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Abstract 

Integrins are the principal cell surface receptors that mediate cell-to-cell or cell-to-

extracellular matrix (ECM) binding, providing adhesion for stationary cells, traction 

during cell movement and, importantly, translating extracellular matrix cues into 

intracellular signal transduction pathways. The avP6 integrin, an exclusively epithelial 

integrin, exhibits limited distribution in the body. In adult tissue, avp6 integrin is 

expressed during inflammation, carcinogenesis, and in wound healing. It is not expressed 

in oral gingival epithelium but it is constitutively expressed in junctional epithelium (JE). 

Its capability to bind and activate transforming growth factor-P (TGFP) suggests immune 

regulation and it could therefore play a protective role against periodontal disease. When 

comparing hematoxylin and eosin stained paraffin sections of wild-type (FVB) and P6 

integrin-knockout mice (P6 -/-) under the light microscope, apical migration of junctional 

epithelium beyond the cemento-enamel junction (CEJ) resulting in formation of pocket 

epithelium (PE) was clearly demonstrated only in specimens of P6 integrin-knockout 

animals. In addition, analysis of defleshed mandibles revealed a significant increase in 

alveolar bone loss and therefore enhanced exposed root surface area and furcation 

involvement for knockout mice in comparison to their age matched wild-type animals 

(FVB). The findings of this study suggest that avP6 integrin, exclusively expressed in JE, 

might play an important role in the pathogenesis of periodontal disease in mice. One 

possible mechanism could be through its regulatory function in the activation of TGFp. 
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CHAPTER I 

1. avp6 integrin 

1.1 Structure 

Integrins are the principal cell surface receptors that enable normal as well as transformed 

cells to attach to and respond to their extra-cellular environment. They mediate cell-to-

cell or cell-to-extracellular matrix (ECM) adhesion, providing adhesion for stationary 

cells, traction during cell movement and, importantly, the promotion of many signaling 

pathways that regulate diverse processes such as proliferation, cell survival, migration, 

differentiation, tumour invasion and metastasis (Watt, 2002). In addition to ligand 

binding, integrins aggregate together, resulting in side-by-side placement of many 

signaling and structural molecules that are associated with their cytoplasmic tails, 

allowing them to interact (Yamada and Even-Ram, 2002). In this way they serve as the 

major mechanism for translating extra-cellular matrix cues into intracellular signal 

transduction pathways (Liu et al., 2000). 

Structurally, integrins are heterodimers composed of two different, non-covalently 

associated a and P subunits. Each subunit is a type I transmembrane glycoprotein that has 

relatively large extracellular domains and, with the exception of the P4 subunit, a short 

cytoplasmic tail (Hynes, 2002). The extracellular domain is composed of a membrane-

distal, globular head (that contains the ligand binding) on two long stalks (Hynes, 2002). 

The carboxy (C) termini of the a and p subunits traverse the cell membrane and extend a 

short distance (usually < 60 amino-acid residues) into the cytoplasm (Hynes, 2002). 

Presently, 18 a and eight P subunits have been identified that form 24 different 

1 



heterodimers, each of which can bind to a specific repertoire of cell-surface, ECM or 

soluble protein ligands. 

P6 integrin is composed of 788 amino acids. The cytoplasmic tail of P6 integrin differs 

from other related P-subunits by having an extra sequence of eleven amino acids at its 

carboxy terminal, suggesting different interactions with cytoplasmic components 

(Sheppard et al., 1990). P6 subunits can only form heterodimers with av, whereas av 

subunits can pair with multiple P subunits such as pi, P3, P5, P6, and P8 (Hynes, 2002). 

The avP6 integrin is an exclusively epithelial integrin that is highly expressed during fetal 

development and is downregulated in differentiated adult epithelia (Breuss et al., 1995). 

Its distribution in the body is limited. avP6 integrin is expressed in epithelial cells of the 

kidney tubule (more specifically, the macula densa), endometrium in a uterus in the 

secretory phase, salivary gland ducts, gall bladder and epididymis (Breuss et al., 1993). 

Monaghan et al. (2005) recently published evidence of integrin-avP6 expression by cells 

within the stratified squamous epithelium of the tongue, ventral soft palate, interdigital 

skin, and coronary band of cattle. avP6 integrin is absent from normal healthy epidermis 

with the exception of root sheath cells of the hair follicles (Hakkinen et al., 2004) and 

oral mucosa with the exception of junctional epithelium and interdental papilla 

epithelium (Garcia, 2005; Csiszar et al., 2007). In adult tissue, avP6 integrin is expressed 

during inflammation, carcinogenesis, and in wound healing (Breuss et al., 1995). 
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1.2 Function 

Integrin avP6 belongs to a subfamily of integrins which recognize amino acid sequences 

that share a common arginine-glycine-aspartate or RGD motif (Ruoslahti and 

Peirschbacher, 1987; Hynes, 2002). In addition to mediating cellular adhesion to 

extracellular matrix proteins such as fibronectin (Busk et al., 1992), tenascin-C (Prieto et 

al., 1993), and vitronectin (Huang et al., 1998), integerin-avP6 binds TGF-pl latency-

associated peptide (LAP) through an RGD-dependent mechanism and participates in the 

conversion of TGF-pl-LAP into active TGF-pi (Munger et al, 1999; Annes et al., 2004). 

Over the last decade an increased expression of avp6 integrin has been associated with 

many different functions such as promotion of cell migration, control of cell proliferation, 

activation of TGFPs, suppression of apoptosis, modulation of protease activity and 

mediating invasion of carcinoma cells (Thomas et al." 2006). It has been demonstrated 

that avp6 integrin promotes migration of human primary oral keratinocytes on 

fibronectin, and the binding of avp6 integrin to this ligand upregulates secretion of the 

pro-enzyme form of type IV collagenase, matrix metalloproteinase-9 (MMP-9) (Thomas 

et al., 2001). Although avp6 integrin is not expressed constitutively in healthy epithelia, 

however it is upregulated during tissue remodelling, including wound healing and 

carcinogenesis (Breuss et al., 1995). 

1.3 Expression of avP6 integrin in normal and wound keratinocytes 

Integrins including avP6 play a significant role in the regulation of keratinocyte function 

and in wound healing (Hakkinen et al., 2004). The upregulation of type IV collagenase 

MMP-9 by avp6 would facilitate cell movement by allowing detachment from the 
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basement membrane (Thomas et al., 2001). Although avp6 integrin is not expressed in 

normal basal keratinocytes, its expression is upregulated on wounding (Larjava et al., 

1993; Breuss et al., 1995; Haapasalmi et al., 1996; Hakkinen et al, 2000; Larjava et al, 

2002). In wounds, at least two integrins, a5|31 and av(36, are expressed by keratinocytes. 

Both of these integrins are co-expressed, resulting in cellular interaction with fibronectin 

(Larjava et al., 1993; Clark et al., 1996). Several studies on human and animal wounds 

have shown that P6 is detectable in keratinocytes at the wound edge (Breuss et al, 1995; 

Clark et al., 1996; Haapasalmi et al, 1996). Despite the fact that avP6 integrin was 

expressed by migrating keratinocytes in early wounds, the maximal expression of this 

integrin was seen at a relatively late stage of mucosal and dermal wound healing during 

granulation tissue formation and basement membrane reorganization, when migrating 

edges of the wound epithelium have joined (Haapasalmi et al., 1996; Hakkinen et al., 

2000; Larjava et al., 2002). 

In vitro studies have repeatedly demonstrated that avp6 integrin facilitates keratinocyte 

adhesion and migration on fibronectin (Weinacker et al., 1994), tenascin (Prieto et al., 

1993) and vitronectin (Huang et al., 1998), all of which are components of the early 

wound matrix (Hakkinen et al, 2000). This suggests that avP6 integrin may also regulate 

this process in vivo (Breuss et al., 1995; Clark et al., 1996; Hakkinen et al., 2000; Larjava 

et al., 2002). However, P6 integrin-deficient mice did not show any change in wound 

closure rates (Huang et al., 1996). Recently, Hakkinen etal. (2004) showed that 

expression of avP6 in murine skin was strong and relatively uniform on most basal 

keratinocytes close to the wound edge 3 days post injury which remained strongly 
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expressed, although less uniform, at initial wound closure. Although the de novo, but 

transient, expression of av06 integrin by wound keratinocytes is well documented, the 

molecular mechanisms leading to its expression and eventual disappearance are still 

unclear (Clark et al, 1996). 

1.4 Expression of av06 integrin in carcinomas 

Wound healing and carcinogenesis have many biological processes in common, to the 

point that carcinogenesis has been described as a mis-regulated form of wound healing 

(Dvorak, 1986). Many of the ECM ligands for av06 integrin are usually modulated and 

often upregulated during both tissue remodelling and cancer (Chiquet-Ehrismann and 

Chiquet, 2003). When looking at oral squamous cell carcinoma (OSCC), most cells 

express high levels of av06 integrin (Hamidi et al., 2000). However, unlike wound 

healing, carcinoma av06 appears to be permanently expressed and may be responsible for 

promoting tumour progression (Thomas et al., 2006). Although expression of av[36 

integrin is restricted to carcinomas, it is not limited to oral and skin SCC. av06 integrin 

expression has been reported in carcinomas of the lung (Smythe et al., 1995), breast 

(Arihiro et al., 2000), pancreas (Sipos et al., 2004), stomach (Kawashima et al., 2003), 

colon (Bates et al., 2005), ovary (Ahmed et al., 2002), salivary gland (Breuss et al., 

1995), malignant transformation of oral leukoplakia (Larjava et al., 1993; Hamidi et al., 

2000), oral squamous cell carcinoma (Hamidi et al., 2000) as well as skin squamous cell 

carcinoma (Breuss et al., 1995; Bates et al., 2005). In addition, epithelial cells in samples 

of lichen planus have also been shown to express av|36 integrin (Hamidi et al., 2000). 

These data suggest that av06 integrin expression may play an active role in these 
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processes and therefore may be useful in predicting malignant transformation (Impola et 

al., 2004). 

