.faster. Results for the other M R 

benchmark circuits were similar. iPlace consistently produces excellent channel width 

results with significantly reduced, run-time. 
i 

4.5.4. Critical Path Results 
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Figure 25 Relaxed Critical Path versus Runtime for StdevOlO, M R 

Figure 25 shows the relaxed critical path delay results for the StdevOlO circuit in the M R 

benchmark suite. Similar to the previous results, iPlace produces very competitive results 

at a fraction of the time. The iPlace critical path results were on par when compared against 

full and fast placement from scratch using V P R . Results for the other M R circuits were 

similar. There is no significant critical path increase even for large circuits incrementally 

placed with multiple modified regions. 
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4.5.5. Conclusions for Multi-Region Re-synthesis Benchmarks 

The results for the Multi-Region Physical Re-synthesis benchmark set were presented in 

this section. Findings for the M R benchmark set include a 63 times speedup in placement 

run time when comparing iPlace to V P R in default mode with 2-4% loss in channel width 

and critical path quality. When comparing the faster V P R "-fast" and "-superfast" modes, 

iPlace is still 6.8 and 1.3 times faster respectively with on par or better quality for channel 

width and critical path. A full summary of the multi-region results are presented in 

Appendix C. 

A key finding is that the quality of multi-region incremental placement does not degrade 

even when a substantial percentage of the circuit is modified. From Table 19, the Multi 

Region-50 set of circuits have 1/3 to 2/3 of the C L B s modified. However, iPlace is still 

able to produce quality results due to floor-planning and controlled expansion. 
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4.6. Experimental Conclusions 

This chapter has presented the benchmarking process and results obtained while 

evaluating iPlace. The aspects used to measure the quality of the incremental placement 

include the runtime speedup, the minimum routable channel width, the relaxed critical 

path and the placement stability. ' 

Three benchmarking sets were produced to evaluate iPlace. The first two benchmark sets 

are used to evaluate the effectiveness of iPlace for typical incremental placement use cases. 

The third benchmark set is used to evaluate the scalability of iPlace. First, the Synthetic 

benchmark set simulates design changes by replacing a section of the circuit with a 

synthetic clone. Second, the Physical Re-synthesis benchmark re-synthesizes part of the 

clustering solution in order to target a hard F P G A constraint. Third, the Multi-Region 

Physical re-synthesis benchmark set scales the re-synthesis algorithm to multiple regions 

of modification and to much larger benchmark circuits. 

VPR "default" / VPR "-fast" / VPR "-superfast" / 
Speedup iPlace iPlace iPlace 

Single Region -
Synthetic 70.1 8 1.9 

Single Region -
Physical Resynthesis 71.9 8.1 2.0 

Multi-region -
Physical Resynthesis 63.0 6.8 1.3 

Geometric Mean 68.2 7.6 1.7 

Table 25 Multi Region Run-time Speedup Summary 

A summary of the run-time speedup obtained with iPlace is presented in Table 25. Overall, 

the results show that iPlace is significantly faster than placement using V P R . When 

comparing iPlace to V P R in default mode, iPlace is 63 to 72 times faster in run time. There 

was no obvious channel width or critical path quality degradation for the single region 
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benchmarks. For the multi-region benchmark set, a 2-4% quality degradation was 

observed for channel width and critical path. In addition to comparing iPlace to a full 

placement via V P R , comparisons were also made to the "-fast" (inner_num=l) and 

"superfast"(inner_num=0.125) modes of operation. When comparing iPlace to V P R 

"-fast", iPlace was 6.8 to 8 times faster. When comparing iPlace to V P R "-superfast", 

iPlace was 1.3 to 2.0 times faster. In terms of quality, iPlace always produced on par results 

compared "-fast" and was significantly better than "-superfast". It is also shown that iPlace 

is a stable placement algorithm. On average, unmodified C L B s travel ~2 C L B units from 

their previous placement location. 

Observation3: 

When examining the channel width to run-time trade off curves (Figure 20, Figure 22, 

Figure 24), the iPlace curve is always positioned below the V P R curve. This indicates that 

the quality versus run-time trade-off for iPlace is better than V P R . In fact, V P R 

experiences up to 15-20% degradation in channel width quality as the run-time is reduced 

by 100 times. In comparison, iPlace is able of producing V P R full placement quality 

results with the two-orders less in magnitude in run time. 

Observation 4: 

There was no obvious routing quality degradation with iPlace for the range of inner_num 

values used (1 to 3), but it was observed that values below 1 do provide lower quality 

results. In fact, lowering inner_num too low is equivalent to omitting the annealing step 

altogether. We observed roughly 10% critical path delay increase and 20% bounding box 

cost increase when the low temperature annealing step is left out from iPlace. Without 

annealing, the run time is too fast to measure. 
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Full Results 

The full results obtained for the three benchmarking schemes are provided in Appendix A , 

Appendix B and Appendix C. The tables show the run time (RT), channel width (CW), 

critical path (CP), total post-placement bounding box cost (Bbox) and the total 

post-routing wirelength (WL) of iPlace. Normalized comparisons of V P R default, V P R 

"-fast", V P R "-superfast" to iPlace are also provided. The columns ending in Q, such as 

C W Q , show channel width (CW) quality (Q) normalized to iPlace. 
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5. Qualitative comparisons 

We believe that there are no other general incremental placement algorithms available for 

academic F P G A research, so we are unable to present head-to-head comparisons in terms 

of runtime and quality results. Instead, this section wil l present a "qualitative" comparison 

of relevant incremental placement algorithms and fast placement approaches. 

The most relevant incremental placement algorithm is the Singh and Brown ICP placer 

[54] 1 3 . The authors benchmarked the ICP placer with -15% modified LEs to several 

M C N C circuits. The paper reported an 8x speedup compared to V P R . Also, they analyzed 

the run-time complexity of the algorithm and reported that as the number of modified L E 

increases, the algorithm wi l l eventually be slower than a full placement by V P R . In 

comparison, this thesis has shown that iPlace is a scalable algorithm capable of handling 

large multi-region modifications. iPlace achieves a 63 times speed up even when up to 2/3 

of a circuit is modified and incrementally placed. The key differentiation between iPlace 

and ICP is that iPlace uses floor-planning and partial design shifting. These simple 

algorithms are C P U efficient compared to proposing and evaluating cost changes for every 

L E or C L B swap. 

Other incremental placement algorithms presented in Section 2.3 did not present speedup 

results. We believe that iPlace is the first fully general purpose incremental placement 

algorithm available for FPGAs . We hope that iPlace wil l be followed by future incremental 

placement research that can be compared to the results found by this thesis. 

1 3 We contacted the authors, but were unable to obtain benchmarks or source code for 
comparison 
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Because there are no other suitable incremental F P G A placement results to compare, we 

compare iPlace to other fast full-placement schemes. The ultra-fast placement algorithm 

by Sankar achieves 52x speedup and increases bounding box cost 33% over default V P R 

[61] 1 4. Mulpuri compared critical path versus runtime of different placement algorithms, 

showing ~10x speedup reduces quality by -30% [60]. The Frontier system by Tessier 

computes a good floorplan of pre-designed macro blocks followed by a low-temperature 

anneal, improving both placement run-time by ~17x and critical path by -10% versus 

Xi l inx software [62]. In contrast, this thesis achieves 35-260 times speedup with no 

increase to critical path, channel width, or bounding box. 

