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ABSTRACT

The growing interest for cellular technolbgy has motivated operators to provide a
wide variety of services from conventional circuit-switched voice to packet-switched data
and multimedia applications. Providing these services anytime and anywhere is challenging
due to not only frequent status changes in network connectivity, but also limited resources
such as bandwidth. Different priorities are assigned to services to satisfy diverse QoS
requirements. Call admission control schemes have been proposed to manage resources by
selectively limiting the number of admitted calls to ensure that QoS measures such as call
blocking/dropping probabilities stay within acceptable limits. Exact analysis methods based
on multidimensional Markov chain models are used to evaluate performance of these
schemes, yet they suffer from curse of dimensionality that results in very high computational
cost. Large sets of equations are avoided using approximation methods based on one
dimensional Markov chéin models assuming that channel occupancy times are exponentially
distributed with equal mean values and all calls require equal capacities. Existing
approximation methods lead to significant discrepancies when average channel occupancy
times differ. We propose a novel performance evaluation approximation method, effective
holding time, with low computational complexity to relax this assumption.

In multi-service networks, voice is accompanied by data and multimedia applications
that require distinct capacities. When capacity requirements differ, existing approximation
methods based on one dimensional Markov chain models become inaccurate if not obsolete.

We propose a computationally efficient approximation method, state space decomposition, to

relax this assumption. Numerical results show that the proposed method provide highly




accurate results that match well with exact solutions.

Traffic statistics are essential to understand the distribution of idle periods of voice
channels to overlay packet-switched services on circuit-switched technology and to feed
simulations with realistic data. Call holding and channel occupancy times are key elements
for computing performanche metrics such as call blocking/dropping probabilities. We present
an empirical approach to determine the distribution of call holding and channel oécuf)ancy
times. We show that lognormal distribution is the closest fitted candidate to approximate
channel occupancy times and call holding times for stationary/mobile users along with the

number of handoffs committed by a user.
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CHAPTER 1 INTRODUCTION

Cellular network technology is one of the fastest growing ways of mobile
communications today. The bounds of an existing communication network infrastructure
have been extended by cellular technology via connecting mobile units to public network
operated by the local exchange or long distance carriers to make special features and
functions specific to both cellular and public networks available to all users. Global standards
have been developed to provide voice and data services anytime and anywhere regardless of
user mobility while satisfying their diverse Quality of Service (QoS) requirements. Radio
resources such as bandwidth, transmit power, channel codes and base stations are generally
limited in cellular networks due to physical and regulatory restrictions as well as the
interference-limited nature of the cellular structure. Efficient management of these resources
is not only crucial to the efficiency of system operation and congestion prevention, but it is
also very important to satisfy the QoS requirements of user applications. Services with
specific data rate, bandwidth, power and latency requirements need specific amount of
system resources to be allocated at the time of call admission to ensure that these
requirements are attained and sustained during communication. Significant challenges
confronted by cellular networks due to frequent status changes in connectivity and highly
variable noisy communication channels can be overcome by QoS provisioning which has
become one of the most demanding problems.

Resource management requires more sophisticated techniques in a mobile
environment than those used in fixed systems since a blind spot may be reached where QoS
is severely limited due to a weak signal or a loss of communication may occur during a
handoff when the new point of attachment may not be able to provide resources similar to the
old one. Nevertheless, the problem of maintaining service continuity for users’ applications ‘
during handoffs has been intensified with the increasing number of microcells and picocells
in cellular networks. Call admission control (CAC) schemes have been developed to manage
scarce radio resources to maximize network utilization by selectively limiting the number of

admitted calls. Probabilities of call blocking and dropping are two important QoS measures




used when evaluating performance of call admission control schemes. Call blocking occurs
when a cellular network is unable to assign network resources to enable a call initiated in a
cell, whereas call dropping occurs when a cellular network is unable to assign network
resources to enable a call handed off from a neighboring cell. Sufficient network resources
shall be provided to ensure that call blocking and dropping probabilities stay within
acceptable limits for user applications. A higher priority is normally assigned to handoff calls
over the new ones to minimize call dropping probability since dropping an on-going call is
generally more objectionable to a user than blocking a new call request. However reducing
blocking probabilities of calls with higher priorities increases the probability of blocking for
calls with relatively lower priorities resulting in a trade off between both types of calls.
Therefore the goal is to sustain a balance between calls of different priorities while satisfying
the respective QoS requirements.

Call admission control has been intensively studied in the past [1][2] and many
priority-based CAC schemes have been proposed [3]-[18]. One dimensional Markov chain
models are commonly used to evaluate these schemes (e.g., [6] [7] [15]) assuming that call
requests that originate from different types of users are independently Poisson distributed,
channel occupancy times for each call are exponentially distributed with equal mean values
and each call requires an equal channel capacity. Yet these assumptions may not be
appropriate since calls with different priorities, such as new and handoff, may have different
average channel occupancy times if not different distributions as shown in [19], [20] and
references therein. Existing performance evaluation approximation methods based on one
dimensional Markov chain modeling lead to significant discrepancies when average channel
occupancy times for different call types are not equal [21]. Gersht and Lee proposed an
iterative algorithm in [22] by modifying the approximation suggested by Roberts in [23] to
improve its accuracy when service rates differ. However the algorithm is only accurate when
appropriate initial values are chosen and therefore may not be competent [21]. Li and Chao
obtained a product form solution in [24] by modeling a multicell network as a network of
queues employing a hybrid guard channel/queuing priority scheme with transfer of
unsuccessful requests to neighboring cells. Their solution is restrictive to the protocol

considered and therefore may not be appropriate to be used for the performance evaluation of

call admission control schemes in general. Thus, exact analysis methods based on




multidimensional Markov chain models appeared to be the only means to obtain accurate
solutions for evaluating call admission control schemes. Rappaport obtained call blocking
probabilities for calls with various priorities by using a multidimensional model of a cellular
network in [25]. Rappaport and Monte developed an analytical model for traffic performance
analysis using a multidimensional birth death process in [26] by considering the effects of
various platform types distinguished by different mobility characteristics on performance.
Even though multidimensional Markov chain models are capable of providing the exact
solutions, these methods suffer from the curse of dimensionality, which results in very high
computational cost for large systems. An easy to implement analytical approximation
method with highly accurate solutions and low computational cost is needed to compute
new/handoff call blocking/dropping probabilities of calls for several widely known call
admission control schemes under more general assumptions.

The fast evolution of cellular networks has been accompanied not only by basic voice
services but also by development, growth and use of a wide variety of network applications
that range from text-based utilities such as SMS messaging, file transfer, remote login and
electronic mailing to multimedia utilities such as video conferencing and streaming, web
surfing and electronic commerce. This has motivated cellular network operators to move
away from just providing conventional voice services to embracing a wide variety of traffic
from data to multimedia applications due to increasing demand coming from users thét these
services shall also be available on the move. Different techniques have been proposed to
allocate limited and varying network resources efficiently to a variety of services with
different characteristics and QoS requirements at different network layers. [27]. Modulation
and power control schemes are designed to be QoS aware at the physical layer [28] as
medium access control is adjusted to support reservations and QoS guarantees at the data link
layer. At the network layer, techniques of mobility management and seamless connectivity,
including the extension of routing mechanisms to be QoS aware and able to handle mobility,
are applied [29]. Multimedia coding systems such as H.263L video codecs are introduced for
the application layer [30].

Call admission control schemes are analyzed using Markov chain models based on

circuit-switched network architectures, however conventional circuit-switched services such

as voice are gradually being replaced by packet-switched data and multimedia applications.




Conventional call admission control schemes will continue to be useful when applied with
suitable scheduling techniques to guarantee QoS at the packet level since most data and
multimedia applic?ations are inherently connection oriented and packet-switched connections
can be provisioned to their effective bandwidths [31]-[33]. Effective bandwidth represents
the physically dedicated bandwidth of a packet-switched connection to match its overall
traffic demand. Markov chain modeling will still be useful since a cellular network can have
a similar form to a circuit-switched network operating with fixed routing [32]. However
calculating channel occupancy distribution of such a multi-service cellular network using an
exact solution method based on multidimensional Markov chain modeling involves
numerically solving the balance equations, which is demanding for all but smallest channel
capacities in the absence of a product form solution. Existing approximation methods based
on one dimensional Markov chain modeling, on the other hand, become obsolete when
packet-switched connections such as data and multimedia applications have distinct capacity
requirements. In [34], Borst and Mitra developed computational algorithms for a
multi-service cellular network by coupling the computation of joint channel occupancy
probabilities with that of used capacity assuming that channels are occupied independently.
The authors solved the balance equations through numerical iteration but the results can only
be comparative when the number of existing call arrival types are high due to authors’
channel occupancy independence assumption. A novel performance evaluation
approximation method with highly accurate solutions and low computational cost is needed
to compute call blocking probabilities of circuit and packet-switched connection type of calls
that have distinct capacity requirements for several widely known call admission control
schemes under more general assumptions.

The advantage of having packet-switched connection type of services overlaid on
circuit-switched technology over the same air interface is the utilization of excess network
capacity available in each cell. When large numbers of sources with bursty characteristics are
multiplexed, it is unlikely that all of them transmit at their peak rates at the same time. The
network can then allocate each user less resource than the corresponding requested peak
capacity while meeting the statistical performance requirements. Data packets can be

transmitted over radio interface using statistical multiplexing to provide a QoS level

comparable to that of circuit-switched services. Statistical multiplexing gain arises from the




talk spurt to silence ratio found in speech which makes it possible to multiplex more than one
service on to the same radio channel. However accurate voice traffic statistics are needed to
_understand the length and frequency distributions of idle periods of cellular channels
assigned to voice in order to exploit the statistical multiplexing gain in cellular networks.
Traffic statistics are important for network management and optimization along with
traffic modeling, billing and allocation of safety buffers. These statistics are also used to
evaluate performance during network simulation or analysis using mathematical models. Two
of these traffic statistics, call holding and channel occupancy times, are key elements to
compute performance metrics such as call blocking and dropping probabilities. In cellular
network anailysis call holding times are generally assumed to be exponentially distributed due
to studies on wireline traffic statistics. In [3], Hong and Rappaport proposed a traffic model
for cellular mobile radio telephone systems and approximated channel occupancy time
distribution by exponential distribution when call holding times are assumed to be
exponentially distributed. Ramjee et al. [6], Fang and Zhang [7], Naghshineh and Schwartz
[15], Gersht and Lee [22], Borst and Mitra [34] and Yavuz and Leung [21] studied the
performance of various call admission control schemes using one dimensional Markov chain
models assuming that channel occupancy times are exponentially distributed based on Hong
and Rappaport’s study due to its tractability. In [25], Rappaport developed multidimensional
models under the same assumption and with Monte the author obtained call blocking
probabilities using this model [26]. However simulation studies and field data have shown
that these assumptions are not perpetually valid. In [35], Guerin used a simulation model to
show that channel occupancy time distribution displays a rather poor agreement with the
exponential fitting for mobile users with low change rate of movement direction. Jedrzycki
and Leung showed in [36] that exponential distribution assumption for channel occupancy
times is not correct and a lognormal model approximation fits much better using real cellular
data. Fang et al. demonstrated in [37] and [38] that channel occupancy times in a cellular
network depend not only on call holding times but also on users’ mobility which can be
characterized by cell residence time distribution. In [20], the authors showed that channel
occupancy time is exponentially distributed only if cell residence time is exponentially

distributed. Yet, it is also observed in the same study that channel occupancy time distribution

have a good approximation by exponential ‘distribution in general when the moBility is low.




Barcelo and Jordan analyzed a cellular network based on a fully empirical approach in [39]
and observed that channel occupancy is less spread out than if exponential distribution was
assumed.

Markov chain models are developed to evaluate performance analytically in cellular
networks. Calls arriving to a particular cell are grouped into QoS classes or call types, such
as new and handoff, based on their first appearance in the corresponding cell. Channel
occupancy times for each group are measured from call starting time till the occupied
channel in the respective cell is discarded due to call termination or handoff. However, call
holding times are measured from call starting time till call termination regardless of
occupying a channel in the same cell or not. The characteristics of various types of channel
occupancy times are needed to be analyzed to provide sufficiently representative channel
occupancy time statistics not only when devéloping analytical models but also for feeding
simulations with realistic traffic statistics to obtain network performance metrics.

The rest of this chapter is organized as follows: Section 1.1 discusses the motivations
and objectives of our work. Section 1.2 presents an overview of our contributions. Section

1.3 describes the organization of this dissertation.

1.1 Motivations and Objectives

Many guard channel based call admission control schemes have been proposed to
provide the desired quality of service to new and handoff calls in cellular networks. One
dimensional Markov chain modeling is generally used under specific assumptions to compute
blocking and dropping probabilities of these calls approximately to avoid solving large sets
of flow equations that makes exact analysis of these schemes using multidimensional Markov
chain models infeasible. The “traditional” approximation method provides accurate results
only when channel occupancy times for new and handoff calls have equal mean values while
the “normalized” approach relaxes this assumption only for the new call bounding call
admission control scheme. Yet, these assumptions may not be appropriate since these two
types of calls may have different average channel occupancy times if not different
distributions [19] [20]. This motivates us to develop an accurate yet easy to implement

method to compute new and handoff call blocking and dropping probabilities for several

widely known call admission control schemes when channel occupancy times for new and




handoff calls have separate mean values.

A wide variety of network applications that range from text-based to multimedia
utilities are provided by cellular networks along with basic voice services. These utilities are
grouped under various quality of service classes and a higher priority is normally assigned to
calls with higher bandwidth and lower latency requirements based on ‘the application’s
importance for cellular network operator. Call admission control schemes are also used to
optimize call blocking and dropping probabilities of these applications for quality of service
provisioning in cellular networks. Performances of these call admission control schemes are
evaluated using either one dimensional or multidimensional Markov chain models with the
former preferred over the latter to avoid solving large sets of flow equations. A
computationally efficient solution is also important for quality of service provisioning when
dynamic call admission éontrol schemes are used since efficient adaptive reservation depends
on reliable and up to date system status feedback simultaneously provided to the call
admission control mechanism. However, relaxing the assumptions to have separate mean
values for channel occupancy times of different classes of calls is not sufficient to evaluate
multi-service cellular networks using approximation methods based on one dimensional
Markov chain modeling. When assumptions are relaxed further to have calls with separate
capacity requirements, previously developed one dimensional Markov chain models become
obsolete due to the multidimensionality introduced by calls with unequal bandwidth requests.
Borst and Mitra proposed an approximation method [34] with a closed form and therefore a
fast solution, but it only approximates sufficiently accurately when the number of existing
call arrival types are high. The need for an accurate and computationally efficient
performance evaluation approximation method for call admission control schemes motivates
us to develop an easy to implement method to compute call blocking and dropping
probabilities of different classes of calls in multi-service cellular networks.

Packet-switched services are overlaid on circuit-switched technology over the same
air interface to use the access capacity in cellular networks. Statistical multiplexing is used to
transmit data packets over radio interface to provide a quality of service level comparable to
that of circuit-switched services. Accurate voice traffic statistics are needed to understand the

distribution of idle periods of voice channels to multiplex more than one service on to the

same radio channel. In classical voice traffic modeling call holding times are approximated




by exponential distribution and this assumption is widely used due to its tractability to obtain
analytical results for evaluating cellular networks [6] [7] [15] [21] [22] [34]. However it has
been shown that a lognormal distribution approximation fits much closer [36] [39]. In a
cellular network when a call admission control scheme is modeled for each cell, arriving calls
to a particular cell are grouped into quality of service classes or call types, such as new and
handoff, based on their first appearance in the corresponding cell. Channel occupancy time
distribution for each group includes respective channel occupancy times counted only until
the corresponding calls discard the occupied channels in the cell due to call termination or
handoff. Call holding time distributio'n, on the other hand, includes the amount of times that
the channels are occupied by a call until it terminates either in its originating cell or another.
The above discussion motives us to provide sufficiently representative channel occupancy
time statistics to develop analytical models since call holding time statistics are not sufficient
alone. This is also very useful for feeding simulations with realistic traffic statistics to obtain

network performance metrics.