1.5 TGFP activation 

The transforming growth factor (3s (TGFP) are powerful cytokines that affect a variety of 

cellular processes, including cell proliferation, integrin expression, immune function and 

development (Blobe et al., 2000). In addition, they also stimulate the expression of ECM 

proteins, such as tenascin, thormbospondin, fibronectin, vitronectin, and several 

proteoglycans (Taipale et al., 1998), and play a major role in the regulation of ECM 

degradation and remodeling (Koli et al., 2001). Defects in TGFP function lead to a 

number of pathological conditions such as autoimmune disease and tumour cell growth 

(Prime et al., 2004). Furthermore, many fibrotic conditions show an increase in TGFP 

expression, which appear to be modulated, in part, through the TGFP-driven trans-

differentiation of fibroblasts into myofibroblasts (Sharma and Ziyadeh, 1994). In the 

mammalian family, so far three different isoforms of TGFP have been identified, namely 

TGF-pi, TGFP-2 and TGFP-3. They are secreted as heterotrimeric complexes derived 

from two genes. Each gene encodes a protein of 390-414 amino acids which is processed 

into two polypeptide chains. While the 249-282-amino acid N-terminal subunit forms the 

active TGFP cytokine, the C-terminal subunit with the 112-amino-acid is known as the 

latency-associated protein (LAP). Each LAP dimer forms a non-covalent complex with a 

TGFP dimer known as the small latent complex (SLC), which retains the TGFP cytokine 

in an inactive conformation. The SLC is usually complexed with a protein called the 

latent TGFp-binding protein (LTBP), forming a large latent complex (LLC). It is 
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predominantly found in the extracellular matrix (Massague et al., 2000). LTBP is 

required for the proper folding and secretion of TGFp and deposition to the extracellular 

matrix (Koli et al., 2001). Since TGFps are secreted into the extracellular matrix as 

inactive (latent) precursors, activation from this latent state is required for their normal 

function. 

When defining the mechanism by which the various TGFp isoforms are activated, so far 

most work has focused on TGFpi. Both proteolytic and non-protyeolytic mechanisms for 

activating latent TGFpi have been described. In the proteolytic process, proteases 

involved in TGFpi activation include plasmin (Lyons et al., 1990; Sato et al., 1990), 

urokinase-type and tissue-type plasminogen activators (Nunes et al., 1995; Chu and 

Kawinski, 1998), matrix metalloproteases-2 and -9 (MMP-2 and MMP-9) (Yu and 

Stamenkovic, 2000), and cathepsin (Lyons et al., 1988). Their effect is elicited by 

proteolytic degradation of TGFpi-LAP. There are three ways in which these proteases 

might facilitate the activation of latent TGFp. First they could target the protease-

sensitive hinge region in LTBP, leading to the liberation of a still-latent remnant of the 

LLC, which would have to be further processed for activation (Taipale et al, 1994). 

Second, proteases could enable the conversion of pro-LLC to LLC in the extracellular 

environment and thereby render the latent complex activation competent. Third, 

proteolytic cleavage of LAP, which results in destabilization of LAP-TGFp interactions, 

might release active TGFp from its latent complex (Lyons et al., 1988). However, the 

non-proteolytic activation mechanism, which involves interactions with TGFP 1-LAP, 

induces a conformational change and exposes the receptor-binding site in TGF-pi. 
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Both thrombospondin-1 (Schultz-Cherry and Murphy-Ullrich, 1993; Schultz-Cherry et 

a l , 1995; Ribeiro et al., 1999) and the integrins avP6 (Munger et al., 1999), avpi 

(Munger et al., 1998), avP8 and, weakly, avP5 (Munger et al., 1998) could bind to 

TGFpi -LAP. In vitro studies have demonstrated that the binding of thrombospondin-1, 

avP6, or avP8 to TGFP 1-LAP results in TGF-pi activation. The thrombospondin and 

avP6 mechanisms have been further validated in vivo by analysis of thrombospondin-1 

(Crawford et al., 1998) and P6 knockout mice (Huang et al., 1996; 1998), which show 

features that may be attributable to a loss of TGF-pi activity. The mechanism for TGF-pi 

activation by thrombospondin-1 (TSP-1) involves a direct interaction between TSP-1 and 

L A P (Murphy-Ullrich and Poczatek, 2000). A short amino acid sequence (RFK) is 

believed to be responsible for this activation. Furthermore, in vitro and in vivo studies 

have identified a tetrapeptide (KRFK) as an additional TGFp activator which probably 

elicits effects by disrupting the non-covalent interactions between L A P and TGFp. The 

fact that TSP-1 null mice demonstrate a partial phenotypic overlap with TGFP 1-null 

animals supports the contention that TSP-1 is an in vivo activator of latent TGFp 

(Crawford et al., 1998). TSP-1 is also expressed throughout development in a number of 

tissues, where it may function as a TGFP activator (Iruela-Arispe et al., 1993; Majack et 

al., 1987). 

avp6 was the first integrin to be identified as a TGFP activator (Munger et al., 1999). The 

activation results from a conformational change in the latent TGFp molecule rather than 

via cleavage of the peptide and is dependent on the ability of avP6 to connect with the 

actin cytoskeleton of the cell. The mechanism of activation depends upon a direct 
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interaction between av(36 and the RGD amino acid sequence present in TGFP 1-LAP 

(Breuss et al., 1993). Cells expressing mutated P6 subunits, which were unable to interact 

with actin, could still bind LAP but not activate TGFp. The LAP of TGF-p3 (LAP-3) also 

contains an RGD sequence and is similarly activated (Annes et al., 2002). However, 

TGF-P2 does not contain an RGD sequence (Ludbrook et al., 2003) and therefore can 

not be activated by avp6. Recently, Mu et al. (2002) reported that integrin avp8 can 

activate latent TGF-pi. It is interesting that activation by avp8 requires protease (MT1-

MMP) activity in addition to the integrin. However, the exact roles of MT1-MMP and 

avp8 in this activation mechanism remain to be elucidated. 

Recently, Annes et al. (2004) have identified LTBP-1 as one of the missing links in avp6-

integrin-mediated TGFP activation. Their results showed that the hinge region is 

necessary but not solely sufficient for this activation. Since this region also targets latent 

TGFp to the ECM, they were able to demonstrate that without matrix fixation, there is no 

TGFP activation. Overall, the results suggest that LTBP-1 enables avP6-integrin-

mediated activation by both fixing and concentrating the latent complex in the ECM. 

Based on these observations, they concluded that avp6 integrin activates TGFp by 

mechanical traction. 

1.6 Roles of avP6-mediated TGFP activation in pulmonary disease 

Of the five integrins that contain the av subunit, avP6 integrin plays an important and 

specific role in regulating tissue inflammation and fibrosis, and in models of several 
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common lung diseases such as acute lung injury and pulmonary emphysema (Sheppard, 

2001). 

avP6 integrin has been shown to regulate the immune system in the lung by activating 

TGFP (Munger et al., 1999). In the lungs of healthy adults, TGF-pl is present in a latent 

form (Sheppard, 2004). Activation of this latent cytokine through avp6 integrin will 

result in pulmonary fibrosis, even in the absence of any increase in TGFP protein 

expression (Munger et al., 1999). 

In vivo studies using mice homozygous for a null mutation of the integrin P6 subunit 

showed an enhanced inflammatory response in the lungs and skin, similar to the 

exaggerated inflammation seen in mice homozygous for a null mutation of TGFpi 

(Huang et al., 1996). Contrary to the expected progressive tissue fibrosis following 

inflammation, P6 knockout mice did not develop fibrotic lesions. In fact, they were 

protected from the pulmonary fibrosis (Munger et al., 1999). This suggests that avP6-

mediated TGFP activation possibly plays an important role in fibrosis of epithelial organs 

such as the lung (Sheppard, 2004). 

When analyzing the mechanism by which the mice lacking the P6 subunit develop 

pulmonary disease, a single gene, the macrophage-restricted metaloprotease MMP-12, 

was identified as the most highly-induced gene in the lungs of these animals (Morris et 

al., 2003; Kaminski et al., 2000). MMP-12 is an extracellular matrix-degrading 

metalloproteinase expressed only by tissue macrophages and placental throphoblasts 
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(Belaaouaj et al., 1995). In vivo studies comparing P6 knockout to wild-type mice have 

demonstrated a marked increase in MMP-12 expression in P6 knockout mice (Morris et 

al., 2003; Kaminski et al., 2000). This finding, as well as the implication of MMP-12 in 

the development of cigarette-associated pulmonary emphysema in mice (Hautamaki et 

al., 1997), suggests that the lack of avp6-mediated TGFP activation might have an effect 

on macrophage function resulting in emphysema (Sheppard, 2004). In fact, further 

investigation using p6 knockout mice revealed significant abnormalities associated with 

macrophage morphology and induction of surface markers (integrin a M and M H C II) 

.which are involved in macrophage activation (Huang et al., 1998). Furthermore, aging P6 

knockout mice developed a spontaneous, progressive alveolar enlargement over time 

(Morris et al., 2003). The fact that emphysema was absent in double knockout mice 

lacking both avp6 and MMP-12 indicates the central role of MMP-12 in the process of 

pulmonary emphysema (Morris et al., 2003). 

Further investigations using avp6-deficient mice have demonstrated an additional role for 

avP6-mediated TGFp activation in pulmonary disease. In a well-characterized model of 

pulmonary fibrosis induced by bleomycin, an anti-cancer drug, P6 knockout mice were 

protected from pulmonary edema (Pittet et al., 2001). Pulmonary edema occurs through 

imbalance between the rates of fluid movement into the alveolar spaces compared to the 

rate of re-absorption across the epithelium (Sheppard, 2004). In vitro studies revealed an 

increase in the permeability across endothelial monolayers (Hurst et al., 1999) and 

alveolar epithelial monolayers (Pittet et al., 2001) associated with avp6-dependant TGFp 

activation. In addition, TGFP also reduces epithelial sodium re-absorption by decreasing 
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the expression of the apical sodium channel, EnaC, on the apical surface of these cells 

(Frank et al., 2003). 
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CHAPTER II 

2. Junctional epithelium 

The junctional epithelium as the epithelial component of the dento-gingival unit forms 

gradually from reduced enamel epithelium, beginning orally and ending at the cemento-

enamel junction 3-4 years after the crown breaches the oral mucosa (Ten Cate, 1998). 

As part of the marginal free gingiva, JE is surrounded by connective tissue apically and 

laterally and sulcular epithelium coronally. This stratified squamous epithelium is not 

keratinized, comprising of the stratum basale adjacent to the gingival connective tissue 

and the stratum suprabasale facing the tooth surface (Bosshardt and Lang, 2005). Its 

attachment to the non-renewable tooth surface and the connective tissue occurs through 

transmembrane cell matrix junctional complexes known as hemidesmosomes (HD) and a 

basal lamina-like extracellular matrix. 

While the external basal lamina (EBL) refers to the basement membrane located at the 

interface between the basal cells of the JE and the gingival connective tissue, the basal 

lamina on the tooth side is termed the internal basal lamina (IBL) (Bosshardt and Lang, 

2005). 