Overall, we believe that iPlace is a unique algorithm for incremental F P G A C A D flows. In 

comparison to other F P G A incremental algorithms, iPlace is more scalable and faster when 

compared to V P R . The results found in this thesis showed an approximate 60x speedup for 

iPlace versus an 8x speedup for the ICP algorithm. Although academic research in this area 

is limited, we hope future work wi l l provide additional comparisons. Compared to fast 

placement algorithms, iPlace shows similar speedups but do not exhibit the quality 

degradations suffered as a trade-off for speed. iPlace is able to generate the same high 

quality placement as a full placement from scratch. 

Sankar used an older version of V P R that is not timing-driven. 
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6. Conclusions and Future Work 

In this thesis, we have presented a new incremental placement algorithm iPlace that 

significantly reduces the placement time for changes to an already placed circuit. The key 

ideas contributing to this algorithm include the use of an initial placement, floor planning, 

shifting and a placement super-grid. The iPlace algorithm consists of four steps. The first 

step is the use of an initial placement and floor-planning. The second step is the insertion of 

modified C L B s using the placement super-grid. The third step is the re-legalization of the 

placement through compaction. The final step is a short simulated annealing refinement to 

optimize the solution. 

Three suites of benchmarks circuits were designed to determine the performance of iPlace. 

First, the single-region synthetic set simulates design changes by significantly modifying a 

region of logic using the Perturber + Mutator flow [3] [4]. Second, the single-region 

physical re-synthesis set simulates a re-synthesis change to target a channel width 

constraint. Using the Un/DoPack flow [1] where white space is inserted into fully packed 

C L B s . Third, the multi-region physical re-synthesis benchmark set simulates multiple 

design changes across multiple regions for large benchmark circuits. Multiple "congested" 

regions were selected and depopulated using Un/DoPack to target a percentage reduction 

in the minimum channel width. 

VPR "default" / VPR "-fast" / VPR "-superfast" / 
Speedup iPlace iPlace iPlace 

Single Region -
70.1 8 1.9 

Synthetic 
70.1 8 1.9 

Single Region -
71.9 8.1 2.0 

Physical Resynthesis 
71.9 8.1 2.0 

Multi-region -
Physical Resynthesis 63.0 6.8 1.3 

Geo.Mean 68.2 7.6 1.7 
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Table 26 Overall Run-time Speedup Summary 

A summary of the results achieved using iPlace is presented in Table 26. Table 26 presents 

the speedup achieved using iPlace compared to V P R in "default" mode, V P R in quality 

reduced "-fast" mode and V P R in a newly created "-superfast" modes. 

For single region synthetic benchmarks, it was found that iPlace is 70 times faster than 

V P R in default mode with no channel width or critical path degradations. Even when 

compared to the quality reduced "-fast" and "-superfast" modes of V P R , iPlace is still 8.0 

and 1.9 times faster respectively. 

For single region physical re-synthesis benchmarks, it was found that iPlace is 71.9 times 

faster than V P R in default mode. The results and speedups observed for the single-region 

physical re-synthesis benchmark set were similar to the single-region synthetic benchmark 

sets. 

When considering multi-region incremental placement, iPlace is a very competitive 

algorithm. With 1/3 to 2/3 of a circuit modified, iPlace produces results with less than 4% 

loss in quality but 63 times faster compared to a full V P R placement. Compared to V P R 

"-fast" and "-superfast" placement, iPlace is 6.8 and 1.3 times faster with no loss in quality. 

This shows that iPlace is an algorithm, capable of scaling to significant modifications 

throughout a circuit. 

On average, iPlace is 68.2 times faster than V P R in default mode with negligible 

degradation in placement quality. This is a significant performance increase considering 

that V P R in "-superfast" mode, which is still ~2x slower, results in a significant channel 
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width degradation of -15-20%. 

Finally, we believe that iPlace is the first incremental placement algorithm for FPGAs 

capable of handling multiple regions of incremental modification with substantial run-time 

improvements and no quality degradations. 

6.1. Future work 

This thesis concludes with a summary of future follow up work to the iPlace algorithm. 

The iPlace algorithm is currently implemented as part of V P R and lacks support for several 

elements found in commercial FPGAs . Also, the algorithm is simplistic, and may be 

improved upon with further extensions to the shifting, compaction and refinement phases. 

Finally to provide an end to end incremental flow, incremental routing should also be 

considered. 

6.1.1. Support for Macro Blocks 

Commercial FPGAs contain macro blocks^such as DSPs, memories and multipliers. The 

current academic toolset available (VPR) has not been extended to model such elements. 

Future research for FPGAs wi l l hopefully extend the academic framework to support such 

elements. Once the underlying structures have been modeled, iPlace can then be modified 

to implement the proposed solutions from Section 3.8 for macro blocks. The performance 

and quality impact for macro blocks wi l l need to be investigated. 

6.1.2. Support for Carry Chains 

Similar to the support for macro blocks, current academic tools do not model carry chains. 

Future research into carry chains wi l l hopefully extend the framework to support such 
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structures. The proposed solutions in Section 3.8 for carry chains can then be implemented, 

so that the performance and quality tradeoffs can be examined. 

6.1.3. Smart Shifting 

The current iPlace algorithm relies on a simplistic shifting scheme for the expansion and 

compaction phases. Extensions to the shifting scheme include more balanced shifting to 

sides with more empty C L B s . Also shifting to take into account macro-blocks and carry 

chains must also be examined. Changes to the shifting scheme must be considered 

carefully. The run-time implications must be thoroughly examined so that the speed-up is 

not degraded. In all, a "keep it simple" approach should be followed. 

6.1.4. Analytical Placement Refinement Stage 

Instead of using Simulated Annealing for the refinement phase of iPlace, other placement 

algorithms can also be considered to optimize the solution. One example would be the use 

of analytical placement algorithms such as [39] to make small changes. 

6.1.5. Integration with Commercial tools 

The current implementation of iPlace is tightly integrated into the TV-Pack and V P R C A D 

flow. It would be interesting to port and adapt iPlace into commercial frameworks such as 

Altera's Quartus II framework through the Quartus University Interface Program (QUIP) 

package [65]. This wi l l enable the exploration of the performance of iPlace in a 

commercial quality C A D environment with commercial F P G A architectures. Integration 

with Quartus II was attempted, but it was discovered that the Quartus C A D flow performs 

simultaneous clustering and placement. Imposing an external clustering constraint leads to 

extremely long run times. Future work is required to optimize the integration between 
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iPlace and Quartus. 

6.1.6. Incremental Routing 

Placement and routing dominates the majority of the F P G A C A D flow. In order to fully 

complement incremental placement, incremental routing is also necessary to produce an 

end-to-end incremental C A D flow. For today's largest circuits, a full compilation could 

take an entire workday,to complete. With end-to-end incremental compilation, this wi l l 

hopefully reduce the compilation time necessary for incremental development. 

