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Abstract 

Suppose that you must make inference about a population, but that data from m — 1 similar 

populations are available. The weighted likelihood uses exponential weights to include all 

the available information into the inference. The contribution of each datum is discounted 

based on its dissimilarity with the target distribution. 

One could hope to elicitate the likelihood weights from scientific information, but using 

data-based weights is more pragmatic. To this day, no entirely satisfactory method has 

been found for determining likelihood weights from the data. 

We propose a way to determine the likelihood weights based on data. The suggested 

"MAMSE" weights are nonparametric and can be used as likelihood weights, or as mixing 

probabilities to define a mixture of empirical distributions. In both cases, using the MAMSE 

weights allows strength to be borrowed from the m—1 similar populations whose distribution 

may differ from the target. 

The MAMSE weights are defined for different types of data: univariate, censored and 

multivariate. In addition to their role for the likelihood, the MAMSE weights are used 

to define a weighted Kaplan-Meier estimate of the survival distribution and weighted co­

efficients of correlation based on ranks. The maximum weighted pseudo-likelihood, a new 

method to fit a family of copulas, is also proposed. All these examples of inference using 

the MAMSE weights are shown to be asymptotically unbiased. Furthermore, simulations 

show that inference based on MAMSE-weighted methods can perform better than their 

unweighted counterparts. Hence, the adaptive weights we propose successfully trade bias 

for precision. 
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Chapter 1 

Introduction 

Suppose that you must make inference about a population from which you obtained a 

sample and that additional data are available from populations whose distributions may 

be similar to the target, but not necessarily identical. The weighted likelihood allows use 

of the relevant information contained in that data and its incorporation into the inference. 

In this thesis, we propose a data-based criterion to determine likelihood weights and show 

that they can successfully trade bias for precision. 

1.1 Review 

The expression weighted likelihood refers to a few different statistical methods. In sur­

vey sampling theory, a method called weighted likelihood is used to adjust for a response-

dependent sampling intensity; see Krieger & Pfeffermann (1992). The increased robustness 

of estimates obtained through weighted likelihood equations have been studied by several 

groups of statisticians including Markatou et al. (1997) and Ahmed et al. (2005). However, 

both these methods are only remotely related to the relevance weighted likelihood as defined 

by Hu (1994). In that context, the weighted likelihood is an extension to the likelihood that 

uses data from multiple populations for making inference. 

Statistical models typically use information about data that come from the target dis­

tribution. When other possibly similar data are available, the relevant information they 

contain is ignored unless their similarity with the population of interest is precisely incor­

porated in the model. 

1 



Chapter 1. Introduction 

The original work of Hu (1994), enhanced in Hu & Zidek (2001) and Hu k. Zidek (2002), 

proposes use of the weighted likelihood to capture the relevant information from data whose 

distribution may differ from that of interest, hence trading bias for precision. A specific 

paradigm is derived from the work of Hu and Zidek by Wang (2001) and further developed 

in Wang, van Eeden & Zidek (2004) and in Wang & Zidek (2005). We adopt that paradigm 

throughout this thesis. 

Suppose the data come from m distinct populations that have different yet similar 

distributions. More formally, for each fixed i = 1,..., m, 

A j i , . . . , A.ini ~ i * i 

where Fj denotes the cumulative distribution function (CDF) of each population. We denote 

by fi the corresponding density or mass function for population i = 1,..., m. The family of 

density (or mass) functions f(x\6) indexed by 6 € 0 is used to model the data. Population 

1 is of inferential interest, but the weighted likelihood 

m n j 

Lx(e) = Hl[f(xij\e)^ . 
i=ij=i 

lets other populations contribute to the inference so that the relevant information they 

contain is not lost. The vector of exponents A = [Ai , . . . , A m ] T downweights data according 
i 

to the degree to which they are thought to be dissimilar from Population 1. The expression 

for the weighted log-likelihood may be more intuitive: 

The maximum weighted likelihood estimate (MWLE) is a value of 9 that maximizes L\(9). 

Ideally, the weights Aj would be determined from scientific knowledge. However, us­

ing data-based weights seems more pragmatic. The ad-hoc methods proposed by Hu & 

2 



Chapter 1. Introduction 

Zidek (2002) as well as the cross-validation weights of Wang (2001) and Wang & Zidek (2005) 

are the only adaptive weights proposed in the literature for the paradigm considered. How­

ever, none of these solutions is fully satisfactory. 

In particular, the cross-validation weights (CVW) suffer from instability problems. The 

simulation results in Wang (2001) and Wang & Zidek (2005) can be reproduced only at 

the cost of fine-tuning the algorithms numerically. In the ideal situation where some of the 

populations are identical to Population 1, the weights may not even be defined. 

Let Fi denote the empirical distribution function (EDF) based on the sample from 

Population i. Hu k. Zidek (1993) call F\ = 2~2u=i ^i^i the relevance weighted empirical 

distribution (REWED) when A* > 0 add to 1. Hu k.Zidek (2002) show that the REWED is 

the nonparametric maximum weighted likelihood estimate of the target distribution func­

tion. In Chapter 2, we look at the link between the REWED and the weighted likelihood 

from a different angle. 

Note that Ahmed (2000) uses a paradigm similar to the one retained in this thesis as he 

considers samples of different sizes from m populations to develop a Stein-type estimator of 

the quantiles of the distribution. The properties of his method and its links to the REWED 

and the weighted likelihood are however not the object of this work. 

In this thesis, we propose a data-based criterion to determine likelihood weights which 

yields consistent estimates. Inferential methods based on our proposed weights perform at 

least as well as the CVW in comparable simulations, but without the instability problems. 

We also propose other weighted methods based on the newly proposed weights that are 

shown to perform well and to be asymptotically unbiased. 

1.2 Overv iew 

In Chapter 2, we present our heuristic interpretation of the weighted likelihood that links 

it to mixture distributions. This leads to the general definition of the MAMSE (Minimum 

Averaged Mean Squared Error) weights and we provide an algorithm to calculate them. 

3 



Chapter 1. Introduction 

The ensuing three chapters are implementations of the idea of the MAMSE weights in 

three different contexts. 

In Chapter 3, univariate data are treated using the empirical distribution function. The 

properties of the resulting nonparametric MAMSE weights are studied. Asymptotically, 

the MAMSE-weighted empirical distribution function converges to the target distribution 

and the maximum weighted likelihood estimate is strongly consistent. Finally, simulations 

show that improved performance is indeed possible on samples of realistic sizes. 

Chapter 4 introduces MAMSE weights for right̂ censored data by using the Kaplan-

Meier estimate to infer the CDF of each population. The weights are used to define a 

weighted Kaplan-Meier estimate that converges uniformly to the target distribution. Sim­

ulations show that improved performance is once again possible. 

Finally, MAMSE weights for multivariate data are defined using the empirical copula. 

The MAMSE-weighted mixture of empirical copulas converges uniformly to the copula 

underlying the target distribution. We define MAMSE-weighted coefficients of correlation 

and show that they are consistent estimates of the correlation in the target population. To 

infer the copula underlying the target population, the maximum weighted pseudo-likelihood 

estimate (MWPLE) is proposed. We show that the MWPLE is consistent when calculated 

with MAMSE weights. Simulations confirm once more that MAMSE-weighted methods 

may perform better than their unweighted counterparts, even in subasymptotic ranges. 

We conclude this thesis with a summary and some suggestions for future research. 

4 



Chapter 2 

Likelihood, Entropy and Mixture 

Distributions 

This chapter links the likelihood to the weighted likelihood by showing that both expres­

sions can be derived as particular cases of the entropy maximization principle proposed by 

Akaike (1977). ' 

After drawing the connection between relative entropy and the likelihood, we heuristi-

cally extend that link to the relationship between mixture distributions and the weighted 

likelihood. This leads us to formulate a general criterion to determine likelihood weights, 

called the "MAMSE" weights. We propose an algorithm to compute the MAMSE weights 

and prove its convergence. 

2.1 Likelihood and Entropy 

Consider first the one-sample situation where n independent data points, Y i , . . . , Yn, come 

from a distribution whose unknown and unknowable density is g(y). In his pioneering work, 

Akaike (1977) argues that the goal of inference should be the estimation of g(y). When a 

parametric model f(y\9) is to be used, Akaike proposes maximizing the relative entropy: 

5 



Chapter 2. Likelihood, Entropy and Mixture Distributions 

The relative entropy is in fact minus the Kullback-Leibler divergence between / and g. In 

that sense, it is a measure of the proximity of the distributions / and g. The expression for 

B(g,f) can be further simplified: 

B(gJ) = -j l o g | - ^ | 5 ( ? / ) d y = J log{f(y\e)}g(y)dy-J log{g(y)}g(y) dy. 

In particular, when the objective is to maximize B(g, /) as a function of 8, the last term of 

the rightmost expression can be ignored since it does not depend on 9. 

Calculating the entropy would require the knowledge of the unknown and unknowable 

true distribution g. We thus have to estimate it. Let 

= v) 

be the empirical distribution function (EDF) of the dataset Y\,... ,Yn. The indicator vari­

able !(•) is equal to one if all the elements of its argument are true and equal to 0 otherwise. 

Using dG(y) as an approximation to dG{y) = g(y) dy yields 

J \og{f(y\0)}dG(y) = i ] T l o g / ( m 
i=l 

the log-likelihood! Therefore, calculating the likelihood is equivalent to calculating the 

entropy where the true distribution is estimated by the empirical distribution of the data. 

Hence, the maximum likelihood estimate can be seen as a special case of Akaike's entropy 

maximization principle. 

2.2 The Weighted Likelihood 

Consider now the m-population paradigm of Wang (2001) introduced in Chapter 1. With 

appropriate weights, the mixture Fx = 2~HL\\Ei can be arbitrarily close to F\. Let Fj 

denote the EDF based on the sample from Population i. The weighted EDF, written 

6 



Chapter 2. Likelihood, Entropy and Mixture Distributions 

F\ = YliLi ^iFi w i t n > 0 and called relevance weighted empirical distribution by Hu & 

Zidek (1993), may use more data than Fi , and thus be less variable. Hu & Zidek (1993) 

note the implicit bias involved in defacto replacing Fi by F\, but do not investigate as we 

do here the possibility of trading bias for precision. 

In the context of maximum entropy, consider using the weighted EDF as an estimate of 

F x. Then, 

/

m . m . rii 

\ogf(x\6)dFx(x) = J2^i / logf(x\B)dFi(x) = Y,-J2^gf(XlJ\e), 
i=i i=x j=i 

the weighted log-likelihood. The maximum weighted likelihood can thus be derived from 

Akaike's entropy maximization principle. 

2.3 The M A M S E Weights 

Let Fi(x) represent an estimate of the CDF of Population i. Based on the heuristics 

presented in the previous section, the weighted likelihood is akin to using a mixture of the 

CDFs of the m populations from which data are available. Let 

m 

Fx(x) = J2xiFi(x) 
i=i 

with A = [Ai, . . . , A m ] T , Aj > 0 and A T 1 = 1 be such a mixture. A wise choice of likelihood 

weights should make: 

• F\(x) close to Fi(x), the target distribution, 

• F\(x) less variable than F\(x). 

7 



Chapter 2. Likelihood, Entropy and Mixture Distributions 

We combine the two requirements above in an objective function. Let p(x) be a proba­

bility measure that has a domain comparable to the distribution of interest and define 

r i m 

P(A) = 7 •{P1(x)-Fx(x)} + ^ A f v a r { F i ( x ) } 
L i=l 

d/i(x) (2.1) 

The term vaf |i<i(:r) j is a form of penalty to foster decreasing the variance by using as many 

of the m populations as necessary. In the coming chapters, we will use different estimates Fj 

depending on the type of data at hand. The exact expression for vaf JFj(:c) j will depend 

on that choice; see Sections 3.1, 4.2 and 5.3 for specific examples. The probability measure 

p(x) may also depend on the data and will be specified later. 

We call MAMSE (minimum averaged mean squared error) weights any vector of values 

A = [ A i , . . . , A m ] T that solves the program 

minimize -P(A) 
' 771 

subject to {Aj >0,i = 1,..., m} and ^ Aj = 1. 

(2.2) 

i= l 

The name MAMSE is motivated by the conceptual resemblance of the integrand with the 

mean squared error (Bias2 4- Variance). 

Note that the objective function P(A) is quadratic in A and must be optimized under 

linear constraints. Substituting Ai = 1 — a u o w s the constraint Y^Li Aj = 1 to 

embedded into the objective function. Let us write 

A 2 Fx{x) -F2(x) 

A = 

- Fm(x) 

and 

8 



Chapter 2. Likelihood, Entropy and Mixture Distributions 

V(x) = 

var{F2(x)} 

var{Fm(x)} 

Then, the function P(A) can be written as 

A ( z ) - £ \ F i i x ) - ll - £ ^ j | 

i=2 / i=2 

/

I" m 
- £ ( _ ) } 

. Li=2 

+(1 - A T 1 ) 2 var { A (x)} + J _ A? var { £ ( x ) } 
i=2 

= J { A V ( x ) } 2 + ( l - 2 A T l + A T l l T A ) v i : r | F i ( a ; ) } + A T V(x)A 

= J A T ^ (x ) J r (x ) T +V(x) + l l T v a r | F i ( x ) } ] A 

dp(x) 

dp.(x) 

dp(x) 

-2A T1 var {FI (X)} + var { A ( x ) } d/u(x) 

= A T A A - 2 A T 1 6 + 6 (2.3) 

where 

A = J ^F(x)F(x)T + V(x) + l l T v a r { A ( x ) } d/j(z) 

b = f var [ F I ( X ) | d//(x). 

Hence, the objective function F(A) can be written as a quadratic function of A involving 

matrices and vectors whose entries depend on Fj(x) and its estimated variance. Note that 

a similar quadratic development is possible with A as well. 

9 
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Chapter 2. Likelihood, Entropy and Mixture Distributions 

2.4 A n Algorithm to Compute the M A M S E Weights 

To improve inference about Population 1, we attempt to use the data from m — 1 other 

populations. Suppose that one of the other populations is different enough that its sample 

does not even overlap with that of Population 1. Extracting useful information from that 

sample seems unlikely and it is nearly impossible to evaluate to which degree the populations 

are similar, except for suspecting that they are probably quite different. 

We suggest to preprocess the samples from the m populations to discard those that are 

clearly different from the target population. Some samples may also be discarded because 

they are difficult to compare with the target. Specifics of the preprocessing are described 

for all three versions of the MAMSE weights in their respective chapters. Typically, the 

preprocessing steps will also insure that Assumption 2.1 is respected. 

Assumption 2.1 

J var{Fi(x)}d^(x) > 0 

for any Population i that is considered for the optimization of (2.2). 

All samples that fail the preprocessing are assigned weights of zero, hence they do not 

appear in the MAMSE objective function. For simplicity, the notation used in this section 

does not reflect the possibly reduced number of populations considered: we suppose that m 

populations remain after preprocessing. 

If we ignore the constraints Aj > 0, the MAMSE weights are the solution to the equation 

A A = 61. To ensure the weights are nonnegative, we apply the following algorithm and 

denote its solution by A* (or A*). 

1. Solve the equation A A = 61; 

2. if all the weights obtained are nonnegative, stop. Otherwise set the negative weights 

to 0, ignore the corresponding samples and repeat from Step 1 with the reduced 

10 
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system. The weight allocated to Population 1 from Step 1 cannot be negative (see 

Lemma 2.4). If no other samples are left, then A = 0 and Ai = 1. 

The objective function P(X) is quadratic and positive (thus convex). Since the con­

straints form a convex set, intuition suggests that A* should be the global constrained 

minimum. We prove this more formally next. 

Consider the generic program 

where A G IRm and h(A) = [/ii(A),..., hk(X)]T is a vector of functions, each being from 

IRm to IR. Let VP(A) denote the gradient of P and P(A) its Hessian. Similarly, V/i*(A) is 

the gradient of hi(X) and H i (A) its Hessian. By definition, an m x m matrix B is positive 

definite (denoted B y 0) if y T £ y > 0 for all y G IRm\{0}. The Kuhn-Tucker conditions 

are necessary conditions that any solution to a program like (2.2) must respect. The second 

order version that follows (see for instance Luenberger (2003), page 316) are necessary and 

sufficient conditions to show that a given A* solves program (2.2). 

T h e o r e m 2.1 ( K u h n - T u c k e r Second O r d e r Sufficiency C o n d i t i o n s ) Let hi,...,hk 

and P be continuous and twice differentiable functions from IRm to IR. Sufficient conditions 

that a point X* be a strict relative minimum point of the program above are that there exists 

p = [pi,..., / L i / C ] T € IRfc such that p, > 0, pTh(X*) = 0, 

minimize -P(A) 

subject to h(A) < 0 

k 
(2.4) 

%=i 
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and the matrix 

P(A*) + 5^_/i iH I(A*)^0. (2.5) 
i= l 

Note that from Equation (2.3), we have VP(A) = AA - lb and P(A) = A. The function 

P(A) and its derivatives do not depend on Ai since it was replaced by Ai = 1 — 1TA. 

Consequently, it is implicitly understood in the following that P and h{ are functions of 

A € I R m _ 1 , even when we write P(A) and /ij(A) rather than P(A) and /ij(A). 

Lemma 2.1 The Hessian matrix P(A) is positive definite. 

Proof of Lemma 2.1. Remember that 

A = y T(x)F(x)T + V(x) + l l T var{Pi(x)} dp(x). 

For any fixed x, each term of the integrand as written above are nonnegative definite. In 

particular, for any y e IRm _ 1\{0}, 

y T { ^ ( x ) ^ ( x ) T } y >0 

and 

y T l l T y J^{F^x)} dp(x) > 0 

because of Assumption 2.1. As another consequence of Assumption 2.1; the diagonal ele­

ments of f V(x) d/i(x) are strictly positive, meaning that 

V(x) dfi(x) 
m—l 

= E 
i=i 

var{Pj(x)} dp,(x) > 0 

for any y € IRm ^{0}. Consequently, y T A y > 0, i.e. the Hessian of P, P(A) = A, is 

positive definite. _ 

12 
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Corollary 2.1 Equation (2.5) is satisfied. 

Proof of Corollary 2.1. In our implementation of the general Kuhn-Tucker conditions, 

hi(\) = — A i + 1 . Therefore, Hj(A) = V T V/i i (A) = 0 are null matrices. From Lemma 2.1, 

we know that P(A*) is positive definite, hence Equation (2.5) is satisfied. _ 

Applying the algorithm above will change negative weights to Aj + i = 0 for some i G Ic C 

{1,... ,m — 1} where Ic may be null. The set I contains the remaining indices and may 

also be null. 

Let J C {1,..., m — 1} be a possibly null subset of indices, then Ajtj is the sub-matrix 

of A for the rows i £ I and the columns j G J . We define the subvector Xj similarly. 

The. proposed algorithm involves solving reduced systems where the rows and columns 

for i G Ic are excluded. The system of equations that has to be solved then involves the 

matrix 

Ai = J [Ei{x)Fr(x)r + V/, /(s) + l /l7var{A(a;)}] d/x(s). 

For convenience of exposition, suppose that the order of appearance of the Aj in A are such 

that all the Aj that are "forced" to be zero are last. Then, with T(x) = 

write 
Tjc (x) we can 

A = " Fi(?) ' 
Tjc (x) Tjc (x) 

+ V(x) + llTvax{Fi(x)} 

Fiix^ix)7 + Vu{x) 
FIc(x)Jri(x)T 

A/./c 

Ajc jc 

Jrl(x)J7

Ic(x)r 

FIc{x)Jr

Ic(x)T + VIcjc(x) 

dp(x) 

+ llTvar{Fi(x)}d^(x) 

A/,/ 

A/c, 7 

In particular, Ai = AIJ and Ajc = AJCJC. Therefore, the last step of the proposed 

algorithm is to solve the system of equations AIXI — AIJXJ = ljb. 

13 
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Lemma 2.2 If Ic 0 and y e IRm :\{0} is any nonnegative vector with yj = 0 and 

ylC > 0, then V P ( A * ) T y > 0. 

Proof of Lemma 2.2. First note that the expression V F ( A * ) T y corresponds to the direc­

tional derivative of P at A* in the direction y. Next consider the unit vector ej G I R m _ 1 

whose ith element is 1. For i e Ic, the global unconstrained minimum of the convex func­

tion P is outside of the half-space Aj+i > 0. Therefore, P increases in the direction ej at 

A* and thus VP(A*) T e , > 0: 

Finally, the hypothesized vector y can be expressed as a linear combination of vectors 

{ei : i e Ic} with nonnegative coefficients j/j. Therefore, 

V P ( A * ) T y = J2 y iVP(A*) T e i > 0. _ 
ieic 

Although I = 0 or Ic = 0 may occur, the following proofs hold under these special cases. 

Lemma 2.3 The proposed algorithm solves the quadratic program 

minimize -P(A) 

subject to {Xi > 0, i = 2 , . . . , m). 

Proof of Lemma 2.3. To verify that the Kuhn-Tucker conditions are satisfied, first note that 

for i = 1,..., m — 1 the functions foj(A) = — Aj+i are continuous and twice differentiable. 

The. quadratic objective function P(X) shares the same smoothness properties. Moreover, 

Corollary 2.1 establishes that Equation (2.5) holds. 

At termination, the algorithm yields A^ > 0 and X]c = 0. The proposed solution A* is 

thus in the feasible set. It remains to show that there exists a p: satisfying the Kuhn-Tucker 

conditions stated earlier. We will show that /x = VP(A*) satisfies the required properties. 

Expression (2.4) can be written 

m—l 

VP(A*) + w ( - e i ) = VP(A*) -n = 0 
i = l 

14 
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and clearly holds for / i = VP(A*). The other Kuhn-Tucker conditions require that pi > 0 
-i * 

and pi A =0. 

/x > 0 

The last step of the algorithm before termination is to solve AIJXI = 1/6. Therefore, 

\ij = VP(A*)/ = [AA* -lb\j = A/ , /A/ + &ijcKc -1 /6 = 0 

since Xjc =0. 

In addition, we have from Lemma 2.2 that p,i = pJei = VP(A*)ei > 0 for all i G I c , 

and hence /LX7C > 0. Therefore, / i > 0. 
T A * = 0 

We can write the condition pJX* = 0 as /xjA/ + /LIJCA/C = 0. It is shown above that 

pij = 0, hence pb]\*j — 0. Moreover, the definition of the set I implies that X*jc = 0, thus 

PJCXJC = 0 and the condition is satisfied. 

Consequently, the solution found by the proposed algorithm is a strict relative minimum 

since it satisfies the sufficient Kuhn-Tucker conditions. _ 

Lemma 2.4 The solution found by the proposed algorithm satisfies the additional constraint 

2~̂ I=2 Ai < 1, or equivalently, Ai > 0. 

Proof of Lemma 2.4- The solution found by the algorithm satisfies A^/A]- = lib. Expanding 

AIJ in this equation yields 

J [^ /(x)^7(x)T + V / , / (x)4-l / l jTOr{p 1 (x)}] dp(x Xr = 1/6. 

By subtracting 61/1J A/ from both sides and multiplying the resulting equation by Xj on 
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the left, we have 

x; = 6A; T ( I 7 - l / i j A j ) 

= 6 A ; T I 7 (I - ijxi) = i (i - E ^ i ) (z A*+1) • 

By the same argument as in Lemma 2.1, the matrix on the left hand-side is positive definite, 

and hence the expression itself is positive. Since b and Aj are positive, we necessarily have 

1 — ^i+i > 0- H e n c e i the solution to the program in Lemma 2.3 always satisfies the 

additional constraint _3ie/ A * + 1 = YA=2 K < 1 (remember that X"jc = 0). This inequality 

is equivalent to > 0. 

Regarding the comment to the effect that A i cannot be negative for intermediate steps, 

consider the development above for such steps where A/ may still contain negative values. 

Note that the left-hand-side of the expression is still positive because of its positive defmite-

ness. Moreover, the right-hand-side can be written as A i ( l — Ai)b, meaning that A i ( l — A i ) 

is positive. Therefore, A i £ (0,1), except if I = 0 in which case A i = 1 and A = 0. _ 

Theorem 2.2 The proposed algorithm solves the quadratic program 

minimize -P(A)' 

m 

subject to {Xi > 0, i = 1,..., m} and ^ Aj = 1. 
i = l 

Proof of Theorem 2.2. The result follows from Lemmas 2.3 and 2.4. _ 

J {rrtx^ix)* + VItI(x)} dM(x) 

We now define MAMSE weights for specific types of data and study their properties. 
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Chapter 3 

MAMSE Weights for Univariate 

Data 

We define MAMSE weights for univariate data by using the empirical distribution function 

(EDF) based on the sample from each population as an estimate of their CDF. This choice 

yields nonparametric MAMSE weights with interesting asymptotic properties that are stud­

ied. In particular, the MAMSE-weighted mixture of empirical distributions converges to the 

target distribution and the maximum weighted likelihood estimate (MWLE) is a strongly 

consistent estimate of the true parameter when the MAMSE weights are used. Simulation 

studies evaluate the performance of the MWLE on finite samples. 

3.1 Notation and Review 

Let (fi, S(fi), P) be the sample space on which the random variables 

Xij{u) : fi IR, i = 1,..., m, j € IN 

are defined. The Xij are assumed to be independent with continuous distribution F;. 

We consider samples of nondecreasing sizes: for any positive integer k, the random 

variables {X^ : i = l , . . . , m , j — l , . . . ,^} are observed. Moreover, the sequences of 

sample sizes are such that —> oo as k —> oo. We do not require that the sample sizes of 

the other populations tend to oo, nor do we restrict the rate at which they increase. 

17 
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Let Fik(x) be the EDF based on the sample Xij, j = 1,..., n^, i.e. 

Fik{x) = — J^^i^jH <X}. 

The empirical measure dFik(x) allocates a weight 1/nik to each of the observations X^, 

j = l,...,nik. 

Under the assumption that data from each population are independent and identically 

distributed as is the case here, the empirical distribution is a nonparametric estimate of the 

CDF. Indeed, the Glivenko-Cantelli lemma (see e.g. Durrett (2005) page 58) states that 

sup 
X 

Fik(x) - Fi(x) 0 

almost surely as —* oo. 

For any fixed value of x, one may also note that riikFik(x) follows a Binomial distribution 

with parameters and Fi{x). Hence, the asymptotic normality of the EDF at fixed x 

follows from the central limit theorem. 

3.2 Definition of the MAMSE Weights 

For univariate data, we define the MAMSE weights based on the EDFs of the m populations. 

The MAMSE objective function assesses Y^L\ \Fik{x) as an estimate of F\k{x) in terms 

of bias and variance. As a preselection step, any sample whose range of values does not 

overlap with that of Population 1 will be discarded. For the remaining m samples, the 

MAMSE weights will be the vector A = [ A i , . . . , A m ] T that minimizes 

Pfc(A) = F\k{x) - ^2\iFik(x) + 
1=1 i=i 

Fik(x) {l - Fik(x)} dFlk(x) (3.1) 

under the constraints Aj > 0 and YLlLi Ai = 1. 
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Equation (3.1) is a special case of Equation (2.1) where dp(x) = dFik(x) and where 

the substitution 

v a r ^ z ) } = — Fik(x) { l - Fik(x)\ 

is based on the variance of the Binomial variable nikF{(x). 

The choice of dp,(x) = dFik(x) allows to integrate where the target distribution F\(x) 

has most of its mass. Other choices for p,(x) could be explored in the future. 

For u e fi and k <E IN, we denote the MAMSE weights by Xk(co) = [Aifc(w),..., Amfc(w)]T. 

The MAMSE weights are used to define an estimate of the distribution F\(x), 

the MAMSE-weighted EDF. 

3.3 Computing the M A M S E Weights 

The algorithm proposed in Section 2.4 applies to the MAMSE, weights for univariate data. 

To prove the convergence of the algorithm, it is sufficient to show that Assumption 2.1 is 

respected when the MAMSE weights are defined using Expression (3.1). 

Lemma 3.1 Let x be any point within the range of the data set from Population i, i.e. let 

m 

Gk(x) = _ j \k(u)Fik(x), 
i = i 

Then. 

Proof of Lemma 3.1. Note that 

0 < Fik{x) 
#{Xjj < x : j < nik] 

nik 

< 1 
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since the numerator is at least one and at most — 1, or otherwise x would be outside 

the specified interval. Consequently, 
•1 

var {Pik(x)} = —Fik{x) { l - Fik(x)} > 0 
nik 

Theorem 3.1 Assumption 2.1 is respected for the definition of MAMSE weights suggested 

in Section 3.2. . 

Proof of Theorem 3.1. The preprocessing step described in Section 3.2 requires that any 

sample considered overlaps with that of Population 1. In particular this means that at 

least one of the data points from Population 1 will fall within the range of the sample of 

Population i, meaning that 

j var [Pik{x)) dFx{x) = J ^~Fik(x) { l - Pik(x)} dP^x) 

nik T llk • ,  L  J  

J-l 

since all the terms in the sum are nonnegative and at least one must be positive by 

Lemma 3.1. • 

3.4 Structural Properties of the MAMSE Weights 

Choosing the empirical distribution function to define the MAMSE weights implies some 

invariance properties that are discussed next.. 

Theorem 3.2 The MAMSE weights are invariant to a strictly increasing transformation 

of the data. 

Proof of Theorem 3.2. Let Xij — g(Xij) where g is a strictly increasing function of the real 

line. Let Hi denote the cumulative distribution function of Yij. Then for all y, x = g(y) 
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and any i = 1,..., m 

H%k{y) = — J^MYij<y} = — J2M9(yij) < 9(V)} 
l k j=\ l k j=i 

= —Y,MXij<xY=Fik(x). 
'* 3 = 1 

Since P(X) is integrated with respect to dFik, a discrete measure, there is no Jacobian 

of transformation in the integral and replacing all Fik by the corresponding Hik will not 

change the expression P(X), nor its maximum. _ 

Theorem 3.3 The MAMSE weights do not depend on the parametric model f(x\8) used 

in the weighted likelihood. 