Despite many morphological similarities, IBL exhibits different structural and molecular 

characteristics when compared to a basement membrane. This is characterized by lacking 

the typical matrix constituents such as types IV and VII collagen, most laminin isoforms 
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(e.g. laminin-10/11), and basement membrane proteoglycan peflecan, but expressing 

laminin-5, an epithelium-specific variant (Hormia et al., 2001). 

Hemidesmosomes at the IBL are intracellularly connected to the cytokeratin filaments of 

the epithelial innermost suprabasal cells, the so-called DAT cells (Directly Attached to 

the Tooth) (Salonen, 1994). This connection is mediated through the interaction of 

intracellular proteins bullous pemphegoid antigen (BP-230) and plectin with two 

transmembrane components of the HD known as bullous pemphegoid antigen (BP-180) 

and a6p4 integrins (Pollanen et al., 2003). 

The interaction between cell surface molecules involved with the intracellular 

cytoskeleton and components of the extracellular matrix are essential for cell adhesion, 

tissue stability, regeneration, and reaction to external signals (Uitto and Larjava, 1991). 

Therefore, a6p4 integrins mediating the interaction between the intracelluar plectin and 

IBL through their ligand, laminin-5, are considered to be one of the important 

components participating in the firm attachment of the epithelial cells to IBL (Ryan et al., 

1999). The consensus that binding between integrin a6p4 and laminin-5 supports 

epithelial cell adhesion is further elucidated by the fact that epithelial downgrowth was 

noted in the presence of MMP-7 (matrilysin), which is capable of cleaving this binding 

(von Bredow et al., 1997). Due to its strategically-important location, remarkable cell and 

extracellular dynamics, as well as its high cellular turnover (Skougaard, 1965; 1970; 

Demetriou and Ramfjord, 1972), JE regulates tissue homeostasis and enables defense 

against microorganisms and their products (Schroeder and Listgarten, 1997). 
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The increased permeability of JE as compared to oral or sulcular epithelium is based on 

the wide intercellular spaces as a result of the small number of desmosomes connecting 

cells mechanically (Schroeder and Munzel-Pedrazzoli, 1970). These interstitial spaces 

provide a pathway for fluid movement to the bottom of the gingival sulcus. This transport 

of tissue fluid containing a variety of cell types such as PMN, macrophages, and 

lymphocytes, enables the JE to control and regulate the constant microbiological 

challenge. While PMNs are located more in the centre of the junctional epithelium and 

close to the tooth surface (Schroeder and Listgarten, 1997), lymphocytes and 

macrophages are found mainly in and near the basal cell layer (Schroeder, 1973). 

Additional cell types found in JE were antigen-presenting cells, Langerhans and other 

dendritic cells located primarily in the coronal one-fourth of JE and at the border zone to 

sulcular epithelium (Juhl et al., 1988).' 

Regulation and maintenance of tissue integrity such as the integrity of epithelial 

attachment to the tooth surface or epithelial-connective tissue interface seems to be 

important in initiation of periodontal disease (Bosshardt and Lang, 2005). Junctional 

epithelium, expressing numerous cell surface or cell membrane molecules involved in 

cell-to-cell or cell-to-matrix adhesion, is considered particularly important structurally in 

the regulation and maintenance of normal tissue architecture and function. While cell 

adhesion molecules (CAM) such as cadherins and integrins are associated with structural 

integrity, other CAMs like intercellular adhesion molecule-1 (ICAM-1) and lymphocyte 

function antigen-3 (LFA-3), both members of the immunoglobulin superfamily of 

recognition molecules, participate in counteracting the bacterial challenge, demonstrating 
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the active involvement of JE in the host defense process (Tonetti, 1997; Tonetti et al., 

1998). 

In addition, epithelial cells of JE express various cytokines such as IL-la, IL-1(3, IL-8, 

and TNF-a. While IL-8 as a chemotactic cytokine is involved in routing PMN's into the 

bottom of the sulcus, the pro-inflammatory cytokines, IL-la, IL-ip, TNF-a activate the 

release of additional cytokines such as interleukin-6 (IL-6) and inflammatory mediators 

such as prostaglandin-E2 (PGE2), contributing to periodontal tissue destruction 

(Gemmell et al., 1997). Following contact with lipopolysaccharide, almost all cells in the 

junctional epithelium demonstrate a strong expression of these cytokines (Miyauchi et al., 

2001). 

The fact that a clinically healthy gingiva contains an inflammatory infiltrate to a very 

limited extent resulting in microscopic signs of slight inflammation (Brecx et al., 1987) 

demonstrates the important role of JE in participating in the first line of host defense by 

providing a pathway for fluid and transmigrating leukocytes, especially PMNs 

(Schroeder and Listgarten, 1997). Overcoming this peripheral defense will lead to 

detachment of JE from the tooth surface and therefore formation of pocket epithelium 

(Schroeder and Listgarten, 1997). Since this is considered a hallmark in the development 

of periodontitis, research has been focused on understanding the mechanism involved in 

conversion of the junctional epithelium to pocket epithelium. Observations of pocket 

epithelium in humans (Takata and Donath, 1988) and animals (Hillmann et al., 1990) 

have demonstrated the detachment of DAT cells from the tooth surface resulting in an 
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intra-epithelial split. Due to the significant correlation between the degrees of gingival 

inflammation and GCF volume flowing through the intercellular space of the JE 

(Klinkhamer and Zimmerman, 1969; Attstrom and Egelberg, 1970; Kowashi et al., 1980), 

it is believed that the disintegration of the junctional epithelium is partly due to the 

increased number of transmigrating leukocytes such as monocytes/macrophages, PMNs, 

T- and B-lymphocytes (Schroeder and Listgarten, 1997). 

The junctional epithelium as an 'open system' not only provides passage for cells and 

substances from the gingival connective, tissue into the sulcus, but also allows bacteria 

and their products to enter the junctional epithelium and the underlying structure 

(Bosshardt and Lang, 2005). Many studies have demonstrated the ability of the two major 

pathogens in periodontal disease, Actinobacillus actinomycetemcomitans and 

Porphyromonas gingivalis, to adhere to and invade epithelial cells (Deshpande et al., 

1998; Huard-Delcourt et al., 1998; Lamont and Jenkinson, 1998; Fives-Taylor et al., 

1999; Forng et al., 2000; Quirynen et al., 2001). Therefore, it seems reasonable to assume 

that pocket formation may also be due to subgingival microbial spreading in a susceptible 

host (Schroeder and Attstrom, 1980). Recent evidence has shown that the virulence 

factors produced by P. gingivalis, known as gingipains, are capable of degrading the 

components of the epithelial cell-to-cell junctional complexes, reducing the adhesion of 

the cells to extracellular matrices, changing cell morphology, impairing cell motility, and 

promoting apoptosis (Wang etal., 1999; Katz et al., 2000; Chen et a l , 2001; Hintermann 

et a l , 2002; Katz et al., 2002). Furthermore, in an in vitro study by Tada et al. (2003), 

gingipains reduced the expression of ICAM-1 on human oral epithelial cell lines and 
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degraded the ICAM-1 in the cell membranes, suggesting that gingipains may also disrupt 

the ICAM-1-dependent adhesion of PMNs to oral epithelial cells. 

Despite this new evidence, the exact mechanisms that lead to formation of pocket 

epithelium still remain unresolved. 
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CHAPTER III 

3. Pathogenesis of Periodontal Disease 

3.1 Introduction 

The pathogenesis of periodontitis was categorically explained by Page and Schroeder in 

1976. Although the amount of information provided at that time was limited, the general 

principles and the overall conclusions are still largely accepted today. Periodontal 

disease is not a single homogenous disease. It is a multifactorial process that represents a 

group of related, usually chronic, and sometimes aggressive bacterial infectious diseases 

which result in destruction of periodontal support including alveolar bone and connective 

tissue (Ranney, 1992; Offenbacher, 1996). Although the bacteria are the initiating force 

in periodontal disease, the host immune response to the pathogenic infection is critical for 

disease progression (Genco, 1992; Socransky and Haffajee, 1992). This can be explained 

by the fact that the presence of specific periodontal pathogens is not sufficient to cause 

disease in the non-susceptible host (Page, 1999). 

While tissue destruction is limited to epithelial cells and collagen fibers from the 

connective tissue during the initial stage of the disease, progression of periodontal disease 

is characterized by loss of periodontal ligament and disruption of its attachment to the 

cemental root surface, as well as resorption of alveolar bone (Offenbacher, 1996). Pocket 

epithelium is formed when junctional epithelium proliferates and migrates apically on the 

root surface. It extends long pseude rete ridges deep into the inflamed connective tissue, 

exposing the epithelial cells to the new matrix components of the chronic granulation 

tissue (Larjava et al., 1996). 
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3.2 Microbial challenge 

Pellicle formation consisting of proteins and glycoproteins from saliva and crevicular 

fluid is rapidly observed on the freshly-cleaned tooth surface (Marsh and Bradshaw, 

1995). This provides a surface for bacterial attachment and enhances the initial bacterial 

colonization (Skopek and Liljemark, 1994). As a result of autoaggregation (attraction 

between same species) and coaggregation (attraction between different species), the 

dental plaque biofilm matures, demonstrating an increase in numbers and species of 

bacteria (Lamont et al., 1993; Riviere et al., 1996). The clustering of bacteria within the 

biofilms shows specific associations among bacteria present (Socransky and Haffajee, 

2002). 

Based on the position on the tooth surface, there are two different types of dental plaque 

biofilms: supragingival plaque forming above, and subgingival plaque forming below the 

marginal gingiva. The first bacteria colonizing the supragingival tooth surface are mostly 

gram positive facultative microorganisms, followed by gram negative cocci as well as 

gram positive and gram negative rods (Listgarten, 1976). 

Extending apically, a subgingival plaque biofilm is formed containing gram negative 

anaerobic and also motile bacteria. More than 600 bacterial species have been isolated 

from subgingival plaque. However, only a small number are strongly associated with the 

pathogenesis of periodontal disease in the susceptible host (Socransky and Haffajee, 

2002). 
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When examining subgingival plaque samples, six closely associated groups of bacterial 

species were identified. These included the Actinomyces, a yellow complex consisting of 

members of the genus Streptococcus, a green complex consisting of Capnocytophaga 

species, Actinobacillus actinomycetemcomitans serotype a, Eikenella corrodens and 

Campylobacter concisus, a purple complex consisting of Veillonella parvula and 

Actinomyces odontolyticus, an orange complex consisting of Campylobacter species 

such as C. rectus, C. gracilis and C. showae, and a red complex consisting of P. 

gingivalis, T. forsythensis and T. denticola (Socransky et al., 1998). Except for the 

orange and red complexes, the other groups are the early colonizers of the tooth surface, 

and their growth usually precedes the multiplication of the predominantly gram negative 

orange and red complexes (Socransky et al., 1998). In subgingival plaque, certain 

complexes are present together more frequently than others. For example, it is unlikely to 

find the red complex species without the presence of the orange complex. However, 

members of the Actinomyces, yellow, green and purple complexes are often found 

without members of the red complex or even the red and orange complexes (Socransky 

and Haffajee, 2002). 