One drawback to the iPlace approach is that it tends to shift most of the C L B s some 

amount. This wi l l likely make the previous routing solution useless. Investigation into 

placement shifting that can co-exist with incremental routing are needed. 
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Appendix A : Single-Region Synthetic Benchmark Results 

Original Synthetic 2.5 Synthetic 5 

#CLB New # CLB ACLB New # CLB ACLB 
alu4 153 153 3 153 9 
apex2 188 188 9 188 9 
apex4 127 127 3 127 9 
bigkey 171 171 9 171 9 
clma 839 839 25 839 "49 
des 160 160 9 . 160 9 -
diffeq 150 150 3 150 9 
dsip 137 137 ' 3 137 9 
elliptic 361 • 361 9 361 25 
ex5p 107 107 2 107 9 
exlOlO 460 460 15 460 25 
frisc 356 356 9 356 25 
misex3 140 140 3 140 9 
pdc 458 458 15 458 25 
s298 194 194 9 194 9 
S38417 641 641 25. 641 35 
S38584 645 645 25 645 35 
seq 175 175 9 175 9 
spla 369 369 9 369 22 
tseng 105 105 3 105 9 

Table 27 Single-Region Synthetic Benchmark Circuit Statistic 



Original 

#CLB 

Synthetic 10 

New # CLB ACLB 

Synthetic 2.5d 

New # CLB ACLB 

Synthetic 5d 
New # 
CLB ACLB 

alu4 153 153 ' 15 153 9 175 37 
apex2 188 188 25 202 23 221 58 
apex4 127 127 15 127 9 127 15 
bigkey 171 171 25 . 171 8 ^ 171 25 
clma 839 839 99 899 109 967 227 
des 160 160 24 173 22 192 56 
diffeq 150 150 22 166 25 150 24 
dsip 137 137 15 137 9 137 15 
elliptic 361 361 49 361 25 361 49 
ex5p 107 107 15 107 5 122 26 
exlOlO 460 460 46 496 61 460 46 
frisc 356 356 35 356 25 356 35 ' 
misex3 140 140 15 140 9 158 33 
pdc 458 458 49 490 57 525 116 
s298 194 194 25 194 9 194 25 
s38417 641 641 81 692 86 767 207 
S38584 645 645 79 645 35 777 213 • 
seq 175 175 25 175 9 208 57 • 
spla 369 369 49 408 64 440 120 
tseng 105 105 14 105. 9 105 15 

Table 28 Single-Region Synthetic Benchmark Circuit Statistic Cont' 
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Synthetic circuits 
RT (s) CW 

iPlace (inner_ 
CP (ns) 

num=l) 

Bbox WL (*104) 
alu4 p25 0.2 32' 13.49 68.5 0.88 

p5 0.2 32.8 13.15 69.2 0.89 
plO 0 33 15.42 69.0 0.89 
p25d 0 32.8 .' 12.93 69.3 0.88 
p5d 0 32 14.99 78.6 1.02 

apex2 p25 0.4 42.4 14.34 107.4 1.46 
p5. 0 42.4 14.66 107.8 1.47 

* plO 0.4 42 14.20 107.7 1.46 
p25d 0.2 41.6 15.69 116.5 1.60 
p5d 0.2 42.8 17.11 126.1 1.71 

apcx4 ' p25 0 45 13.72 76.8 1.04 
p5 0.2 44.4 12.58 77.1 1.04 
plO 0 44.8 12.58 76.4 1.03 
p25d 0 44.8 13.42 76.7 . 1.04 
p5d 0 , 44.2. 13.08 77.1 1.03 

bigkey p25 0.4 41.8 6.13 63.8 0.90 
P5 0.4 42.4 6.62 63.6 0.90 
plO 0.4 40.2 6.15 65.1 0.92 
p25d 0.2 42.2 6.20 63.5 0.90 
P5d 0 41 6.26 65.7 0.92 

clma p25 3 51.8 27.02 ' 528.8 6.76 
p5 3 51.2 26.4? 529.5 6.78 
plO 3 52.2 26.88 536.9 6.88 
p25d 3 • 50.6 30.91 572.7 7.23 
p5d 4 54.2 31.97 644.4 8.26 

Table 29 Single-Region Synthetic Benchmark Placement Results 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time . 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic circuits 
RT (s) cw 

iPlace (inner_num=l) 
CP (ns) Bbox WL (*104) 

des p25 0 50.6 10.91 64.8 1.00 
p5 0.2 51 10.87 65.1 1.00 
plO 0 48.6 10.82 67.1 1.04 
p25d 0.2 50.6 12.35 72.5 s 1.10 
p5d 0 46.8 13.29 77.8 1.16 

diffeq p25 0.2 22 18.94 47.1 . 0.62 
p5 0.2 22.2 19.29 46.9 0.61 
plO ' 0 23.8 19.38 49.0 0.65 
p25d 0 23.2 19.48 52.1 0.67 
p5d 0 22.6 19.38 48.5 0.64 

dsip p25 0 •37.2 6.32 45.8 0.66 
p5 0 37.2 6.38 46.0 0.66 
plO 0 37 6.35 46.2 0.67 
p25d 0.4 37.4 6.32 46.1 0.66 
p5d 0.2 ' 37.2 6.43 46.4 0.67 

elliptic p25 0.2 36.4 24.47 157.3 2.06 
p5 0.4 38.2 24.96 159.7 2.06 
plO 0.4 37.6 24.45 161.8 2.10 
p25d 0 36.2 24.26 159.8 2.07 
p5d 0.6 37.6 24.97 • 161.0 " 2.09 

ex5p p25 0.2 . 44.2 14.19 63.4 0.89 
p5 0 44.8 13.12 63.6 0.90 
plO 0 43.6 15.76 63.4 0.88 
p25d 0 44 15.14 63.4 0.89 
P5d 0 43.6 14.64 70.6 0.99 

Table 30 Single-Region Synthetic Benchmark Placement Results cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to-iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ . WireLength Quality 
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Synthetic circuits 
RT (s) CW 

iPlace (inner_num=l) 
CP (ns) Bbox WL (*104) 

exlOlO p25 1 47 17.82 277.8 3.66 
p5 1 46.6 16.85 276.3 3.63 
plO 1 46.4 16.81 277.3 3.64 
p25d 1.2 46.2 18.03 299.5 3.95 
p5d 1 47 17.11 279.1 3.68 

frisc p25 0.6 47.4 30.59 197.5 2.64 
p5 1 46.8 29.53 . 198.6 2.65 
plO 0.6 48.4 28.11 199.4 2.64 
p25d 1 47.6 28.87 199.5 . 2.64 
p5d 0.6 47.2 28.83 200.5 2.67 

misex3 p25 0 37.4 11.39 71.1 0.94 
p5 0 37.6 13.72 71.3 0.94 
plO 0. 37.6 11.73 71.2 0.94 
p25d 0 38.6 13.33 72.1 0.96 
p5d 0 37.6 13.74 81.0 1.08 

pdc p25 1 61.4 19.79 348.6 4.67 
p5 1.2 62 18.88 348.4 4.64 
plO 1.2 60.6 21.02 347.2 4.65 
p25d 1 61.2 25.25 367.6 4.93 
p5d 1.4 61.6 23.00 402.8 5.34 

s298 p25 0 26.2 24.79 71.4 0.85 
p5 0 25.8 23.16 71.6 0.86 
plO 0.2 26 23.74 71.5 0.85 
p25d 0.4 25.8 23.41 71.4 0.85 
p5d 0 26.8 23.60 72.4: 0.87 

Table 31 Single-Region Synthetic Benchmark Placement Results cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation i 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic circuits 
RT(s) cw 

iPlace (inner. 