Proof of Theorem 3.3. The result follows immediately from the definition of MAMSE 

weights and the choice of the nonparametric empirical distribution functions as estimates 

of Fi. i 

Theorem 3.4 The MWLE based on MAMSE weights is invariant under .a one-to-one 

reparametrization of f(x\9) into h{x\r) = f{x\h{r)}, i.e. 6 is a MWLE iff f is a MWLE. 

Proof of Theorem 3.4. By Theorem 3.3, the MAMSE weights Xk(u) = [A l f c(w),..., Xmk(cj)]T 

are invariant to the choice of parametric model f(x\6). If r is such that 9 = h(r) and h is 

a one-to-one mapping of the parameter space, then r m a x is such that 

n n / {XiJWT)}x»M'n« < n n / { ^ ( w ) } ^ ^ 
i = l j = l i=l j=\ 

for all r if and only if #m a x = fa(rmax) is such that 

in nik • m nik 

n n fixyie)^'"" < n n f ^ ™ ^ ^ 
i = l j=l i=lj'.= l 
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for all 6. Hence, the MWLE possesses the same functional invariance property as the M L E 

if we use the MAMSE weights. _ 

3.5 Strong Uniform Convergence of the Weighted 

This section explores the large sample behavior of the MAMSE-weighted EDF. Note that 

asymptotic results for adaptive weights are obtained by Wang, van Eeden and Zidek (2004), 

but they do not apply here because their assumption that the weight allocated to Popu­

lation 1 tends to one as the sample size increases may not be satisfied (see Section 3.8 for 

more details on the asymptotic behavior of the MAMSE weights). 

The proof of uniform convergence of Gk(x) is built as a sequence of lemmas showing 

that Gk is close to F ^ , and ultimately that 

almost surely as k —» oo. 

Whether a sample is rejected in the preprocessing or not may vary with k and to. 

However, as the sample sizes increase, the probability that a sample is rejected tends to 

zero unless the domain of possible values of a Population does not overlap at all with that 

of Population 1, i.e. unless P(X\\ < Xn) = 0 or 1. Thus, without loss of generality, we 

suppose that no samples were excluded by the preprocessing. 

Lemma 3.2 For any to £ Q and k E IN; 

Empirical CDF 

sup Gk{x)-Fx(x) ^ 0 
x 
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Proof of Lemma 3.2. For any LO 6 fl and k G IN, consider 

I = Gk(x)-Flk(x) dFlk(x) 

< J | G f c ( _ ) - F l f c ( x ) f ^ 

By the definition of MAMSE weights, the expression above is minimized in A. The sub-

optimal choice of weights [ A i , . . . , A m ] = [1,0,...,0] cannot lead to a smaller value of I, 

i.e. 

I < |Fife(x) - Flk(x) 2+ —Flk(x)\l-Flk(x)\ nlk I J 
dFlk(x) 

This bound is tight since the optimal A could be arbitrarily close to [1,0,... ,0]T, making 

I arbitrarily close to the bound above. For instance, letting ri\k —> oo while the other njfc's 

are held constant will do the trick. _ 

Lemma 3.3 There exists f i i C fl with P(fli) = 1 such that for all LO G fl\ and any fixed 

k G IN, 

max 
X 

Gk{x) - Flk(x) < h max 
n\k j'e{i,...,n l f c} 

Gk{Xl:i(uj)} - Flk{Xlj(u;)} 

Proof of Lemma 3.3. Define 

fl0 = {u efl: 3i,i',j,f with ^ (i',f) and Xij(u)-=XVjl(u)} . 

Since the distributions Fj are continuous, P(flo) = 0. Fix k G IN and consider any fixed LO € 

fli = fi\Q: 0. Note that for i G {1 , . . . , m} and j G {1 , . . . , n^}, [minjj -Xjj(o;), maxjj Xij(u)\ 

is a compact set outside of which D{x) — \Gk(x) — Fifc(a;)| = 0. Let XQ be a value maximiz-
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ing the bounded function D(x). We treat two cases. 

Case 1: Gk(x0) < Flk(x0). 

Define x\ = max{Xij(uj) : j = 1,..., n\k, X\J(LU) < XQ}, the largest data point less than XQ 

found in Population 1. The step function F\k(x) is right-continuous, nondecreasing and has 

equal steps of size l/n\k at each observation XXj{ui). By the choice of x\, and the definition 

of the EDF, 

AfcOi) = FifcOo)-

The step function Gk(x) is nondecreasing, thus 

Gk(xi) < Gk(xQ). 

Consequently, 

\Gk(x0) - Fik(xQ)\ = Flk(xQ) - Gk(x0) < Flk(xi) - G f c(xi) 

< max 
je{i,..,Tiifc} 

Flk{Xl3{u)} - GkiXx^uj)} 

< h max 
n\k je{i,...,nlk} 

Flk{X1:j(uj)} - Gk{Xl3(Lu)} 

Case 2: GiAxn) > F 1 t .(x n ). 

Define x<i = min{Xij(u>) : j = 1,... ,nik, Xij(u) > XQ}, the smallest data point exceeding 

XQ found in Population 1. The step function F\k{x) is right-continuous, nondecreasing and 

has equal steps of size l/n\k at each observation Xij(to). Therefore, 

Since Gk(x) is nondecreasing, 

F\k{x2) = + Flk(x0). 
nik 

Gk(x2) > Gk(x0). 
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Consequently, 

\Gk(x0) - Flk(x0)\ = Gk(x0) - Fik(x0) 

< Gk(x2) - Flk(x2) + 
n\k 

< h max 
n\k ie{i,-,"u} 

FikiXijiu)} - GkiXijiu)} 

which completes the proof. 

Lemma 3.4 Let ak be a sequence of numbers such that limk^00ak

i/nik = 0. Then, there 

exists fii C fi with P(fii) = 1 such that for all e > 0, there exists a ko such that Vcu € fii 

ak max 
' j 'G{ l , . . . , n l f c } 

G^Xi^u)} - Fik{Xij{u)} <e 

for all k > ko. 

Proof of Lemma 3.4- Let e > 0. Consider an arbitrary but fixed u G fii = fi\fio where fio 

has the same definition as in the proof of Lemma 3.3. 

Suppose that Lemma 3.4 is false. Then there exists an infinite sequence ki such that for 

I G IN, 

(3.2) 

for some jctf £ {15 2,..., nike}, where parentheses in the index identify order statistics, 

i.e. Xi(j) is the jth smallest value among Xn,..., X i n i k t . -

Consider a fixed value of L For simplicity, we drop the index £ and revert to k and jo 

that are fixed. Note that 

1. Gk(x) is a nondecreasing function, 

2. Fik(x) is a right-continuous nondecreasing step function with equal jumps of l/nik. 

25 



Chapter 3. MAMSE Weights for Univariate Data 

We treat two cases: / 

Case 1: Gk{X1{jo)(u>)} > Flk{Xm(u)}. 

Note that 

Fik{X1(jo)(u)}<Gk{X1(jo)(u)}<l 

and hence, Fik{Xi^0^(u;)} < 1 — ek or inequality (3.2) would not hold. Consequently, 

Jo < nik ~ L€fcnifcJ and for i € {0,1, . . . , [efĉ ifcj}, we have 

Gk{Xi(j0-+i)(u})} > Gk{X1{jo)(u)}, 

Fik{X1{jo+i)(u>)} = Flk{X1{jo)(u)} + ^-
nlk 

and hence 

/v ^ A % % 
Gk{Xi(jo+i)(u})} - Fik{X1{jo+i)(u)} > Gk{X1{JQ)(u>)} - Fik{X1{jo){to)} - — > ek - —. 

nlk nik 

As a consequence, 

\Gk(x) - Fik(x)\2 dFik(x 

> 
nik 
— J2 \Gk{X1(jo+i)(u)} - Flk{X1{jo+i)(u)}\' 

1=0 

nik ^ V W < ^ n\k ^ 

Lefc™ifcJ(|_efcnifcJ + l)(2LefcnifcJ + 1) 

z 2 

6 r4 
> i / j _ _ _ _ _ v 

3 V nxk J 
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By Lemma 3.2, we thus have that 

1 f e k n l k - l \ 3
 < 1 / L e f c n l f c j \ 3

 < fn\k-l\ 1 < 1-

nik J 3 \ nXk J \ nik J 6 n i f c 6 n i fe 

V afc J - 2 afc - 2V3 ^ 

ak 2^3 „ 2 / 3 + 2 V 3 

e îfc n^{ 3 + 2:/3 ' n i f c 

a contradiction since a\/nik —> 0 and fc^ —> oo as £ —» oo, i.e. the left-hand term converges 

to 0. Therefore, 

ak max Gk{Xij(u)} - Fik{Xij(u)} < e 
je{o,...,nlk} 

Note that the bound does not depend on the choice of LO. 

Case 2: Gk{X1{jo)(u)} < Flk{X1(jo){u)}. 

Note that Fik{Xi^(uj)} > Gk{Xx^{u)} > 0. Since both functions are at least ek apart, 
Fik{Xi(jo)(uj)} > ek and thus j0 > [eknik\. Then for i 6 {0,1;..., LefcnifcJ}> we have 

GkiX^-^uj)} < Gk{X1{jo)(Lu)} 

Afc{A- l 0 - 0 _ 0 (w)} = Fik{X1(jo)(u)} 
nik 

and hence 

i i Flk{XHjo_i}(oj)} - Gfc{A-l0-0_0(a;)} > Flk{X1(jo)(u)} - Gk{X1(jo)(u)} - ^ - > ek 
nlk nlk 

Then, 

J \Gk(x) - Fik(x)\2 dFik(x) 

> 
nik 

- J2 I ^ ^ K J O - O H } - ^ ^ - * ) ^ ) } ! 2 

i=0 
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nik f£ V W n\k f^0 n\k ^ 

_ LefcnifcJ(LefcnifcJ + l)(2|_efcnlfcJ + 1) 

> i (Lefc"ifcJ 
3 V nifc 

By Lemma 3.2, we thus have that 

1 ( e k n l k - l \ 6 1 /Le f c n l f c jy < fn\k-l\ 1 < 1 

3 V nik J 3 V nlk J \ n\k J 6nifc 6n l f c 

/ \ 3 2 2/3 

* Ur - ' 1; ~2~ * 
ak 2^3 n2{3 + 21/3 

— - > - 2 7 5 — <=> a* — >2 1 / 3e, 
€nifc n ^ / 3

 + 2 i / 3 nit 

a contradiction since a\/nik —> 0 and —* oo as I —> oo, i.e. the left-hand term converges 

to 0. Therefore, 

ak max F u{^ij(w)}-G(t{Iij(w)}<e. 
j€{0, . . ,n l f c } 

Combining the two cases, we know that Ve > 0, 3k0 such that \/k> kQ, 

Gk{X1:i(uj)} ~ Flk{X1:J(Lj)}\ ak max 
j6{0, . . ,ni f c } 

< e. 

Since fcrj does not depend on to £ fl\ and P(fl\) = 1, the uniform convergence is almost 

sure. _ 

Lemma 3.5 There exists Q\ C fl with P(fli) = 1 such that for all e > 0, there exists a ko 

such that 
i - . . - . . i 

< e max 
X 

\Gk(x) - Flk(x) 

for all k > kQ with the same ko for all to £ fl\. 
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Proof of Lemma 3.5. Consider the set Vt\ defined in the proof of Lemma 3.3. For any fixed 

LO € Qi, 

max 
X 

Gk(x)-Flk(x) 
1 

< h max 
nxk je{i,...,nlk} 

By Lemma 3.4, Ve > 0, 3k\ such that VA: > kx, 

max 
j G { l , . . , n l f c } 

Gk{Xl3{u)} - Flk{Xlj{u)} < 

for all LO E Oi. Moreover, 3k2 such that VA; > k2, l/nxk < e/2. Therefore, for all 

k > ko — max(A;i, k2), we have 

0 < max 
X 

Gk(x) - Flk(x) e e 
^2 + 2 = e ' 

Theorem 3.5 The random variable 

sup 
X 

Gk(x)-F!(x) 

converges almost surely to 0. 

Proof of Theorem 3.5. By Lemma 3.5, Ve > 0, 3kx such that 

max 
X 

Gk(x) - Fik(x) < 

VA; > k\ and any to € fii with P(flx) — 1. The Glivenko-Cantelli theorem states that 

sup 
X 

F l f e ( x ) - f \ ( x ) 

almost surely as A; —> co. Hence, there exists Vt2 C 0, with P(fl2) = 1 such that Ve > 0 and 
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LU € 3̂ 2(0;) with 

sup 
x 

FikW-F^x) e 
< 2 

V7c > ^2(0;). Consider now fio = ^ 1 H ^2 and fco(w) = max{fci, ^(w)}. Note that we have 

•P(^o) > -P(^i) + -P(ri2) — 1 = 1. For any fixed u>, k and x, the inequality 

G f e(x) - #1 (x) < G f c(x) - Fi„(x) + F l f c(x) - Fi(s) 

holds, hence for any to G QQ and all > ko(uj) we have 

sup Gfc(x) - Fi(x)| < sup \Gk(x) - Fi f c(x)I + sup |Fifc(x) - Fi(x) 
X 

^ 2 + 2 = £ -

Therefore, supx Gk(x) — F\{x) converges almost surely to 0. 

C o r o l l a r y 3 . 1 Let Y\. be a sequence of random variables with distribution Gk(y), then Yk 

converge weakly to the variable Y with distribution Fi(y) as k —> 00 . 

Proof of Corollary 3.1. The result is clear from Theorem 3.5 and the definition of weak 

convergence. _ 

3.6 Weighted Strong Law of Large Numbers 

By the weak convergence shown in Corollary 3.1, 

Jg(x)dGk(x) -> Jg{x)dFx (3.3) 

as k —> 00 for functions g that respect some regularity conditions. Examples of such results 

can be found in Section 2.2.b of Durrett (2005) for instance. 
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The left-hand side of Expression (3.3) can be written as 

m Aifc(w) E 
i = l 

and is hence a form of weighted strong law of large numbers (WSLLN). 

In Section 3.7, we use the WSLLN to prove the consistency of the weighted likelihood 

with MAMSE weights. For that, we need a WSLLN that holds for an unbounded function 

g with some discontinuities. We prove the needed theorem in this section as it could not be 

located in the literature. 

Lemma 3.6 Consider any two distribution functions F and G from IR to [0,1] such that 

supx \F(x) — G(x)\ < e for some e > 0. Then, for any connected set A C IR, 

for all 8 > 0. Since 8 can be arbitrarily small, | dF(B) — dG(B)\ < 2e. The result holds for 

any combination of closed or open boundaries with minor changes to the proof. _ 

Theorem 3.6 Let g{x) be a function for which J \g(x) \ dF\(x) < oo. The function g(x) is 

continuous on IR except possibly on a finite set of point {d\,..., d_}. For each of populations 

2, . . . , m at least one of these two conditions hold 

1. the sample size is bounded: Vfc 6 IN, < Mj. 

dF(A) - dG(A)\ < 2e. 

Proof of Lemma 3.6. Let B = [a, b] C IR and define B$ = (a — 8, b}' for 8 > 0. Let 

e5 = | dF(B6) - dG(Bs)\ = \F(b) - F(a -8)- G{b) + G(a - S)\ 

< \F{b) - G(b)\ + \F(a -8)- G{a - 8)\ < 2e 

2. J\g(x)\dFi(x) < oo. 
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Further suppose that the sequences of sample sizes are non-decreasing with k for all popu­

lations. Then, 

Jg(x)dGk(x)- Jg(x)dF1(x) 0 

almost surely as k —> oo. 

Proof of Theorem 3.6. We show that for any e > 0, we can find a sequence of inequalities 

that imply that J g(x) dGk(x) — f g(x) dFi(x) < e for any large enough k. The inequalities 

come from truncating g and from approximating it by a step function. 

For t G IN, let Dt = nf=1(de - 2~l, de + 2^)°, Bt = [-t, t] n Dt and 

g(x) if x G Bt 

rt(x) = 
0 otherwise 

Since g{x) is continuous and Bt is a compact set, the image of Tt is bounded, say rt(x) G 

[Lt,Ut]. By the Heine-Cantor Theorem, Tt is uniformly continuous on Bt, i.e. V e T ] i > 0, 

35Tj > 0 such that 

Vxx,x2 G Bt, \xi - x2\ < 5T,t ==^ \rt{x\) - Tt(x2)\ < e T j t . 

Let eT ]t = 2 _ t and choose 0 < ST:t < 2~l accordingly. For s — 1,..., St, where St = \2t/6Ttt], 

let 

Ast ={~t+ (s - l)5Ttt, -t + s5T,t) n Bt. 

In the rare case where 2t/5T}t is an integer, we let Asttt = [2t — 8Ttt, 2t]. The sets Ast form 

a partition of the compact set Bt- Note that the choice of Dt and 5Ttt ensures that Ast 

are connected, with the harmless exception of Ast,t which could sometimes consist of two 

singletons. Define ht by 
St 

ht(x) ^/^bstTl-Astix) 
s=l 
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where 

1 if x G Ast 

bst = inf g(y) and TL-Ast(x) = 
y e A s t • 1 0 otherwise 

T h e n , by construction, sup^ \rt(x) — ht(x)\ < 2 * and 

g(x)dGk{x) - jg(x) dF^x) < Tx + T2 + T3 + T4 + T 5 (3.4)" 

where 

Jg(x)dGk(x) - jrt(x) dGk(x 

Jn(x)dGk(x)- J ht(x)dGk(x) 

Jht(x)dGk(x)- Jht(x)dFi{x) 

J htWdF^x)- J r t(x)dFi(x) 

r t (x)dF!(s)- Jg{x)dFl{x) 

Ti 

T2 

n 

T5 

We will now prove that for any e > 0 and w in a subset of fl with probability 1, we can 

choose 7_ such that the five terms above are less than e/5 for all k > A _ ( £ _ ) . 

T o begin, note that 

T4 = ht(x) - rt(x) dFi(x) < J \ht{x)-Tt(x)\dF1(x)<2-

by construction. T h e same bound applies for T2 and does not depend on k or to. 

B y Theorem 3.5, sup^. \Gk(x) — F\(x)\ converges almost surely to 0. Therefore, 3flg C fl 

with P(flo) = 1 such that for each to G flo and any t, 3A_,t with 

sup|Gfe(x) -Fi(a;)| < 
5 tmax(|U t| )|L t|)2 1+ 1 
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for all k > kUtf For any such k and u>, Lemma 3.6 implies that 

dGk(Ast) - dF^Ast) < 
2 

5tmax(|C/t|,|Lt|)2*+i 

for any s = 1 , . . . , St- Developing T 3 yields 

s t St 

T3 = j2b^dG^A^-J2b^dF^A^ 
St 

< J2\b^\- dGk(Ast) - dF^Ast) 

Therefore, 3t\ such that 2 - t < e/5 for all t > t\, i.e. T2, T 3 and T 4 are each bounded 

by e/5 tor any t>t\ and k > / 

We can write 

as t —> 00 since the integrand goes to 0 for each x € IR\{di,... , d_} by the dominated 

convergence theorem with bounding function |<?(x)|. The integrand does not converge to 0 

on { d i , . . . , d_}, but that set has measure 0. Therefore, there exists t2 such that T5 < e/5 

for all t > t2. 

Turning now to T\, we denote by I C { l , . . . ,m} the indices corresponding to the 

populations for which riik —> 00 as k —-> 00. By the strong law of large numbers, for any 

fixed t, there exists fi,^ C 0 with P(!i\ 4 ) = 1 such that for all u € £\t , 

T 5 = / 5 (x ) l S c (x)dF 1 (x) < / | 5 (x) | l B c(x)dF 1 (x) - 0 
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as k —> oo. Consider a fixed 

u> € Q,i = {Lo\Xij(u) — dt for some i,j,£}C D I n fiM 
iei,te\N 

The intersection is over a countable number of sets of probability 1, hence P(fii) = 1. For 

any such to G f i i , T\ is developed as 

jg{x)TLBc(x)&Gk{x) < J |_(x)|lB?(aO dG fc(x) 

E ^ E i f l f {^«H} 
2=1 J = l 

^ E — E \9{XijH}\lB?{*i>)}-. 
2 = 1 J = l 

Since LO is fixed, 3£* such that TLB*{Xij(u>)} = 0, V i G I 0 , j = 1,..., 7 1 ^ , < > C - F O R 

i £ I, the dominated convergence theorem says that there exists i * such that 

|_(x)|lBf(aOdFi(x) < 
10m 

for all t>t*. Choose t > £3 = maxi6/1*. Since u G f i i , B&i ,^ such that for all k > kitt:LJ, 

— 'zZ\9{Xij(u)}\TLBc{Xij(Lo)} < / |_(x)|l_c(x)dFiv 
lfc j=i J 

x) H < . 
10m 5m 

Therefore, V i > max(i3 , t_) , there exists fc* t = maxj e/ fci^u, such that 

•T, = 5(x)dG f c(x) - 1 r4(x) dGk(i < 

for all k>klt. 

In conclusion, for any u; G fio H f i i and any e •> 0, we can choose £_ = max(ti, <2, *3, C) 
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that yields inequalities showing that 

g(x)dGk(x)- / _(x)dFi(x) < e 

for all k > kuitu) = max(fc_itw, fc* tu). In other words, the left hand side of Expression (3.4). 

converges to 0 for any u G fio PI fii with P(f io f l fii) = 1, i.e. that expression converges 

almost surely to 0. _ 

C o r o l l a r y 3 . 2 ( W e i g h t e d S t r o n g L a w o f L a r g e N u m b e r s ) Let Xi denote a variable 

with distribution Fi. Suppose E\Xi\ < oo for i'= 1,... , m, then 

almost surely as k —> oo. 

Proof of Corollary 3.2. Use Theorem 5 with g(x) = x. _ 

Theorem 3.6 is useful for proving the consistency of the M W L E by extending the proof 

of Wald (1949). This extension is given next. 

3.7 Strong Consistency of the Maximum Weighted 

Likelihood Estimate 

In this section, we adapt the work of Wald (1949) to prove that the M W L E obtained with 

MAMSE weights is a strongly consistent estimate. For easier reference to his original work, 

the numbering of Wald is noted with the prefix W. 
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Wald's Assumptions 

The assumptions of Wald (1949) are reproduced below and adapted as required to extend 

his proof to the MWLE. 

Let F{x\9) be a parametric family of distributions where 6 is an element of 8, a closed 

subset of a finite dimensional Cartesian space. We assume that 36o G 0 such that F{X\9Q) = 

Fi(x). Wald (1949) does not assume that F(x\9o) is continuous in x, but we do and denote 

its corresponding density function by f(x\9o). 

The following notation is used by Wald (1949): 

V9ee,p>0, f(x,9,p) = sup f(x\9'), f*(x,9,p) = max{/(x, 0, p), 1}, ' 
\e-6'\<P 

Vr > 0, (f)(x, r) = sup f(x\9), <fi*(x, r) = max{<f)(x, r), 1}. 
|0|>r 

A s s u m p t i o n 3 . 1 ( W I ) For all 9 G 0, F(x\9) is absolutely continuous for all x. There­

fore, F(x\9) admits a density function f(x\9). 

A s s u m p t i o n 3 . 2 ( W 2 ) For sufficiently small p and sufficiently large r, the expected values 

J\ogf*(x,9,p)dFi(x) and f log<f>*(x,r) dF\(x) are finite. 

A s s u m p t i o n 3 . 3 ( W 3 ) 7/limj_> o o0j = 9, then l im^oo f(x\6j) = f{x\9). 

A s s u m p t i o n 3 . 4 ( W 4 ) If 9\ ^ 9 Q , then F(X\6Q) ^ F{x\9\) for at least one x. 

A s s u m p t i o n 3 . 5 ( W 5 ) Iflimi^^ \9i\ = oo, then limj^oo f{x\9i) = 0. 

A s s u m p t i o n 3 . 6 ( W 6 ) / | log f{x\90) \ dFi(x) < oo for i = 1 , m . 

A s s u m p t i o n 3 . 7 ( W 7 ) The parameter space 0 is a closed subset of a finite-dimensional 

Cartesian space. 

A s s u m p t i o n 3 . 8 ( W 8 ) The functions f(x,9,p) and cp(x,r) are measurable for any 9, p 

and r. 
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Assumption 3.9 The functions f(x\9o), f(x,9,p) and <j>(x,r) are continuous except pos­

sibly on a finite set of points {di,... The set of discontinuities may depend on 9, p 

or r, but must be finite for any fixed values of these parameters. 

Assumptions WI to W8 are from Wald (1949); only Assumption W6 is modified to cover 

the m populations of our paradigm. Assumption 3.9 is required to ensure that Theorem 3.6 

applies. Note that these assumptions are mostly concerned with the family of distributions 

F(x\9) (the model), rather than with the true distribution of the data. 

Lemmas 3.10 and 3.11 are useful for determining if the family of distributions F(x\9) 

satisfies Assumption 3.9. 

Wald's Lemmas 

Wald's lemmas do not need to be modified. We state them for completeness, but do not 

reproduce the proofs provided in Wald (1949). 

For expectations, the following convention is adopted. Let U be a random variable. The 

expected value of U exists if E{max(f/, 0)} < oo. If E{max(U, 0)} is finite but E{min(U, 0)} 

is not, we say that E{mm(U, 0)} = —oo. 

Let a generic X represent a random variable with distribution Fi(x) = F(X\9Q). 

Lemma 3.7 (WI) For any 9 ^ 9Q, we have Elog f(X\9) < Elog f{X\90). 

Lemma 3.8 (W2) lim E log f(X, 9, p) = E log f(X\9). 
p->0 

Lemma 3.9 (W3) The equation lim r_ > o oElog0(A r ,r) = -oo holds. 

The next two lemmas are useful in determining if Assumption 3.9 is satisfied. 

Lemma 3.10 Let f(x\9) be continuous for all 9 G © and x G NXl, a neighborhood of' x\. 

Then for 9Q and p fixed, f(x,8o,p) is continuous at x\. 
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Proof of Lemma 3.10. Suppose that f(x,6o,p) has a discontinuity at x — x\. Then, there 

exists e > 0 such that for all 5 > 0, there exists x2 with \xx — x2\ < 5 but 

\f(xu80,p)-f(x2;90,p)\ > e . (3.5) 

Let A c NXl be a compact set around x\. Let B = {6 : \0 — 9Q\ < p). The set 

A x B is compact and hence f(x\9) is uniformly continuous on that domain by Heine-

Borel. Therefore, for the e chosen above, there exists a Si > 0 such that x\,x2 e A and 

\x\ — x2\ < 5i imply 

\f(Xl\9)-f(x2\9)\<e/2 (3.6) 

for all 9 G B. Choose such an x2 and define 

9\ = arg max fixAO) and • 92 = arg max f(x2\9). 
\e-e0\<P \e-e0\<P 

The maxima are attained since A x B is compact and /(x|#) continuous in 6. Therefore, 

f(xi,90,p) = / (x i |0 i ) and f{x2,e0,p) = f(x2\62). j (3.7) 

Consider the following two cases. 

Case 1: f f s i j f l i ) > f f a ^ l ^ ) 

By Equations (3.5) and (3.7), /(xi |0i) > f(x2\92) + e. Furthermore, inequality (3.6) implies 

that 

f(x2\9l)>f(x1\91)-€->f(x2\B2) + ^, 

a contradiction with the definition of 92. 
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Case 2: f(xi\9i) < f{x2\92) 

By Equations (3.5) and (3.7), f(xi\9\) < f(x2\92) — e. Inequality (3.6) yields 

f{xi\e2)> f{x2\d2)-e->f{xl\el)+€-

a contradiction with the definition of 9\. 

Therefore, we conclude that f(x,9o,p) is continuous at x\. _ 

By Lemma 3.10, if f(x\8) is continuous in x and 9, then f(x,9o,p) is continuous in x 

for any fixed 9Q and p. 

Before introducing Lemma 3.11, define 

the modulus of continuity of the function g(x) around XQ. Note that when it exists, 

Proof of Lemma 3.11. Fix r > 0. Since <f>{x,r) is discontinuous at XQ\ there exists e > 0 

such that for any 5 > 0, 3x\ such that \XQ — xi\ < 8 but 

iog(5,x0)= sup \g(x)-g(x0)\ 
\x—xo\<6 

s'(*o)|. 

Lemma 3.11 Suppose that f(x\9) is continuous in 9 and that (f)(x,r) has. a discontinuity 

at XQ. Then, there exists e > 0 such that Uf^.^(S, XQ) > e for any 5 > 0 and some 9. 

\<p(xQ,r) - <p{xi,r )\>2e. (3.8) 

For any fixed S and x\, consider the following two cases. 
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Case 1: d>(xn, r) > <b(x-\, r) + le. 

By the continuity of f(x\6), it is possible to choose \6Q\ > r such that /(xo|#o) is arbitrarily 

close to (f>(xQ,r), say less than e apart, i.e. 

f(xo\0o) ^ <Pixo,r) - e. 

For that possibly suboptimal Oo, (f)(xiir) > f(xi\8o), hence 

f(xo\0o) ></>(x0,r) - e > ^ (x i . r ) > /(xi|0o) 

meaning that 

|/(xo|»o) - /(x i|0 o )| > /(*o|0o) - /(asil^o) > <K*o,r) - e - <f>(Xl,r) > e 

because of Equation 3.8. Therefore, Uf^g0^(5,xo) > e. 

Case 2: </>(xc r ) < 4>{x\,r) — 2e. 

The continuity of /(x|#) allows us to choose |#i| > r such that is close to <j)(xi,r), 

say less than e apart, i.e. 

f(xi\di) >4>{xi,r) - e. ) 

Then, by the definition of (j>, we have (p(xo,r) > f(xo\9\), hence 

f{x1\e1)>(f)(x1,r)-e>^(xo,r)>f(x0\9l). 