3.3 Host response 

In infectious diseases, bacteria or their products invade the host tissue, often resulting in a 

wide variety of inflammatory and immunopathological reactions (Takada et al., 1991). It 

is generally accepted that much of the periodontal tissue destruction observed in 

periodontal disease is host-mediated through release of pro-inflammatory cytokines by 

local tissues in response to the bacterial biofilm (Page, 1991). 
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Host response in periodontal disease can be divided into non-specific congenital 

immunity (innate immunity) and specific acquired immunity (adaptive immunity). In 

most cases, there is a cross-talk between the innate and adaptive immune responses 

(Graves and Cochran, 2003). 

Non-specific immunity containing phagocytic cells such as polymorphonuclear 

leucocytes (PMN), monocytes/macrophages, natural killer cells (NK), as well as soluble 

effector molecules such as complement (C) and acute phase protein (C-reactive protein) 

presents the first line of defense which is activated following the initial contact of 

bacterial lipopolysaccharide with the cells of junctional epithelium (Madianos et al., 

1997). At an early stage, monocytes and activated macrophages respond to endotoxin by 

releasing pro-inflammatory cytokines such as TNF-a, IL-ip, and IL-6 which play a key 

role in the initiation, regulation, and perpetuation of the non-specific immune responses 

in the periodontium (Darveau, 2000; Gemmell et al., 1997). The release of these primary 

mediators stimulates the production of secondary mediators and chemokines, resulting in 

amplification of the inflammatory response, induction of connective tissue degrading 

enzymes, and osteoclastic bone resorption (Graves and Cochran, 2003). To 

counterbalance this inflammatory response and to regulate homeostatic stability of 

immune system, endogenous anti-inflammatory cytokines such as IL-4, IL-10, and TGFP 

are released (Kantarci et al., 2006). 

While the non-specific immunity is critical in the early control of bacterial replication 

and successful eradication of the infection, the adaptive immune response indicated by 
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antibody production is important in establishing specific immunity with a memory 

component. It is activated directly or indirectly through cytokine such as IL-1, IL-2, and 

IL-7, as well as antigen processing and presenting cells such as macrophages, 

neutrophils, and dendritic cells (Hornef et al., 2002; Teng, 2003). 

3.3.1 Cytokine 

Cytokines regulated at the level of synthesis, secretion and biological activity are 

important for pathogenesis of an increasing number of diseases such as diabetes mellitus, 

autoimmune thyroid disease (Gianoukakis and Smith, 2004), ulcerative colitis, and 

Crohn's disease (Papadakis and Targan, 2000), as well as periodontal disease (Seymour 

and Taylor, 2004). They are produced transiently, often in picomolar concentrations, and 

act locally in the tissue where they are produced (Page et al, 1997). Cytokines as 

intercellular messengers bind to specific receptors on their target cells, initiating 

intracellular second messengers. They do not act in isolation but rather function as a 

complex network, combining the elements of both innate and adaptive immunity in the 

defense against infection and disease (Banyer et al., 2000). Many cytokines demonstrate 

overlapping functions so that the absence of one but the presence of another may result in 

the same biological outcome (Seymour and Taylor, 2004). Depending on the nature of 

the cytokine response, their release could result in a protective immunity or lead to a 

destructive outcome (Gemmell and Seymour, 2004). 

The central role of cytokines in focal immunopathologies such as periodontal disease is 

demonstrated by the fact that once the critical level of pro-inflammatory cytokine 
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production is achieved, the physiological response and the protective immunity becomes 

a pathologic and destructive process to the surrounding tissues (Graves and Cochran, 

2003). 

3.3.1.1 IL-1 

The three cytokines originally described as the members of the IL-1 family were IL-la 

and IL-ip with similar activities acting agonistic, and IL-1 receptor antagonist, IL-IRa, 

which functions as a competitive inhibitor (Dinarello, 1997). The IL-1 cytokines 

produced by a variety of cells, in particular stimulated monocytes, macrophages and 

epithelial cells (Feghali and Wright, 1997), are of fundamental importance in health and 

disease as evidenced by their large array of biological activities and direct regulation of 

expression of several genes during inflammation (Dinarello, 1996). While elevated levels 

of IL-1 P can be detrimental, resulting in tissue destruction and enhanced bone resorption 

(Kornman et al., 1997; Tatakis, 1993), low levels are beneficial in host responses to 

infection (Taylor et al, 2004). The importance of the IL-1 protective ability against 

infection was demonstrated in an animal study where spread of infection was prevented 

by IL-1 p activity (Graves et al., 2000). 

The wide-ranging roles of the IL-1 p biological effect in innate and adaptive immune 

responses have been implicated in the pathogenesis of several disease processes such as 

asthma (Okada et al., 1995), preterm labour (Dudley, 1997), and periodontal disease 

(Jandinski et al, 1991; Kinane et al., 1992). The role of IL-1 P in the initiation and 

progression of periodontal disease has been demonstrated in many animal and human 
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studies. In a rat model, increased inflammation and bone resoption was noted when IL-ip 

was applied to the gingiva (Koide et al., T995). In experimental periodontitis of non-

human primates, significant reduction in inflammation, connective tissue attachment loss, 

and bone resorption occurred when using IL-1 (3 receptor inhibitor (Delima et al., 2002). 

Human studies revealed an increase of tissue IL-1 (3 levels in the gingiva of patients with 

periodontal disease as compared to the healthy controls (Honig et al., 1989). Higher 

levels were noted in active versus stable periodontal sites (Stashenko et al., 1991). In 

addition, IL-1 B levels found in gingival crevicular fluid (GCF) of patients with 

periodontal disease were increased when compared to the levels of healthy subjects 

(Masada et al, 1990; Preiss and Meyle, 1994). 

3.3.1.2 TNF-a 

Tumor necrosis factor refers to two related proteins, TNF-a and lymphotoxin-a (also 

known as TNF-P), with a high degree of structural homology (Beyaert and Fiers, 1994). 

TNF interacts with two structurally similar cell surface receptors, TNF-R1 and TNF-R2 

(Rothe et al., 1992; Pfizenmaiener et al., 1993). Most of the destructive effects of TNF 

have been attributed to TNF-R1 (Rothe et al., 1993; Amar et al., 1995). While 

macrophages are likely to be the most important source of TNF production in the early 

stages of gingival inflammation, it seems that in advanced periodontal disease other 

leukocytes such as the B cell may be the primarily source (Seymour et al., 2001). TNF-a, 

primarily produced by activated macrophages, shares many biological activities with IL-

ip. Its implication in periodontal disease is due to its contribution to several events that 

are essential for the initiation of an inflammatory response and its ability to stimulate 
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bone resorption (Tatakis and Kumar, 2005). In an animal study comparing the wild type 

and TNF receptor-null mice, fibroblast apoptosis was greatly reduced in the knockout 

animals, suggesting the stimulating effect of TNF in the programmed cell death of 

fibroblasts (Graves et al., 2001). Therefore, it was concluded that the presence of TNF 

not only contributes to breakdown of gingival connective tissue, but also limits the ability 

to repair the destroyed tissue (Graves et al., 2001). In experimental periodontits in a 

Macaca fascicularis primate model, treatment with IL-1/TNF antagonists resulted in a 

significant decrease of connective tissue attachment loss and reduction in the number of 

osteoclasts, indicating the involvement of these cytokines as major contributors to 

periodontal bone destruction and connective tissue matrix degradation (Delima et al., 

2001). 

Based upon these findings, a potential effective periodontal therapy should aim in 

dampening the overreaction of the host response to bacteria by inhibiting the 

inappropriate cytokines such as IL-ip and TNF-a. Presently, IL-1 or TNF antagonists are 

used in human clinical trials in the treatment of other inflammatory conditions such as 

arthritis (Dayer et al., 2001). 

3.3.1.3 TGFp 

Transforming growth factor-pi as a multifunctional cytokine is secreted from many 

different cells including lymphocytes, monocytes, platelets and neutrophils (Wahl et al., 

1993; Steinsvoll et al., 1999). In regulation of the host's response to bacterial and 

immunological challenge, TGF-pi has both pro-inflammatory and anti-inflammatory 
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features. While the anti-inflammatory properties of TGF-P are achieved through 

suppression of innate and humoral immune responses (Prime et al., 2004; Gurkan et al., 

2006), its pro-inflammatory properties are demonstrated by its capability to function as a 

chemoattractant for neutrophils, monocytes, mast cells and lymphocytes as well as its 

ability to mediate the release of pro-inflammatory cytokines such as IL-1, IL-6, and TNF-

a by these cells (Kiritsy et al., 1993; Marek et al., 2002). 

The nature of immune responses (inflammation or tolerance) is determined by the 

differentiation of naive T cells, which is influenced by the type of cytokines and co-

stimulatory receptors engaged. While pathogen recognition promotes differentiation of 

effector T cells (Teffs) as a result of inflammatory cytokine production and T cell co-

stimulation, recognition of self antigens results in induction of anergic T cells and the 

gradual accumulation of regulatory T cells (Tregs), promoting tolerance (Sundrud and 

Rao, 2007). 

TGFP, among other factors, affects the immune response through its regulatory effect on 

naive T cells, influencing their proliferation, differentiation, and survival (Gorelik and 

Flavell, 2002.). It blocks T cell proliferation by inhibiting IL-2 production, inhibits 

differentiation of Thl and Th2 cells, prevents T cell activation-induced cell death, and 

induces the generation of forkhead transcription factor FoxP3 expressing Tregs (Li et al., 

2006). FoxP3 expressing Tregs could either arise through differentiation in the thymus, 

known as natural Treg (nTreg), or through the differentiation of naive T cells in 
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peripheral lymphoid oranges, the so-called induced Tregs (iTreg) (Zheng et al., 2002; 

Chen et al., 2003). 

The pivotal function of TGFp in inflammation and tolerance is explained by its capability 

to promote differentiation of two opposing T cell lineages, iTreg, a subset of regulatory T 

cells that possesses immune suppression activities, and Thl7, a specific effector T cells 

subset that secrets inflammatory cytokines interleukin-17 (IL-17) (Sundrud and Rao, 

2007). It has been postulated that the presence or absence of co-stimulatory inputs and 

the cytokines IL-2, IL-6 and IL-23 play a key factor in the opposite cellular responses 

seen after activation of the same cell surface receptors by the same stimuli such as TGFp. 