1.2 Main Contributions

The main contributions of this dissertation are as follows:

e Develop a computationally efficient approximation method to evaluate
performance of call admission control schemes in single service cellular
networks: We propose an easy to implement approximation method to evaluate call
-admission control schemes when average channel occupancy times for new and
handoff calls are not necessarily equal. Our proposed approximation method yields
more accurate results compared with the previously proposed “traditional” and
“normalized” methods while keeping the computational complexity low.

e Develop computationally efficient approximation methods to evaluate
performance of call admission control schemes in multi-service cellular
networks: We classify call admission control schemes into two categories called
symmetric and asymmetric. We present the product form solution formula to evaluate

symmetric call admission control schemes and propose a novel performance

evaluation approximation method to evaluate asymmetric call admission control




schemes when average channel occupancy times for different classes of calls are not
necessarily equal and all arriving calls may have distinct capacity requirements. The
proposed method performs better in accuracy compared to the previously proposed
method by Borst and Mitra while keeping the computational complexity low.

e Statistical modeling of channel occupancy times for voice service in cellular
networks: We present an empirical approach to determine the probability distribution
functions that fit various types of channel occupancy times in cellular networks. We
show that these channel occupancy times can be approximated by lognormal
distribution.

e Statistical modeling of call holding times for stationary and mobile users along
with the number of handoffs committed by a mobile user in cellular networks:
We show that the closest fit candidate to approximate stationary and mobile users’ call
holding times is lognormal distribution along with the distribution of the number of

handoffs committed by a mobile user.

1.3  Organization of the Dissertation

This dissertation is organized as follows. In chapter 2, we propose a computationally
efficient apbroximation method to evaluate performance of call admission control schemes in
single service cellular networks. We reevaluate the analytical methods for computing
new/handoff call blocking/dropping probabilities for widely known call admission control
schemes and show that the proposed approach gives more accurate results under relaxed
assumptions when compared with the existing methods. In chapter 3, we propose
computationally efficient approximation methods to evaluate performance of call admission
control schemes in multi-service cellular networks assuming that average values for channel
occupancy times of different classes of calls are not equal and all arriving calls have different
capacity requirements. We present the numerical results that show the proposed methods
provide results that match well with the exact solutions while keeping the computational
complexity low. In chapter 4, we determine the probability distribution functions that fit
various types of channel occupancy times in cellular networks and show that these channel

occupancy times can be approximated by lognormal distribution. We also show that the

closest fit candidate to approximate stationary and mobile users’ call holding times is




lognormal distribution along with the distribution of the number of handoffs committed by a
mobile user. Chapter 5 concludes the thesis with a summary of the presented work, and

describes the future works.
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CHAPTER 2 COMPUTATIONALLY EFFICIENT METHOD TO EVALUATE
THE PERFORMANCE OF GUARD-CHANNEL-BASED CALL ADMISSION

CONTROL IN CELLULAR NETWORKS'

2.1 Introduction

The emerging global standards for wireless communication networks, such as the
third generation (3G) cellular networks, promise the efficiency and flexibility of multiplexing
a wide variety of traffic from conventional circuit-switched voice service to packet-switched
voice, data, and multimedia services while providing the quality of service (QoS) expected
by service subscribers and their applications. Services with specific bandwidth and latency
requirements need specific amount of system resources to be allocated at the time of call
admission to ensure that the required QoS can be maintained during the call. The
performance of call admission control (CAC) in a cellular network is specified by the
blocking probability of new calls in a cell and dropping probabilities of handoff calls entering
a cell. Call dropping may occur before a call is terminated by the communicating parties 1f
the cellular network is unable to assign network resources to enable the call to be handed off
to a new cell that the mobile user has moved into. Network planners need to provision
sufficient network resources such as channel bandwidth to ensure that call blocking/dropping
probabilities stay within acceptable limits for various call types or applications. Since
dropping an on-going call is generally more objectionable to a mobile user than blocking a
new call request, a higher priority is normally assigned in CAC for handoff calls over the
new ones in order to minimize the call dropping probability.

Call admission control for wireless networks has been intensively studied in the past
[1] [2] and many priority-based CAC schemes have been proposed [3]-[18]. In the context of

a given number of channels being available in each cell for assignment to admitted calls,

' A version of this chapter has been published. E. A. Yavaz and V. C. M. Leung,
“Computationally Efficient Method to Evaluate the Performance of Guard-Channel-Based Call
Admission Control in Cellular Networks,” IEEE Transactions on Vehicular Technology, vol. 55,
no. 4, pp.1412-1424, July 2006.




these CAC schemes can be classified into two broad categories.

1) Guard Channel (GC) Schemes: A number of guard channels are reserved for handoff
calls. There are four different schemes.

a) The cutoff priority scheme blocks a new call if the number of free channels is less
than the number of guard channels reserved for handoff calls [3]-[5].

b) The fractional guard channel scheme admits a new call with certain probability that
depends on the number of busy channels in the cell [6].

¢) The new call bounding scheme limits the number of new calls admitted to the cell to
some number less than the total number of available channels [7].

d) The rigid division-based scheme divides all channels available in a cell into two
groups: one for common use and the other only for handoff calls [8].

2) Queuing Priority (QP) Schemes: Calls are accepted whenever there are free channels;
otherwise either new calls are queued while handoff calls are dropped [9], new calls are
blocked while handoff calls are queued [10][11], or all arriving calls are queued with
certain rearrangements in the queue [12][13].

In addition to those given above, many dynamic GC schemes [14]-[18] have also
been discussed in the literature to improve system efficiency. These dynamic schemes
manage to accept more lower-priority calls as compared to the fixed schemes by adaptively
reserving the amount of resources needed for high-priority calls.

In the literature CAC schemes are analyzed using Markov chain models based on a
circuit-switched network architecture with the assumption that independent Poisson
distributed  call requests are originated from different classes of service or call types, cell
residence time for each call is exponentially distributed, and each call requires a
predetermined channel bandwidth. Conventional circuit-switched services including
telephony are gradually being replaced by packet-switched ones as today’s communication
networks evolve. Conventional CAC schemes, on the other hand, will continue to be useful
when applied with suitable scheduling techniques to guarantee QoS at the packet level since
most applications such as interactive multimedia are inherently connection oriented and
packet-switched connections can be provisioned according to their effective bandwidths
[19]-[33].

To avoid the computational complexity of solving multidimensional Markov chain
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models, one dimensional Markov chain models are commonly used (e.g., [11][15]) to obtain
the blocking/dropping probabilities for new/handoff calls under the assumption that the
channel occupancy times for both types of calls are identically distributed with the same
average values. Yet this assumption may not be appropriate as new and handoff calls may
have different average channel occupancy times if not different distributions, as shown in
[19]120] and references therein. Even though analysis in [7] accounts for the more general
case of different average channel occupancy times for new and handoff calls, the
approximation employed still leads to significant discrepancies with the exact solutions. In
[22], Li and Chao modeled a multi-cell wireless network employing a hybrid GC/QP scheme
with transfer of unsuccessful requests to neighboring cells as a network of queues and
obtained a product form solution. However, the solution is restrictive to the protocol
considered and may not be applicable for performance evaluations of GC schemes in general.

Thus, using multidimensional Markov chain models appears to be the only means to
obtain accurate solutions for the analysis of GC schemes. This approach is used in [22] to
evaluate a cellular network’s performance by determining the new call blocking and handoff
call dropping probabilities, and is extended in [26] ‘to analyze the traffic performance taking
into consideration the effects of various types of mobile platforms distinguished by different
mobility characteristics. Even though the multidimensional Markov chain model is capable
of providing the exact results, the method suffers from the curse of dimensionality, which
results in very high computational cost for large systems. Therefore it is still desirable to
come up with approximate solutions that have high accuracy and is computationally efficient.

In this chapter, we propose a novel method called the “effective holding time”
approach to compute the above-mentioned CAC performance metrics using an
approximation based on one dimensional Markov chain modeling under the condition that
the channel occupancy times for new and handoff calls are independent and exponentially
distributed with different average values. The proposed method is easy to implement and has
low computational cost.

This chapter is organized as follows. In the next section we examine three of the
widely known CAC schemes by evaluating their performances using the traditional and the
normalized analytical methods proposed in the literature under the assumption that the new

and handoff calls have different average channel occupancy times. In Section 2.3, we present
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the new analytical method based on effective holding time, which yields more accurate
approximations than the traditional or normalized methods. In addition to the numerical
results obtained using the traditional, normalized, proposed and the direct methods, the
accuracy of the results are also presented and compared along with the runtime

computational costs in Section 2.4. We will conclude the paper in Section 2.5.

2.2  Existing Methods to Analyze Performance of CAC Schemes

In this section we examine three of the widely known CAC schemes: the new call
bounding priority, the cutoff priority, and the fractional guard channel schemes by
evaluating their performance using the traditional and the normalized analytical methods
proposed in the literature under the assumption that the new and handoff calls have different
average channel occupancy times.

Let A, and 1, denote the arrival rates and 1/u, and 1/y4; denote the average channel
occupancy times for new and handoff calls, respectively. Let C denote the total number of
channels in a cell. We assume that the arrival processes for new and handoff calls are
Poisson, and the channel occupancy times for new calls and handoff calls are exponentially
distributed.

Assuming that both new and handoff calls have the same channel occupancy time
distributions and average values, the system model is approximated by a one dimensional
Markov chain with a fixed average channel occupancy time for the total cell traffic. We refer
to this method of deriving blocking/dropping probabilities analytically as the traditional
approach [3][6][7][10][11]. To improve the inaccurate results obtained when the above
assumption on equal average channel occupancy time is no longer valid, Fang and Zhang [7]
proposed normalizing the average service times for new and handoff traffic to unity so that
they become identical for both streams. Although this approximation, which we call the
normalized approach, seems to give better accuracy than the traditional approach, it is still

inaccurate especially for CAC schemes like cutoff priority and fractional guard channel.

2.2.1 New Call Bounding Scheme

Fig. 2.1 shows the state transition diagram for the new call bounding scheme modeled
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by a two-dimensional Markov chain, where A, A4, s, 4y and C are as defined before and K is
the threshold between 0 and C such that a new call request is admitted only when there are
less than K channels occupied by new calls. Let p(n,n,) denote the steady state probability
that there are n; new calls and #n; handoff calls in the cell, which can be found by solving the
global balance equations obtained from the state transition. Yet as mentioned above, solving
these balance equations becomes computationally very intensive when the state dimension
increases. Analytical results to compute the blocking probabilities of new calls p,; and the
dropping probabilities of handoff calls p,s have been derived for this scheme in [7], and an
approximation is developed by normalizing the average service time for new and handoff
calls. This normalized approach allows the arriving traffic for each type of call to be scaled
appropriately and the blocking/dropping probabilities to be related to the traffic intensities.
Here is how the normalized approach works. Let p, = 4, / u, and p, = 14 / pp, then we
can consider an equivalent Poisson new call arrival stream with arrival rate p, and service
rate equal to 1, and an equivalent Poisson handoff call arrival stream with arrival rate p, and
service rate equal to 1. Let p“(n1,n;) denote the steady state probability that there are n; new
calls and n, handoff calls in the cell for the normalized approximation model. Thus, the
following stationary distribution is obtained for this approximate model from the balance

equations:

p(momy) =L Lo p2(0,0), 0<m <K, m+m<Cn20,
n! n,
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The formulas for new call blocking and handoff call dropping probabilities are as follows:
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On the other hand, the traditional approach uses the average channel occupancy time

u,, for total cell traffic given by:
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to replace u, and uj; in (1) and (2) and to obtain new call blocking and handoff call dropping
probabilities in the resulting one dimensional Markov chain model. In that case, the traffic

intensities for new and handoff calls are given by:
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When channel occupancy times for both new and handoff calls are assumed to be
identically distributed with the same parameters, the cell average channel occupancy time
also becomes the same as can be easily deduced from (3). However, the traditional approach
can yield significantly inaccurate results when the channel occupancy times for new and.
handoff calls have different average values except when the non-prioritized scheme (K = C)
is used. ,

The normalized approach overcomes this inaccuracy in the new call bounding scheme

by exploiting the symmetric nature and the product form of the detailed balance equations

20




that characterizes this CAC scheme. We will show in the following sections that both
approximations mentioned above are not good enough to obtain new call blocking and

handoff call dropping probabilities with an acceptable accuracy for other CAC schemes.

2.2.2 Cutoff Priority Scheme

Let m < C denote the channel occupancy threshold for acceptance of new calls. If the
total number of busy channels is less than m when a new call arrives, the call is acéepted;
otherwise the new call is blocked. A handoff call is always accepted if a free channel is
available. This scheme has been extensively studied using one dimensional Markov chain
modeling under the assumption that the average channel occupancy times of new and handoff
calls are equal [3]. However, this approach provides inaccurate results when the equal mean
channel occupancy time assumption does not hold true.

Let A, An, tn, un, and C be defined as before. The system can be modeled by the two
dimensional Markov chain shown in Fig. 2.2, where (n;, ny) denotes a feasible state with »,
and n, representing the numbers of new and handoff calls in the cell, respectively. In contrast
with the new call bounding scheme, the state flows for the cutoff priority scheme no longer
have the symmetric nature since the flows for some of the states are unidirectional, spoiling
the symmetry as shown within circles drawn in Fig. 2.1 and Fig. 2.2. Hence, no product form
solution exists for this scheme when u, # u.

The following stationary distribution is obtained for the cutoff priority scheme using

the normalized approach, where p¢ denotes the probability that there are j (j =0, 1, ..., )

busy channels in the steady state:
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Using the stationary distribution given above, the blocking probabilities for new calls,

p., and the dropping probabilities for handoff calls, p,, are obtained as follows:

Z(pn +ph
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On the other hand, the corresponding results for the traditional approach in which the
new and handoff call channel occupancy times are replaced with the average channel

occupancy time, given by (3), are as follows:
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2.2.3 Fractional Guard Channel Scheme

The fractional guard channel scheme admits new calls with certain probabilities that
depend on the number of busy channels, i. When the number of busy channels is i, an
arriving new call will be admitted with probability §;, where 0 < f;<1,i=0, 1, ..., C-1. The

new call stream is smoothly throttled by decreasing f; as the network traffic is building up.

An arriving handoff call will always be admitted unless there is no free channel available, in




which case all calls will be blocked. Obviously, this scheme becomes the cutoff priority
scheme when By = ... =f;=1and B, =...=Fc=0. When By > ;> 2> ... > fc, it can
also be observed that the new calls stream grows at a decreasing rate as the number of busy
channels increases. Due to this flexible choice of new call admission probabilities, the
fractional guard channel scheme can be made very general.

Let Ay, An, tn, un, and C be defined as before and let g(c) denote the equilibrium
channel occupancy probability when exactly ¢ channels are occupied in a cell. It has been

shown [27] that g(c) satisfies the following recursive equation.

(———~/1"/;lﬂc" +ﬁ)-q(c—1) =c-q(c), c¢=1,..,C (6)

Hy,

Replacing the new and handoff call arrival rates, 1, and A4, with the new and handoff
traffic intensities, p, and p;, respectively, and setting the corresponding channel occupancy

times to 1 as suggested by the normalized approach transform (6) to
(p, B+ P qglc—-D)=c-g(c), c¢=1,.C @)

which gives us a general expression for all GC schemes.

C
Solving for ¢(0) in the equation Z g(j) =1 , we obtain

j=0

l;[(pn B+ P1)

q(j)=*= a -q(0), 1=/<C (8)

where

-
L

(P, Be+p1)

a0 =143 — ©)

.
i

[\gn

From (8) and (9), the blocking and dropping probabilities for new and handoff calls
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for the normalized approach are respectively given by:

C

P =2 A=B)-q()), PBc=0 (10)

Jj=0

P =9(C) (11)

On the other hand, the corresponding results for the traditional approach can be
obtained by replacing the average channel occupancy times of both types of calls in (6) with

the average channel occupancy time of the total cell traffic given by (3).
2.3 The Proposed Performance Evaluation Method

Even though the normalized approach [7] provides a better approximation than the
traditional one, it is still inaccurate for many GC schemes. Therefore, in order to provide
more accurate results while keeping the computational complexity low, we present the
following novel performance evaluation method for GC schemes, referred as the effective
holding time approach.