Therefore, 

\f{xi\9i) - /(xo|^i)| > / (x i l^ i ) - /(aroint) > </>(xur) - e - <f>(x0,r)> e 

by Equation 3.8. Therefore, ujf'.\gl)(5,xo) > e. 
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By combining both cases, we can conclude that for all 5 > 0, there exists a 9 such that 

cOf(.\e){S,x0) > e u 

Note that if g(x) is continuous at XQ, lims-toujg(5,xo) = 0. Having a modulus of conti­

nuity u>y(.|0)(5, xo) bounded below is akin to having an infinite derivative df(x\9)/dx at xo-

This occurs when: 

• there is a discontinuity in the function f(x\8) at xo, 

• as 9 —* oo, the slope of f(x\9) around xo keeps increasing. 

Therefore, discontinuities in (f>(x,r) will occur if f(x\9) is discontinuous itself, or if f(x\8) 

has a peak that can become arbitrarily steep (i.e. its slope is not bounded for a fixed x as 

9 varies). The main result of this paper uses Theorem 3.6 which allows a finite number of 

discontinuities. Therefore, as long as f(x\9) is a continuous model such that the set • 

{x : for an arbitrarily large r > 0,Uf(.\g)(5,x) is arbitrarily large for some |0| > r) 

= {x : f(x\9) has an arbitrarily steep peak at x for some \9\ > r} 

is empty or made up of a finite number of singletons, Assumption 3.9 will hold. 

Note the effect of the constraint \9\ > r. Consider for instance the normal model with 

unknown mean and variance. As cr2 —* 0, the normal density will have an arbitrarily steep 

peak close to fi. However, \[p,,cr2]T| > r implies that there is a lower bound for a 2 , hence 

the steepness of the peak is bounded. Assumption 3.9 is satisfied under that model. 

M a i n Resul t 

We now turn to the main results of this section. 
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Theorem 3.7 (Theorem WI) Let T be any closed subset of Q that does not contain 9Q. 

Then, 
m nik 

supTT TT f{xij(u)\e}Xik^nik'ntk 

= ol =1. 

nn/^Hi^} ( w ) n i f c / n i f c 

i=li=i 

Proof of Theorem 3.7. Let X denote a random variable with distribution F\(x) = F(X\9Q) 

and let ro be a positive number chosen such that 

E{log<t>(X,r0)}<E{logf(X\90)}. (3.9) 

The existence of such an ro follows from Lemma 3.9 and Assumption 3.6. Then, 71 — {9 : 

^ < r o } n T i s a compact set since it is a closed and bounded subset of a finite-dimensional 

Cartesian space. With each element 9 € 71, we associate a positive value pg such that 

E{logf(X,9,p9)} < E{log/(X|0 o )}. (3.10) 

The existence of such pg follows from Lemma 3.7 and 3.8. Let S(9, p) denote the sphere 

with center 9 and radius p. The spheres {S(9,pg)} form a covering of the compact 71, 

hence there exists a finite sub-covering. Let 6\,..., 9h € 71 such that 71 c Us=i S(9S, pgs). 

Clearly, 

m nik 

o < suPnnw>)i^Aifc {w)nxk/nik 

m nik 
h m nik 

^ Enn/^(w)'^'^}Aifc(a,)nifc/nifc + n n . ^ M ' ^ ^ ^ " 1 * ^ -
s=li=lj=l i=lj=l 
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Therefore, to prove Theorem 3.7 if suffices to show that 

m nik 

n n / { ^ H . ^ . ^ . } A i f c ( w ) n i t / n i f c 

n n / { ^ ( ^ ) i « o } A t t M n u / B i k 

t=ij=i 

lim = 0 = 1 

for s — 1 , . . . , h and that 

m nik 

^"srss : 

ni i / { ^ i H i ^ } A < f c ( " ) n i f c / T i i f c 

i=i j=i 

= 0 =1. 

The above equations can be rewritten as 

lim nik 
k—»oo 

E E ¥ ^ 1 O § / { ^ H A , ^ } 
i=i j=i 

nik 
\ogf{Xijiu)\eQ} = — oo 

= p lim / logf(x,9s,pga)dGk(x) 

log/(x|^o)dGib(x) } = -oo = 1 

(3.11) 

for s = 1,..., /i and 

lim nik 
k—»oo L i = l i = l 

Ajfc(^) 

nik- l o g / { A - y H | 0 o } = - c o (3.12) 
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= P lim nxk{ j \og<t>(x,r0)dGk{x) 
k-*oo 

- \ogf{x\90)dGk(x) = -oo = 1 

respectively. Assumptions 3.6 and 3.9 insure that Theorem 3.6 applies to the integrals 

above, each of these converging almost surely to 

l o g / C z A ^ J d F i O r ) , J l o g ^ ( x , r 0 ) d F 1 ( x ) or J log f(x\90) dFi(x) 

Combining this result with Equations (3.10) and (3.9), we have that (3.11) and (3.12) hold. 

Hence the proof of Theorem 3.7 is complete. • 

Theorem 3.8 (Theorem W2) Let 9k(u>) be a sequence of random variables such that 

there exists a positive constant c with 

m nik 

TJ TJ / { ^ ( w ) | 4 M } A < f c ( w ) n i f c / n i f c 

i=i j=\ > c> 0 (3.13) 
JJJJfiXijito^o}^^^ 
i=Vj=l 

for all k € IN and all u> G fl. Then 

p{ lim 6k(u>) = 60\ = 1. 

Proof of Theorem 3.8. Let e > 0 and consider the values of 9k(to) as k goes to infinity. 

Suppose that 9( is a limit point away from #o, such that \9g — 9Q\ > e. Then, 

m nik 

sup nn/{Xij(w)|0} A i f c ( w ) n i f c / n i f c 

\0-0o\>et=lf=l 

m riik 

> c> 0 

i=ij=i 
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infinitely often. By Theorem 3.7, this event has probability 0 even with e arbitrarily small. 

Therefore, 

for all e > 0. • 

Corollary 3.3 (Corollary WI) The MWLE is a strongly consistent estimate of 9Q. 

Proof of Corollary 3.3. The M W L E clearly satisfies Equation (3.13) with c = 1 because 

We study the asymptotic behavior of the MAMSE weights as k —> oo and its consequences 

in constructing a weighted central limit theorem. Let 

where = indicates that the functions are equal for all x. Clearly, £ is a nonempty convex 

set with [1,0,... ,0] T € C. Moreover, if we consider the elements of £ as elements of the 

normed space ([0, l ] m , || • ||) where || • || stands for the Euclidean norm, then Cc is an open 

set. 

We will show that for k € IN, all accumulation points of the MAMSE weights will be in 

the set C. In other words, the MAMSE weights can only converge to vectors that define a 

mixture distribution identical to the target distribution. 

Theorem 3.9 Suppose that C° ^ 0 and let A* € CP', then for any e > 0, there exists a set 

flo of probability 1 such that 

\\X* — Ajfc(w)|| > e i.o. 

for all u> & fl® and hence the MAMSE weights do not converge to X* as k —> oo. 

0k(to) is chosen to maximize the numerator of (3.13). 

3.8 Asymptotic Behavior of the MAMSE Weights 
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Proof of Theorem 3.9. The Glivenko-Cantelli lemma shows that supx \Fik(x) — Fi(x)\ —> 0 

almost surely as k —> oo. Let fij be the set of probability 1 where the convergence occurs. 

The summand and the integrand of the following expressions are bounded by 1, thus 

i nik 

— E Y^\iFi{Xij(Lo)} - Fi{Xij{u)} 
Li=l 

E ^XiF^Xn) - Fi(Xn 

. i = i 

almost surely as k —> oo by the strong law of large numbers. Let Q' be the set of probability 1 

on which the convergence occurs. Note that the expectation in the expression above is taken 

over the random variable Xn which follows distribution Fi. 

Consider now the set QQ = ft' C\ D i = i &i a n d let u G f2o be any fixed element of that set. 

Note that by construction P(fio) — L 

Let P(x, r) denote the open ball of radius r centered at x. Since is an open set, any 

small enough e > 0 will be such that B(X*,e) D C = 0. Then, consider Pfc(A) as defined in 

Equation (3.1) and for any A € P(A*,e), 

Pfc(A) > dPi f c(x) E XiFik{x) ~ Elk(x) 
1 

m 

i = i 

m 
J2^iFi{x)- Pi(x) 

l 

m m 

^2\iFik(x) -^2\iFi(x 

Fi{x) - Flk(x)\ } dFlk(x) 

> 
-< nik 

— E 
nlk f-f 

i = l 

m 

F^-Fuix) } dFlk{x 

j=l Li=l 
Y/^iFi{Xlj(u)}-F1{Xlj(u)} 

J |E A ?I^( 3 x) - Fi(x) + Flk(x) - Fi{x)\ } dFlk(x) 
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* — E 
T i n . i—* 

Y_ A?sup Fik(x)-Fi(x 
i=i 
m 

J2xiFi(xn)-Fi(Xn) 

— sup 
x 

Fxk[x)-Fx{x) 

. i = i 
K > 0 

for a large enough k. 

The fact that A G £ c implies that YA=I XiFi(x) ^ Fi(x) for some x where F\(x) is not 

flat, i.e. some x with positive probability, thus 

E J^XiF^Xu) - FxiXn) 
. i = i 

> 0. 

Therefore, there exist ko(u) and K > 0 such that Pfc(A) > i f for all k > ko(u). 

However, Lemma 3.2 shows that Pk{Xk(u)} —> 0 as A; —> oo. Therefore, Afc(w) € JB(A*,e) 

at most finitely many times. This is true of any A* G Cc, meaning that for all LO e flo, 

\\X* — Afe(w)|| > e at most finitely many times. _ 

Corollary 3.4 Consider the sequence of MAMSE weights Xk(u>) for LO fixed and k G IN. 

Let A be an accumulation point of the sequence Xk(u>), then A G £ . 

Proof of Corollary 3.4- By Theorem 3.9, the neighborhood of any A G Cc can be visited at 

most finitely many times. Hence, any accumulation point belongs to C. ' • 

Corollary 3.5 If C is a singleton, then C = {[1,0,..., 0]T} and 

A f c (u ; )«>[ l ,0 , . . . ,0] T 

almost surely as k —> oo. 

Proof of Corollary 3.5. The vector .[1,0,... ,0] T is always in L. Therefore, C will be a 
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singleton only when C = {[1,0,..., 0]T}. Let e > 0 and let 

^=[0 , i r \B([ l ,0 , . . . ,0 ] T , e ) 

where B(x,r) denote the open ball of radius r centered at x. The set A is closed and 

bounded thus compact. 

Let B(x,r) be the closed ball of radius r centered at x . Consider the sets £ (x , e/2) 

for x € [0, l ] m ; they form a covering of A. Since A is a compact set, there exist a finite 

sub-covering with balls centered at x s for s — 1,..., S. 

Consider now the sequence of MAMSE weights \k{u)- By Theorem 3.9, for every fixed 

to £ fl\ with P(Qi) = 1, any of the balls B ( x s , e / 2 ) will contain at most finitely many 

A f c ( o i ) , i.e. 
s 

A,t(w) € (J B(x s,e/2) finitely many times. (3-14) 
s=l 

Consequently, 

. A fc(cu) € | | J S ( x S ) e / 2 ) | C B ( [ 1 , 0 , . . , 0 ] T , £ ) Lo. (3.15) 

Expressions (3.14) and (3.15) imply that if it exists, the limit of A fc ( w ) is in the set 

B([l, 0,..., 0]T, e). Since e can be arbitrarily small and since the space is complete, we 

conclude that Afc ( w ) —> [1,0,..., 0]T almost surely. _ 

In the case where £ is not a singleton, the MAMSE weights do not seem to converge 

to any particular point. Corollary 3.4 indicates that any accumulation point will be in C, 

but it seems that the neighborhood of many points in C is visited infinitely often. 

Describing the limit of the MAMSE weights in a general case seems rather tedious. 

In particular, the speeds at which the sample sizes increase in each population as well as 

the shape of each Fjfc(x) compared to -Fife (a;) will have an influence on the behavior of the 
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weights. The precise description thereof is left to future work. 

3.9 Issues for Asymptotic Normality 

In all simulations performed, we have not found any evidence showing that a MAMSE-

weighted sum of random variables is not asymptotically normal. A formal proof showing 

the asymptotic distribution of such a sum remains however to be found. 

Even in the realistic case where no mixture of the populations are exactly identical to the 

population of interest, i.e. C = {[1,0,.... ,0]T}, we cannot develop a central limit theorem 

for a MAMSE-weighted sum of variables without studying the speed of convergence of the 

MAMSE weights. 

Let pi — E(A'ji) and of" = var(Xii). Under reasonable assumptions, one could hope to 

show that the expression 

converges weakly to a Normal variable with mean 0. 

To simplify things, suppose that the sample sizes from all populations increase at the 

same rate, that is [nik, «2fe , • • • , nmk]/nik —• [<*i, • • •, cxm] as k —> oo with 0 < ctj < oo. 

converges almost surely to 0 by the strong law of large numbers and that y/n~ik~Bik converges 

weakly to a Normal distribution with mean 0 and variance of/o^ by the central limit 

theorem. However, developing Bk yields 

(3.16) 

Note that 

m Aife(w) 
Y^(Xij - Pi) + Z~2 Xikiu)(pi ~ Ml) 
3=1 i=l 
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m m 
= \k(u)Bik + ̂ _ \ik(u)(m - fii). 

1=1 t=l 

Recall that Bik —> 0 and that Corollary 3.2 shows that Bk —> 0. Consequently, the ex­

pression 2~TJi_i Ajjfc(u;) (fii — /ii) converges to 0 as well, but we do not know the rate of that 

convergence. If that rate is slower than l/y/nik, Expression (3.16) will not converge to a 

Normal distribution even if the MAMSE weights converge almost surely to a fixed value. 

To prove the asymptotic normality of (3.16) using the strategy sketched above, we need 

to show that the speed of convergence of the MAMSE weights is fast enough. This condition 

corresponds to the second half of Assumption 2.5 of Wang, van Eeden and Zidek (2004) 

who require the same rate of convergence, l/y/nik, for the weights. 

Note that the classical proof of asymptotic normality uses the moment generating func­

tion or the characteristic function, but it does not apply here because each datum is multi­

plied by a data-based weight. As a consequence, the terms \k(yj)Xij are not independent. 

The study of the asymptotic distribution of expressions similar to (3.16) are left to future 

work. Any significant advances will probably come only after a thorough investigation of 

the speed of convergence of the MAMSE weights. 

3.10 Simulations 

In this section, the finite-sample performance of the M W L E with MAMSE weights is eval­

uated through simulations. Different cases of interest are considered. 

The number of repetitions for each simulation study varies from 10000 to 40000. We 

used the bootstrap on a pilot simulation to evaluate the variability of the values presented 

throughout this section. Unless otherwise stated, the standard deviation of the error due 

to simulation is less than one unit of the last digit shown. 
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3.10.1 Two Normal Distributions 

We first explore the merits of our weights for. the ubiquitous Normal distribution. Samples 

of equal sizes n are drawn from 

Pop. 1 : A/"(0,1), Pop. 2 : Af(A,.l) 

for different values of A, each scenario being repeated 10000 times. Table 3.1 shows the 

average MAMSE weights under different circumstances. 

Average Values of 100Ai 
n = 5 10 15 20 25 50 100 200 1000 10000 

A = 0 72 71 72 71 71 72 72 72 72 72 
0.001 72 71 71 72 72 72 72 71 72 72 
0.01 72 72 71 72 72 72 72 72 72 74 
0.10 72 72 73 73 73 73 74 76 86 98 
0.25 74 74 75 76 76 79 83 88 97 100 
0.50 77 79 80 82 83 88 93 96 99 100 
0.75 80 83 86 88 89 94 97 98 100 100 
1.00 84 87 90 92 93 96 98 99 100 100 
1.50 89 92 94 95 96 98 99 99 100 100 

' 2.00 93 94 96 97 97 99 99 100 100 100 

Table 3.1: Average MAMSE weights for Population 1 when equal samples of size n are 
drawn from Normal distributions with unit variance and means 0 and A respectively. The 
results are averages over 10000 replicates. 

From Table 3.1, we notice that the average weight of Population 1 does not seem to 

go below 0.7 for these scenarios. As n increases, the weight of Population 1 approaches 1, 

hence the MAMSE weights detect that the distributions are different and ultimately discard 

Population 2. Note that this convergence to 1 does not seem to occur for A = 0 and seems 

very slow when A is tiny. The average weight for Population 1 increases as well when the 

discrepancy between the populations increases while n is kept fixed. 

Table 3.2 shows the performance obtained for the MWLE with MAMSE weights when 

compared to the MLE. The ratio of the mean squared errors, 100 MSE(MLE)/MSE(MWLE) 
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is shown; a value greater than 100 meaning that the MWLE is preferable. This ratio is akin 

to the relative efficiency of the MLE with respect to the MWLE. 

Efficiency of the MWLE 
n = 5 10 15 20 25 50 100 200 1000 10000 

A = 0 146 145 144 144 143 143 144 144 144 143 
0.001 . 147 : 146 145 144 143 143 142 143 143 144 
0.01 146 146 145 144 143 143 144 143 141 127 
0.10 143 143 142 140 139 135 128 118 89 94 
0.25 .139 134 131 125 123 110 96 87 91 99 
0.50 127 117 108' 104 97 88 88 90 97 100 
0.75 114 103 95 91 89 87 91 95 99 100 
1.00 103 94 90 88 88 90 94 97 99 100 
1.50 89 88 89 91 91 94 98 98 100 100 
2.00 84 87 91 92 93 96 98 99 100 100 

Table 3.2: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE). Samples of 
equal size n are simulated from Normal distributions with unit variance and means 0 and 
A respectively. The results are averaged over 10000 replicates. 

The MWLE performs better than the M L E for small n and A. When n and A increase, 

the methods' performances are eventually equivalent. For the cases in between however, 

the M L E is a better choice than the MWLE. Fortunately, the loss (at most 16%) seems to 

be smaller than the potential gain (up to 47%). When the two populations are identical, 

a steady improvement of about 43% is observed. Note that we cannot expect to improve 

uniformly over the M L E since the mean is an admissible estimator. 

The weighted likelihood could be especially useful in situations where a large population 

is available to support a few observations from the population of interest. For the next sim­

ulation, 40000 replicates of each scenario are produced with the same Normal distributions 

as before, but with samples of size n and lOn for Population 1 and 2 respectively. Table 3.3 

shows the average weight allocated to Population 1; Table 3.4 shows the relative efficiency 

of the methods as measured by 100 MSE(MLE)/MSE(MWLE). 

The general behavior of the weights is similar to that in the previous simulation, except 

that their minimal average value is below 0.5 this time around. As a consequence of its 
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Average Values of lOOAi 
n = 5 10 15 20 25 50 100 200 

A = 0 51 50 49 49 49 49 49 48 
0.001 51 50 49 49 49 49 49 48 
0.01 52 50 50 49 49 49 49 49 
0.10 54 53 52 53 53 54 57 62 
0.25 58 59 60 61 62 69 78 86 
0.50 66 70 73 76 79 87 93 96 
0.75 74 79 83 86 88 94 97 98 
1.00 80 86 89 91 93 96 98 99 
1.50 87 92 94 95 96 98 99 99 
2.00 91 94 96 97 97 99 99 100 

Table 3.3: Average MAMSE weights for. Population 1 when samples of size n and lOn are 
drawn from Normal distributions with unit variance and means 0 and A respectively. The 
results are averages over 40000 replicates. 

larger size, the sample from Population 2 gets a heavier weight. 

It appears that a larger Population 2 magnifies the gains or losses observed previously. 

Fortunately however, the magnitude of the further improvements seem to exceed that of 

the- extra losses. 

Note that the MAMSE weights are invariant to a common transformation of the data 

in all populations. Therefore, simulation results would be identical (less simulation error) 

for Normal populations with variance a2 and with means 0 and A c respectively. 

Overall, the MWLE works very well under the suggested scenarios. 

3.10.2 Complementary Populations 

We explained in Section 2.2 how the likelihood weights can be seen as mixing probabilities. 

Can the MAMSE weights detect and exploit the fact that Population 1 has the same 

distribution as a mixture of some of the other populations? Would the quality of the 

inference then be improved? 
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Efficiency of the M W L E 
n = 5 10 15 20 25 50 100 200 

A = 0 223 223 223 222 222 221 222 221 
0.001 223 225 223 221 222 223 221 220 
0.01 223 222 222 220 221 221 220 218 
0.10 216 209 203 197 191 169 142 113 
0.25 187 165 147 135 125 100 83 78 
0.50 139 111 97 90 85 79 83 89 
0.75 111 91 85 82 82 85 90 94 
1.00 98 85 84 83 85 90 94 97 
1.50 88 86 88 89 90 94 97 98 
2.00 86 89 91 92 93 96 98 99 

Table 3.4: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE). Samples of 
sizes n and lOn are simulated from Normal distributions with unit variance and means 0 
and A respectively. The results are averaged over 40000 replicates. 

Pseudo-random samples of equal sizes n are drawn from the distributions 

Pop. 1 : jV(0,1), Pop. 2 : \jV(0,1)|, Pop. 3 : -\j\f(0,1)| 

where | • | denotes absolute values. Hence Population 2 has a Half-Normal distribution and 

Population 3 follows the complementary distribution. 

We consider different sample sizes, each scenario being repeated 10000 times. The results 

are summarized in Table 3.5. The first column shows 100 MSE(MLE)/MSE(MWLE); the 

other columns show the average MAMSE weights allocated to each of the three populations. 

First observe that the combined average MAMSE weight of Population 2 and 3 accounts 

for at least half of the total weight for all sample sizes. The MAMSE weights thus detect 

that an equal mixture of Population 2 and 3 shares the same distribution as Population 1. 

Note also that the relative efficiency is uniformly greater than 100, meaning that the M W L E . 

with MAMSE weights is preferable to the M L E in these situations. 
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n Efficiency lOOAi 100A2 IOOA3 

5 115 50 19 30 
10 121 46 23 30 
15 120 46 25 29 
20 118 45 25 29 
25 118 45 26 29 
50 117 45 27 28 

100 116 44 27 28 
200 116 44 28 28 

1000 115 44 28 28 
10000 116 44 28 28 

Table 3.5: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) and aver­
age MAMSE weights, allocated to samples of sizes n drawn from M(0,1), |A/"(0,1)| and-
— \M(0,1)| respectively. The results are averages over 10000 repetitions. 

3.10.3 Negative Weights 

In most cases, the unconstrained optimization of -P(A) yields positive weight's. In some cases 

such as the one that we are going to explore, negative weights systematically occur. Some 

previous work such as van Eeden &z Zidek (2004) showed that allowing negative weights 

may sometimes boost the performance of the MWLE. We explore the possibility of such 

improvements here. 

Imagine a situation where a measurement of interest is cheaply obtained, but it is costly 

to determine whether a patient is diseased or not. We want to study the measurement of 

interest on the diseased patients.. Suppose we have two small samples (one diseased, one 

not) as well as a larger sample where the health status of patients is unknown. If we allow 

negative values for MAMSE weights, would they adapt by including the larger population 

•in the inference and allocating a negative weight to the small healthy population? . 

To represent the hypothetical situation above we simulate from the following distribu­

tions: 

Pop. 1 : A/10,-1), Pop, 2 : 0.5Af(0,1) + 0.5A/YA, 1), Pop. 3 : Af(A, 1), 
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where Population 1 and 3 have equal sample sizes of n, but Population 2 has a sample size 

of lOn. Each scenario is repeated 40000 times. 

Although we allow weights to be negative, we still apply the preprocessing step and set 

the weight of a population to 0 when it does not overlap with the sample from Population 1. 

If the preprocessing were ignored, there would be a possibility that A would be nonnegative 

definite and that the MAMSE weights would not be unique. 

Applying the preprocessing does not affect the pertinence of this example: if the dis­

tributions in the populations of diseased and healthy are so different that the samples are 

often disjoint, there is no point in using the weighted likelihood to include Population 2 

as the measurements are in fact a cheap diagnostic test. Moreover, previous simulations 

without preprocessing yielded results that are not better than those presented here. 

Figure 3.1 shows the average values of the unconstrained MAMSE weights for different 

scenarios. Negative weights do appear, hence the MAMSE criterion detects that Population 

2 is a mixture of the other two populations and removes the component which is not of 

interest. 

For a large A, notice how the negative weights are closer to 0 for smaller samples. In 

such cases, there is a higher probability that the sample from Population 3 will be disjoint 

of the sample from Population 1. As a result, the weight allocated to Population 3 is more 

often forced to 0 by the preprocessing step. As the sample size increases, the samples overlap 

more frequently. 

Table 3.6 shows the performances obtained by the MWLE with unconstrained MAMSE 

weights. The MWLE performs better than the M L E in most cases, being almost twice as 

good in many cases. Unfortunately, the performances for large A are very poor, especially 

in the cases where the difference between the.populations is so large that they overlap very 

lightly. 

Using a weighted likelihood with negative weights provides an improvement over the 

MLE, but a similar improvement may be obtainable when the constraints are enforced. 
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Figure 3.1: Average values of 100x the MAMSE weights without the constraints A; > 0. 
Samples of size n, lOn and n are taken from each population. Population 2 is an equal 
mixture of Populations 1 and 3 that respectively follow a A/^O,1) and &J\f(A, 1) distribution. 
All results are averages over 40000 repetitions. 

Table 3.7 shows the performance of the MWLE when the usual MAMSE weights are used. 

Figure 3.2 shows the average values of the weights obtained in that case. Using the M W L E 

with positively constrained MAMSE weights also provides an improvement over the MLE. 

This improvement is sometimes larger than that obtained with unconstrained weights. To 

discern between the two versions of MAMSE weights, Table 3.8 compares their relative effi­

ciency; values above 100 favor the unconstrained weights. Note that the standard deviation 

of the error due to simulation in Table 3.8 can be more than one unit, but does not exceed 

1.3 units. 
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100 MSE(MLE)/MSE(MWLE) 
n = 5 10 15 20 25 50 100 

A = 0 195 196 197 198 197 197 198 
0.001 196 196 197 197 198 198 197 
0.01 196 196 197 197 198 198 197 
0.10 195 194 194 194 192 184 172 
0.25 190 182 176 170 165 144 121 
0.50 173 153 140 131 124 107 97 
1.00 137 113 105 101 100 97 96 
2.00 116 92 86 84 84 84 84 
5.00 51 49 51 54 57 62 55 

Table 3.6: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) when the 
MAMSE weights are calculated without the constraints A* > 0. Samples of size n, lOn and 
n are taken from each population. Population 2 is an equal mixture of Populations 1 and 3 
that respectively follow a A/"(0,1) and a A/"(A, 1) distribution. Al l results are averages over 
40000 repetitions. 

100 MSE(MLE)/MSE(MWLE) 
n = 5 10 15 20 25 50 100 

A = 0 211 209 210 210 209 208 208 
0.001 212 210 209 . 209 210 209 208 
0.01 212 210 210 209 210 209 208 
0.10 212 209 207 206 203 194 180. 
0.25 207 196 187 180 173 146 118 
0.50 186 161 144 131 122 98 82 
1.00 139 111 97 89 86 79 82 
2.00 97 82 79 78 79 84 90 
5.00 51 48 50 53 57 68 79 

Table 3.7: Relative efficiency as measured by 100 MSE(MLE)/MSE(MWLE) when the 
usual MAMSE weights (i.e. constrained to positive values) are used. Samples of size n, lOn 
and n are taken from each population. Population 2 is an equal mixture'of Populations 1 
and 3 that respectively follow aJV(0,1) and a JV(A, 1) distribution. Al l results are averages 
over 40000 repetitions. 

It seems that allowing negative weights further improves the performances only in a few 

cases. In fact, Figure 3.2 shows that Population 2 by itself can be used and Table 3.7 shows 

it has a positive impact. Table 3.8 suggests that the constrained MAMSE weights are to 
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100 MSE(constrained)/MSE(negative) 
n = 5 10 15 20 25 50 100 

A = 0 92 94 94 94 95 95 95 
0.001 92 93 94 94 94 95 95 
0.01 92 93 94 94 94 95 95 
0.10 92 93 94 94 94 95 96 
0.25 92 93 94 95 96 98 102 
0.50 93 95 98 100 102 109 119 
1.00 99 102 109 114 117 123 117 
2.00 119 112 109 107 107 100 94 
5.00 100 101 102 102 101 91 69 

Table 3.8: Relative efficiency of the MWLE with and without the constraints A; > 0 
as measured by 100 MSE(constrained MWLE)/MSE(unconstrained MWLE). Samples of 
size n, lOn and n are taken from each population. Population 2 is an equal mixture of' 
Populations 1 and 3 that respectively follow a j\f(0, 1) and a A/"(A, 1) distribution. All 
results are averages over 40000 repetitions. 

be preferred more often than not. If we consider other complications arising from allowing 

negative weights, (e.g. making the weighted EDF non-monotone) keeping the constraints 

Xi > 0 in the definition of the MAMSE weights seems a better option. 

A different prevalence of diseased in Population 2 could affect the simulation results. If 

major differences were observed, the conclusion above could be revisited. 

3 . 1 0 . 4 E a r t h q u a k e D a t a 

We now use a model whose weighted likelihood estimate does not have a simple form, i.e. it 

is not a weighted average of the M L E of each population. 

Natural Resources Canada http://earthquakescanada.nrcan.gc.ca/ maintains an 

educational website with resources about earthquakes. From their website, it is possible.to 

download data about recent Western Canadian earthquakes. The histograms in Figure 3.3 

show the magnitude of the earthquakes that occurred in the 5 year period from the 12th of 

February 2001 to the 12th of February 2006. Events are divided into 3 groups depending 

on the geographical location of their epicenter. For the purpose of this example, we make 
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Figure 3.2: Average values of lOOx the usual MAMSE weights (with constraints A* > 0). 
Samples of size n, lOn and n are taken from each population. Population 2 is an equal 
mixture of Populations 1 and 3 that respectively follow aA /'(0,1) and &M(A, 1) distribution. 
All results are averages over 40000 repetitions. 

the assumption that the magnitude of the earthquakes are independent random variables 

and fit a gamma distribution to each of the three populations using maximum likelihood. 