Among the TGFP superfamily, TGF-pi is the predominant isoform expressed in the 

immune system. The potent immunosuppressive role of TGF-pl has been demonstrated 

in many animal studies (Li et al., 2006). Knockout mice lacking TGF-pi would either 

die in uterus as a result of defective yolk sac vasculogenesis and hematopoiesis (Dickson 

et al., 1995), or develop to term and die within 3-4 weeks due to a severe multi-organ 

inflammatory disorder, exhibiting development of mixed inflammatory cell infiltration 

into heart, stomach, liver, diaphragm, lung, salivary gland, and pancreas (Prud'homme 

and Piccirillo, 2000). Lack of functional TGF-pi is also associated with increased 

mRNA expression of several inflammatory cytokines (Shull et al., 1992) such as IFN-y, 

TNF-a, and IL-1 p. In addition, TGF-pi downregulates the antigen expression of the 

MHC class I and II of a variety of cell types including B cells and macrophages 

(Czarniecki et al., 1988). Its immunosuppressive effect is further elicited through its 
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inhibitory effect on IgG and IgM secretion by B lymphocytes (Letterio and Roberts, 

1998; Kehrl et al., 1991). TGF-pi can also interfere with the adhesion of neutrophils and 

lymphocytes to the vascular endothelial cells through modifying the expression of 

various adhesion molecules such as E-selectin (Prud'homme and Piccirillo, 2000). 

TGFP is also involved in angiogenesis, extracellular matrix synthesis, apoptosis and cell 

growth inhibition (Prime et al., 2004). As the major activator of extracellular matrix 

synthesis, it plays an important role in wound healing, tissue remodeling and regeneration 

(Sporn and Roberts, 1993). The increased expression of collagen and other extracellular 

matrix components mediated by TGFP (Tabibzadeh, 2002) is due to its ability to suppress 

matrix degrading proteinases such as matrix metalloproteinases, and to induce formative 

fibroblast phenotype, which could synthesize connective tissue matrix (Overall et al., 

1991). 

The central role of TGF-P in regulation of collagen metabolism in physiologic as well as 

pathologic conditions (van der Zee et al., 1997) make it an interesting cytokine to monitor 

in the pathogenesis of periodontal disease. However, due to the complex interaction 

between and among different cytokines at the site of inflammation and the multi-factorial 

nature of periodontal disease, the involvement of TGFP in the pathogenesis of 

periodontal disease is not completely understood (de Souza et al., 2003; Ejeil et al., 

2003). Recent analysis of gingival crevicular fluid have shown increased TGFp levels in 

patients with gingivitis, chronic periodontitis and generalized aggressive periodontitis as 

compared to healthy individuals (Giirkan et al, 2006). The total amount of GCF TGFP 
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was significantly correlated to clinical periodontal parameters such as probing depth, 

clinical attachment loss and bleeding on probing (Giirkan et al., 2006). In another study, 

measuring the GCF TGFP of the sites following a regenerative procedure or surgical 

periodontal therapy, an increase in TGFP levels was demonstrated after both treatment 

modalities (Kuru et al., 2004).These findings suggest that TGFP might contribute to both 

inflammatory regulation as well as remodelling processes during periodontal disease. It 

seems that the changes in the levels of TGFP in GCF could be an effective tool in 

monitoring the progress of periodontal repair and regeneration (Kuru et al., 2004). Until 

more studies are undertaken, the precise role of TGFP in the pathogenesis of periodontal 

disease remains unclear. 
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CHAPTER IV 

Aim of the study 

The avP6 integrin an exclusively epithelial integrin, is absent from oral gingival 

epithelium yet found in junctional epithelium. Although it is expressed in low levels in 

healthy tissue, its expression is rapidly upregulated by injury and inflammation. 

Considering its existence in the JE and its ability to activate TGF-(31, a cytokine with an 

anti-inflammatory effect, it was hypothesized that avP6 integrin plays a protective role in 

the development of periodontal disease. Therefore, this study was conducted to 

investigate our hypothesis that lack of avP6 integrin in mice has a negative impact on 

periodontal status. 

For this purpose the project was divided in two parts: 

1) Quantification and comparison of alveolar bone loss around the mandibular 1st 

and 2 n d molars between P6 -/- and wild-type mice within different age groups. 

2) Comparison of histological changes in JE in regards to migration and degree of 

inflammation between the two groups using paraffin sections of the maxilla. 
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CHAPTER V 

Material & Methods 

26 integrin-knockout mice ((36 -/-, Huang et al., 1996; generous gift from Dr. Dean 

Sheppard, University of California, San Francisco, USA) and 30 wild-type mice (FVB) 

were included in this experiment. Animals were labeled based on their age, sex and 

group. The integrin-knockout group consisted of six 3-month old (3 female & 3 male), 

six 6-month old (3 female & 3 male), and fourteen 12-month old (9 female & 5 male) 

animals as compared to the wild-type group which included six 3-month old (3 female & 

3 male), six 6-month old (3 female & 3 male), and eighteen 12-month old (17 female & 1 

male) animals. All data collected were based on assessment of 4 teeth per animal unless 

indicated otherwise. All mice were allowed free access to standard mouse chow (Purina 

5001) and water. Animals were sacrificed by carbon dioxide inhalation. Upon 

decapitation, maxilla and mandible were separated and processed for different analyses. 

5.1 Mandible 

Mandibles cut in half were partially defleshed mechanically and exposed to 2% KOH 

(EM Science, Merck, Darmstadt, Germany) until completely defleshed. In order to 

further delineate the CEJ, dry mandibles were stained using Van Gieson's solution for 30 

seconds followed by water diluted Ponceau-S (1:10) for 5 minutes. The stained jaws 

were then used for quantification of alveolar bone loss. 
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5.1.1 Alveolar bone loss measurement of mandible 

Dried stained jaws were placed under a dissecting microscope (Leica MZ6, Switzerland) 

and aligned using dental impression putty so that the lingual and buccal cusps were 

superimposed. Using a digital camera (Nikon, Coolpix 995, Tokyo, Japan), images 

including the lingual view of first and second molars with a standardized scale (Thin 

Williams Periodontal probe, Hu Friedy, Chicago, Illinois, USA) were taken at X 40 

magnification (Objective 4, Eyepiece 10) from all the jaws. Photoshop CS Me (Adobe, 

San Jose, California, USA) was utilized to standardize the image size before any 

measurements. Quantification of the area between the CEJ and the crest of alveolar bone 

was achieved using ImageJ software (http://rsb.info.nih.gov/ij/). The area of exposed root 

was documented for each tooth (1s t & 2 n d molar) in pixel units as well as in mm2 (Figure 

1). Repeated measurements on randomly selected teeth revealed intraexaminer agreement 

of > 98% (38 repeated measurements out of 221). 

Figure 1. 
Example of alveolar bone loss quantification. 
Surface area between CEJ (black arrow) and 
alveolar crest of the first molar is marked and 
measured using ImageJ software. 

In order to evaluate possible eruption of the teeth, the most apical part of the alveolar 

process anteriorly and posteriorly were determined (blue X in Figure 2) and connected 

via a straight line. The vertical distance from this line to the CEJ was determined for each 

root of each tooth (mesial root of 1st molar, distal root of 1st molar, mesial root of 2 s t 
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molar, distal root of 2 s t molar). This distance was measured mid-lingually for each root 

(Figure 2). 

Figure 2. Example of measurement technique for the distance between alveolar process 

and CEJ. The most apical parts of the alveolar process anteriorly and posteriorly are 

indicated with blue X. 

The alveolar bone loss assessment was finalized with evaluation of furcation involvement 

based on the classification described by Wiebe et al. (2001) (Table 1). 

Table 1. Alveolar bone loss quantification scale by Wiebe et al. (2001) 

Class Description 

0 No furcation involvement 

I Exposure of the furcation and horizontal bone loss 
extending into furcation 

II Exposure of the furcation with a through-and-through 
(tunnel) defect from the buccal to the oral surface of 
the toot 

III Through-and-through furcation defect with horizontal 
bone loss extending into the apical third of the root 
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To further determine the extent of bone loss, hemimandibles of twenty-two 12-month old 

animals (11 FVB & 11 [36 -/-) were selected for radiographic analysis using Faxitron x-

rays. Qualitative assessment using an index between 0-3 was performed separately for the 

mesial, mid, and distal of the 1st molar as well as mesial and mid of the 2nd molar. The 

index utilized is explained in Table 2. 

Table 2. Qualitative assessment of alveolar bone loss (Bone Loss Index) 

Index Description 

0 No bone loss 

1 Horizontal or vertical bone loss < 1/3 

2 Horizontal or vertical bone loss between 1/3 - 2/3 

3 1 Iori/.ontal or vertical bone loss > 2/3 

For better visual illustration of bone resorption, scanning electron microscopy (SEM) 

images o f selected mandibles from each group (FVB & P6 -/-) were prepared after the 

clinical crowns had been removed using a fine bur. For this purpose defleshed mandibles 

were washed in PBS 0.1 M, dried for 3 days in 6Cf C oven, coated with gold, and 

observed with scanning electron microscope (Cambridge 260, StereoSEM, Cambridge, 

England). The images were purely for illustrative purposes and were not used for any 

measurements. 
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5.1.2 Assessment of attrition 

The attrition of the mandibular posterior teeth was qualitatively determined using a scale 

between 0 and 1. While score 0 was used for teeth with attrition < 50% of cusp height, 

teeth demonstrating occlusal wear > 50% of cusp height were given score 1. 

5.1.3 Weight of the mandible 

In order to determine whether there were any differences in body or jaw size between the 

two groups, thirty-five 12-month old animals (15 FVB, 20 P6 -/-) were compared for 

their body weights (Mettler PE160, Ziirick, Switzerland) and defleshed mandibular jaw 

weights (Mettler AE260, Ziirick, Switzerland) using calibrated scales. 

Schematic illustration of the processes performed on the mandible 

M o u s e 

. I co2 

D e c a p i t a t i o n 

M a n d i b l e Maxilla 

D e f l e s h i n q o f m a n d i b l e s 

I 
S t a i n i n g the j a w s 

Assessment of 
tooth eruption 

Assessment of 
Alveolar bone loss 

Assessment of 
furcation involvement 
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5.2 Maxilla 

The maxillary jaws were decalcified in 0.4 M EDTA and 2% formaldehyde in PBS 

(pH=7.2) with the solution being changed every other day for a period of 6 weeks 

(EDTA: Sigma - Aldrich, St. Louis, MO, USA; Formaldehyde: Fisher Scientific, 

Fairlawn, NJ, USA; PBS: Invitrogen - GIBCO, Carlsbad, CA, USA). The specimens (36 

blocks each containing one maxilla) were then processed for embedding in paraffin using 

a routine protocol and stored in the refrigerator until used. 

