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Abstract 

Propensity scores analysis (PSA) involves regression adjustment for the estimated 

propensity scores, and the method can be used for estimating causal effects from 

observational data. However, confidence intervals for the treatment effect may be 

falsely precise because PSA ignores uncertainty in the estimated propensity scores. 

We propose Bayesian propensity score analysis (BPSA) for observational studies with 

a binary treatment, binary outcome and measured confounders. The method uses lo­

gistic regression models with the propensity score as a latent variable. The first 

regression models the relationship between the outcome, treatment and propensity 

score, while the second regression models the relationship between the propensity 

score and measured confounders. Markov chain Monte Carlo is used to study the 

posterior distribution of the exposure effect. We demonstrate BPSA in an observa­

tional study of the effect of statin therapy on all-cause mortality in patients discharged 

from Ontario hospitals following acute myocardial infarction. The results illustrate 

that BPSA and PSA may give different inferences despite the large sample size. We 

study performance using Monte Carlo simulations. Synthetic datasets are generated 

using competing models for the outcome variable and various fixed parameter val­

ues. The results indicate that if the outcome regression model is correctly specified, 

in the sense that the outcome risk within treatment groups is a smooth function of 

the propensity score, then BPSA permits more efficient estimation of the propensity 

scores compared to PSA. BPSA exploits prior information about the relationship be-
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tween the outcome variable and the propensity score. This information is ignored 

by PSA. Conversely, when the model for the outcome variable is misspecified, then 

BPSA generally performs worse than PSA. 
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Chapter 1 

Introduction 

The propensity score, defined as the probability of treatment given measured con-

founders, can be used as a tool to control confounding bias in observational studies 

[1, 2]. Patients with fixed propensity scores have identical distributions of measured 

confounders, irrespective of whether they are treated or not [1]. Thus when there are 

no unmeasured confounders, comparing patient outcomes between treatment groups 

conditional on the propensity score gives unconfounded estimates of causal treatment 

effects. Sampling patients with the same propensity score replicates a miniature ran­

domized trial within a subset of the study population. 

To adjust for confounding, we can include the propensity score in a regression 

model for the outcome [3]. Because the functional form for the relationship between 

the outcome and the propensity score within treatment groups is usually unknown, 

we have a non-parametric regression problem. A common analytic strategy is to 

break the study sample into homogeneous groups, and then estimate the treatment 

effect within each group [2]. The groups are often constructed using quintiles of the 

empirical distribution of the propensity scores. Other adjustment techniques include 

treating the propensity score as a continuous covariate or fitting a regression using, 

cubic splines [2]. If matched pairs are available then conditional likelihood estimation 

is often used [2]. 

In observational studies, the propensity score is unknown and can be interpreted as 

missing data. A propensity score analysis (PSA) proceeds using a two step procedure. 
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First we estimate the propensity'score for each patient. Then we fit a regression 

model on the estimated propensity scores. In most applications, standard errors 

estimates are calculated from asymptotic approximation to the distribution of the 

maximum likelihood estimator based on the regression model of the outcome on 

treatment and estimated propensity scores [4]. This approach to interval estimation 

ignores uncertainty in the estimated propensity scores. Frequentist inferences are 

reported under hypothetical repeated sampling of patient outcomes conditional on 

the observed treatments and estimated propensity scores. 

If our objective is to report inferences while acknowledging uncertainty in the 

estimated propensity scores, then intuitively the conventional standard error calcu­

lations will yield interval estimates for the treatment effect which are falsely precise. 

PSA substitutes point estimates for parameters. We can draw parallels with stepwise 

model selection techniques used in regression modelling. A preliminary analysis se­

lects one model among many competing models. The usual confidence intervals are 

calculated by conditioning on the selected model and they will be too narrow because 

they do not acknowledge model uncertainty [5]. 

There is little discussion in the literature about methods for incorporating un­

certainty from the estimated propensity scores into uncertainty about the treatment 

effect. Some exceptions include [4, 6]. In contrast, there a large body of work de­

scribing the merits of using estimated propensity scores over true propensity scores 

[7]. Hahn and others [8-11] argue that treatment effect estimates calculated using the 

estimated propensity scores are generally more efficient than corresponding estimates 

calculated from true propensity scores. This has been demonstrated both analyti­

cally and in simulations in the context of propensity score weighting adjustments for 

confounding [8-11]. For matched sampling, Rubin and Thomas [12, 13] demonstrate 

that matching on the estimated propensity scores generally yields greater similarity in 
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empirical distribution of covariates for treated versus control subjects. Similar find­

ings are reported for subclassification on quintiles of the estimated propensity score 

versus the true propensity score [3]. 

In this thesis, we develop a Bayesian approach to modelling uncertainty in the 

estimated propensity scores in observational studies with a dichotomous treatment, 

dichotomous outcome and a vector of measured confounders. We propose a Bayesian 

propensity score analysis (BPSA) which models the joint distribution of the data 

and parameters with the patient propensity scores as latent variables. Markov chain 

Monte Carlo (MCMC) is used to sample from the posterior distribution of model 

parameters. This estimation strategy yields interval estimates for the treatment effect 

which incorporate uncertainty in the estimated propensity scores. 

We show that BPSA has certain advantages compared to PSA. The method uses 

patient outcome data in order to calculate propensity score estimates. Instead of using 

a two step procedure which first estimates propensity scores and then estimates treat­

ment effects, BPSA estimates both quantities simultaneously. The M C M C algorithm 

iteratively imputes the propensity scores and estimates the treatment effect. When 

imputing the propensity scores, posterior information about the outcome distribution 

flows through the algorithm in order to inform inferences about the propensity scores. 

Thus BPSA incorporates prior information about the relationship between the out­

come and propensity score within treatment groups. This information is ignored by 

PSA when estimating propensity scores. 

With the exception of two articles [14, 15], there appears to be little research 

combining propensity score methods and Bayesian statistics. One possible reason is 

because PSA does not use conventional models for the risk of the outcome variable. 

The usual approach to adjust for confounding is to work with an assumed model for 

the risk of the outcome given treatment and measured confounders. Instead PSA 
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uses a model for the outcome given treatment and the propensity score. But the 

propensity score is not a typical covariate. It is a characteristic of the manner in 

which treatment and covariates were sampled. While the PSA method produces 

valid treatment effect estimates from a frequentist standpoint, it makes less sense 

within the Bayesian paradigm. How one chooses to design an experiment (i.e. the 

true values of propensity scores) should convey no prior information about the risk of 

the outcome in a given study subject. Robins and Ritov argue the propensity scores 

should not appear in the likelihood for the distribution of the outcome variable and 

are irrelevant in a Bayesian analysis [15]. We elaborate on this in more detail in 

Section 3.2. 

This thesis is organized as follows. In Section 1.1, we describe a case-study to 

motivate the methodology. We describe an observational study of the effectiveness 

of statin therapy in Ontario residents following myocardial infarction. In Chapter 2, 

we review the topic of confounding bias in observational studies, and analytic adjust­

ments for confounding bias using propensity scores. Only observational studies with 

a binary treatment, binary response and a vector of measured covariates are consid­

ered. In Chapter 3, we describe the BPSA method which models the propensity score 

as a latent variable. We demonstrate that BPSA uses patient outcomes to estimate 

propensity scores by incorporating prior information about the relationship between 

the outcome and propensity scores. In Section 3.2, we discuss using BPSA as a tool 

for causal inference. We argue that while the BPSA model is not a realistic repre­

sentation of the true data generating process, the method can nonetheless be used 

to construct Bayesian estimators with good frequentist properties. In Chapter 4 we 

apply our method to the statin data and compare the results to PSA. We illustrate 

that contrary to intuition, BPSA and PSA may give very different results even in 

large samples. In Chapter 5 we use simulations to study the frequentist performance 
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of point estimates, interval estimates and prediction error when applied to both the 

statin data and simulated data. The results demonstrate that if the outcome regres­

sion model is correctly specified, in the sense that the outcome risk within treatment 

groups is a smooth function of the propensity score, than BPSA permits more efficient 

estimation of the propensity scores compared to PSA. Conversely, when the model for 

the outcome variable is misspecified, then simulations show that BPSA will generally 

perform poorly relative to PSA. 

1.1 A motivating example: Estimating the 

effectiveness of statins in patients following 

acute myocardial infarction. 

To motivate the propensity score methodology, we begin by considering the example 

of an observational study estimating the effectiveness of statin therapy in patients dis­

charged alive from hospital following acute myocardial infarction. Statins are a class 

of lipid lowering medications which are commonly prescribed to persons with multiple 

risk factors for cardiovascular disease. Several large studies in the United States and 

elsewhere have demonstrated that statin therapy reduces morbidity and mortality in 

patients following myocardial infarction [16-18]. Nonetheless, the magnitude of the 

effectiveness of statins in large populations is less well understood. Randomized tri­

als typically do not provide estimates of population level effects because they exclude 

vulnerable populations from study, such as the elderly and very sick. Observational 

studies indicate that statins may be highly effective in these vulnerable groups [19]. 

Detailed clinical data were obtained from a random sample of 4572 patients dis­

charged alive from Ontario hospitals with myocardial infarction between April 1, 
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1999 and March 31, 2000. The data were collected in conjunction with the Enhanced 

Feedback for Effective Cardiac Treatment (EFFECT) study, an ongoing initiative 

to improve the quality of health services for Ontario residents with cardiovascular 

disease [2]. For each patient, medical charts were abstracted to obtain information 

on demographic characteristics, cardiac risk factors, comorbid conditions, vascular 

history, vital signs at hospital admission, and laboratory tests. Data on prescriptions 

for statins were also collected. More details about the dataset are given by Austin 

and Mamdani [2]. A complete list of the measured covariates is given in Table 1.1. 

To estimate the effect of statin therapy on mortality, patients were classified as 

statin users if they were prescribed a statin at hospital discharge, and they were classi­

fied as statin non-users otherwise. Death within three years of hospital discharge was 

established by linking patient records to the Ontario Registered Persons Database. 

Before comparing mortality rates among treated and untreated patients, we de­

scribe the study sample. Table 1.1 presents summary statistics for the baseline char­

acteristics of treated and untreated patients. We use t-tests and chi-squared tests to 

compare the covariate distributions among treated and untreated patients for contin­

uous and dichotomous variables respectively. The results indicate that the treatment 

groups differ systematically with respect to risk factors for mortality. Patients who 

were prescribed a statin at hospital discharge were typically younger and healthier 

than patients without a prescription [2]. These, results-are consistent with previous 

studies of physician prescribing habits for cardiovascular disease medications [19, 20]. 

Physicians tend to avoid giving statins to the elderly or to patients with multiple 

comorbidities, even though they are often indicated in such populations [19]. 

The results in Table 1.1 indicate that a crude comparison of mortality among 

treated and untreated patients may be biased due to confounding. Randomized trials 

demonstrate that statin therapy reduces mortality in patients following acute myocar-
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dial infarction [16]. Consequently, we expect the protective effect of statin therapy 

on mortality to be exaggerated in a crude comparison of mortality rates. Treated 

patients have lower mortality because of the benefits of statins and because they are 

more healthy. The crude odds ratio for the association between statin therapy and 

mortality can be calculated from the 2 x 2 table: 

Died Survived 

Treated 193 1161 1354 

Untreated 800 2418 3218 

993 3579 4572 

and is equal 0.50 with 95% confidence interval (0.42, 0.60). This estimate is far lower 

than previous estimates from randomized controlled trials or observational studies 

[16-18]. In light of prior information about physician prescribing habits of statins 

[19, 20], these data provide evidence that association between statin therapy and 

mortality is confounded. Analytic adjustments are required in order to account for 

the unequal distribution of mortality risk factors between treatment groups. 
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Table 1.1: Baseline characteristics of 4572 patients discharged alive from hospital 
following acute myocardial infarction. 

Statin prescribed Statin not prescribed 
Characteristic (n= 1354) (n= =3218) 

Number (%) or Mean ± SD 
Demographic characteristics 
Age (mean) 63 ±12** 68 ±14** • 
Female sex 398 (29)* 1201 (37)* ' 

Presenting characteristics'* 
Shock < 5 (< 1) 24 (1) 
AMI risk factors+ 

Family history of C A D 525 (39)** 973 (30)** 
Diabetes 459 (26) 1060 (26) 
C V A / T I A 122 (9) 312 (10) 
High BP 548 (48)* 1386 (43)* 
Current smoker 459 (34) 1060 (33) 
Hyperlipdaemia 794 (59)** 604 (19)** 

Comorbidities'* 
Angina 504 (37)** 999 (31)** . 
Renal disease 10 (1) 13 (< 1) 
Vital signs on admission^ 
Systolic BP 149 ±31 148 ±32 
Diastolic BP 85 ±18 84 ±18 
Heart rate 81 ±23* 84 ±23* 
Respiratory rate 20 ±5** 21 ±6** 

Laboratory values^ 
White blood count 10 ± 5 10 ± 5 
Haemoglobin 141 ± 17 ** 137 ± 19** 
Sodium 139 ± 3* 139 ± 4* 
Glucose 9 ± 6 9 ± 5 
Creatinine 101 ± 54 104 ± 60 

* p < 0.05, ** p < 0.001 
f Continous variables, + Dichotomous variables 
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Chapter 2 

Background: Control of 

confounding in observational 

studies 

The concept of confounding is ubiquitous in epidemiology and observational research. 

See Rothman and Greenland [21], Pearl [22] and Greenland, Rothman and Pearl [23] 

for reviews. Confounding bias is the problem of mixing of the effects of the putative 

treatment of interest with that of extraneous outcome risk factors. For example, 

having yellow fingers does not affect risk of lung cancer. But yellow fingers and lung 

cancer will tend to be associated because yellow fingers are associated with smoking 

which also causes lung cancer. Conceptualizing confounding has been controversial. 

The definition of confounding varies from one reference to another and is an area of 

ongoing research [24]. 

In this chapter we review methods for control of confounding bias with emphasis 

on propensity score methods. This provides the setting for discussing our proposed 

Bayesian propensity score analysis. Because confounding implies biased estimation, 

we begin by reviewing the framework for understanding the competing targets of in­

ference in the analysis of observational data. In Section 2.1, we review definitions 

of causal parameters. In Section 2.2, we discuss estimation of causal parameters in 

randomized experiments and observational studies. In Section 2.3, we define con-
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founding bias and confounding variables. In Section 2.4, we review stratification on 

the propensity score for reducing confounding bias. We restrict our discussion to the 

setting of a binary treatment, binary response and a vector of measured covariates, 

where the log odds ratio (OR) is the measure of effect. 

2.1 Denning causal parameters 

Suppose that our objective is to estimate the causal effect of applying a dichotomous 

treatment on the risk of a dichotomous outcome. To define causation, a popular 

approach is to use potential outcome models [25]. The idea is to model not only the 

data that is observed in an investigation, but also the data that would be observed 

under hypothetical treatment interventions that are not observed. To motivate the 

approach, we paraphrase an example from Pearl [22]. Imagine a barometer which 

records air pressure measurements dichotomously as B = High or Low each morning 

on a sequence of days. Additionally, we record the weather each afternoon as either 

W — Rain or No Rain. Suppose that our objective is to measure the causal effect 

of physically intervening to set the barometer to B — Low each morning on the 

frequency of rain each afternoon. Furthermore, suppose that this is an observational 

study in the sense that we cannot actually manipulate the values of the barometer. 

To define "causal effect", we model the distribution of W given B, and also the 

hypothetical distribution of W given the unobserved value of B. The causal effect of 

B on W is defined based on differences between these two distributions. 

To define the causal effect of a treatment on an outcome in human populations, 

we model the distribution of outcomes among patients who have been sampled from 

a large hypothetical population in which either all patients received the treatment, 
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or all patients did not receive the treatment. Mathematically, let denote a di-

chotomous random variable which models the outcome of a patient had they been 

sampled from the treated population. The variable Y^y takes the value one if the 

patient has the outcome and zero otherwise. Similarly, let Y{0y denote the outcome for 

the same patient had they been sampled from the untreated population. The sam­

pled pair of random variables (Y^y,Y^0y) are potential outcomes (sometimes called 

counterfactuals). Let X model the treatment received by the patient, taking value 

one if the patient was treated and zero otherwise. Let C denote a p x 1 vector of 

patient characteristics such as age and gender. Data for each patient is modeled by 

the collection of random variables (V{i}, Y^,X, C). 

Modelling both Y{\} and Y[oy may seem strange because we know the patient 

received treatment X and not 1 — X. But modelling outcomes under hypothetical 

treatment interventions allows us to define causation. Defining causal effects based 

on the distribution of observed data is problematic because it leads to ambiguity 

about the difference between association and causation. In the barometer example, 

were we to investigate the effect of B on W in an observational study of the joint 

distribution of B and W', then we might erroneously conclude that changing B does 

cause a change in the weather because B and W are dependent. But this dependence 

does not have a causal interpretation. Changes in air pressure affect both B and W. 

Suppose instead that we model the two distributions of W given that we intervene in 

the experiment by setting B to either Low or High each day. While we could never 

observe both distributions at the same time, common sense tells us they are identical. 

Thus B does not cause W. The key to defining causation statistically is to model not 

only the distribution of the data that we observe, but also the distribution of data 

that we might have observed under hypothetical interventions. Whether or not we 

can make inferences about these distributions from the data is a separate issue. 
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We denote causal parameters from standard definitions [22, 26]. Let 

f(y{i},y{o},x\c) = / ( x | y { 1 } , y { 0 } , c 0/(y{i},y{o}|c) (2.1) 

model the joint probability density function of a sampled unit (Y{i},Y{0},X) given C. 

Uppercase and lowercase letters denote random variables and realizations of random 

variables respectively. Define the causal log OR conditional on C as 

Let P{Y{X] = 1) — JP(Y{x} = l|c)/(c)dc for x = 0,1 where /(c) is the probability 

density function of C. The quantity P(Y{X} — 1) can be interpreted as the standard­

ized risk given treatment X = x, averaged with respect to the marginal density P(C). 

Define the average causal log OR as 

The parameter ft* describes the causal effect of X on Y within the subgroup of the 

population with C = c. In contrast, /?* describes the causal effect assuming that all 

patients either have or have not been treated. 

In general /?* and J (3*f(c)dc are not equal. This is true even when f3c does 

not depend on C, meaning that there is no effect modification [27]. This is because 

the log OR is a non-linear function of risks. The average of the log ORs conditional 

on C will typically not equal the log OR calculated from average risks. This prop­

erty of ORs is called non-collapsibility by epidemiologists [23] and is related to the 

challenges of characterizing odds ratios in marginal and conditional models in lon­

gitudinal data analysis. In contrast, the risk difference is always collapsible, while 

•P{Y{1} = 1\C)/(1-P(Y{1} = 1\C)Y 

p ( y { 0 } = i | c ) / ( i - p ( y { 0 } = i|c)). • 

Plva = lOg 
-P(Y{1} = i)/(i - p ( y { 1 } = i))-

p ( y { 0 } = i ) / ( i - P ( y { 0 } = i)). ' 
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the risk ratio is collapsible when there is no effect modification [23]. We emphasize 

this point because when using the log OR as a measure of effect, we obtain different 

parameters depending on whether we condition on C. For example, as discussed in 

Section 2.4, conditioning on the propensity score for reducing confounding bias yields 

a third causal quantity which may differ from either f3avg or Bc. Each parameter is a 

valid causal quantity, but the fact that they differ from one another could lead one 

to erroneously conclude that a method is biased. This has been typically overlooked 

in the literature, particularly with respect to propensity score methods. Recent work 

on the relationship between causal quantities is investigated by [28-31]. 

2.2 Estimating causal effects in randomized 

experiments and observational studies 

For each sampled unit, only one of Yji} or Y{o} is observed while the other is missing. 

Formalizing, let Y denote the observed outcome for a sampled patient, where 

Y=l 
Y{1} if X = 1 

Y{0} if X = 0. 

Or more simply, define Y as Y — Y{x}- Therefore, if X = 1 then we observe Y = Y{i} 

and the potential outcome Y{0y is missing. If X = 0 then Y = F{o} and Y{i} is missing. 

In observational studies, we observe (Y,X,C) for each subject. Following [26], 

define the associational parameter, 

ft = log 
P(Y = 1\X = 1, c)/( l -P(Y = 1\X = 1, c)) 

[P(Y = 1|X = 0, c)/( l -P{Y = l\X = 0, c)) 
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Letting \xx = f P(Y = l\x, c)f(c)dc for x = 0,1, we define 

A™, = log 
Mo/(l -Mo))J 

The parameter [3C is just the usual conditional association between Y and X given C, 

and might be estimated from logistic regression of Y on X and C. The parameter B is 

a log OR calculated from standardized risks. The important issue in causal inference 

is to determine the relationship between Bc and 8*, and between [3avg and 8* . In 

other words, to determine when association equals causation. 

For identification of causal parameters, it is usually assumed that 

P(X = l\y{lhy{ohc) = P(X = l\c) 

or equivalently, that v 

(r { 1 } ,y { 0 } ) j ix|c, 

meaning that (Y/i}, Y{0}) are conditionally independent of X given C. This assump­

tion appears under different names in the causal inference literature, and we call-it the 

assumption of no unmeasured confounding. The assumption means that, within lev­

els of C, the treatment variable X is not associated with the observed or unobserved 

potential outcomes. 

When there is no unmeasured confounding, the associational parameters are equal 
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to causal parameters, meaning that Bc =' P* and Bavg = P*vg. This is because 

P(Y = l\X = l,c) = P(Y{1} = 1\X = 1, c) 

= P(Ym = l\c) 

P(Y{0} = l\X = 0,c) 

= P(Y{0} = l\c). 

P(Y = 1\X = 0,c) = 

In each equation, the first equality follows because Y = Ypc}) while the second 

equality follows because (Y{iy,Y{0y) _LL X\C. Therefore P(Y = l\x,c) = P(Y{xy = 

l|c) and association equals causation. We have 

Pc = log 

- log 

= P:. 

P(Y = 1\X = 1, c)/(l -P(Y = 1\X = 1, c)) 
P(Y = 1\X = 0, c)/( l - P(Y = 1|X = 0, c)) 
p ( y { 1 } = i | c ) / ( i - p ( y { 1 } = i | c ))-
p ( y { 0 } = i | c ) / ( i - p ( y { 0 } = i|c)). . 