CP (ns) 

num=l) 

Bbox WL (*104) 
S38417 p25 1.2 30.4 18.16 241.7 3.00 

p5 1.8 30 17.97 239.8 2.96 
plO 1.8 31!2 18.61 243.5 3.04 
p25d 2 . 30.6 18.41 263.1 3.30 
p5d 2 38.8 22.81 318.1 3.89 

s38584 p25 1 32.4 14.84 239.9 2.96 
p5 2.2 31.8 15.27 240.3 2.97 
plO 1.2 33.4 15.51 241.5 2.99 
p25d 1.6 33 15.31 241.0 2.98 
p5d 2 37.6 19.51 312.6 3.82 

seq p25 0 40.4 12.19 98.0 1.33 
PS 0.2 40.4 12.51 98.5 1.33 
plO 0.4 40.6 14.12 98.6 1.33 
p25d 0.4 40.8 13.29 98.6 1.33 
p5d 0.4 40.8 14.73 116.4 1.56 

spla p25 0.6 51.6 17.29 230.6 3.11 
p5 0.8 . 51.8 19.24 230.8 3.13 
plO 1 51 17.69 230.4 3.13 
p25d 0.6 49.8 19.58 250.5 3.37 
P5d 1.2 53.8 20.80 289.1 3.84 

tseng p25 0 21.2 16.42 31.1 0.41 
P5 0 21 16.49 30.9 0.41 
plO 0 21.4 16.42 32.3 0.43 
p25d 0 21.2 16.35 31.5 0.42 
p5d 0 21.8 16.49 32.2 0.44 

Table 32 Single-Region Synthetic Benchmark Placement Results cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
B B Q Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
W L Q WireLength Quality 



Synthetic circuits 
Speedup 

VPR 
CWQ 

"default" 
CPQ 

/ iPlace 
BBQ WLQ 

alu4 p25 33.00 1.01 0.94 0.99 0.98 
P 5 35.00 , 0.99 0.98 0.98 ' 0.99 
p10 0.97 0.84 0.99 . 0.97 
p25d i' - 0.99 0.98 0.99 1.00 
p5d - 0.98 0.96 0.96 0.95 

apex2 p25 30.00 0.98 1.00 0.99 0.99 
p5 - 0.99 0.93 0.99 0.97 
p10 30.00 1.00 . 0.98 0.98 0.99 
p25d 67.00 0.98 0.99 0.98 0.97 
p5d 78.00 0.99 0.93 0.98 0.98 

apex4 p25 - 0.97 0.94 " 0.99 0.98 
p5 34.00 1.00 1.00 0.99 0.98 
p10 - 0.98 0.99 0.99 . 0.98 
p25d - 1.00 1.20 0.99 0.98 
p5d - 1.00 0.99 0.99 0.98 

bigkey p25 42.00 1.02 1.03 0.97 0.97 
p5 43.00 1.02 0.93 0.97 0.98 
p10 45.50 1.03 1.00 0.97 0.99 
p25d 84.00 0.95 0.99 0.96 0.98 
p5d - 1.04 0.99 0.95 0.96 

clma p25 72.00 0.97 0.95 0.98 0.97 
p5 70.80 0.96 0.97 0.99 0.98 
p10 73.53 0.98 0.96 0.98 0.98 
p25d 80.27 1.00 0.89 0.98 0.97 
p5d 69.95 1.00 0.99 0.98 0.97 

Table 33 Relative performance VPR "-default" versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



\ 

Synthetic circuits 
Speedup 

VPR 
CWQ 

"default" / iPlace 
CPQ BBQ WLQ 

des p25 - "1.00 1.00 0.98 0.97 
p5 89.00 1.00 1.01 0.98 0.98 

. p10 1.07 1.00 0.97 , 0.97 
p25d 102.00 0.93 0.96 0.97 0.96 
p5d - 1.09 0.89 0.96 0.98 

diffeq p25 39.00 1.01 1.00 , 0.96 0.97 
p5 40.00 1.02 0.97 0.97 1.00 
p10 - 1.00 0.98 0.97 0.96 
p25d - 0.99 0.99 0.96 0.97 
p5d - 0.99 0.98 0.98 0.99 

dsip p25 - 1.04 0.98 0.99 0.99 
p5 - 1.05 0.98 0.98 0.99 
p10 - 1.04 0.98 0.98 0.99 
p25d 34.00 1.05 0.98 0.98 0.99' 
p5d 69.00 1.04 0.95 0.98 0.98 

elliptic p25 175.00 1.03 1.26 1.00 1.00 
p5 89.00 1.00 0.95 0.99 1.01 
p10 93.50 0.99 0.98 1.00 1.00 
p25d - 1.03 0.99 1.00 / 0.99 
p5d 60.67 1.01 0.96 1.00 1 1.00 

ex5p p25 32.00 1.00 0.91 0.99 0.98 
P 5 - 0.96 1.10 . .0.99 0.97 
p10 - 1.01 0.82 0.99 1.00 
p25d - 0.98 0.88 0.99 0.99 
p5d - 0.98 0.94 0.98 0.98 ' 

Table 34 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-default" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Synthetic circuits Speedup 
VPR 

CWQ 
"default" 

CPQ 
/ iPlace 

BBQ WLQ 
ex1010 p25 77.60 0.99 0.91 0.99 0.99 

p5 75.00 0.99 0.95 0.99 1.00 
p10 77.00 1.03 • 0.97 0.99 0.99 
p25d 69.00 1.00 1.04 0.98 0.97 
p5d 76.20 1.01 0.99 0.99 0.99 

frisc p25 80.67 0.95 0.94 0.97 0.96 
p5 46.20 0.98 0.98 0.97 0.96 
p10 78.67 0.96 0.99 0.98 0.96 
p25d 47.00 0.95 0.99 0.97 0.97 . 
p5d 79.33 0.98 0.97 0,97 0.96 

misex3 p25 - 1.01 1.17 0.99 0.98 
p5 - 0.99 0.83 0.99 0.99 
p10 - 0.99 1.09 0.99 0.99 
p25d - 0.97 0.85 0.99 0.98 
p5d - 0.99 1.44 0.98 0.99 

pdc p25 80.60 1.00 1.08 0.99 0.97 
p5 64.00 0.98 1.27 0.99 0.98 
p10 68.67 1.01 0.96 0.99 0.97 
p25d 84.40 0.98 0.78 0.98 0.98 
p5d 68.14 1.01 0.97- 0.99 0.98 

s298 p25 - 0.97 0.93 0.98 0.99 
P5 - 0.99 0.99 0.98 0.98 
p10 38.00 0.98 0.99 0.98 0.98 
p25d 19.00 0.97 1.01 0.98 . 0.99 
p5d - 0.95 0.99 0.97 0.97 

Table 35 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-default" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic circuits Speedup 
VPR 

CWQ 
"default" / iPlace 

CPQ BBQ WLQ 
S38417 p25 73.67 1.00 0.94 0.99 0.99 

p5 50.67 1.01 0.96 0.98 0.99 
p10 50.22 0.99 1.02 0.98 0.97 
p25d 49.10 0.98 0.93 0.97 0.97 
P 5d 63.60 0.91 0.95 0.96 0.96 

S38584 p25 104.40 1.08 0.98 0.96 0.95 
p5 48.55 1.03 0.96 0.96 , 0.96 
p10 90.17 0.96 0.97 0.95 ' 0.95 
p25d 65.75 1.04 0.95 0.96 0.95 
p5d 76.90 1.03 0.97 0.93 0.94 

seq p25 - 1.00 0.99 • 0.99 1.00 
p5 61.00 1.00 1.07 • 0.99 0.99 
p10 30.50 0.99 0.83 0.99 0.99 
p25d 29.50 1.00 1.01 0.99 0.99 
p5d 36.00 0.99 0.93 0.98 0.98 

spla p25 75.67 0.98 0.96 0.99 0.99 
P 5 55.50 0.99 0.90 1.00 0.98 
p10 44.80 1.01 0.97 1.00 0.98 
p25d 84.00 1.03 0.92 1.00 1.00 , 
p5d 51.17 0.98 0.96 0.98 0.97 

tseng p25 - 1.00 1.00 0.98 0.99 
p5 - 1.0.1 1.00 0.98 1.00 
p10 - 1.02 1.01. 0.98 0.97 
p25d - 1.01 1.00 0.97 0.98 
p5d - 1.00 0.99 0.97 0.97 