5.2.1 Histological assessment of the JE 

From the 36 paraffin specimens, 6 were included in the study (3 FVB & 3 (36 -/-). The 

specimens were then cut (7 urn) in the bucco-lingual direction, giving approximately 

1400-1500 sections (350-375 slides) for each group of animals. Every tenth slide from 

each block of sections was stained with H&E, providing 39 stained slides for the FVB 

mice and 38 stained slides for the p6 -/- mice. Stained sections were used to assess the 

migration of JE as well as the degree of inflammation. Using an inverted microscope 

(Nikon Eclipse TS100, Tokyo, Japan) at X 40 magnification (Objective 4, Eyepiece 10) 

and a digital camera (Canon Powershot A540, Tokyo, Japan) with a standard setting, 

digital images were captured from all stained sections with a standard scale and 

processed using Photoshop CS Me software. Utilizing ImageJ software, migration of JE 

was measured in pixels as well as in mm from standardized pictures. The images were 

further used for qualitative assessment of inflammation immediately under junctional 

epithelium (JE) or pocket epithelium (PE) on each side of each root. The scoring was 

done by a single examiner according to Table 3. 
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Table 3. Qualitative assessment of inflammation 

Score Description 

0 No inflammatory infiltrate 

1 Mild inflammation, scattered inflammatory infiltrate 
around JE or PE " 

2 Moderate inflammation, moderate inflammatory 
infiltrate around JE orPE 

3 Severe inflammation, heavy inflammatory 
infiltrate around JE or PE 

In addition to H&E staining, 10 slides were used for Movat Pentachrome staining 

(Schmidt and Wirtala, 1996) to better distinguish between different structures such as 

connective tissue (CT), junctional epithelium (JE), and cementum (C). This allowed, for 

better visualization and assessment of any changes seen in the specimens. 
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Schematic illustration of the processes performed on the maxilla 
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5.3 Statistical analysis 

Statistical analyses were performed using Student t-test and Mann-Whitney U test. 

Comparison of parametric data between F V B and B6 -/- mice including differences in 

alveolar bone loss, tooth eruption, animal weight, weights of defleshed mandibles, and JE 

apical migration were achieved utilizing Student t-test. For the nonparametric data 

including severity of inflammation from maxillary paraffin sections and degree of bone 

loss from mandibular radiographic images, Mann-Whitney U test was used. 
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CHAPTER VI 

Results 

The assessment of body size comparing the weight between 12 FVB (8 males & 4 

females) and 12 P6 -/- (8 males & 4 females) at twelve months age revealed that P6 

integrin-knockout mice, with an average weight of 32 g ± 3.80, were significantly lighter 

than their age-matched wild-types, which presented with a mean weight of 45 g ± 3.81 

(P-value < 0.0005). To ensure that the size of mandibles between the two groups was 

comparable, the weight of defleshed, non-stained mandibular jaws of the same animals 

were recorded. With average values of 0.079 g ± 0.005 (FVB) and 0.080 g ± 0.006 (p6 -/-

), no statistically significant difference was found (P-value > 0.3). 

6.1 Mandible 

Defleshed and stained mandibles were used for assessment of alveolar bone loss through 

quantification of exposed surface area between CEJ and alveolar bone crest using ImageJ 

software. The comparison of alveolar bone loss between the two groups (FVB & P6 -/-) 

was then performed for the same age combining both genders, among the first molars 

(Figure 3), second molars (Figure 4), and both molars combined (Figure 5) using Student 

t-test. 

Figure 3 presents the data for the 1st molars. Mean bone loss was significantly higher in 

knockout animals in all three age groups. Among the 3-month old animals using 24 teeth 

(12 in each group), these values were 0.38 mm2 ± 0.055 and 0.34 mm2 ± 0.036 for P6 -/-

and FVB, respectively. The difference was statistically significant (P-value < 0.05). For 
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6-month old animals, mean bone loss based on 24 teeth (12 in each group) was measured 

to be 0.44 mm2 ± 0.063 for P6 -/- versus 0.34 mm2 ± 0.043 for FVB. With a P-value < 

0.0005, the difference was statistically very significant. Similar findings were observed 

for 12-month old animals when comparing 63 teeth (36 FVB & 27 P6 -/-). With a mean 

bone loss of 0.50 mm2 ± 0.114 and 0.40 mm2 ± 0.055 for P6 -/- and FVB, respectively, 

the difference was determined to be statistically very significant (P-value < 0.0005). It is 

noteworthy to mention that among the knockout mice in this group, one 1st molar was lost 

due to severe bone resorption and could not be included in the assessment.-

• FVB 

• Beta6 -/-

3 6 12 
Age (Months) 

Figure 3. Quantification of the surface area between the CEJ and alveolar crest of the Is 

mandibular molar using ImageJ software. Mean values of 24 teeth from 3- and 6-month 

and 63 teeth from 12-month old animals ± SD are presented. Statistical analysis was 

performed using Student t-test. (*): Significant difference, P-value < 0.05, (**): Very 

significant difference, P-value < 0.0005. 
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Figure 4 presents the results of the duplicate analysis for 2nd molars based on the same 

number of teeth per group. Compared to FVB, mean bone loss is significantly greater 

among knockout animals in the 3- and 6-month old age groups (P-value < 0.0005). 

However, for 12-month old animals, despite a higher mean value for bone loss in (36 -/-

compared to FVB mice, the difference was found not to be statistically significant (P-

value > 0.05). In the latter group, two teeth among the knockout animals were lost as a 

result of excessive bone loss and were therefore excluded from the analysis. For 3-month 

old animals, the measurement revealed a mean bone loss of 0.24 mm2 ± 0.046 and 0.18 

mm2 ± 0.018 for (36 -/- and FVB, respectively. These values were 0.29 mm2 ± 0.073 

versus 0.16 mm2 ± 0.035 and 0,33 mm2 ± 0.096 versus 0.30 mm2 ± 0.079 for 6- and 12-

month old animals, respectively. 
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Figure 4. Quantification of the surface area between the CEJ and alveolar crest of the 2 n a 

mandibular molar using ImageJ software. Mean values of 24 teeth from 3- and 6-month 

and 62 teeth from 12-month old animals ± SD are presented. Statistical analysis 

performed using Student t-test. (**): Very significant difference, P-value < 0.0005; No 

significant difference, P-value > 0.5. 

Using the same criteria, data for both molars combined were used for the next statistical 

analysis (Figure 5). With a mean bone loss of 0.31 mm 2 ± 0.087 versus 0.26 mm 2 ± 0.085 

in 3-month old, 0.36 mm 2 ± 0.099 versus 0.25 mm 2 ± 0.10 in 6-month old, and 0.42 

mm 2 ± 0.14 versus 0.35 mm 2 ± 0.084 in 12-month old animals, P6 -/- mice demonstrated 

significantly more bone loss compared to their age-matched F V B counterparts. 
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Figure 5. Quantification of the surface area between the CEJ and alveolar crest of the I s 

and 2 n d mandibular molars using ImageJ software. Mean values of 48 teeth from 3- and 

6-month and 125 teeth from 12-month old animals ± SD are presented. Statistical 

analysis performed using Student t-test. (*): Significant difference, P-value < 0.05; (**): 

Very significant difference, P-value < 0.0005. 

In order to determine whether gender played a role in the severity of alveolar bone loss, 

males and females were compared separately combining 1st and 2 n d molars. The results 

showed no statistical difference in bone loss measurements between the sexes. Based on 

these findings, it was clearly demonstrated that, independent of age or the number of 

teeth involved, integrin-knockout mice (|36 -/-) exhibit significantly more bone loss as 

compared to age-matched wild-type (FVB) mice in almost all categories except for the 

2 n d molar in the 12-month old age group (Fig. 6 and Table 4). 
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Figure 6. Example of degrees of alveolar bone loss (25 X magnification). Black arrow 

indicates CEJ. A) F V B , 3 months old; B) FVB, 6 months old; C) FVB, 12 months old; 

D) 06 -/-, 3 months old; E) 06 -/-, 6 months old; F) 06 -/-, 12 months old. 

Table 4. Student t-test demonstrating statistical differences in degree of exposed root 

surface area (alveolar bone loss) in mandibular jaw between wild-type (FVB) and 

integrin-knockout (06 -/-) mice. (*): Significant difference; (**): Very significant 

difference. 

P values 

1 s t Molar 2 n d Molar 1 s t & 2 n d Molars 

3 months old P<0.05 * P< 0.0005 ** P<0.05 * 

6 months old P < 0.0005 ** P < 0.0005 ** P < 0.0005 ** 

12 months old P < 0.0005 ** P>0.5 P < 0.005 ** 
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The enhanced bone loss in the 0 6 -/- mice was further confirmed when comparing the 

prevalence and the severity of furcation involvement between the two groups using the 

classification described by Wiebe et al. (2001) (Table 1). A n example of different 

degrees of furcation involvement is demonstrated in Figure 7. 

Figure 7. Examples of furcation involvement (40 X magnification). A ) No furcation 

involvement on 1s t molar, Class I furcation on 2" molar; B) Class II furcation on 1st & 

2 n d molars; C ) Class II on 1s t molar, Class III on 2 n d molar. 

An analysis of 224 teeth (120 F V B and 104 06 -/-) revealed severe furcation involvement 

(Class II and III) to be more prevalent in the knockout group (51% versus 35.8% for class 

II, and 4.8% versus 0% for Class III). On the contrary, wild-type animals (FVB) 

presented with more teeth with 0 or Class I involvement (17.5% versus 3.8% for class 0, 

and 46.7% versus 40.4% for Class I) (Table 5). 