Since it is crucial to find an approximation that overcomes the curse of dimensionality
when the state dimension is large, it is inevitable to attempt reducing the two dimensional
Markov chain model to a one dimensional one. As shown previously, this enables a product
form solution of the detailed balance equations to be obtained using (6).

However, we proceed to simplify (6) by replacing the average channel occupancy
times for both new and handoff calls with an average channel occupancy time for the total
cell traffic which we refer as the average effective channel occupancy time and denote by
1/uey instead of 1/u,, used by the traditional approach. The average channel occupancy time,
1/uqy, given by (3) can not approximate the value of the average channel occupancy time for
the total cell traffic accurately, since new and handoff calls are not blocked equally. To obtain
1/ucp, we apply an idea proposed by Gersht and Lee [28] when developing an iterative
algorithm to calculate approximate occupancy distributions of objects being placed into a
knapsack to maximize the total reward that is accrued each time an object is placed into the

knapsack. Inspired by the well known Little’s theorem, 4 = A/N, they defined u.y as the ratio
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of expected number of both types of call arrivals to the expected number of occupied

channels,

C-1 C-1
> (A BN+ 2 (A a0
P =7 — (12)
2.-40)

We now simply approximate the occupancy probabilities by setting ¢g(c)=g(c),

¢ =0,...,C in (6) and using the updated recursive formula given below.

(ﬁ'ﬁ.ﬂc—l+2h).@(c_1)=c./'leﬂ.6(c)9 c=L..C (13)

C
Solving for g(0) with Z q(j) =1, we obtain

J=0

1B+ 4)

4()=*=——7-9(0), 1<;<C (14)
Hog * J!
where
j-1 -
C (ﬂ’n ) ﬂk +lh)
A _ k=0
§(0)= 1+; e (15)

In their knapsack problem approach, Gersht and Lee [28] suggested obtaining .y
using (12) by replacing ¢(c) with g(c) and updating the approximate equilibrium
occupancy probabilities iteratively, using (14) and (15) until each g(c) changes by no more
than ¢ for all ¢ = 0,...,C, where ¢ is a small number. '

Although their approach did not emphasize starting with an appropriate initial value
for each approximate equilibrium occupancy probability, we realize that it becomes a

problem since more than one set of equilibrium occupancy probabilities can satisfy (14) and

(15) at the same time. What makes a set to be the unique solution depends on the values of
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the arrival rates and average channel occupancy times of both types of calls. Therefore, we
consider it important that these values are included directly in the computation to obtain
better approximate results. The call arrival rates for both types of calls are embraced in (12),
(14) and (15); however we observe that the average channel occupancy time of each type of
call is not considered directly in these equations when computing the approximate
equilibrium occupancy probabilities since they are replaced by the average effective channel
occupancy time, /Uy

Hence, we propose to set the approximate equilibrium occupancy probabilities
initially with the values obtained by the normalized approach proposed by Fang and Zhang
[7] in order to make the approximate equilibrium occupancy probabilities closer to the unique
solution that we look for, then apply (14) and (15) to obtain the new and handoff call
dropping probabilities.

To summarize, the algorithmic description of our proposed effective holding time

approach is as follows:

1. Initialize equilibrium occupancy probabilities q(c)
(c = 0,.,0) by setting them to the corresponding values
obtained from the normalized approach.

2. Calculate uq using(12)by replacingg(c)’swith g(c)'s.

3. Calculate ¢(c) forc=0,...,Cvusing(14)and(15) . |

4. Obtain new call blocking and handoff call dropping

probabilities using ¢(c).

Although Gersht and Lee suggested an iterative approach for the solution of the
knapsack problem, we present our approximation method in closed form since once we
compute the effective channel occupancy time, pu.5 from (12) using the initial conditions
obtained from the normalized approach and the corresponding values of the estimated

equilibrium occupancy probabilities, g(c), from (14) and (15) followed by that, the value of

the recomputed effective channel occupancy time using the estimated equilibrium occupancy
probabilities will remain the same which will also stabilize the values of the estimated

equilibrium occupancy probabilities. After the estimated equilibrium occupancy probabilities
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are obtained, the new call blocking and handoff call dropping probabilities are calculated as

follows:

pYd =1-L (16)
> A4,-4())
j=0
C-1
Zih -q(J)
i =1-%2 (17)
’1}1 é(])
Jj=0

2.4 Numerical Results

2.4.1 Performance Evaluation of Existing and Proposed Methods

In this section we present numerical results of performancé evaluations using our
novel effective holding time approach presented in Section 2.3 and compare them with those
obtained using the existing traditional and the normalized approaches based on one
dimensional Markov chain models. We also obtain accurate results using a multidimensional
Markov chain model for comparison purposes. This is accomplished using a numerical
method called direct (also known as LU decomposition) to calculate the exact values of the
performance metrics and the corresponding results are labeled as “direct method”.

The numerical results obtained for this study not only show that the results obtained
from the normalized and the traditional approaches can deviate significantly from the
accurate results obtained from the direct approach, but also show that our new approach,
effective holding time, can achieve results very close to the accurate direct ones.

We do not give the results here for the new call bounding scheme since the
normalized approach can overcome the inaccuracy of the traditional approach which
overestimates the new call blocking probability while it underestimates the handoff call

dropping probability when the handoff call traffic is higher than the new call traffic load (e,
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pr > pp) or vice versa by exploiting the symmetric nature of the scheme’s state transitions and
thus leaves little room for improvement. However, we focus on the other schemes considered
above for which this property does not apply.

Since fractional guard channel is a generalization of the cutoff priority scheme, we
evaluate only the cutoff priority scheme here due to space constraints as same property
applies for both schemes. Before examining this scheme to evaluate its performance, we
should determine the range of values that system parameters such as 4,, 45, 1/u, and 1/u, take

“in order to reflect practical situations.

It is generally accepted in the literature [3][7][11] to set the arrival rate, 4,, and the
average channel occupancy time, 1/,um of new calls in proportion with the arrival rate, 4;, and
the average channel occupancy time, //u;, of handoff calls, respectively. Therefore following
the scenarios that have been considered in the literature, we apply the values which are
grouped under four different cases and presented in Table 2.1 as the arrival rates and average
channel occupancy times for new and handoff calls in order to evaluate the performances of
the selected schemes. To put it shortly, we assume both ratios, A,/An, un/tin, to have values
changing within the range of 4 and 0.5 in order to cover the scenarios commonly considered
in the literature. We set the total number of channels, C, to 30 and the channel occupancy
threshold, m, to 25 as in [7].

Reducing handoff call dropping by assigning higher priorities or other means
increases the probability of blocking for new calls and thus results in a tradeoff between these

two QoS measures [6]. Nevertheless, the goal of a network service provider is to maximize
the revenue by improving network resource utilization, which is usually associated with
minimizing the new call blocking probability while keeping the handoff dropping probability
below a certain threshold. Hence we evaluate the approximate evaluation methods mentioned
above by grouping the possible scenarios into four different cases with parameter values
chosen as shown in Table 2.1 in order to obtain handoff call dropping probabilities within the
range of 0.01 and 0.1 since this is the interval of interest when providing QoS guarantees in a

cellular network.
In the literature the commonly accepted method to evaluate a scheme is to simulate a

system modeled with that scheme with call arrival rates being varied to change the traffic

load while the average channel occupancy times of different types of calls are kept constant.




However, considering that the objective of this study is to relax the assumption made by
previously suggested approximation methods for different types of calls to have different
average channel occupancy times, we simulate the system by varying the average channel
occupéncy times instead as in [7], since having different average channel occupancy times
for new and handoff calls is what makes the existing methods inaccurate. One can also notice
that blocking/dropping probability values obtained by (4) and (5) or (8) and (9), which were
derived for cutoff priority and fractional guard channel schemes, respectively, by using the
normalized approach, remain the same as long as the call arrival rates and average channel
occupancy times change with same proportions, thus keeping the traffic loads for both types
of calls, p, and p,, constant. Yet, the direct method is expected to give different results in such
a case as it considers the call arrival rates and average channel occupancy times separately.
Considering that average channel occupancy times play a stronger role compared to call
arrival rates when obtaining call blocking probabilities accurately using given approximation
methods, varying average channel occupancy times of both types of calls in proportion with
each other can be justified as we expect that it would be more challenging to obtain accurate
results when differences in average channel occupancy times exist.

In Figs. 2.3-2.10, we show the new call blocking and handoff call dropping
probabilities computed by the mentioned approaches for each case given in Table 2.1. In
Figs. 2.3 and 2.4, for simulation scenario 1, it is observed that as the new call traffic load gets
higher, the traditional approach overestimates both the new call blocking and handoff call
dropping probabilities by the largest margin while the normalized approach underestimates
the handoff call dropping probability. However, the results obtained by our proposed effective
holding time approximation method match the curve obtained by using the direct method
very well. A similar conclusion can be drawn for the comparisons of new call blocking and
handoff call dropping probabilities from Figs. 2.5 and 2.6 for simulation scenario 2, Figs. 2.7
and 2.8 for scenario 3 and Figs. 2.9 and 2.10 for scenario 4, respectively. As expected and
mentioned above, we observe from Figs. 2.2, 2.4, 2.6 and 2.8 that the results obtained by the
proposed approximation method diverge from the exact ones slowly when the ratio of
average channel occupancy times for new to handoff calls increases. In short, when the new
and handoff calls have different average channel occupancy times, the traditional and the

normalized approaches result in significant discrepancies compared to the direct method
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especially with respect to handoff call dropping probability, which is overestimated by the
former approach while it is underestimated by the latter one. However, the results obtained

by the proposed approach can overcome such inaccuracy.

2.4.2 Accuracy and Runtime Computational Costs

In this section we examine the accuracy of traditional, normalized, and the proposed
effective holding time approximation methods by using the “mean average error (MAE)” and

the “root mean square error (RMSE)” which are calculated as given below.

Y

MAE = i abs(pi,estimated - pi,real)

(18)
N =l pi,real
1 & 2
RMSE = |— Z pi,estimated pi,real (19)
N i=1 pi,real

The results are given in Table 2.2 for handoff call dropping and Table 2.3 for new call
blocking probabilities. Further to the results in Figs. 2.3-2.10, the most significant results on
accuracy are shown in Table 2.2 for handoff call dropping probabilities, where our proposed
effective holding time approximation method reduces estimation errors substantially
compared to the existing approximation methods. Even though our proposed method
estimates the new call blocking probabilities with very small errors as shown in Table 2.3, it
does not significantly reduce them with respect to the estimation errors given by the existing
methods due to the relatively small error margins.

The percentage gains in accuracy of the results on handoff call dropping probability
obtained by the proposed approximation method relative to those obtained by the normalized
and the traditional methods are given in Table 2.4. The percentage gains in accuracy of the
results on new call blocking probability obtained by the proposed approximation method are
not given here since they are very small compared with the results on handoff call dropping
shown in Table 2.4. In Table 2.4, it is observed that the percentage gains in estimation
accuracy provided by our proposed approximation method relative to the existing methods

decrease as the ratio of new to handoff call holding times decreases even though the gains
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obtained still remain significant.

The reason why an acceptable . approximation method is needed to evaluate the
performance of a call admission control scheme when an exact solution with a numerical
method based on multidimensional Markov chain modeling exists, is to avoid solving large
sets of flow equations and therefore the curse of dimensionality. To give the reader a better
idea regarding the “CPU time” and the amount of “memory” used for evaluating the
performance of any of the policies mentioned above, we implement one direct and two
widely used iterative methods, which are direct (LU decomposition), method of Jacobi
(iterative), and method of Gauss-Seidel (iterative), in order to compare their runtime
computational costs with that of the proposed method. The results are given in Table 2.5 for
three different scenarios of total and shared number of channels, where “CPU time”
represents the total processing time (in seconds) the CPU spent from the time that the
computation was started for each method, “number of iterations” represents the number of
times that each algorithm (except the direct one) needs to iterate before it converges with
respect to the chosen tolerance value, and “used memory” represents the amount of storage
allocated for nonzero matrix elements.

For the simulation results presented in Table 2.5, the following parameters are chosen
respectively for the three different scenarios: (a) C = 6, m = 5, 4, = 0.0067,.(b) C = 30,
m =25, Ay = 0.0334, (c) C = 60, m = 50, A, = 0.1667, while u, = 1/600, u, = 1 /300, and 4,
varies from 1/600 to 1/50, 1/120 to 1/10 and 1/2 to 1/24, respectively. The new and handoff
call arrival rates are chosen to obtain similar values of call blocking/dropping probabilities
with the previously computed ones in each scenario in order to make the comparisons
appropriate.

As seen in Table 2.5, as the number of channels increases, the values of CPU time for
the numerical solution methods (both direct and iterative) become significantly greater than
the corresponding value for the proposed method. The same observation can also be made for
the used memory. This should not be surprising since our proposed approximation method

has much smaller number of states in its model and a closed form formulation.

2.5 Summary

In this chapter we have examined various guard channel based call admission control
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schemes in wireless mobile networks to evaluate their performance analytically by using a
one dimensional Markov chain model. When the average channel occupancy times for new
and handoff calls are significantly different, we have shown that the traditional and the
normalized approaches may not be appropriate to use due to their discrepancies in
comparison with the exact results. Even though using a two dimensional Markov chain
model could solve this problem and yield exact results, it gives rise to another problem
known as the curse of dimensionality since the dimension of the state space in such a model
can increase very quickly. With the objective of providing a practical and closed form
solution to this problem, we have proposed a new method called effective holding time, which
gives more acc.urate results when compared to the existing approximation approaches while
keeping the computational cost low.

We have evaluated the accuracy of the proposed method by comparing it with the
exact results obtained from the direct method based on a multidimensional Markov chain
model. When compared with the existing traditional and normalized approximate methods, it
is observed that the proposed effective holding time method outperforms the others especially
with its high percentage gain in accuracy when computing the handoff call dropping
probability. To demonstrate that the proposed effective holding time method has very low
runtime computational cost, we have presented results showing that the CPU time and the
amount of memory used by the proposed method are very low compared to the direct and
iterative numerical methods that can be employed to obtain exact results.

As computational cost plays an important role in real time applications, we believe a
better approximation method with low complexity for.evaluating the performance of CAC
schemes will motivate the practical implementation of these schemes when providing
dynamic call admission control in the future. However when a similar performance
evaluation problem is addressed with the proposed method in a multi-cell network, not only
call arrival rates and call duration times but also changing cell capacity should be considered
due to its dependence on the location of users in neighboring cells. We are extending this
work to include analytical performance evaluation of multi-service models with multiple
channel requests, considering that the level of relative prioritization provided to different
service types with different QoS requests is specified by relative blocking/dropping
probabilities.
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Fig. 2.4 Handoff call dropping probability in the cutoff priority scheme (Case I).
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Fig. 2.6 Handoff call dropping probability in the cutoff priority scheme (Case II).
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0.1

T T T T T T

- % Direct Method : : : :
—x— Traditional approach : : : : /
0.09} | —— Normalized approach ............ .............. .............. .............. ............ 4
—©— Proposed approach : : : :

008— .............. .............. .............. .............. .............. I FARREE 4
007_: .............. .............. e .............. ................ Lo .