Geo. Mean 58.47 1.00 0.98 0.98 0.98 

Table 36 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-default" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 

) -
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Synthetic circuits Speedup CWQ 
VPR "-fast" / iPlace 

CPQ BBQ WLQ 
alu4 p25 5.00 0.99 0.95 0.99 0.99 -

p5 5.00 0.99 0.98 1.00 1.01 
p10 / - 0.98 0.88 0.99 1.00 
p25d - 1.01 1.14 1.00 1.01 
p5d - 0.99 1.03 0.98 0.97 

apex2 p25 4.00 1.00 1.06 1.00 1.00 
p5 - 1.00 0.95 1.00 1.00 
p10 2.50 1.00 0.97 1.00 1.02 
p25d 8.00 1.00 1.01 0.98 0.99 
p5d 10.00 V 0.97 0.98 0.99 0.98 

apex4 p25 . - 0.97 1.03 1.00 0.99 
p5 5.00 1.00 0.97 1.00 1.00 
p10 - 0.99 1.00 1.00 0.99 
p25d - 1.00 1.01 1.00 0.99 
p5d - 1.02 1.03 1.01 1.00 

bigkey p25 5.00 0.97 1.02 1.02 1.02 
p5 5.00 1.07 0.93 1.02 1.02 
p10 5.00 1.10 1.02 1.02 1.02 
p25d 10.00 0.99 0.99 1.02 1.01 
p5d - 0.99 0.99 1.01 1.02 

clma p25 8.27 1.02 0.94 1.01 1.00 
p5 7.93 1.00 0.97 1.01 1.00 
p10 8.13 1.01 0.93 1.01 0.99 
p25d 8.87 1.02 0.89 1.00 0.99 
p5d 8.15 0.99 0.96 0.99 0.98 

Table 37 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-fast" versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality ; 

Quality Experimental result relative to iPlace . 
RT Average Run time.of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 

\ 
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Synthetic circuits 
Speedup CWQ 

VPR "-fast" / iPlace 
CPQ BBQ WLQ 

des p25 - 0.96 0.99 1.03 1.02 
p5 10.00 1.00 1.00 1.02 1.01 
p10 - 1.04 1.01 1.01 1.01 
p25d 12.00 0.99 0.97 1.01 1.01 
p5d - • 0.98 0.93 1.00 1.01 

diffeq p25 5.00 1.03 1.01 0.99 0.99 
p5 4.00 1.02 0.98 1.00 1.01 
p10 - 1.03 1.00 1.01 1.00 
p25d - 1.02 1.00 0.99 1.00 
p5d - 1.05 1.00 1.02 1.03 

dsip p25 - 1.04 1.00 1.01 1.01 
P 5 - 1.05 0.96 1.01 1.02 
p10 - 1.04 0.97 1.01 1.02 
p25d 5.00 1.03 .0.97 1.01 1.02 
p5d 8.00 1.04 0.98 1.01 1.01 

elliptic p25 22.00 1.03 1.01 1.03 1.03 
p5 10.00 1.01 0.96 1.02 1.02 
p10 10.00 1.02 0.99 1.03 1.02 
p25d - 1.05 1.01 1.03 1.04 
p5d 7.33 1.02 0.95 1.02 1.03 

ex5p p25 5.00 0.99 0.94 1.00 1.00 
p5 0.99 1.01 1.00 0.99 
p10 - 1.02 0.83 1.01 1.01 
p25d - 1.00 0.86 1.00 0.99 
p5d - 0.99 0.97 1.00 1.00 

Table 38 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR-"-fast" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT i Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic circuits 
Speedup CWQ 

VPR "-fast" / iPlace 
CPQ BBQ WLQ 

ex1010 p25 9.20 1.04 0.95 1.01 1.01 
p5 8.60 1.03 0.95 1.00 1.01 
p10 8.80 1.03 0.98 1.00 1.00 
p25d 8.17 1.03 1.05 1.00 0.99 
p5d 8.80 1.01 0.95 1.01 1.00 

frisc p25 9.00 0.99 0.97 1.01 „ 1.00 
p5 5.00 1.02 0.98 1.00 1.00 
p10 9.00 v 0.99 0.99 1.00 1.01 
p25d 5.60 0.97 0.97 0.99 0.99 
p5d 9.33 1.01 0.99 1.00 1.00 

misex3 p25 - 1.02 1.02 1.00 1.00 
p5 - 1.01. 0.91 1.00 1.00 
p10 - 1.00 0.98 1.00 1.00 
p25d - 0.98 1.03 0.99 1.00 • 
p5d - 0.99 0.97 0.99 1.00 

pdc p25 9.80 0.99 0.96 1.00 1.00 
p5 7.00 0.97 1.35 1.00 0.99 
p10 7.00 1.03 0.95 1.01 1.00 
p25d 10.20 0.99 0.76 0.99 0.98 
p5d 7.86 1.03 1.06 1.01 1.00 

s298 p25 - 0.98 0.95 1.00 1.01 
P 5 - 1.02 0.99 1.00 0.99 
p10 5.00 0.98 0.99 1.00 1.00 
p25d 2.00 1.02 0.99 1.00 1.00 
p5d - 0.98 0.98 0.99 1.00 

Table 39 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-fast" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Synthetic circuits 
Speedup CWQ 

VPR "-fast" / iPlace 
CPQ BBQ WLQ 

S38417 p25 8.83 1.03 0.96 1.03 . 1.03 
p5 5.89 1.05 1.00 1.04 1.04 
p10 5.56 1.06 i 0.95 1,03 1.02 
p25d 5.60 1.03 0.93 1.03 1.02 
p5d 7.40 0.92 0.95 1.00 1.00 

S38584 p25 12.00 0.98 1.00 1.00 1.00 
p5 5.73 1.03 1.00 1.00 1.00 

t p10 10.33 0.96 1.01 1.00 1.00 
p25d 7.38 0.95 0.95 1.00 1.01 
p5d 8.40 1.04 0.97 0.98 0.98 

seq p25 - 1.00 0.97 1.00 1.01 
P 5 7.00 1.00 0.98 1.00 1.01 
piO 3.00 1.00 0.84 1.00 1.01 
p25d 4.00 0.99 1.08 0.99 1.01 
p5d 4.00 1.01 0.98 0.99 0.99 

spla p25 8.67 1.00 1.23 1.01 1.01 
p5 6.75 0.99 0.91 1.01 1.00 
p10 5.00 1.02 1.07 1.01 1.00 
p25d 9.67 1.04 0.92 1.01 1.01 
p5d 6.00 1.01 1.04 1.00 0.99 

tseng p25 - ' 1.06 1.00 1.01 1.03 
p5 - 1.01 1.00 1.01 1.03 
p10 1.01 1.00 1.01 1.01 
p25d - 1.04 1.01 1.01 1.02 
p5d - 0.98 1.01 1.01 1.02 

Geo. Mean 6.85 1.01 0.98 1.00 1.01 

Table 40 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-fast" versus iPlace Cont' 