Similarly \ix = J P{Y = l\x,c)f{c)dc = J P(Y{x}\c)f(c)dc = P(Y{1} = 1) which 

means that 

avg log 

= log 

- Ml) 
W ( l - ^ o ) ) J 
P ( y { 1 } = !) /(! - P ( Y { 1 } = 1)) 
p(y {o } = i ) / ( i - p ( y { 0 } = i))J 

= A 

To estimate causal effects, it suffices to estimate features of the distribution of P ( Y = 

l|x,c) using standard statistical techniques, and we can dispense with the potential 

framework. 
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The value of potential outcome models is not so much statistical as it is concep­

tual. In simple settings, the same methods of analysis are used regardless of whether 

or not we use associational or causal models. But causal modelling gives a clear 

definition of causal effects, and it characterizes the assumption that is needed to 

distinguish association from causation. Whether or not the assumption of no unmea­

sured confounders is valid becomes a separate question. In randomized controlled 

trials with perfect compliance, blinding and, no loss to follow up, this assumption 

of no unmeasured confounders is valid because the distribution P(X = l|c) is spec­

ified by the investigator. For example, we may choose P(X = l|c) = 0.5 for all 

subjects. Then we have P(X = Z/{o}5c) = P[X = l|c) automatically. In ob­

servational studies, there can be no guarantee that the assumption is correct. Prior 

information is used to select a collection of covariates such that we have approxi­

mately P{X — l|y{i},y{0}»c)' ~ P(X = l|c). In other words, causal inference in 

observational studies necessitates efforts to classify patients into strata such that the 

treatment is assigned approximately at random. 

Causal inference using potential outcome models has also been developed in con­

nection with models for missing data [25]. For each patient, we observe Y{x) while 

Y{i-x} is missing. The issue is to characterize the pattern of missing data, or rather, 

the way in which treatment is assigned to each patient. In the factorization of equa­

tion (2.1), the treatment assignment mechanism is modelled by P(X = l|y{i}, V{o}, c). 

If X = 1 then F{o} is missing, whereas if X = 0 then Y{i} is missing. When there is no 

unmeasured confounding, the missing data mechanism does not depend on the miss­

ing potential outcome Y{\-x}- For Bayesian inference, valid estimation of the causal 

effects defined in Section 2.1 can proceed by modelling only the observed patient 

outcomes Y given X and C, that is P(Y = l\x,c), without modelling the treatment 

assignment mechanism P(X = l|c). 
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We elaborate in more detail about Bayesian inference for causal effects because 

it is relevant to the discussion about Bayesian propensity score analysis in Chapter 

3. Following Rubin [25], relabel the potential outcomes as Y{X} and Kfi-x}, where 

Y{x} = Y is the observed outcome while ^ { I - X } is missing. Suppose we model the 

joint probability density function of Y{Xy, and X given C parametrically as 

f(y{x},y{i-x},x\c, 9,7) = f(x\y{x},y{i-x},c, 7) / (y { x } , y { i _ x } | c , 9). 

The parameter 9 indexes the parametric model for the potential outcomes and it 

includes the causal parameter of interest. The quantity 7 parametrizes the missing 

data mechanism. Suppose that there are no unmeasured confounders, meaning that 

(Y{1},Y{Q}) AL X\C. Then we have f(x\y{x},y{1_x},c,j) = f(x\c,j). The probability 

density function of the observed quantities Y, X and C is given by 

f(y,x\c,9,-y) = f(y{x},x\c,9,-y) 

= J f(,y{x},y{i-x},x\c,9,'y)dy{1_x} 

= J f{x\cn)P(y{x},y{i-x}\c,9)dy{1_x} 

= f(x\c,l) J f(y{x},y{i-x}\c,9)dy{i_x}. (2.2) 

Let f{9,j) = f{9)f(j) denote a prior density in which 9 and 7 are indepen­

dent. Then the missing data mechanism is called ignorable [25]. Given y, x and c, 

Bayesian inference for 9 proceeds from the posterior distribution for 9 which obeys 
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the proportionality 

f{6\y,x,c) cx f(y,x\c,0,1)f(9)f(1) 

oc f(x\c,j) J f(y{x},y{i-x}\c,0)dy{ 

« J f{y{x},y{i-x}\c,O)dy{1-x}f(0) 

1-x} 

(2.3) 

The parameter 7 does not appear in the posterior distribution. Hence for Bayesian 

inferences about 9, the treatment assignment mechanism f(x\c, 7) conveys no infor­

mation about 9 and can be ignored when developing a model for the data. 

2.3 Confounding bias 

The literature on confounding bias distinguishes between the notions of confounding 

and a confounder [24, 26]. We say that there is confounding if 

(Y{lhY{0}) 4LX\C. 

When (Y { 1 } , Y{0}) _)£. X\C, then this implies that P{Y{X} = l|c) ^ P{Y{X} = l\x, c) 

P(Y = l\x, c) for X = 0 or 1. Therefore, 

PI = log 

± log 

= Pc 

p ( y { 1 } = i | c ) / ( i - p ( y { 1 } = i|c))-

p ( y { 0 } = i |c)/( i -p(y { 0 } = i|c))J 

p ( y = i [ x = i , c ) / ( i - p ( y = \\x = i,c)) 
[p(y = i | x = 0, c )/(i - P ( y = \\x = 0, C))J 

Thus p* Pc, and the associational parameter Pc does not have a causal interpreta­

tion. Similarly, we have P*vg ^ pavg. 
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This definition of confounding is appealing because it avoids reference to mea­

sures of effect, and it helps distinguish confounding from the unrelated notion of 

non-collapsibility described in Section 2.1. Lack of a clear separation between con­

founding and non-collapsibility when inferring causation created some controversy in 

early attempts to characterized confounding. For example, when analyzing data from 

randomized trials, conditioning on outcome risk factors in a stratified analysis will 

drive the log OR parameter away from zero when there is a treatment effect [23, 32]. 

But this change in the log OR is unrelated to confounding. See [22, 24] for discussion. 

Recent definitions of confounders, meaning variables which are responsible for 

confounding, assume that the causal relationship between variables in a population 

can be.modelled using directed acyclic graphs (DAGs). While we have discussed 

potential outcome models for causation, DAGs offer a different strategy that can be 

used for qualitative assessment of bias. For fixed time point treatments, such as in 

the case of the statin data example of Section 1.2, the approaches can be shown to 

be equivalent in the sense that both types of models give the same mathematical 

description of the same quantities [22]. 

A DAG consists of a set of variables connected by arrows in which no directed 

paths form loop's. An arrow models direct causal effects of the parent variable on the 

child variable. A scalar variable C is defined as a confounder for the effect of X on 

Y if C connects to X and Y by forward pointing arrows. For example, Figure 2.1 

presents examples of DAGs in which G is a confounding variable. Therefore, C is a 

confounder if it causes both X and Y. If C is smoking, Y is lung cancer, and X is 

yellow fingers, and their causal relationship can be modelled by any of the diagrams 

in Figure 2.1, then smoking is a confounder for the effect of yellow fingers on lung 

cancer. 

The definition of a confounder appearing in modern epidemiological textbooks 
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Figure 2.1: Directed acyclic graphs in which C is a confounder, X is treatment Y 
the outcome, and U is an additional measured or unmeasured variable. 

c c —» u 

X Y X Y 

U 

t u <—c c 
l v j \ 
X Y X Y 
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says that C is a confounder for the effect of X on Y under two conditions. Condition 

1: The variable C must be associated with both X and Y. More technically, we 

require that Y AL C\X and X AL C\Y. Condition 2: The causal interpretation of 

dependencies between Y, X and C is restricted to require that C is not affected by 

X or Y. This definition and the one based on DAGs are usually equivalent [24]. But 

using DAGs to define a confounder formalizes and generalizes the intent of Condition 

2 to more complex observational data (see [24] for details). 

To infer causation from observational data, we must identify a set of covariates C 

such that we have approximately (F{i},Y{o}) AL X\C. DAGs can be helpful in this 

process. Instead of focusing on whether individual covariates meet the traditional 

definition of being confounders, the investigator can instead attempt to elicit a DAG 

model for all relevant measured and unmeasured factors. Such a diagram may be 

elaborate, but simple criteria have been developed based on paths between the treat­

ment and outcome variable that allow the investigator to verify if ^{o}) AL X\C 

[22, 26]. 

2.4 Propensity score analysis (PSA) for control 

of confounding 

When there is no unmeasured confounding, the standard approach to estimating 

causal effects is to estimate P(Y = l\x,c) over levels of C and then calculate an 

estimate of f3c, the log OR conditional on C. We call this stratification on measured 

confounders. When strata are sparse, model-based estimation is often used. We 

assume a parametric model for P(Y = l|a;,c), such as a logistic regression model 

of Y on X and C, and proceed by maximum likelihood estimation. A difficulty is 
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that this strategy requires accurate specification of P(Y = l\x,c). This may be 

difficult if C is high-dimensional with continuous components. In the statin data 

example of Section 1.1, we have rich patient information on quantities such as vital 

signs at hospital admission and laboratory values. But the functional form of the 

dependence between these variables and mortality is poorly understood. If the model 

for P(Y = l|a;,c) is misspecified, then estimates of Bc will be asymptotically biased. 

An alternative technique to control confounding is to use propensity scores. The 

propensity score is defined as the probability that a subject is treated given measured 

confounders, or mathematically as the quantity Z = P(X = l|c). The propensity 

score can be used as a.tool to ensure that treatment-groups have similar distributions 

of measured confounders. Rosenbaum and Rubin [1], Theorem 1, showed that patients 

with fixed propensity score Z have the same distribution for C irrespective of X, or 

more technically that C 1L X\Z. This is because P(X = l|c, z) = z, which does not 

depend on C. Further Rosenbaum and Rubin [1], Theorem 3, showed that if there 

is no unmeasured confounding conditional on C, then this implies that there is no 

unmeasured confounding conditional on Z. Or rather, that (Y{iy,Y{0y) _LL X\Z. The 

reason is because 

The integration is over the subsets of the support of C given by the set Uz — (c|/(c) = 

z} for 0 < z < 1. The set Uz corresponds to the subset of the population who have 

Juz 

/(y{i},y{o}l2)-
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propensity score z. The first line follows because there is no unmeasured confounding 

given C, while the second line follows because C AL X\Z. Thus P{X{\}-,Y{Q}\x,z) = 

P(Y{1},Y{0}\z) and we have {Y{i},Y{0}) AL X\Z. 

Rosenbaum and Rubin used the result (Y{i}, ^{o}) X\Z to argue that stratifying 

on the propensity score eliminates confounding bias due to C. The association between 

X and Y within patients with the same propensity score has a causal interpretation. 

Since (Yji}, Y{0}) -II X\Z, we have P(Y = l\x,z) = P{Y{x} = because 

P(Y = 1\X = l,z) = P(Y[l} = 1\X = = P(Y{1} = l\z) 

P(Y = 1\X = 0, z) = P(Y{0} = l\X = 0,z) = P(Y{0} = l\z). 

The associational log OR conditional on Z, written 

0 = log 
P(Y = 1\X = l,z)/(l -P(Y = 1\X = 1, z)) 

[P(Y = 1|X = 0,z)/(l - P(Y = 1\X = 0,z))\ 

has a causal interpretation because it is equal to the causal log OR conditional on Z 

P* - log 
P(YX = l | ^ ) / ( l - P ( Y 1 = l|z)) 
P{YQ = \\z)/{\-P(YQ = \\z)) 

Patients with fixed propensity scores have equal probability of treatment, irrespective 

of their characteristics. Therefore, comparing patient outcomes between treatment 

groups conditional on the propensity score removes confounding. The parameter B 

will generally differ from either Pavg or Bc, the causal parameter defined in Section 2.2, 

because of non-linearity of the log OR [28, 29]. But B can nonetheless be interpreted 

as a valid causal quantity [30, 31]. 

Point estimation of ft using propensity score analysis (PSA) 
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In observational studies, the propensity score is unknown and can be interpreted 

as missing data. A propensity score analysis (PSA) proceeds using a two step pro­

cedure. First the propensity scores are estimated for each patient. Then we fit a 

regression model on the estimated propensity scores. In most applications, standard 

error estimates are calculated from asymptotic approximation to the distribution of 

the maximum likelihood estimator based on the regression model of the outcome 

on treatment and estimated propensity scores [4]. Thus interval estimates ignore 

uncertainty in the estimated propensity scores. 

To illustrate in greater detail, suppose that we have an observational study with 

sample size n. To define the data, let yi and xi for i — 1,..., n, denote the observed 

values'of outcome Y and treatment X, and let y = ( y i , . . . , yn) and x = (x\,... ,xn). 

Let Cj for i = 1,... ,n, denote values of the p x 1 vector C of confounding variables, 

and let c denote an n x p design matrix where each row is given by Cj. To ease 

notation in modelling regression intercept terms, we assume that the first component 

of C is identically equal to one, or rather, that the matrix c contains a column of 

ones. 

The vector of propensity scores z = (zi,... ,zn), where Zj = P(X = 1|cj), is 

unknown. To estimate /?, we first estimate z, typically via logistic regression of x on 

c using the model 

logit[P(X = l|c)] = Y c (2.4) 

The fitted values of the regression provide point estimates of z denoted z. -Next, the 

patients are stratified on the estimated propensity scores, and we estimate character­

istics of P(Y = l\x, z) such as B. Exact stratification on the propensity score is often 

not possible because the data are sparse. Instead, we can propose a regression model 
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for P(Y = l\x, z), such as • -

logit[P(Y = l\x, z)} = Bx + g(z)'f, • (2.5) 

and then use maximum likelihood estimation with z = z to calculate an estimate for 

B. The quantity g(Z) is a k x 1 covariate vector which is a known function of the 

propensity score and models the relationship between the propensity score and Y. 

A popular choice for g(Z) is based on five equal sized quintile groups. Then g(z) is 

a 5 x 1 vector in which the latter four components are "dummy" variables indicating 

quintile group membership, 

[1, 0, 0, 0, 0] if z < ci 

[1, 1, 0, 0, 0] if cx < z < c2 

g(z)' = { [l, 0, 1, 0, 0] if c2 < z < c 3 (2.6) 

[1,0,0,1,0] i f c 3 < z < c 4 

[ [1, 0, 0, 0, 1] if c 4 < z. 

The parameter vector £ = (^, £ 2, £3, £4, £5) governs the risk of Y within each group. 

The quantities C i , c 2 , 0 3 , 0 4 which define the quintile groups are specified in advance 

based on the empirical distribution of the estimated propensity scores zi,...,zn. 

When subclassifying on propensity score bins, we can also use the Mantel Haenszel 

method [4]. Alternatively we could model g(z)'£ using cubic splines 

3 P 

9(z)'$ = 6 + 2^ + J2ZJ+P{Z ~ 
j=i 3=1 

where (u)+.= upI{u > 0) with knots C i , c 2 , . . . c p , or as a simple linear predictor 

9(z)'t, = £0+6-2 [2, 33]. If matched pairs are available with matching on the estimated 
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propensity score, then we can use conditional likelihood estimation which does not 

assume an explicit functional form for g(z)'£. 

PSA is similar to conventional regression of Y on X and C, except that it substi­

tutes a high dimensional covariate C with the scalar Z. Each of the functional forms 

for P(Y = l\x,z) assumes that there is no effect modification due to the propensity 

score. But this may be unrealistic in some settings and the method can be extended 

appropriately [31]. 

Interval estimation of (5 using PSA 

Interval estimates for j3 are typically calculated by estimating the asymptotic 

variance of B, denoted Var{/3}. We report 

J3 - 1.96y/Var{j3}, 0 + 1.96^Var0} 

as a 95% confidence interval for B. The quantity Var{(3} is calculated from the 

observed information matrix based on the parametric model for P(Y = 1 |x, z). When 

P(Y = l\x,z) follows equation (2.4), this is accomplished by evaluating the matrix 

W 0 2 t T g l l + e x p ( / ? x i + ^ ) 0 ) i 
Q2 • n 

Y^ViiPxi + gWO - log(l + exp(/3a;i + p(^)'O) 

at the maximum likelihood estimates for B and £. This expression is calculated 

from z rather than z, and the standard error estimate of B does not acknowledge 
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the uncertainty in the estimated propensity scores. Thus we might expect that the 

interval estimates will be too narrow and not have nominal coverage probability! 

There is little discussion in the literature about methods for incorporating un­

certainty from the estimated propensity scores into uncertainty about the treatment 

effect. Some exceptions include [4, 6]. In contrast, there a large body of work de­

scribing the merits of using estimated propensity scores over true propensity scores 

[7]. Hahn and others [8-11] argue that treatment effect estimates calculated from the 

estimated propensity scores are generally more efficient than corresponding estimates 

calculated from true propensity scores. This has been demonstrated both analyti­

cally and in simulations in the context of propensity score weighting adjustments for 

confounding [8-11]. An accessible discussion is given by Hirano, Imbens and Ridder 

[11] for the case of a single dichotomous confounder. For matched sampling, Rubin 

and Thomas [12, 13] show that matching on the estimated propensity scores yields 

greater similarity in empirical distributions of covariates for treated versus control 

subjects relative to matching on true propensity scores. A similar argument is given 

by Rosenbaum and Rubin [3] based on the analysis of a dataset using PSA stratifying 

on quintiles of the estimated propensity scores. We return to this topic in more detail 

in Section 5.4. 

Nonetheless, it is unclear whether or not ignoring uncertainty in the estimated 

propensity scores is harmful to interval estimation for PSA. Many of the arguments 

in favor of using estimated propensity scores rely on large-sample theory. Interval 

estimates ignoring the estimated propensity scores may not have nominal coverage 

in finite samples. The arguments also tend to focus on propensity score weighting 

methods rather than PSA. The literature investigating interval estimation for PSA 

is fairly sparse and usually considers continuous outcomes (e.g. [3, 4, 34]). For 

dichotomous outcomes where the log OR is the measure of effect, the non-linearity 
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of the logit link causes ambiguity about the targets of inference. Thus it becomes 

difficult to make sense of notions like coverage probability because it depends on 

what the analyst is trying to estimate. For example, it is sometimes assumed PSA 

should be used to estimate either j3avg or [3C, defined in Section 2.2, even though it 

is asymptotically biased for both quantities [34, 35]. A detailed discussion of the 

targets of inference for PSA is given in [28, 29]. We discuss this topic in more detail-

in Section 5.2. 
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Chapter 3 

Bayesian propensity score analysis 

In this chapter we present a Bayesian propensity score analysis (BPSA). The method 

is similar to PSA in the sense that it uses the same models for the data. But inferences 

are carried out using Bayes theorem rather than maximum likelihood. Because the 

propensity score for each subject is unknown, it is modelled as a latent covariate 

which is integrated out of the posterior distribution of model parameters. 

Unlike PSA which uses a two step procedure to first estimate the propensity scores 

and then estimate the treatment effect, BPSA estimates both quantities simultane­

ously. This can offer unique advantages to BPSA. We observe an "information flow" 

in which outcome data is used for efficient estimation of the propensity scores. In 

Section 3.1 we describe the BPSA method including the model, prior distributions 

and a strategy for posterior simulation. We show that during M C M C , the condi­

tional distribution for the propensity scores depends on the distribution of patient 

outcomes. The BPSA method incorporates prior information about smoothness as­

sumptions between the response distribution and propensity score, within treatment 

groups. This information is not used by PSA for estimation of the propensity scores. 

While this seems like a reasonable estimation strategy, it is a break with tradition 

[7, 36]. For example, Rubin writes [36]: 
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"Of substantial importance, the propensity score approach to causal inference ... fo­

cuses on the theme that the design of an observational study should parallel the design 

of a randomized experiment. That is, our propensity score approach is accomplished 

without any access to outcome data." 

These issues are explored further in Section 3.2, where we discuss using BPSA as a 

tool for causal inference. 

3.1 The method 

Model 

Factorize the density of Y, X, and C as 

P(Y = y, X = x\c) = P(Y = y\x, c)P(X = x\c). 

We use models which are identical to the PSA model given in equations (2.4) and 

(2.5). We let 

logit[P(Y = l|o:,c)] = /3x + 0(z(c, 7 )) '£ (3.1) 

' logit[P(X = l|c)] = 7 ' c , (3.2) 

where 2(0 ,7) = expit^'c) and expit(a) = (1 + exp(—a)) -1. Here we write z = 2(0 ,7) 

to acknowledge that the propensity score is a known analytic function of C and 7. 

Equation (3.1) is a logistic regression model for the risk of Y with treatment effect 
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B which does not interact with C or Z . The parameter B is the primary quantity 

of interest and models the causal effect of X on Y given Z. The quantity g(Z)'£ is 

a linear predictor relating the propensity score Z = z(c, 7) to the risk of Y via the 

parameters £. In this thesis, we restrict our attention the case where g(Z) is a 5x1 

vector of indicator variables 

' [1, 0, 0, 0, 0] if Z < ci 

[1,1,0,0,0] i f c ! < Z < c 2 

g(Z)' = <J [l, 0, 1, 0, 0] if c 2 < Z < c 3 (3.3) 

[1, 0, 0, 1, 0] if c 3 < Z < c 4 

[ [1, 0, 0, 0, 1] if c 4 < Z 

The quantities C i , c 2 , C 3 , c 4 must be specified a priori. They define five separate 

"bins" in which the risk of Y given X is assumed to be constant. The components 

o f £ = ( £ i > £ 2 , £ 3 , £ 4 , £ 5 ) model the risk of Y within the bins. To choose C i , c 2 , c 3 , c 4 , 

we use an approach motivated by PSA. We fit the logistic regression of X on C 

via maximum likelihood and then use the fitted values to obtain initial estimates of 

the propensity scores. The values of C i , c 2 , c 3 , c 4 are selected to define five equal size 

quintile groups from the empirical distribution of these estimates. 

It is important to emphasize that the bins [0,Ci], [c2,c3], [c 3,c 4], [c4,1] will not 

define quintile groups when applying BPSA. The parameter 7 is modelled as a latent 

variable, and thus the covariate g(z(c, 7)) is also a latent quantity. We can only 

classify patients into quintile groups in an average sense, such as based on the posterior 

expectation of g(z(c,ry)). Because the quantities C i , C 2 , c 3 , c 4 are chosen using PSA, 

we would not necessarily expect 20% of the study observations to fall within each bin. 

The choice of model for the outcome variable may not be suitable for the EF­

F E C T data. The idea that the risk of Y is constant within bins is clearly only an 
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approximation, and it it appears that there might be more suitable functional forms 

for g(Z). Nonetheless, we use the form of g(Z) given above in order to maintain 

similarity with the published litterature on PSA. In first proposing PSA, Rosenbaum 

and Rubin [1] advocated using five equal sized bins because previous work by Cochran 

demonstrated that this would elimianate 90% of the bias induced by a confounder. 

Furthermore, our method can be readily modified to incorporate more flexible choice 

of g(Z) through modification of the M C M C algorithm. 

Another possible limitation of the model is the choice of using the log OR B to 

model the causal effect of X on Y. As discussed in Chapter 2.1, the log OR has well 

know limitation compared to other effect measures. In this investigation we choose 

the log OR because of the flexibility of using logistic regression to model binary data. 