The fitted curves appear on Figure 3.3 and the estimated values of their parameters are 

shown in Table 3.9 along with the number of observations in each area. The gamma model 

is parametrized as 

for 8, p, x > 0. 
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Lower Mainland - Elsewhere in British Columbia Yukon and 
Vancouver Island or in Alberta North West Territories 

0 2 4 6 8 0 2 4 6 8 0 2 4 6 
Magnitude Magnitude Magnitude 

Figure 3.3: Histograms of the magnitude of earthquakes measured between the 12 of 
February 2001 and the 12th of February 2006 for three different Western Canadian areas. 
The curves correspond to the fitted Gamma density. 

Lower Mainland - Elsewhere in BC Yukon and 
Vancouver Island or in Alberta North West Territories 

p 1.654 2.357 6.806 
M 1.437 1.869 2.782 
n 4743 4866 1621 

Table 3.9: Number of earthquakes in three Western Canadian areas between the 12th of 
February 2001 and the 12th of February 2006. The magnitude of these earthquakes is 
modeled by a Gamma distribution; the maximum likelihood estimates appear above and 
are used as the "true" parameters for this simulation. 

• . We focus our interest on the magnitude of the next earthquake with epicenter in the 

Lower Mainland - Vancouver Island area. Suppose that only the 50 most recent events from 

each of the three regions are available. Would the MWLE that uses data from all three 

regions provide a better estimate than the MLE? To investigate the question, we produce 

10000 pseudo-random samples of earthquakes based on the fitted gamma models shown 

above. 

The average MAMSE weights are 0.959 for the Lower Mainland - Vancouver Island 
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area, 0.041 for the rest of British Columbia and Alberta and finally, nearly 0 for Yukon and 

North West Territories. Although it looks like a small contribution, the MSE of the MWLE 

for the vector (j3, u) was smaller with 

100 MSE(MLE)/MSE(MWLE)=107. 

We also considered other values of possible interest, namely some probabilities about 

the magnitude (M) of the next earthquake that are all obtained by plugging the M L E or 

MWLE in the Gamma model. Table 3.10 summarizes these results. 

Probabilities 
Prob Efficiency M L E MWLE Model Data Multiplier 

P{M > 1) 123 62 63 68 51 x l O - 2 

P(M > 2) 114 22 24 40 22 xlO" 2 

P(M > 3) 112 66 73 174 98 xlO" 3 

P(M > 4) 113 19 21 51 26 x l O - 3 

P(M > 5) 112 51 59 99 53 x l O - 4 

P(M > 6) 80 14 17 12 6 xlO" 4 

Table 3.10: Efficiency in estimating some probabilities about the magnitude of the next 
earthquake in the Lower Mainland - Vancouver Island area followed by the average of 
the actual estimates and their true values. Efficiency is measured by 100 MSE(plug-in ' 
MLE)/MSE(plug-in MWLE). The first four columns of probabilities should be multiplied 
by the corresponding multiplier. 

The first column of Table 3.10 corresponds to the relative efficiency of using the MWLE 

compared to using the MLE as plug-in parameters for the gamma model in order to evaluate 

the probability of interest. The numbers shown are 100 MSE(plug-in MLE)/MSE(plug-in 

MWLE) followed by the estimated values of P(M > k) using the M L E and the MWLE 

as plug-in parameters. For comparison purposes, the columns Model and Data contain re­

spectively the true probabilities (from the simulated model) and the empirical proportions 

in the complete dataset. All probabilities are scaled for easier reading; using the corre­

sponding multiplier will yield the original value. Note that discrepancies with the empirical 

probabilities reveal weaknesses of the gamma model to perfectly represent the magnitude 

of earthquakes rather than an advantage for one method over the other. 
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Interestingly enough, the MSE of the estimates is almost always smaller with the MWLE. 

Improved performance is hence possible by using the MWLE with MAMSE weights in this 

situation with distributions copied from real life. 
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M A M S E Weights for 

Right-Censored Data 

Situations arise where the exact value of some data may not be observed. In engineering, a 

test of the lifetime of light bulbs, say, may not last long enough to see the last bulb fail. In 

health science, patients may move away while participating in a study and the researcher 

does not know when the symptoms stopped or when the death of the patient occurred. In 

these two examples, the data are right-censored: some times of failure are not observed, 

but they are bounded below. 

If censored data were ignored, large values of the response variable would be more often 

excluded from the inference than early deaths (or failures), resulting in an underestimation 

of the lifetimes. Some methods exist to account for censored data, including a nonparametric 

estimate of the cumulative distribution function proposed by Kaplan & Meier (1958). We 

suggest use of that estimate to define a version of the MAMSE weights for censored data. 

The paradigm still involves m populations, one of which is of inferential interest. This 

situation may arise in practice when: 

• interest concerns a subgroup of the population studied, 

• data come from different studies with different schemes for censoring, 

and possibly under other circumstances. 

We first introduce the notation for this section and review the Kaplan-Meier estimate 

and its properties. We then define the MAMSE weights and show that the algorithm for 
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calculating them converges. We propose the MAMSE-weighted Kaplan-Meier estimate and 

prove its uniform convergence to the target distribution. Finally, simulations explore the 

performance of our proposed estimate in finite samples. 

4.1 Notation and Review of the Kaplan-Meier Estimate 

We introduce a notation that comprises m possibly right-censored populations and accounts-

for increasing sample sizes. For simplicity, we will adopt a "survival analysis" terminology 

where measurement of interest is the survival of individuals. 

For Population i, let 

The independent positive random variables Xij(u) and Vij(u>) are defined on a common 

probability space (fl,B(fl), P). We denote their distributions by Fi and Gi respectively; 

the distributions Fi are assumed to be continuous, but the Gi do not need to satisfy that 

assumption. Instead of the values X{j, we rather observe 

For any fixed k € IN, we observe (Z^, 5ij) for i = 1,..., m and j = 1,..., n,^. The index k 

will be useful to express the asymptotic results of Section 4.4. We assume that the sample 

sizes are non-decreasing with k and that —> oo as k —> oo. 

Let us define 

Xij = time of death of individual j 

Vij — censoring time of individual j. 

and 
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diVj^s) = Nik(s) — Nik(s~) = # of deaths at time s, 

Yik(s) = ^2 ~^-{Zij>s) = # a t r i s k J u s t before time s, 
3=1 

dlifc(s) = Yik(s) — Yik(s+) = # of deaths and censored at time s. 

For Population i, the Kaplan-Meier estimate (KME) of the probability of dying at time t 

or earlier is written (see Kaplan 8z Meier 1958) 

Note that the factors of the product differ from 1 only at times of death; 

Let Hi(t) = P(Zn < t) and let T#. — sup{£ : Hi(t) < 1} be the largest value that Zij 

can attain. The possibility that THT = oo is not ruled out although it is unlikely to occur in 

practice. In addition, let 

H*(t) = P(Zn < t,6n = 1) = A l - G i(x)}dF i(a;) 
Jo 

be the distribution of observed death times for Population i. 

The Kaplan-Meier estimate is an increasing step function with a jump at each of the 

times of death. By the definition of THX , the number of deaths observed in Population 1 is 

•A/fc = NikirH-i)- For k € IN, let tki < • • • < tkj^k be the ordered times of these deaths. The 

times of death are distinct by the continuity of Fj. If in addition, we use the convention 

that tko = 0, the jumps of F l f c (i) are Jkj = Fik(tkj) - Afc^fcO-i)) for j € {1, . . . ,A4} and 

we have that Jkj < 1-

Efron (1967) discusses how the Kaplan-Meier estimate redistributes weight of the cen­

sored data to the observations on the right. Consequently, 

Jki < Jk2 < ••• < JkMk- (4.1) 
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We will consider the Kaplan-Meier estimate on a bounded interval [0, U] with U < T B I • 

Theorem 4.1 (Winter, Foldes & Rejto) 

sup\Fik{t)-Fi{t)\^0 
t<u ; 

almost surely as —>.oo. 

Foldes & Rejto (1981) study the rate of convergence of supt<rj \Fik(t) - Fi(t)\. To get a 

better rate, they assume that the distribution Gi is continuous. However, they also mention 

that they proved the result of Theorem 4.1 without making any assumptions about Fi and 

Gi in some earlier work published as Winter, Foldes & Rejto (1978). 

Efron (1967) and Breslow & Crowley (1974) assume that the distribution Gi is contin­

uous and show that Fjfc(i) is approximately normal with mean Fj(i) and variance 

~{1-Fm2 Al-fTi(a)}-2dff;(s). 
n Jo 

This expression for the variance can be estimated using Greenwood's formula (see e.g. Chen 

& Lo (1997), page 1069), yielding 

var{Flfc(i)} « vTr{F^)} = {1 - Fik{t)f £ (4.2) 

This expression becomes less reliable as t approaches TH{, but for a large enough n^, it 

should be reliable on any interval [0,T] with T < U. Note that the terms in the sum above 

are 0 except when s is a time of death. 

Defining MAMSE weights based on the Kaplan-Meier estimate involves using an esti­

mate of its variance. Equation (4.2) is thus used for the definition of the MAMSE weights 

in Equation (4.3). Since the variance term is used as a penalty to foster the inclusion of 

many populations into the inference, we take the liberty of using v&x{Fik(t)} even though 

we do not make the assumption that Gi is continuous. 
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In the next section, we build a version of the MAMSE weights based on the Kaplan-

Meier estimate. The weights are then used to define a MAMSE-weighted Kaplan-Meier 

estimate (WKME). 

4.2 Definition of the MAMSE Weights for Right-Censored 

Data 

We suggest using an expression of the form YliLi î-̂ ifcW to estimate Fi(t). To find the 

weights A = [Ai , . . . , A m ] T adaptively, we use a version of the MAMSE criterion, see Equa­

tion (2.1), where the distribution functions are estimated with the corresponding Kaplan-

Meier estimates. 

When censored observations are found after the last time of death, the Kaplan-Meier 

estimate is not a proper cumulative distribution function on the positive real line because 

it never reaches a value of 1. For that reason, we assume that we can specify an upper 

bound U < THI and limit our study of the survival function to the interval [0, T] where 

T < U is such that H*(T) < H{{U). The last inequality means that there is a non-null 

probability that a death is observed in the interval (T, U]. This will be the case whenever 

the probability of death (observed or not) is non-null in that interval since the cumulative 

probability of being censored before T is less than one by the definition of TJJI > U. 

Preprocessing 

For a fixed k and i G {2,..., m}, let 

rriik = min and Mn~ — max Z^ 
'{j<nik-Sij = l} {j<nik--Sij=l} 

be the smallest and largest times of death observed in Population i. 

The weights allocated to the sample from Population i are set to 0 if it fails to satisfy 

the following two conditions: 
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1. U & [rriik,Mik], i.e. at least one observed death from Population i is in the interval 

[0, U] and at least one observed death occurs after U; ' 

2. ^ e \mik-, min(Mjfc, [/)]} > 1, i.e. at least one observed death from 
{j<nik:8ij=l} 

Population 1 which occurred in [0, U] falls within the range of the observed times of 

death in Population i. 

Condition 1 ensures that Formula (4.2) is well defined on [0, U] and not null everywhere on 

that interval. Condition 2 means that the same formula will be strictly positive for at least 

one of the times of death from Population 1 in [0, U], ensuring the unicity of the MAMSE 

weights and the convergence of the algorithm used to calculate them. These consequences 

are explained in greater detail in Section 4.3. 

The preprocessing requirements appear to be technical, but they avoid using samples 

yielding unreliable Kaplan-Meier estimates. After the last time of death, the K M E remains 

constant forever. If Condition 1 failed, we could be relying on such a plateau where subtle 

differences in the distribution of the lifetimes may be hidden by the censoring scheme. If 

Condition 2 failed, the whole range where the K M E of Population i increases would be 

compared against a constant function from Population 1. Hence, the conditions also have 

some intuitive foundations. 

If very few deaths from Population 1 fall in [0,17], Condition 2 is likely to fail and 

the other populations may see their weights set to 0. In such cases, the little information 

available about Population 1 makes it.hard to compare it to the other samples. It is then 

better to be more conservative and to avoid relying on the other populations. 

In particular, if less than 2 deaths from Population 1 fall in the interval [0, U], we allocate 

no weight to the other populations. The lack of knowledge about Population 1 makes the 

comparison to other populations too uncertain. 

Let A4k C {1,..., m} be a set of indices corresponding to the population whose samples 

satisfy the preprocessing conditions. We always have 1 € A4k since Population 1 is never 
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removed from the pool of populations. 

Objective Function 

Let 

Pk(X)= / \Flk(t)-y£tXiFik(t)\ + ]TA2W{/4(*)} 
J° I i = l ) i=l 

dFlk(t) - (4.3) 

be a special case of Equation (2.1) where var{Fik(t)} is estimated by var{Fik(t)} from 

Equation (4.2) and dp(x) is replaced by dF\k(t). 

Note that none of the preprocessing steps can remove Population 1 since it is the popula­

tion of interest. In cases where the last observed death in Population 1 is contained in [0, U] 

(i.e. when M\k = tkj^k < U), the expression for v5Jc{Fik(tkjvk)} involves a division by 0 since 

»̂fc(*fe/Vfc) = 0' ^ n * n a * c a s e ) w e substitute the ill-defined term by its value just before time 

tkMk- Although this solution would not be acceptable for constructing confidence intervals, 

it should do no harm here where our purpose is to construct a penalty term that fosters 

using the data from all populations. In particular, this adjustment will affect at most one 

term of the integral Pk(X). 

The weights are chosen to 

minimize -Pfc(A) 

subject to A > 0 and ^ Aj = 1. 

The solution to that program will be referred to as the survival MAMSE weights and written 

Afc(w) = [Aife(o;),..., Amfc(w)]T to represent their dependence on LO and k. For values of t 

in the interval [0,T], the weighted Kaplan-Meier estimate (WKME) of the lifetime's CDF 

is then defined by 
m 

Gk(t) = Y,\k(u)Fik{t). (4.4) 
i=i 
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4.3 Computing the MAMSE Weights for Right-Censored 

Data 

The algorithm suggested in Section 2.4 applies to the MAMSE weights defined with the 

Kaplan-Meier estimate. To prove that the algorithm converges, we must show that As­

sumption 2.1 is satisfied. 

Lemma 4.1 

y"var{Afc(a;)} dFlk(x) >0 

Proof of Lemma 4-1- To calculate the MAMSE weights, we require that at least two times 

of death from Population 1 fall in the interval [0, U]. Let t* be the smaller of the two times 
r 
\ 

of death. By the definition of the Kaplan-Meier estimate, F\k{t*) < 1 since the larger time 

of death has some mass. Hence, Expression (4.2) is positive at t = t*, i.e. 

v a x { F l f c ( O } > 0 . 

Since t* is a time of death, the Kaplan-Meier estimate for Population 1 makes a jump at 

that time. Hence dFik(t*) > 0 as well and consequently, J 

j<tix{Plk{x)} dFifc(x) >0. • 

Lemma 4.2 For all external populations remaining after prescreening: i = {2,... ,m}, 

j™x{Pik{x)} &Flk{x) > 0. 

Proof of Lemma 4-2. Let and M{k be the smallest and largest time of death respectively 

observed in Population i. Note that the sum in Equation (4.2) is cumulative. It is thus 

positive for all x > rriik. 
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The first condition for preprocessing requires that < U < M^. Since the Kaplan-

Meier estimate for Population i jumps at M ^ , the first part of Equation (4.2), {1 — Fik{t)}2, 

is positive for all t < M^. Consequently, 

var 

for all x € [mik,Mik). 

The second requirement for preprocessing ensures that a death occurs in Population 1 in 

the interval [m-ik, min(Mjjfc, U)]. Consequently, the discrete measure dFik(x) gives positive 

mass to at least one point in that interval where var |Fjfc(x)| > 0. Therefore, 

var {F i f e (x ) | dFlk(x) > 0. • 

Lemmas 4.1 and 4.2 are sufficient to show that the algorithm in Section 2.4 converges 

for this new application to the MAMSE weights. 

4.4 Uniform Convergence of the MAMSE-Weighted 

Kaplan-Meier Estimate 

We prove that the W K M E , Gk(t), converges uniformly in probability to F\(t). The proof is 

built as a sequence of lemmas that appear next and follow a logic akin to that of Section 3.5. 

Remember that we assumed in Section 4.1 that the distribution of the times of death is 

continuous, but the distribution of the times of censoring need not be. 

Lemma 4.3 

E dNik(s) _P 

0<3<uYMs)Ylk^ 

as k —> oo. 
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Proof of Lemma 4-3. Notice that 

v dNlk(s) ^ dYlk(s) v Ylk(s) - Ylk(s+) 

The first inequality holds since dNik(s) < dYik(s) for all s. 

Suppose that the Z\j's are distinct and for a fixed k, let Z^(j) denote the jth order statistic 

of the sample from Population 1, i.e. the jth smallest value in the list Zu, • • •, Z\nik- Let 

jok = max{j : j < n\k, Z^ < U} Then, there is at most one censored datum or death at 

any given time and the expression above can be rewritten as 

y / _> 1 _ \ = y 
Z-~> I VT,J*+\ YTJ.*} I 0<s<U 

Ylk(s+) Ylk(s)J Z^lYlk(ZlU+1)) Ylk(Zl(j)) 

Ylk(Z1{jok)) nlk - Ylk(U) ( 4 - 5 ) 

since Yik(s) is decreasing in s and the series telescopes. 

Concurrent death times are impossible, but concurrent censoring times are possible since 

the continuity of their underlying distribution is not assumed. Moreover, censoring cannot 

occur at a time of death since the two times are independent random variables and at 

least one of them has a continuous distribution. Even if multiple censoring occurs at one 

time, inequality (4.5) will still hold. Indeed, the term for concurrent censoring times in 

the summation is equal to the sum of the individual terms if the times were different but 

consecutive. For instance, if Yik(t) — Yik(t+) = 2, we have 

Yik(t)-Ylk(t+) _ 1 1 
Ylk(t)Ylk(t+) Ylk(t)-2 Ylk(t) 

1 1 1 

+ Ylk(t)-2 Ylk(t)-1 Ylk(t)-1 Ylk(tY 

This extends for an arbitrary number of concurrent censoring times. 

Let us now show that the bound l/Y\k(U) converges to 0. Since the Z-^fs are indepen-
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dent, Yik(U) has a Binomial distribution with parameters nik and 1 — Hi(U). Let e > 0, 

then 

p \ E v n v f V 8 ^ > * } = P < i / * } 

• 0 (4.6) 

0<s<£/ 
— — / 

r l/e-nik{l-Hi(U)} 
^nikHi(U){l - Hi(U)} 

as k oo since the argument inside the standard normal CDF $ tends to — oo. The ap­

proximation is from the central limit theorem and becomes exact as nik —> oo. • 

Whether a sample is rejected in the preprocessing or not may vary with k and LO. Remember 

that m populations are available before preprocessing and that weights of populations in 

JAk are forced to 0, but Population 1 is never excluded from the optimization problem. 

Hence preprocessing does not affect the distribution of probabilities calculated in expres­

sions such as (4.6). Moreover, preprocessing does not change the fact that A = [1,0,..., 0]T 

is a suboptimal choice of weights, which we use in the proof of the next result. 

Lemma 4.4 

£ {Flk(t)-Gk(i)}2 dFlk(t)$0 

as k —> oo, where Gk(t) is defined in Equation (4-4)-

Proof of Lemma 4-4- By the definition of the MAMSE weights, 

Pfc{A f cH}<P f c{[l,0,...,0]T} 

since [1,0,... ,0]T is a suboptimal choice of weights. Following Equations (4.2) and (4.3), 

we thus have 

£ {Fik(t) - Gk(t)}2 dFik < Pk{Xk(Lv)} < P fc{[l,0,...,0]T} 
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-f 
Jo 

n p r m 2 V - dNlk(s) 
{ 1 " F l k ( t ) } ^ Ylk(s)YMs" 0<s<t 

< E dNlk(s) 
F{I - Flk{t)}2 dFlk{t) 

Jo 

dFlk(t) 

0<s<U 

* E 
Ylk(s)Ylk(s+) 

dNlk(s) P 

0<s<U 
Ylk(s)Ylk(s 

as k —> oo by Lemma 4.3. 

Let vk = max{j < n\k : tkj < U} be the index of the largest time of death observed at or 

before time U in the sample from Population 1. Since the steps of Fik(t) are increasing in 

size (see Equation 4.1), we may define 

Jk = max\Flk(t) - Flk(t )| = J f c l / f c , 

the biggest jump of Fik{t) on the interval [0, U}. 

Lemma 4.5 Jk —> 0 almost surely as k —> oo. 

Proof of Lemma 4-5. The result follows from Theorem 4.1 since 

Jk < 2 sup 
o<t<u 

almost surely as k —> oo. 

Recalling that T < U is such that H{{T) < H*(U), we let 

Dk = Nlk(U) - Nlk(T) = J2 *{zlje(T,u],6lj=i} 
i = i 

be the number of deaths observed in the interval (T, U] among individuals sampled from 
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Population 1. Since the Zy are independent, Dk follows a Binomial distribution with 

parameters nik and Hl(U) — Hl(T). 

Let £k — N\k(T) be the number of deaths observed in the interval [0,T], and their 

corresponding times of death tki < . . . < tkek < T. By convention, we set tk(ek+i) = THX if 

no death is observed after tkek-

Lemma 4.6 

P < max 
0<t<T 

Fik{t) - Gk(t)\< Jk + max Flk(t) - Gk{t) 
I * € { t f c l , . . . , t f c ( £ f c + 1 ) } 

converges to 1 as k —> oo. 

Proof of Lemma 4-6. Fix k G IN and LO e fl, and let xo G [0, T] be the value maximizing 

\F\h(t) — Gk(t)\. That maximum exists since |Fifc(*) — Gk(t)\ is a bounded function being 

optimized on a compact set. Three disjoint cases need to be considered; 

Case 1: Gk(%o) < Fik(xo) and > 1. 

Let j\ = max{j G {1,... ,£k} '• tkj < xo} be the index of the largest time of death from 

Population 1 inferior to XQ. By the choice of j i , tkjx belongs to the same step as xo and 

hence 

Fikitkn) = Flk(x0). 

Moreover, 

Gk{tkjx) < Gk(x0). 

since Gk{t) is a monotone nondecreasing function. Recalling that XQ maximizes the differ­

ence between Fik(t) and Gk(t), we can write 

mffl \Fik{t) - Gk(t)\ = Flk(x0) - Gk(x0) 

< Fik(tkji) - Gk(tkjx) 
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< max 
te{tfci,...,tfc£,} 

Fik(t)-Gk(t) 

Fik(t) - Gk(t) < Jk+ max 

meaning that the maximum will always occur at a time of death from Population 1, where 

F\k{t) has a step. 

Case 2: Gk(xo) > Afe(^o) &nd Dk > 1. . 

Let J2 = minjj € {1,..., £ k + 1} : tkj > xo} be the index of the smallest time of death 

greater than XQ. The condition Dk > 1 ensures that tk(ek+i) exists, hence j2 is well defined. 

The choice of j2 ensures that it belongs to the step of Fik(t) that immediately follows xo, 

hence 

Fik(tk(j2-i)) = Flk(x0). 

The function Gk(t) is a right-continuous nondecreasing function and tkj2 > XQ, thus 

Gk{tk]2) > Gk(x0). 

Recalling that XQ is the point maximizing the difference between Fik(t) and Gk(t), we write 

< Gk(tkj2) - Fik(tkQj2_i)) 

= {Fik{tkj2) - F\k{tk^2-i))} + Gk(tkj2) - Flk(tkJ2) 

< Jk+ max 
*G{tfci,...,tfc(ffc+1)} 

Fik(t) - Gk(t) 

meaning that under Case 2, the maximum will occur immediately before a jump of Flk(t). 

Case 3: Dk = 0. 

This event has probability [1 - {H{(U) - H~i(T)}}nik —> 0 as —> oo. 
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The combination of Cases 1 and 2 implies that the desired result is true at least when­

ever Dk > 1. Consequently, 

P < max 
0<t<T 

Flk(t)-Gk(t) < Jk + max 
te{tki, — ,tk'ek+1)} 

Fik(t) - Gk(t) 

> P(Dk > 1) = 1 - P(Dk = 0) 1 

as k —> oo since the probability of Case 3 converges to 0 as k —* oo. I 

Lemma 4.7 

as k —> oo. 

max 
t€{tfci,...,tfc(f f c + 1)} 

PifcW-GfcCt) 

Proof of Lemma 4-7. Let e > 0 be such that e < iff ((7) - /^(T). We will show that 

P < max 
l*€{*fcl.-">*k(< f c + l)} 

Fik(t) - Gfc(t) > e ^ -> 0 

as fc —> oo. 

For a large k,let xk G {1,..., £ k +1} be the index of a time of death where the difference 

Flk(t)-Gk(t) is maximized. We define the following three events: 

Ak = j w G fi : Flk(tkXk) - Gk{tkxk) > e j 

£ f e = G fi : Gk(tkXk) - Fxk{tkXk) > e} 

C f c = {w G fi : Dk > enik + 1} . 

Then, 

P < max 
I t G { t f c i . - - . > t f c ( « f c + i ) } 

P i f c ( t ) - G f c ( t)|>6) < P { C f u ( 4 n C f c ) u ( B k n c f c ) } 
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< p(c^) + p(Aknck) + p(Bknck). 

We next show that each of the three probabilities on the right hand side go to zero as 

k —> oo. Note that the event Ck is used to remove an event of probability 0 that would 

otherwise complicate the proof that P(Bk) —-> 0. 

Case 1: P(Cf) -> 0. 

Recalling that Dk follows a Binomial distribution with n\k trials and probability of success 

{#*([/) - H{(T)}, we have 

P(Cf) = P{Dk < enlk + 1} 

^ enlk + l-nlk{H*(U)-H*(T)} . \ 
y/nlk{H*AU) ~ Ht(T)}{l - H{{U) + H*(T)} J 

= $(-cy/n~[k~ + d/^/n^) -> 0 

as k —> oo since the choice of e implies that c > 0, hence the argument inside the standard 

normal CDF $ tends towards — oo. We use the central limit theorem to approximate the 

Binomial by the Normal, but this comparison becomes exact as n\k approaches oo. 

Case 2: P{Ak n Ck) -* 0. 

Let uk = min{u : J2i=u+i ^ki < e}- This index exists when k is large enough since 

• Jkxk < Jk —> 0 by Lemma 4.5 and • 

* /^JJki = Fik(tkXk) > Gk(tkXk) + e>e. 
i = l • 

For a large enough fc, < e and hence uk < xk — 1. For j € {ufc,'..., — 1}, we have 

Gk(tkj) < Gk(tkXk) . 
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since the function Gk(t) is monotone nondecreasing and 

Fik{tkj) = Flk{tkXk) — / 2 

since the function F\k{t) makes a jump of size Jki at time t^. Combining these inequalities 

yields 

Xk 3*k 

F\k{tkj) - Gk{tkj) > Fik{tkXk) - Gk{tkXk) ~ ^2 Jki>e— ^2 Jki>0-
i=j+l i=j+l 

The last inequality holds because of the choice of uk. The function F\k{t) gives a mass of 

Jkj to the point tkj, and hence 

/ \Gk(t)-Flk(t)\2dFlk(t) > Y,Jkj\Gk(tkj)-Flk(tkj)\2 

— yi jkj\Gk(tkj) - Fik(tkj)Y 
3=Uk 

( xk \ 2 

> Jkxke2 + Jk3 U ~ J2 J k i ' (4-7)' 

3=Uk \ i = j + l ) 

f\e - x) 
Jo 

I£ e 3 

2 dx = / x2dx = — 

since the summation corresponds to the Riemann sum for the integral J0

£(e — x)2 dx depicted 

in Figure 4.1. The sum converges as k —-> oo because the width of the columns Jkj tends to 

zero by Lemma 4.5. 

To clarify the link between the Riemann sum and the integral, consider the change of 

variable p = xk — j and let 

0 p = 0 

]LX=l Jk(xk-i+l) p=l,--.,xk-uk 
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Note that c f c( p + 1) — ckv = Jk{Xk-p) — Jkj and with respect to the variable j , ckp equals 

J2i=j+i Jki when p > 0. We can thus write the expression in (4.7) as 

2 J (cfc(p+i) - cfcp)(e - cfep)2 ~* / (e-x)2dx = x2 dx = — 
P=O 7o « 

(4.8) 

Consequently, there exists a rCo such that 

/V f c (0-F l f c ( i ) | 2 dF l f c ( i )>^ 7o o 

for all fe > fco, an event of probability 0 according to Lemma 4.4. We conclude that 

P(Ak n Ck) -* 0 as k -> oo. 

A r e a o f t h e s h a d e d c o l u m n : 

( c k ( p + l ) - Ckp)(e - Ckp)2 

l l 

dkidk 

A r e a of t h e s h a d e d c o l u m n : 

(dk, - 4 ( ? - i ) ) ( e - 4 9 ) 2 

H a s h e d c o l u m n i s i g n o r e d 

Figure 4.1: Graphics representing the Riemann sums used in the proof of Case 2 (left panel) 
and Case 3 (right panel). 

Case 3: P(Bk D Ck) -» 0. 

Recall Equation (4.1) and note that the smallest possible size of a jump in F\j(t) is \jn\k-

Hence Jkj > l / n ^ and /J^ > en\k + 1 implies that 

{j:tfc,e(r,t/]j>4+i} 

Let ffc = max{?j : Y^Vj=xk+i J^j — €}- F ° r a large enough /c, Lemma 4.5 implies that 
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Jk(xk+i) < Jk < e and thus vk > xk + 1. For j € {xk + 1,.'.., i^}, the monotonicity of the 

nondecreasing function Gk(t) implies that 

Gk(tkj) > Gk(tkxk) 

In addition, the function Fik(t), a Kaplan-Meier estimate, makes a jump of size Jki at each 

time of death tki- Therefore, 

j 

E\k(tkj) = Eik{tkxk) + E 

Combining these two inequalities yields 

. Gk(tkj) - Fik(tkj) > Gk(tkxk) - Fik(tkxk) - E Jki>£~ E — ^' 
i = H + l i = x f c + l 

r 

the last inequality holding because of the choice of vk. Using again the fact that dFifc(i) 

allocates a mass of Jkj to tkj, we find that 

rU 4 
/ |Gfe(t)-Fifc(t)|2dF1Jfc(t) > Jfcj|Gfc(tfci) - Afc(**j)|2 

J o 3=1 

- E Jkj\Gk{tkj) - Fik(tkj)\2 

' 3=*k 

> 

/ ( e - x ) 2 d x = / x 2 d x = - (4.10) 

since the summation corresponds to the Riemann sum for the integral f0

e(e — x)2 dx depicted 

in Figure 4.1. The term Jkxk£2 ignored in Equation (4.9) corresponds to the hashed column. 