Legend: 
Results with Run time too fast to measure 

Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic circuits 
Speedup 

VPR 
CWQ 

"-superfast" 
CPQ 

/ iPlace 
BBQ WLQ 

alu4 p25 2.00 1.08 1.05 1.04 1.04 
p5 1.00 1.05 1.16 1.05 1.05 . 
p10 - 1.02 0.94 1.03 .1.03 
p25d - 1.04 1.05 1.04 1.06 
p5d ' - 1.07 1.01 1.04 1.04 

apex2 p25 0.50 1.05 1.06 1.05 1.07 
P 5 - 1.06 0.97 1.05 1.07 
p10 1.00 1.09 1.01 1.05 1.07 
p25d 4.00 1.02 1.03 1.03 1.03 
p5d 4.00 1.07 0.98 1.05 1.06 

apex4 p25 • - 1.02 0.97 1.04 1.03 
P 5 2.00 1.03 1.05 1.03 1.03 
p10 - 1.02 1.04 1.04 1.03 
p25d - 1.02 1.01 1.04 1.04 
p5d . - 1.05 0.94 1.03 1.03 

bigkey p25 1.00 0.98 1.00 1.10 1.08 
p5 1.50 0.88 0.95 1.10 1.07 
p10 0.50 0.96 1.01 1.10 1.08 
p25d - 0.99 1.04 1.10 1.08 
p5d - 0.97 1.00 1.08 1.06 

clma p25 1.73 1.10 0.96 1.11 1.10 
p5 1.80 1.13 0.98 1.13 1.12 
p10 1.73 1.10 0.96 1.11 1.10 
p25d 1.87 1.11 0.90 1.09 1.09 
p5d 2.00 1.08 0.95 1.08 1.08 

Table 41 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-superfast" versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT ' Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ • WireLength Quality 



Synthetic circuits 
Speedup 

VPR 
CWQ 

"-superfast" / iPlace 
CPQ BBQ WLQ 

des p25 - • 0.95 1.02 1.13 1.12 
p5 - 0.93 1.03 1.14 1.12 
p10 - 0.99 1.05 1.11 1.11 
p25d 2.00 0.94 0.97 1.11 1.10 
p5d - 0.91 0.94 1.11 1.09 

diffeq p25 2.00 1.15 0.99 1.12 1.12 
P5 - 1.13 0.98 1.12 1.14 
p10 - 1.08 1.00 1.10 1.08 
p25d - 1.16 0.98 1.11 1.10 
p5d - 1.14 0.98 1.11 1.09 

dsip p25 - 1.04 0.96 1.11 1.10 
P5 - 1.03 0.96 1.11 1.11 
p10 - 1.01 0.98 1.10 1.09 
p25d 1.00 1.02 0.97 1.10 1.08 
P 5d 1.00 1.02 0.97 1.10 1.07 

elliptic p25 6.00 1.12 1.03 1.12 1.11 
p5 3.00 1.07 1.00 1.11 1.12 
p10 2.50 1.10 1.02 1.12 1.12 
p25d - 1.13 1.01 1.12 1.12 
p5d 2.00 1.11 1.06 1.11 1.12 

ex5p p25 1.00 1.04 0.98 1.05 1.03 
p5 1.03 1.13 . 1.05 1.03 
p10 - 1.03 0.88 1.05 1.05 
p25d - 1.04 0.94 1.04 1.04 
p5d - 1.01 1.04 1.05 1.05 

Table 42 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-superfast" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic circuits Speedup 
VPR " 

CWQ 
-superfast" / iPlace 

CPQ BBQ WLQ 
ex1010 p25 2.20 1.06 0.95 1.05 1.04 

p5 2.00 1.12 , 1.01 1.08 1.09 
p10 2.00 1.06 0.97 1.05 1.05 
p25d 2.00 1.09 0.96 1.07 1.06 
p5d 2.20 v 1.08 0:95 1.06 1.06 

frisc p25 2.67 1.07 1.00 1.09 1.09 
P5 1.80 1.09 1.00 1.09 1.08 
p10 2.00 1.07 1.02 1.10 1.11 
p25d 1.40 1.07 1.00 1.09 1.09 
p5d 2.33 1.10 0.99 1.09 1.09 

misex3 p25 - 1.04 1.18 1.04 1.05 ^ 
p5 . - 1.05 0.95 1.04 1.06 
p10 - 1.06 1.09 1.04 1.05 
p25d - 1.03 1.02 1.03 1.03 
p5d - 1.05 1.00 1.04 1.05 . 

pdc p25 2.20 1.07 1.06 1.06 1.06 
P 5 1.83 1.07 1.35 1.07 1.07 
p10 2.00 1.09 1.00 1.08 1.06 
p25d 2.60 1.05 0.81 1.05 1.05 
p5d 1.86 1.08 0.96 1.07 1.07 

s298 p25 - 1.04 0.94 1.06 1.05 
p5 - 1.07 1.01 1.05 1.04 , 
p10 1.05 0.99 1.05 • 1.06 
p25d 1.00 1.06 0.97 1.05 1.05 
p5d - 1.03 0.98 1.05 1.04 

Table 43 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-superfast" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT , Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Synthetic circuits 
Speedup 

VPR 
CWQ 

"-superfast" 
CPQ 

/ iPlace 
BBQ WLQ 

S38417 p25 2.17 1.20 0.94 1.20 1.20 
p5 1.33 1.21 0.96 1.24 1.23 
p10 1.44 1.21 0.97 1.20 1.18 
p25d 1.50 1.14 0.98 1.16 1.15 
p5d 1.90 1.07 0.98 1.19 1.18 

S38584 p25 3.20 •1.14. . 1.02 1.16 1.16 
p5 1.45 1.13 0.98 1.14 1.14 
p10 2.33 1.10 1.04 1.12 1,12 
p25d 2.00 1.14 0.98 1.16 1.15 
p5d 1.90 1.14 0.99 1.14 1.16 

seq p25 - 1.06 1.03 1.05 1.06 
p5 2.00 1.06 1.01 1.05 1.06 
p10 1.00 1.06 0.90 1.05 1.06 
p25d 1.50 1.07 0.97 1.06 1.08 
p5d 1.00 1.08 1.00 1.06 1.08 

spla p25 2.33 1.08 1.11 1.09 1.09 
P5 1.50 1.07 0.96 1.10 1.09 
p10 1.20 1.09 0.97 1.08 1.08 
p25d 3.00 1.09 1.02 1.09 1.08 
p5d 1.50 1.09 0.99 1.07 1.06 

tseng p25 - 1.08 1.02 1.11 1.12 
p5 - 1.08 1.03 1.11 1.12 
p10 - 1.08 1.0 V 1.10 1.09 
p25d - 1.07 1.02 1.10 1.11 
p5d - 1.10 1.01 . 1.10 1.10 

Geo. Mean 1.75 1.06 1.00 1.08 1.08 

Table 44 Single-Region Synthetic Benchmark Placement Results: Relative 
performance VPR "-superfast" versus iPlace Cont' 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 



Synthetic 
Circuit Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean 

alu4 2.24 3.28 -3.64 3.08 2.33 2.86 
apex2 1.22 1.23 1.54 1.75 2.18 1.55 
apex4 2.53 2.29 2.65 2.13 2.49 2.41 
bigkey 4.75 4.60 4.13 3.92 4.91 4.45 
clma 2.41 2.64 2.05 5.24 3.66 3.02 
des 4.09 4.29 4.80 4.47 4.92 4.50 
diffeq 2.86 2.67 2.55 3.58 2.86 2.88 
dsip 2.88 2.56 2.45 2.11 2.64 2.51 
elliptic , 4.27 4.97 3.37 4.78 3.13 4.03 
ex5p 2.38 2.54 1.86 2.02 2.68 2.27 
exlOlO 2.36 1.96 2.47 2.84 2.86 2.48 
frisc 2.73 2.73 3.69 2.56 2.34 2.78 
misex3 1.78 2.33 1.72 1.80 2.62 2.02 
pdc 4.01 3.09 2.24 4.64 4.41 3.55 
s298 2.47 2.05 2.35 2.71 1.73 2.23 
s38417 4.36 3.94 3.22 4.55 5.30 4.22 
s38584 5.02 4.89 6.27 4.59 6.40 5.38 
seq 1.90 1.77 1.77 2.23 2.83 2.07 
spla 3.09 3.77 4.63 3.83 5.27 4.05 
tseng 2.99 3.25 3.02 3.50 2.72 3.08 