Q0B+t .............. SOUNRURS e RPN AT J

Dropping probability of handoff calls

New call traffic load

Fig. 2.8 Handoff call dropping probability in the cutoff priority scheme (Case III).
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TABLE 2.1

System parameter values used for each scenario

Cases Au An 1/ u, (sec) 1/ py(sec)
I 1/40-1/5  1/20 800 200
14 1/40-1/5  1/20 400 200
il 1/40-1/5  1/20 200 200
114 1/40-1/5 1720 100 200
TABLE 2.2

Errors in handoff call dropping probability approximations relative to direct method

Traditional approach Normalized approach Proposed approach
Cases MAE RMSE MAE RMSE MAE RMSE
I 2.76 3.42 1.07 1.53 0.14 0.15
n 223 2.81 0.95 1.23 0.16 0.18
I 1.57 2.02 0.79 0.89 0.21 0.22
v 0.88 1.15 0.66 0.70 0.27 0.30
TABLE 2.3

Errors in new call blocking probability approximations relative to direct method

Traditional approach Normalized approach Proposed approach
Cases MAE RMSE MAE RMSE MAE RMSE
I 0.09 0.09 0.005 0.006 0.006 0.007
17 0.15 0.16 0.013 0.02 0.012 0.015
1/ 0.21 0.25 0.018 0.028 0.016 0.02
Ii4 0.21 0.27 0.035 0.039 0.026 0.03
TABLE 2.4

Percentage gains in accuracy of handoff call dropping probabilities obtained by the proposed
approximation method relative to those obtained by the normalized and the traditional
' methods

% Gain over traditional approach % Gain over normalized approach

Cases MAE RMSE MAE RMSE
I 94.95 95.55 86.98 90.07
11 92.73 93.75 82.97 85.75
i 86.70 89.08 73.62 75.23
v 68.78 74.00 58.44 57.20
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TABLE 2.5
Comparison of runtime computational costs between the proposed method and
the direct and iterative numerical methods

Total number of channels = C, total number of shared channels = m

C=6,m=5 C=30,m=25 C=60,m=50
Numerical CPU number used CPU number used . number used
f of . of CPU time of
Methods time . ) memory  time . . memory . . memory
iterations iterations 1terations
LU 51565 ; 4157  3mlds - 1164845  5h35m36s ; 16884530
decomposition
M}’;}c‘ggi"f 21725 1000 2728  4m8s  1000" 702606 1h25mS0s  1000° 10144576
Method of ) 1065 24 2728 3md9s 59 702606 2h41ml17s 172 10144576
Gauss-Seidel
Proposed 0.109s - 170 0.266s . 698 1.844s - 1358
method

* indicates that the number of iterations for the method of Jacobi is limited to 1000 in each scenario due to

divergence to the desired tolerance.
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CHAPTER 3 COMPUTATIONALLY EFFICIENT PERFORMANCE
EVALUATION METHODS FOR CALL ADMISSION CONTROL SCHEMES IN

MULTI-SERVICE CELLULAR NETWORKS>

3.1 Introduction

The emerging global standard for next generation wireless networks has promised to
provide not only conventional voice services but also the efficiency and flexibility of
multiplexing a wide variety of traffic from data to multimedia applications due to increasing
demand coming from users that these services shall also be available on the move. However
satisfying the diverse QoS requirements of these services over cellular networks has become
even more challenging due to reduced cell size and hence increased user mobility. Call
admission control (CAC) schemes are deployed to selectively limit the number of admitted
calls from each QoS class to maximize the network utilization while satisfying the QoS
constraints [1]. Call admission control for wired and wireless networks has been intensively
" studied in the past and many priority based call admission control schemes have been
proposed [2]-[14]. Calls with more stringent QoS requirements are given higher priorities by
having exclusive access to a number of reserved channels. Reducing blocking probabilities of
calls with higher priorities increases the probability of blocking for calls with relatively lower
priorities resulting in a tradeoff between QoS classes. The goal is to sustain a balance
between QoS classes while satisfying the respective QoS requirements. Handoff calls are
given priority over new ones to minimize call dropping probabilities since dropping an
ongoihg call is generally more objectionable to a mobile user than blocking a new call
request.

A set of guard channels are reserved for prioritized calls in Guard Channel (GC)

schemes such as cutoff priority [2]-[5], fractional guard channel [6)], new call bounding [7]

2 A version of this chapter has been accepted for publication. E. A. Yavuz and V. C. M.
Leung, “Efficient Approximations for Call Admission Control Performance Evaluations in
Multi-Service Networks,” IEEE GLOBECOM 06, San Francisco, CA, November 2006.

43




and rigid division based [8] schemes. Many dynamic GC schemes have also been proposed
to maximize the network utilization by reserving network resources for relatively higher
priority calls adaptively so that more relatively lower priority calls can be admitted [9]-[14].
Efficient adaptive reservation depends on reliable and up-to-date system status feedback;
however exact analyses of these schemes using multidimensional Markov chain models are
intractable in real time due to the need to solve large sets of flow equations. Hence,
performance metrics such as call blocking probabilities are generally evaluated using one
dimensional Markov chain models based on circuit-switched network architecture under the
simplifying assumptions that call arrivals are Poisson, channel occupancy times are
exponentially distributed with equal mean values and traffic classes have same capacity
requirements. Due to the popularity of Internet and multimedia applications, increasingly
traffic carried over wireless networks are packet-switched and statistically multiplexed over
shared channels to improve network utilization, which makes performance evaluation of call
admission control schemes harder due to the dynamic nature of the traffic. This difficulty can
be 6vercome by using the effective bandwidth [15]-[17] to represent the traffic demand of a
packet-switched traffic stream so that application of the above schemes to a packet-switched
network can still be evaluated using Markov chain models. This approach has been
successfully applied to cellular network by Evans and Everitt in [16].

However, the simplifying assumptions mentioned above may not be appropriate in
many situations since calls with different priorities may have different average channel
occupancy times if not different distributions [18] [19]. Existing performance evaluation
methods based on one dimensional Markov chain approximations, such as traditional and
normalized, lead to significant discrepancies when average channel occupancy times for
distinct QoS classes are different [20]. Thus exact analysis methods based on
multidimensional Markov chain models appeared to be the only means to obtain accurate
solutions for evaluating call admission control schemes. In [21], Rappaport obtained call
blocking probabilities for calls of various priorities in a cellular network by using a
multidimensional model, whereas with Monte, the authors developed an analytical model for
traffic performance analysis using a multidimensional birth death process to take into
consideration the effects of various platform types distinguished by different mobility

characteristics on performance [22]. These methods suffer from the curse of dimensionality,
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which results in very high computational cost for large systems, despite providing the exact
solutions.

Approximation methods for performance evaluations that have a high accuracy and
low computational cost are needed if dynamic call admission control schemes are to be
implemented in real time systems that adapt to dynamic changes in traffic statistics. Li and
Chao [23] obtained a product form solution by modeling a multicell wireless network as a
network of queues employing a hybrid GC/QP scheme with transfer of unsuccessful requests |
to neighboring cells; however their solution is restrictive to the protocol considered and
therefore may not be appropriate to be used for the performance evaluation of multi-service
models. In [24], Gersht and Lee proposed an iterative algorithm by modifying the
approximation suggested by Roberts [25] to improve its accuracy when the service rates
differ. However we showed in [20] that starting with an inappropriate initial value leads to
significant discrepancies and thus proposed an easy to implement closed form approximation
method based on one dimensional Markov chain modeling. We assumed that all classes have
same capacity requirements and independent and exponentially distributed channel
occupancy times without the necessity of having the same average values. Yet this method
applies only when the call traffic is homogeneous. In the absence of a product form solution
when capacity requirements of various classes differ, call traffic is heterogeneous, calculating
the channel occupancy distribution involves solving the balance equations numerically,
which is demanding for all but smallest channel capacities. In [26], Borst and Mitra
developed computational algorithms for the multi-service case by coupling the computation
of joint channel occupancy probabilities with that of used capacity assuming that channels
are occupied independently. The authors solved the balance equations through numerical
iteration but the results can only be comparative when the number of existing call arrival
types are high due to authors’ channel occupancy independence assumption. In this chapter,
we classify call admission control schemes into two novel categories based on the nature of
connecting links in a scheme’s transition diagram; symmetric and asymmetric. We present
performance evaluation methods with high computational efficiency for each category under
the simplifying assumptions that call arrival and channel occupancy times for all QoS classes
are exponentially distributed, but with different average values in general.

This chapter is organized as follows. In the next section we obtain the product form
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exact solution formula to evaluate symmetric call admission control schemes in multi-service
networks. In Section 3.3, we propose a novel performance evaluation appfoximation method,
which we call state space decomposition, to evaluate asymmetric call admission control
schemes in multi-service networks. Section 3.4 presents the numerical results to compare the
approximation method proposed in Section 3.3 with the exact analysis and previously
proposed approximation methods. We show that the runtime computational cost of the
proposed approximation method is significantly lower than that of the exact analysis. Section

3.5 concludes the chapter.

3.2 Performance Evaluation of Symmetric Call Admission Control

Schemes

We define a call admission control scheme symmetric if each pair of nodes are
connected by two unidirectional links in opposite directions in state transition diagram of the
scheme’s Markov chain model. The widely known complete sharing (CS), complete
partitioning (CP) and new call bounding schemes can then be regarded as symmetric. In this
section we obtain a product form exact solution formula to evaluate symmetric call admission
control schemes in multi-service networks where all QoS classes have distinct capacity
requirements. We consider a cellular system employing a symmetric scheme, new call
bounding in this case, and two classes of calls for the benefit of simplicity although any
number of classes could be possible; non-prioritized and prioritized, where the latter enjoy a
high service priority than the former: Let A,, and A, denote the arrival rates, and 1/u,, and
1/u, denote the average channel occupancy times for non-prioritized and prioritized calls
respectively. Let C denote the total number of channels in a cell and b,, and b, denote the
required bandwidth for non-prioritized and prioritized calls, respectively. We assume that the
arrival processes for both types of calls are Poisson, and their channel occupancy times are
exponentially distributed. Then, let K be the threshold between 0 and C for the new call
bounding scheme and a non-prioritized call is admitted only when there are less than K
channels occupied by non-prioritized calls in the network.

The traditional method, which uses a one dimensional Markov chain model with a
fixed average channel holding time for total cell traffic, leads to inaccurate results when

average channel occupancy times for all types of calls differ. A product form solution is
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presented in [7] to obtain the blocking probabilities of non-prioritized, B,, and prioritized
calls, B, accurately by exploiting the symmetric nature of the scheme assuming that all QoS |
classes have same capacity requirements. The authors [7] normalized the average channel
occupancy time for both types of calls to allow the arriving traffic for each type of call to be
scaled appropriately. In this section we obtain a product form solution where all QoS classes
have distinct capacity requirements. |

Let pup = Anp / tnp and p, = 4, / up, then the prioritized and non-prioritized Poisson call
arrival stream is Poisson with arrival rates p, and p,, respectively and service rates
(corresponding channel occupancy times) that are equal to 1, are equivalent to the original
streams with respect to the Markov chain model since only traffic loads are required to obtain
the stationary distributions. Yet, the arrival rates in the original system are different. Let
g(nup.ny) denote the steady state probability that there are n,, non-prioritized calls and n,

prioritized calls in the system. Then we obtain the following stationary distribution:

0< nnpbnp <K

P " Py
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and LJ represents the “floor” function which rounds its input to the nearest integer less than

or equal to the value of the input itself. Thus, the formulas for non-prioritized and prioritized
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call blocking probability are as follows:
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When K = C, the new call bounding scheme becomes the non-prioritized scheme,

however non-prioritized, B,,, and prioritized, B,, call blocking probabilities will not be the

sarné until b,, = b,. Apparently when b,, = b, = 1, both probabilities become:

(P, +P,)°
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3.3 Performance Evaluation of Asymmetric Call Admission Control

Schemes

We define a call admission control scheme asymmetric when some pairs of nodes in
the state transition diagram of scheme’s Markov chain model have unidirectional links only
in one direction. The widely known cutoff priority and fractional guard channel schemes,
which make decisions on whether an arriving non-prioritized call is going to be accepted or
not based on the number of total occupied channels in the system, can both then be regarded
as asymmetric schemes. We consider a cellular.system with two classes of calls where
prioritized calls enjoy a higher service priority than the non-prioritized ones. Let A,, A, 4y,
Unps bpy bup, Pin m and C be defined as before and g,(j) and g,,(r) denote the estimated
equilibrium channel occupancy probabilities when exactly j prioritized calls and r
non-prioritized calls, respectively, exist in the system. Let §; (i =0, 1,..., C - 1) denote the
admission probability of an arriving non-prioritized call when the number of busy channels is
iand k; G = 0,1,... (c/s, |-1)) denote the admission probability of an arriving prioritized call
when j prioritized calls exist in the cell regardless of the number of existing non-prioritized
calls. Thus &; is similar to f;, however f; is a predefined user controlled parameter that
indicates whether an arriving non-prioritized call will be admitted or not based on the number
of occupied channels in the system as opposed to k; which is extracted from the
multidimensional model of the system.

We present the following novel performance evaluation approximation method
referred as state space decomposition. Instead  of evaluating the system using a one
dimensional Markov chain model by grouping the nodes with the same total number of
occupied channels regardless of the types of calls, we group the nodes with the same number
of calls of a certain type to obtain “supernodes” to compose a one dimensional Markov chain

~model for each type of call. By grouping nodes with the same number of prioritized calls
such as  (0,0), (6up,0),...(Bup(myt,, |-1):0),  (Bup(m/p,, )0) o (0, bp),  (bupsbp)s. -
(b,,pq_m/b”pj_l),bp), (b,,p(Lm/ban),bp) together to obtain supernodes as shown in Fig. 3.1, we can
frame a one dimensional Markov chain model that we can solve to obtain the steady state

probabilities of each of these supernodes. The same approach can be utilized to group nodes

that have the same number of non-prioritized calls such as (0,0), (0, bp),...,(0, b,.(c/s, |)) or
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(61p,0), (brp, Bp)s---s (Bup, bp-((C-b,,)/b,]) together. Both one dimensional Markov chain

models obtained above are given in Figs. 3.1 and 3.2 for prioritized and non-prioritized calls,
respectively. In Fig. 3.1, we observe that for all supernodes except the ones that have at least
one member node that represents a system state in which the total number of occupied
channels is equal to the total number of channels in the system, C, there exist (m+1) pairs of
transitional flows between their member nodes and the corresponding member nodes that
belong to their neighboring supernodes. Conversely, for the rest of the supernodes there exist
some member nodes that do.not have transitional flows in between any of the corresponding
nodes that belong to their neighboring supernodes. Same can also be observed for the
supernodes shown in Fig. 3.2; however in addition to thbse mentioned above there exist some
other member nodes with unidirectional transition flows.

In Fig. 3.3, we show the one dimensional Markov chain model for prioritized calls
where each node represents a supernode composed of a set of nodes shown in Fig. 3.1. We
determine the values of the admission probabilities for prioritized calls, &;, by obtaining the
ratio of the sum of occupancy probabilities of the feasible member nodes of a supernode, for
which the system admits an arriving prioritized call, to the sum of occupancy probabilities of
all feasible member nodes of that particular supermmode. Thus, when

j=0,1,.. ﬂ_(C—(]_m/ban-b"p)/b,,J—l)a the admission probabilities for prioritized calls, ;, are equal

to 1. The equilibrium channel occupancy probability when exactly ;j prioritized calls exist,

where ¢,(7),j =0, 1,... |_C/bp_|, can be obtained from the following recursive equation.

(P, )0, (G =D = 4,0 j =L [C/b, ] 3

Solving for ¢,(0) in the equation Lcﬁbpilp( jy=1 »we obtain
j=0

ﬁ(p,, -k,)
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4,05 <|csb, | | )
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where

— . -1

J-1
[C/prH(pp k")
4,01+ 2= — 5)

Let A,, where (r =0, 1,... q_,,,/b"pj_l)), denote the admission probability of an arriving

non-prioritized call when » non-prioritized calls exist, regardless of the number of existing
prioritized calls. However, 4, shall not be confused with f; since the latter is a predefined user
controlled parameter that indicates whether an arriving non-prioritized call will be admitted
or not depending on the number of occupied channels. Similar to, yet slightly different than
k;, we determine the values of 4, by obtaining the ratio of the sum of occupancy probabilities
of the feasible member nodes of a supernode, for which an arriving non-prioritized call is
admitted, multiplied with f; to the sum of occupancy probabilities of all the feasible member
nodes of that particular supernode.

In Fig. 3.4, we show the one dimensional Markov chain model for non-prioritized
calls where each node represents a supernode composed of a set of nodes shown in Fig. 3.2.
The equilibrium channel occupancy probabilities, g,,(r), could be obtained similarly to
prioritized calls if unidirectional transition flows, shown in Fig. 3.2, did not exist. However
their existence needs to be taken into account by adjusting Unp affiliated with each supernode
appropriately. Therefore we initiate . (r) to replace uy, affiliated with each supernode in the
model given in Fig. 3.4 and determine its value by dividing the number of transition flows

departing from the associated supernode with the number of pairs of bidirectional transition

flows in between the same particular supernodes.