The logit link simplifies modelling when g{Z) takes on other forms such as cubic 

splines. Nonethless, in priciple, we could define an outcome model using other mea­

sures of effect. 

Prior distributions 

The model parameters /?, £ and 7 are all standard regression coefficients, and we 

use mean-zero diffuse independent normal distributions as prior distributions. 

B ~ JV(0,100), 

7 l , . . . , l k ~ 7V(0,100), 

~ iV(0,100). 

This should yield similarity between BPSA and PSA, which uses no prior informa­

tion for model parameters. There are also opportunities for more flexible modelling 
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strategies. Zheng and Little [37] propose a model similar to BPSA for estimating the 

population mean from a finite population where subjects have non-equal probability 

of selection. They model the distribution of the data conditional on the selection 

probabilities, and they use a hierarchical prior distribution for the subgroup means. 

The resulting inferences lie mid-way between assuming that the means are all iden­

tical versus all different. For BPSA, we could use a similar strategy and model the 

parameters £ 1 , ^ 2 , • • • £ 5 hierarchically and as conditionally independent and identi­

cally distributed given an unknown hyperparameter. 

Posterior simulation 

Following the notation given in Section 2.3, recall that y, x denote vectors of 

length n of the observed responses, exposures in n study subjects, and c denotes an 

nx p matrix of measured covariates with a column of ones. Our objective is to study 

f(/3,£|y,x, c), the posterior distribution of model parameters given y, x and c. To 

accomplish this, we sample from the posterior using M C M C . To illustrate the main 

ideas, observe that if the propensity scores were known then posterior inferences could 

be accomplished by fitting the logistic regression models in equation (3.1). Hence 

posterior simulation may proceed by treating 7 as latent variable that is integrated 

out of the joint posterior distribution f([3, £, 7|y, x, c). We update successively from 

f(P, Z\y, x, c, 7) and /(7|y, x, c, B, £). 

To update from the conditional densities f(B, £|y, x, c, 7) and /(7|y, x, c, /?, £) we 

must appropriately condition the joint distribution of the data and parameters. Write 

this distribution as 

/ (y, x, 0, f, 7 | c ) = /(yjx, c, B, £, 7 ) / (x | c , 7)/(/5, £,7). 
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where /(/?,£, 7) is the prior distribution for and 7. A l l of the density functions 

in the right-hand side of this equation are known from the modelling and prior as­

sumptions. Therefore, /(/?, £|y, x, c, 7) obeys the proportionality 

/'(/U|y,x,c, 7) « / ( y | x , c , / 3 , £ , 7 ) / ( A O 

ne x p { ^ ( ^ i + ^(z(c i,7)) ,£)} 
. . l + e x p { ^ + ^ ( C i , 7 y £ } X / ( A 0 - ( 3 " 4 ) 

i=l 

This is the likelihood for logistic regression of y on x and the propensity score z(c, 7), 

multiplied by the prior for 3 and £. Updating from the density /( /3,£|y,x, c, 7) 

involves a single update from Bayesian logistic regression of y on x and z. 

Bayesian logistic regression can be accomplished using the Metropolis Hastings 

algorithm [38]. The algorithm is an iterative procedure for sampling from a target 

density f(0) = k~ln(9), where k is an unknown normalization constant. The im­

plementation proceeds as follows: At iteration i, given a current sampled parameter 

value #M, a candidate value 9* is generated from a proposal density Q(9*\9^). We 

assign <— 9* with probability 

mm 
f{8*)Q(9W\9^) ' 
f{8^)Q{9*\8^Y 

or assign <— #W otherwise. After discarding a suitable number of initial itera­

tions, the series . are a dependent sample from the target density f(6). The 

choice of proposal density Q(9*\9^) impacts the performance of the Metropolis Hast­

ings algorithm. For Bayesian logistic regression, a common choice is a multivariate 

normal density with mean equal to the maximum likelihood estimator and covari-

ance matrix given by the inverse of the observed information. This proposal density 

approximates the posterior distribution in large samples and yields high acceptance 
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rates for candidate parameter values in posterior updating. 

The density of /(7|y, x, c,/3,£) obeys the proportionality 

/(7|y,x,c, P,0 oc /(y|x,c,/3,7,0/(x|c,7)/(7) 

f=\[l + exp{pxi + g(z(dn)^} 1 + exp{7'c} 

(3.5) 

This density is not proportional to /(x|c, 7)7(7). Therefore, updating the propensity 

scores z(c, 7) in BPSA does not consist of sampling from the posterior distribution of 

regression coefficients from logistic regression of x on c. Instead, information about 

patient outcomes is also involved in updating information about the propensity scores. 

We update from /(7|y, x, c, [3, £) using a Metropolis-Hastings step. Finding a suit­

able proposal distribution is challenging because the characteristics of this distribution 

are not obvious. For example, we found that a proposal based on the approximation 

where A; is a normalization constant, led to unacceptably high rejection rates. Such 

a proposal approximates the target density using the asymptotic distribution of the 

maximum likelihood estimator from fitting the regression in equation (3.2). The 

fact that the approximation is poor indicates that the patient outcome distribution 

may supply a lot of information about 7. Instead, we use a proposal distribution 

based on a random walk Metropolis Hastings algorithm which updates the p compo­

nents of 7, one at a time. This approach samples from /(7|y, x, c, /?, £) by sampling 

sequentially from /(7i|y,x, c, (3, £, 7(-i)), • • •, /(7fe|y,x. c, P, f,7(-fc)), where 7 (_ i ) de­

notes (71,..., 7j_i, 7.7+1 > • • •, Ik)- At each step, a proposal for f(jj\y, x, c, /?,.£, 7(_j)) 

/(7|y,x,c, 
/(xjc, 7)7(7) 

k 
(3-6) 
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is given by a random draw from a univariate t-distribution with appropriate scale and 

degrees of freedom. The scale parameter is chosen so as to ensure fast mixing of the 

M C M C chain through the target distribution. If the scale is too small, the chain will 

move slowly. A large scale will give high rejection rates. Specifying a small degrees of 

freedom for the ^-distribution gives heavy tails to the proposal density, which allows 

greater flexibility for ensuring rapid movement through the target distribution. 

A difficulty with this updating scheme is that the computational cost will be 

substantial when the number of covariates p is large. For example, in the statin 

data described in Section 1.1 we have p = 20. An alternative strategy is to use a 

multivariate random walk. We could update 7 using a proposal equalto 7 plus a 

draw from a multivariate ^-distribution of dimension p with mean zero, small degrees 

of freedom, and scale matrix equal to the inverse of the observed information from 

logistic regression of x on c. This proposal distribution has a similar shape as the 

density in equation (3.6), but is not constrained to one area of the parameter space. 

We assess sampler convergence using the CODA package which is available for the 

statistical software R [39] designed for output analysis and diagnostics for M C M C . 

The cumuplotQ function plots the evolution of sample quantiles over iterations, and 

it can be used to identify poor mixing. Diagnostic tools based on the analysis of 

multiple M C M C chains are also available [40]. 

To summarize, simulation from the posterior distribution /(/?, £, 7, |y, x, c) pro­

ceeds as follows: 

1. Specify the quantities C i , C2, C 3 , C4 by constructing five quintile groups from the 

fitted values of a logistic regression of x on c fit by maximum likelihood. This 

defines the "bins" for BPSA. 

2. Obtain a starting value for 7 ^ , by sampling once from a normal distribution 
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with mean and variance given by the maximum likelihood estimator and its 

asymptotic variance, respectively, calculated form the logistic regression of x 

on c from Step 1. Obtain starting values for (8^°\^) by sampling from the 

asymptotic distribution of the maximum likelihood estimators from logistic re­

gression of y on x and z(c, 7^) using the regression model of equation (3.1). 

3. Fort = 1,2,... 

(a) Update 7(t+1)-by updating successively from each of /(7i|y, x, c, /?, £, 7(-i)), • • 

/(7fc|y, x, c, 3, £, 7(-fc)) using a random walk Metropolis Hastings step with 

proposal distribution that is univariate t with a suitable scale parameter 

and degrees of freedom. 

(b) Update and £( t + 1 ) using a Metropolis Hastings step with target den­

sity f(8, £|y,x, c, 7(t+1)) and proposal distribution obtained by logistic re­

gression of y on x and z(c, 7^t+1'). 

After discarding a suitable number of initial iterations, the sequence (B^%\ £ ^ , 7 ^ ) 

for i = 1, 2, . . . , is a serially dependent sample from the required posterior distribution 

/ ( A f i 7 . | y , x , c ) . 

3.2 Causal inference with BPSA 

The BPSA model described in Section 3.1 seems reasonable. BPSA essentially mimics 

PSA from a Bayesian perspective. We can generate data from the model. Intuition 

and standard large sample theory suggest that BPSA point and interval estimates 

will agree with PSA in large samples. This is confirmed in the simulations of Chapter 
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5. Nonetheless, BPSA is intended to be used as a tool for causal inference, and upon 

closer inspection we see some technicalities. 

Does it make sense to use outcome data in order to estimate propensity scores? 

In Section 3.1, we showed that when updating the propensity scores, the conditional 

distribution of 7, given in equation (3.5) depends on the observed values of y and the 

parameters £ and B. As we learn about the risk of Y as a function of g(Z) and X, 

this information flows back through the M C M C algorithm to impact estimation of 7. 

Unlike PSA, the BPSA method fits both regression models given in equations (3.1) 

and (3.2) simultaneously rather than one at a time. Thus the two regression models 

assist each other in order to produce a good fit for the data. 

But this estimation strategy is in conflict with the standard approaches to PSA. 

Rubin [7] emphasizes that when estimating the propensity scores, the investigator 

should not have access to outcome data. Rosenbaum and Rubin [3] advocate es­

timating the propensity scores by an iterative process where the investigator first 

estimates the propensity scores using a model for the distribution of X given C, and 

then checks for balance in the distribution of C within quintile groups. If the covari-

ate distributions differ between treatment groups, this indicates that the model for 

P(X = l|c) is incorrect. The investigator can then estimate the propensity scores 

again using alternate models. PSA is a tool for constructing comparable treatment 

groups and the method should be blind to the values of the outcome. When there are 

no unmeasured confounders, PSA replicates randomized groups in a manner similar 

to actual randomization. Furthermore, there is the issue of the time ordering of when 

Y and X are measured. If the outcome variable is measured after the start of follow-

up, then is it meaningful to use this quantity to make inferences of the probability of 

treatment? 

To reconcile these contradictory viewpoints, we need to establish if the regression 
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model given in equation (3.1) is a sensible model. If we truly believe that the risk of Y 

given X is determined by the linear predictor g(Z), then it makes sense to use Bayes 

rule to incorporate patient outcome information when estimating propensity scores. 

However, in most published articles on propensity score methods, PSA is evaluated 

assuming that the regression model given in equation (3.1) is misspecified (see for 

example [4, 28, 34, 35]). The ideal analysis estimates the association between X and 

Y conditional on Z exactly, while stratification of study units into equal sized bins is 

a only crude approximation of this procedure. Therefore PSA will tend to produce 

biased estimates because of residual confounding due to incomplete adjustment for 

Z. The justification of this perspective is that while the association between X 

and Y given Z has a causal interpretation, the interpretation ought not extend to 

units within the same quintile group. In Section 2.2, we showed that when there is no 

unmeasured confounding conditional on C, then this implies that (Y{iy,Y{0y) AL X\Z. 

Therefore given Z, all patients have equal probability of X — 1 irrespective of C, and 

the association between X and Y is unconfounded. But among units with propensity 

score Z € [c/t, Ck+i), for some interval from ck to Ck+i, treated and untreated units will 

not have identical distributions of propensity scores. Consequently, it seems tenuous 

to argue that the association between X and Y within a fixed quintile has a causal 

interpretation. If we adhere to this logic, then it implies that equation (3.1) is not a 

realistic model for causal inference. Thus using Bayes theorem and equation (3.1) to 

estimate propensity scores BPSA is not a sensible strategy for analyzing observational 

data. 

An alternative perspective is that it may be appropriate to impose additional 

modelling'assumptions which treat the distribution of Y given X as a smooth function 

in Z. For example, if patients A and B have propensity scores equal to 0.75 and 0.80 

respectively, then it may be reasonable to assume that they have similar baseline 
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risk of Y. In the statin data example, healthy patients are likely to be treated, and 

consequently, patients with high propensity scores have reduced risk of death. Thus 

while the distribution of propensity scores may differ among treated and untreated 

patients within quintile groups, all patients may have roughly equal risk of Y. This 

reasoning is similar to that used to justify standard regression models that categorize 

confounders. When adjusting for patient age using conventional regression, we may 

group patients into one year groups rather than one month groups. Inferences are 

then reported conditional on this smoothness assumption. 

If we can assume that 

• (Y{lhY{0}) AL X\g(Z) (3.7) 

then this implies that 

P(Y = 1\X = l,g(z)) = P(Y{1} = 1\X = l,g(z)) = P(Y{1} = l\g(z)) 

P(Y = 1\X = 0,g(z)) = P(Y{0} = 1\X = 0,g(z)) = P(Y{0} = l\g(z)). 

The log ORs calculated from P(Y = l\X, g(z)) will have a causal interpretation within 

subsets of the population with a given g(z). The assumption in equation (3.7) is very 

similar in spirit to the assumption of no unmeasured confounders from equation (2.2). 

But it in some sense it is made implicitly in conventional PSA. When we use PSA 

to calculate model based point and interval estimates for /?, we are assuming that 

equation (3.1) models the true distribution of the response variable. The choice of 

linear predictor g(.), whether quintile groups or cubic splines, is presumably guided 

by prior information about the smoothness of P(Y = l\x,z). 

As an aside, we note that the BPSA model, given in equation (3.1), is not 
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compatible with potential outcome models for causal inference. BPSA models the 

quantities P(Y = l\x,c) and P(X = l|c) as dependent a priori. We see this be­

cause the quantity P(Y = l\x,c) =expit{f3x + g(z(c,j))'(} is an explicit function of 

z(c, 7) = P(X = l|c) = expit(7'c). What this means is that, given X and C, we 

believe that the risk of Y depends on the manner in which treatment is assigned. 

However, causal inference using potential outcomes models requires that P(X — l|c) 

and P(Y — l |x,c) be independent a priori. As described in Section 2.2, in order 

for the treatment assignment mechanism to be ignorable in the sense of Rubin [25], 

a necessary condition is that the parameters governing the potential outcomes be 

independent a priori from the parameters which model the treatment assignment 

mechanism. 

To elaborate, in the Section 2.2 equation (2.2), we showed that the potential 

outcome approach to causation models the distribution of Y and X given C as the 

product of two parts; one which models the potential outcomes and one which models 

treatment assignment, 

The parameter 0 models the potential outcomes, while 7 models the treatment assign­

ment. Provided that we assign independent prior distributions to 0 and 7, denoted 

/(0,7) = 7(0)/(7)) then the missing data mechanism for the potential outcomes is 

ignorable [25], and Bayesian inference for the parameter 0 proceeds from 

According to this model for the observed data, knowledge of 7 conveys no information 

(3.8) 
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about 9. 

If f(y{i], y{x}\c) a n d f(x\c) are indexed by different parameters which are a priori 

independent, then this implies that P(X = l|c) and P(Y = l\x,c) are also a priori 

independent. This, in turn, invalidates the BPSA model given in equation (3.1). 

Potential outcome models for causal inference view observational data as arising from 

two separate processes, one which generates the potential outcomes, and one which 

assigns treatment and masks potential outcomes. Because the models have distinct 

parameters, the investigator can ignore the manner in which treatment is assigned. 

The intuitive explanation for this is that, in a randomized experiment, how one 

chooses to randomize should convey no prior information about causal effects. 

Furthermore, the assumption that f(y{i},y{x}\c) a n d f(x\c) are indexed by dif­

ferent parameters which are a priori independent, implies that propensity scores are 

irrelevant to a Bayesian analysis [14]. If we look at the expression for f(6\y,x,c) 

given above, we see that because of the way the model is specified, the parameter 

7 which models the propensity score conveys no information about the parameter 9. 

This may explain why there is so little published work combining Bayesian statistics 

with propensity score methods. 

In order to make sense of BPSA, we should operate from the premise of using 

models which assume a relationship between P(X — l|c) and P(Y = l\x,c), even if 

such models seem unrealistic. This reasoning is used by Rubin [14] and Robins and 

Ritov [15] in the context of propensity score methods. For control of confounding in 

observational studies, Rubin [14] proposes BPSA when we have prior knowledge of 

the propensity scores. He argues that because specification of P(Y = l|:r,z) may be 

easier than specification of P(Y — \ \x, c), BPSA inferences may have good frequentist 

properties even though the model is not an accurate representation of the true data 

generating process. Similar logic is argued by Little in the context of survey sampling 
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[41]: 

"...in practice all models are simplifications, and the features of the population that 

are important to include in the model vary according to the choice of design.... One 

way of limiting the effects of model misspecification is to restrict attention to models 

that yield design-consistent estimates." 

Hence while the BPSA model may be implausible, it can be viewed as a tool for 

building good frequentist procedures. 
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Chapter 4 

Analysis of the statin data 

In Section 1.1, we outlined a case-study of an observational study estimating the ef­

fect of statin therapy on mortality in Ontario patients discharged alive from hospital 

following acute myocardial infarction. We demonstrated that the crude association 

between statin therapy, and mortality was likely biased due to confounding. Statins 

were generally prescribed to younger and healthier patients. Consequently, the reduc­

tion in mortality associated with statin use is partly driven by systematic differences 

in patient characteristics. 

We apply BPSA and PSA to adjust for confounding. For each of the 4572 patients 

in the sample, we let Y equal one if the patient died within three years of discharge 

from hospital, and zero otherwise. We let X equal-one if the patient was prescribed 

a statin at hospital discharge, and zero otherwise. We let C equal a 21 x 1 vector of 

measured covariates listed in Table 1.1, where the first term is equal to one in order 

to include an intercept term in the regression modelling. In this investigation, we as­

sume that each of the variables in Table 1.1 is a true confounding variable regardless 

of the observed associations between C, X and Y. 
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4.1 Conventional regression adjustment for 

confounding 

To reduce confounding due to C, we estimate the effect of X on Y using conventional 

regression on measured confounders. We fit a logistic regression model of Y on X 

and C with main effects and no interactions. Table 4.1 presents log ORs for the 

associations between measured covariates and mortality. The adjusted log OR for 

the association between of X and Y given C is -0.33 with 95% confidence interval (-

0.53, -0.13). The odds ratio, exp(-0.33) = 0.72, is closer to one compared to the crude 

OR, and is more consistent with the results of other population-based observational 

studies [17, 18]. This suggests that the analysis has reduced some of the confounding. 

4.2 PSA analysis of the statin data 

We apply PSA to the statin data. The method uses a two step procedure where the 

propensity scores are estimated for each patient and then the estimated propensity 

scores are included in a regression model for the mortality based on five quintile 

groups. We estimate the propensity scores using the fitted values from the logistic 

regression model given in equation (2.4) with main effects and no interactions. The 

treatment effect is then estimated via the model given in equation (2.5). 

Table 4.2 gives estimates for the parameter 7 which is the log ORs for the asso­

ciation between X and C. Before moving on to estimation oi.B and £, we illustrate 

some of the properties of propensity scores. In Figure 4.1 we plot kernel density es­

timates of the density of propensity scores within treatment groups, given by f(z\x) 

for x — 0,1. The dashed and solid curves refer to the untreated group (x = 0) and 
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Table 4.1: Log ORs for the association between Y and (X, C). 

Characteristic loj I OR (95% CI) 
Statin therapy -0.33 (-0.53, -0.13)* 

Demographic characteristics 
Age in years (mean) 0.07 (0.06, 0.08)** 
Female sex -0.19 (-0.37, -0.01)* 

Presenting characteristics'* 
Shock 0.47 (-0.38, 1.31) 

AMI risk factors'* 
Family history of C A D -0.19 (-0.39, 0.01) 
Diabetes 0.40 (0.21, 0.60)** 
C V A / T I A 0.36 (0.12, 0.60)* 
High BP -0.08 (-0.25, 0.10) 
Current smoker 0.23 (0.02/ 0.43)* 

Comorbidities* 
Angina 0.27 (0.10, 0.44)* 
Renal disease 0.54 (-0.67, 1.75) 

Vital signs on admission1 

Systolic BP -0.01 (-0.01, 0.00)** 
Diastolic BP 0.00 (-0.01, 0.00) 
Heart rate 0.01 (0.01, 0.02)** 
Respiratory rate 0.03 (0.02, 0.05)** 

Laboratory values1' 
White blood count 0.02 (0.00, 0.03)* 
Haemoglobin -0.02 (-0.02, -0.01)** 
Sodium -0.02 (-0.04, 0.00) 
Glucose 0.02 (0.00, 0.04)* 
Creatinine 0.00 (0.00, 0.01)** 
* p< 0.05, ** p < 0.001 
f Continous variables, + Dichotomous variables 
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Table 4.'2: Point estimates for 7, the log ORs for the association between X and C. 

Characteristic loj I OR (95% CI) 
Demographic characteristics 
Age (mean) -0.03 (-0.04, -0.02)** 
Female sex -0.17 (-0.33, -0.01)* 

Presenting characteristics* 
Shock -0.54 (-1.54, 0.45) 

AMI risk factors* 
Family history of C A D 0.16 (0.02, 0.31)* 
Diabetes -0.05 (-0.22, 0.12) 
C V A / T I A 0.17 (-0.07, 0.40) 
High BP 0.31 (0.17, 0.44)** 
Current smoker -0.27 (-0.42, -0.12)** 

Comorbidities* 
Angina 0.37 (0.23, 0.51)** 
Renal disease 1.06 (0.01, 2.11)* 

Vital signs on admission' 
Systolic BP 0.00 (0.00, 0.00) 
Diastolic BP 0.00 (-0.01, 0.00) 
Heart rate 0.00 (-0.01, 0.00) 
Respiratory rate -0.01 (-0.02, 0.00) 

Laboratory values^ 
White blood count 0.00 (-0.01, 0.01) 
Haemoglobin 0.00 (0.00, 0.01) 
Sodium 0.01 (0.01, 0.03) 
Glucose 0.01 (0.00, 0.02) 
Creatinine 0.00 (0.00, 0.00) 
* p < 0.05, ** p < 0.001 
f Continous variables, + Dichotomous variables 
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treated group (x = 1) respectively. The curves were generated via Gaussian kernel 

density estimation using the R function densityQ with default settings. In Figure 

4.2, we plot the estimated log odds of death, as a function of x and z, given by 

logit[P(Y = 2 ) ] . This quantity is estimated by second-order local polynomial 

regression of Y on Z for fixed X using the R function loess () [39] with default set­

tings. In Figure 4.2, the four vertical bars indicate the values of c i , 0 2 , 0 3 , 0 4 which 

define the five equal-sized quintile groups. Each of the intervals [0, 0.21), [0.21, 0.26), 

[0.26, 0.31), [0.31,0.38), [0.38, 1] contains an equal amount of the data. Consequently, 

estimates of logit[P(F = 2;)] in the outermost quintiles are more imprecise. In 

Figure 4.2, we see that the dashed line is systematically higher than the solid line 

within quintile groups #1, #2, #3, #4. This suggests that statin therapy reduces 

mortality, in patients with a given propensity score. The curves are roughly parallel, 

indicating that the effect of X on Y is not modified by Z. Figure 4.2 reveals that high 

propensity scores are associated with a reduced risk of death. This is consistent with 

the literature on statin prescribing in Ontario residents [19] and the results of Table 

1.1. Healthy patients are more likely to be treated with statins. In Figure 4.1, we see 

that untreated patients have lower propensity scores than treated patients. This is 

expected because P(X = l\z) = z implying that X and Z are dependent. Because 

Z is simultaneously associated with Y given X, and is also associated with Y given 

X, this implies that Z acts like a confounder, and Figures 4.1 and 4.2 allow us to 

visualize the confounding action of C. 