The sum converges as k —> oo because the width of the columns Jkj tend to zero by 

Lemma 4.5. 
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To clarify the link between the Riemann sum and the integral, consider the change of 

variable q = j — xk and let 

( 0 q = 0 
dkq = \ • 

Note that dkq - 4(9_i) = Jk(xk+q) = Jkj and that with respect to the variable j, dkq 

corresponds to Y?i=Xk+i Jki w n e n 9 > 0. We can thus rewrite Expression (4.9) as 

vk-xk j.e /.e £ 3 

2 - ( d f c , - d f c ( 9 - i ) ) ( ^ - 4 , ) 2 - J (e-x)2dx = Jo x2dx=- (4.11) 
9=1 0 

Therefore, there exists a ko such that 

fU \Gk(t)-Flk(t)\2dFlk(t)>e3/6 
Jo 

for all k > ko, an event of probability 0 according to Lemma 4.4. We conclude that 

P(Bk n Ck) -> 0 as k -> oo. 

Combining the three cases yields the desired result. I 

Lemma 4.8 For T <U < THx with H{(T) < H*(U) and any sufficiently small e > 0, 

P lsup\Gk(t) - Flk(t)\ >e*> ->0 

as k —> oo. 

Proof of Lemma 4-8. For an arbitrary e > 0, let 

Ak — < LO 6 fl : max 
o<t<r Fik(*) -Gk(t)\<Jk+ max Fife(t) - Gk(t) 

1 K f t h - A ( ( k + i)} . 
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Bic w g f i : max Flk(t)-Gk(t) e 
<2 

%•= {w € fi : Jk < |}. 

Clearly, Akr\Bkn Ck implies that sup - Fik(t)\ < e. Therefore, 
t<T 

p su P |G f e (t)-Fifc(t) | <e > P(A f c n 7i fc n c7fc) 

> P(A f c) + P(Bk) + P(Ck) - 2 - » 1 

as A; —* oo by Lemmas 4.5, 4.6 and 4.7. 

Theorem 4.2 LetO <T <U < T H i with H*(T) < H{{U). For all sufficiently small e > 0, 

P{sup G f c ( i ) - F i ( t ) 
t<T 

<e\ - 1 

as k —> oo, i.e. sup t < T Gfc(t) — F\(t) 

Proof of Theorem 1. Let us define 

0. 

Bk = 

Ck = 

co G fi : sup 
o<t<r 

a; G fi : sup 
0<£<T 

to G fi : sup 
o<t<r 

G f c ( t ) -F i ( t ) 

Gfe(t)-Fife(<) 

Pi fcW-^ iW 

< e 

e 
< -
- 2 

By the triangular inequality, 

GfcW-Pi(t) < Gk(t)-Flk(t) + Flk(t)-F1(t) 
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for any fixed t. In particular 

sup C*k{t) — F\(t) < sup { |G f c ( i ) -F l f e ( t ) | + |F l f c ( t ) -F i (0 |} 

< sup Gk(t)-Flk(t) + sup F i f c ( t ) -F i ( t ) . 

Consequently, (Bk C\ Ck) C Ak and 

P(A f c) > P(Bk n C f c) >P(Bfc) + P\Ck) - 1 - 1 

as A; —> oo. Lemma'4.8 implies that P(Bk) —> 1 and Theorem 4.1 implies that P(Ck) —> 1. 

Therefore, 

The W K M E converges uniformly in probability to the lifetime distribution for Popula­

tion 1 in the interval [0, T]. The MAMSE weights, although they use data from different 

distributions, provide an asymptotically unbiased estimate of Fi(i) . 

4.5 Simulations 

This section presents the results of simulations performed to evaluate the finite-sample per­

formance of the MAMSE-weighted Kaplan-Meier estimate compared to the usual Kaplan-

Meier estimate. The two examples are based on real survival functions to mimic reality. 

Simulations use between 10000 and 20000 repetitions. Unless otherwise stated, this 

number is large enough to make the standard deviation of the simulation error smaller than 

the last digit shown in the tables or on the figures. 

sup Gk(t)-Fi(t) 4 0 . 
t<T 

86 



Chapter 4. MAMSE Weights for Right-Censored Data 

4.5.1 Survival in the U S A 

The Centers for Disease Control and Prevention maintains a website which includes a 

section called National. Center for Health Statistics. That section contains the decennial 

life tables published by the National Center for Health Statistics (1997) at the address 

http://www.cdc.gov/nchs/products/pubs/pubd/lftbls/decenn/1991-89.htm . 

From this publication, we obtain the survival curves for four subgroups of the population 

in the United States: 

• White males; 

• White females; 

• Males other than white; 

• Females other than white. 

The life tables have a resolution of one year from birth to the age of 109 years. We simulate 

the age at death based on these tables; the day and time of death is chosen uniformly during 

the year of death. The CDF of the survival time for each of the four populations is depicted 

in Figure 4.2. 

Our purpose here is to explore the potential value of our new method rather than to study 

its behavior extensively under all possible conditions. Hence, we use a simple definition for 

the distribution of the censoring times based on the distribution of the lifetimes. 

Lemma 4.9 Let X\,... ,Xr+i be r + 1 independent and identically distributed variables 

with common distribution F. Then, 

P{max(X1, ...,Xr)< Xr+1} = —|— 
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Distribution of Lifetime in the USA 

White Male 
— • - White Female 

Male Other Than White 
- - - • Female Other Than White 

f* ,**• rm J . J i m . — • — • — 
-~T-
20 

1 1 
40 60 

Age at Death (Years) 
80 

— I — 
100 

Figure 4.2: Survival functions for subgroups of the American population as taken from the 
life tables of the National Center for Health Statistics (1997). 

Proof of Lemma 4-9. 
poo 

P{max(Xi,...,Xr)<Xr+i}= / P {max(Ii,..., Xr) < Xr+1\Xr+x = i) dF(t) 
Jo 

= {F(t)Y dF(t) = f u r d u = j L -
Jo Jo r + 1 

Let X\,..., Xr be r random variables with the same distribution as the survival time of 

an individual. The censoring time is defined as V = max(Xi,. . . , Xr), yielding a censoring 

rate of l/(r + 1). Throughout this section, r = 4 is used yielding a censoring rate of 20%. 

The last example however involves different rates of censoring, from 16% to 34%, obtained 

with r e {2,3,4,5}.' 

We restrict our goal to inferring the survival distribution of white males based on equal 

samples drawn from the four demographic groups mentioned above. We investigate if the 
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MAMSE-weighted Kaplan-Meier estimate is a better choice than the usual Kaplan-Meier 

estimate based on the data from white males. 

For different values of the upper bound U £ {60,70,80,90,100}, we generate samples 

of equal sizes n € {10,25,100,1000} from each of the four populations. Each scenario is 

repeated 20000 times. 

We calculate both the weighted Kaplan-Meier estimate F^{t) and the usual Kaplan-

Meier estimate Fi(t). To evaluate the quality of the estimators, we compare the area that 

separates them from the real survival curve F\(t), more precisely, we use 

Table 4.1 shows the ratio lOOAi/A^ for different choices of n, U and with T = 55. The 

interval of interest is thus [0,T]. Values above 100 mean that the weighted Kaplan-Meier 

estimate performs better. 

Table 4.1: Relative performance of the W K M E as measured by 100Ai/A\. Both areas are 
calculated on the interval [0,55] and various upper bounds U are used to determine the 
weights. Samples of equal size n are taken from each of four subpopulations, then used to 
estimate the survival of a white male living in the USA. Each scenario is repeated 20000 
times. 

The weighted Kaplan-Meier estimate seems to be a better estimate under all scenarios 

considered. No apparent trends in the magnitude of the improvement against n and U are 

observed. The MAMSE criterion evaluates the dissimilarity between the populations on 

the interval [0, U]. It is thus not surprising that no clear trend is observed as U varies. 

Note that for the largest sample size (n — 1000), the advantage of the W K M E seems more 

Ratio 100Ai/Ax, with T = 55 
U = 60 70 80 90 100 

n = 10 
25 

100 
1000 

114 135 142 118 100 
137 148 149 128 101 
135 143 140 128 102 
121 120 108 105 103 
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modest. 

The white females have the longest survival time and nearly 25% of them reach the age 

of 90. However, less than 3% survive long enough to celebrate their 100th birthday. For 

U — 100, the samples from other populations will frequently fall short of the upper bound 

and be ignored, especially for small sample sizes. This might partially explain the abrupt 

change in performance from U = 90 to U = 100. 

The improvements observed in Table 4.1 appear again in Table 4.2 where the interval on 

which the functions are compared varies with the upper bound U. Once again, the newly 

proposed weighted Kaplan-Meier estimate performs better than the classical one under all 

the scenarios. 

Table 4.2: Relative performance of the W K M E as measured by lOOAi/A\. Areas are 
calculated on the interval [0,(7 — 5], where U is the upper bound used to determine the 
weights. Samples of equal size n are taken from each of four subpopulations, then used to 
estimate the survival of a white male living in the USA. Each scenario is repeated 20000 

v times. 

Figure 4.3 illustrates the average weights allocated to each of the four subpopulations. 

Notice that the weight allocated to Population 1 is close to one when U = 100, especially 

for small sample sizes. This supports the explanations regarding the sudden drop in perfor­

mance observed in Table 4.1 and 4.2: samples from other populations are often dismissed 

because no individual reaches 100 years of age. 

Unless a mixture of the survival distributions of the other populations is identical to 

that of the survival distribution for Population 1, Theorem 4.2 predicts that the weight 

allocated to Population 1 will converge to 1. A tendency to increase towards 1 is observed 

for U £ {70,80,90}, but not for U = 60. It is expected that for larger sample sizes, Ai 

Ratio 100Ai/Ax, T = U - 5 
U = 60 70 80 90 100 

n = 10 
25 

100 
1000 

114 132 137 116 100 
137 141 137 122 101 
135 134 128 118 101 
121 115 103 101 101 
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Average Weight Allocated to Each Population 

U = 60 70 

! 
U=80 U=90 U= 100 

n=10 73 51 

! 
53 78 1 100 

n= 25 46 43 ! - 70 I 99 

n=100 39 40 ! 64 1 9 7 

n= 1000 37 46 ! 69 83 I 96 

| • While Males • White Females • Non-White Males • Non-White Females 

Figure 4.3: Average value of the MAMSE weights for different upper bounds U and sample 
sizes n. The cells' area are proportional to the average weight allocated to each population. 
The numbers correspond to 100Ai and are averaged over 20000 repetitions. 

would eventually converge to 1 even in that latter case. The large weight allocated to the 

three other subpopulations for samples as large as 1000 should be interpreted as a sign 

that a mixture of these 3 distributions is extremely close to the true survival distribution 

in Population 1 and that does not seem unreasonable based on Figure 4.2. 

Figure 4.4 depicts examples of estimates of the survival functions. While the smooth 

gray line shows the true distribution of the lifetime of a white male in the United States, 

the plain black line shows the Kaplan-Meier estimate based on a sample of size n and the 

dashed line corresponds to the MAMSE-weighted Kaplan-Meier estimate that we propose. 

The numbers on each panel correspond to A\ and A\ respectively with T — 75. 

As we may expect from the good performances noticed in the previous tables, A\ is 

typically smaller than A\. Some exceptions arise: A\ will occasionally be smaller than A\, 

as it is the case for n = 1000 in Figure 4.4. A close look at the dashed line shows one 

advantage of the weighted Kaplan-Meier estimate: using more populations involves having 

more steps in the estimate since jumps may occur at a time of death from any of the samples 
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0 20 40 60 0 20 40 60 
Age at death (Years) . Age at death (Years) 

Figure 4.4: Typical examples of the weighted Kaplan-Meier estimate (dashed line) and of 
the usual Kaplan-Meier estimate (plain'black line) for different sample sizes. Note that 
U = 80 and T = 75. The true distribution is depicted by a smooth gray line. 

considered. This results in a smoother step function. 

An estimated survival function will typically be used to answer further questions about 

the population of interest. Tables 4.3 and 4.4 show the performances of the weighted 

Kaplan-Meier in estimating Fi(55) = 0.11976 or Ff^O.lO) = 52.081. Note that we write 

qx = Ff^O.lO) and qx = FT^O.IO). 

The estimates obtained by the weighted Kaplan-Meier estimate feature a smaller MSE 

in almost all cases. Moreover, the magnitude of the gains seems to outweigh that of the 

occasional losses, especially when we consider that such losses occur when n is large, not 

the cases where our method would be most useful. 

The relative performances of the W K M E for estimating a quantile is similar to the 

results obtained for the probability F\(55). The resemblance between the tables is not 
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MSE{A(55)} 

MSE{FA(55)} 

(7 = 60 70 80 90 100 
n = 10 117 151 172 134 101 

25 137 159 170 149 102 
100 125 142 142 134 104 

1000 110 107 84 86 103 

Table 4.3: Relative performance of the weighted Kaplan-Meier estimate compared to 
the usual Kaplan-Meier estimate for estimating Fi(55) = 0.11976 as measured by 100 
MSE{F\(55)}/MSE{F\(55)}. Different choices of U and n are considered. Each scenario 
is repeated 20000 times. 

100 MSE(gi)/MSE(gA) 
U = 60 70 80 90 100 

n = 10 120 140 161 141 100 
25 153 173 172 133 101 

100 124 145 139 126 102 
1000 119 113 86 86 106 

Table 4.4: Relative performance of the weighted Kaplan-Meier estimate compared to 
the usual Kaplan-Meier estimate for estimating F T 1 (0.10) = 52.081 as measured by 
MSE(gi)/MSE(f7^). Different choices of U and n are considered. Each scenario is repeated 
20000 times. 

surprising since they both use the estimated curves around their 10% quantile. 

For Table 4.5, we fix U = 80 and T = 75, then try different distributions for the time of 

censoring that yield an average fraction p € {1/3,1/4,1/5,1/6} of censored data. ' 

The proportion of censored data has little or no effect on the relative performance of the 

W K M E compared to the K M E . A closer look at the raw data shows that the precision of 

both the K M E and the W K M E are affected by a larger p, but it appears that the magnitude 

of this effect is the same for both methods. As a result, their relative performance seems 

unaffected by the rate of censoring. 

Overall, the weighted Kaplan-Meier estimate seems to outperform the usual Kaplan-

Meier estimate in almost all the cases studied. Next, we look at another population with 

more subgroups. 
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Average of lOOAi lOOAi/Ax 

1 1 l l I I I I 
^ 3 4 5 6 3 4 5 6 

n = 10 57 54 53 52 133 135 137 136 
25 50 48 48 47 136 137 137 138 

100 47 47 47 47 127 127 128 126 
1000 68 69 69 69 102 103 103 102 

Table 4.5: Average MAMSE weights for different rates of censoring p and different sample 
sizes n. The right-hand side of the table presents the relative performance of the W K M E as 
measured by 100Ai/A\. Figures are averaged over 20000 repetitions and the values U = 80 
and T = 75 are used. 

4.5.2 Survival in Canada 

Statistics Canada periodically publishes life tables for the survival of Canadians. We use 

the life tables published for the reference period of 2000 to 2002 that are available online 

at the address http://www.statcan.ca/bsolc/english/bsolc?catno=84-537-X. 

. The life tables from Statistics Canada (2006) provide the survival functions of Canadians 

with a resolution of one year, from birth to over 105 years. Distinct tables are provided for 

males and females from each of the 10 Canadian provinces. Due to its smaller population, 

Prince Edward Island is the only exception with a resolution of 5 years. It is excluded from 

our simulations for that reason. 

We suppose that n males and n females from each province (except PEI) are followed 

and that their time of death is observed or censored. Censorship was determined the same 

way as before, following Lemma 4.9 with r = 4, which yields a censoring rate of 20%. 

We perform three simulations. 

1. Males: We estimate the survival function of a male in New Brunswick when data sets 

of males across the country are available (total 9 populations). 

2. Females: We estimate the survival function of a female in New Brunswick when data 

- sets of females across the country are available (total 9 populations). 

3. Males and Females: We estimate the survival function of a female in New Brunswick 
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when data sets of males and females across the country are available (total 18 popu­

lations). 

Figure 4.5 depicts the survival functions for the different provinces and genders. The 

survival curves for New Brunswick are repeated on each panel for comparison purposes since 

they are the target distributions; they appear as gray dotted lines. 

In the following, we express the distributions in term of survival functions. These 

functions are obtained by simple arithmetic as S,(t) = 1 — Fm(t) and S,(t) = 1 — F,(t) 

where • stands for any common index defined previously. 

Throughout this section, we choose the upper bound U = 90 and we fix T — 85. Denote 

by Si(tj the target distribution and let Sx(t) and S\(t) be the K M E and the W K M E 

respectively. The measure of performance considered will use the area between our estimate 

and the true survival function: 

Ax= [T \Sx(t)-Si(t)\dt and Al = F \Sx{t) - Sx{t)\dt. . 
Jo Jo 

Table 4.6 shows 100Ax/A\, the ratio of these areas. Values above 100 mean that the 

W K M E performs better than the KME. Table 4.6 also shows the average weight allocated 

to each population under the three scenarios considered. Simulations are performed for 

n 6 {10,25,100} and each scenario is based on 10000 repetitions. For Simulation 3, we can 

distinguish between the weights allocated to men and women by their font: the weights for 

males appear in italics. 

Under all scenarios, the W K M E yields a more precise estimate than the usual Kaplan-

Meier estimate. The improvement is small for the males, but substantial for estimating the 

survival of females from New Brunswick, with a gain exceeding 50% in some cases. This 

might mean that the survival of the women are more similar across provinces than that of 

men, although it is not easily seen from Figure 4.5. 
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Figure 4.5: Survival functions of Canadians as taken from the life tables of Statistics Canada (2006). Survival functions are 
available for males and females of each province. The curves for New Brunswick are repeated as gray dotted lines on each 

. panel to facilitate comparisons since they are the populations of interest. 
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1000 x 
n 100 4^ X N B X N F X N S X Q C XoN X M B XsK X A B X B C 

10 101 349 82 83 80 77 85 -84 81 79 
Males 25 101 346 91 84 83 76 86 .82 78 75 

100 101 350 109 87 82 71 87 79 70 65 
10 146 438 65 66 68 67 72 78 73 73 

Females 25 153 376 82 79 78 76 80 77 77 75 
100 151 359 98 87 77 78 79 75 74 74 

10 146 365 
22 

47 
22 

51 
22 

52 
22 

53 
22 

55 
22 

60 
22 

58 
22 

59 
22 

Males & 25 148 284 ' 49 54 61 59 57 64 64 69 
Females 25 148 25 25 25 25 25 25 25 25 25 

100 144 271 48 59 73 76 64 79 81 94 100 144 
15 15 15 15 15 15 15 15 15 

Table 4.6: Relative performance of the weighted Kaplan-Meier estimate compared to the Kaplan-Meier estimate as measured 
by lOOAi/'A\. Average MAMSE weights are also shown, but they are multiplied by a factor of 1000 for easier reading. In the 
simulation with males and females, the average weights in italics refer to the male populations. Note that U = 90, T — 85 
and that all figures are based on 10000 repetitions. 
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Chapter 4. MAMSE Weights for Right-Censored Data 

Note the difference in performance between the Females and the Males & Females sim­

ulations: using more populations did not seem to improve the performance and may even 

have worsened it. Intuitively, calculating the MAMSE weights has a cost in effective sample 

size. When the populations' distributions are close to each other, this cost is recovered and 

the quality of inference is improved. Otherwise, the performances may degrade. Figure 4.5 

shows how the survival functions of men and women differ. The additional information 

contained in the males survival seems insufficient to recover the cost of using them. Their 

dissimilarity is also visible through the smaller weights allocated to the male populations 

on average when compared to the females in that simulation. 

It is interesting to note that the weight allocated to female populations of interest seems 

to decrease as the sample size increases. In the Males & Females scenario, notice also the 

small magnitude of the weights allocated to men. As n increases, the dissimilarity between 

the survival distributions becomes more certain. 

Figure 4.6 depicts typical estimates obtained in the simulations. The W K M E is typically 

more precise than the usual K M E , however, some exceptions arise where the area between 

the K M E and the true distribution is smaller than A\. Notice once again that using 

the weighted Kaplan-Meier estimate produces a smoother curve than the K M E since the 

function has more jumps. 

The MAMSE weights allow us to build a weighted Kaplan-Meier estimate that exploits 

information from similar populations. For the problem of estimating the survival of Canadi­

ans from New Brunswick, the weighted Kaplan-Meier estimate features better performance 

than the usual Kaplan-Meier estimate in all scenarios considered. The W K M E may be an 

alternative to consider when data from similar populations are easily available, or when one 

is interested in a subpopulation of a larger group as is the case for this simulation. 
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Females Males and Females 

Area weighted =0.88 

Area normal =2.92 

Area weighted = 1.63 

Area normal =2.35 

Area weighted =0.71 

Area normal =2.34 

Area weighted = 1.05 

Area normal = 1.66 

Area weighted =0.78 

Area normal = 1.40 

Area weighted =0.52 

Area normal =0.85 

40 60 
Age at death (Years) 

80 40 60 
Age at death (Years) 

80 

Figure 4.6: Typical examples of estimates under different scenarios. Note the increased num­
ber of steps of the weighted Kaplan-Meier estimate (dashed line) which makes it smoother 
than the usual Kaplan-Meier estimate (plain black line). The true distribution appears as 
a smooth gray curve. 
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Chapter 5 

MAMSE Weights for Copulas 

Copulas are distribution functions with uniform margins, but most importantly, they are a 

tool for expressing the dependence structure of multivariate distributions. 

In this chapter, the MAMSE weights are extended to multivariate data using copulas. 

The empirical copula, a nonparametric estimate of the copula based on the ranks of the 

data, is used for that purpose. 

After reviewing the theory related to copulas, we define the MAMSE weights using 

the empirical copula. The nonparametric weights obtained are then used to define a mix­

ture of empirical copulas which yields weighted coefficients of correlation. The weighted 

pseudo-likelihood, an extension of the pseudo-likelihood, is proposed and shown to pro­

duce consistent estimates when used in conjunction with the MAMSE weights. Simulations 

evaluate the performances of the maximum weighted pseudo-likelihood estimate and of the 

weighted coefficients of correlation. 

5.1 Review of Copulas 

Let X be a p-dimensional vector with continuous distribution i?(x) and continuous marginal 

distributions G i ( x i ) , . . . , Gp{xp). The dependence between the elements of X is best de­

scribed by its underlying copula, a cumulative distribution function with uniform marginals. 

Sklar (1959) showed that all multivariate distributions admit the representation 

H {[xu . . . , xp]T) = C {G x(xi),..., Gp(xp)} 
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where C is a CDF with uniform margins called a copula. Any continuous distribution H is 

associated with a unique copula C. 

If hi,..., hp are one-to-one increasing functions, then the unique copula associated with 

the distribution of Y = [hi (X\),..., hp(Xp)]J is the same as the copula underlying the 

distribution of X = [X\,..., Xp]T. 

C o e f f i c i e n t s o f C o r r e l a t i o n 

The expression "coefficient of correlation" typically refers to an empirical estimate of the 

dependence between two variables. These statistics however estimate population values 

that are also called "coefficients of correlation". For instance, the Pearson correlation of a 

bivariate distribution H(x, y) with marginal distributions F(x) and G(y) is given by 

where px and ax are the mean and the variance of F(x) and similarly for G(y). 

Pearson's correlation is a parameter of the multivariate normal model and it is an 

efficient measure of dependence under that model. However, Pearson's correlation is not 

a good measure of dependence in a general setting. In particular, the range of values for 

Pearson's coefficient is limited by the distribution of the margins F and G. How can one 

interpret a correlation of 0.80, say, when it could be the maximal value for r given the 

marginal distributions at hand? Moreover, a monotone transformation of the variables will 

typically affect r. 

Better measures of correlation are invariant to monotone transformations of the data. 

Spearman's p and Kendall's r are well-known such coefficients. Let C(u, v) denote the 

unique copula associated with H(x, y). Then Table 5.1 gives the population value of different 

coefficients of correlation, including p and r. These coefficients depend only on the copula 

C, hence they are invariant to a monotone increasing transformation of the margins. The 
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empirical estimates of the coefficients of correlation in Table 5.1 are based on ranks; they 

are presented in Section 5.2 

Usual Name Population Value 

Spearman 

Kendall 

Gini 

Blomqvist 

Blest 

Symmetrized Blest 

Table 5.1: Population value of different coefficients of correlation. 

More details on Spearman's p, Kendall's r, Gini's 7 and Blomqvist's 6 can be found 

in Nelsen (1999). Blest's coefficients were first introduced by Blest (2000), then further 

developed by Genest & Plante (2003). Pinto da Costa & Soares (2005) studied the same 

coefficients of correlation and rediscovered independently some of the results published by 

Genest & Plante (2003). 

Families of Copulas 

A number of families of copulas have been studied in the literature. The books of Joe (1997), 

Nelsen (1999) and Cherubini et al. (2004) present the most common ones, and discuss meth­

ods for constructing copulas. Note in particular that building a copula in more than 2 di­

mensions is not always an easy endeavor as not all lower dimensional copulas are compatible 

p = 12 J j uvdC{u,v) - 3 

T^iJJ C(u,v)dC(u,v) - 1 

7 = / j I it + v — 1| — \u — v\dC(u, v) 

* = * C | ' i , i ' | - l 

v = 2 - 12 j J (1 - ufv dC(u, v) 

i = -2 + 12 J J m;(4 -u-v) dC(u, v) 
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with each other. 

Let us introduce the families of copulas that will be used for simulations in Section 5.9. 

N o r m a l C o p u l a 

The copula underlying the Normal distribution does not have a closed form but can be 

expressed as follow. Let i/i;(x) be the CDF of a multivariate Normal with mean 0 and 

covariance matrix E. In addition, suppose that the diagonal of E contains only ones, hence 

E is a correlation matrix and the margins of H% are J\f (0,1). If $(x) = P(Z < x) for 

Z ~ JV(0,1), then 

C E ( u ) = HX{$-1(U1),...,<P-\UP)} 

is the copula underlying H%. In p dimensions, the Normal copula depends on p(p — l)/2 

parameters which make E positive definite. In 2 dimensions, it depends on one parameter, 

r € (—1,1). The limiting cases where r = ± 1 corresponds to perfect linear concordance or 

discordance. Independence is given by r = 0. 

Under the bivariate Normal model, the population values of p and r are 

p = — arcsin (^-] and r = — arcsin(r). 

Simulating the Normal copula can be done by generating a multivariate Normal, then 

applying the inverse transformation $ _ 1 to its marginal values. 

F a r l i e - G u m b e l - M o r g e n s t e r n C o p u l a 

The Farlie-Gumbel-Morgenstern (FGM) copula (see Nelsen (1999) page 68) is parametrized 

by 9 € [—1,1] and written 

CQ(U, V) = uv + 9uv(l — u)(l — v). 
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Its simple closed form expression is convenient, but it does not span a great range of depen­

dence. In particular, p = 9/3 under that model, hence the absolute value of Spearman's p 

is at most 1/3. 

With the simplicity of its closed-form expression, the FGM copula is often used for 

illustrative purposes in the literature. However, it is not a very flexible model since it 

features a limited range of dependence. Hence, it is rarely used as an inferential model in 

practice. 

Simulating a datum (U, V) from a FGM copula can be done by generating a first uniform 

variate (V), then transforming a second uniform variate (W) by inverting the CDF of the 

conditional distribution of U given V. This yields a quadratic equation whose root of 

interest is 

-{1 + q(l - 2V)} + y/{l + Q(1 - 2V)Y - 4a(l - 2V)W 
: •• -2a(l -2V) 

Genest k, MacKay (1986) present a recipe to build numerous families of copulas that are 

called Archimedean copulas. Many important families of copulas are Archimedean. Chap­

ter 4 of Nelsen (1999) is devoted to the construction of such copulas and to the study of 

their properties. 

The next three families of copulas are particular cases of Archimedean copulas. An 

algorithm to produce pseudo-random variates from these distributions is given by Genest 

& MacKay (1986). 

Clayton Copula 

The Clayton copula was introduced by Clayton (1978) and is often used in survival anal­

ysis (see Oakes (1986) for instance). The bivariate Clayton family is parametrized by 

9 6 [—1,0) U (0, oo), the limiting case where 9 —> 0 corresponding to independence. The 
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expression for the copula is 

C$(u, v) = max } 
F r a n k C o p u l a 

This family was first discussed by Frank (1979) and is indexed by one real parameter, 

9 G (—oo,0) U (0, oo). The limiting case where 9 —> 0 corresponds to independence. Its 

The Frank copula is the only radially symmetric Archimedean copula. Its shape is akin 

to the Normal copula. 

G u m b e l - H o u g a a r d 

The Gumbel-Hougaard family is one of three copulas that can be a limit distribution for 

extremes and is hence used to model data of that.type. Indexed by 9 G [1, oo) it is written 

and the choice 9 = 1 corresponds to independence. 

The families of copulas presented in this section are absolutely continuous and hence admit 

a density function, as long as we omit limiting cases of perfect concordance or discordance 

where the distributions collapse to a line. 

The existence of a density function is less clear for the Clayton, Frank and Gumbel-

Hougaard copulas. Genest & MacKay (1986) show that all bivariate Archimedean copulas 

can be factorized as a mixture of two components, one absolutely continuous, the second 

singular on a line that they describe explicitly. From their result, it is straightforward to 

CDF is 
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verify that the singular part of the three Archimedean copulas presented in this section has 

mass 0, hence that they are absolutely continuous. 