_lce-np, J+1
[(m—(r—1))/b, ]

1, (r) ), =1,..[m/b, | (6)
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Then we can obtain the occupancy probabilities gn,(r), 7 = 0,1,... (m/b,, |- 1), which

satisfy the following recursive equation.
oy ~hy) @y (r =) = 1o il (F) -, ()7 = Lo /B, |

. . . I_m b .
Solving for g,,(0) in the equation i q,, (r)=1,we obtain
r=0

H( np z
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H( np n
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The admission probabilities for prioritized, k;, and non-prioritized calls, 4,, cannot be

obtained without computing the occupancy probability of each feasible node. Even if the

occupancy probabilities of the supernodes for prioritized and non-prioritized calls can be

obtained using this method, we still need to compute the occupancy probabilities of certain

feasible nodes since joint occupancy probabilities of these supernodes cannot be used due to

their dependencies.
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To overcome these difficulties, we suggest the following iterative approach:

1. Initialize the value of estimated equilibrium occupancy probabilities (G(n ) for

npoTp

n, = O,l...|_m/b,,pJ and n, = 0,1...|_C/pr) by setting them equal to 1 / (total number of feasible

nodes).
2. Calculate u, (r) forr=1,... Lm/ban using (6).

3. Iterate with the following steps until the changes in the updated values of &; and
h, are not less than a chosen resolution.

3.1.  Calculate and update k; forj = 0,1,... ( /b, |-1) and g,(j) forj=0,1,... l_C/pr
using (4) and (5).

32 Update the values of estimated occupancy probabilities, g§(n,,,n,), by

apportioning the value of the last updated occupancy probability, g,(;), of the corresponding
supernode for priori‘tized calls amongst its nodes with respect to the value of last updated

occupancy probability, g,,(r), of the corresponding supernode for non-prioritized calls.
3.3.  Calculate and update A, for r = 0,1,... Q_m/bnpj—l) and gq,,(r) for r = 0,1,...

|m/b,, | using (8) and (9).

3.4. Update the values of estimated occupancy probabilities, 4(n,,,n,), by

apportioning the value of the last updated occupancy probability, g,,(7), of the corresponding
supernode for non-prioritized calls amongst its nodes with respect to the value of last updated

occupancy probability, g,(j), of the corresponding supernode for prioritized calls.

4. Obtain call blocking probabilities for prioritized and non-prioritized calls using

q(n,,,n,).

The call blocking probabilities for both types of calls are calculated as follows when

the final estimated values of equilibrium occupancy probabilities, (n,,,n,), are obtained.

npo

Lo
B,= Y dlnlC-(r-b,)/8,) | (10)




Ly, L(c-as,, /b, ]
B,= Y, > 4an (1)

a=0 n=0

(a-b, +n-b;)sz/ban

Despite its iterative nature, we expect the state space decomposition method to have
low computational cost since decomposing the whole state space into subspaces and forming
supernodes to apply one dimensional Markov chain modeling utilize the closed form
formulas obtained from one dimensional Markov chain models and make the proposed

method easy to impIement for real time applications.
3.4 Numerical Results

In this section we compare the performance of the proposed method, state space
decomposition, with Borst and Mitra’s approximation [26] and the direct (also known as LU
decomposition) numerical method. We show that the runtime computational cost of the
proposed approximation method is negligible compared to the existing numerical methods’
(i.e., direct, method of Jacobi, method of Gauss-Seidel) with respect to CPU time and
memory needed to obtain the results. We investigate the cutoff priority scheme, which 1s a
special case of fractional guard channel scheme, using the following set of parameters:
C=32,m=24(B=1fori=0, ... 23, 0 otherwise), A,, = 0.1, 1/p,,, =200, 1/, = 50 and X, is
varied from 1 to 0.05. However any fractional guard channel scheme can be chosen since
other choices of ;s would give similar results. We set the capacity requirement for
non-prioritized calls, b,,, to 1 and vary the capacity requirement for prioritized calls, b,, by
setting its value to 1, 2 and 4. Figs. 3.5 to 3.10 depict the prioritized and non-prioritized call
blocking probabilities obtained using the direct, Borst and Mitra’s and the proposed methods
under varying prioritized call traffic load, respectively. We observe for all values of b, that
when prioritized call traffic load is higher than non-prioritized call traffic load (i.e., pp > pup),
both call blocking probabilities approximated by the proposed method match the exact results

obtained by the direct numerical method very well. However Borst and Mitra’s

approximation method overestimates the prioritized call blocking probability generously




while it underestimates the non-prioritized call blocking probability extensively when
Pp > pnp- When the prioritized call traffic load is lower than the non-prioritized call traffic
load (i.e., pp < pup), the state space decomposition method slightly overestimates the
prioritized call blocking probability while it sligh’dy underestimates the non-prioritized call
blocking probability with the discrepancy increasing as both traffic loads are decreasing. Yet,
Borst and Mitra’s method gives a better approximation only when both traffic loads are very

low due to its assumption on independent channel occupancy.

The discrepancy observed when non-prioritized call traffic load takes over prioritized
call traffic load (i.e., pp < pup) is due to an assumption that we made in the iterative solution
described above, i.e., the steady state probabilities of all nodes that are members of the same
particular supernode for prioritized calls are proportional to each other with the same ratio
that exists between the steady state probabilities of the corresponding supernodes for
non-prioritized calls, and vice versa. Therefore we expect proposed method to approximate
steady state probabilities of nodes that are members of supernodes which have relatively less
number of member nodes better with respect to the others that are members of supernodes
which have relatively more number of member nodes. However this is not a significant
problem unless p,, >> p, since call blockings mostly occur at nodes that are members of
supernodes which have relatively less number of member nodes and thus closer to the edges
of transition diagrams. When non-prioritized call traffic load takes over the prioritized call
traffic load, the steady state probabilities of the nodes that have relatively more number of
non-prioritized calls dominates the others needed to compute a particular call blocking
probability and thus lead to discrepancy. On the other hand, Borst and Mitra’s method
approximates better only when both call traffic loads are very low due to the channel
occupancy independence assumption that the authors made [26]. When each of the individual
classes accounts for a substantial portion of the total amount of capacity in use, it leads to
mutual dependence as the traffic load increases. Both approximation methods perform

relatively better when the capacity requirement for prioritized calls, b, increases.

When we increase the number of shared channels, m, to 28 and keep all the
parameters given above same, less number of non-prioritized calls are blocked. We observe
that call blocking probabilities for both types of calls are estimated more accurately since

scheme’s transition diagram has more supernodes for non-prioritized calls that have relatively
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less number of member nodes. We make another comparison in Figs. 3.11 to 3.16 by using
the following set of parameters: C = 32, m =28 (f; =1 for i = 0, ... 27, 0 otherwise),
Mp = 0.1, Vun, = 200, 1/u, = 50 and A, is varied from 1 to 0.05. We set the capacity
requirement for prioritized calls, b,, to 1 and vary the capacity requirement for
non-prioritized calls, b,,, by setting its value to 1, 2 and 4. The results are similar to the first
case, however when the capacity requirement for non-prioritized calls, b,,, increases, the
discrepancy observed in non-prioritized call blocking probabilities obtained from the
proposed method increases while it decreases for the ones obtained from Borst and Mitra’s
method. Yet, Borst and Mitra’s method still approximates better than the proposed method

only when both traffic loads are very low.

In [20] we proposed a closed form approximation method, effective duration time, to
evaluate call blocking performance in cellulaf networks under homogeneous traffic. The
method provides accurate results, but the results are sensitive to the average values of
channel occupancy times. We use the following set of parameters to compare the
performance of this method to the proposed state space decomposition method’s to observe if
it is more sensitive than the previously proposed method under homogeneous traffic: C = 32,
m =28, Ay = 0.1, Vuu, = 200, 1/4, = 50, b, = b,, = 1 and 4, is varied from 1 to 0.05. Figs.

'3.17 and 3.18 depict the prioritized and non-prioritized call blocking probabilities,
respectively, under different prioritized call traffic loads. When call traffic load is varied by
changing the value of call arrival rates we observe that both methods slightly overestimate
the prioritized call blocking probability when p, < p,, whereas the results obtained from both
approximation methods match the results obtained from the direct numerical method very
well when p, > p,,,. The state space decomposition method underestimates the non-prioritized
call blocking probability while the effective duration time method provides results that match
well with the exact solutions.

On the other hand, when we keep the set of parameters given above the same but set
Ap to 0.5 and vary the céll traffic load by changing the value of average channel occupancy
times, 1/u,, from 5 to 100, we observe that the results obtained from both approximation
methods matched the ones obtained by the direct numerical method very well when p, > p,,
whereas the effective duration time method degenerates slightly compared to the previous

results given above when p, < py,. Figs. 3.19 and 3.20 show the call blocking probabilities for
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prioritized and non-prioritized calls, respectively. We observe that the state space
decomposition method is indifferent to changes in average channel occupancy times as

opposed to the effective duration time method.

Computationally efficient approximation methods for evaluating call admission
control schemes are studied to replace methods such as the direct which provides exact
solutions by solving large sets of flow equations. Product form solutions are preferable due to
their computational efficiency; however it is very difficult to find one to evaluate asymmetric
call admission control schemes. Considering that state space decomposition method is
iterative, we need to compare it with the direct and other widely used iterative methods such
as the method of Jacobi, method of Gauss-Seidel and method of Borst-Mitra with respect to
runtime computational cost to emphasize its benefits. We choose the parameters “CPU time”
and “used memory” to compare the computational efficiencies of the numerical and the
approximation methods. We define “CPU time” as the total processing time (in seconds) a
- CPU spends from the time that the computation is started for each method and the “used
memory” as the amount of storage allocated for nonzero matrix elements. We use the
following set of parameters to obtain the numerical results presented in Table 3.1 by
evaluating an asymmetric CAC scheme, cutoff priority, for three different scenarios: C = 6,
m=5,hp=0.02 C=32, m=28,%,=0.1, C=64, m =56, Ay, = 0.5, while 1/u,, = 200,
1/u, = 50, b, = by, = 1 and A, varies from 0.2 to 0.01, 1 to 0.05 and 5 to 0.25, respectively.
The parameters are chosen to obtain similar values of call blocking probabilities for both

classes of calls in all three scenarios to make the comparisons appropriate.

The simulation results given in Table 3.1 show that the CPU times and the used
memory obtained from our approximation method is almost negligible when compared with
the ones obtained from the direct numerical solution, method of Jacobi and method of
Gauss-Seidel especially when the number of channels in the system increases. This is not
surprising even though the proposed approximation method is iterative, since one
dimensional Markov chain models with closed form formula solutions for each call type are
utilized to estimate the steady.state probabilities. Nevertheless the values of the admission
probabilities for the prioritized, kj, and the non-prioritized, 4;, calls converge fast. Both the
method of state space decomposition and Borst-Mitra perform similar to a closed form

formula solution with respect to CPU times and used memory given in Table 3.1. The latter
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computes the solution faster using less memory compared to the former, however the
proposed method approximates more accurately compared to the latter despite the

insignificant rise in computational cost.

3.5 Summary

In this chapter we have classified call admission control schemes into two categories;
symmetric and asymmetric. We obtained a product form exact solution formula to evaluate
symmetric call admission control schemes in multi-service networks in section 3.2 and
proposed a novel computationally efficient approximation method that uses an iterative
approach to evaluate the call blocking performance of asymmetric call admission control

schemes in multi-service networks in section 3.3.

We compared the numerical results obtained from the proposed approximation
method, state space decomposition, with the ones obtained from a previously proposed
approximation method by Borst and Mitra and the numerical method, direct, which provides
the exact solution. We showed that the total processing time a CPU spends to compute the
solution and the amount of storage allocated during this computation are almost negligible
when the proposed approximation method is compared with the existing numerical methods’
such as direct, method of Jacobi and method of Gauss-Seidel. Numerical results showed that
the proposed method provides results that match better with the exact solutions compared to
the ones provided by the method of Borst-Mitra while keeping the computational cost low.
Decomposing the whole state space into subspaces and forming supernodes to apply one
dimensional Markov chain modeling to use its closed form formulas iteratively make our
proposed approximation method have comparatively low CPU times and memory usage with

respect to those obtained from single closed form formula solutions.

Many dynamic call admission control schemes have been proposed to maximize the
network utilization. These dynamic schemes help networks to accept more calls with low
_priorities by adaptively reserving the amount of resources needed for calls with high
priorities. However the accuracy of adaptive reservation depends on the quality and
up-to-dateness of the feedback received during real time applications. Thus the challenge 1s

to provide this feedback to the call admission control mechanism in real time. Considering
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the high computational cost of the existing numerical solution methods, finding performance
evaluation approximation methods with low computational cost is inevitable if these dynamic
call admission control schemes are going to be implemented in cellular networks. We believe
that providing easy to implement performance evaluation approximation methods with low

computational cost will help motivate the practical implementation of dynamic call

admission control schemes.
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Fig. 3.1 Transition diagram for asymmetric call admission control schemes
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Fig. 3.5 Prioritized call blocking probability for the cutoff priority scheme
bp=1,b,,=1,and m = 24.
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Fig. 3.6 Non-prioritized call blocking probability for the cutoff priority scheme
bp=1,byp=1,and m =24,
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Fig. 3.7 Prioritized call blocking probability for the cutoff priority scheme
b,=2,b,p,=1,and m=24.
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Fig. 3.8 Non-prioritized call blocking probability for the cutoff priority scheme
b,=2,b,=1,and m=24.

63




Blocking probability of prioritized calls

—¥- Direct method
—©— Borst - Mitra method
—&— Proposed method

I T

0 S 10 15 20 25 20 35 40 45 50
Prioritized call traffic load

Fig. 3.9 Prioritized call blocking probability for the cutoff priority scheme
b,=4,b,=1,and m =24,
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Fig. 3.10 Non-prioritized call blocking probability for the cutoff priority scheme
b,=4,b,,=1,and m =24,
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Fig. 3.11 Prioritized call blocking probability for the cutoff priority scheme
bp=1,byp=1,and m =28.
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Fig. 3.12 Non-prioritized call blocking probability for the cutoff priority scheme
bp=1,by,=1,and m =28.
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Fig. 3.13 Prioritized call blocking probability for the cutoff priority scheme
b,=1, by, =2,and m =28.
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Fig. 3.14 Non-prioritized call blocking probability for the cutoff priority scheme
b,=1,b,,=2,and m =28.
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Fig. 3.15 Prioritized call blocking probability for the cutoff priority scheme
bp=1,b,,=4,and m =28.
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Fig. 3.16 Non-prioritized call blocking probability for the cutoff priority scheme
b,=1,b,,=4,and m=28.
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Fig. 3.17 Prioritized call blocking probability for the cutoff priority scheme
by=bup=1, pup=20,p,=2.51050,4,=0.05to 1.
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Fig. 3.18 Non-prioritized call blocking probability for the cutoff priority scheme
by=by=1,pyy=20,p,=2.51t050,%,=0.05to0 1.
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Fig. 3.19 Prioritized call blocking probability for the cutoff priority scheme
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Fig. 3.20 Non-prioritized call blocking probability for the cutoff priority scheme
by="bn, =1, pyp =20, p,=2.5t0 50, 1/u, =5 to 100.
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TABLE 3.1

Comparison of runtime computational costs between the proposed approximation method
and the Borst-Mitra, direct and iterative methods

Total number of channels = C, total number of shared channels = m

C=6,m=5 C=32,m=28 C=64,m=56
NMUZTEZ)‘S:I E;E used memory EE}; used memory CPUtime  used memory
Direct 0.07s 3.82¢+03 30.74s 152e+04 49m8s 222.52e+05
Method
Method of 0.255 2.46+03 29.965 91.6e+04 1lm24s  133.64e+05
Jacobi
Method of 0.185 2.46e+03 1m46s 91.6e+04 1h33m24s  133.64e+05
Gauss-Seidel
Borst — Mitra 0.003s 0.12e+03 0.02s 0.05e+04 0.033s 0.011e+05
Method
Proposed 0.006s 0.13e+03 0.04s 0.14e+04 0.45s 0.046e+05

method
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CHAPTER 4 PROBABILITY DISTRIBUTION OF CHANNEL OCCUPANCY

TIMES AND NUMBER OF USER HANDOFF IN CELLULAR NETWORKS®

4.1 Introduction

The evolution of cellular networks has been accompanied not only by voice but also
by the development, growth, and use of a wide variety of network applications.
Packet-switched services are gradually integrated with the conventional circuit-switched ones
such as voice to accommodate network applications that range from text-based utilities such
as SMS messaging, file transfer, remote login and electronic mail to MMS messaging,
videoconferencing, multimedia streaming, web surfing and electronic commerce. The
advantage of having packet-switched data services overlaid on circuit-switched technology
over the same air interface is the utilization of excess network capacity available in each cell.
Statistical multiplexing is used to transmit data packets over radio interface to provide a QoS
level comparable to that of circuit-switched services. Statistical multiplexing gain arises from
the talk spurt to silence ratio found in speech which makes it possible to multiplex more than
one service on to the same radio channel. However accurate voice traffic statistics are needed
to understand the length and frequency distributions of idle periods of cellular channels
assigned to voice in order to exploit the statistical multiplexing gain in cellular networks.