46 



Table 5. Prevalence and severity of furcation involvement of mandibular teeth based on 

classification by Wiebe et al. (2001) (See Table 1 for classification criteria) 

Furcation involvement of mandibular teeth 

FVB 
30 animals -> 120 teeth 

p6 -/-
26 animals -> 104 teeth 

0 17.5% 3.8% 

Class I 46.7% 40.4% 

Class II 35.8% 51.0% 

Class III 0% 4.8% 

The bone loss was further assessed by comparing radiographic images of 22 

hemimandibles (11 F V B & 11 06 -/-). The scoring criteria, using a scale between 0 and 3 

is explained in Table 2. The data collected from 110 sites (55 sites per group) were 

subject to statistical analysis utilizing Mann-Whitney U test. With P-value < 0.0005, 

significantly more bone loss was noted among the knockout animals. Data are presented 

in Figure 8 and Figure 9 illustrates an example of the radiographic as well as the scanning 

electron microscopy images (SEM). 
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Figure 8. Qualitative assessment of the degree of bone loss using Faxitron x-ray images 

of the hemimandibles. Data presented are mean values ± SD from 22 hemimandibles (11 

F V B & 11 06 -/-) providing 110 sites. Statistical analysis performed using Mann-

Whitney U test. (**): Very significant difference, P-value < 0.0005. 
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B 
M3 ^ - • M l 

Figure 9. Radiographic and S E M images of hemimandibles. A) FVB, Radiographic 

image; B) 0 6 -/-, Radiographic image. Black arrows point at areas of decreased bone 

density, indicating bone loss; C) FVB, SEM image after removal of clinical crowns with 

high speed; D) 0 6 -/-, S E M image after removal of clinical crowns with high speed; E) & 

F) illustrate the enlarged views of C) & D). Teeth are indicated with M l for 1s t Molar, 

M2 for 2 n d Molar, and M3 for 3 r d Molar. Arrowhead is pointing at the level of the 

interproximal bone. Interproximal crater (black triangle) is noted between M l and M2 for 

0 6 -/-. Bar = 500um. 
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To elucidate the degree of periodontal disease, a classification of attachment loss based 

on the severity of furcation and the number of teeth involved was developed. Left and 

right sides of the mandibular jaw were assessed separately (Table 6). 

Table 6. Classification of attachment loss (AL) of mandibular teeth based on degree of 

furcation involvement. 

( lassification of attachment loss 

No attachment loss (AL) None of the molars show furcation involvement (0-U) 

Mild AL Only one molar has Class I furcation (0-1) 

Mild-Moderate AL Both molars have Class I furcation (I-I) 

Moderate AL One molar has Class I and one has Class II furcation (I-II) 

Moderate-Severe AL Both molars have Class II furcation (II-II) 

Severe AL One molar has Class II and one has Class III furcation (II-III) 

An evaluation of 112 mandibular jaws (60 FVB and 52 06 -/-) revealed that, while 

moderate-severe attachment loss or severe attachment loss was more prevalent within 

knockout animals (38.5% versus 21.7% for moderate-severe AL, 5.8% versus 0% for 

Severe AL), wild-type mice presented with more jaws demonstrating no attachment loss 

(5% versus 0%), or mild attachment loss (25% versus 7.7%) (Table 7). 
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Table 7. Severity of attachment loss (AL) based on classification described in Table 6 

for wild-type (FVB) and integrin-knockout (06 -/-) mice. 

Se\erit\ of attachment loss 

FVB 
(30 animals -> 60 half jaws) 

P6-/-
(26 animals -> 52 half jaws) 

No attachment loss (AL) 5% 0% 

Mild AL 25% 7.7% 

Mild-Moderate AL 20% 25% 

Moderate AL 28.3% 23.1% 

Moderate-Severe AL 21.7% 38.5% 

Severe AL 0% 5.8% 

Assessment of the mandibular posterior teeth revealed occlusal wear to different degrees 

in some animals. While no significant attrition was noted for the teeth of the wild-type 

animals (120 teeth were included), integrin-knockout animals presented with 54 teeth 

demonstrating > 50% cuspal wear and therefore were given the score 1 (101 teeth 

included). With all teeth of the 12-month old integrin-knockout animals scoring 1, 

attrition was 100% in this group. Since occlusal wear into the dentin was observed for 

some animals, further analysis was necessary in order to assess for possible tooth 

eruption. This was achieved by measurement of the distance mid-lingually between the 

CEJ and a straight line connecting the most apical anterior and posterior points of the 

alveolar process. The measurements were performed using images taken with a dissecting 

stereomicroscope (Leica MZ6, Switzerland) at X 40 magnification (objective 4, Eyepiece 

10). With the exception of the 2nd molar in the 6-month old (P < 0.005) and the 1st molar 
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in the 12-month old age groups (P < 0.005), no significant difference was noted (see 

Figure 10 for 1st molar and Figure 11 for 2nd molar). 

80 

70 

• FVB 
• Beta6 -/-

0 

3 6 12 
Age (Months) 

Figure 10. Assessment of eruption of Is mandibular molar. Measurement of vertical 

distance from the CEJ to alveolar process (AP) mid-lingually in mm (40 X 

magnification). Separate measurements from each root (mesial & distal) were combined 

for each tooth. Mean values of 24 teeth from 3- and 6-month and 63 teeth from 12-month 

old animals ± SD are presented. Statistical analysis performed using Student t-test. (**): 

Very significant difference. 
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Figure 11. Assessment of eruption of 2nd mandibular molar. Measurement of vertical 

distance from the alveolar process to the CEJ mid-lingually in mm (40 X magnification). 

Separate measurements from each root (mesial & distal) were combined for each 

tooth. Mean values of 24 teeth from 3- and 6-month and 62 teeth from 12-month old 

animals ± SD are presented. Statistical analysis performed using Student t-test. (**): Very 

significant difference. 

6.2 Maxilla 

To explore whether the lack of expression of av06 integrin affected the migration of the 

JE, paraffin sections of decalcified maxillary jaws of three wild-type (FVB) and three 06 

integrin-knockout mice, both 12 months old, were stained with H&E and assessed 

microscopically. While the specimens of the wild-type mice showed no or minimal JE 
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migration beyond the CEJ, JE in the knockout animals started to invade the connective 

tissue apical to the CEJ, resulting in formation of pocket epithelium (PE) (Figure 12). 

Figure 12. Migration of junctional epithelium (JE) in 12-month old mouse gingiva of 

wild-type (FVB) and p6 integrin-deficient (06 -/-) animals. A) H & E staining, no 

migration of JE beyond the CEJ; B) Magnification of structures seen in image A); C) 

Pentachrome staining for better visualization of different structures with different degrees 

of collagen content; D) Migration of JE beyond the CEJ forming pocket epithelium (PE); 

E) Magnification of structures seen in image D); F) Pentachrome staining for better 

visualization of different structures with different degrees of collagen content. Bar = 

200pm. 

54 



When comparing the degree of migration based on measurements from 82 stained 

sections (FVB: 28 sections, (36 -/-: 52 sections), statistical analysis using Student t-test 

revealed a significant difference between the groups (P-value < 0.0005). Mean values 

were 0.059 mm ± 0.040 and 0.379 mm ±0.142 for FVB & (36 -/-, respectively (Figure 

13). 
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Figure 13. Apical migration of JE from the CEJ in mm. Measurements performed on 

82 stained paraffin sections from six 12-month old animals using ImageJ software. Mean 

values ± SD are presented. Statistical analysis performed using Student t-test. (**): Very 

significant difference, P-value < 0.0005. 

Based on the criteria explained in Table 3, the qualitative assessment of inflammation 

was performed per site using the H&E stained maxillary paraffin sections of 6 animals (3 
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FVB & 3 06 -/-). For this purpose 117 sites from wild-type (FVB) animals were 

compared to 115 sites of knockout (06 -/-) mice. 

Utilizing Mann-Whitney U test, the comparison revealed significantly more inflammation 

among the knockout mice (06 -/-) (P-value < 0.005) (Figure 14). 

Figure 14. Qualitative assessment of inflammation immediately adjacent to JE and/or 

PE. Mean values ± SD of 117 sites from FVB group and 115 sites from 06 -/- are 

presented. Statistical analysis performed using Mann-Whitney U test. (**): Very 

significant difference, P-value < 0.005. 
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CHAPTER VII 

Discussion 

The present study is one of the first studies to compare the initiation and progression of 

periodontal disease along with the degree of alveolar bone loss between wild-type and 

av06 knockout mice. As an exclusively epithelial integrin, the av06 integrin found in 

junctional epithelium appears to exercise a protective function in the development of 

periodontal disease. As shown previously, induction of av06 expression as a result of 

tissue injury plays a crucial role in the activation of TGF-pi via binding LAP at the RGD 

site and therefore is an important factor in downregulating the inflammatory response to 

injury (Munger et al., 1999). The significance of this cascade has been demonstrated in 

TGF-pi null phenotype animals which died within a few weeks of birth as a result of 

diffuse mononuclear cell infiltrates (Shull et al, 1992; Kulkarni et al., 1993). 

Consequently, the findings of the present study suggest that the enhanced bone loss and 

pocket formation seen in P6 integrin-deficient mice is subsequent to insufficient 

suppression of inflammation as a result of poor TGF-pi activation due to lack of avP6 

integrin. 

Furthermore, the apical migration of junctional epithelium associated with increased 

infiltration of inflammatory cells seen in these animals indicates that avp6 integrin is 

possibly one of the key components in regulating the inflammation mediated via TGF-pi 

signaling. 
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As demonstrated previously, av|36 integrin has limited distribution in the body. Despite 

the fact that it is not expressed in oral gingival epithelium, avp6 integrin is continuously 

expressed in junctional epithelium, making it a unique epithelium (Garcia, 2005). In adult 

tissue, avp6 integrin is expressed during inflammation, carcinogenesis, and in wound 

healing (Breuss et al., 1995). 

In 06 integrin knockout mice, alteration in cell response to tissue injury and inflammation 

has been demonstrated in specific organs such as in skin, intestine and lungs (Huang et 

al., 1996; Munger et al., 1999; Sheppard, 2001; Morris et al., 2003; Jenkins et al., 2006). 

Moreover, formation of spontaneous chronic wounds was observed in the skin of 

transgenic mice overexpressing avP6 integrin which found to be associated with elevated 

TGFP levels. (Hakkinen et al., 2004). 

In a recent experiment, Hahm et al. (2007) demonstrated inhibition of renal fibrosis in P6-

deficient Alport mice, indicating the potential regulatory role of avP6 integrin as an 

important mediator in the initiation and maintenance of kidney fibrosis (Hahm et al., 

2007). Considering its ability to bind and activate latent precursor TGFp, it was 

suggested that misregulation of the av06 function in an existing disease condition could 

enhance disease-associated tissue damage and inflammation (Hahm et al., 2007). 

In the present study, we compared the degree of inflammation in the connective tissue 

immediately adjacent to the junctional epithelium between the 12-month old avp6 

integrin deficient and 12-month old wild-type mice. The results showed statistically 
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significant more inflammatory cells present in the connective tissue of 06 integrin 

knockout animals. In addition, pocket formation as a result of apical migration of JE was 

a common observation in avp6 integrin-deficient mice. These findings suggest that av06 

integrin may be involved in both regulation of cell proliferation and the immune response 

in the gingiva. 