To estimate the effect of X on Y while controlling for C, we apply PSA and strat­

ify on quintiles of the propensity score. The results are given in Table 4.3. We see 

that risk of death is greatest in the 1st quintile and decreases in quintiles 2 though 

5, as is illustrated in Figure 4.2. PSA assumes that there is no effect modification 

between X and Z and the log odds ratio of the effect of X on Y is -0.36 (-0.54, -0.18). 
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Figure 4.1: The distribution of propensity scores among the treated and the untreated, 
denoted f(z\x) for x = 0,1. The solid curve refers to the treated patients, while the 
dashed curve refers to the untreated patients. 



Figure 4.2: Log odds of death as a function of x and z, denoted logit[P(Y = l\x, z)]. 
The solid curve refers to the treated patients, while the dashed curve refers to the 
untreated patients. 



Table 4.3: Parameter estimates for the treatment effect B, and the baseline risk of Y 
within quintile groups (£1, £ 2 , £3, £4, £5), calculated from PSA 

Parameter log OR (95% CI) 
B -0.36 (-0.54, -0.18) 

ii -0.13 (-0.27, 0.00) 
6 -0.78 (-0.98, -0.59) 
£3 -1.44 (-1.66, -1.22) 
£4 -1.69 (-1.93, -1.45) 
£5 -2.18 (-2.45, -1.90) 

Assessing the covariate balance produced by PSA 

To assess whether PSA succeeds in reducing confounding, we investigate the bal­

ancing properties of the propensity score. We examine the distribution of measured 

confounders among treated and untreated patients within quintile groups. The re­

sults are given in Table 4.4. The distributions of measured confounders within quintile 

groups are compared using two methods: by. comparing sample means and propor­

tions using t-tests, and by comparing the standardized difference between the distri­

butions, calculated as the mean difference divided by the pooled standard deviation 

of the distributions [2]. 

Table 4.4 illustrates the ability of PSA to reduce confounding bias. Consider 

patient age which is a strong risk factor for mortality. In Table 1.1 we see that younger 

patients are more likely to be prescribed a statin. But within quintile groups, much of 

the systematic differences in age between treated and untreated patients is removed. 

Hence PSA reduces confounding bias due to age. The same effect is observed for 

other covariates which are strongly associated with treatment, such as angina. 
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Table 4.4: Means of measured covariates among treatment groups, within quintiles of the propensity score, calculated 
from PSA. 

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
n = 914 n = 914 n = 914 n = 914 n = 916 
Statin Statin Statin Statin Statin 

Yes No Yes No Yes No Yes No Yes No 
Demographic characteristics 

Age 77** + 80**+ 72** + 74**t 67 67 62+ 60+ 53 52 
Female sex 64%t 59%+ 48% 46% 33% 33% 21% 23% 11%+ 14%+ 

AMI risk factors 
Family history of C A D 9.0% 8.6% 22% 21% 32% 31% 43% 41% 61% 61% 
Diabetes 32%t 26%+ 28% 29% 26% 28% 24% 26% 24% 23% 
C V A / T I A 11% 11% 10% 13% 8.6% 9.7% 8.7% 8.5% 8.4%+ 5.3%+ 
High B P 29% 29% 41% 42% 42% 44% 51% 48% 61% 59% 
Current smoker 37%* t 27%* + 35%+ 29%+ 34% 34% 36% 40% 31%* + 37%* + 

Comorbidities 
Angina 7.6%* + 13%* + 22%* + 29%* + 34% 35% 39% 39% 57%* + 45%** + 
Renal disease 0% 0% 0% 0% 0.3% 0.5% . 0.3% 0.3% 2.1% 1.5% 

Vital signs on admission 
Shock 3% 2% ' 0% 0% 0% 0% 0% 0% 0% 0% 
Systolic B P 148+ 144+ 149 149 147+ 151+ 151 151 149 149 
Diastolic B P 86* + 79* + 82 82 83+ 86+ . 85+ 86+ 87 87 
Heart rate 94 92 85 83 82 83 78* + 81* + 78+ 76+ 
Respiratory rate 24 24 21 21 20 20 20 20 19 19 

Laboratory values 
White blood count 11 11 10 10 10 10 9.7 10 9.9 10 
Haemoglobin 132* + 127* + 134 135 140 139 142 143 146 147 
Sodium 138 138 139 139 139 139 139 139 139+ 140+ 
Glucose 10+ 9.8+ 9.5 9.4 9.2 9.5 8+ 9.2+ 10 9.4 
Creatinine 110* + 121* + 103 103 97 101 101* + 93* + 99 96 

* p < 0.05, ** p < 0.001, | Standardized difference > 10% 



In Table 4.4 we see that there are'a number of statistically significant imbalances 

within quintile groups, particularly within the quintiles #1 and #5. But if the PSA 

model for P(Y = c) given in equation (3.1) is correct, then these imbalances do 

not necessarily indicate that the associations between X and Y within quintile groups 

are confounded. The difficulty with using Table 4.4 to identify residual confounding 

is that the table assumes nothing about the relationship between the propensity score 

and the outcome. Such an estimation strategy is valid in the sense that if we see bal­

ance in the distribution of confounders, then it suggests that there is no confounding. 

But the approach may be overly pessimistic. It focuses entirely on efforts to create 

comparable treatment and control groups, while ignoring prior information about the 

relationship between the outcome and the propensity score. 

If the risk of Y given X is a smooth function of Z within each interval [0, ci ], [ci, c2], 

[ C 2,C3], [03,04], [c4 , l ] , then systematic imbalances in the distribution of propensity 

scores within quintile groups do not necessarily indicate that there is confounding. 

To put this another way, covariate imbalances in Table 4.4 may cancel themselves 

out in such a way that all individuals within each interval have the same risk of Y. 

Furthermore, Figure 4.2 illustrates that smoothness assumptions may be reasonable. 

Modest change in the propensity score are associated with modest change in risk of 

mortality. 

4.3 BPSA analysis of the statin data 

Before applying BPSA to the statin data, we first set the bins [0, c i ] , [01,02], [02,03], 

[^3,04], [c4,1] which define intervals of homogeneous risk of Y given X, using the 

values c i — 0.21, c2 = 0.26, c 3 = 0.31, c 4 = 0.38 from Section 4.2. We then apply 

BPSA to the statin data. We run a single M C M C chain of length 100 000 after 
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Table 4.5: Parameter estimates for the treatment effect 8, and the baseline risk of Y 
within each of the five bins £ 3 , £ 4 . £ 5 ) , calculated from BPSA. 

Characteristic log odds ratio (95% CI) 
8 -0.30 (-0.50, -0.10) 

£ 1 0.62 (0.38, 0.87) 
cf2 -1.04 (-1.39, -0=67) 
6 -1.93 (-2.27, -1.60) 
£ 4 -3.04 (-3.45, -2.60) 
£ 5 -3.98 (-4.43, -3.55) 

discarding the initial 10 000 iterations, and we then thin the chain by retaining every 

tenth iteration to obtain a sample of size 10 000. Thinning the chain is advantageous 

for computer storage of the analysis results. Sampler convergence for 7 was worse 

than for 3 or £. Figures 4.3 and 4.4 contains mixing plots for 3, £ and the first six 

components of 7 based on the last one thousand iterations of the thinned chain. We 

can see that samples for £ and 3 move more rapidly through the target distribution 

than for 7. To assess the effect of sampler convergence, we obtained three additional 

M C M C chains of length 100 000 iterations with overdispersed starting values, and we 

inspected the marginal distributions of the components of /?, £ and 7. The variation 

of sample means between M C M C chains was found to be small in relation to the 

variation within individual chains. Thus while mixing is not ideal, it does not appear 

to greatly affect estimation. 

Table 4.5 contains point and interval estimates for 8 and £ from BPSA. The log 

odds ratio for the effect of X on Y is similar to that of PSA and is given by -0.30 with 

95% credible interval (-0.50, -0.10). But there are large differences in the estimates for 

£ which underscore the differences between BPSA and PSA. To illustrate why BPSA 

and PSA give different results, consider Table 4.6 which presents the distribution of 
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Figure 4.3: BPSA sampler convergence for B and £. 
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Figure 4.4: BPSA sampler convergence for 7. 
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measured confounders among treated and untreated patients within propensity score 

bins. In the table, each study unit is assigned to a bin based on the posterior mean of 

the propensity score. This means that for a unit with covariate C, we assign a level 

of g(.) equal to g(E{z(C,j)\y, x, c}) where 

£ { z ( C , 7 ) | y , x, c} = J expi t( 7 'C) /( 7 |y , x, c)dj. 

A comparison of Table 4.4 and Table 4.6 reveals striking differences. While PSA 

assigns an equal number of patients into each bin (roughly 4572/5=914), this is not 

the case for BPSA. From Table 4.6, we see that bins #1, #2, #3, #4, #5, contain 

591, 781, 945, 1180, 1075 patients respectively. PSA classifies patients into bins using 

only information about the relationship between C and X. If a confounder is strongly 

predictive of treatment, then this association is largely reduced after applying PSA 

because the variation in C is re-distributed across propensity score bins. 

In contrast, BPSA estimates propensity scores by incorporating modelling infor­

mation about the relationship between Y and g(Z). The consequence is that BPSA 

assigns patients to bins based on how sick they are. For example, consider the indi­

cator variable for diabetes. Diabetes is a strong risk factor for death with odds ratio 

1.5 (1.2, 1.8) based on the conventional regression of Section 4.1 (see Table 4.1). For 

PSA, the prevalence of diabetes is fairly well balanced within each of the five bins 

because diabetes is not strongly associated with statin prescribing. In contrast, for 

BPSA, we see that the prevalence of diabetes is high in bins #1 and #2, while lower 

in bins #3, #4, and #5. In Figure 4.2, we see that patients with low propensity 

scores have the greatest risk of death. Consequently, when estimating the propensity 

scores, BPSA assigns sicker patients to bins #1 and #2. For every single covariate 

that is a strong risk factor for Y, we see a tendency for BPSA to assign patients 
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with these risk factors to lower bins. Another example is renal disease. For PSA all 

patients with renal disease are in bins #3, #4 and #5, whereas for BPSA these same 

patients are assigned to bin #1. 

What can we conclude about the differences between the BPSA and PSA analyses? 

Which analysis is more valid? Intuitively one might think that modelling uncertainty 

in the estimated propensity scores will only negligibly impact on inferences when the 

sample size is large. But this analysis indicates that the reverse may be true. As 

sample size increases, we get better estimates for £, the baseline risk of Y within bins. 

This information flows back to affect propensity score estimation. 

Furthermore, in Table 4.6 we see that BPSA yields fairly severe imbalances in the 

distribution of measured covariates between treated and untreated compared to PSA. 

The method does not appear to be producing homogeneous subgroups. What are the 

implications for the ability of BPSA to reduce confounding? We investigate these 

questions in Chapter 5. We study estimator performance in synthetic data under 

competing models for the outcome variable and various parameter values. We also 

consider the balance in C induced by using BPSA versus PSA. 
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Table 4.6: Means of measured covariates among treatment groups, within bins of the propensity score, calculated from 
BPSA. 

Bin 1 Bin 2 Bin 3 B n 4 B n 5 
. n = 591 n = 781 n = 945 n = 1180 n = 1075 

Statin Statin Statin Statin Statin 
Yes No Yes No Yes No Yes No Yes No 

Demographics 
.Age 77* *t 81**f 75**t 78**f 71*f 72*f 63 63 50 51 
Female sex 48% 51% 47% 49% 38% 42% 26%f 31%f 15%* f 20%*f 

AMI risk factors 
Family history of C A D 12%f 8%| 19%f 14%f 29% 25% 39% 38% 59% 57% 
Diabetes 63%** | 41%**f 46%* | 34%*f 33% 29% 21% 22% 10% 11% 
C V A / T I A 31%f 26%| 18% 15% 13%f 9%f 5%*f 3%*| 1% 2% 
High B P 64%* f 46%* f 55%t 48%t 53%* f 44%* f 43% 41% 43% 38% 
Current smoker 24% 20% 20% 19% 23%* | 29%* t 36% 39% 48% 52% 

Comorbidities < 
Angina 40% 38% '50%*t 40%* f • 44%* | 35%* f 35%**| 26%**f 28%**f 19%**t 
Renal disease 10%* t 2%*f 0% 0% 0% 0% 0% 0% 0% 0% 

Vital signs on admission 
Shock 3% 3% 1% 1% 0% 0% 0% 0% 0% 0% 
Systolic B P 140 139 147 145 148 150 149t 152f 152 152 
Diastolic B P 80f 78f 81 80 82 82' 84* f 86* | 90 90 
Heart rate 113**f 100**f 93f 90t 83 81 76* | 79* f 74 74 
Respiratory rate 26 26 22 22 21 20 19 20 19 19 

Laboratory values 
White blood count 14+ • 13| l i t 10f 10 10 9.6 9.7 9.6 9.7 
Haemoglobin 124f 119f 129 131 137 137 143 144 149 150 
Sodium 137 137 139 138 139 139 139 139 140*f 140*f 
Glucose 14* t 12*f H t iot 10.0 9.4 8.8 8.9 8.0 7.7 
Creatinine 192f 165f H i t 107f 99t 95| 92**f 87**f 86 85 

* p < 0.05, ** p< 0.001, | Standardized difference > 10% 



4.4 Decomposition of the posterior variance for f3 

and £ 

One strategy for investigating the difference between BPSA and PSA is to study the 

effect of admitting uncertainty in the estimated propensity scores on the posterior 

variance of 8 and £. Gustafson and Clarke discuss factorizing the posterior variance 

of model parameters in the context of hierarchical models [42]. Using the relation 

Var[A] = £{Var[A|BJ} + Var{E[A\B}}, they note that for hierarchical models with 

data D, parameter 9 and hyperparameter </>, we can write the posterior variance for 

9 as 

Var[0\D] = E{Var[6\D, <f>]\D} + Var{E[0\D, </>]\D}. (4.1) 

When the parameter 4> is known a priori, the model is not hierarchical because there 

is a single prior distribution for 9. Then the quantity Var{E[9\D, 0]|D} is equal to 

zero and the posterior variance for 9 is given by E{Var[9\D, 4>]\D}., Consequently, 

we can conceptualize the term Var{E[9\D,4>]\D} as modelling the extent to which 

admitting uncertainty in the hyperparameter <f> increases the posterior variance. This 

gives an "ANOVA" type representation for decomposing posterior variance in latent 

variable models. The first term on the right hand side of the equation models variation 

"within" specific priors, while the second term models variation in the posterior arising 

"between" different choices of priors. 

The BPSA method can be investigated within this framework. When estimating 8 

and £, PSA uses a degenerate prior distribution for 7 which is equal to the maximum 

likelihood estimator from logistic regression of X on C. In contrast, BPSA estimates 

8 and £ by admitting uncertainty in 7 and modelling 7 as a latent quantity. We can 
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write 

Var\j3,Z\D] = E{Var\j3,Z\D,7]\D} + Var{E\p,Z\Dn]\D}, (4.2) 

where D — (y, x, c). Letting 7 denote the maximum likelihood estimator for 7 

from PSA, the expression £{Var[/3, £|.D, 7]|Z)} = Var[f3,£\D,j] equals the posterior 

variance for PSA. For BPSA, the quantity E{Var[p,j]\D} models the within 

variation of B and £ given 7, while the quantity Var{E[8,j]\D} models the 

between variation over levels of 7. 

Thus to characterize the different inferences for BPSA and PSA we can factorize 

the posterior variance for the statin data and calculate both Var[B,£\D,j] and the 

quantities in equation (4.2). We can calculate 

E{Var[p,f\D,j}\D} • 
E{Var\p,£\D;7]\D} + Var{E\p,£\D,i]\D} 

which is the variation in within levels of 7, divided by the posterior variance. 

If this quantity is close to one, then admitting uncertainty in 7 has little effect on 

posterior variance. 

A simple estimate of this ratio for BPSA is provided from the M C M C algorithm 

described in Section 4.1. When updating 8 and £, given some current value 7*, > 

the proposal distribution is given by the normal approximation to the asymptotic 

distribution of the maximum likelihood estimator from logistic regression of Y on X 

and the quintile group G. The mean and variance of this distribution are estimates of 

E[8, £|D, 7*] and Var[8, £|£>, 7*]. Thus if we collect and store these quantities during 

simulation along with the sample model parameters, we can take the empirical average 

across sampled values of 7 to estimate E { Var [8, £ | D, 7] | D } and Var { E [8, £ | D, 7] | D }. 
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Table 4.7: Posterior variances for 8 and £ from the analysis of the statin data using 
BPSA and PSA 

Posterior variance Posterior variance Decomposition of 
from PSA from BPSA BPSA posterior variance 

Within Between Within/Total 
0.009 0.010 0.010 0.001 0.948 

6 0.005 0.016 0.008 0.010 0.445 
0.010 0.034 0.013 0.019 0.412 

6 0.013 0.030 0.015 0.015 0.498 
U 0.015 0.049 0.021 0.030 0.407 
6 0.020 0.050 0.043 0.016 0.729 

Table 4.7 presents a decomposition of the posterior variances of [3 and £ from 

BPSA and PSA. The first two columns are posterior variance for BPSA versus PSA. 

The final three columns give the decomposition of the posterior variance for BPSA. 

The main result is that the ratio of the within variation divided by total variation is 

estimated as 0.948 for the parameter 3 and is much smaller for each component of £. In 

other words, admitting uncertainty in the estimated propensity score greatly increases 

posterior uncertainty £, but only marginally increases uncertainty in 8. This makes 

sense when we compare the interval estimates from BPSA and PSA in Tables 4.3 and 

4.5. Interval estimates for £ from BPSA are roughly twice as wide compared to PSA, 

whereas for the parameter /3, BPSA only modestly increases posterior uncertainty 

compared to PSA. 
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Chapter 5 

Simulation studies of the 

performance of BPSA and PSA 

In Chapter 4, we applied BPSA to the statin data and contrasted the results with 

those from PSA. Because of the large sample size, intuition suggests that there should 

be little uncertainty in the estimated propensity score, and we would expect both 

methods to give similar inferences. But the statin data example shows that this may 

not be the case. The estimates for B are comparable, but we see large differences in 

the point estimates for £. BPSA groups patients into propensity score bins based on 

their health status, and the result is that the estimated components of £ are spread 

apart compared to PSA. Sick patients are grouped into bin #1 and this drove the 

estimate of £1 upwards to reflect the fact that this group had greater risk of death. 

Similarly, healthy patients were grouped into bin #5. A plot of the risk of death as a 

function of the propensity score, given in Figure 4.2, shows that this approach seems 

reasonable because patients with high propensity scores have lower mortality. But 

the question remains whether or not BPSA inferences are more valid. Can we expect 

that the frequentist inferences from BPSA will be superior in some settings? If so, 

then what are these settings and how do they compare to those for the statin data? 

In this chapter we investigate the frequentist performance of BPSA estimates using 

simulations and further analysis of the statin data. In Section 5.1, we use simulations 

to study the bias, relative efficiency and relative mean squared error (MSE) of point 
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estimators, and the coverage probability and length of interval estimates. BPSA has 

the potential drawback that it relies more heavily on modelling assumptions for the 

outcome variable than PSA. The method uses a model for P{Y = c) for propen­

sity score estimation, while PSA does not. Consequently, we might expect that PSA 

inferences are more robust to model misspecification. To investigate further, Section 

5.2 investigates the performance of BPSA and PSA when applied to synthetic data 

generated under competing models for the outcome. In Section 5.3, we consider pre­

diction error. We use cross-validation techniques to study the ability of BPSA and 

PSA to accurately forecast the outcome variable when applied to real and synthetic 

data. Finally, Section 5.4 revisits the idea of covariate balance induced by BPSA ver­

sus PSA. Chapter 4 illustrated that BPSA appears to produce treatment and control 

groups which less similar with respect to measured confounders, compared to PSA. 

Thus the method does not appear to be effectively reducing confounding. We explore 

covariate balance using simulations. 

5.1 Simulation study when the distribution of the 

outcome follows the propensity score model 

We use simulations to investigate the frequentist performance of point and interval 

estimators for 3, £, 7 when the data are generated according to the BPSA model given 

in equations (3.1) and (3.2), for fixed parameter values of 8,£ and 7. 

Simulation design 

We consider the case where C has four continuous components (meaning that C 
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is a 5 x 1 vector with first component equal to one), and we simulate datasets for four 

different choices of model parameters, 

Design Q I 7 

#1 -1/2 (1/2, -1/2, 1/2,-1/2, 1/2) (1/2, -1/2, 1/2, -1/2, 1/2) 

#2 -1/2 (2, -2, 2, -2, 2) (1/2, -1/2, 1/2, -1/2, 1/2) 

#3 -1/2 (1/2, -1/2, 1/2, -1/2, 1/2) (2,-2,2,-2,2) 

#4 . -1/2 (2, -2, 2, -2, 2) (2,-2,2,-2,2) 

and sample size n = 1000. 

Design #1 models the setting where there are strong associations between between 

Y, X and bin membership, with odds ratios of either exp(—1/2) = 0.61 or exp(l/2) = 

1.64. Designs #2, #3 and #4 are similar, but use more extreme odds ratios of either 

exp(—2) = 0.13 or exp(2) = 7.4. While these designs are less realistic, they can 

indicate settings in which BPSA or PSA break down. Design #2 is of particular 

interest. The components of £ are heterogeneous while the components of 7 are quite 

similar. We expect that PSA will misclassify patients into the wrong propensity score 

bins and this will adversely affect estimation of £ and B. 