Traffic statistics are important not only for statistical multiplexing and thus network
management but also for performance evaluation in communication networks, billing,
optimization and allocation of safety buffers. These statistics simulate network traffic when
evaluating networks using mathematical models. Call holding and channel occupancy times
are two of these traffic statistics that are needed to compute performance metrics such as call
blocking/dropping probabilities. Call holding time is defined as the duration of requested call
connection which corresponds to holding time for a wired phone call or session time in a

computer system, whereas channel occupancy time is defined as the time that a mobile

* A version of this chapter has been accepted for publication. E. A. Yavuz and V. C. M.
Leung, “Modeling Channel Occupancy Times for Voice Traffic in Cellular Networks,”
IEEE ICC 2007, Glasgow, Scotland, June 2007.
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occupies channel(s) within a cell during its residence in the cell. In the literature, wireless
network traffic has been approximated based on wireline traffic statistics where call holding
times are generally considered to be exponentially distributed. Hong and Rappaport [1]
proposed a traffic model for cellular mobile radio telephone systems and showed that channel
occupancy time distribution can be approximated by exponential distribution only when call
holding times are exponentially distributed. In the literature cellular networks have been
mostly evaluated under this assumption due to its tractability. Ramjee et al. [2], Fang and
Zhang [3], Naghshineh and Schwartz [4], Gersht and Lee [5], Borst and Mitra [6] and Yavuz
and Leung [7] studied performance of various call admission control schemes using one
dimensional Markov chain models assuming that channel occupancy times are exponentially
distributed. In [8], Rappaport developed multidimensional models under the same
assumption and with Monte, the author obtained call blocking probabilities using this model
[9]. However simulation studies and field data have shown that these assumptions are not
perpetually valid. Guerin [10] used a simulation model to show that channel occupancy time
distribution displays a rather poor agreement with the exponential fitting for mobile users
with low change rate of movement direction. Jedrzycki and Leung showed in [11] that
exponential distribution assumption for channel occupancy times is not correct and a
lognormal model approximation fits much better using real cellular data. In [12] and [13], -
Fang et al. demonstrated that channel occupancy times in a cellular network depend not only
on call holding times but also on users’ mobility which can be characterized by cell residence
time distribution. The authors showed in [14] that channel occupancy time is exponentially
distributed only if cell residence time is exponentially distributed. However it is also
observed in the same study that channel occupancy time distribution have a good
approximation by exponential distribution in general when the mobility is low. In [15],
Barcelo and Jordan analyzed a cellular network based on a fully empirical approach and
observed that channel occupancy is less spread out than if exponential distribution was
assumed.

In this chapter, we present an analysis of real traffic data obtained from a number of
cell sites in Bell Mobility Canada’s cellular network. Similar to the empirical study presented
in [11], we obtain the probability distributions for channel occupancy times however we

classify them according to their occupancy types to perform goodness-of-fit tests for each
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type of channel occupancy times and users. In order to facilitate this classification, we briefly
review the life cycle of a typical cellular call first. In a cellular network, the service area is
covered by base stations whose radio coverage defines the corresponding cell. Each base
station is assigned a set of mobile users. When a new call is originated by a mobile user in a
cell, one of the channels assigned to the base station is used for communication between that
mobile user and the base station if a channel is available. If a channel can be assigned to a
call, it will be kept until the call is completed or the user moves out of the corresponding cell.
When the user moves into a new cell while having an active call, a new channel needs to be
acquired in the new cell using a “handoff procedure.” We name the amount of time that a call
occupies any channel during its holding time total regardless of being started in a cell and
completed in the same cell or handoff to another. We classify channel occupancy times based

on the following occupancy type characteristics:

- channels occupied by calls that are started and completed in the same cell
(neszamé).

- channels occupied by calls that are started in a cell but handed off to a
neighboring cell (new2ho).

- channels occupied by calls that are started in a cell and either completed in the
same cell or handed off to a neighboring cell (newZ2sameorho). This type of
channel occupancy is very important for Markov chain modeling of cellular
networks and classified as “new calls” in the models.

- channels occupied by calls that are handed off to a cell and completed in that cell
(ho2same).

- channels occupied by calls that are handed off to a cell but handed off once more
before completed (ho2ho).

- channels occupied by calls that are handed off to a cell and either completed in
that cell or handed off once more before completed (ho2sameorho). This type of
channel occupancy is very important for Markov chain modeling of cellular

networks and classified as “handoff calls” in the models.

The benefits of good knowledge about various types of channel occupancy times are
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basically twofold.

1. Analytical models are developed using Markov chain modeling to evaluate
performance in cellular networks. When a call admission control scheme is
modeled for each cell in a cellular network, arriving calls to a particular cell are
grouped into QoS classes or call types, such as new and handoff, based on their
first appearance in the corresponding cell. Channel occupancy time distribution
for each QoS class or call type includes respective channel occupancy times
counted only until the corresponding calls discard the occupied channels in the
cell due to call termination or handoff. Call holding time distribution, on the other
hand, includes the amount of times that the channels are occupied by a call until it
terminates either in its originating cell or another. The results presented in this
paper are useful for providing sufficiently representative channel occupancy time
statistics to develop analytical models since call holding time statistics are not
sufficient alone.

2. Simulation provides a second approach towards network performance evaluation
by building a mathematical model of the network to analyze its behavior as time
progresses. The results presented in this chapter are very useful for feeding

simulations with realistic traffic statistics to obtain network performance metrics.

This chapter is organized as follows. In Section 4.2, we explain the data acquisition
method that we use to obtain statistics for various types of channel occupancy times and
discuss system related anomalies that we observe. Section 4.3 consists of the candidate
distributions that we propose to represent the empirical data set, the statistical tools,
parameter estimation techniques and goodness-of-fit tests utilized in the study. In Section 4.4,
we present the statistical results obtained from the goodness-of-fit tests performed for each
aforementioned type of channel occupancy times along with the observed data histograms
and fitted distributions. We examine how modeling call holding times with the best fitting
candidate distribution would impact performance metrics such as call blocking probabilities
instead of modeling with the traditionally accepted exponential distribution. We provide the

statistical results obtained from the goodness-of-fit tests performed for channel occupancy
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and call holding time distributions for stationary and mobile users. Finally we presenf the
statistical results obtained from the goodness-of-fit test performed to fit the distribution of the
number of handoffs committed by a user to a candidate distribution. We will conclude the

chapter in Section 4.5.

4.2 Data Acquisition and System-Related Anomalies

In this chapter, we analyze cellular call data obtained from the CDMA system
deployed by Bell Mobility in Ontario, Canada. In Bell’s CDMA system a call can be in up to
6 way soft/softer handoff at anytime. However call handoffs have been modeled differently
in the literature in traditional mathematical and simulation network models developed for
evaluating performance in cellular networks: a call is traditionally assumed to communicate
via one primary sector at any given time unless it is in handoff. In the empirical data set, we
obtain the values of E/I,, ratio of the pilot signal energy to the total power in the channel, for
each active call by observing the corresponding “Neighbor List Tuning Data Array”
messages to determine a call’s primary sector. An example of a “Neighbor List Tuning Data
Array” message is given in Table 4.1. For a call at any given time, we take the sector which
the call has the highest E./I, value in its active set as the primary sector of that call for that
particular time. We compute E/I, value of a call in a sector by dividing the value of call’s
“pilot strength” given for that sector in the “Neighbor List Tuning Data Array” message by
-2. For example for the sample message given in Table 4.1, E/I, value of the active call is
equal to -12 for its primary sector where the corresponding “pilot strength” is equal to 24.

We assume that handoffs are technology independent which happen at the equal
power boundaries. We use the “Neighbor List Tuning Data Array” messages to detect the
committed handoffs by observing a call’s primary sector being replaced by other sectors that
have the highest Ec/l, value in the corresponding call’s active set at the time of observation.
We take an entirely empirical approach in this work based on true data collected from actual
working systems. However unlike analytical and simulation approaches, the empirical
approach depends on the environment and therefore may contain system related anomalies.
The results presented in this paper might have been different if taken in a different place, time
etc. We believe that all approaches are complementary and have more or less advantages or

disadvantages depending on the specific application. Figs. 4.1 to 4.7 depict the distribution of

78




channel occupancy times classified as new2same, new2ho, new2sameorho, ho2same, ho2ho,
ho2sameorho and total respectively. Upon close inspection of the distributions given in Figs.
4.1 to 4.7, we observe two sorts of anomalies: unusually high number of short channel
occupancy times and spikes. The unexpected behavior of channel occupancy times classified
as ho2ho (see Fig. 4.5) and ho2sameorho (see Fig. 4.6) are due to the “pilot pollution” in the
data set since several pilot signals are observed to be close to the “add-drop” thresholds and
thus come in and get out of their active sets frequently (no dominant primary sector). The
unexpected behavior of the channel occupancy times classified as newZsame (see Fig. 4.1),
new2sameorho (see Fig. 4.3) and total (see Fig. 4.7) is similar to what is observed by Bolotin
in [16]. The author categorized the observed short channel occupancy times into four

different classes in order of increasing average times [16]:

- various abandonment before the connection over the network is established.

- outgoing calls that encounter busy condition and therefore being abandoned by
the caller.

- - outgoing calls that encounter no answer condition and therefore being abandoned
by the caller.

- outgoing calls that encounter a busy or no answer condition and therefore

followed by a voice mail message left by the caller.

Second type of anomaly is the spikes that we observe within channel occupancy time
samples classified as new2same around 16" second and ho2ho around 4™ second. The former
can be explained due to calls that encounter no answer and therefore go to voice mail while
the latter can be explained due to “immediate handoff candidatecy”. The spikes observed
around 16™ second within channel occupancy time samples classified as new2sameorho and
total and the spikes observed around 4™ second within channel occupancy time samples
classified as ho2sameorho are due to same samples that created the spikes within channel

occupancy time samples classified as new2same and ho2ho, respectively.
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4.3 Statistical Methods

4.3.1 Candidate Probability Distributions

We choose the following theoretical distribution models that can reasonably represent
the observed empirical distributions before carrying out the fitting estimations. We propose a
list of candidate theoretical continuous distributions and describe their properties along with
examples of processes for which they can serve as models. The list of the proposed candidate

distributions is given below along with the main statistics provided in the Appendix.

1. Exponenﬁ'al Distribution: This distribution is often used to model the time
between events that happen at a constant average rate. It is the only continuous
memoryless probability distribution and thus highly appreciated for achieving
analytical results in Markov processes, making it easier to analytically solve
systems involving queues. The exponential distribution plays a strong role in the
theory of congestion systems and modeling processes such as duration of
traditional phone calls, the time between failures of certain types of electronic
devices, and the time between interrupts received by a CPU in a computer system.

2. Lognormal Distribution: The lognormal distribution is the probability distribution
of any random variable whose logarithm is normally distributed. A variable might
be modeled as lognormal if it can be thought of the product of many small
independent positive variables. A typical example is modeling the time until a
system fails or the time to perform manual tasks such as assembly, inspection or
repair. _

3. Gamma Distribution: The gamma distribution is a continuous distribution that is
often used to model the average lifetime or the sum of lifetimes of various items
that have exponential lifetimes. It describes the time until #» consecutive rare
random events occur in a process with no memory. It is a popular candidate for
modeling processes such as the time to perform a manual task and the CPU time a
job requires due to its ability to assume many shapes. The exponential distribution

and the Erlang distribution, which can be expressed as the sum of independent




exponential distributions, are the two important special cases of the gamma
distribution.

4. Weibull Distribution: This distribution is often used in reliability analysis due to
its versatility to model the distribution of time until failure. In particular every
exponential distribution is also a Weibull distribution since a Weibull distribution
is defined by modifying the constant event occurrence rate of an exponential

distribution to make it time dependent.

Other distributions such as Beta, Poisson or Pareto are not proposed as candidate
distributions in this study due to lack of theoretical and empirical criteria to support them as

candidates.

4.3.2 Parameter Estimation

Once the candidate distributions are proposed, we need the parameters for each
distribution estimated from the empirical data set. There are many methods to estimate a
particular parameter of a given distribution such as probability plotting, méthod of moments
and maximum likelihood estimation. A probability plot is a graphical comparison of an
empirical distribution with that of a candidate distribution. The method of moments consists
of equating the first few moments obtained from an empirical data set with the corresponding
moments of a candidate distribution to solve the number of equations that match with the
number of unknown parameters to obtain the required estimates. This method usually yields
fairly simple and consistent estimators, however the given estimators can be biased and
inefficient. The maximum likelihood estimation (MLE) method consists of obtaining
parameters that maximize the probability of obtaining the empirical data in the whole sample
‘set [17]. The principle of this method is to select a value as an estimate for which the

observed sample is most likely to occur.

In this chapter, we use the maximum likelihood estimation method to obtain the
required parameters since it usually produces consistent estimators. It is also shown to be the
most efficient method under certain regularity conditions when the sample size approaches

infinity [18]. The advantage of using MLE over other methods is that it gives better fit results
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than method of moments when the goodness of fit test is applied [17]. MLE captures the
shape of the empirical distribution much better than the method of moments since it is not
tied to the first moments of the sample. Even though the method usually works quite well, it
has some drawbacks: the estimators may be biased for small sample sizes; the method has a
higher complexity of parameter computation; and the moments of the empirical and
candidate distributions may not agree. The difference between the moments of the candidate
and empirical distribution is slight for distributions with good fit; however the system of
equations that needs to be solved to compute the required parameters may not always be a

closed form solution or a unique solution may not even exists.

4.3.3 Goodness-of-fit Tests

Statistical tests that determine whether a given theoretical probability distribution is
appropriate to characterize an observed sample data set are called goodness-of-fit tests [19].
These tests are statistical hypothesis tests that are used to assess formally whether the
observed data are independent samples from a particular distribution. However failure to
reject the null hypothesis that claims the observed data Samples to be IID random variables
with a particular distribution function, should not be interpreted as accepting the null
hypothesis as being true. Law and Kelton noted in [17] that these tests are often not very
powerful for small to moderate sample sizes and thus should be regarded as a systematic
approach for detecting fairly gross differences instead. Yet if the sample size is very large, the
authors observed that these tests almost always reject the null hypothesis. Even an instant
departure from the hypothesized distribution is detected for a large sample size, since the null
hypothesis is virtually never exactly true. Therefore it is more important to find the
theoretical distribution that fits the empirical data best even if it may be rejected with a
“relatively small” margin by the respective goodness of fit test. In this chapter we are not
only looking for an accepted theoretical distribution, but also an order in which the candidate
distributions fit the empirical data set since it is usually sufficient to have a distribution that is

“nearly” correct due to its benefits such as [15];
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- building appropriate queuing models with the corresponding general distributions
to simulate systems since highly accurate performance metrics can also be

obtained using approximations.

- exploiting idle times in the traffic channels of the mobile systems for the insertion

of data on a non-preemptive basis.