5.2 Notation and Empirical Estimation 

Suppose that p-dimensional data are available from m different populations believed to have 

similar dependence structures (i.e. similar copulas). For any fixed k, we observe njfc data 

points from Population i. Explicitly, 

are observed where Xjj = [Xij\,... ,Xijp]T is a vector in p dimensions. By Sklar's (1959) 

Theorem, there exists a unique copula underlying the distribution F J ; we denote it by Cj(u), 

u = [u\,... ,up]T being a vector in [0, l]p. That unique copula is a cumulative distribution 

function defined on the unit cube such that • . 

list. Assume that the {Fj} are continuous, and hence ties cannot occur with probability 1. 

The empirical copula, defined on the ranks of a sample, is 

for u = [u\,... ,up]T. The indicator variable !(•) is equal to one if all the elements of its 

argument are true and equal to 0 otherwise. The empirical copula puts a weight of 1/njfc 

Fj(x) = Ci {Gii(xi),... .,Gip(xp)} 

where Gn,..., GiP are the marginal distributions of Fj. 

Let R^- = [R-iji, • , Rijp] be the ranks associated with the vectors X y , j = 1,..., njfc. 

For fixed i and t, the list of values Xm,..., Xinike is sorted and Rj?-t is the rank of X^ in that 
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on the points of the grid 

1 2 
1} X ••• X 

corresponding to an observed combination of ranks. There is exactly one such point in every 

(p — l)-dimensional slice of the grid (rows and columns in 2 dimensions). Consequently, 

almost surely as k —> oo. Fermanian et al. (2004) show that y/nik{Cik(u) — Cj(u)} con­

verges weakly to a Brownian sheet with mean zero and a variance that depends on Cj 

and its partial first-order derivatives. Although they hold for an arbitrary number of di­

mensions, the results of Fermanian et al. (2004) are presented for bivariate copulas only. 

Tsukahara (2005) credits Fermanian et al. (2004) for the discovery and expresses the same 

results in p dimensions. 

Remark 5.1 LetUi(u) be a p-dimensional centered Gaussian random field with covariance 

function 

where A is the component-wise minimum. Such a random field is called a p-dimensional 

pinned Ci-Brownian sheet. • 

Theorem 5.1 (Tsukahara (2005)) Assume that C;(u) is differentiable with continuous 

partial derivatives dCi(u)/dug for 1= 1,... ,p and let [1, ue, 1] T represent a vector of ones, 

the univariate marginals of the empirical, copula C{k are uniformly distributed on the points 

{l/nik,2/nik,...,l}. 

Suppose the {nik} are strictly increasing with k. Deheuvels (1979) shows that 

C i ( u A v ) -Ci(u)Ci(y) 
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except for the Ith element who is equal to the £th element of u. Then the random variable 

y/n^{Cik(u) - Ci(u)} 

converges weakly to the random field 

W i ( u ) - ^ | ^ C i ( u ) } w i ( [ l , U < , l ] T 

as k —> oo. 

Remark 5.2 Let u € [0, l ] p and = [1, U£, 1]T for some £ e {1,... ,p}. For the Brownian 

sheet defined in the previous remark and 1 < I < £ < p, we have: 

vax{Wi(u)} = Ci{u) - Qiu)2 = Ci(u){l - C^u)} 

var{Ui{ve)} = Ci(vi){l-Ci{ve)} = ue(l-ue) 

cov {Wi(u),Wi (v<)} = Ci(u) - Ci (u) u < = a(u) ( l - u<) 

cov{Wi(v;),tVj(v£)} = Ci([l,ui,l,ue,l}T) ~ um 

where [1, itj, 1, ug, 1]T is a vector of ones, except for the elements I and I that are equal to 

the Ith and Ith element of u respectively. 

To define the MAMSE weights in Section 5.3, we need an estimate of the asymptotic variance 

of the empirical copula. 

Remark 5.3 From Theorem 5.1, we have that 

n-k{Cik(u) - Ci(u)}] -> var jwi(u) "53^ Ci(u)Ui (v^)| 

W {Ki(n)} + 2 J2 ITT" C I ( U ) | {jT Q ( U ) I C 0 V { U I ( V / ) ( V ' ) } 

i<i<e<P ^ U e ) V ui ) 

+ £ { ^ C i ( u ) j v a r { ^ ( v , ) } - 2 ^ | ^ - C I ( u ) | cov {^(u) ,^ (v£)} 

var 
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The expressions for the variances and covariances from Remark 5.2 can be substituted in 

the expression above. Note that the only term that does not depend on derivatives o/Cj(u) 

is 

var{Wi(u)} = C i ( u ) { l - C i ( u ) } . 

Coefficients of Corre la t ion Based on Ranks 

The measures of dependence presented in Table 5.1 can be estimated from a sample by using 

ranks. Their classical estimates appear in Table 5.2. Note that we use a simplified notation 

where for a fixed population i and for a fixed k, we write n — no-, C{u\,U2) = Cifc(u) and 

(Rj,Sj) = R^-. That simplified notation is the most commonly seen in the literature. 

Usual Name Empirical Estimate 

Spearman Pn~ 3 n _ 1 + YJX=\ RiSt 

Kendall Tn = G ) - 1 Ei<i<j<n sign(Ri - Rj)sign{Si - Sj) 

Gini In ~ |n2/2J Si=l \Ri "b Si n 1| \Ri Si\ 

Blomqvist Pn = 4C(H)-l 

Blest K _ 2n+l 12 1 1 p \ 2 c 
~. n-1 n(n+iy2{n-l) ^i=lKn ^ 1 - " - z j ^ i 

Symmetrized 
Blest ln = 4n+5 , 6 y^n r, Q (A Ri+Si\ 

n-1 1 n(n+l)(n-l) 2~>i=l r i t J l \ L n+1 J 

Table 5.2: Empirical estimates of different coefficients of correlation. 

Rescaled Ranks 

The empirical copula allocates a non-null weight to points that are on the boundary of [0, l ] p 

even though that set has probability 0 under a continuous copula. In some applications, we 

need to evaluate functions that are well defined on (0, l ) p , but that may have asymptotes 
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close to the boundaries of the p-dimensional cube. 

To avoid such problems, one can use a rescaled empirical copula where the mass of 

R^/njfc is rather allocated to 

T)fc 1. Tjfc 

Y * * = r i Z _ 5 or Y j = - ^ - . 
J nik

 J nik +1 

Hence, the rescaled empirical copula allocates an equal mass to some points of the grid 

0.5 nik -0.51 f 0.5 - 0.5 
x • • • x 

or 

X * * * X 
n i f c + 1' " ' ' nik + 1 J " " [ nik + 1' " ' ' nik + 1 J ' 

where the function of interest is well-defined. 

Remark 5.4 Let C*k denote a rescaled empirical copula. The asymptotic behavior of C*k 

is typically identical to that of'Cik since 

sup'\C.;k(u)-Cik(u)\< — ->0 
ue[o,i]p nik 

as k —-> oo. 

The Pseudo-Likelihood 

Methods have been proposed for fitting a family of copulas to the data. A review of such 

methods can be found in Cherubini et al. (2004). Let us consider the pseudo-likelihood 

originally proposed by Genest et al. (1995). 

Suppose that the family of copulas C(u\9), 8 E 0 admits a density function c(u|6^). To 

fit that family of distributions to the data from Population i, Genest et al. (1995) suggest 
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maximizing the pseudo-likelihood, 

i=i 

where are the reseated ranks described above. The resulting maximum pseudo-likelihood 

estimate is a consistent estimate of the true parameter t9 0 for which C(u|#0) = Cj(u). 

Alternatively, the log-pseudo-likelihood can be written 

*(0) = f > g c ( Y £ . | 0 ) = /togC(u|0)dC4(u) 

where C*k(u) denotes the empirical copula defined with the rescaled ranks Y ^ . 

5.3 Definition of the M A M S E Weights for Copulas 

Univariate MAMSE weights are designed to yield a mixture of distributions close to the 

target distribution F\, but less variable than its empirical distribution function. In the 

context of copulas, an extended version of the MAMSE weights can aim at choosing a 

mixture of the empirical copulas, 

(5.1) 
i=l 

with Aj > 0 and 1 TA = 1, that is close to Ci , but less variable than C\k- Let us define 

«(A) = / |Cife(u) - CXk(u)\2 + J2 A2var{Qfc(u)} 
t=i 

dM f c(u) (5.2) 

where Mk is a discrete probability measure allocating a weight of l/np

lk to every point of 

the grid 

ffl> = LL-£-
\n\k nik nik n^ J 
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Remark 5.3 provides an approximation to the variance of yjriik Qfc(u). However, the 

expression depends on the derivatives of Ci(u), the true unknown and unknowable copula. 

To estimate these derivatives, we could use the data and either assume a parametric model 

for each population, or use smoothing techniques. Either of these choices involves many 

degrees of freedom in the selection of families of distributions or basis functions for instance. 

Our goal is to show that the concept of the MAMSE weights has the potential to improve 

the quality of the inference while at the same time keeping their computation feasible. Thus 

at this stage we choose on the basis of Remark 5.3, the simple compromise approximation, 

<™{Ctk{n)} « var{Cifc(u)} = — C i f c(u){l - Cik(u)}, (5.3) 
n>ik 

which corresponds to the only term in Remark 5.3 that does not involve a derivative. We 

recognize that incorporating other terms in that approximation may improve ̂ the perfor­

mance of the weights but leave'that and the investigation of the computational feasibility 

of doing so to future work. As we will show, the choice made above does demonstrate the 

potential value of the MAMSE weights in this context. 

Note that the theoretical results in the following sections hold with a different penalty 

term as long as the property expressed in Lemma 5.1 is preserved, i.e. as long as 

y*var{C l f c(u)}dM f c(u)-0 

as k —> oo. The property stated in Theorem 5.2 should also hold to insure the proper 

convergence of the algorithm calculating the MAMSE weights. 

The value of A minimizing the objective function Pfc(A) defined in (5.2) with the sub­

stitution (5.3) are called the MAMSE weights and denoted Xk(oj) = [\ik(ui),..., Amfc(cj)]T. 

The weighted empirical copula obtained using MAMSE weights will be written 

m 
Ck(u) = J^\ik(u)Cik(u). (5.4) 

i=l 
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5.4 Computing the M A M S E Weights for Copulas 

The algorithm proposed in Section 2.4 applies to the MAMSE weights for copulas. 

All copulas are constrained to be on the. [0, l] p cube and have uniform marginals. For 

that reason, there is no need for preprocessing in this case as the domain of all distributions 

overlap at all times. 

To prove the convergence of the algorithm, it is sufficient to show that Assumption 2.1 

is satisfied when the MAMSE weights are defined as in Equation (5.2). 

Theorem 5.2 Assumption 2.1 is satisfied for the definition of MAMSE weights suggested 

in Section 5.3, that is 

J vab{Cik(u)} dMk(u) > 0 

for i e {1,... ,m}. 

Proof of Theorem 5.2. Consider the term 

:{Cik(u)}dMk(u) = [ — Cik(u){l-Cik(u)}dMk(u) 
J nik 

van 

for some i = 1,... ,m. Note that the measure Mk(u) gives a weight l/n^. to each point 

of the grid Qk. The empirical copula Ci(u) is greater than 0 and less than 1 for all points 

of the grid Qk, except for the point 1 and possibly for a few "slices" (rows and columns in 

2 dimensions) of points close to the axes when n{k < n\k. In all cases, 0 < Q(u) < 1 for 

many u € Qk, meaning that Cjfc(u){l — Qfc(u)} > 0 for those u. Consequently, 

— / Cifc(u){l - Qfc(u)}dMfc(u) > V Cifc(u){l - Cik(u)} > 0, 
nikJ n i f c n i f c u t e f e . 

the desired result. • 
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5.5 Uniform Convergence of the MAMSE-Weighted 

Empirical Copula 

We now prove a sequence of lemmas that will build up to showing that the MAMSE-weighted 

empirical copula converges to the copula underlying Population 1. For that purpose, we 

suppose that the {n^} are increasing with k and that —•> oo as k —> oo. 

Lemma 5.1 

/{< 'Clk{u) - Ck(u)} dMfc(u) - 0 

almost surely as k —> oo where Cfc(u) is defined as in (5.4)-

Proof of Lemma 5.1. The choice of A = [1,0,..., 0]T yields a larger value of -Pfc(A) than the 

MAMSE weights because of the optimization involved in the definition of the latter. Hence, 

for any LO € fl, 

J {C l f c (u)-C f c (u)} 2 dMfe(u) <Pk{\k{Lo)} <P f c([l,0,...,0]T) 

= — /-Ci f c(u){l - C l f c(u)}dM f c(u) < J - - 0 
n\k J 4nife 

as k —> oo. 

Lemma 5.2 Let u, v € [0, l] p be such that V£ < ug for £ — 1,... ,p. Then 

0 < C l k ( u ) - C l k ( , ) < ± ^ - V e ) ] 

nik 

where \x\ denotes the smallest integer greater or equal to x. 

Proof of Lemma 5.2. Consider the vectors u, v G [0, l] p with vi < for £ = 1,..., p. Then, 

0 < Cifc(u) - C i f c(v) 

nik ^ - f 
1 € {[0,ui] x ••• x [0,up]} 

nik 
- 1 ^ie{[0,Vl}x 

nik 

x [0,«p]} 
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^ nik P i 

~ nik ^ ^ I 

TDK p r e 

nik 
1 nik P / pre 

= - E E * — 

^ 1 Wjfc E 1 

e=i I l K .?=! 

p f c 

* = i nik 

for any such vectors. 

Let Qk be an extended grid that includes the axes: 

Qt . = j o , — i ) 
1 2 

x ••• x <J0, , ,...,1 
n\k nik 

Lemma 5.3 

sup 
ue[o,i]p 

C i f c ( u ) - C f c ( u ) 
P 

< — + sup 
nik ueg*k 

C i f c ( u ) - C f c ( u ) 

/or aZZ fc and u e fl. 

Proof of Lemma 5.3. For a fixed fc, | C i f c ( u ) - C K ( u ) | is a bounded function on the compact 

set [0, l] p and hence its maximum is attained. Let v 6 [0, l] p be a point, where that maxi­

mum is achieved. We treat two cases. 

Casel: C u ( v ) >4 ( v ) . ' 

Let v* = [v*,..., v*]T be defined by v| = |_nifc^J/nifc> where [x\ denotes the largest 

integer smaller or equal to x. Then v* £ Qk is on the same "plateau" of the multivariate 
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step function C\k(u) as v, meaning that 

c w v * ) = e l f c ( v ) . 

Moreover, since C ^ ( u ) is a nondecreasing function and v* < v, we have 

4(v*) < Cfe(v). 

Recalling that v is the point where the difference between C j t ( u ) and C i f c ( u ) is maximized, 

we can write 

|Cife(v) - 4 ( v ) | = Clk(v) - Cfc(v) < Clk(v*) - Cfc(v*) 

< sup 

< — + sup 
nik ueg*k 

C i f e ( u ) - C f e ( u ) 

C i f c ( u ) - C f c ( u ) 

meaning that the maximum occurs at a point of the grid Q\. • 

Case 2: 'C 1 t(y) < C,fv). 

Let v* = [•«*,..., v*]T be defined by v\ — \nikV(]/nik, where \x] denotes the smallest 

integer greater or equal to x. Then, v* e Qk and 

Cfc(v*)>Cfc(v) . 

since C f c ( u ) is a nondecreasing function and v* > v. By Lemma 5.2, 

c u ( v n - c ^ ) < ± l n i k i v * - v e ) ] <^ 
j~i nlk nik e=i 
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Recalling that v maximizes the difference between Cifc(u) and Cfc(u), we can write 

|Ci f c (v)-C f c (v)| = Ck(v)-Clk(v) 

< - Cfe(v*.) - C l f c(v*) + P 

P 
< h sup 

Combining Cases 1 and 2 yields the desired result. 

Lemma 5.4 L e i u = [ i t i , . . . , up]T G [0, l]p, then 

0 < C'jfe(u) < min it̂ . 
<?=I,. . . ,P 

Proof o/ Lemma 5.4- For each ^ G {1,... ,p}, we have 

Cik(u)-Ck{u) 

nik P / 
ijC 1 P: •ijt 

nik J nik y nik 

We get the desired result by noting that these p inequalities have to be satisfied simultane­

ously. H 

Lemma 5.5 We have 

almost surely as k —> oo. 

sup Ci f c (u)-C f c (u) 

Proof of Lemma 5.5. Let e > 0. For any given fc G IN, let = [ i t^ i , . . . , Ukp]T be the point 

of the grid (/£ where |Cifc(u) — Cfc(u)| is maximized. Let 

Ak 

Ek 

Ck 

{w G fi : Cifc(ufc) - Cfc(ufc) > e} , 

|w G fi : Cfc(ufc) - Cifc(ufc) > ej , 

= | C J G fi : Ufc G 1.1 

117 



Chapter 5. . MAMSE Weights for Copulas 

The negation of Lemma 5.5 is 

which will happen if and only if 

Ak U Bk i.o. 

(Ak UBkD Cf) U (Ak \JBkn Ck) i.o.. 

We will show that neither of the two events in the decomposition above can occur infinitely 

often. 

Case 1: Ak[jBkC\ Cg. 

We have 

< |Ci/c(ufc)| + Cfc(ujfc) 
m 

= Cifc(ufc) + 53 \k{u)Cik(\\k) 

min ' 
<e{i,...lP} 

i=i 
< 2 min uk£ < e 

by Lemma 5.4 since the MAMSE weights sum to 1. Consequently, Ak\jBkr\C^ = 0 for all k. 

Case 2: A f e U 5 f e n Ck. 

Let v be a vector of integers such that \/n\k = uk; we temporarily omit the index k for 

notational simplicity. Let also w = [w\,..., wp]T be a point from the set 

W= 0,1,..., nxk 

2p 
x • • • x 4 0,1 [2p 

The points (v — w)/nik belong to Qk since uk G [e/2, l] p . Next, we show that 

nik 
v - w \ - / v - w 

wife 2 n l f c 
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by treating two subcases. Note that the last inequality holds because 

1 V - P nik 
[2p - 2 

Subcase A: Ak!~)Ck-

From the fact that the copulas are monotone functions, we get: 

V — W \ / V 
Ck ( < Ck[ ) = Cfc(ufc). 

nik J \nik. 

Then from Lemma 5.2, 

nik 

nik J \nikj nik 
= Cik(uk) -

nik 

Combining the two inequalities yields 

C Ik 
v — w 

nik 
— Ck v — w 

nik 
> Cik(uk) - Cfc(ufc) 

nik 

> e 

> -
~ 2 

nik 

> 0. 
™ifc 

Subcase B: E>k H C K . 

By Lemma 5.2, we have 

— Ck v — w 

nik 
= y\ Aifc(w) \ Cik [—) - Cik 

i=l n % k e=l nik 

v — w 

nik 
v 

S Hik S 
njkWj 

nik 
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< ( n i k W £ i i ) = W ^ | P 

Hence, 

V "ife / \nikj n^ ~inik nifc ~ i U i k 

Since the empirical copula is a monotone function, we also have 

/v — w\ / v \ 
Cifc < Cife — = Cife(ujfc). 

V nik ) \nikj 

Let us consider only k that are large enough to make YliLiP/nik < e/2. From the two 

previous inequalities, we obtain 

ck (^) - Cik (l^L) > Ck(nk) - Cik(uk) - - £.JL 
\ nik J \ nik J ~ nik 

m 

"lfc f—f njfc 

2 nifc 

Combining subcases A and B yields 

PkW > f (4(u) - Cu(u)}2dM,(u) > i V f ^ - ^ 

The sum above corresponds to the Riemann sum of the multiple integral 

p \ 2 

f^'M^S'*) ivi" dVp = Kp-
The number is a fixed positive constant for any fixed p. 
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As a consequence, there exists a ko such that for all k > ko, Pk(X) > Kv/2 > 0, a 

contradiction with Lemma 5.1. We must thus conclude that Ak U Bk fl Ck occurs at most 

a finite number of times. 

Since the two cases above do not occur infinitely often, we conclude that Ak U Bk occurs at 

most a finite number of times. Hence, 

sup C i f c ( u ) - C f c ( u ) 0 

almost surely as k —• oo. 

Lemma 5.6 

almost surely as k —> oo. 

sup 
U6[0,1]P 

Clk(u)-Ck(u) 

Proof of Lemma 5.6. The result follows from Lemma 5.3 and Lemma 5.5. 

Theorem 5.3 We have uniform convergence of the MAMSE weighted empirical copula: 

sup 
ue[o,i]p 

C f c ( u ) - Cx(u) 

almost surely as k —> oo. 

Proof of Theorem 5.3. Consider the decomposition 

4 ( u ) - C i ( u ) < C f c ( u ) - Cufefu) + C i f c ( u ) - C i ( u 

that holds for all u e [0, Then 

sup 
U 6 [ 0 , l ] p 

4 ( u ) - d ( u ) . < sup { | c f c ( u ) - C i f c ( u ) + C i f c ( u ) - C i ( u ) | } 
uG[0,l] p U U 
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< sup C f c (u ) - C i f e (u ) + sup C i f c ( u ) - C i ( u ) 
U £ [ 0 , 1 ] P . . W n - , 1 „ ue[o,i]p 

0 

almost surely as fc — oo. Indeed, the first term goes to 0 almost surely by Lemma 5.6 and 

the expression 

sup 
ue[o,i]p 

| C i f c . ( u ) - C i ( u ) 

converges almost surely to 0 as k —> oo, see e.g. Expression 3.1 of Deheuvels (1979). 

Corollary 5.1 Let TJk be a sequence of random vectors with distribution Ck(u) and TJ a 

.random vector with distribution C i ( u ) . Then XJk converges to U in distribution. 

Proof of Corollary 5.1. For almost every a; € fl, the sequence of distributions Ck(u) con­

verges to C i ( u ) for all u, hence the definition of weak convergence is respected with prob­

ability 1. • 

Corollary 5.2 If g(u) is a bounded function, then 

jg(u)dCk(u) = E{g(XJk)} - E{g(V)} = J 5 ( u ) d d ( u ) 

• almost surely as k —> oo. 

Proof of Corollary 5.2. The result is a well known consequence of the weak convergence 

proved in Corollary 5.1, see page 164 of Durrett (2005) for more details. • 

5.6 Weighted Coefficients of Correlation Based on Ranks 

Coefficients of correlation based on ranks typically estimate a measure of dependence that 

depends on the copula of the underlying distribution. Examples of such coefficient are 

provided in Tables 5.1 and 5.2. 

Suppose that bivariate data from m populations are available. We suggest the use of 

the MAMSE weights to create a weighted coefficient of correlation and show in this section 

that it converges almost surely to the true correlation of Population 1. 
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Consider first Blomqvist's (3 and let /3;re be the Blomqvist coefficient based on the ranks 

of the sample XJI, . . . X j n . f c . The weighted Blomqvist's (3 is given by 

m 

Theorem 5.4 (3\k Pi almost surely as k —> oo. 

Proof of Theorem 5.4 As a direct consequence of Corollary 5.3, 

P\k = 4 ^ \ik(v)Cik 

almost surely as k —> oo • 

The remainder of this section will cover a general case that includes the other coefficients 

in Table 5.1 and 5.2, except for Kendall's r. The population version of Kendall's r depends 

on J C(u,v)dC(u,v). A weighted version of Kendall's r is achievable, but replacing both 

C(u,v) in this theoretical expression with mixture distributions will not yield a linear com­

bination like the other coefficients considered. The weighted Kendall's r hence requires a 

special treatment that is left to future work. 

Replacing the copulas by their empirical counterparts in Table 5.1 yields estimates of 

the correlation based on ranks. However, the expressions obtained typically differ from the 

usual estimates based on ranks and do not necessarily span the interval [—1,1], but rather 

an interval whose bounds tend to ±1 as the sample size goes to infinity. 

The classic formulas for the coefficients of correlation based on the ranks of the sample 
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X j i , . . . , X j n . f c will thus admit a representation of the form 

Kik = akJ J g(u)dCik(u) + bk (5.5) 

that estimates 

&ik = a J J g(u) dCi(u) + b. 

The coefficients an —> a and bn b as n —> oo are chosen to ensure that kik € [—1,1] for all 

sample sizes n^ . Moreover, the values ±1 occur only for perfect concordance or discordance, 

i.e. when the ranks are identical {Rkji = Rkj2) o r antithetic {Rk

3i = nik + 1 — Rkj2)-

The function g(u) is typically bounded and its functional form defines the coefficient of 

correlation at hand (see Chapter 2 of Plante (2002) for detailed explanations). 

Consider a particular case: for Population i and a fixed k, the empirical estimate of 

Spearman's coefficient, can be written 

_ 3 nik + 1 ^ 12nife Rkji Rjj2 

%k n i k - l (nik + l){nik - 1) nik nik 

= - 3 ^ + | + , u f ulU2dClk(u) 
no, - 1 [nik + l)("ifc - I) J 

and clearly has the same asymptotic behavior as —3 + 12 J u\u2 dCjfc(u). 

Let 
m 

^ A f c = E ^ik{u)kik 
i=l 

be a MAMSE-weighted coefficient of correlation based on ranks. 

Remark 5.5 The MAMSE weighted coefficients of correlations are invariant under mono­

tone transformations of the data. Indeed, both the MAMSE weights and the individual 

correlations are based on the ranks of the data which are invariant to such transformations. 

Next, we prove that the MAMSE-weighted coefficients of correlations are strongly con­

sistent estimates of the correlation in Population 1. 
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Lemma 5:7 

= J5(u)dCifc(u) Jff(u)dQ(u) 

almost surely as k —> oo for any bounded continuous function g. 

Proof of Lemma 5.7. By the uniform convergence of dk proved by Deheuvels (1979), the 

sequence of distributions Cjfc(u) converges to Ci(u) for all u and almost every to € fl. 

Consequently, Cik converges weakly to Cj. Since the function g is bounded, the almost sure 

convergence of the expectation follows (see e.g. Durrett (2005), page 164). • 

Lemma 5.8 The coefficient kik converges almost surely to 

Ki = a J g(u) dCi(u) + b, 

its associated population value. 

Proof of Lemma 5.8. Note that 

I kik Ki I — kik ~ | a J g{u) dCik(u) + fjj + | a J g(u) dCik(u) + 6 j - m 

(afe - a) Jg(u) dCik(u) + (bk - b) 

jg(u) dC i f c(u) - a J.g(u) dQ(u) + 6 -6 

< • |ajfc - a\ 

.0 

J g(u)dCik(u) +|6 f c -6| 

Jg(u)dCik(u)- Jg(u)dCi(u) 

almost surely as k —> oo since J g(u) dQfc(u) is bounded and by Lemma 5.7, the other term 

involving integrals tends to 0. • 
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Theorem 5.5 The weighted coefficient of correlation 

1=1 

almost surely as k —> oo. 

Proof of Theorem 5.5. The proof follows the same steps as that of Lemma 5.8 

I^Afc-^ll < k\k - { a / p ( u ) d C f c ( u ) + &j + J < ? ( u ) d C f c ( u ) + frj 

(afc - a) J g{u) dCk (u) + (6fc - 6) 

a y g(u) dCfc(u) - a 

Kl 

< \ak - a\ 

0 

y p ( u ) d C f c ( u ) + | 6 n -6 | 

y « ? ( u ) d c f c ( u ) - y 5 ( u ) d d ( u ) 

almost surely as k —» oo since g is bounded and J " g ( u ) d C K ( u ) converges to Jg(u) dCi(u) 

by Corollary 5.2. • 

Corollary 5.3 The MAMSE weighted versions of Spearman's p, Gini's 7 or Blest's v and 

£ are strongly consistent estimates of their corresponding population value. 

Proof of Corollary 5.3. Direct consequence of Theorem 5.5. • 

5.7 Weighted Strong Law of Large Numbers 

In Chapter 3, we proved a WSLLN for unbounded functions in order to prove the consistency 

of the weighted likelihood with MAMSE weights. In the next section, we propose the 

maximum weighted pseudo-likelihood estimate and prove its consistency. To do that, we 

first prove a weighted strong law of large number more general than Corollary 5.2 as it 
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holds for functions g continuous on (0, l)p with asymptotes at the boundary of the unit 

hyper-cube. 

Let C*k denote a rescaled empirical copula based on transformed ranks Y ^ as defined 

in Section 5.2. We let C*(u) = YA=I ^ik{u)C*k and propose to show that for a function g 

satisfying some regularity conditions, 

E ~ I > (Y&) = /9(n) dC*k(u) - /g(u) dC7 l ( u) 
i = i - l k j=i J J 

almost surely as k —> oo. 

Since we are now using rescaled copulas, let us first prove the following result. 

Lemma 5.9 

sup | C £ ( u ) - C i ( u ) | - > 0 
ue[o,i]p 

almost surely as k —> oo. 

Proof of Lemma 5.9. Remark 5.4 points out that 

sup \C*k(u) - C i f c(u)l < — - 0 
u6[0,l]P nik 

as k —> oo. Therefore, 

sup |CJE(u)-Ci(u) | < sup {|C f c*(u)-C f c(u)| + | C f c ( u ) - C i ( u ) | } 
uG[0,l]P ue[0,l]P J 

< sup | ^ ( u ) - 4 ( u ) | + sup | 4 ( u ) - d ( u ) | 
ue[o,i]p ue[o,i]p 

m 

< S U P \Gik(*) -Cik(a)\ + sup | C f c ( u ) - C i ( u ) | 
i = 1 ' ue[o,i]p ue[o,i]p 
m 

< S U P | .C ; f c (u ) -C i f c (u ) |+ sup | C f e ( u ) - C i ( u ) | - 0 

I = L U6[0,1]P U£[0 ,1]P 

as k —> oo by Remark 5.4 and Theorem 5.3. I 
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Proposition A-l(i) of Genest et al. (1995) provides a strong law of large numbers that 

we use to prove the weighted strong law of large numbers that we need. To simplify their 

notation, Genest et al. (1995) present their result with bivariate copulas, but we do not 

make this simplification here. 