For each design and fixed sample size, we generate and analyze 400 simulated 

datasets, to yield a sample of 400 point estimates and 80% interval estimates for /?, 

£ and 7, using the following algorithm: 

1. Generate the n x 5 design matrix c. The first column is a column of ones. The 

latter four columns are the sampled covariates for the dataset(of size n. Each 

element of each column is simulated as an independent draw from a N(0,1) 

random variable. 
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2. Generate the n x 1 vector x using the logistic regression model of equation (3.2), 

given by 

logit[P(X = l|c)] =ic 

where 7 = (70,71,72,73,74) is a 5 x . l vector. 

3. Because of the way the simulation is designed, we have 7 'C ~ -/V(70, 2~Zt=i l i ) f ° r 

fixed 7. Thus the values Ci, 02,03, c 4 defining the true quintiles of the propensity 

score are given exactly by Cfc = expit{70+(^t=i li)Qk} for k = 1, 2,3,4 and qk = 

$_1(0.2fc), where $~1(.) is the quantile function of a N(0,1) random variable. 

Generate the n x 1 vector y using the logistic regression model of (3.1) given 

by 

logit[P(y = z)\ = 3x + g(z(c, 7))'£ 

where 
[1,0,0,0,0] i f z ( c , 7 ) < C l 

[1,1,0,0,0] if C l < z(c,j) <c 2 

g(z) = { [1, 0, 1, 0, 0] if C2 < z(c,j) < c 3 

[1,0,0,1,0] if c 3 <z(c,j) < c 4 

{ [1,0,0,0,1] if cA<z{c, 7) . 

and z(c, 7) = expit(7'c). 

4. Analyze the datasets using PSA and BPSA with an M C M C chain of length 

10 000 after discarding 500 initial iterations. Obtain point and 80% interval 

estimates for 3, ( and 7 from each method. 

Careful tuning of the M C M C sampler is needed for each simulation design, and this 

is accomplished using separate trial simulation runs. 
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Results 

Table 5.1 summarizes the performance of point and interval estimators for 6, £ 

and 7 from BPSA and PSA, in the case where datasets are simulated according to 

Design #1. The first two columns indicate of the magnitude of bias of each method. 

Each cell contains the sample mean of the collection of 400 sampled estimators, as 

well as the z-score for the' sample mean relative to the true. underlying parameter 

value. The z-score was calculated as 

„ sample mean - true parameter value 
z-score for mean-of simulated point estimators = -—-——— — — . 

sample standard deviation 

A large z-score indicates that the point estimator is biased.- The third and fourth 

columns in the table contain the estimated relative efficiency and the relative MSE 

of BPSA point estimators compared to PSA. These quantities are calculated as 

Sample variance of BPSA point estimates 
Estimated relative efficiency = — : : _ . : : 

Sample variance of PSA point estimates 

and 

Sample average squared error of BPSA point estimates 
Estimated relative MSE = Sample average squared error of PSA point estimates 

To aid with interpretation of results, we calculated simulation standard errors for 

the relative efficiency and relative MSE estimates via the bootstrap. In Table 5.1, 

estimates denoted with a "*" imply that a 90% bootstrapped confidence interval for 

the parameter excludes 1. If these estimates are significantly less than one, it indicates 

that BPSA point estimates have smaller variance or smaller MSE compared to PSA. 

The final four columns contain estimates of the coverage probability and average 

67 



length of interval estimates. The symbol t indicates that a 90% confidence intervals 

for the coverage probability excludes the nominal level of 80%. To clarify, we estimate 

the coverage probabilities which are nominally equal to 80%, and we construct 90% 

confidence interval for these quantities. We use an a-level of 0.1 for the analysis of 

simulation results in order to increase power at the expense of the Type I error rate. 

Tables 5.2, 5.3 and 5.4 are identical to Table 5.1, but correspond to data simulated 

under Designs #2-4. 

The results of the simulation study indicate that BPSA and PSA perform' very 

comparably in terms of estimation of 8. The quality of inferences for 8 from BPSA 

and PSA are so similar that any systematic differences in performance is swamped 

by variation from the Monte Carlo simulation. However, a qualitative assessment 

of the results across the four simulation designs suggests that PSA point estimators 

are more efficient than for BPSA. PSA interval estimators also appear to have lower 

coverage probability. 

Inferences for £ calculated from BPSA are generally superior to those from PSA. 

BPSA point estimates of £ have similar efficiency to those from PSA, but they have 

smaller bias and this reduces overall MSE. In Tables 5.1 through 5.4, the estimated 

relative efficiencies of point estimators for £ are generally not systematically different 

from one across the simulation designs. But for the parameters £, the z-scores cal­

culated from BPSA are much smaller than for PSA. For example, under Design #2, 

PSA point estimators are biased with z-scores of greater than 20. This reduction in 

bias from using BPSA for estimating £ reduces overall MSE compared to PSA. In 

all four simulation designs, the estimated relative MSEs tend to be significantly less 

than one. 

The improvements of BPSA compared to PSA also applies to interval estima­

tion of £. For each simulation design, BPSA credible intervals have greater average 
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length and estimated coverage probabilities which do not differ significantly from 

80%. In contrast, PSA interval estimates always have lower coverage probability, and 

in Design #2, the estimated coverage probabilities are never greater than 50%. The 

increase in average interval length for BPSA is usually modest, but is occasionally 

quite substantial. Nonetheless, the increased length appears to be justifiable because 

the resulting interval estimates have proper coverage probability. 

BPSA point and interval estimates of 7 also appear to have better performance. 

Thus BPSA appears to do a better job of estimating the propensity scores. In terms of 

bias, BPSA and PSA are similar, but BPSA point estimators are much more efficient. 

Under each of the four simulation designs, the estimated relative efficiencies for BPSA 

compared to PSA are significantly less than one. Under Designs #2 and #4, the 

relative efficiencies were typically less than 0.2, meaning that BPSA point estimators 

of 7 are perhaps five times more efficient. Consequently, in the four simulation studies, 

the BPSA estimators of 7 have smaller MSE compared to PSA. 

The performance of interval estimates for 7 are also improved for BPSA. Under 

Design #4, BPSA interval estimates have length which is roughly one fifth of that 

of PSA, and yet they maintain roughly nominal coverage probability. BPSA interval 

estimates of 7 tend to have lower coverage probability compared to PSA. This is 

particularly true under Design #2. In this case, the empirical variance of the1 BPSA 

point estimates of 7 is far greater than the posterior variances. Thus BPSA tends 

to modestly under report uncertainty in 7. One possible explanation for this under-

coverage is poor M C M C mixing. The sampler may not fully explore the posterior 

distribution. 

69 



Table 5.1: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Desii 
#1-

Parameter Point Estimation Interval Estimation 

B P S A Sample mean P S A Sample mean Rel. efficiency Rel. MSE BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

B = -0.5 -0.51 (-1.7) -0.49 (0.9) 1.05* 1.06* 0.84 0.38 0.84 0.37 

= 0.5 0.49 (-1.0) 0.45 (-7.4) 1.07 0.94 0.84 0.40 0.80 0.38 
& = -0-5 -0.46 (3.6) -0.29 (18.4) 1.04 0.58* 0.78 0.58 0.60+ 0.53 
£ 3 = 0.5 0.52 (1.5) 0.33 (-15.8) 1.20* 0.74* 0.78 0.59 0.64t 0.54 
& = -0.5 -0.48 (1.6) -0.26 (21.7) 0.92 0.43* 0.81 0.57 0.57+ 0.55 
£ 5 = 0.5 0.53 (2.4)- 0.47 (-2.1) 0.96 0.96 0.81 0.59 0.78 0.57 

7 0 = 0.5 0.49 (-3.3) 0.50 (-1.0) 0.16* 0.16* 0.79 0.07 0.78 0.19 
7 l = -0.5 -0.51 (-5.8) -0.51 (-2.2) 0.22* 0.24* 0.77 0.09 0.79 0.19 
7 2 = 0.5 0.51 (4.5) 0.51 (1.8) 0.23* 0.24* 0.77 0.09 0.78 0.19 
7 3 = -0.5 -0.51 (-4.7) -0.50 (-0.6) 0.32* 0.34* 0.76* . 0.09 0.81 0.19 
7 4 = 0.5 0.51 (3.9) 0.51 (1.9) 0.26* 0.26* 0.76+ 0.09 0.80 0.19 
* Quantity differs from 1, p < 0.1. ' Coverage probability is less than 80% ,p<0 .1 



Table 5.2: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Design 
#2. 

Parameter Point Estimation Interval Estimation 

BPSA Sample mean P S A Sample mean Rel efficiency Rel. MSE BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

B = -0.5 -0.50 (0.4) -0.42 (9.7) 1.24* 1.00 0.81 0.48 0.75+ 0.44 

€i = 2 2.00 (0.0) 1.71 (-20.3) 0.73* 0.36* 0.78 0.56 0.43+ 0.51 
£ 2 = - 2 -1.96 (1.6) -1.39 (30.6) 1.55 0.47* 0.82 0.66 0.24+ 0.62 
& = 2 2.19 (5.5) 0.47 (-56.9) 1.66* 0.20* 0.82 1.43 0.03+ 0.77 
£ 4 = - 2 -1.97 (1.1) -1.34 (37.4) 1.72 0.38* 0.80 0.68 0.20+ 0.64 
? 5 = 2 2.16 (5.1) 1.30 (-19.0) 0.71* 0.40* 0.81 1.37 0.35+ 0.97 

7 0 = 0.5 0.50 (-1.5) 0.50 (-0.3) 0.59* 0.59* 0.68+ 0.01 0.79 0.19 
7 1 = -0.5 -0.50 (-0.9) -0.50 (-1.2) 0.14* 0.14* 0.70+ 0.01 0.80 0.19 
7 2 = 0.5 0.50 (0.8) 0.51 (1.6) 0.14* 0.14* 0.74+ 0.01 0.80 0.19 
7 3 = -0.5 -0.50 (-0.8) -0.51 (-2.3) 0.12* 0.12* 0.70+ 0.01 0.77 0.19 
7 4 = 0.5 0.50 (1.1) 0.51 (1.8) 0.13* 0.13* 0.68+ 0.01 0.78 0.19 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



Table 5.3: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Design 
#3: 

Parameter Point Estimation Interval Estimation 

B P S A Sample mean PSA Sample mean Rel efficiency Rel. M S E BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

B = -0.5 -0.51 (-0.5) -0.49 (0.5) 1.03 1.03 0.80 0.58 0.81 0.57 

£ 1 = 0.5 0.49 (-0.9) 0.48 (-3.4) 1.01 0.98 0.81 0.38 0.79 0.37 
6 = -0 .5 -0.47 (2.6) -0.41 (7.6) 1.02 0.91* 0.77 0.60 0.74+ 0.57 
& = 0.5 0.52 (1.1) 0.44 (-4.4) 1.01 0.97 0.80 0.73 0.76+ 0.71 
£ 4 = -0.5 -0.49 (1.0) -0.38 (8.2) 1.01 0.87* 0.82 0.76 0.78 0.74 
£ 5 = 0.5 0.53 (1.7) 0.48 (-1.6) 0.95* 0.95* 0.80 0.77 0.79 0.75 

7 0 = 2 2.00 (-0.2) 2.03 (3.2) 0.25* 0.-24* 0.78 0.19 0.80 0.42 
7 i = - 2 -2.02 (-3.2) -2.03 (-3.1) 0.34* 0.34* 0.78 0.25 0.81 0.44 
7 2 = 2 2.01 (2.2) 2.03 (3.4) 0.36* 0.35* 0.82 0.25 0.82 0.44 
7 3 = - 2 -2.02 (-4.1) -2.04 (-4.1) 0.41* 0.41* 0.75+ 0.26 0.80 0.44 
7 4 = 2 2.01 (1.9) -• 2.03(3.7) 0.37* 0.36* 0.79 0.25 0.81 0.44 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



Table 5.4: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Design 
#4. 

Parameter Point Estimation Interval Estimation 

BPSA Sample mean PSA Sample mean Rel efficiency Rel. MSE BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

8 = -0.5 -0.51 (-0.9) -0.48 (1.6) 1.05 1.04 0.78 0.66 0.77 0.65 

Ci = 2 . 2.03 (2.5) 1.89 (-9.8) 0.95 0.78* 0.77 0.56 0.65+ 0.54 
£ 2 = - 2 -2.01 (-0.9) -1.75 (16.2) 0.92 0.56* 0.82 0.71 0.60+ 0.70 
& = 2 2.15 (4.3) 1.09 (-30.3) 1.32* 0.42* 0.80 1.46 0.26+ 1.06 
U = - 2 -2.00 (-0.2) -1.64 (19.5) 1.22 0.63* 0.81 0.90 0.55+ 0.87 
& = 2 2.14 (2.9) 1.52 (-7) 0.52 0.48 0.81 1.46 0.46+ 1.19 

• 7 o = 2 2.00 (-0.9) 2.04 (4.6) 0.13* 0.13* 0.80 0.04 0.82 0.42 
7 i = - 2 -2.00 (-0.1) -2.03 (-4.3) 0.09* 0.08* 0.73+ 0.05 0.83 0.44 
7 2 = 2 2.00 (-1.0) 2.04 (4.9) 0.08* 0.08* 0.78 0.05 0.81 0.44 
7 3 = - 2 -2.00 (1.1) -2.04 (-4.4) 0.07* 0.06* 0.79 0.05 0.79 0.44 
7 4 = 2 2.00 (-1.0) 2.03 (4.0) 0.06* 0.06* 0.79 0.05 0.79 0.44 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



Discussion 

The results of the simulation study indicate that BPSA does a better job of esti­

mating £ and 7. For estimation of 0, the methods are very comparable, with BPSA 

point estimators appearing to perform slightly worse under the "realistic" Design 

#1. Contrary to intuition, differences in inferences between BPSA and PSA may be 

substantial. This is particularly true when the true data generating mechanism is 

given by Designs #2 or #4. To explain this behavior, we observe that Design #2 

involves large values of £ and small values of 7. Because the components of 7 are 

similar, correct classification of patients to bins using PSA is error prone. Because 

the components of £ are large and heterogeneous, bin misclassification adversely af­

fects estimation of £ since study subjects with very different outcome risks are being 

grouped together. Under Design #2, patient outcomes contribute a great deal of in­

formation about the propensity scores. BPSA has an advantage because it uses this 

information while PSA ignores it. 

While the simulations demonstrate that BPSA can perform well compared to PSA, 

the findings may not generally apply to the analysis'of typical epidemiologic data. In 

the statin data example of Section 4, the risk of Y as a function of the propensity 

score is not particularly heterogeneous. In Figure 4.2 we see that this risk function is 

a fairly smooth function of Z. Future simulations studies could try to more carefully 

mimic real observational studies. 

It is interesting that PSA point estimates of 8 are more efficient than for BPSA. 

Note that B is the primary parameter of interest because it models the treatment 

effect. The parameters £ and 7 are essentially nuisance parameters. Because BPSA 

does a better job of estimating the propensity scores, we would expect that this 

should improve control of confounding and estimation of B. BPSA and PSA both use 
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estimated propensity scores, but BPSA incorporates modelling information about 

the relationship between Y and Z given X. While the simulations indicate that 

this improves estimation of 7 and £, the BPSA approach may be harmful to the 

efficiency of point estimation of B. For interval estimation of (3, BPSA seems to 

perform favorably. For example, under Design #2, BPSA interval estimates of B. 

have nominal coverage probability while those calculated from PSA do not. 

A feature of our simulation study is that we have evaluated BPSA and PSA as­

suming that the quantities C i , 02 ,03,04 which define propensity score bins are known. 

Because of the manner in which the data are simulated, we can determine the quin­

tiles of Z = P(X = 1|C) exactly. In contrast, in the practical application of BPSA, 

C i , C 2 , c 3 , c 4 are unknown. We recommend estimating the propensity scores for each 

subject using PSA, and then calculating the quintiles of the empirical distribution. 

Thus a perceived limitation of our simulation is that we are not evaluating BPSA 

and PSA as they would be applied in practice. However, another perspective is that 

Ci , i C 2 , 0 3 , c 4 form part of the specification for the model for P(Y — l\x, c). If we were 

to estimate C i , C2, 03, c 4 when applying BPSA and PSA to the synthetic datasets, then 

the interpretation of the parameters (£1, £2, £3, £4, £5) would change from one dataset 

to the next. Averaging point estimates over repeated simulations would not be mean­

ingful. Instead, we study BPSA and PSA under repeated application to data where 

C i , c 2, c 3, 04 take on specific values. 
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5.2 Simulation study when the distribution of the 

outcome follows a conventional regression 

model for Y on X and C 

A limitation of the BPSA method is that it relies on more modelling assumptions 

than PSA, in some sense. Both methods use the same models for the data, but they' 

handle information in' different ways. PSA estimates the propensity scores using the 

marginal model for P(X = l|c), whereas BPSA estimates propensity scores using 

models for both P(Y = l\x,c) and P(X — l|c). Consequently, we might expect that 

the PSA methodology is more robust. If the model for P(Y = l\x, c) does not follow 

equation (3.1), then this would adversely affect BPSA because the method would be 

classifying study units into propensity score bins based on an incorrect model. The 

improved performance of BPSA that is observed in simulations may be sensitive to 

modelling assumptions. To investigate this further, we repeat the simulations of Sec­

tion 5.1 by generating synthetic datasets using a more conventional regression model 

for Y on X and C. 

Simulation design 

We consider the case where C has four continuous components (thus a 5 x 1 vector 

with first component is equal to one for the y-intercept), and we simulate datasets 

where the outcome variable Y follows the regression model 

logit{P(y = l\x,c)} = rx + c'p, (5.1) 
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rather than the propensity score model given in equation (3.1). Equation (5.1) is 

a logistic regression model of Y on X and C with treatment effect r and covariate 

effects p. 

We consider four different simulation designs with model parameters given by 

Design r p 7 • 

#1 -1/2 (1/2, -1/2, 1/2, -1/2, 1/2) (1/2, -1/2, 1/2, -1/2, 1/2) 

#2 -1/2 (1, -1, 1, -1, 1) . (1/2, -1/2, 1/2, -1/2, 1/2) 

#3 -1/2 (1/2, -1/2, 1/2, -1/2, 1/2) (1, -1, 1, -1, 1) 

#4 -1/2- (1,-1,1,-1,1) (1,-1, 1,-1, 1) 

and datasets of fixed sample size n = 1000. The simulation designs parallel those of 

Section 5.1. Designs #1 models the case where the components of C are modestly 

associated with X and Y, while Designs #2, #3 and #4 model stronger associations. 

Thus we consider instances where C are strong or weak confounders for the effect of 

XonY.. 

For each design, we generate and analyze 400 synthetic datasets using the following 

algorithm: 

1. Generate the n x 5 design matrix c. The first column is a column of ones. The 

latter four columns are the sampled covariates for the dataset of size n. Each 

element of each column is simulated as an independent draw from a N(0,1) 

random variable. 

2. Generate the n x 1 vector x using the logistic regression model of equation (3.2), 

where 7 = (70,71,72,73,74) is a 5 x 1 vector. 

3. Generate the n x 1 vector y using the logistic regression model given in equation 

(5.1). 
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4. Because of the way the simulation is designed, we have 7 ' C ~ AT(7o, Ylt=i ^f) f ° r 

fixed 7. Thus the values c\, c 2, C 3 , C4 defining the true quintiles of the propensity 

score are given exactly by ck — expit{70-r-(^t=i jf)qk} f ° r k — 1, 2,3,4 and = 

$_1(0.2A;), where is the quantile function of a N(0,1) random variable. 

Given C i , 0 2 , 0 3 , 0 4 , analyze the datasets using BPSA and PSA to obtain point 

and 80% interval estimates for 8, £ and 7 from each method. 

A feature of this simulation is that we are generating Y, X and C using one model 

but then analyzing the data using a different model. BPSA and PSA give limiting 

estimates which will differ from r, p and 7 used to generate the data. In large samples, 

PSA yields estimates of the quantity 7* which solves 

E { — logppQlQ)} =0, (5.2) 

where p(Xi\Ci) — exp{Xi(jTCi)}/(l + exp{7 rCi)} from equation (3.2), and the ex­

pectation is with respect to the distribution of X^ given C{ used to generate the data. 

PSA also estimates (/3*,£*) which solves 

E\^jj)\ogpiXi\XhCii . =0, 
7 = 7 * 

where p(y i |X i , d) = e x p f y ^ + £ T

5 ( a , 7*))}/(l + exp{/3X, + £ T

5 ( Q , 7 ) } ) from 

equation (3.1), with 7* as the solution to equation (5.2), and where the expectation is 

with respect to the distribution of Yi given Xi and Q in equation (5.1). The quantity 

7* is identical to the true value of 7 used to generated the synthetic data because PSA 

estimates the propensity scores using the correct model specification for p(Xi\Ci). But 

8* may differ from r in-equation (5.1) because the quantities parametrize different 

regression models for the outcome. 
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In contrast, BPSA estimates (/?*,£*, 7*) which solves 

E d 
{ logpMXi.CO + logptXilCO} =0 

W , £ , 7 ) 

The quantities (/?*,£*, 7*) give the best overall fit for the BPSA model, and they need 

not equal the limiting estimates obtained from PSA. In particular, 7* from BPSA need 

not equal 7 used to generate the synthetic data. Thus in this particular simulation, 

when the outcome variable follows equation (5.1), BPSA may give propensity score 

estimates which are asymptotically biased. 

This raises questions about identifying suitable targets of inference in simulation. 

We focus on the quantities estimated from PSA. The reason is because these param­

eters model the best fit for the model given in equation (3.1) in the case where the 

true propensity scores are know. Thus, for example, £* model the average outcome 

risks within the propensity score bins. To compute these quantities, we write the 

estimating equation for PSA as 

where R is a 6 x 1 vector with first component equal to X and remaining five com­

ponents equal to the 5 x 1 vector g(z(y,C)). Additionally, 9* = [/?* ,£* ,£* ,£3,£4,£*] . 

The expectation is with respect to the true joint probability density function for 

Y,X and C. The solution to equation (5.3) yields the density P(Y = c) = 

exp\t{(3*x + g(z(j, C)'t,*)} with the smallest Kullback-Liebler distance from the den­

sity expit-fYz+c'p)}, where r and p are equal to the values from the specific simulation 

design [38]. 