Periodontal inflammation is a multifactorial process that develops as a result of different 

host factors. Although the bacteria are recognized as the initiating force, the host immune 

response is considered critical for disease progression (Socransky and Haffajee, 1992; 

Genco, 1992). IL-ip is one of the most potent cytokines involved in the pathogenesis of 

periodontal disease (Koide et al., 1995). Synthesized by a variety of cells such as 

stimulated monocytes, macrophages, and epithelial cells, IL-ip mediates tissue 

remodelling, repair, and inflammation. 

While low levels of IL-1 p give rise to protective ability against infection (Graves et al., 

2000), increased production of IL-1B leads to tissue destruction through synthesis of 

collagenase and PGE2 (Graves and Cochran, 2003). 

Dayan et al. (2004) have demonstrated proliferation and apical migration of JE in mice 

overexpressing IL-1B in keratinocytes, independent of the bacterial colonization. Similar 

morphological changes of JE were reported by Garcia (2005) in avP6 integrin-deficient 

mice. The proliferation and apical migration of JE resulting in formation of pocket 

epithelium was also seen among the P6 integrin knockout mice in the present study. 
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The antagonistic functions between TGF-pi and IL-1 B leads to TGF-P 1 counteracting IL-

ip functions (Benus et al., 2005; Takahashi et al., 2005). Animal studies have shown that 

TGF-P 1 downregulates IL-1 p expression in murine hepatocytes (Matsumura et al., 2004). 

Considering these findings along with the observations made in the present study, it can 

be speculated that lack of avP6 integrin may potentially lead to increased IL-1 P 

expression as a consequence of decreased levels of activated TGF-P 1. However, since in 

the present study cytokine levels were not measured, this has to be interpreted with 

caution. 

TGF-P 1 is a potent cytokine in regulating the immune system (Li et al., 2006). Produced 

in the later phase of inflammation, TGF-P 1 with its multifaceted roles controls the 

initiation and resolution of inflammatory responses (Li et al., 2006). 

avP6 integrin, with its ability to bind to TGF-P 1, is an important component in the 

activation of this cytokine. Despite the many pathways known to activate TGF-P 1, 

activation via avp6 integrin seems to be the predominant mechanism in cells containing 

this integrin (Jenkins et al., 2006). Several inflammatory problems have been reported 

due to poor activation of TGF-pi in animals lacking ccvP6 integrin (Munger et al., 1999; 

Sheppard, 2001). In addition, the JE of P6 integrin knockout mice was found to be 

thickened, indicating increased cell proliferation (Garcia, 2005). 

In the JE, cell proliferation taking place in the basal layer occurs adjacent to the gingival 

connective tissue rather than adjacent to the tooth (Watanabe et al., 2004). In the process 
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of periodontal pocket formation, it seems that basal JE cells move apically towards the 

root before migrating coronally along the cementum towards the clinical crown (Stern, 

1981). Therefore, maintaining the JE in a steady state and providing a balance between 

numbers of cells undergoing apoptosis, proliferation, and shedding is critical in the 

process of pocket formation (Watanabe et al, 2004). 

Cell cycle progression controlling this dynamic process is regulated by a class of enzyme 

complexes composed of cyclins and cyclin-dependent kinases (Cdk) (Morgan, 1995; 

Ekholm and Reed, 2000). Two classes of Cdk inhibitors (CKIs), the Cip/Kip family and 

the INK4 family, tightly control the activities of Cdk complexes. The Cip/Kip family 

with its three members (p21, p27, and p57) considered to be broad spectrum CKI and 

can, therefore, bind to and inhibit both cyclin-D-Cdk4/6 kinases, as well as cycIin-E/A-

Cdk2 (Ekholm and Reed, 2000). The INK4 family, composed of four members (pi 5, pl6, 

pi 8 and pi9), is a group of narrow spectrum CKI and can only bind to and inhibit Cdk4 

and Cdk6 (Ekholm and Reed, 2000). 

Cyclin-D-Cdk4/6 complexes provide a reservoir for Cip/Kip inhibitors, preventing them 

from interacting with cyclin-E-Cdk2 and thereby promoting cell cycle progression 

(Ekholm and Reed, 2000). Disruption of these complexes allows Cip/Kip inhibitors to 

interact with cyclin-E-Cdk2, resulting in inhibition of cell cycle progression 

(Reynisdottir et al., 1997). 
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In a recent study Watanabe et al. (2004) have demonstrated enlarged JE in p21/p27 

double knockout mice (dKO), suggesting specific roles for both p21 and p27 in 

controlling the size and possibly the integrity of theJE. Enlarged JE associated with 

increased proliferation was also seen in our study among mice lacking the av06 integrin. 

These similarities could be explained by insufficient TGF-P 1 activation as a result of 

av06 integrin deficiency. 

Reviews of cell cycle regulation in mammalian cells indicated that TGF-P 1 stimulates 

pi5 induction, which then forms stable complexes with Cdk4/6 leading to disruption of 

cyclin-D-Cdk complexes (Ekholm and Reed, 2000). In addition, analyses of human 

prostate epithelium have shown the effect of exogenous TGF-P 1 in blocking the cell 

cycle at G l , and increases in p21 and p27 levels. Consequently, impaired TGF-P 1 

activation downregulates the accumulation of cyclin-dependent kinase inhibitors pi5, p21 

and p27, allowing for increased epithelial cell proliferation (Watanabe et al., 2004). 

Therefore, avP6 integrin deficiency could contribute via poor TGFp activation to 

increased epithelial cell proliferation and thereby pocket formation in periodontal disease. 

Furthermore, the present study showed that lack of avP6 integrin leads to increased 

alveolar bone loss in mice as measured per exposed root surface area. With the exception 

of the 2 n d molars from the 12-month old age group, statistically significantly more bone 

loss was measured among the knockout animals independent of age or gender. 

Considering the fact that among 12-month old the P6 -/- mice, three out of fifty-six 

molars were lost as a result of excessive bone resorption, one might argue that exclusion 

62 



of 5% of the data may have contributed to underestimation of the differences between the 

two groups. In addition, the lack of significant difference might be explained by the fact 

that from the thirty-six 2 n d molars (18 animals) included in the F V B group, seven teeth 

from 6 different animals presented with severe bone loss similar to the values measured 

for the 06 -/- group. With the exception of one animal which showed severe bone loss on 

both sides (left and right) of the mandibular jaw, the extensive alveolar bone destruction 

was only unilateral for the other five animals with the contralateral side exhibiting values 

similar to the mean. Comparison of the two groups (FVB & 06 -/-) using Student t-test 

demonstrated statistically very significant differences (P-value < 0.005) when those seven 

teeth were excluded from the analysis (data not shown). As known local factors are 

important etiological factors in initiation and progression of periodontal disease and 

subsequently alveolar bone loss, the author does not exclude the possibility that the 

extensive periodontal destruction observed for those 7 teeth might have been as a result 

of local factors such as animal hair impaction to the gingival sulcus. 

When comparing the exposed root surface area, it is critical to rule out compensatory 

supereruption of the teeth involved, which results naturally as tooth substance is lost 

when in function. In mice, the three molars present per quadrant complete their eruption 

within 5 weeks of birth (Page and Schroeder, 1982). When fully in occlusion, natural 

wear through enamel and dentin will occur. Since alveolar bone follows this secondary 

tooth eruption only partially (Gilmore and Glickman, 1959), an increase in the distance 

between the CEJ and the alveolar crest will occur, providing an illusion of periodontal 

bone loss. To ensure that the increased distance is mainly due to periodontal disease and 
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not as a result of attrition and consequent supereruption, the distance between the CEJ 

and a set straight line at the bone of alveolar process was measured for each root of each 

tooth. The results have indicated significant differences between the two groups (FVB & 

06 -/-) among the 1 s t molars of the 12-month old and 2 n d molars of the 6-month old 

animals. This physiological supereruption might have contributed to overestimation of 

the degree of bone loss and therefore exaggerated the differences between the two 

groups. Nonetheless, the fact that knockout mice demonstrated statistically significantly 

more bone loss among all age groups for both molars suggests increased periodontal bone 

loss as a result of avp6 integrin deficiency. The enhanced periodontal destruction 

associated with lack of avp6 integrin was further confirmed when comparing 

radiographic images. Since the assessment included the entire alveolar bone surrounding 

the roots, supereruption could not have affected the results. This was true for visual 

assessment of 3D E M images which have clearly exhibited crater formation around the 

teeth of knockout animals. 

During the process of collecting the data, it was noticed that p6 -/- mice exhibited 

generally more attrition of the teeth which increased in severity as the animals aged (data 

not shown). This could be caused by either increased function due to periodontal disease 

affecting grinding of the hard mouse food pellets or defects in the enamel itself. 

Interestingly, it was recently documented that P6 integrin is expressed by ameloblasts 

during the late enamel organ formation (Moffatt et al., 2006). Therefore, a possible 

involvement of avp6 integrin in the mineralization of the enamel organ cannot be ruled 

out and requires more in depth investigation. 
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CHAPTER VIII 

Conclusions 

Integrins as cell surface receptors mediate cell-to-cell or cell-to-extracellular matrix 

adhesion. Through many intracellular signaling pathways, they regulate diverse processes 

such as proliferation, migration, and differentiation. We present here the first evidence 

that ctv06 integrins, absent from oral gingival epithelium but continuously expressed in 

junctional epithelium, play a significant role in the etiology of periodontal disease. This 

was demonstrated through the comparison of alveolar bone loss as well as the formation 

of pocket epithelium between wild-type and 06 integrin-deficient mice. Previous studies 

have indicated the association of av06 integrin in the activation of TGF-01, a 

multifactorial immunoregulatory cytokine. Since in periodontal disease the host immune 

response is considered critical for disease progression, it seems plausible to conclude that 

the increased attachment loss seen in 06 -/- animals is partly due to lack of TGF-01 

activation as a result of av06 integrin suppression. Furthermore, the regulatory influence 

of TGF-01 in the cell cycle dynamic suggests that av06 integrin via its ability to activate 

TGF-01 possibly plays an important role in controlling epithelial cell proliferation during 

pocket formation in periodontal disease. 

Recommendation for future studies 

Despite the new advances in determining the role of av06 integrin in junctional 

epithelium, the exact mechanisms by which lack of this integrin leads to alterations in 

morphology and cellular organization of JE is not clearly understood: More studies are 

needed to elucidate the dynamics of this process. 
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It seems that suppression of av06 integrin in mice is a critical factor in the development 

and progression of periodontal disease during the natural aging process. Therefore, future 

studies could focus on alterations seen in 06 -/- mice during inductive conditions such as 

diabetes or bacterial inoculation. 

In addition, quantification of proinflammatory cytokines and inflammatory cell infiltrate 

in animals lacking av06 integrin may be of benefit in determining the immunoregulatory 

role of av06 integrin in the gingiva. 
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