Theorem 5.6 (Genest et al. (1995)) Let r(u) = u(l -u), 5 > 0, {qe,£ = 1,... ,p} be 

positive numbers satisfying Yle=i V % ~ 1 an<^ #( u) a continuous function from (0, l ) p to 

IR such that pi = f g(u)dCj(u) exists. If M < oo is a positive real number such that 

p 
\g(u)\<Ml\r(ue)ae 

t=\ ' 

with ai = (—1 + 6)/qe, then 

Rn = J g(u) dC7;fc(u) — pi 

almost surely as k — oo. 

A bounded function always satisfies the assumptions of Theorem 5.6 because n?=i r(ue)ae 

has a lower bound. Lemma 5.7 is thus a particular case of Theorem 5.6. 

Lemma 5.10 Let A be a cube in p. dimensions whose opposite corners are u\ and u2 with 

ui < u 2 , i.e. 

A = (tin,«2l] x • • • x (mp,u2p}. 

Let Ci(u) and C2(u) be p-dimensional copulas such that 

sup |Ci(u)-C 2 (u) |<e . 
U€[0,1]P 

Then, 
o p 

\dd{A)- dC2{A)\ < —. 
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Proof of Lemma 5.10. The coordinates of the corners of the cube can be re-expressed by 

replacing some elements of U i by the corresponding elements of 112. Let 5 C { l , . . . ,p} be 

a set of indices and v$ any vector such that 

Vi = 
Uu if i € S 

u-2i if i G Sc 

To calculate the probability of the cube, we can use the following development which is akin 

to the formula for the intersection of multiple sets: 

dC 1(A) = C 1 ( v 0 ) - X > ( v { i } ) + £ d ( v { i j } ) - • • • ± Ci (v { w } ) . 
i = l l<i<J<P 

Consider now the difference 

\dCi(A)- dC2{A)\ = Ci (v0) - C2 (v0) - ]T {Ci (v { l } ) - C2 (v{i})-} 
i = i 

+ E {Ci(vm)-C2(v{l,j})} 
l<i<j<p 

- • • • ± { C I ( V { 1 I . . . ) P } ) - C 2 ( V { 1 I . . . I P } ) } 

p 
< | d (v 0) - C2 (v 0)| + }2\Ci (v { l } ) - C2 (v { i } ) j 

i = i 

+ E l C l ( V f e } ) - C 2 ( v { l j } ) | 
l<i<j<p 

+ --- + | C 1 ( v { w } ) - C 2 ( v { 1 ) . . . , p } ) | 

< 2pe. . 

Since the sum above has 

terms each bounded by e. 

i = l 

129 



Chapter 5. MAMSE Weights for Copulas 

Corollary 5.4 Let B be a closed cube, 

B = [un,u2i]x •••x [uip,U2p\. 

Let C i ( u ) and C 2 ( u ) be p-dimensional copulas such that 

sup | C i ( u ) - C 2 ( u ) | < e. 
ue[o,i]p 

Then, 
cyp 

|dCi(5)- dC2(B)\ < —. 

Proof of Corollary 5.4- Apply Lemma 5.10 to the sequence of half-open cubes 

As = (itii - 5, U2\] x • • • x (uip - 5, u2p] 

with 5 —> 0. A similar proof holds for a mix of closed and open intervals. • 

Theorem 5.7 Let g(u) be any continuous function on (0, l ) p that satisfies the assumptions 

of Theorem 5.6. Suppose that the sample sizes —» oo for all populations. Then, 

0 < 7 (u ) d C j J (u ) - J < 7 ( u ) d C i ( u ) -

almost surely as k —• oo. 

Proof of Theorem 5.7. For t G IN, let Bt = [2~Vl - 2~*]p and 

, g(u) iiuEBt 

r t ( u ) = _ 
0 otherwise 

Since g(u) is continuous and Bt is a compact set, the image of rt is bounded. Suppose 

that T j ( u ) € [Lt, J7t]. By the Heine-Cantor Theorem, r t is uniformly continuous on Bt, 
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i.e. VeT)t > 0, 3<5r,t > 0 such that 

Vu, v G Bt, |u - v| < <5T,t ==> \Tt(u) - rt(v)| < eT)t. 

Let eTj = 2 - t and choose 0 < 8T:t < 2 _* accordingly. Let At be a partition of the interval 

[2-*, 1-2-*], 

A = {[2-*, (2)2"*]} U {( S 2- 4 , (s + 1)2"*], s = 2 , . . . , 2* - 2} . 

Then, the elements of 

At x ••• x At = {Au,...,AStt} 

form a partition of Bt of cardinality St = (2* — 2)p. Define 

M u ) = ^ ^ * l A s t ( u ) 
s = l 

where 
1 if u e A s t 

6 s t = inf s(u) a n d l ^ f u ) = 
y e A s t 1 0 otherwise 

Then, by construction sup u e [ 0 1 ] P |rt(u) — ht(x)\ < 2 * and 

5 ( u ) d C f c * ( u ) - J 5 ( u ) d d ( u ) (5.6) 

where 

T 3 

5 ( u ) d ^ ( u ) - | r t ( u ) d ^ ( u 

Tt(n)dC*k(u)- j ht(u)dC*k(u) 

J ht(u)dC*k(u)- J ^ ( u ) d C i ( u ) 
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n = 

/ ^ ( u ) d C i ( u ) - J r t ( u ) d C i ( u ) 

r t ( u ) d C i ( u ) - J g(u) d C : ( u ) 

We now prove that for any e > 0 and w in a subset of fi with probability 1, we can choose 

tw such that the five terms above are less than e/5 for all k > kw(tu)-

First note that 

J / i t ( u ) - r t ( u ) d C i ( u ) < y | ^ ( u ) - r t ( u ) | d C 1 ( u ) < 2 - t 

by construction. The same bound applies for T 2 and does not depend on or CJ. 

By Lemma 5.9, sup u e [ 0 1 ] P | C £ ( u ) — C i ( u ' ) | converges almost surely to 0. Therefore, 

3fin C fi with P(flo) = 1 such that for each u> G fin and any t, 3/c^j with 

sup | C f c (u ) - C i ( u ) | < 
UG[O,I]P 5 tmax(|f/t|, |Lt | )2 T + P 

for all k > ku,t- For any such k and w, Lemma 5.10 implies that 

dC*k(Ast) - dCi(Art) < 
2 p 

5 t max(|C^|,|L t|)2*+P 

for any s,t. Developing T 3 yields 

T* = 
St st 

b«dC*k(Ast) - £bst dC^Ast) 
S=l 8=1 
St 

< £ > • st\ • 
s=l 

< Stmax{\Ut\,\Lt 

1_ 
2*' 

dC^A*) - dCi(A s t ) 

2 P 

' 5 t max( | f / t | , |L i | )2*+P 

Therefore, 3*i such that 2 * < e/5 for all t > t\, i.e. T 2 , T 3 and T 4 are each bounded by 
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e/5 for any t > t\ and k > kWtt-

We can write 

s(u)lBc(u) dCi(u) < j |̂ (u)|lflc(u)dCi(u). 

The integrand on the right-hand side goes to 0 as t —> oo for each u 6 (0, l ) p . Hence, the 

dominated convergence theorem ensures that the right-hand-side expression goes to 0 as 

t —> oo (the bounding function is |<?(u)|). Therefore, there exists t2 such that T 5 < e/5 for 

all t>t2. 

Turning now to T\, Theorem 5.6 means that there exists fi^t C fi with P(fij ] t) = 1 such 

that for all u £ fi^t, 

^-E^ (Y&) = /9(n)dC*k(n) - /<?(u)dQ(u) 

as —> 00 . Consider a fixed 

w € fii = P) fii;t. 
i€{l,...,m},telN 

The intersection is over a countable number of sets of probability 1, hence P(fii) = 1. 

For any to £ fii, T\ is developed as 

r, = 
5(u)lBF(x)dCfc*(u) < / |0(u)|lBc(u)dCfc*(u) 

m \ ( \ nik ™ 1 nik 

i=i j=i i=i j=i 

The dominated convergence theorem says that 3t* such that 

|5(u)|lBc(u)da(u) < e/lOm 
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for all t > t*. Choose t > t% = maxi<j<m t*. Since u G f i j , such'that for all k > fc,^^ 

1 Uik r 
1 j=i 

e e 
H < - — • 

10m 5m 

Therefore, Vt > max( i3 , t*) , there exists k*t = maxi<i<m k^u such that 

Jg(u)dC*k(u)- J r t ( u ) d C f c * ( u ) < 

for all k > k*t. 

In conclusion, for any ui e fi0 fl fix and any e > 0, we can choose tw = max(ti, t2, £ 3 , t*) 

that yields inequalities showing that 

s ( u ) d C f e » - y ^ ( u ) d C i ( u ) < e 

for all k > ku(tu) = max(ku>ttu,k*ttu). In other words, the left hand side of expression (5.6) 

converges to 0 for any u G fi0 D f i i with P( f i 0 n f i i ) = 1, i.e. it converges almost surely. • 

5.8 Strong Consistency of the Weighted Pseudo-Likelihood 

Section 5.2 introduces the pseudo-likelihood as proposed by Genest et al. (1995). When the 

goal of inference is to study the dependence structure underlying the data, the heuristics of 

Section 2.1 can be used with distributions replaced by copulas. Therefore, the maximum 

pseudo-likelihood estimate can be seen as a particular case of the entropy maximization 

principle where the true copula is replaced by its empirical counterpart. 

Suppose that p-dimensional data are available from m populations. It is natural to ex­

tend the pseudo-likelihood following the heuristics of Section 2.2. If we consider the family 

of copulas c ( u | 0 ) and use a mixture of empirical copulas such as C £ ( u ) as an approxima­

tion to the true underlying copula, the entropy maximization principle yields the weighted 
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pseudo-likelihood: 

^)=nnc(Y«l*) 
•Wntfc 

(5.7) 

where Y^- are rescaled ranks as presented in Section 5.2. The maximum weighted pseudo-

likelihood estimate (MWPLE) is a value of 9 maximizing L(9). 

To our knowledge, the weighted pseudo-likelihood has never been suggested in the litera­

ture. This section shows that when MAMSE weights are used in conjunction with (5.7), the 

MWPLE is a strongly consistent estimate of the true parameter 9Q. The proof is adapted 

from the work of Wald (1949). 

Families of Copulas 

The weighted pseudo-likelihood is based on the density function of a family of copulas. 

However, not all copulas have a density function. In fact, any copula can be factorized as 

the sum of an absolutely continuous part and a singular term (see Nelsen (1999) page 23). 

For instance, the bivariate Marshall-Olkin copula, C(u\a,0) = mm(u\~aU2,Uiu\~13), is 

parametrized by 0 < a,Q < 1 and gives a positive probability to the line ua = v@, its singular 

component. Such a family cannot be fitted with the pseudo-likelihood or its weighted 

counterpart as it does not admit a density function with respect to Lebesgue measure. As 

mentioned previously, all the families presented in Section 5.1 admit a density. 

Let {c(u\9) : 9 € 6} be the family of copulas that we wish to fit to the data at hand. A 

family of copulas that does not cover the complete range of dependence (i.e. which does not 

approach perfect positive or negative correlation) will typically have a compact parameter 

space. This is the case for the FGM copula. 

Perfect concordance or discordance between two (or more) variables corresponds to a 

limit case where the copula places all of its mass on the lines itj = Uj or u\ = —Vj. For 

such a limit case, the copula does not admit a density anymore and its parameter space 

will typically be infinite or open, and hence not compact. Other limiting cases may have to 
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be omitted because the definition of the copula presents an undefined form; independence 

under the Clayton model is such an example as it would involve dividing by 0. 

Despite this fact, we make the assumption that 6 is a compact set. In practice, this 

means that the proof of consistency that we provide will hold for (possibly constrained) 

families of copulas that do not include limiting cases such as perfect concordance or dis­

cordance between any 2 marginals. Relaxing Assumption 5.1 may be possible but is left to 

future work. 

Assumption 5.1 The set 0 is a compact subset of a finite-dimensional Cartesian space. 

Due to the constraints on their margins, copulas that admit a density will typically be 

smooth, hence little generality is lost with Assumption 5.2. • 

Assumption 5.2 The density function of C{\x\9), c(u\9), is jointly continuous for u € 

(0,1)P and 8 EG. 

Assumption 5.3 Suppose the true copula underlying the true unknown distribution is 

C{n\9o) = Ciin) for some 80 EQ. L 

In particular, this latter assumption means that the copula underlying the true distribution 

admits a continuous density function. 

Revised Wald's Assumptions 

For all 8 E 9 and p > 0, let us define 

c(u, 9,p)= sup c(u\9'). 
\8-8'\<p 

Assumption 5.4 For a sufficiently small p, the expected values 

Jlog[max{c(u,0,/0),l}] dCi(u) 
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are finite. 

A s s u m p t i o n 5 . 5 If Q\ ^ 9Q, then C{U\0Q) ^ C{u\6{) for at least one u . 

A s s u m p t i o n 5 . 6 j | log c (u | ( 9 0 ) | d C i ( u ) < oo for i = 1,... , m. 

A s s u m p t i o n 5 . 7 The functions c(u,9,p) are measurable for any 8 and p. 

A s s u m p t i o n 5 . 8 Suppose that the functions logc(u|t90) and logc(u,8,p) satisfy the as­

sumptions of Theorem 5.6 for any 8 and p. 

Wald (1949) makes additional assumptions, but they are not required here because the 

copula is defined on a bounded set and because of the stronger assumptions on continuity 

that are made above. 

R e m a r k 5 . 6 If l im^oo 8i = 8, then lim;_oo c(u\9i) = c(u |f7) from the continuity of c(u\9). 

R e m a r k 5 . 7 The function c f > of Wald also found in Section 3.7 is not required here because 

we assume that the set Q is compact. 

R e m a r k 5 . 8 The functions c(x,9,p) are continuous from the continuity of c(u |f7) and 

Lemma 3.10. 

A n E x a m p l e T h a t S a t i s f i e s t h e A s s u m p t i o n s 

Before proving the main result of this section, we show that the assumptions made above 

are not vacuous by verifying that at least one often-used family of distributions satisfies all 

the stated conditions. 

For this example, we use a simplified notation where u = [u, v]T. 

Consider the Clayton family of distributions whose density function 
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is indexed by 8 G 0 = [a, b) with 0 < a < b < oo. Choosing a compact 0 for this family 

means that the limiting cases of independence and of perfect concordance are omitted. 

Assumptions 5.1, 5.2 and 5.5 are satisfied. All distributions considered are defined on 

(0, l ) 2 and its associated Borelian, hence Assumption 5.7 is also satisfied. Assumption 5.3 

is necessary in the context of proving consistency. 

For the model considered, we show that Assumptions 5.4 and 5.6 are consequences of 

the bound implied by Assumption 5.8 to which we now turn our attention. 

Remark 5.9 For u,v € (0,1), there exists a finite constant M > 0 such that 

. M M 
\l°Su\ ^ 7771 < « V 4 - {r(u)r(v)y/4 

where r(u) = u(l — u) since logii is finite for all u G (0,1), except when u —> 0 and 

— \ogU U~ l 1/4 

lim —7-r- = lim . • .. = 4 hm u 1 =0 

by VHospital's rule. 

Remark 5.10 For u,v G (0,1), the function r(u) is bounded between .0 and 1/4. Therefore, 

r(«)V4 - 4 V 2 

meaning that for any constant M\, there exists a constant M2 = M\/yj2 such that 

M2 M2 Mi < — < 
r(u)V4 ~ {r(u)r{v)y/*' 

Lemma 5.11 The functions of Assumption 5.8 satisfy the bound implied by Theorem 5.6 

for the Clayton family of copulas with 0 = [a, b) where 0 < a < b < 00 . 

Proof of Lemma 5.11. Using the notation of Theorem 5.6, set p — q — 2 and 8 = 1/2. We 
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show that there exists positive finite constants MQ0 and M * D such that 

| logc(u | 0 o ) | < 
M0O 

{r(u)r(v)y/4 

and 

We can write 

| logc(u ,0 ,p) | < 
{r(u)r(v)}W 

| logc(u | 0 ) | log(0 + !) - ( | + 2 ) l Q g {u~6 + v ~ ° - l) - + 1) log uv 

< |log(0 + l)| + 

< 

Q + 2̂ ) log ( V * + v~e - l) 

+ \(6 + 1) log u\ + |(0 + 1) log v\ 

log(0 + 1) + (1 + 20)^ log (u~e + v~e - 1 

+(0 + 1)| log u| +(0 + l)| log u| 
l o g ^ ' 1 ) + (1 + 20)M^ + 2(0 + 1)M 

{r(u)r(z;)}V4 

{r(u)r(v)y/4 

by Remark 5.9 and the fact that 

^log (vTe + v-e - 1 < ^ l o g { 2 m a x ( « - % - e ) - l j 

< I log (21*-* - l ) + I log (2v-° - l ) 

J l o g ( 2 ^ . ) + 1 log ( 2 ^ ) 
2 

| logu | + I log t>I + - log 2 
o 

M M 

< 

V2\og2 

+ + {r(u)r(v)}V* {r(u)r{v)}ll4 (r(u)r(i;)}1/4 

{r{u)r{v)y/A 
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by Remarks 5.9 and 5.10. Note that the constant MQ is continuous in 9 for parameters 9 

in any compact subset of [a, b] 

The inequalities above holds for 9 = 9Q, which is the first part of Assumption 5.8. The 

second part is also satisfied since 

log sup c ( u | 0 ) = sup l o g c (u | 0 ) < sup < 
' \9-6'\<p \0-0'\<p \0-0'\<p {r(u)r-(u)}1/4 { r ^ r ^ ) } 1 ^ 

because M# is a continuous function on the compact set {9 : \9 — 9'\ < p] D ©, it thus 

achieves its maximum denoted M*E,.. • 

Corollary 5.5 Under the assumptions of Lemma 5.11, Assumptions 5.4 and 5.6 are sat­

isfied. 

Proof of Corollary 5.5. Any of the integrals in Assumptions 5.4 and 5.6 are bounded by a 

positive constant times 

/ {r(u)r(u)}V4 d C i ( u ) " / mm{r(u),r(v)y/idCi{U 

d C i ( u ) 

) 

J{u:r(u)<r(v)} r{U)1'^ J{u:r(u)>r(v)} r{V)1'' 

£ / - ^ C t u H / ^ d Q t u ) 

= 2 / ^ I 7 5 d » = ' r < c c ' 

Hence we obtain the desired result. - B 

Remark 5.11 Corollary 5.5 guarantees that 

J l o g c ( u | 0 o ) d C j ( u ) and J l o g c (u , 9, p) d C j ( u ) 

exist. Therefore, the assumptions of Theorem 5.6 are satisfied, i.e. Assumption 5.8 is 

satisfied. 
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Wald's Lemmas 

For expectations, the following convention is adopted. Let Y be a random variable. The 

expected value of Y exists if E{max(Y, 0)} < oo. If .E{max(Y, 0)} is finite but £{min(Y, 0)} 

is not, we say that E{min(Y, 0)} = —oo. Moreover, a generic U represents a random 

variable with distribution C\(u) = C(u,$o). 

The following lemmas are equivalent to those found in Section 3.7. 

Lemma 5.12 For any 9 ^ 60, we have Elogc(U|0) < Elogc(U|0o). 

Lemma 5.13 lim Elogc(u,8,p) = Elogc(U|0). 
p ^ O 

Main Result 

Let now turn to the main result of this section. Throughout this subsection, we suppose 

that Assumptions 5.1 to 5.8 are satisfied. 

Theorem 5.8 Let T be any closed subset of © that does not contain 8Q. Then, 

L i=ij=i . J 

Proof of Theorem 5.8: Let U denote a random variable with distribution Ci(u) = C(u|0o). 

With each element 6 £ T, we associate a positive value po such that 

The existence of such pe follows from Lemmas 5.12 and 5.13. Let S(8,p) denote the sphere 

with center 8 and radius p. The spheres {S(0, pe) : 8 G T} form a covering of the compact set 

P 

E{logc(U,(9,pe)}<E{logc(U|0o)}. (5.8) 

T, hence there exists a finite sub-covering. Let 6\,... ,8h eT such that T C (Js=i S(9s, P6S)-
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Clearly, 

m nik 

i=ij=i 

\ik{u)nik/nik ^ "T_™ik , \ A i f c ( u ; ) r a l f c / n i f c 

< Ennc(Y6'(?"^ 
s=l1=1j=l 

Therefore, to prove Theorem 5.8 if suffices to show that 

m nik nii c(Y£>^) Kk(u)nlk/nik 

i = l j = l 
fc-»oo m nik 

i=lj=l 

\ik{u)nlk/nik 

= 0 

for s — 1,..., h. These equations can be rewritten as 

lim nik 
k—>oo 

m nik 

i=l j=l 

= p 

ik \ 
= —oo 

logc(u|0o)d^(u) = —oo = 1 (5.9) 

for s — 1,..., h. 

The integrals in (5.9) converge almost surely to Elogc(U,9S,pes) and Elogc(U|f70) by 

Theorem 5.7. For large k, the expression inside the curly brackets is thus negative by (5.8). 

Hence the proof of Theorem 5.8 is complete. I 

Theorem 5.9 Let 9k(to) be a sequence of random variables such that there exists a positive 
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constant c with 
m nik 

niHnl 
i=i j=i 

A i f c(cj)nifc/ra i f c 

m nik 

i=lj=l 

for all k £ IN and all to £ Q. Then 

X i k ( , c j ) n l k / n i k 

> c > 0 (5.10) 

P{ lim 0fc(w) = 0ol = 1. 

Proo/ o/ Theorem 5.9. Let e > 0 and consider the values of 9k(u>) as k goes to infinity. 

Suppose that 9( is a limit point away from 9Q, such that — 9Q\> e. Then, 

m nik su P n n c H e) \k{io)nlk/nik 

m nik 

nn«(Ys|*) 
X i k ( u i ) n l k / n i k 

> c> 0 

i=i j=i 

infinitely often. By Theorem 5.8, this event has probability 0 even with e arbitrarily small. 

Therefore, 

LO lim 9k(u) -9 <e =1 

for all e > 0. 

Corollary 5.6 TTie MWPLE with MAMSE weights is a strongly consistent estimate of 9. 

Proof of Corollary 5.6. The MWPLE clearly respects Equation (5.10) with c = 1 since 

9k(u>) is then chosen to maximize the numerator of (5.10). • 

5.9 Simulations 

We study the performance of the weighted coefficients of correlations and of the weighted 

pseudo-likelihood with MAMSE weights in finite samples through simulations. Unless oth-
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erwise specified, the number of repetitions for each simulation is sufficient to make the 

standard deviation of the simulation less than the last digit shown in the tables or on the 

figures. 

5.9.1 Different Correlations for Bivariate Copulas 

The bivariate families of copulas presented in Section 5.1 all depend on a single parameter 

and the population value of Spearman's p is a monotone function of that parameter. To 

use these families on a comparable scale, we use parameter values that are associated with 

a specified p. Four different families of copulas are considered: Normal, Clayton, Frank 

and Gumbel-Hougaard. Equal samples of size n € {20, 50,100, 250} are simulated from 

five bivariate populations with different correlations. Two scenarios are adopted; they are 

described in Table 5.3. Each situation considered is repeated 10000 times. 

Table 5.3: Values of p under two different scenarios that are simulated for different families 
of copulas. 

Figure 5.1 shows the average weight allocated to each of the five populations by the 

MAMSE approach. Within a given scenario, the average weights do not seem to depend 

strongly on the actual distribution of the data. This is not very surprising since populations 

share the same correlation under such circumstances, and hence the shape of their copulas is 

similar even if they come from different families. As one would expect, the difference between 

Scenario A and B is bigger than the difference between two distributions within the same 

scenario. Under Scenario A, bias can cancel out since the correlation of the target population 

sits squarely within the range of correlations from the other'populations. Consequently, 

more weight is given to Population 1 under Scenario B where that situation cannot occur. 

Scenario A Scenario B 
Pop. 1 
Pop. 2 
Pop. 3 
Pop. 4 
Pop. 5 

0.35 0.25 
0.25 0.30 
0.30 0.35 
0.40 0.40 
0.45 0.45 
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Finally, note that under Scenario A populations 2 to 5 receive an approximately equal share 

of the weight, but under Scenario B, populations whose correlation is closer to the target 

receive a larger mass than the others. This behavior conforms with intuition. 

Average Weights Allocated to Each Population 

Scenario / Family n= 20 n=50 n= 100 n= 250 

Normal 

Clayton 

A 

Frank 

Gumbel 

30 30 30 30 Normal 

Clayton 

A 

Frank 

Gumbel 

30 30 30 30 

Normal 

Clayton 

A 

Frank 

Gumbel 

30 30 30 30 

Normal 

Clayton 

A 

Frank 

Gumbel 

31 30 30 30 

Normal 

Clayton 

B 

Frank 

Gumbel 

32 33 34 38 Normal 

Clayton 

B 

Frank 

Gumbel 

32 33 34 38 

Normal 

Clayton 

B 

Frank 

Gumbel 

32 33 34 38 

Normal 

Clayton 

B 

Frank 

Gumbel 

32 33 35 38 

• Pop. 1 H Pop. 2 • Pop. 3 • Pop. 4 • Pop. 5 

Figure 5.1: Average value of the MAMSE weights for scenarios where samples of equal sizes 
n are drawn from 5 different populations. The cell areas are proportional to the average 
weight allocated to each population. The numbers correspond to lOOAi and are averaged 
over 10000 repetitions. 

Table 5.4 shows a ratio of mean squared errors comparing the usual estimate of Spear­

man's p with its MAMSE-weighted counterpart. Table 5.5 shows a similar ratio for esti­

mating the parameter of the underlying copula with the pseudo-likelihood or the MAMSE-

weighted pseudo-likelihood. Note that the error due to simulation in Table 5.5 has a stan­

dard deviation from below 6 units for n = 20 to less than 3 units for n = 250. 

Under Scenario A, the performance of the MAMSE-weighted methods is impressive, 

featuring in most cases a MSE three times smaller than the equivalent non-weighted method. 
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Family n =20 ' 50 100 250 
Normal 333 331 315 271 

Scenario A Clayton 335 329 314 271 Scenario A 
Frank 338 333 314 271 

Gumbel 331 327 312 271 
Normal 275 197 131 72 

Scenario B 
Clayton 284 197 131 81 Scenario B 

Frank 283 195 131 77 
Gumbel • 286 196 136 ' 78 

Table 5.4: Performance of a MAMSE-weighted coefficient of correlation based on ranks 
as measured by 100 MSE(p)/MSE(p^) f ° r different scenarios -and sample sizes n € 
{20, 50,100, 250}. Each figure is averaged over 10000 repetitions. 

Family n =20 50 100 250 
Normal 305 310 304 266 

Scenario A Clayton 
Frank 

407 
398 

349 
356 

327 
325 

278. 
273 

Gumbel 389 341 315 276 
Normal 193 139 97 57 

Scenario B Clayton 184 110 72 45 Scenario B 
Frank 245 164 112 68 

Gumbel 188 117 83 51 

Table 5.5: Performance of the maximum weighted pseudo-likelihood estimate as measured 
by 100 MSE(f?)/MSE(i9A) for different scenarios and sample, sizes n € {20,50,100,250}. 
Each figure is averaged over 10000 repetitions. 

Under that scenario, the correlation of the population of interest is in the middle of the range 

of correlations from the other populations, hence the bias can cancel out. Under Scenario B 

however, Populations 2 to 5 have larger correlations than the target population. Despite 

that fact, the methods of inference based on MAMSE weights still achieve appreciable gains 

in performance in many cases. The performance of the weighted methods is sometimes 

clearly inferior to their unweighted equivalents. Although the counter-performances seem 

to occur for larger sample sizes, a situation where the weighted methods are less needed, 

the performance of the method should be studied further before recommending its use in 

practice to avoid encountering such losses. 
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5.9.2 Different Bivariate Distributions with Common Correlation 

In this simulation, we explore the possible advantages of the MAMSE-weighted methods 

when populations have copulas of different yet similar shapes. Five populations are used, 

all of which have a theoretical Spearman correlation of p = 0.2. However, the actual shape 

varies since the populations come from different copulas that are described in Table 5.6. 

Table 5.6: Distributions from which bivariate random variables are drawn. The choice of 
parameters in each population yields a Spearman correlation of p = 0.20. 

Note that Frank, Farlie-Gumbel-Morgenstern and the Normal copulas are all radially 

symmetric while those of Clayton and Gumbel-Hougaard are not. Hence, they do differ 

in shape although they are chosen to share a common theoretical correlation. For each 

sample size n G {20, 50,100, 250} considered, 10000 replicates are produced. The MSE of 

estimating the correlation p — 0.2 and the MSE of estimating the parameter of the target 

distribution, a Normal model with 9 — r = 2sin(0.27r/6) « 0.209, are evaluated. 

Table 5.7 shows the average MAMSE weights allocated to each of the five populations 

considered as well as the efficiency calculated by the ratios 100 MSE(pi)/MSE(p^) and 

100 MSE(f3i)/MSE(0\). Note that the standard deviation of the error due to simulation 

can reach nearly 4 units for the efficiency at estimating 9\. All other figures in the table 

respect the quoted margin of error of one standard deviation. 

First note that a substantial weight is allocated to the external populations, the sam­

ple from the target population contributing a mere 31% in the inference. Note also that 

the remaining weight is spread rather evenly between the other populations. The gain in 

efficiency is clear and impressive. In fact, it corresponds approximately to the inverse of 

the weights allocated to Population 1 in average: 1/0.31 « 3.23. When the populations 

Pop. 1 
Pop. 2 
Pop. 3 
Pop. 4 
Pop. 5 

Normal Copula, r = 0.209 
Frank Copula, 9 = 1.22 
Farlie-Gumbel-Morgenstern Copula, 6 = 0.600 
Gumbel-Hougaard Copula, 9 = 1.16 
Clayton Copula, 9 = 0.310 
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Efficiency 100 x 
n pi §i Ai A2 A3 A4 A5 

20 328 299 
50 . 336 334 

100 338 345 
250 345 356 

31 17 17 17 17 
31 17 17 17 17 
31 17 17 17 17 
31 17 17 17 17 

Table 5.7: Average MAMSE weights as well as the relative efficiency of the weighted cor­
relation and of the MWPLE when compared to their non-weighted counterparts. Samples 
of size n € {20,50,100,250} are drawn from five different bivariate distributions that have 
a common correlation of p = 0.2. Figures are averaged over 10000 repetitions. 

considered are similar, the MAMSE-weighted correlation and the MWPLE clearly improve 

the inference. The relevant information contained in the samples from Population 2 to 5 

has a clear value; that information should not be ignored. 