Because R is categorical, we can calculate the solution to this estimating equation. 

n(0*) = E{R[Y - expit(#0*)]} = 0 (5.3) 
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numerically using Monte Carlo integration and the Newton Raphson method. Equa­

tion (5.3) is the expectation of the score function for a single observation of logistic 

regression. It can be written as a finite sum of quantities which can be estimated by 

Monte Carlo, and which depend on 6*. If we take the derivative of this sum with 

respect to 9*, then we can use Newton Raphson to solve 0,(6*) = 0. Complete details 

are given in the Appendix. 

As discussed in Section 2.4, simulation studies of PSA in which a dichotomous 

outcome variable Y is generated using models like in equation (5.1) are common in 

the literature (see for example [28, 29, 34, 35, 43]). But investigators often treat the 

quantity /3*, calculated from PSA, as a point estimator for r rather than (3* [34, 35]. 

But Austin and others [28-30] show that in general we have r ^ (3* because of non-

collapsibility of the odds ratio. Thus [3* will be asymptotically biased for r. The 

alternative approach that we adopt here to study the operating characteristics of [3* 

and £* as estimates of f3* and £* rather than r and p. 

Results 

Table 5.5 summarizes the performance of point and interval estimates for (3*, f* 

and 7 from PSA, in the case where datasets are simulated according to Design #1 

with sample size n = 1000. For PSA, we have 7* = 7. The left most column gives the 

true values of B* and £* which are estimated using the Monte Carlo algorithm given in 

the Appendix. The uncertainty in these quantities is negligible with standard errors 

less than 10 - 5 . As we discuss in more detail below, the PSA point estimates computed 

from analyzing the synthetic data appear to be essentially unbiased. This gives us 

some reassurance that the Monte Carlo algorithm has been implemented correctly. 

As in Section 5.1, the 'second and third columns in Table 5.5 provide descriptive 
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information about the magnitude of bias for each method, while the fourth and fifth 

columns in the table contain the estimated relative efficiencies and relative MSE of 

BPSA point estimators compared to PSA. Tables 5.6, 5.7 and 5.8 are identical to 

Table 5.5, but correspond to data simulated under Designs #2, #3 and #4. 

With respect to the treatment effect parameter /?*, both BPSA and PSA perform 

comparably well. BPSA point estimates appear to be slightly less efficient with larger 

overall MSE, although the difference in the estimated variances is not statistically 

significant. BPSA interval estimates are generally longer on average, but this does 

not appear to greatly impact coverage. 

The results of the simulation study indicate that point estimates for £* calculated 

from BPSA have inferior performance compared to PSA. They are less efficient and 

badly biased. In each of the four tables we see that the relative efficiencies are 

significantly greater than one, indicating that the variance of BPSA estimates of f* 

are greater than for PSA. The BPSA point estimates are biased with z-score values 

in the range of 5 to 10 or more. This increases mean squared error. BPSA interval 

estimates of £* also perform worse compared to PSA. In each of the tables, they have 

lower coverage probability and greater average length. 
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Table 5.5: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Desi; 
#1-

Parameter Point Estimation Interval Estimation 

B P S A Sample mean PSA Sample mean Rel efficiency Rel. M S E BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

3* = -0.44 -0.46 (-3.1) -0.44 (0.2) 1.02 1.04* 0.78 0.40 0.78 0.40 

= -0.87 -0.97 (-8.3) -0.87 (0.7) 1.33* 1.56* 0.76+ 0.50 0.76+ 0.42 
& = 0.81 0.92 (8.8) 0.83 (1.1) 1.15* 1.37* 0.77 0.66 0.80 0.56 
G = 1-33 1.43 (7.3) 1.33 (-0.7) 1.19* 1.35* 0.78 0.66 0.78 0.58 
Q = 1-87 1.98 (7.3) 1.83 (-2.8) 1.27* 1.41* 0.79 0.73 0.77 0.60 
£ = 2.66 2.93 (14.4) 2.65 (-0.7) 1.76* 2.67* 0.72+ ' 0.85 0.78 0.67 

To = 0.5 0.50 (0.1) 0.50 (0.2) 1.37* 1.37* 0.60+ 0.16 0.77 0.19 
7i = -0.5 -0.49 (3.9) -0.51 (-3.1) 0.85* 0.86* 0.67+ 0.15 0.82 0.19 
7 2 = 0.5 0.49 (-4.0) 0.50 (1.2) 0.83* 0.86* 0.66+ 0.15 0.80 .0.19 
7 3 = -0.5 -0.49 (4.5) -0.51 (-2.0) 0.75* 0.78* 0.66+ 0.14 0.80 0.19 
7 4 = 0.5 0.48 (-4.9) 0.51 (2.1) 0.74* 0.77* 0.68+ 0.14 0.79 0.19 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



Table 5.6: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Design 
#2-

Parameter Point Estimation Interval Estimation 

B P S A Sample mean PSA Sample mean Rel efficiency Rel. M S E BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

8* = -0.40 -0.43 (-3.0) -0.39 (1.1) 1.04* 1.06* 0.84 0.46 0.82 0.45 

Ci = -1.60 -1.78 (-12.8) -1,58 (1.3) 1.33* 1.87* 0.74+ 0.69 0.70+ 0.52 
& = 1-50 1.61 (9.1) 1.48 (-1.6) 1.12 1.35* 0.82 0.77 0.80 0.64 
C3 = 2.52 2.68 (10.3) 2.48 (-3.1) 1.21* 1.50* 0.78 0.82 0.76+ 0.67 
a = 3.57 3.80 (11.5) 3.51 (-3.1) 1.26* 1.63* 0.74+ 1.0.0 0.68+ 0.76 
a =5-03 5.59 (16.9) 5.08 (1.1) 0.49 0.85 0.70+ 1.51 0.74+ 1.09 

7 o = 0.5 0.53 (5.8) 0.51 (2.0) 1.64* 1.76* 0.44+ 0.13 0.80 0.19 
7 i = -0.5 -0.48 (5.3) -0.50 (-0.5) 0.65* 0.70* 0.56+ 0.11 0.82 0.19 
7 2 = 0.5 0.49 (-3.8) 0.50 (-0.6) 0.78* 0.80* 0.57+ 0.11 0.82 0.19 
7 3 = -0.5 -0.49 (4.7) -0.51 (-1.5) 0.69* 0.72* 0.59+ 0.11 0.82 0.19 
7 4 = 0.5 0.48 (-5) 0.50 (-0.2) 0.63* 0.67* 0.55+ 0.11 0.81 0.19 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



Table 5.7: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Design 
#3. 

Parameter Point Estimation Interval Estimation 

BPSA Sample mean PSA Sample mean Rel efficiency Rel. MSE BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

B* = -0.41 -0.43 (-1.8) -0.40 (1.1) 0.99 1.00 0.80 0.46 0.79 0.46 

= -0.87 -0.93 (-6.3) -0.88 (-0.3) 1.18* 1.30* 0.80 0.46 0.78 . 0.41 
& = 0.80 0.85 (4.9) 0.79 (-0.7) 1.09* 1.16* 0.85 0.63 0.80 0.57 
? 3 = 1-31 1.38 (5.5) 1.30 (-0.7) 1.04 1.11* 0.80 0.67 0.77 0.61 
Q = 1.85 1.90 (3.7) 1.81 (-2.8) 1.03 1.04 0.82 0.74 0.78 0.66 
Q = 2.63 2.81 (10.7) 2.61 (-0.8) L22* 1.56* 0.74+ 0.83 0.78 0.72 

7 o = 1 1.00 (-0.1) 1.01 (3.0) 1.32* 1.29* 0.69+ 0.23 0.78 0.24 
7 i = - 1 -0.98 (4.7) -1.01 (-2.5) 1.19* 1.24* 0.65+ 0.23 0.82 0.26 
7 2 = 1 0.98 (-4.3) 1.01 (1.8) 1.28* 1.33* 0.69+ 0.23 0.86 0.26 
7 3 = - 1 -0.98 (3.3) -1.01 (-1.6) 1.16* 1.18* 0.67+ 0.23 0.79 0.25 
7 4 = 1 0.99 (-2.2) 1.01 (2.7) 1.00 0.99 0.70+ 0.23 0.77 0.26 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



Table 5.8: Performance of point and interval estimators from BPSA and PSA, when data are simulated under Desij 
#4. 

Parameter Point Estimation Interval Estimation 

B P S A Sample mean PSA Sample mean Rel. efficiency Rel. M S E BPSA PSA 
(z-score) (z-score) Coverage Length Coverage Length 

B* = -0.35 -0.38 (-3.5) -0.35 (-0.3) 1.00 ^ 1.03 0.80 0.51 0.76+ 0.50 

£* = -1.60 -1.70 (-8.6) -1.61 (-0.4) 1.09 1.29* 0.78 0.58 0.73+ 0.50 
Q = 1.47 1.56 (6.9) 1.49 (1.7) 1.09* 1.21* 0.79 0.72 0.78 0.65 
H = 2.48 2.59 (7.1) 2.48 (0.3) 1.11* 1.24* 0.76+ 0.79 . 0.77 0.70 
41 = 3-52 3.65 (6.6) 3.49 (-2.1) 1.09 1.19* 0.78 0.94 0.76+ 0.80 

S = 4 - 9 7 5.33 (12.7) 5.00 (1.3) 1.16* 1.63* 0.73+ 1.35 0.70+ 1.11 

7 o = 1 1.03 (4.9) 1.01 (2.5) 2.10* 2.20* 0.47+ 0.20 0.80 0.24 
7 i = - 1 -1.00 (0.1) -1.01 (-3.0) 1.15* 1.13* 0.59+ 0.19 0.80 0.26 
7 2 = 1 1.00 (-0.8) 1.01 (2.0) 1.01 1.00 0.60+ 0.19 0.78 0.26 
7 3 = -1 -0.99 (1.9) -1.01 (-1.0) 1.15* 1.16* 0.58+ 0.19 0.81 0.25 
7 4 = 1 0.99 (-1.2) 1.00 (1.2) 0.98 0.98 0.57+ 0.19 0.76+ 0.26 
* Quantity differs from 1, p < 0.1, + Coverage probability is less than 80%, p < 0.1 



The simulations indicate that BPSA point and interval estimates of 7 occasionally 

have better performance compared to PSA. When the true values of the components 

of 7 are small in magnitude (Designs #1 and #2), we see an improvement in estima­

tion of 71,72,73,74 due to better efficiency. The relative efficiencies are significantly 

less than one. Whereas when the components of 7 are large, the efficiency of BPSA 

and PSA point estimates for 7 are essentially the same. Across all the simulation 

designs, BPSA point estimation of the quantity 70 is always poor. BPSA interval 

estimates for 7 perform much worse than PSA. They have smaller average length 

across all four simulation designs, but this is not accompanied by proper coverage 

probability. Thus BPSA appears to produce interval estimates which are falsely pre­

cise. In contrast, PSA interval estimates always have correct coverage levels. 

Discussion 

The simulations indicate that when the model for Y obeys equation (5.1), many 

of the advantages of BPSA over PSA disappear. Section 5.1 indicated that BPSA 

may yield improved point and interval estimation of £* and 7. Across each of the 

simulation designs in Tables 5.1 through 5.4, BPSA point estimates of 7 were more 

efficient compared to PSA and had smaller MSE. This led to improved classification 

of study units into propensity score bins and better estimation of £*. When the model 

for P(Y = l\x, c) follows the model of equation (5.1), we see nearly the reverse results. 

The estimates of the components of 7 are sometimes more efficient compared to PSA, 

but are generally highly biased. BPSA does not appear to give good estimates of the 

propensity scores, consequently, we also see poor estimation of £*. 

Inspection of Tables 5.5 through 5.8 reveals that PSA interval estimates of £* do 

not have nominal coverage probability. This would be expected even if 7 were known 

86 



because the model for P(Y = l |x,c) is incorrect. Standard practice for maximum 

likelihood estimation under misspecified models uses a robust "sandwich" estimate of 

the estimator variance [38]. PSA uses no such approach to interval estimation, and 

confidence intervals should not be expected to have the correct coverage levels. This 

reasoning does not apply to PSA interval estimation of 7 because the marginal model 

for P(X = 1|C) is correctly specified. Comparing the results from Section 5.1 and 5.2, 

we see that when the model for P(Y — l\x, c) is correctly specified, PSA yields interval 

estimates for f* which are too narrow, presumably because PSA ignores uncertainty 

in 7. In this case, Section 5.1 shows that using BPSA to model uncertainty in 7 

yields interval estimates of £* with correct coverage levels. In contrast, if the model 

for P(Y = l|a:,c) is incorrect, then neither method can be expected to give interval 

estimates with proper coverage. 

One feature of Tables 5.5 through 5.8 is that BPSA estimates of the quantity £ 5 

seems to be particularly bad. Under each of the four simulation designs, the z-score 

for the BPSA sample mean is between 15 and 20. This is a likely consequence of the 

simulation design involving sparse data within the fifth propensity score bin. In this 

case, PSA seems to produce point and interval estimates with better performance. 

As was the case in Section 5.1, BPSA and PSA perform comparably well in point 

and interval estimation of the treatment effect 3*. PSA point estimates are slightly 

more efficient across the four simulation designs. For interval estimation, we see a 

small increase in the average length for BPSA, and this is accompanied by an increase 

in coverage probability. But the differences between the two methods are sufficiently 

modest to be swamped by simulation error. 
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5.3 Predictive performance in real and simulated 

data 

Simulations studies have the disadvantage that they only describe estimator perfor­

mance where the data are generated under certain specific circumstances. These may 

not be representative of real epidemiologic investigations such as the statin data ex­

ample. Consequently, our ability to generalize about the performance of BPSA is 

somewhat limited. One strategy for characterizing performance for the statin data is 

to investigate prediction error using cross validation. The original dataset involved 

4572 patients discharged from hospital between 1999-2001. However, data from an 

additional 4599 patients discharged the following year are also available for a total 

of 9171 observations. If we randomly split the the entire collection of data in half, 

we can use the first half (called the build data) to construct a predictive model to 

estimate the probability of death for a future patient. We can then study prediction 

error when applied to the other half of the data (called the test data). To average 

over variability in the choice of build data, we can replicate the random splitting of 

the data. 

Denote a random sample of data of size n — 4500 as (y, x, c). Let. ( Y * , X * , C*) 

denote the data for a future patient from the same population for whom only X* and 

C* are observed. Let (3, £ and j denote the point estimates for model parameters 

from PSA applied to (y, x, c), and define 

YPSA = expit{[3X* + g(z(C*,j))'£} 

as the predictive model from PSA which estimates P(Y* — 1\X*, C*). The posterior 

88 



distribution for (/?,£,7) from BPSA of (y, x, c) is P( /? ,£ , 7 | y , x, c). Define 

YBPSA = /II expit{/?X* + g{z{C\1))'^P{B,i,1\y, x, c)dBdi<%. 

as the predictive model from BPSA for estimation of P{Y* = \\X*, C*). The quantity 

YPSA is a prediction based on substitution of (f3, £, 7) into the propensity score model 

for the outcome, while YBPSA is the posterior predictive distribution for Y*. The 

estimate YBPSA acknowledges uncertainty in the bin group membership of the future 

patient, while YPSA does not. 

To give a sense of the extent that predictions from BPSA and PSA may differ, 

Figure 5.1 plots YPsA versus YBPSA for the 4572 patients from the original dataset 

of Chapter 4. In other words, we analyze the data using BPSA and PSA, and we 

plot YPSA versus YBPSA based on predictions within the same data. In Figure 5.1, 

we see that there is disagreement between predictions. The estimates YPSA take on 

at most ten different values because patients can be classified into only one of ten 

different treatment-bin combinations. BPSA averages over uncertainty in 7, or rather, 

uncertainty in bin membership. We see that the distribution of YBPSA 

given YPSA is 
highly variable. -

We quantify prediction error using the loss function 

L(Y, Y*) = -{Y* log(y).+ (1 - r*) log(l - Y)], 

where Y is a prediction. This is called the predictive log score [5, 44] because, for a 

sample of data Y i , . . . , YN and predictions Y i , . . . , YN, the quantity — L(Yi, Y*) 

is the log-likelihood for the data calculated from the predictive model. We define 

prediction error as the expected loss E[L(Y,Y*)], where the expectation is with re-
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Figure 5.1: Estimated risks of death in statin data for BPSA compared to PSA. 
{YBPSA versus YPSA) 



spect to variability in both in Y and Y*. Randomness in Y arises from the random 

sampling of both the build data (y, x, c) and X*,C*. 

Because of the way the loss function is defined, small prediction errors are de­

sirable. Predictions with small error have the appealing property that they assign 

high probability to the observed data, irrespective of how those data are generated. 

When comparing predictive models, the model with the smaller prediction error has 

the smaller Kullback-Leibler distance from the true distribution which generated the 

data. For a dichotomous variable Y with density /(y) and a predictive model /(y), 

this distance is given by 

= £?[ io g ( / (y) ) ] -£ ; [ iog( / (y) ) ] . 

The first term does not depend on the choice of predictive model, while the second 

term is equal to the prediction error. This is because 

log{/(F)} = Ylog{/(l)} + (1 - Y) log{l - /(0)}. 

Hence minimizing prediction error gives a predictive model which approximates the 

true distribution of the data. 

We can estimate both E[L(YBPSA, Y*)] and E[L(YPSA,Y*)} for the statin data 

using a variation of 5-fold cross-validation. From the total sample of 9171 patients, 

we randomly select n = 4500 patients without replacement. We analyze the dataset to 

obtain predictive models, and we then evaluate these predictions using the remaining 

E log 
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i. 

4671 patients by calculating 

^ 4671 

4>BPSA = -^^^L(YBpsA,i,Y*) 
i = l 

1 4671 

= "4671 E K * M * W , i) + (1 - Y*) log(l - f B P S A 01 

i = l 

and 

^ 4671 

<t>PSA = -^f[^2L(YpSA,i,Y*) 
i—1 

1 4671 
= - ^ E ^ l o s ( ^ , z ) + ( i - F ; ) i o g ( i - y > 5 A t ) ] , 

i = l 

where the index i is over observations in the test data. The quantities 4>BPSA and 

((>PSA are unbiased estimates of E[L(YBPSA-, Y*)\y, x, c] and E[L(YPSA,Y*)\y, x, c)] 

respectively, where the conditioning is with respect to the build data. Thus 4>BPSA 

and 4>PSA provide "half the story" of predictive performance in the sense that they 

quantify prediction error for specific build data. To fully characterize E[L(YBPSA, Y*)] 

we can repeatedly split the data and examine the sequence of <J)BPSA and 4>PSA over 

the random splittings. 

We do not consider traditional 5-fold cross-validation where the data are split 

into five, parts. In the analysis, of the statin data, we found that the computational 

cost of analyzing four fifths of the 9171 observations for the statin data was high for 

BPSA. The large sample size combined with a fairly inefficient M C M C algorithm, 

which requires individual updating of the components of 7 one at a time over many 

measured covariates, reduced the efficiency of the algorithm. Instead our approach 

was to assess predictive performance using the "random splitting" approach described 

here. 
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Table 5.9: The quantities <J>BPSA and (f)psA from five different random splittings of 
the statin data into build data (n = 4500) and test data (n — 4671). 

&BPSA 4>PSA 

0.40 0.47 
0.38 0.45 
0.39 0.46 
0.39 0.45 
0.39 0.46 

Mean 0.39 0.46 

Table 5.9 presents 4>BPSA and (ppsA for five random splittings of the data. Each 

row in the table corresponds to C^BPSA and 4>PSA for one random splitting. Standard 

errors for the estimates are calculated as the sample standard deviation of the repli­

cates of L(Y,Y*) over subjects in the test data, and they are less than 0.008. For 

each row in the table, 4>BPSA is significantly smaller than 4>PSA- Thus the prediction 

estimates YBPSA calculated by applying BPSA to the build data have smaller predic­

tion error compared to the corresponding estimates calculated from using PSA. The 

improvement in prediction persists across random splittings of the data. 

To shed some insight into the results, we can attempt to confirm these findings 

using simulations. Because of the flexibility of simulation studies, we need not worry 

about correlation in estimated prediction error because of repeated re-analysis of the 

same data. Instead we can simulate a sequence of build datasets, analyze them to 

obtain predictive models, and then estimate prediction error using massive simulated 

test datasets. Furthermore, in simulations the quantity YTRUE = P(Y* = l\X*, C*) = 

expit(/3X* + g(z(C*, 7)'£)) is known exactly because we know 3, £ and 7. We can 
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calculate the quantity 

1 N . 
4>TRUE = ^ L(XTRUE, i,y*) 

i=l 

1 N 

= - ^ D y i * l o e ( ^ ^ , i ) + ( 1 - ^ ) 1 0 ^ 1 - ^ ^ , 0 ] , 
i=l 

where N is the size of a simulated test dataset. The quantity 4>TRUE estimates 

E[L(P(Y* — 1), y*)|y, x, c)] which is the smallest possible prediction error because 

the true model has Kullback-Leibler distance of zero from itself. Thus calculating 

4>TRUE for each build dataset gives a benchmark of the best predictions and quanti­

fies the extent that BPSA improves upon PSA. 

Accordingly, Table 5.10 presents estimates of 4>TRUE, 4>BPSA and (f>psA for sim­

ulated build datasets of sample size n = 1000 under the four simulation designs 

described in Section 5.1. In other words, we generate ten synthetic datasets using 

the propensity score model given in equations (3.1) and (3.2). For each design, a row 

in the table corresponds to one simulated build dataset. We analyze the simulated 

build dataset using PSA and BPSA, and then study the predictive performances by 

calculating the quantities <\>BPSA and (f>psA using large test datasets (n = 40000). 

Standard errors for the quantities are less than 0.001 for Designs #1 and #3, and 

0.003 for Designs #2 and #4.. 

In Table 5.10, 4>BPSA is always less than or equal to (fipsA, irrespective of the 

simulation design or build dataset used to obtain the predictive models. As expected, 

4>TRUE is less than ()>BPSA because BPSA cannot have smaller prediction error than 

the true model. To give an indication of performance across the ten simulated build 

datasets, the bottom row of each table reports the averages across the ten build 

datasets. 
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Table 5.10: The quantities 4>BPSA, <PTRUE and <J>PSA from ten simulated datasets 
generated under Designs #1, #2, #3 or #4. 