Geomean 2.97 
Table 45 Single-Region Synthetic Benchmark Placement Results: Placement 

Stability for VPR Baseline 

Synthetic 
Circuit Syn 2.5 Syn 5 Syn 10 Syn 2.5d Syn 5d GeoMean 

alu4 1.57 1.54 1.65 1.55 2.33 1.71 
apex2 1.39 1.34 1.40 2.00 2.35 1.65 
apex4 1.99 1.96 1.81 2.05 1.79 1.92 
bigkey 1.28 1.29 1.42 1.25 1.51 1.35 
clma 2.73 2.69 2.72 3.19 3.98 3.02 
des 1.23 1.15 1.50 2.31 2.84 1.69 
diffeq 1.53 1.47 1.76 2.33 1.60 1.71 
dsip 0.99 1.11 1.23 1.13 1.17 1.12 
elliptic 2.28 2.41 2.40 2.36 2.37 2.36 
ex5p 1.55 1.55 1.31 1.57 2.59 1.66 
exlOlO 1.53 1.60 1.52 1.88 1.50 1.60 
frisc 2.84 2.80 2.82 2.92 2.83 2.84 
misex3 1.35 1.47 1.47 1.50 2.14 1.57 
pdc 2.11 2.11 2.14 2.91 3.05 2.43 
s298 2.15 2.32 2.39 2.33 2.36 2.31 
s38417 2.15 2.16 2.43 2.81 . 3.69 2.59 
s38584 2.46 2.40 2.60 2.36 4.75 2.80 
seq 1.61 1.66 1.67 1.53 2.80 1.81 
spla 1.66 1.69 1.87 2.30 2.91 2.04 
tseng 1.05 1:10 1.12 1.25 1.42 1.18 

Geomean 1.89 
Table 46 Single-Region Synthetic Benchmark Placement Results: Placement 

Stability for iPlace 
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Appendix B: Single-Region Physical Re-Synthesis Benchmark Results 

Single-Region iPlace (inner_num=l) 

Physical Resynthesis 
Benchmark 

Circuit 

RT 
(s) 

C W CP 
(ns) 

Bbox W L 
*104 

clma - 2.5 3.0 49.4 26.2 528 6.83 
clma - 5 3.4 48.6 27.9 529 6.76 
clma -10 3.0 49.4 26.8 535 6.83 
clma -15 3.4 50.6 26.6 546 6.99 
exlOlO - 2.5 1.2 46.4 16.2 278 3.66 
exlOlO- 5 1.0 46.8 16.5 281 3.71 
exlOlO -10 1.6 46.2 16.6 283 3.71 
exlOlO -15 1.2 45.0 16.8 284 3.71 
misex3 - 5 - 37.6 12.3 73 0.95 
misex3 -15 0.2 35.8 12.7 75 1.01 
pdc - 2.5 1.2 60.4 22.3 349 4.65 
pdc - 5 1.0 61.0 19.3 352 4.67 
pdc -10 1.0 60.2 21.1 353 4.67 
pdc -15 1.0 59.8 19.9 356 4.71 
spla - 2.5 0.2 50.6 16.4 231 3.10 
spla - 5 0.4 51.0 17.4 234 3.14 
spla -10 0.4 51.0 17.4 235 3.15 
spla -15 1.0 50.2 16.7 239 3.19 
Geo. Mean ' 1.0 49.5 18.9 282 3.72 

Table 47 Single-Region Physical Resynthesis Benchmark iPlace Placement Results 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
WL • Total WireLength 
WLQ WireLength Quality 
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Single-Region V P R ' default" / iPlace 

Physical Resynthesis 
Benchmark 

Speedup CWQ CPQ BBQ W L Q 

Circuit 

clma - 2.5 70.3 0.97 1.00 0.98 0.97 
clma - 5 64.8 1.00 0.91 0.98 0.98 
clma -10 76.9 1.00 0.93 0.98 0.98 
clma -15 67.9 0.96 0:96 0.98 0.97 
exlOlO - 2.5 59.3 1.00 0:99 0.99 0.99 
exlOlO - 5 74.4 0.99 1.09 0.98 0.98 
exlOlO -10 46.8 1.00 1.00 0.99 0.98 
exlOlO -15 62.8 1.00 0.99 0.99 0.98 
misex3 - 5 - 0.98 0.97 0.99 1.00 
misex3 -15 36.0 0.97 1.00 0.97 0.96 
pdc - 2.5 63.3 0.99 0.84 0.98 0.97 
pdc - 5 80.2 0.98 1.01 0.98 0.98 
pdc -10 69.2 0.98 0.96 0.98 0.97 
pdc -15 70.8 0.99 0.94 0.99 0.98 
spla - 2.5 257.0 1.01 1.02 1.00 0.99 
spla - 5 106.5 0.98 1.02 0.99 0.97 
spla -10 109.5 0.99 1.22 0.99 0.98 
spla -15 44.8 0.98 0.99 0.99 0.98 
Geo. Mean 71.9 0.99 0.99 0.99 0.98 

Table 48 Single-Region Physical Resynthesis Benchmark Relative Performance, 
VPR default versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Single-Region VPR "-fast" / iPlace 
Physical 

Resynthesis Speedup CWQ CPQ BBQ WLQ 
Benchmark 

Circuit 

clma - 2.5 7.6 1.01 0.97 1.00 0.98 
clma - 5 7.4 1.02 0.89 1.01 1.01 
clma -10 8.4 1.03 0.93 1.01 1.01 
clma -15 7.8 0.98 1.03 1.01 0.99 
exlOlO - 2.5 6.7 1.02 1.04 1.00 0.99 
exlOlO - 5 8.4 1.00 1.03 1.00 0.99 
exlOlO -10 5.4 ^ 1.00 1.02 1.00 1.00 
exlOlO -15 7.2 1.02 0.99 1.00 1.00 
misex3 - 5 0.99 0.93 0.99 1.00 
misex3 -15 4.0 0.97 0.92 0.98 0.97 
pdc - 2.5 6.8 1.00 0.84 1.00 0.99 
pdc - 5 8.4 1.00 1.03 0.99 0.99 
pdc -10 7.8 1.00 0.88 1.00 0.99 
pdc -15 8.2 1.00 0.94 0.99 0.99 
spla - 2.5 28.0 1.03 1.09 1.01 1.00 
spla - 5 12.0 1.01 1.02 1.01 0.99 
spla -10 14.5 1.00 1.07 1.01 1.00 
spla -15 5.2 1.01 1.04 1.00 0.99 
Geo. Mean 8.1 1.01 0.98 1.00 0.99 

Table 49 Single-Region Physical Resynthesis Benchmark Relative Performance, 
VPR "-fasf'versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ- Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality / Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 

X. 
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) 

Single-Region VPR "-superfast" / iPlace 
Physical 

superfast" 