- scheduling the channel to be interrupted when an emergency call arrives at a
blocked system (to interrupt the channel with the lowest expected remaining

occupancy time or to predict the first available channel for handoff).

The chi-square test is the oldest goodness-of-fit hypothesis test that can be thought of
as a more formal comparison of a histogram with the proposed candidate probability
distribution. To compute the chi-square test statistic in either continuous or discrete case, the
entire range of candidate distribution must be divided into k adjacent intervals [z, ¢;), [¢, 2),

oo, [tk1, ), where ty and ¢ can either or both be -co0 and +oo, respectively. Then we check
N; = number of observations in the jth interval [#.;, #)

forj=1, 2, ..., k and compute the expected proportion p; of the observations that would fall
in the jth interval if we were sampling from the candidate probability distribution. In the

continuous case,

p= [f.(x)-dx 1)

where f.(x) is the probability function of the candidate continuous distribution. For discrete

data,
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p;= > filx) )

1o Sx<t;

where fy(x;) is the probability function of the candidate discrete distribution. Finally, the test

statistic is

2 _ : (Nj—npj)z
* jZ:I: np,;

)

The test statistic is expected to be small if the fit were good since np; will then be the
expected number of observations that would fall in the jth interval. The most troublesome
aspect of carrying a chi-square goodness of fit test is choosing the number and size of the
bins. This is a difficult problem and no definitive prescription can be given that is guaranteed
to produce good results in terms of validity (actual level of the test close to the desired level
o) and high power for all hypothesized distributions and all sample sizes. Therefore the major
drawback of the chi-square test is the lack of clear prescription for interval selection.
However Law and Kelton suggested a few guidelines in [17]. The authors proposed the
equiprobable approach which chooses the bin intervals so that the expected proportion of the
empirical data set that fall in each interval will be equal to each other. Even though this might
be inconvenient to apply to some continuous distributions since the distribution function of
the candidate distribution must be inverted, it will be possible to make the values of the
expected proportion of the empirical data set approximately equal for discrete distributions. It
is also stated in [17] that the chi-square test will be approximately valid if the number of bins
is greater than 3 and the minimum number of expected number of observations in a bin is 5

for equiprobable intervals.

Kolmogorov-Smirnov (K-S) tests, on the other hand, compare an empirical data set
with a candidate distribution without grouping the data. Thus, no information is lost when
applying this test which eliminates the troublesome problem of interval specification. It is

valid for any sample size however the major drawback of a K-S test is its range of
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applicability which is more limited than that for chi-square tests [17]. These tests are valid
only if all the parameters of the hypothesized distribution are known and the distribution is
continuous, which means that the parameters cannot be estimated from the empirical data set
and even if it will; this in fact will produce a conservative test. The K-S test statistic is the
largest (vertical) distance between the empirical and the candidate distribution function,
however giving the same weight to this distance for all observed values is another drawback
of these tests since many distributions of interest differ primarily in their tails. The
Anderson-Darling (A-D) test is a modification of the K-S test that is designed to detect these
discrepancies in the tails. It has higher power than the K-S test against many alternative

distributions yet it is only available for a few specific distributions [17].

In this study, we use the chi-square test which remains in wide use since it can be
applied to any hypothesized distribution with parameters estimated from the observed data.

We perform the following steps:

1. Divide the data into groups with respect to occupancy types and sort it by channel
occupancy times. This will let us visually see the data distribution for each group
with a different occupancy type as a histogram. The normalized histograms for all

channel occupancy types are shown in Figs. 4.1 to 4.7.

2. Choose a list of candidate distributions to which each group of data will be fitted
and calculate the parameters for each distribution using the corresponding

maximum likelihood estimation equations.

3. Choose the number of bins into which each group of data will be divided,
calculate the expected number of observations in each bin and confirm that it
exceeds the minimum number of expected number of observations given in [17].
Each bin should be created to assure that its expected number of observations is
equal to that of others created for the same candidate distribution being tested.
Therefore the bins have to be recalculated every time a different set of distribution

parameters are used or a new distribution is tested. For each group of data, the bin

boundaries should satisfy




[npj :”'(p’”{X<tj}_P”{X<t(j-1)})JZ5 )

wherej=1,2, ... k

pj is the probability of a data item from the distribution that falls into bin j,
k is the number of created bins, s

to, t], ... ty are the upper bin boundaries,

n is the total number of observations in the data set and

np; is the expected number of observations in the jth bin.

4. Divide the observed data in each group into its corresponding created bins whose
upper boundaries are given in the previous step. However each data group should
be made continuous in advance by spreading it evenly within 0.5 seconds of their
discrete values since all candidate distributions that we propose are continuous

due to their nature.
5. Calculate the test statistics for each data group using (3).

6. The null hypothesis is rejected in each case if the value of the test statistics
calculated by the previous step is greater than the value of the chi-square statistics
with k — / — z degrees of freedom, where z is the number of parameters estimated.
We set the significance level of the performed tests equal to the traditional value

of 0.95 (0. = 0.05).

4.4 Numerical Results

4.4.1 Statistical Results for Channel Occupancy Times

In this section, we present the statistical results obtained from the goodness-of-fit tests

performed for each aforementioned type of channel occupancy times. The results show that
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all types of channel occupancy times resemble either lognormal or weibull distributions.
However only for two of these, new2ho and hoZnew, the candidate probability distributions
were able to pass the chi-square goodness-of-fit test with lognormal being a better fit than
weibull. Upon close inspection of the rest of data histograms given in Figs. 4.1, 4.3, 4.5, 4.6
and 4.7, we observed two sorts of anomalies which we addressed in section 4.2: unusually
high number of short channel occupancy times and spikes. None of these distributions fits
statistically to a proposed candidate distribution due to the observed anomalies. Thus,
filtering these empirical data sets is inevitable since no candidate distribution can otherwise

be fitted to the data.

All short channel occupancy times less than 3 seconds are discarded from the
respective data sets of channel occupancy time distributions classified as newZsame,
new2sameorho and total since most of them are calls terminated abnormally due to reasons
given in section 4.2. The excess channel occupancy times observed at the 16™ second in the
same data sets given above and at the 4™ second in the data sets of channel occupancy time
distributions classified as ho2ho and ho2sameorho are stripped from the rest using simple
means. The test and the chi-square statistics obtained from the revised goodness-of-fit tests
for each type of channel occupancy are presented in Tables 4.2 to 4.8. The null hypothesis is
rejected in each case if the value of the test statistics is greater than the value of the
chi-square statistics. All significant levels are 0.95, the candidate probability distributions
which pass the chi-square goodness of fit test are marked with a star (*) and the test statistics
for the closest fitted candidate distributions given in the tables are bolded. Figs. 4.1 to 4.7
show the closest fitted candidate distribution and the fitted exponential distribution along

with the normalized histograms for all types of channel occupancy times, respectively.

Figs. 4.1, 4.3 and 4.7 show the traditionally accepted fitted exponential distribution
underestimating the short channel occupancy times while overestimating the rest except
around 16™ second, where unusually high number of channel occupancy times is observed.
However the closest fitted candidate distribution, lognormal, slightly overestimates the short
channel occupancy times except at 16" second while it matches well with the rest. For
channel occupancy types of new2ho and hoZsame, it is shown in Figs. 4.2 and 4.4 that the

fitted exponential distribution underestimates the short channel occupancy times while it
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overestimates the rest. The closest fitted candidate distribution, lognormal, matches the
observed distribution very well except for very short channel occupancy times which it
slightly overestimates. Figs. 4.5 and 4.6 show the channel occupancy time distributions for
types of ho2ho and hoZsameorho. The traditionally accepted fitted exponential distribution
underestimates the short channel occupancy times while it overestimates the rest. Yet, the
closest fitted candidate distribution, lognormal, slightly overestimates the short channel
occupancy times except around 4™ second while it matches well with the rest. We observe in
-general that lognormal distribution is. by far the closest fitted distribution for each channel

occupancy type when compared with other candidate distributions.

4.4.2 The Effects of Traffic Remodeling on Performance Evaluation

In this section, we demonstrate how modeling call holding times with a lognormal
distribution would impact performance metrics such as call blocking probabilities instead of
modeling with a traditionally accepted exponential distribution. Let us assume that we are
modeling a cellular network in a single cell with a fixed amount of bandwidth capacity, C.
We assume that a Poisson process describes the arrival of each call that requires a single
channel and when all channels are occupied, all arriving calls are assumed to be rejected and
thus lost. We can compare this model to an M/M/C system with no queues available. First, we
simulate our model using exponentially distributed call holding times with various mean
values (//1) within the range of 10 sec/call to 120 sec/call that are set equal to the mean
values of all types of channel occupancy times obtained from the empirical data set using the
maximum likelihood estimation. We assume that the bandwidth capacity of the cell, C, is
equal to 20 and we choose a constant average call arrival rate of 1 call/sec to obtain call
blocking probabilities that overlay [0, 1] interval exclusively. Then we simulate the model
using lognormally distributed call holding times with the corresponding x’s and ¢’s obtained
from the same empirical data set to have equivalent mean values with the exponentially
distributed call holding times. The results are given in Fig. 4.8. We observe that call blocking
probabilities obtained when call holding times are exponentially distributed match well with
the call blocking probabilities obtained when call holding times are lognormally distributed
provided that both distributions have means that are alike. However, we shall note that it is

more challenging to compute the parameters (u and ¢) of a lognormal distribution using the
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expected value obtained from an empirical data set when compared to computing the mean

value for an exponential distribution.

4.4.3 Channel Occupancy and Call Holding Times of Statidnary and Mobile Users

In this section, we present the statistical results obtained from the goodness-of-fit tests
performed to fit a proposed candidate distribution to observed channel occupancy and call
holding times when these distributions are grouped with respect to user mobility: stationary
and mobile. In [12] and [13], the authors demonstrated theoretically that traffic characteristics
such as channel occupancy times depend not only on call holding times but also on users’
mobility which can be characterized by cell residence times. However, it is difficult to obtain

cell residence times from the data sets since the observed data are collected from network
| nodes which track idle mobile users by exchanging messages very infrequently. Thus, we
classify users in our data set with respect to their mobility characteristics based on the
number of handoffs that they commit during a call. We identify each user with zero number
of handoffs stationary or low mobility and the rest (with number of handoffs more than zero)
mobile. Note that some stationary users may in fact be physically mobile within a cell yet we
still consider them stationary with respect to their cell residency. We consider users mobile if
only the number of handoffs that they commit is more than a certain threshold (set to 3
handoffs in this study) since “pilot pollution” may cause a stationary call to commit handoff

once 1n a while.

Users that are affiliated with newZsame type of channel occupancy times can be
considered stationary whereas users affiliated with new2ho, new2sameorho, ho2same, ho2ho
and ho2sameorho types of channel occupancy times can be considered mobile. Thus, call
holding time distribution for stationary users is equivalent to channel occupancy time
distribution for new2same. However we have to obtain call holding time distribution for
mobile users (fotal mobility) separately from the data set since the call holding time
distribution obtained previously includes times affiliated with both stationary and mobile
users. The test results and chi-square statistics for all types of channel occupancy times are
previously given. We apply the chi-square goodness of fit test only to the total_mobility data
set after the observed anomalies were stripped using simple means. The results are presented

in Table 4.9 where significant level is 0.95, the candidate probability distribution which

89




passes the chi-square goodness of fit test is marked with a star (*) and the test statistics for
the closest fitted candidate distribution given in the table is bolded. Figure 4.9 shows the
closest fitted candidate distribution, lognormal, along with the normalized histogram for

mobile users’ call holding times.

In [14], Fang, Chlamtac and Lin showed analytically that when cell residence times
are exponentially distributed, channel occupancy time distribution for “new calls” can be
approximated by the fitted exponential distribution for stationary users (or when mobility is
low) and yet for mobile users there_ is a significant mismatch between channel occupancy
time distribution for “handoff calls” and the fitted exponential distribution. In this study, we
observe that not only channel occupancy and call holding time distribution for mobile users
fit lognormal distribution very strongly compared to other proposed candidate distributions
but also both distributions for stationary users fit lognormal distribution while radically
differing from the fitted exponential distribution. Hence we expect cell residence times also

not to be exponentially distributed.

4.4.4 Statistical Results for Number of Handoffs Committed by Users

In this section, we present the statistical results obtained from the goodness-of-fit test
performed to fit a proposed candidate distribution to the distribution of number of handofts
committed by mobile users in a cellular network. The distribution of the number of handoffs
becomes significant when feeding network simulations. The test and chi-square statistics are
presented in Table 4.10 where significant level is 0.95, the candidate probability distribution
which passes the chi-square goodness of fit test is marked with a star (*) and the test statistics
for the closest fitted candidate distribution given in the table is bolded. Figure 4.10 shows the
closest fitted candidate distribution, lognormal, along with the normalized histogram for

users’ number of committed handoffs.

4.5 Summary

In this chapter, we have presented an empirical approach to determine the probability
distribution functions that fit various types of channel occupancy times for voice service in

cellular networks. The results are environment dependent however we have made no
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assumptions that can influence the results as opposed to previous analytical and simulation
studies where the obtained results can be highly dependent on the assumptions made by the
authors. We have explained the data acquisition method that we used to obtain the statistics
for various types of channel occupancy times and discussed the system related anomalies that
we have observed. The statistical results obtained from the goodness-of-fit tests have been
presented along with the candidate probability distributions that may fit the empirical data.
We have shown that not only call holding times but also various types of channel occupancy
times can be approximated by lognormal distribution. We have examined how modeling call
holding times with a lognormal distribution would impact the value of performance metrics
such as call blocking probabilities instead of modeling with an equivalent tradi;tionally
accepted exponential distribution. We have observed that call blocking probabilities obtained
when call holding times are exponentially distributed match well with the call blocking
probabilities obtained when call holding times are lognormally distributed provided that both

distributions have equal means.

We have discovered that not only channel occupancy and call holding time
distributions for mobile users fit the lognormal distribution very strongly compared to other
proposed candidate distributions but also both distributions for stationary users fit the
lognormal distribution very well while it radically differs from the exponential distribution.
We have presented the statistical results obtained from the goodness-of-fit test performed to
fit a proposed candidate distribution to the number of handoffs committed by mobile users in
a cellular network. We have shown that the closest fitted candidate distribution to
approximate the distribution of number of handoffs committed by users in a cellular network

is also a lognormal distribution.

The results are expected to be useful in traffic and network modeling, performance

evaluation, billing, network management and optimization in cellular networks.




T T T I

—— New 2 Same channel occupancy times
——- Fitted lognormal distribution
——_Fitted exponentlal

0.06 T [

0.04 e | U S SO E s TR SO RON SO OR

Number of Samples (normalized)

I
140 160 180 200

Channel Occupancy Times (sec)

Fig. 4.1 Distribution of channel occupancy times (rewZ2same) and the fitted
lognormal and exponential distributions.

T T T
~—— New 2 Ho channsl occupancy times
—~—- Fitted lognormal distribution

0.08 T T

Number of Samples (normalized)

Channel Occupancy Times (sec)

Fig. 4.2 Distribution of channel occupancy times (rew2ho) and the fitted
lognormal and exponential distributions.

92




I T T

—— New 2 SameorHo channel occupancy limes
~ - Fited lognormal distribution

--— Flited exp

Number of Samples (normalized)

0.01 |

0 20 40 60 80 100 120 140
Channe! Occupancy Times (sec)

Fig. 4.3 Distribution of channel occupancy times (new2sameorho) and the fitted
- lognormal and exponential distributions. '

0.07 T T T I
—— Ho 2 Same channel occupancy limes
——- Fitted lognormal distribution
: —-— Fitted axponentlal distribution
0.06 H [T G e 3PSO OSSOSOt SOOI

Number of Samples (normalized)

Channe! Occupancy Times (sec)

Fig. 4.4 Distribution of channel occupancy times (ho2same) and the fitted
lognormal and exponential distributions.

93




T T I
~—— Ho 2 Ho channet occupancy times
—— Fitted lognormal distribution

—-— Fitled exponential

01

Q.08F A ..........

Number of Samples (normalized)

Channel Occupancy Times (sec)

F1g 4.5 Distribution of channel occupancy times (htho) and the fitted
lognormal and exponential distributions.