The average weight allocated to each population does not seem to vary with n. This 

unexpected behavior cannot hold for an arbitrarily large sample size as it would contradict 

Theorem (5.3). In Table 3.1, it was noticed that the weights seem to converge very slowly 

when the distributions are very close to each other. The same behavior may be observed 

here since the populations that were simulated share a common Spearman p, i.e. they are 

quite similar to each other. 

5.9.3 Multivariate Normal 

The multivariate Normal copula is parametrized by its correlation matrix. In the follow­

ing simulations, we will use Normal distributions in 3 and 4 dimensions, hence depending 

respectively on 3 and 6 parameters. 

We simulate a scenario where the population of interest follows the target distribution 

and 3 other populations are available with the same underlying copula, but with measure­

ment error that changes the correlations associated with their underlying copula. 

The sample sizes simulated are unduly small as the MAMSE weights suffer from the curse 

of dimensionality: the measure Mk contains np

lk points for which operations of non-trivial 
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time must be performed. The time required to calculate the equations to determine the 

MAMSE weights increases rapidly to the hardware limitations even for moderate n^' and p. 

There are ways in which the calculation of the MAMSE weights might be accelerated. The 

integrals with respect to dMfc(u) could be evaluated on a grid sparser than that associated 

with Mfc(u), whether it is through sampling or by a new definition of Mfc(u). Proving that 

the algorithm and the weights converge properly with such practical simplifications is left 

to future work. 

Maximum Pseudo-Likelihood Estimate and its Weighted Counterpart 

To calculate the pseudo-likelihood of the data, we apply the inverse CDF of a standard 

Normal to the rescaled ranks. For this section, we choose to use Y^* = (R*- — l/2)/rijfe, for 

a fixed k, i — 1,..., m and j = 1,..., n^. We thus transform the data into 

Zjj — a- 1 (Y*;) , . . . , * 1 1 (y*;) 

By construction, the mean of the vectors Z*j, j = 1,..., is exactly 0 and the M L E of 

the marginal variances are 

^ { • - f t 1 ) } »/;{•-'«}'...-/y<>•(„-1. 

The actual value of the sample variance differs from 1 by a fixed amount that depends on the 

sample size since it determines the number of terms in the sum used above to approximate 

the corresponding integral. 

The expression for the pseudo-likelihood based on the rescaled ranks Y^* is identical 

to the likelihood of a centered normal based on the corresponding Zjj. The maximum 
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likelihood estimate of Ej, the covariance matrix in Population i, is given by 

Sj = / ZjjZ i 7-. 
i« j = i 

The diagonal of Ej already contains a numerical approximation of 1. Define then E* = Ej, 

except for diagiT,*) = 1, i.e. we replace the diagonal of Ej by true ones. We use E* as the 

maximum pseudo-likelihood estimate of E. 

The change of diagonal does not impact the positive definiteness of the matrix because 

the elements of the diagonal of Ej are equal and slightly smaller than 1, hence the replace­

ment by 1 is equivalent to adding a small positive multiple of the identity matrix which is 

itself positive definite. We prefer the approach above to brute force numerical maximization' 

of the pseudo-likelihood. 

Now, turn to the weighted pseudo-likelihood whose expression is equivalent to the 

weighted likelihood for centered Normal variates with common covariance matrix E based 

on the Zjj-: 

m nik , -I \ Xikiu) . . rn nik / \ / \ \ 

z=lj=l ' 1 1 i=lj=\ 

where |E | denotes the determinant of the matrix E. The corresponding weighted log-

likelihood is 

-, m . / s nik I m . / N nik | 

I=I j=i ^ i = i j=i j 

= - I l o g l E l - i t r f E - 1 ^ } (5.11) 
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where 

A = E A ^ ) E z T Z y 

i = l H l k 3=1 

Theorem 5.10 (Wichern & Johnson (2002), Result 4.10) Given apxp symmetric 

positive definite matrix B and a scalar b > 0, it follows that 

-61og|E| - ^-tr(E~lB) < -6log\B\ + p61og(26) - bp 

for all positive definite p x p matrix E , with equality holding only for E = (1/26)5. 

The calculation of the M L E of the covariance matrix of a multivariate normal distribution 

typically uses a result akin to Theorem (5.10). Its proof can be found from different sources 

and is thus not reproduced here. 

Applying Theorem (5.10) to Expression (5.11) with 6 = 1/2 and B = A, we conclude 

that the maximum weighted likelihood estimate of the covariance matrix E is given by 

1=1-.™** j=l i=l 

To avoid brute force optimization involving constraints on the positive definiteness of the 

estimate, we use the same approach as before and use 

m 

I=I 

as the maximum weighted pseudo-likelihood estimate. 
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3 - D M u l t i v a r i a t e N o r m a l 

We suppose a multivariate normal model with measurement error. Let 

1 0.4 0.3 1 0.8 0.6 

E A = 0.4 1 0.4 • > E# = 0.8 1 0.8 

0.3 0.4 1 0.6 0.8 1 

0.2 0 0 0.2 0.1 0 

S2 = 0 0.2 0 S3 = 0.1 0.2 0 

0 0 0.2 0 0 0.2 

0.2 -0.1 0 

and S4 = -0.1 0.2 0 

0 0 0.2 

We draw random vectors from multivariate Normals with means 0 and covariances that are 

defined in terms of the matrices above according to the formulas in the column Covariance 

of Table 5.8. Measurement errors affect the dependence structure of the populations. Let 

1 r i 2 

T a 1 

r i 2 r i 3 
I 

be the covariance matrix of Population i = 1,.. . , m. The actual value of Ej is defined by 

three parameters explicitly written in Table 5.8. 

Equal samples of size n € {20, 35, 50} are drawn from each population. The maximum 

pseudo-likelihood estimate of T i = [ r u , r 1 2 , T i 3 ] T and its MAMSE-weighted equivalent are 

calculated. 

Table 5.9 shows the average weight allocated to each population. The inference relies 
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100 x 
Pop. Covariance r i 2 r i 3 

1 40 30 40 

Scenario A 2 £ A + S 2 / 4 38 29 38 Scenario A 
3 S A + S 3 / 4 40 29 38 
4 E A + 5 4 / 4 38 29 36 
1 80 60 80 

Scenario B 2 TiB + S2 67 50 67 Scenario B 
3 ZB + S3 75 50 67 
4 S B + S4 67 50 58 

Table 5.8: Parameters of the simulation for 3-variate Normal variables. Population 1 is 
from the target distribution, but the other populations are affected by measurement errors. 

strongly on the populations with measurement errors since they have a total weight of about 

60% in all cases. 

The weights do not seem very affected by the sample size n. The small range of values for 

n might be partially responsible. Recalling a similar comment from the previous simulation, 

it is also possible that the measurement error model produced distributions that are similar 

enough to make the convergence of the weights rather slow. 

100 x 
n Ai A 2 A 3 A 4 

20 41 19 20 20 
Scenario A 35 41 20 20 20 

50 41 20 20 19 
20 37 21 22 21 

' Scenario B 35 38 21 22 20 
50 39 20 22 19 

Table 5.9: Average weight allocated to each of four 3-variate Normal distributions. Pop­
ulation 1 is observed from the target distribution, but the other populations contain mea­
surement errors.-The values are averaged over 5000 repetitions. 

To evaluate the performance of the MWPLE, we compare its MSE to that of the MPLE 

based on Population 1 only. Let T\ denote the maximum pseudo-likelihood estimate of Y\ 
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and T\ denote its weighted counterpart. We estimate the mean squared errors 

MSE(fi) = E | | f i - T i l l 2 and MSE(f A) = E | | f A - T i | | 2 

with 5000 replicates; || • || denoting Euclidean distance. Table 5.10 shows the values of 

MSE(r̂ ) 

as well as an equivalent ratio of the MSE for estimating each element of the vector T\. 

Note that the standard deviation due to simulation error may reach almost 5 units under 

Scenario A and nearly 2.5 units under Scenario B. 

Efficiency 
n T i Tn Tl2 T i 3 

20 243 240 260 231 
Scenario A 35 255 262 261 241 

50 257 264 266 243 
20 74 68 123 47 

Scenario B 35 60 53 110 35 
50 52 44 105 27 

Table 5.10: Relative performance of the MWPLE when compared to the MPLE as mea­
sured by 100 MSE(Ti)/MSE(rA) or an equivalent ratio for the individual entries of Tx-
Population 1 is observed from a 3-variate Normal distribution and the other populations 
contain measurement errors. The values are averaged over 5000 repetitions. 

Under Scenario A, the performances of the MWPLE are very good as its MSE is less 

than half that of the MPLE. However, this excellent performance does not obtain under 

Scenario B where the pseudo-likelihood is the winner. We can only speculate about the 

causes of these results at this stage, but at least two possible explanations should be explored 

in future research. 

• The variance term in the definition of the MAMSE weights is a very rough estimate 

of the actual asymptotic variance of the empirical copula. This choice appears to be 
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reasonable for mild correlations as in Scenario A, but may degenerate as the correlation 

increases which is the case under Scenario B. A better penalty term can certainly be 

found. 

• When the correlations get larger, the data points tend to cluster around a singular 

subset of the unit cube. The choice of the uniform measure M K in the definition of 

the MAMSE weight might not be optimal in that situation.. 

Despite poor performances under Scenario B, the results of this section show that the 

MAMSE weights offer great potential to improve the quality of the inference, at least for 

moderate correlation and possibly for more cases if the MAMSE criterion is improved. 

4-D Multivariate Normal 

We suppose another multivariate normal model with measurement error. Let 

5 2 = 

1 0.4 0.3 0.2 

0.4 1 0.4 0.3 

0.3 0.4 1 0.4 

0.2 0.3 0.4 1 

0.2 0 0 0 

0 0.2 0 0 

0 0 0.2 0 

0 0 0 0.2 

5 , = 

1 0.8 0.6 0.4 

0.8 1 0.8 0.6 

0.6 0.8 1 0.8 

0.4 0.6 0.8 1 

0.2 0.1 0 0 

0.1 0.2 0 0 

0 0 0.2 0.1 

0 0 0.1 0.2 

and S4 = 

0.2 -0.1 0 0 

-0.1 0.2 0 0 

0 0 0.2 -0.1 

0 0 -0 . 0.2 

155 



Chapter 5. MAMSE Weights for Copulas 

We draw random vectors from multivariate Normal distributions with means 0 and co-

variances that are defined in terms of the matrices above according to the formulas in the 

column Covariance of Table 5.11. Measurement errors affect the dependence structure of 

the populations. The covariance matrix of Population i is written 

1 Tii Yi2 TJ3 

Ti2 TJ4 i r*6 

Ti3 TJ5 Tj6 1 

and depends on a vector of six parameters, T{ = [Tn,TJ2,r*3,r*4,1^5,rj6]T, whose values 

are explicitly written in Table 5.11. 

100 x 
Pop. Covariance r i 2 r i 3 Ti4 Ti5 Ti6 

1 40 30 20 40 30 40 

Scenario A 2 
3 

+ £ 2 / 4 
XA + S3/4 

38 
40 

29 
29 

19 
19 

38 
38 

29 
29 

38 
40 

4 36 29 19 38 29 36 
1 80 60 40 80 60 80 

Scenario B 
2 + 52 67 50 33 67 50 67 Scenario B 
3 + 53 75 • 50 33 67 50 75 
4 Ss + S4 58 50 33 67 50 58 

Table 5.11: Parameters of the simulations for 4-variate Normal variables. Population 1 
comes from the target distribution, but the other populations are affected by measurement 
errors. 

We simulate 5000 samples of size n = 20 from each of the populations and calculate 

both the maximum pseudo-likelihood estimate of T i and its weighted counterpart. 

The choice of such a small sample size is dictated by the curse of dimensionality. The 

measure M K used to average the MAMSE criterion puts an equal weight on nv

lk points. 

Doubling the sample size thus multiplies the run time by a factor greater than 16. 

To accelerate the calculation of the multivariate MAMSE weights, one could try to 
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approximate the integrals of the MAMSE criterion by choosing a sparser Mk. Using &C\k 

instead of dMk is another option to consider as it would not suffer from the curse of 

dimensionality in terms of run time. It might however be too sparse to detect differences 

between the copulas. In particular, it is not clear if the uniform convergence of the MAMSE-

weighted empirical copula would hold with such a definition of the MAMSE weights. These 

investigations are however left to future research. 

Table 5.12 shows the average weight allocated to each of the populations. Less than 

half of the weight is allocated to Population 1 meaning that the contribution of the other 

populations is quite substantial. 

100 x 
n Ai A2 A 3 A 4 

Scenario A 20 46 18 18 18 
Scenario B 20 41 20 20 19 

Table 5.12: Average weight allocated to each of four 4-variate Normal distributions. Pop­
ulation 1 is observed from the target distribution and the other populations contain mea­
surement errors. The values are averaged over 5000 repetitions. 

Table 5.13 compares the performance of the MPLE to that of its weighted counterpart. 

The ratios in the table are calculated as those in the last section. The standard deviation 

of the error due to simulation is less than 4 units in that table. 

Efficiency 
n T i Vu T i2 Ti3 Ti4 Fi5 T i 6 

Scenario A 20 235 232 234 259 225 234 229 
Scenario B 20 98 58 118 214 59 130 62 

Table 5.13: Relative performance of the MWPLE when compared to the MPLE for 4-variate 
Normal distributions. Population 1 is observed from the target distribution and the other 
populations contain measurement errors. The values are averaged over 5000 repetitions. 

Once again, the improvement from using the weighted pseudo-likelihood is very sub­

stantial under Scenario A, but it suffers a small loss under Scenario B. The results tend 

to confirm that the proposed implementation of the MAMSE weights performs better for 

157 



Chapter 5. MAMSE Weights for Copulas 

moderate correlations. Nonetheless, the potential for improvement is clear and in this case, 

at least outweighs the performance losses that occur under Scenario B. 

The simulations in this section show that using the MAMSE weights can improve the 

mean squared error in many cases, but as with most methods, it is not uniformly better 

over all scenarios that were considered. 
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Summary and Future Research 

This chapter presents a list of the most important original contributions contained in this 

thesis and sketches some of the directions that will be explored in future research. 

6.1 Summary of the Work 

The heuristic justification of the weighted likelihood presented in Section 2.2 provided the 

genesis of this thesis. That interpretation does not appear to have been exploited previously 

in the literature. 

With these heuristics in mind, intuition suggests choosing likelihood weights that make 

a mixture of the m distributions close to the target distribution, but less variable than its 

natural estimate. The MAMSE weights are a specific implementation of that idea. 

The MAMSE weights are not only likelihood weights. As a consequence of their defini­

tion, they can also be used to define a mixture of estimates of the CDF. 

The general idea of the MAMSE weights involves using an estimate of the CDF of 

each population. Specific properties are studied for three different kinds of data. These 

three cases are built from nonparametric estimates of the CDF, meaning that the resulting 

MAMSE weights are nonparametric as well. 

U n i v a r i a t e D a t a 

We use the empirical distribution function to define the MAMSE criterion and prove the 

following properties. 
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• Invariance of the MWLE to a reparametrization of the model. 

• The strong uniform convergence of the MAMSE-weighted empirical CDF. 

• A weighted strong law of large numbers. 

• The strong consistency of the MWLE with MAMSE weights. 

In addition, simulations show that using the MAMSE weights allows for superior perfor­

mances in many scenarios. 

Censored Data 

We use the Kaplan-Meier estimate to accommodate right-censored data. The main contri­

butions are: 

• the weighted Kaplan-Meier estimate, a fully nonparametric estimate of the survival 

function that uses data from the m populations at hand, and 

• the uniform convergence thereof. 

Simulations show possible improvements for inference on finite samples when using the 

MAMSE-weighted Kaplan-Meier estimate. 

Multivariate Data Through Copulas 

We treat the dependence structure of multivariate data through copulas. The empirical cop­

ula, an estimate based on the ranks of the data, is used to that end. Important contributions 

are as follows. 

• Definition of the weighted empirical copula and a proof of its strong uniform conver­

gence to the target copula. 

• A weighted strong law of large numbers for bounded multivariate rank order statistics. 
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• A weighted coefficient of correlation based on MAMSE weights; the proof that this 

estimate is strongly consistent. 

• The weighted pseudo-likelihood for fitting a family of copulas on data from m popu­

lations. 

• A proof that the MWPLE is a strongly consistent estimate of the parameter of interest. 

Here again, simulations showed that the methods proposed are powerful tools when appro­

priately applied. 

The sum of these results show that the MAMSE weights succeed in trading bias for precision 

for different types of data. 

6.2 Future Research 

The idea of MAMSE weights and the intuitive- understanding of the weighted likelihood 

open many directions for future research. We list some of these below. 

Principle of the M A M S E Weights 

• Using different functions to combine bias and variance. For instance, it was recently 

brought to my attention that statistics of the form J{F(x) — G(x)}2<&(x) dF(x) have 

been studied for goodness-of-fit. The choice \l>(x) = 1 that corresponds to the bias 

term in the MAMSE criterion is also known as the Cramer-von Mises test statis­

tic. However, it seems that the choice ^(x) = F(x){l — F(x)} which corresponds 

to Anderson-Darling goodness-of-fit test typically offers a more powerful alternative. 

Hence, we intend to explore the properties of a different MAMSE criterion where the 

bias term adopts the form of the Anderson-Darling statistic. 

• Using parametric estimates of the distributions in the general formulation of the 

161 



Chapter 6. Summary and Future Research 

MAMSE weights (rather than nonparametric estimates) may allow one to account 

for nuisance parameters or for covariates. 

Univariate Data 

• The rate of convergence of the MAMSE weights needs further study. 

• It would be useful to describe the asymptotic distribution of a MAMSE-weighted sum 

of variables and even more useful to determine the asymptotic distribution of the 

MWLE. ' 

• The weights implied by the Stein-type estimate of Ahmed (2000) could be studied 

as possible likelihood weights. Alternatively, the approach of Ahmed (2000) may be 

extended to the empirical distribution functions to define Stein-like likelihood weights. 

Censored Data 

• MAMSE weights could be used as likelihood weights. The fact that the weighted 

Kaplan-Meier estimate may not converge on the complete real line is a challenge. 

Defining the MAMSE weights based on parametric models rather than on the Kaplan-

Meier estimates may help in building weights that will make the MWLE consistent. 

• The idea of the MAMSE weights might be extendable to a Cox proportional hazard 

model, something that warrants further investigations given the great importance of 

that model. 

Copulas 

• Defining and studying the properties of a weighted version of Kendall's r. 

• Exploring different definitions of the MAMSE weights that suffer less from the curse 

of dimensionality. 
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• Studying the effect of using different estimates for the variance of the empirical copula. 

In particular, verifying the hypothesis that it may improve the performance of the 

M W P L E in the presence of strong dependence. 

• Using the weighted pseudo-likelihood in other contexts where the weights need not be 

estimated from the data. For instance, if data were available from populations with 

the same dependence structure, but different marginals (e.g. different currencies), or 

if m sets of rankings are the only information available. 

• Proposing weighted coefficients of correlation under scenarios where the weights do 

not need to be determined from the data. 

• Using the M W P L E and univariate M W L E s in order to build an estimate of a multivari­

ate distribution function by combining the estimated copula with estimated marginal 

distributions. A n important advantage of such an approach is the possibility to use a 

different number of populations for each of the marginal distributions. Suppose that 

data are available from some studies who did not record all the variables of interest. 

The information from these studies could be used for the inference on the marginals, 

but only the complete data could be used to determine the dependence structure. 

• One approach to building multivariate distributions may be obtained by extending 

the work of Cox & Reid (2004) where the likelihoods would be replaced by M A M S E -

weighted likelihoods. Such an extension may however require a definition of M A M S E 

weights for multivariate distributions that are not copulas. 

B o o t s t r a p 

In this document, we propose three weighted nonparametric asymptotically unbiased empir­

ical estimates of a target distribution. Resampling techniques such as the bootstrap could 

be developed from these weighted mixtures of empirical functions. To use such methods 
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with confidence, we should first demonstrate that the bootstrap estimators obtained that 

way are consistent. 

One advantage of bootstrapping from a MAMSE-weighted mixture of empirical functions 

is the ability to draw from a larger number of values, resulting in a bootstrap sample with 

fewer ties. One could even try including a distribution as an external population, i.e. to 

allow for an infinite sample, hence further reducing the number of ties in the bootstrap 

sample. 

The Stein-like quantile estimate of Ahmed (2000) implies an empirical distribution that 

could also be considered for the definition of an alternative bootstrap method. 

Foundations of Statistics 

In addition to these directions for research, this work may have shed a new light on likelihood 

methods for some readers; writing it definitely changed my understanding of this important 

statistical tool. In particular, the likelihood can be seen as an estimate of the entropy 

between the fitted model and the EDF. The convergence properties of the CDF can then 

be used to show the consistency of the MLE. By showing that the MAMSE-weighted EDF 

converges, we could also show that a MWLE based on MAMSE weights is consistent. 

A question arises from that interpretation of the likelihood: Is the likelihood a good 

method because the empirical distribution function is a good estimate, or is the likelihood 

a more general principle? 

Can any model be fitted successfully using the likelihood? Using the likelihood for linear 

model based on the normal distribution for instance is definitely reasonable, especially if 

when we consider that maximizing the normal likelihood is equivalent to a form of least 

squares. But what about complex models, possibly involving nonlinear covariates? Should 

we avoid using the likelihood blindly or is it safe in all situations? 
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Conclusion 

The weighted likelihood as proposed by Hu, Wang and Zidek suggests that information 

from populations similar to that of interest should not be ignored, but rather incorporated 

into the inference. 

When I started working on the weighted likelihood, the question that everybody asked 

first was: "But how do you choose the weights?" The MAMSE weights provide one answer 

to that question which seemed to be of most concern to those who were not acquainted with 

the weighted likelihood. 

This thesis does not say how to choose optimal likelihood weights. In fact, the answer 

to that question will depend on the purpose of the inference, more particularly on the loss 

function that one wants to use. 

This thesis however offers a practical and effective solution to determine likelihood 

weights. These weights are shown to produce consistent estimates, yet they successfully 

trade bias for precision in many cases that were simulated. 

The different cases of the MAMSE weights studied in detail in this document are 

all based on nonparametric estimates of the distribution functions. Hence, the proposed 

MAMSE weights are themselves nonparametric. 

For all cases studied, the MAMSE-weighted empirical distributions are shown to con­

verge uniformly to the target distribution without assuming any particular shape and min­

imal regularity conditions for the other populations. Hence, the estimates suggested are 

asymptotically unbiased even though they take into consideration unknown data. 

With MAMSE weights, the maximum weighted likelihood estimate and the maximum 
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weighted pseudo-likelihood estimate converge strongly under conditions that are akin to 

those imposed on their unweighted counterparts. 

Finally, simulations show that the M A M S E weights can indeed improve the quality of 

inference on finite samples in many situations. 

The results presented in this document show that when different sources of data are 

available, it is possible to use them to improve the quality of the inference. Hence it is 

possible with the M A M S E weights to use the data from m populations in order to evaluate 

their level of dissimilarity and then to use that information to successfully trade bias for 

precision. « 

166 



Bibliography 

E. S. Ahmed, A. L Volodin k A. A. Hussein (2005). Robust weighted likelihood estimation 

of exponential parameters, IEEE Transactions on Reliability,-54, 389-395. 

E. S. Ahmed (2000). Stein-type shrinkage quantile estimation, Stochastic Analysis and 

Applications, 18, 475-492. 

H. Akaike (1977). On entropy maximization principle, Applications of Statistics, 27-42. 

D. Blest (2000). Rank correlation—an alternative measure, Australian and New Zealand 

Journal of Statistics, 42, 101-111. 

N. E. Breslow k J. Crowley (1974). A large sample study of the life table and product 

limit estimates under random censorship, The Annals of Statistics, 2, 437-453. 

K. Chen k S.-H. Lo (1997). On the rate of uniform convergence of the product-limit 

estimator: Strong and weak laws, The Annals of Statistics, 25, 1050-1087. 

U. Cherubini, E. Luciano k W. Vecchiato (2004). Copula Methods in Finance. Wiley 

Finance, Wiley, Hoboken. 

D. G. Clayton (1978). A model for association in bivariate life tables and its application in 

epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 

65, 141-151. 

D. R. Cox k N. Reid (2004). A note on pseudolikelihood constructed from marginal 

densities, Biometrika, 91, 729-737. 

167 



Bibliography 

P. Deheuvels (1979). La fonction de dependance empirique et ses proprietes: un test non 

parametrique d'independance, Academie royale de Belgique-Bulletin de la classe des 

sciences, 65, 274-292. 

R. Durrett (2005). Probability: Theory and Examples, Third Edition. Duxbury Advanced 

Series, Thomson, Belmont. 

B. Efron (1967). The two sample problem with censored data. Proceedings of the Fifth 

Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University 

of California, 4, 831-853. 

J.-D. Fermanian, D. Radulovic, M. Wegkamp (2004). Weak convergence of empirical 

copula processes, Bernoulli, 10, 847-860. 

A. Foldes & L. Rejto (1981). Strong uniform consistency for nonparametric survival curve 

estimators from randomly censored data. The Annals of Statistics, 9, 122-129. 

M. J. Frank (1979). On the simultaneous associativity of F(x,y) and x + y — F(x,y). 

Aequationes Mathematicae, 19, 194-226. 

C. Genest, K. Ghoudi Sz L.-P. Rivest (1995). A semiparametric estimation procedure 

of dependence parameters in multivariate families of distributions. Biometrika, 82, 

543-552. 

C. Genest & J. MacKay (1986). Copules archimediennes et families de lois bidimension-

nelles dont les marges sont donnees. Canadian Journal of Statistics, 14, 145-159. 

C. Genest &; J.-F. Plante (2003). On Blest's measure of rank correlation, The Canadian 

Journal of Statistics, 31, 35-52. 

F. Hu (1994). Relevance Weighted Smoothing and a New Bootstrap Method, unpublished 

doctoral dissertation, Department of Statistics, The University of British Columbia. 

168 



Bibliography 

F. Hu & J. V. Zidek (1993). A Relevance Weighted Nonparametric Quantile Estima­

tor. Technical report no. 134, Department of Statistics, The University of British 

Columbia, Vancouver. 

F. Hu & J. V. Zidek (2001). The relevance weighted likelihood with applications, Empirical 

Bayes and Likelihood Inference, 211-235. 

F. Hu & J. V. Zidek (2002). The weighted likelihood, The Canadian Journal of Statistics, 

3 0 , 347-371. 

H. Joe (1997). Multivariate Models and Dependence Concepts. Chapman &Hall , London. 

R. A. Johnson Sz D. W. Wichern (2002). Applied Multivariate Statistical Analysis, Fifth 

Edition, Prentice Hall, Upper Saddle River. 

E. L. Kaplan & P. Meier (1958). Nonparametric estimation from incomplete observations, 

Journal of the American Statistical Association, 5 3 , 457-481. 

A. M . Krieger k, D. Pfeffermann (1992). Maximum likelihood estimation from complex 

sample surveys, Survey Methodology, 18, 225-239. 

D. G. Luenberger (2003). Linear and Nonlinear Programming, Second Edition, Kluwer, 

Nor well. 

M . Markatou, A. Basu Sz B. Lindsay (1997). Weighted likelihood estimating equations: 

The discrete case with applications to logistic regression. Journal of Statistical Plan­

ning and Inference, 5 7 , 215-232.-

National Center for Health Statistics (1997). U.S.. Decennial Life Tables for 1989-91, 

vol. 1, no. 1, Hyattsville, Maryland. 

R. B. Nelsen (1999). An Introduction to Copulas, Lecture Notes in Statistics No. 139, 

Springer, Berlin. 

169 



Bibliography 

D. Oakes (1986). Semiparametric inference in a model for association in bivariate survival 

data, Biometrika, 73, 353-361. 

J. Pinto da Costa h C. Soares (2005). A weighted rank measure of correlation, Australian 

and New Zealand Journal of Statistics, 47, 515-529. 

J.-F. Plante (2002). A propos d'une mesure de correlation des rangs de Blest, unpublished 

Master's Thesis, Departement de mathematiques et de statistique, Universite Laval. 

A. Sklar (1959). Fonctions de repartition a n dimensions et leurs marges. Publications de 

I'Institut de statistique de V Universite de Paris, 8, 229-231. 

Statistics Canada (2006). Life Tables, Canada, Provinces and Territories. Reference 

Period: 2000 to 2002., catalog number 84-537-XIE, Ottawa, Canada. 

H. Tsukahara (2005). Semiparametric estimation in copula models. The Canadian Journal 

of Statistics, 33, 357-375. 

C. van Eeden & J. V. Zidek (2004). Combining the data from two normal populations 

to estimate the mean of one when their means difference is bounded, Journal of 

Multivariate Analysis, 88, 19-46. 

A. Wald (1949). Note on the consistency of the maximum likelihood estimate, The Annals 

of Mathematical Statistics, 20, 595-601. 

X. Wang (2001). Maximum Weighted Likelihood Estimation, unpublished doctoral disser­

tation, Department of Statistics, The University of British Columbia. 

X. Wang, C. van Eeden h J. V. Zidek (2004). Asymptotic properties of maximum weighted 

likelihood estimators, Journal of Statistical Planning and Inference, 119, 37-54. 

X. Wang & J. V. Zidek (2005). Selecting likelihood weights by cross-validation, The Annals 

of Statistics, 33, 463-501. 

170 



Bibliography 

B. B. Winter, A. Foldes & L. Rejto (1978). Glivenko-Cantelli theorems for the PL estimate. 

Problems of Control and Information Theory, 7, 213-225. 

171 