Design #1 
't'TRUE 0BPSA 4>PSA 

0.66 0.67 0.68 . 
0.66 0.67 0.68 
0.66 0.67 0.68 
0.66 0.67 0.68 
0.66 0.67 0.68 
0.66 0.67 0.68 
0.66 0.67 0.68 
0.66 0.67 0.67 
0.66 0.67 0.67 
0.66 0.67 0.68 

Mean 0.66 0.67 0.68 

Design #3 
4>TRUE 4>BPSA 4>PSA 

0.67 0.67 . 0.67 
0.67 0.67 0.68 
0.66 0.67 0.68 
0.66 0.67 6.68 
0.67 0.67 0.68 
0.67 0.67 0.68 
0.67 0.67 0.67 
0.66 0.68 0.68 
0.67 0.67 0.68 
0.66 0.67 0.68 
0.67 0.67 0.68 

Mean 

Design #2 Design #4 
<pTRUE 4>BPSA 4>PSA 4>TRUE (pBPSA &PSA 

0.40 0.40 0.50 0.40 0.40 0.42 
0.40 0.42 0.47 0.40 0.41 0.47 
0.40 0.40 0.47 0.39 0.40 0.47 
0.40 0.41 0.51 0.40 0.41 0.49 
0.40 0.41 0.49 0.39 0.40 0.43 
0.41 0.41 0.52 0.40 0.40 0.43 
0.40 0.40 0.49 0.40 0.40 0.46 
0.40, 0.40 0.52 ,0.40 0.40 0.43 
0.39" 0.41 0.45 0.40 0.40 0.45 
0.39 0.40 0.52 0.40 0.40 0.45 
0.40 0.41 0.49 0.40 0.40 0.46 
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From Table 5.10 we see that BPSA predictions strongly outperform PSA under 

Designs #2 and #4. For Designs #1 and #3 we see more modest improvements. This 

fits well with the findings of Section 5.1, where we studied the performance of point 

and interval estimation using the same simulation designs. Design #2 corresponds to 

the case where the components of £ are large in magnitude and heterogeneous while 7 

is small. Thus in model fitting the outcome variable supplies a lot of information about 

the propensity score. PSA is disadvantaged because it does not use this information. 

In Table 5.2, PSA point estimators of £ are badly biased because error in propensity 

score estimation causes study units to be misclassified into propensity score bins. 

Poor estimation of £ and 3 should be expected to yield unreliable predictions for Y 

given X and C. For Designs #1 and #3 we see smaller improvement in the quality 

of predictions for BPSA versus PSA. For these designs, BPSA point estimators for £ 

have only modestly improved mean squared error compared to PSA, so we would not 

expect large improvements in predictive performance. 

To study the sensitivity of these findings across different specifications of the out­

come model, we study predictive performance in synthetic data generated according 

to the regression model of Section 5.2. Table 5.11 presents the quantities ^BPSA, 

4>TRUE and ifipsA from datasets generated according to Designs #1 through #4 from 

Section 5.3. The layout of the table is identical to that of Table 5.10. Standard 

errors are less than 0.002 for Designs #1 and #3, and 0.003 for Designs #2 and #4. 

For each of the simulated datasets, we see a tendency for fa RUE < 4>BPSA < 4>PSA, 

indicating that the model from BPSA yields better predictions than PSA. The dif­

ferences <PBPSA — (/>psA'®ce fairly modest compared to the case where the model for 

the outcome is correctly specified. 

The simulations show that the improvement in predictive performance for BPSA 

relative to PSA is sensitive to correct model specification for the outcome. Comparing 
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Table 5.11: The quantities (^BPSA, 4>TRUE 

generated under Designs #1, #2, #3 or 
of equation (5.1). 

Design #1 
4>TRUE 4>BPSA (f>PSA 
0.61 0.62 0.62 
0.61 0.62 0.62 
0.60 0.61 0.62 
0.61 0.62 0.63 
0.61 0.62 0.62 
0.61 0.61 0.62 
0.61 0.61 0.62 
0.61 0.62 0.62 
0.61 0.62 0.62 
0.60 0.61 0.62 

Mean 0.61 0.62 0.62 

and 4>PSA from ten simulated datasets 
using the conventional regression model 

Design #3 
PTRUE PBPSA (PPSA 

0.61 0.62 0.63 
0.62 0.63 0.63 
0.61 0.62 0.62 
0.62 0.62 0.63 
0.62 0.63 0.63 
0.62 0.62 0.63 
0.62 0.62 0.63 
0.61 0.63 0.63 
0.62 0.63 0.63 
0.61 0.62 0.63 
0.62 0.62 0.63 

Mean 

Design #2 Design #4 
4>TRUE 4>BPSA (f'PSA 4>TRUE 4>BPSA 4>PSA 

0.46 0.47 0.48 . 0.47 0.48 0.48 
0.46 0.47 0.49 0.47 0.48 0.49 
0.46 0.48 0.48 0.47 0.48 0.49 
0.46 0.47 0.48 0.47 0.48 0.49 
0.46 0.47 0.48 0.47 0.48 ' 0.48 
0.46 0.48 0.48 0.46 0.48 0.48 
0.46 0.47 0.48 0.47 0.48 0.49 
0.46 0.48 0.49 0.47 0.49 0.49 
0.46 0.48 0.48 0.47 0.48 0.49 
0.46 0.47 0.48 0.47 0.49 0.50 
0.46 0.47 0.48 0.47 0.48 0.49 
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Design #2 in Tables 5.10 and 5.11, we see sensitivity in predictive performance. In the 

bottom rows of the tables, we report the mean predictive performance when averaged 

across the build datasets. For Table 5.10, comparing BPSA to PSA, we have a mean 

difference of 0.49 - 0.41 = 0.08, whereas in Table 5.11 we have a mean difference of 

only 0.48 - 0.47 = 0.01. Thus correct model specification is important. In fact, when 

we look at prediction in the statin data, the improvement in performance for BPSA 

is better than would be expected from the simulation findings. 

5.4 An investigation of covariate balance 

produced by BPSA versus PSA 

In Chapter 4, we applied BPSA to the statin data and compared the results to those 

obtained with PSA. One of the findings was that PSA produced treatment and control 

groups with similar distributions of measured confounders, whereas BPSA produced 

treatment and control groups that are not particularly similar. PSA appeared to do 

a better job of reducing confounding bias. 

To illustrate, recall Tables 4.4 and 4.6. Such tables are commonly used to assess 

the adequacy of models for the propensity score. They give summary statistics for the 

distribution of the components of C, among treatment and control groups, within bins 

of the estimated propensity scores. As discussed in Section 2.3, stratifying on the true 

propensity score causes C to be identically distributed across treatment groups. The 

reason is because the distribution of X given the propensity score does not depend 

on C. 

Table 4.4 was generated using propensity scores estimates from PSA, and indicates 

that the method effectively reduces much of the confounding due to C. Within each 
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of the bins, the components of C are roughly evenly distributed in treatment and 

control. For example, while age is a strong confounding variable (see Table 1.1), the 

strength of the association between age and statin treatment is largely reduced within 

each of the bins. Table 4.6 presents identical summary statistics, based on propensity 

scores estimated from BPSA. Within most of the propensity score bins, there are 

numerous covariates with distributions that differ in treatment versus control. Thus 

BPSA produces worse covariate balance compared to PSA, and does not appear to 

effectively reduce confounding. 

These findings are surprising in light of the results of Sections 5.1 and 5.2. In 

simulations, point and interval estimates for the propensity scores calculated from 

BPSA perform very favorably compared to PSA when the model for P(Y = l |x,c) 

is correctly specified. The point estimates have smaller variance and MSE. Interval 

estimates have shorter length while retaining roughly nominal coverage probability. 

Based on these results, we might expect that stratifying on propensity scores esti­

mated from BPSA should reduce covariate imbalances in treatment versus control 

and do a better job of reducing confounding compared to PSA. 

In this chapter we explore these apparently contradictory findings by examining 

the lack of covariate balance that arises in using BPSA for control of confounding. We 

analyze synthetic data which closely approximate the statin data, with the following 

two objectives: 

1. To replicate the covariate imbalance that is observed when applying BPSA to 

the statin data. 

2. To determine if poor covariate balance from BPSA may occur simultaneously 

with better estimation of the propensity scores. 

This investigation should shed insight into whether or not it is possible for improved 
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estimation of the propensity scores to result in treatment and control groups which 

are less similar in terms of the distribution of measured confounders. 

Simulation design 

Rather than sampling numerous datasets and studying the operating character­

istics of our methods across datasets, we focus on the analysis of a pair of datasets 

which closely approximate the statin data. This should facilitate drawing a connec­

tion between previous simulations and the data analysis of Chapter 4. Moreover, 

Section 5.1 demonstrates that the improvement of point and interval estimation of 7 

from using BPSA is sufficiently large that it should be detectable without repeated 

sampling of datasets. 

The two datasets of sample size n = 5000, which we denote as Dataset A and 

Dataset B, are generated using the following algorithm: 

1. Generate c as a 5000 x 21 design matrix consisting of a column of ones and 

twenty columns of covariates drawn independently from N(0,1). 

2. Generate y and x as 5000 x 1 response and treatment vectors for the n subjects, 

generated from either: 

• Dataset A: The propensity score model given in equations (3.1) and (3.2), 

with parameters 

B = -0.3, 

e = (1 ,0 , -1 , -2 , -3 ) , 

7' = (-1,-0.1,0.1,-0.1,0.1,. . . ,-0.1,0.1). 
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] 

• Dataset B : The regression models given in equations (5.1) and (3.2), with 

parameters 

r = -0.3, 

p = (-2,-0.2, 0.2,...,-0.2,0.2), 

7 ' = (-1,-0.1,0.1,-0.1,0.1,. . . ,-0.1,0.1). 

The choice of design including sample size, number of covariates and parameter 

values is guided by the analysis results for the statin data. The values of B and £ are 

guided by Tables 4.3 and 4.5. The choice of r and p is guided by Table 4.1, and the 

choice of 7 is guided by Table 4.2. We generate the outcome under different models 

in order reflect the fact that the true model for P(Y = l\x, c) in the statin dataset is 

unknown. 

Results 

To illustrate rough similarity between Datasets A and B and the statin data, 

Figure 5.2 gives plots of the density f(z\X — x) for x = 0,1 and logit[P (Y = l\x, z)] 

for x = 0,1 and z G [0,1] for the pair of datasets. The plots are exactly comparable to 

Figures 4.1 and 4.2, and are produced in the same manner using the true propensity 

scores. Dashed and solid lines correspond to the untreated group and treated group, 

respectively. The plots in Figure 5.2 are fairly similar to those in Figures 4.1 and 4.2. 

The risk of Y within treatment groups is roughly decreasing in Z. This mimics the 

notion that healthy subjects are the most likely to receive treatment. Further, the 

untreated group has a lower distribution of propensity scores than the treated group. 

Thus Datasets A and B roughly approximate the statin data in the sense that they 
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have similar sample size, number of covariates, and dependencies between X, Y and 

C. 

We apply BPSA and PSA to each of the datasets. To investigate the distribution 

of C in treatment versus control when stratifying on competing propensity score 

estimates, we use a descriptive technique given by Imai and Van Dyk [45]. As was 

discussed in Section 2.3, Rosenbaum and Rubin [1] showed that X _LL C\Z because 

the distribution of X given the propensity score is equal to P(X = 1|C, z) = z which 

does not depend on C. This implies that X AL Cj\Z for j = 1,..., 20. Thus the 

following models are correct: 

logit[P(X = l\Cj, Z)\ = fa + OjCj + Wj-logitfZ] for j = 1,..., 20, (5.4) 

where fa — 6j — 0 and uij .= 1 for j = 1,..., 20, 

We can fit these regression models by substituting the propensity scores estimates 

ZBPSA or ZPSA for Z, where 

ZPSA = expit(7'C) 

ZBPSA = J expit(7'C)/(7|y,x, c)d7, 

and /(7|y, x, c) is the posterior distribution for 7. The point estimates for Q\, 62, • • •, #20, 

can be used as diagnostic tools to assess the similarity of the distribution of C 

in treatment versus control. If we fit the models using the true propensity scores 

Z = expit(7'C), then Imai and Van Dyk [45] point out that the resulting z-statistics 

for point estimates of #1, 62, • • •, #20 will be normally distributed with mean zero 

and variance equal to one. This is because the true values of 81, 62,. •., #20 are 

equal to zero since X AL Cj\Z. To elaborate, if we calculate the maximum likeli-
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Figure 5.2: The density f(z\X = x) for x = 0,1 and logit[F(F = l\x, z)] for x = 0,1 
and z G [0,1] for datasets A and B. Solid curves correspond to treated patients and 
dashed curves correspond to untreated patients. 
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hood estimates 61,62,..., 620, and we divide them by their estimated standard errors 

SE\, SE2,..., SE2o, then asymptotically we will have 

- A _ ^ L ~ j V ( 0 , l ) . 
SE\ SE2 SE20 

Conditional on Z, any association between X and Cj is due to chance. We can 

study the distribution of the z-statistics calculated from competing estimates of the 

propensity scores, while using the N(0,1) density as a "benchmark" for comparison. 

Accordingly, we fit the regression models given in equation (5.4) for Datasets A or 

B, and competing propensity scores estimates Z, ZPSA and ZBPSA- In other words, we 

fit a total of 2 x 20 x 3 = 120 regression models, where each regression has a specific 

dataset (Dataset A or B), covariate Cj (j = 1,2,3... 20), and vector of propensity 

scores (Z, ZPSA or ZBPSA)- For each regression, we compute the z-statistic 7 ^ - . We 

then produce normal quantile plots of -j-V, . . . , for Dataset A or B and for 
ohj\ bhj-2 0E20 

Z or ZPSA or ZBPSA-

The results are given in Figure 5.3. The (o) symbols and (A) symbols correspond 

to z-statistics computed from regressing on ZPSA or ZBPSA, respectively. The (+) 

symbols correspond to z-statistics computed from regressing on the true propensity 

score Z. 
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Figure 5.3: Normal quantile plots for the z-statistics . . . , in either Dataset A or B. The symbols o, A and 

+ correspond to regressing on ZPSA, ZBPSA or Z respectively. 

Normal quantiles Normal quantiles 



Figure 5.3 illustrates that adjustment for ZPSA rather than Z produces treat­

ment and control groups that are more similar with respect to C. The circle (o) 

symbols lie right along the horizontal axes for both Datasets A and B. The quanti­

ties , , . . . , ^2Q_ n a v e small variance compared to a sample of size 20 from a 
btj\ bh*2 SEj20 

standard normal distribution. In contrast, when we adjust for Z we obtain the (+) 

symbols which, as expected, lie along the diagonal line indicating rough agreement 

with a standard normal density. Thus in Datasets A and B, stratifying on propensity 

scores estimated from PSA produces better covariate balance than stratifying on the 

true propensity scores. The empirical distributions of the confounders in treatment 

and control are more similar than would be expected if treatment were assigned at 

random. This does not mean that adjusting for ZPSA is a more effective strategy for 

reducing confounding bias in either dataset. Given Z, the distribution of C is identi­

cal in treatment and control, and we cannot have confounding. But PSA appears to 

reduce differences in the empirical distributions of C that arise by chance. 

The balancing properties of stratifying on true versus estimated propensity scores 

are investigated by Rosenbaum and Rubin [3] and by Rubin and Thomas [12, 13]. 

Rubin and Thomas [12, 13] study matched sampling in observational studies when 

matching on Z versus ZpsA- They derive analytic approximations of the variance 

of the difference of the sample means in the matching variables for treatment versus 

control in the case where C is multivariate normal. They demonstrate that matching 

on ZPSA can reduce the variance of the difference of the sample means by a factor of 

one half compared to matching on Z. 

Figure 5.3 illustrates that regression adjustment for ZBPSA produces greater dif­

ferences in the distribution of C in treatment versus control compared to adjustment 

for ZPSA- The (A) symbols are much more variable than the (o) symbols. However, 

adjustment for ZBPSA does not appear to be any worse than adjustment for Z. In 
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Datasets A and B, the variation of the (A) symbols is not greater than that of the 

(+) symbols. 

We now investigate the quality of the propensity score estimates from applying 

BPSA or PSA to the data. Recall that the parameter 7 = (70,71, • • • ,720) models 

the propensity scores because it indexes the regression model 

logit[P(X = l|c)] = 7 ' c 

= 7o + 7iCi + 72C2 + • • • + 72oC2o-

Thus in Datasets A and B, the true propensity score for a subject with covariate vector 

C is equal to Z = expit(70+71 C\ +72C2 + . • -+72oC2o)- Figure 5.4 plots histograms of 

the quantities (7*, — 7fc) for /c = 0 ,1 , . . . , 20 where the jk are point estimates obtained 

from BPSA or PSA applied to either Datasets A, or B. For example, the top left 

figure has the heading "PSA applied to Dataset A " . This means that we apply PSA 

to Dataset A, obtain point estimates of 71,72,. . . , 720 denoted 71,72, • • •, 720, calculate 

the quantities (jk — Ik) for k = 0 ,1 , . . . , 20, and make a histogram of the result. If 

the histograms have small variance and are centered at zero, then this indicates that 

the quantities are high quality estimates of 7 .̂ The histogram does not give us 

information about bias or efficiency because they are generated from the analysis of 

a single dataset. 

As expected, Figure 5.4 illustrates that in the Dataset A, BPSA provides better 

estimates of 7 compared to PSA. The histogram is visibly concentrated near zero 

because the point estimates of the components of 7 have small MSE compared to 

PSA. This fits well with the simulation results of Section 5.1 which indicate that 

BPSA performs favorably when the model for P(Y = l\x, c) is correct. In Dataset B, 

the model for P(Y — l\x, c) is misspecified, and Figure 5.4 indicates that BPSA point 
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Figure 5.4: Histograms of (jk — jk) for k = 0 ,1 , . . . , 20 based on either BPSA of PSA 
analyses of either Dataset A or B. 
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estimates do not appear to have any clear advantage over PSA. The variances of the 

histograms are roughly the same for both methods. This is also expected because the 

simulations in Section 5.2 illustrate that misspecification of P(Y = l |x,c) adversely 

affects the performance of estimates of 7. 

We can also study the quality of the propensity score estimates by estimating 

prediction error for treatment. Let (X*, C*) denote the data for a study unit drawn 

from the density function /(a;*|c*)/(c*), which is the same for Datasets A and B. We 

can study the performance of competing estimates for P(X* = 1|C*). Two estimates 

are the quantities 

Z P S A = expit(7'C*) 

ZBPSA = J expit(YC*)/(7|y,x,c)d7, 

which are the estimated propensity scores for (X*,C*) calculated from the dataset 

used to build the predictive model for treatment. We study performance using the 

quantities 

1 N 

4>BPSA = Jj L(ZBPSA, H X i ) 

i=\ 

1 N 

$PSA = —y^L(Z*PSAI,X*) 

1=1 

1 N 

4>TRUE = —^2L(ZI}X*), 
1=1 

where L(Z,X*) is the predictive log score defined in Section 5.3, and indexing over i 

denotes observations in a test dataset of sample size N. 

Table 5.12 gives the values of 4>BPSAI 4>PSA and 4>TRUE calculated from the pre­

dictive models obtained by analyzing Datasets A and B. For Dataset A, the quantity 
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Table 5.12: The quantities (f>BPSA,<t>PSA
 a n d 4>TRVE based on predictive models for 

treatment calculated from Datasets A or B. 

Dataset 4>BPSA (f>PSA 

A 0.572 0.574 0.572 
B 0.574 0.574 0.572 

SE's < 0.001 

<I>BPSA is less than 4>PSA- This implies that propensity scores estimates calculated 

from BPSA predict treatment assignment of future observations with smaller error 

than PSA. This is consistent with the results of Figure 5.3, and also the simulation 

results. In contrast, for Dataset B we see no improvement in prediction of treatment 

for BPSA compared to PSA. 

Discussion 

The motivation, for this section was to understand the seemingly contradictory 

results of Chapter 4 and 5. The simulations of Section 5.1 and 5.2, indicate that BPSA 

propensity score estimates perform favorably compared to PSA. We would expect 

that adjustment for propensity scores estimated from BPSA should be an effective 

approach to reducing confounding bias. But in Chapter 4, we applied BPSA the statin 

data and observed that the treatment and control groups differed systematically with 

respect to important outcome risk factors. 

The results of this investigation demonstrate that better estimation of the propen1 

sity scores does not imply better covariate balance between treatment versus control 

groups. When we fit the regression models in equation (5.4), adjustment for ZPSA 

rather than Z produces a greater level of similarity in the distribution of C in treat-
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merit versus control. Conditional on Z , X and C are independent, but the empirical 

distributions of C given X will differ from one dataset to the next- In contrast, 

stratifying on ZPSA reduces differences in the empirical distributions that emerge by 

chance. A detailed discussion of this characteristic of PSA is given by Rubin and 

Thomas [12, 13]. 

Intuitively, BPSA may yield results which are a compromise between regression 

adjustment for ZPSA versus adjustment for Z. The quantities Z B P S A are the better 

estimates of Z. But in Datasets A and B, we appear to pay a price in terms of 

worse comparability in the distribution of C in treatment versus control. This may 

shed some light into the apparently poor performance of BPSA when applied to the 

statin data. The imbalances in Table 4.6 may be a consequence of better estimation 

of the propensity scores. To fully address this question, it would be useful to study 

the quality of the propensity score estimates in the statin data, perhaps using the 

cross-validation approach outlined above. Furthermore, the results of this section may 

shed light into why BPSA point estimates of 3 are less efficient in the simulations of 

Section 5.1 and 5.2 than those of PSA. 
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Chapter 6 

Conclusion 

6.1 Summary 

We have proposed an approach for combining propensity score methods with Bayesian 

inference for control of confounding bias in observational studies with a dichotomous 

outcome, dichotomous treatment, and measured confounders. The method models 

the propensity score as a latent variable and uses Bayes theorem to integrate the 

latent variable out of the posterior distribution for model parameters. This estimation 

strategy is common in data analysis applications with missing data or latent structure. 

We model the joint distribution for the data,' parameters and latent quantity, and we 

then study the marginal posterior distribution for model parameters. For BPSA, 

the posterior distribution for the treatment effect incorporates uncertainty about the 

propensity scores for each subject. In simulations and. in the analysis of the statin 

data, we demonstrate that BPSA yields interval estimates for the treatment effect 

parameter which are longer on average compared to PSA. This is a consequence of 

propagating uncertainty in the propensity scores through the analysis. 

Intuition says that BPSA and PSA should give similar answers. The methods 

use the same models. Asymptotically, uncertainty in the propensity scores should 

be small. Nonetheless, PSA is a two step procedure. It involves first estimating 

propensity scores and then including the estimates as a covariate in a regression model 

for the outcome. BPSA does both steps simultaneously. The method exploits prior 
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information about the relationship between the outcome and propensity score within 

treatment groups. The M C M C computational scheme involves iteratively updating 

the propensity scores and then fitting a complete data step from the results. During 

the updating, the algorithm is likely to yield propensity score estimates which cluster 

patients into groupings based on the outcome risk. The conditional distribution for 

the 7 parameter, given the data and (/?,£), contains a contribution from the model 

for the outcome variable. As we learn about £ and /?, information flows back through 

the algorithm to affect estimation of 7. The outcome variable is ignored by PSA 

when estimating the propensity scores. To put it another way, PSA estimates 7 from 

the marginal density f(x\c) whereas BPSA uses the joint model for f(y,x\c). The 

methods use the same models, but handle information in different ways. 