0.1 T T T I I
—— Ho 2 Same or Ho channe! occupancy times
- - Fitted lognormal dlstrlbu!lon
0.09} == Fitted exp: L
008

Number of Samples (normalized)

0 10 20 30 40 50 60 70 80 90 100
Channel Occupancy Times (sec)

Fig. 4.6 Distribution of channel occupancy times (ho2sameorho) and the fitted
lognormal and exponential distributions.

94




0.04 T T T T T T T
; ; ; ‘ — Total, call holding times
~~- Filted fognormal distribution

—-— Filted exponentlal distribution

0.035F e PP PR ............... RPN ST e e -

0.03

0.015

Number of Samples (nomalized)
f=l
<
N

0.005 -

0 20 40 60 80 100 120 140 160 180 200
Call Holding Times (sec)

Fig. 4.7 Distribution of call holding times (zotal) and the fitted
lognormal and exponential distributions.

—
(=]

Cell biocking probability

[

-
L=}

; ]
—¥— Exponentially distributed call holding limes
3 -0O-- Lognormally distributed call holding times
10° | T I
0 20 40 60 80 100 120

Call traffic load

Fig. 4.8 Call blocking probabilities for exponentially and lognormally
distributed call holding times.

95



0.01 i

i—— Total mobility c‘all holding times
——- Fltted lognormal distribution
0009 e e . s F Y S ey -
0.008 -1
T 0.007 e frfllbe et
1]
N
®
§ 0.006 s S SOOI AR i
2 :
i
o
B 0.005 AU I e s e i
£
a
w
S 0.004 - BIRE AU e n
@
o
[
2 0.003 b Lot BT Qb o f oo u
0.002}-
0.001
0

200

Call Holding Times (sec}

Fig. 4.9 Distribution of call holding times (total_mobility) and the fitted
lognormal distribution.

035 T T T ! T T
H —— Number of User Handoffs
L——- Fitted lognormal distribution
0.3
—_ 025 ..... . ................. PN N [—— -
o :
O :
N
o
E 0.2}
%]
2
=3
E H
&
..03 0.15+- e s R R R ST s -
<] : :
o]
a
5
3
z 0.1
005 ................................ -
0 i - —==
0 2 4 6 8 10 12 14 16 18 20

Number of Call Handoffs

Fig. 4.10 Distribution of number of user handoffs (user_handoffs) and the fitted
lognormal distribution.

96




TABLE 4.1

An example of a “Neighbor List Tuning Data Array” message taken from
Bell Mobility cellular call data set.

Attribute Name:  Neighbor List Tuning Data Array

TimeStamp: 2003/09/19 — 11:46:28.240
Source Node Id:  0Oxd6ad45
Call Id: 0x00000520cb286664
Resource Info: Frame 4 Shelf 1 Slot 15 DSP 7
Baseld KeepBit PilotStrength PNOffset PNPhase
0x09771101 1 32 36 0
0x09770e21 1 31 222 14225
0x09771372 1 26 300 19209
0x09770e72 1 28 336 21507
0x09771073 1 34 396 25357
0x09771081 1 27 114 7304
0x09770e71 1 40 330 21124
0x09771382 1 44 372 23828
0x09771071 1 24 384 24589
TABLE 4.2

Goodness of fit test results for Channel Occupancy Time distribution fitting (new2same).

Distribution Test Statistics Chi-square Statistics

Exponential 9.8955e+02 5.5102e+02

Lognormal* 3.1824e+02 5.4997¢+02
Gamma 1.3068e+03 5.4997e+02
Weibull 1.178e+03 5.4997e+02

number of bins: 500, number of data samples per bin: 11.892




TABLE 4.3

Goodness of fit test results for Channel Occupancy Time distribution fitting (new2ho).

Distribution Test Statistics Chi-square Statistics
- Exponential 1.2794e+03 5.5102¢+02
Lognormal* 3.0301e+02 5.4997e+02
Gamma 6.8892¢+03 5.49975e+02
Weibull* 5.4559e+02 5.4997¢+02

number of bins: 500, number of data samples per bin: 9.336

TABLE 4.4

Goodness of fit test results for Channel Occupancy Time distribution fitting (new2sameorho).

Distribution Test Statistics Chi-square Statistics

Exponential 1.7965e+03 5.5102e+02

Lognormal 6.9142¢+02 5.4997e+02
Gamma 1.7968¢+03 5.4997e+02
Weibull 1.67174e+03 5.4997e+02

number of bins: 500, number of data samples per bin: 19.554

TABLE 4.5

Goodness of fit test results for Channel Occupancy Time distribution fitting (hoZ2same).

Distribution Test Statistics Chi-square Statistics

Exponential 1.1922¢+03 5.5102e+02

Lognormal* 3.325e+02 5.4997e+02
Gamma 6.651e+02 5.4997e+02
Weibull* 5.1167e+02 5.4997e+02

number of bins: 500, number of data samples per bin: 10.832
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TABLE 4.6
Goodness of fit test results for Channel Occupancy Time distribution fitting (ho2ho).

Distribution Test Statistics Chi-square Statistics

Exponential 3.4501e+03_ 5.5102e+02

Lognormal 5.5853e+02 5.4997e+02
Gamma 2.9586e+03 5.4997e+02
Weibull 2.3558e+03 5.4997e+02

number of bins: 500, number of data samples per bin: 35.13

TABLE 4.7

Goodness of fit test results for Channel Occupancy Time distribution fitting (ho2sameorho).

Distribution Test Statistics Chi-square Statistics
Exponential 4.6679¢+03 2.8574e+02
Lognormal 6.4289e+02 2.8466e+02
Gamma 3.6019e+03 2.8466e+02
Weibull 2.7327e+03 2.8466e+02

number of bins: 250, number of data samples per bin: 91.86

TABLE 4.8
Goodness of fit test results for Call Holding Time distribution fitting (total).

Distribution Test Statistics Chi-square Statistics

Exponential 1.8421e+03 5.5102e+02

Lognormal* 4.3353e+02 5.4997e+02
Gamma 2.8244e+03 5.4997e+02
Weibull* 1.7486e+03 5.4997e+02

number of bins: 500, number of data samples per bin: 22.426




TABLE 4.9
Goodness of fit test results for Call Holding Time distribution fitting (total_mobility).

Distribution Test Statistics Chi-square Statistics

Exponential 7.0154e+02 5.5102e+02

Lognormal* 3.1515e+02 5.4997e+02
Gamma 6.4451e+02 5.4997e+02
Weibull 6.8223e+02 5.4997e+02

number of bins: 500, number of data samples per bin: 5.398

TABLE 4.10
Goodness of fit test results for Number of User Handoffs distribution fitting (user_handoffs).

Distribution Test Statistics Chi-square Statistics

Exponential 1.0844¢+03 2.5884e+02

Lognormal* 2.0881e+02 2.5776e+02
Gamma 1.8877e+03 2.8466e+02
Weibull 9.62e+02 2.5344e+02

number of bins: 250, number of data samples per bin: 22.704
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CHAPTERS CONCLUSION AND RECOMMENDATIONS FOR FURTHER

WORK

5.1 Conclusion

We conclude this dissertation with a summary of our contributions and directions for
future work. One dimensional Markov chain models are commonly used to evaluate call
admission control schemes in cellular networks assuming that call requests that originate
from different types of users are independently Poisson distributed, channel occupancy times
for each call are exponentially distributed with equal mean values and each call requires an
equal channel capacity. These assumptions may not be appropriate since calls with different
priorities, such as new and handoff, may have different average channel occupancy times if
not different distributions. When average channel occupancy times for different call types are
not equal, existing performance evaluation approximation methods based on one dimensional
Markov chain models lead to significant discrepancies. Thus, accurate solutions can only be
obtained by exact analysis methods based on multidimensional Markov chain models.
However, these methods suffer from the curse of dimensionality, which results in very high
computational cost for large systems. In chapter 2, we proposed an easy to implement
analytical performance evaluation approximation method, effective holding time, with low
computational cost for several widely known call admission control schemes under more
general assumptions. The proposed approximation method provides a highly accurate closed
form solution and thus has low computational cost. We compared the accuracy of the
proposed method with the existing approximation methods’ with respect to exact results
obtained from the direct method based on multidimensional Markov chain modeling. The
results showed that the proposed method outperforms the existing approximation methods in
accuracy while keeping the computational cost low. An accurate performance evaluation
approximation method with low computational cost will motivate the practical
implementation of dynamic call admission control schemes.

Conventional circuit-switched services such as voice are gradually being replaced by

. packet-switched data and multimedia applications due to increasing demand coming from
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users that these services shall also be available on the move. Conventional call admission
control schemes, on the other hand, will continue to be useful when applied with suitable
scheduling techniques to guarantee QoS at the packet level since most data and multimedia
applications are inherently connection oriented and packet-switched connections can be
provisioned to their effective bandwidths. Performance of call admission control schemes for
multi-service cellular networks, which provide packet-switched services, can be evaluated by
multidimensional Markov chain modeling since they have a similar form to circuit-switched
networks. However calculating channel occupancy distribution of a multi-service cellular
network involves numerically solving the balance equations when a multidimensional
Markov chain model is used. In the absence of a product form solution this is demanding for
all but smallest channel capacities, yet a computationally efficient one dimensional Markov
chain model can only be used when all circuit and packet switched services have equal
capacity requirements. Existing performance evaluation approximation methods for
“multi-service cellular networks are only accurate when call traffic loads are very low due to
the assumption that channels are occupied independently. In chapter 3, we classified call
admission control schemes into two categories called symmetric and asymmetric. We
presented a product form solution formula to evaluate symmetric call admission control
schemes and proposed a novel computationally efficient performance evaluation
approximation method, state space decomposition, to evaluate asymmetric call admission
control schemes when all services have distinct capacity requirements. We compared the
numerical results obtained from the proposed method with the ones obtained from previously
proposed approximation methods and the numerical exact method based on multidimensional
Markov chain modeling. The results showed that proposed method provides more accurate
solutions while keeping the computational cost low.

Packet-switched services are overlaid on circuit-switched technology over the same
air interface to utilize cellular network’s access capacity. More than one service can be
multiplexed statistically on to the same radio channel since it is unlikely that all services
transmit at their peak rates at the same time. The network can allocate each user less resource
than the corresponding requested peak capacity to meet its statistical performance
requirements. Thus, data packets can be transmitted efficiently to provide packet-switched

services a QoS level comparable to that of circuit-switched services. However accurate voice
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traffic statistics are needed to understand the length and frequency distributions of idle
periods of cellular channels assigned to voice in order to exploit the statistical multiplexing
gain in cellular networks.

Traffic statistics are also used to feed network simulations with realistic traffic data or
develop mathematical models to evaluate network performance analytically. Two of these
statistics, call holding and channel occupancy times, are key elements to compute
performance metrics such as call blocking and dropping probabilities. Channel occupancy
times are measured from call starting time till the occupied channel in the respective cell is
discarded due to call termination or handoff while call holding times are measured from call
starting time till call termination regardless of occupying a channel in the same cell or not. In
classical voice traffic modeling call holding times are approximated by exponential
distribution, yet it has been shown that a lognormal distribution approximation fits much
closer. However performance evaluation models for call admission control require the
distribution of channel occupancy times rather than distribution of call holding times. In
chapter 4, we presented an empirical approach to determine the probability distribution
functions that fit channel occupancy times classified according to their occupancy types to
provide sufficiently representative statistics. The results are environment dependent but no
assumptions that can be influential have been made as opposed to previous analytical and
simulation studies where the obtained results are highly dependent on the assumptions made
by the authors. We showed that all types of channel occupancy times can be approximated by
lognormal distribution. For stationary users channel occupancy times are approximated by
exponential distribution due to its tractability assuming that cell residence times are also
exponentially distributed. Yet we observed that lognormal distribution fits much better to
channel occupancy times when users are stationary. We examined the impact of modeling
call holding times with lognormal distribution on performance metrics instead of modeling
with the traditionally accepted exponential distribution. When averages are same both
distributions provide very close results in a single service system with one type of call. We
showed that lognormal distribution is the closest fitted candidate to approximate the number
of handoffs committed by a user. We expect the results to play an important role in traffic and
network modeling, performance evaluation, billing planning, network management and

optimization in cellular networks.
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5.2 Future Work

While this thesis provides achievements for evaluating performance of call admission
control mechanisms in single and multi service cellular networks by proposing
computationaﬂy efficient approximation methods and modeling channel occupancy times,

there are emerging issues deserving further investigation.

To facilitate the practical implementation of proposed approximation methods, we
need to investigate techniques that can provide good estimations of call arrival rates and

average channel occupancy times of all types of calls in real-time.

In [1], we showed that the proposed state space decomposition method outperforms
the Borst-Mitra approach when evaluating the performance of call admission control schemes
under high traffic load when the number of existing call arrival types are low. However the
two-class model with the heterogeneous traffic may be the most challenging one to Borst and
Mitra’s approach due to their assumption on independent channel occupancy [2]. Since each
of the individual classes accounts for a substantial portion of the total amount of capacity in
use, it is worth investigating to what extent the performance of authors’ approach can
improve under high traffic load with respect to the proposed approach when more than

two-class models are considered.

We showed in [3] that channel occupancy times can be approximated by lognormal
distribution along with call holding times. However results obtained from a simulated cellular
network revealed that performance metrics such as call blocking probabilities are not affected
significantly when channel occupancy times are modeled With traditionally accepted
exponential distribution providing that average values for both distributions are same. The
exponential distribution underestimates the distribution of channel occupancy times for its
short values while it overestimates for long ones. When the distribution of channel occupancy
times is obtained using empirical data collected during certain times of a day such as the
lunch time or rush hours or when the cellular operator offers discounts, this misestimation
may extend. Considering that the results in [3] are environment dependent, we need to seek

further investigations for system response using empirical data collected at various times.
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Bandwidth scarceness is another important problem in cellular networks. Making
radio cells smaller is one solution, however as cell size is reduced, more users will probably
require handoffs. On the other hand, more handoffs can be observed in environments such as
-highway stretches where users move very fast. These are typical situations where high
mobility of users may affect cell residence times and thus the characteristics of channel
occupancy times [4]-[6]. It may be necessary to analyze empirical data collected from base
stations serving cell sites with high mobility profile to determine its effects on distributions of

the classified channel occupancy times given in [3].

Fang, Chlamtac and Lin showed analytically in [7] that channel occupancy time
distributions for stationary users can be approximated by exponential distribution when cell
residence times are exponentially distributed. Yet, it is difficult to obtain cell residence time
data since network nodes which track idle mobile users exchange messages very infrequently.
Thus, we classified users with respect to their mobility characteristics and observed that
channel occupancy and call holding time distributions for stationary users fit lognormal
distribution better rather than exponential distribution as opposed to results obtained in [7]. It
may be interesting to investigate which distribution fits best to cell residence times and how
cell residence times are related to channel occupancy times using corresponding empirical

data.
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APPENDICES

Appendix A

PROBABILITY DENSITY FUNCTIONS

1. Exponential distribution
f(x)=4-e* x>0
Maximum Likelihood Estimators: A = é , where X = L Z X;
X no

2. Lognormal distribution

f(x)= e
xoN2xw
Zln X, (ln X, —,u)
Maximum Likelihood Estimators: fi = -2 ,and & ==
n n
3. Gamma distribution
e
X)=x"  ———, x>
S =2 e T )

where & > 0 is the shape parameter, § > 0 is the scale parameter and

(k)= ft"_l -e'dt
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Maximum Likelihood Estimators:

_1S comr =t L., |21s _Tl)
g_kn ;xi and In(k) ¢(k)—1n(n ;x,) " ;ln(x,.),where ¢(k))_ F(k)

There is no close form solution for k. The numerical solution can be found using Newton’s method.

4. Weibull distribution

£&e)=(k/2)- (/2 e 20

where k > 0 is the shape parameter and A > 0 is the scale parameter of the

distribution.

Y Yabmln)

Maximum Likelihood Estimators: A = and = — Zln(xi) =0
n z x;k k n 3
i=1

There is no close form solution for k. The numerical solution can be found using Newton’s method.
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