Resynthesis Speedup CWQ CPQ BBQ WLQ 
Benchmark 

Circuit 

clma - 2.5 1.7 1.08 0.96 1.09 1.08 
clma - 5 1.7 1.14 0.95 1.12 1.11 
clma -10 1.9 1.12 0.96 1.11 1.11 
clma -15 1.5 1.08 - 1.06 1.11 1.09 
exlOlO - 2.5 1.7 1.11 1.02 1.07 1.07 
exl010-5 2.0 1.07 1.09 1.07 1.06 
exlOlO -10 1.3 1.08 1.02 1.06 1.06 
exlOlO -15 1.7 1.12 1.02 1.08 1.08 
misex3 - 5 . - 1.04 1.08 1.03 1.04 
misex3 -15 - 1.03 1.03 1.02 1.02 
pdc - 2.5 1.8 1.09 0.85 1.06 1.06 
pdc - 5 2.0 1.07 1.14 1.06 1.07 
pdc -10 2.0 1.07 1.03 1.06 1.07 
pdc-15 2.2 1.06 1.16 1.05 1.05 
spla - 2.5 6.0 1.08 1.13 1.07 1.07 
spla - 5 2.5 1.05 0.99 1.07 1.06 
spla-10 3.0 1.07 1.05 1.08 1.07 
spla -15 . 1-6 1.06 1.23 1.08 1.08 
Geo. Mean 2.0 1.08 1.04 1.07 1.07 

Table 50 Single-Region Physical Resynthesis Benchmark Relative Performance, 
VPR "-super-fast" versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path" Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Appendix C: Multi-Region Physical Re-Synthesis Benchmark Results 

Multi Region iPlace(inner_num=1) 

Physical-
Resynthesis 
Benchmark 

Circuit RT 
(s) 

CW CP 
(ns) 

Bbox 
*103 

WL 
*10 5 

clone - 50 72.2 111.0 72.4 4.32 5.30 
clone - 40 57.2 110.0 72.5 3.90 4.87 
clone - 30 64.8 114.2 72.1 3.87 4.85 
clone - 20 57.6 117.4 71.2 3.79 4.77 
clone -10 58.0 112.8 71.9 3.90. 4.88 
stdevO - 50 60.8 92.6 74.4 4.27 5.22 
stdevO - 40 63.0 90.6 72.4 4.20 5.15 
stdevO - 30 76.2 92.0 74.2 4.26 5.21 
stdevO - 20 71.0 95.6 74.1 3.91 4.85 
stdevO -10 59.8 93.6 73.0 4.00 4.96 
StdevOlO-50 89.0 140.2 75.8 4.23 5.26 
StdevOlO-40 66.0 140.0 74.3 4.04 5.08 
StdevOlO-30 63.8 142.0 75.0 4.03 5.07 
StdevOlO-20 56.4 150.6 74.0 3.93 4.98 
StdevOlO-10 70.4 144.4 74.3 4.01 5.05 
Geo. Mean 65.2 114.6 73.4 4.04 5.03 

Table 51 Multi Region Physical Re-Synthesis Benchmark iPlace Placement Results 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Multi Region 
Physical-

Resynthesis 
Benchmark 

Circuit 

VPR "default" / iPlace 

Speedup CWQ CPQ BBQ WLQ 

clone - 50 
clone - 40 
clone - 30 
clone - 20 
clone -10 

62.8 0.92 0.99 0.92 0.92 
70.0 0.97 1.02 0.96 0.96 
68.3 0.96 1.00 0.96 0.96 
61.5 0.98 0.98 0.96 0.96 
75.9 0.98 0.98 0.95 0.95 

stdevO - 50 
stdevO - 40 
stdevO - 30 
stdevO - 20 
stdevO -10 

67.3 0.92 0.95 0.94 0.95 
66.8 0.97 0.98 0.97 0.97 
55.1 0.96 0.97 0.96 0.96 
56.0 0.96 0.95 0.95 0.96 
66.3 0.96 0.96 0.95 0.95 

StdevOlO-50 
StdevOlO-40 
StdevOlO-30 
StdevOlO-20 
StdevOlO-10 

47.1 0.97 0.96 0.96 0.96 
59.7 0.98 0.97 0.96 0.96 
68.6 0.98 0:98 0.96 0.97 
66.5 0.99 0.98 0.97 0.96 
58.5 0.97 0.97 0.95 0.96 

Geo. Mean 63.0 0.96 0.98 0.96 0.96 

Table 52 Multi Region Physical Re-Synthesis Benchmark Relative Performance, 
VPR default versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality . Experimental result relative to iPlace 
RT Average, Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Multi Region 
Physical-

Resynthesis 
Benchmark . 

Circuit 

VPR "-fast" / iPlace Multi Region 
Physical-

Resynthesis 
Benchmark . 

Circuit Speedup CWQ C P Q B B Q WLQ 

clone-50 6.7 0.96 0.98 0.96 0.96 
clone -40 7.9 1.00 0.98 0.99 0.99 
clone -30 7.5 1.00 0.99 0.99 0.98 
clone-20 6.6 1.00 1.00 0.99 0.99 
clone -10 8.2 1.01 0.99 0.99 0.98 
stdevO - 50 7.6 1.00 0.98 0.99 0.98 
stdevO - 40 6.9 1.03 1.00 1.01 1.00 
stdevO-30 5.6 0.98 0.97 0.98 0.98 
stdevO - 20 6.5 1.00 0.95 0.99 0.99 
stdevO -10 7.1 1.00 0.96 0.99 0.99 
StdevOlO-50 4.9 1.00 0.99 1.00 0.99 
StdevOlO-40 6.3 0.99 0.98 0.98 0.98 
StdevOlO-30 8.0 1.02 1.00 0.99 0.99 
StdevOlO-20 7.1 1.00 ^"098" 0.99 0.99 
StdevOlO-10 5.8 1.00 0.99 0.99 0.98 
Geo. Mean 6.8 1.00 0.98 0.99 0.99 

Table 53 Multi Region Physical Re-Synthesis Benchmark Relative Performance, 
VPR "-fast" versus iPlace 

Legend: 
- Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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Multi Region 
Physical-

Resynthesis 
Benchmark 

Circuit 

VPR "-superfast" / iPlace Multi Region 
Physical-

Resynthesis 
Benchmark 

Circuit Speedup CWQ C P Q B B Q WLQ 

clone - 50 1.2 1.11 L J L 0 3 _ 1.11 1.09 

clone -40 1.5 1.11 1.04 1.11 1.10 

clone-30 1.4 1,15 1.03 1.14 1.12 

clone - 20 1.5 1.10 1.03 1.14 1.11 

clone-10 1.3 1.12 1 . 0 0 1 ""1.11 " 1.09 

stdevO - 50 1.5 1.14 0.98 1.10 1.08 

stdevO - 40 1.4 1.21 1.03 1.14 1.11 

stdevO - 30 1.1 1.23 1,01 1.13 1.11 

stdevO-20 1.1 ^ J / I 9 _ 0.97 1.13 1.11 

stdevO-10 1.4 1.17 1.00 1.12 1.10 

StdevOlO-50 0.9 1.13 0.98 1.15 1.13 

StdevOlO-40 1.3 1.14 [Too] 1.12 

StdevOlO-30 1.7. 1.10 0.99 ! 3 i l 1.10 

StdevOlO-20 1.4 1.11 0.99 1.12 1.11 

StdevOlO-10 1.2 1.10 0.99 1.11 1.10 

Geo. Mean 1.3 1.14 1.00 1.12 1,11 

Table 54 Multi Region Physical Re-Synthesis Benchmark Relative Performance, 
VPR "-super-fast" versus iPlace 

Legend: 
— Results with Run time too fast to measure 
Bbox Total bounding box 
BBQ Bounding Box Quality 
CP Critical Path 
CPQ Critical Path Quality 
CW Channel Width 
CWQ Channel Width Quality 
Quality Experimental result relative to iPlace 
RT Average Run time of the simulation 
Speedup Speed up in placement time 
W L Total WireLength 
WLQ WireLength Quality 
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