We demonstrate BPSA in an observational study of the effectiveness of statin 

therapy in Ontario patients discharged alive from hospital following acute myocardial 

infarction. Austin and Mamdani previously used this dataset to conduct a detailed 

case-study of propensity score methods [2]. We apply BPSA and compare the results 

to PSA. While treatment effect estimates are similar, we see large differences in point 

and interval estimates of £. Further examination reveals that the differences can 

be attributed to differences in the characteristics of patients classified to propensity 

score bins for either method. Patients with high propensity scores are healthier.in 

general because physicians are known to prescribe statins to patients who are young 

with fewer comorbidities [19, 20]. When we apply BPSA, study subjects in the upper 

bins with high propensity score have low prevalences of mortality risk factors. We 

see the reverse effect in lower propensity score bins. BPSA aggregates subjects into 

bins depending on how sick they are, whereas PSA only considers the relationship 

between the treatment variable and confounders. 

In the Monte Carlo simulations of Chapter 5, we demonstrate that BPSA may 
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yield more efficient estimates of 7 and therefore the propensity scores. When the 

model for the outcome variable follows equation (3.1), BPSA point estimates are 

more efficient relative to PSA and have lower mean squared error. Interval estimates 

for 7 have shorter average length and retain roughly nominal coverage probability. 

Point and interval estimates of £ calculated from BPSA also appear to have better 

performance. Improved estimation of 7 may allow more accurate classification of 

study subjects into propensity score bins, improving estimation of £. 

While BPSA and PSA use the same models, BPSA makes stronger assumptions 

in some sense. We might expect BPSA to be less robust to modelling assumptions for 

for P(Y — l\x,c). We study this issue in Section 5.2. Synthetic data are simulated 

for the case when the distribution of the outcome variable follows a conventional 

regression model of Y on X and C given in equation (5.1). We show that in this case 

the performance advantage of BPSA breaks down. Point and interval estimates of 7 

and £ have fairly severe bias, and this increases MSE and harms interval estimation. 

Furthermore, stratifying on propensity score bins estimated from BPSA appears to 

produce treatment and control groups which are not particularly comparable. For the 

PSA methodology, it is standard practice to assess the quality of the propensity score 

model by looking for systematic differences in the covariate distributions for treatment 

versus control within each of the bins. In the statin data, PSA eliminates much of the 

confounding bias, whereas BPSA produces treatment and control groups which are 

not particularly comparable. This suggests that the BPSA method does not effectively 

reduce confounding in the statin data example. These findings are surprising in light 

of the simulations of Section 5.1 and 5.2. To explore this phenomenon further, Section 

5.4 conducts a detailed analysis of two synthetic datasets which closely approximate 

the statin data in terms of sample size, covariates, and underlying parameter values. 

We show that BPSA may yield better estimation of the propensity scores which occurs 
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simultaneously with greater dissimilarity in the covariate distributions for treatment 

and control. The poor comparability observed in Table 4.6 for the statin data may 

be a consequence of better estimation of the propensity scores. 

6.2 Future Research 

Implementing BPSA using the MCEM algorithm. 

There is nothing inherently Bayesian about fitting regression models for P(Y • — 

l\x, c) and P(X = 11c) simultaneously. In principle, it should be possible to use other, 

methods of estimation, such as maximum likelihood. An advantage is that thiswould 

yield likelihood-based estimates which might have similar performance to estimates 

computed from BPSA. In this thesis, we consider the case where the likelihood for 

the data is given by 

L(/U|y,x,c) = £[/(y|x,c,/U ,7)/(x|c ,7)] 

= J /(y|x,c,/?,f,7)/(x|c,7)/(7)d7, 

The quantity f(j) is a prior distribution for 7. This expression states that the likeli­

hood is equal to the likelihood given the propensity score, averaged over uncertainty 

in propensity score. Because the density /(y|x, c, /?, £, 7) depends on 7 only via 

the linear predictor g(C,7), given in equation (3.1), this amounts to saying that 

L([3, £|y, x, c) is the average of the likelihoods when we account for uncertainty in the 

propensity score bin classification for the study units. 

To maximize this likelihood with respect to 8 and £, we can use the Monte Carlo 

.Expectation Maximization (MCEM) algorithm [46]. The algorithm permits us to 
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maximize L(/3, £|y, x, c) while only working with the quantity /(y|x, c, /?, £, 7), often 

called the complete data likelihood, and the conditional probability density function 

/ (7|y,x,c,/U) = 
/(y|x,c,/U, 7 )/(x|c, 7)7(7) 

£(/3,§|y,x,c) 

In motivating the M C E M algorithm, Wei and Tanner [47] note that for fixed B^> and 

we can write 

logL(8, £|y, x, c) = £[log /(y|x, c, 8, £, 7)/(x|c, 7)] - £[log /( 7 |y, x, c, B, £)], 

where the expectations are with respect to /(7|y, x, c, B^\ £ ^ ) . To maximize 

logL(/3,£|y,x,c), we need only consider the first term on the RHS of the above 

equation. We use the following algorithm: 

1. Initialize B^ and 

2. For t = 1,2,..., 

• Expectation Step (E-step): 

The theoretical details are given by Wei and Tanner [47] who show that the sequence 

(6^,^), (B^2\^),... converges to the maximum likelihood estimator. 

The M C E M algorithm has close parallels to the Metropolis Hastings algorithm 

detailed in Section 3.2 for posterior simulation for BPSA. The E-step imputes the 

missing data, in this case, the propensity scores for study units which are modelled by 

the parameter 7. The M-step maximizes the resulting mixture of likelihood functions. 

Draw 7 ^ 7 ( t ,2) ; . . . ; ^(t,M) f r o m / ( 7 | V ) x > C ) / 5 ( t - 1 ) , £ ( t - 1 ) ) . 

• Maximization Step (M-step): 
M 

J > g / ( y | x , c , / U , 7 ( M ) ) . 
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This is conceptually similar to sampling for the posterior distribution of Q and £ given 

the data and 7. When implementing the M C E M algorithm, we cannot draw from the 

conditional density /(7|y,x, c,(3^~l\^t~1^) directly because it is of unknown form. 

But we can sample from it using the Metropolis Hastings algorithm. Moreover, we 

have already identified suitable proposal distributions in Section 3.3. 

We can compute standard errors for the resulting estimates of B and £ using the 

approach of Oakes [48]. The variance of the maximum likelihood estimator for 

is approximated by ^ | 2 ^ 2 log L(B, £|y, x, c), and we can write 

82 

logL(/U|y,x,c) = E 
d2 

Var 

3 ( / U ) 2 

d 
W O 

logL(/?,£|y,x,c,7) + 

log£(/3,£|y,x,c,7) 

This yields expression for computing standard errors. 

E 
d2 

Var 

d{6,02 

d 

L(/?,f|y,x,c,7) 

logL(/3,f|y,x,c I7) 

1 M 

= - Y 
M ^ 

d2 

M^d(P,0'' 
log/(y|x,c , /? ,£ ,7 ( M ) ) 

d 1 M 

i = l 

- - Y 
M f^i W 0 

l og/(y|x,c ,A£ ,7 ( M ) ) 

d 
/ ( y | x , c , A £ , 7 ( M , ) ) 

The quantities (3 and £ are the maximum likelihood estimators, and the first and 

second derivatives of /(y|x, c, [3, £, 7) are obtained from the standard output from 

logistic regression of y on x and z as determined by the choice of 7. The expression 

for the large sample variance has a similar form to the variance decomposition given 

in equation (4.2) from Section 4.4. 

Further study of the BPSA method could involve a detailed investigation of max-
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imum likelihood estimators for 3 and £ computed using the M C E M algorithm. We 

could compare such estimates to those from PSA in much the same manner as the 

investigations of Sections 5.1 and 5.2. Because we have already studied computational 

algorithms for BPSA, little work would be needed to implement the M C E M algorithm. 

BPSA for hierarchically structured data 

The BPSA method has the advantage that it allows for the incorporation of stan­

dard Bayesian machinery in data analysis settings using propensity scores. We can 

use flexible modelling strategies, such as hierarchical models based on exchangeability 

assumptions, or incorporation of prior information from expert opinion or external 

validation data. BPSA also permits the use of Markov chain Monte Carlo methods for 

computing'point and interval estimates. This gives inferences which do not depend 

on asymptotic approximations, as is the case for PSA. 

One extension for BPSA would be to apply it in settings involving hierarchically 

structured data. Propensity score methods have generally been developed in settings 

involving cross-sectional data with individual-level covariates. However, epidemiolog­

ical data often have a hierarchical structure. In the statin data example, prescribing 

practices might be driven by hospital-level covariates. For example, teaching hospitals 

may provide different quality services than hospitals in rural areas. Study subjects 

from the same hospital may have treatment levels which are correlated. 

Suppose that r is a m x 1 vector of dummy variables indicating hospital member­

ship for each study unit. We could model the propensity scores as 

logit[P(X = l|c, r)] = ic + TV. 
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where the parameter r models the hospital effects. Since the components of r are 

likely to be similar, particularly if m is large, we could model them hierarchically 

Tl,T2,...,Tm ~ iV(0,CT 2), 

where a2 is a hyperparameter. If hospital level covariates are available, then they can 

be incorporated into modelling variability in r. 

Sampling from the posterior distribution /(/?, £, 7, r|y, x, c) is an extension of the 

M C M C algorithm of Section 3.1. To fit the models 

logit[P(y = l|x,c)] = Bx + g(z(cn))'Z 

logit[P(A" = l|c)] = 7'c + r V 

r ~ N(0,a2I), 

with suitable prior distributions for /3, £, 7 and r, we update sequentially from the 

conditional densities 

/(/?,f|y.x,c,7,r) 

/(7|y,x,c,/3,£,r) 

/My ,x,c,/?,f ,7) 

The first conditional density does not depend on r and is just the posterior step from 

the M C M C algorithm of Section 3.1. The second conditional distribution is identical 

to the imputation step of Section 3.1, but uses a N(0,T2) prior for 7 rather than a 

diffuse Gaussian prior. The final conditional distribution is conditionally conjugate 

under an inverse gamma prior for the hyperparameter a2. 
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In summary, BPSA seems to be a sensible alternative to PSA for reducing con­

founding in observational studies. While BPSA assumes more than PSA in estimating 

propensity scores, the method is merely exploiting the modelling assumptions that 

are built into PSA when selecting a linear predictor g(.) for modelling the outcome 

variable. PSA has the advantage that inferences may be more robust to model mis-

specification. But in many applications, this estimation strategy may be overly pes­

simistic in the sense that prior information is available. Furthermore, PSA implicitly 

uses modelling assumptions for the outcome when computing parameter estimates 

and standard errors. Our investigation helps to shed light on validity and relevance 

of modelling assumptions that underlie propensity score methods. 

120 



Bibliography 

[1] P.R. Rosenbaum and D.B. Rubin. The central role of the propensity score in 

observational studies for causal effects. Biometrika, 70:41-57, 1983. 

[2] P.C. Austin and M . M . Mamdani. A comparison of propensity score methods: 

A case-study estimating the effectiveness of post-AMI statin use. Stat Med, 

25:2084-106,' 2005: 

[3] P.R. Rosenbaum and D.B. Rubin. Reducing bias in observational studies using 

subclassification on the propensity score. J Am Stat Assoc, 79:516-24, 1984. 

[4] J.K. Lunceford and M . Davidian. Stratification and weighting via the propensity 

score in estimation of causal treatment effects: A comparative study. Stat Med, 

23:2937-60, 2004. 
i 

[5] J.A. Hoeting, D. Madigan, A .E . Raftery, and C T . Volinsky. Bayesian model 

averaging: A tutorial. Statist Sci, 14:382-417, 1999. 

[6] K. Hirano and G.W. Imbens. The propensity score with continuous treatments. 

In. Applied Bayesian Modeling and Causal Inference from Incomplete-Data Per­

spectives, pages Ed. A. Gelman and X . Meng, New York, Wiley. (2004), 71-84. 

[7] D.B. Rubin. Estimating causal effects from large datasets using propensity scores. 

Ann Intern Med, 15:757-63, 1997. 

121 



[8] J. Hahn. On the role of the propensity score for efficient estimation of the average 

treatment effects. Econometrika, 66:315-31, 1998. 

[9] J .M. Robins and Newey W.K. Estimation of exposure effects by modelling the 

expectation of exposure conditional on confounders. Biometrics, 48:479-95, 1992. 

[10] P.R. Rosenbaum. Model-based direct adjustment. J Am Stat Assoc, 82:387-94, 

1987. 

[11] K. Hirano, G.W. Imbens, and G. Ridder. Efficient, estimation of average treat­

ment effects using the estimated propensity score. Econometrika, 71:1161-89, 

2003. • 

[12] D.B. Rubin and N. Thomas. Matching using estimated propensity scores: Re­

lating theory to practice. Biometrics, 52(l):249-264, 1996. 

[13] D.B. Rubin and N. Thomas. Characterizing the effect of matching using linear 

propensity score methods with normal distributions. Biometrika, 79:797-809, 

1992. 

[14] D.B. Rubin. The use of propensity scores in applied Bayesian inference. Bayesian 

Statistics, 2:463-72, 1985. 

[15] J .M. Robins and Y. Ritov. Toward a curse of dimensionality appropriate (CODA) 

asymptotic theory for semi-parametric models. Stat Med, 16:285-318, 1997. 

[16] J.C. LaRosa, J. He, and S. Vupputuri. Effect of statins on risk of coronary 

disease: A meta-analysis of randomized controlled trials. J Am Med Assoc, 

282:2340-2346, 1999. 

122 



[17] H.D. Aronow, E.J. Topol, M.T. Roe, and et al. Effect of lipid-lowering therapy on 

early mortality after acute coronary syndromes: An observational study. Lancet, 

357:1063-68, 2001. 

[18] U. Stenestrand and L. Wallentin. Early statin treatment following acute my­

ocardial infarction and 1-year survival. J Am Med Assoc, 285:430-36, 2001. 

[19] D.T. Ko, M . Mamdani, and D.A. Alter. Lipid-lowering therapy with statins 

in high-risk elderly patients: The treatment-risk paradox. J Am Med Assoc, 

291:1864-70, 2004. 

[20] R.J. Glynn, E.L. Knight, R. Levin, and J. Avorn. Paradoxical relations of drug 

treatment with mortality in older persons. Epidemiol, 12:682-689, 2001. 

[21] PvJ. Rothman and S. Greenland. Modern Epidemiology, 2nd ed. Lippincott, 

Philadelphia, 1998. 

[22] J. Pearl. Causality, models reasoning and inference. Cambridge University Press, 

New York, 1999. 

[23] S. Greenland, J. Pearl, and J .M. Robins. Confounding and collapsibility in causal 

inference. Statist Sci, 14:29-46, 1999. 

[24] M.A. Hernan, S. Hernandez-Diaz, M . M . Werler, and Mitchell A .A . Causal knowl­

edge as a prerequisite for confounding evaluation: An application to birth defects 

epidemiology. Am J Epidemiol, 155:176-84, 2002. 

[25] D.B. Rubin. Practical implications of modes of statistical inference for causal 

effects and the critical role of the assignment mechanism. Biometrics, 47:1213-34, 

1991. 

123 



[26] L. Wasserman. All of Statistics. Springer, New York, 2004. -

[27] Rosenbaum PR. Propensity score. In. Encyclopedia of Bio statistics, pages Ed. 

P. Armitage and T. Colton, vol. 5. New York, Wiley. (1998), 3551-3555. 

[28] P.C. Austin and G.M. Normand, S.T.and Anderson. Conditioning on the propen­

sity score can result in biased estimation of common measures of treatment effect: 

A Monte Carlo study. Stat Med, 26:754-68, 2006. 

[29] P.C. Austin. The performance of different propensity score methods for estimat­

ing marginal odds ratios. Stat Med, 26:3078-94, 2006. 

[30] T. Stumer, K . J . Rothman, and R.J. Glynn. Insights into different results from 

different causal contrasts in the presence of effect-measure modification. Phar-

macoepidemiol Drug Saf 15:698-709, 2006. 

[31] T. Kurth, A . M . Walker, R.J. Glynn, K . A . Chan, J .M. Gaziano, K. Berger, and 

J .M. Robins. Results of multivariable logistic regression, propensity match­

ing, propensity adjustment, and propensity-based weighting under conditions 

of nonuniform effect. Am J Epidemiol, 163:262-270, 2006. 

[32] M.H. Gail, S. Wieand, and S. Piantadosi. Biased estimates of treatment effect 

in randomized experiments with nonlinear regressions and omitted covariates. 

Biometrika, 71:431-44, 1984. 

[33] T. Stumer, S. Schneeweiss, M.A. Brookhart, K . J . Rothman, J. Avorn, and R.J. 

Glynn. Analytic strategies to adjust confounding using exposure propensity 

scores and disease risk scores: Nonsteroidal anti-inflammatory drugs and short-

term mortality in the elderly. Am J Epidemiol, 161:891-9, 2005. 

124 



[34] M.S. Cepeda, J.T. Boston, R.and Farrar, and B.L. Strom. Comparison of logistic 

regression versus propensity score when the number of events is low and there 

are multiple confounders. Am J Epidemiol, 158:280-7, 2003. 

[35] C. Drake. Effects of misspecification of the propensity score on estimators of 

treatment effect. Biometrics, 49:1231-1236, 1993. 

[36] D.B. Rubin and R.P. Waterman. Estimating the causal effects of marketing 

interventions using propensity score methodology. Stat Sci, 21:206-222, 2006. 

[37] H. Zheng and R.J.A. Little. Penalized spline model-based estimation of the 

finite populations total from probability-proportional-to-size samples. J Off Stat, 

19:99-107, 2003. 

[38] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis, 

2nd edition. Chapman Hall /CRC, New York, 2004. 

[39] R Development Core Team. R: A language and environment for statistical com­

puting. R Foundation for Statistical Computing:Vienna, 2004. ISBN 3-900051-

00-3. URL http://www.R-project.org. 

[40] A. Gelman and D.B. Rubin. Inference from iterative simulation using multiple 

sequences. Stat Sci, 7:457-511, 1992. 

[41] R.J.A. Little. To model or not to model? Competing modes of inference for 

finite population sampling. J Am Stat Assoc, 99:546-56, 2004. 

[42] P. Gustafson and B. Clarke. Decomposing posterior variance. J Stat Plan Infer­

ence, 119:311-27, 2004. 

125 

http://www.R-project.org


[43] P.C. Austin, P. Grootendorst, and G.M. Anderson. A comparison of the ability of 

different propensity score models to balance measured variables between treated 

and untreated subjects: a Monte Carlo study. Stat Med, 2006. 

[44] B. Efron and G. Gong. A leisurely look at the bootstrap, the jackknife, and 

cross-validation. Am Stat, 37(l):36-48, 1983. 

[45] K. Imai and D.A. van Dyk. Causal inference with general treatment regimes: 

Generalizing the propensity score. J Am Stat Assoc, 99:854-866, 2004. 

[46] C P . Robert and G. Casella. Monte Carlo Statistical Methods. Springer, New 

York, 2004. 

[47] G.C.G. Wei and M.A. Tanner. A Monte Carlo implementation of the E M al­

gorithm and the poor man's data augmentation algorithms. J Am Stat Assoc, 

85:699-704, 1990. 

[48] D. Oakes. Direct calculation of the information matrix via the E M algorithm. J 

R Stat Soc Ser B, 61:479-482, 1999. 

126 



Appendix A 

Computing the limiting estimates 

for PSA. 

In Section 5.2, we apply PSA to synthetic datasets where P(Y = l\x,c) follows the 

model given in equation (5.1). The PSA method estimates the quantities (3* and £* 

which solve the estimating equation 

n(9) = E{R[Y - expit(#0)]} = 0, 

where R is a 6 x 1 vector with the first component equal to X, and the last five 

components equal to g(z(C,7)) and where 6* — [ / ? * , £ * , £ £ , £ 3 , £ 4 , £ 5 ] . For PSA we 

have 7* equal to 7, the true values used to generate the data. 

We outline a method for calculating the quantity 6* numerically for a given sim­

ulation design. We may write 

£2(0*) = E{R[Y -expit(R'9*)}} 

= E{R[E[Y\R] -expit(#(?*)]} 

= ^ r ^ t y l r l - e x p i t ^ * ) ] / ^ ) 
r 

= 0 

where r is a realization of R and the summation is over the support of R. The 
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quantity f(r) is the probability density function of R. 

Because R is a discrete random variable, we can calculate the quantities £?[Y|r] 

and /(r) numerically by Monte Carlo. To illustrate, consider the realization r = 

[1,1,0,0,1,0], meaning that we have X = 1 and g(z(C,j)) = [1,0,0,1,0]. To calcu­

late E[Y\r] and /(r), 

1. Draw a large sample of vectors C from the simulation design. 

2. Retain the observations such that g(z(j,c))'. = [1,0,0,1,0], and denote this 

sample as ci, Cir... ,cn. 

3. Compute ^ 

1 " 
E[Y\r] = - ] P expit(r x 1 + c » 

/>) = P(x = l\g(z(C, 7 ) ) = [1,0,0,1,0]) x 

p[g(z(C,1)) = [1,0,0,1,0]) 

1 n 1 
= -y^expit(c^7) x - . 

i = i 

where r, p and 7 are the true parameter values from the simulation design of 

interest. 

Here we have p(g(z(C,j)) = [1,0,0,1,0]) = | because of the way the data are 

simulated. Replicates of C have 20% probability of lying in any specific propensity 

score bin. 

Having computed i5[Y"|r] and /(r), we can find the solution to the equation 

Cl(9*) = 0 using the Newton Raphson method. The derivative of f2(0*) is given 
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by 

J-Q(0*) = E[rexpit(r 'r)][rexpit(-r 'r)]7(r), 
I . r ) 

where the summation is over the support of R. Thus we can calculate the 6 x 1 vector 

£2(0*) and 6 x 6 matrix ^£2(0*) as a function of 0*. To solve £2(0*) = 0, we apply 

the following algorithm: 

1. Initialize 0*, for example with 0* = [0,0,0,0,0,0]. 

2. Set inc<- [1,1,1,1,1,1] 

3. While Max{|mci|, \inc2\, |mc 3 |, |mc 4 |, |mc 5 |, |mc6|} > 10 - 5 { 

Set inc^- £2(0*) [^£2(0*)] ~* 

Set 0* <- 0* + inc 

} 

4. Return 0* 
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