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Abstract

In this thesis, the finite element method (FEM) is applied to the calculation of frequency-
dependent series impedances and shunt capacitances of underground power cables. The
principal equations describing the quasi-magnetic fields and static electric fields are solved
with FEM based on the Galerkin technique. The Js method and the loss-energy method
are derived to calculate the impedances of a multiconductor sjstem from its field solution,
and the energy method and the surface charge method are derived to calculate the capac-
itances. With a single-core (SC) coaxial cable, the suitability of quadratic isoparametric
elements and high-order simplex elements are studied, and a suitable division scheme is
suggested for the auto-mesh program.

The conventional FEM with a field truncation boundary is applied to the impedance
calculation of buried SC cables. Suitable locations for the field truncation boundary and
division schemes in the earth are studied. The results show that », > 126, is required
to obtain accurate impedances of shallowly buried cables with the conventional FEM.
This requires a large solution region in the earth at low frequencies. A new technique
based on the perturbation concept is proposed to reduce the solution region in the earth.
Comparisons between the results from the conventional FEM and from the proposed
technique with a significantly reduced solution region in the earth show good agreement.

In the case studies, the FEM is applied to the parameter calculation of multiphase SC
cables, PT cables, sector-shaped cables, and stranded conductors. The numerical results

are compared with those from analytical formulas.
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Chapter 1

Introduction

Underground power cables are widely used in electric power systems, and are therefore
one of the important components in power system transient analysis. Unlike overhead
power lines, cables are geometrically compact. The distances among conductors are
comparable with the dimensions of the conductors. The conductors and cables often
have non-coaxial geometries (Fig. 1.1), which make closed-form solutions difficult or
impossible. Proximity effects are no longer negligible in cables, compared to overhead
lines. Because of proximity and skin effects, cables possess much stronger frequency-
dependent characteristics than overhead lines, and mathematical models are needed for

cables in the transient analysis which include these characteristics.

pipe-type sector-shaped

air

insulation
sheath

pipe
core SC coaxial cables
(a) Different types of three-phase cables (b) Tunnel-installed SC coaxial cables

Figure 1.1: Three-phase cables and tunnel-installed single-core (SC) coaxial cables



Chapter 1. Introduction 2

Several accurate mathematical models for the transient analysis of power cables have
been developed. For frequency domain based methods a general model for overhead lines
and underground cables was developed by Wedepohl et alin 1969 [6]. As the transients
are calculated in the frequency domain, the frequency-dependence can easily be included.
For time domain transient analysis a general model was developed by J. Marti in 1982 [29].
In this model, curve-fitting techniques are used to find approximate rational functions
to replace the frequency-dependent characteristics of mode parameters in the frequency
domain. The mode parameters are related to the phase parameters through mode-phase
transformation matrices. A similar model was developed by Humpage et al in 1980 [25].
In that approach, the z-transformation technique is used, and the curve-fitting is done
in the z domain. These two models, however, do not consider the frequency-dependent
characteristics of the mode-phase transformation matrix. J. Marti’s model was improved
by L. Marti in 1988 to take the frequency-dependence of the mode-phase transformation
matrix into account [39].

The frequency-dependent phase parameters of the cable, i.e. series impedance matrix
and shunt admittance matrix per unit length, are the input data for all the models
mentioned above. The calculation of these parameters, however, is not an easy task,
especially the calculation of the series impedance matrix. There are mainly two ways to
calculate these parameters: analytically and numerically.

In the early days before the arrival of computers, many theoretical studies were done
on the calculation of series impedances of overhead lines and of underground power cables.
In 1926 Carson derived formulas for the earth return impedance of overhead lines 1], and
Pollaczek derived similar formulas for underground cables in the same year [2]. In 1934
Schelkunoff gave the complete solution for the electromagnetic fields inside a single-core
(SC) coaxial cable and derived corresponding impedance formulas(3]. The earth return

impedance formulas and the impedance formulas for SC coaxial cables are still widely
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used in modern cable parameter calculation programs [10][23]. With the recent increase
in computing power, more sophisticated formulas were developed as well. Tegopoulos et
at derived the field solution for pipe-type (PT) cables with circular inner conductors in
1971 [8]. The formulas for the impedances of these PT cables were derived by Brown et
alin 1975 [13].

The closed-form formulas, however, are limited to cables with simple geometries. Even
for PT cables with circular inner conductors, several approximations have to be made in
order to derive the impedance formulas. If irregular geometric shapes are involved, or
if all the skin and proximity effects should be considered in the parameter calculation,
then the closed-form formulas are no longer applicable, as there is no analytical solution
for those problems. Numerical methods have to be used instead.

In order to calculate the parameters of underground power cables with numerical
methods, the corresponding electromagnetic field problem is solved first, and the pa-
rameters are then derived from the numerical field solution. Based on the assumptions
discussed in Chapter 2, the related electromagnetic fields are split into static electric
fields, from which the shunt admittance matrix is calculated, and quasi-static magnetic
fields, from which the series impedance matrix is calculated. Because of skin and prox-
imity effects, it is more difficult to solve quasi-static magnetic fields than to solve static
electric fields.

Several numerical methods can be applied to solve the quasi-static magnetic fields
needed for the series impedance calculation: subdivision method, finite element method
(FEM), boundary element method (BEM), and hybrid method.

The subdivision method divides conductors of a multiconductor system into small
subconductors such that the current density within the subconductors can be assumed
as uniform. A set of linear equations is established by using self and mutual impedance

formulas among the subconductors. The series impedance matrix of the multiconductor
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system can then be found from the coefficient matrix of the linear equations by matrix
reduction. The method was first applied to the series impedance calculation of multicon-
ductor systems by Comellini et alin 1973 [9]. In their paper, round subconductors with
uniform current density were used. Rectangular subconductors and subconductors with
other shapes were used by Deeley et al [16] and Lucas et al [17] in 1978, as well as by
Weeks et al for microstrip lines in 1979 [22]. This method was applied to the impedance
calculation of PT cables by Arizon et alin 1988 [38]. With the subdivision method, the
series impedance matrix of a multiconductor system is calculated without solving the
field equations. Only the conductor regions are needed. The coefficient matrix, however,
is a full matrix, and a homogeneous permeability in the space must be assumed. Because
uniform current density in each subconductor is generally assumed, a very fine subdivi-
sion has to be used to achieve accurate results if strong skin and proximity effects are
present.

With the finite element method, the domain of a closed boundary problem is divided
into small elements such that the original unknown field distribution in each element can
be approximated by certain functions expressed in terms of unknown field variables at
element vertices. The field variable values at all the vertices of the FEM mesh can then be
determined with variational technique or with Galerkin technique. In the early 1970, the
method began to be applied to eddy-current related problems in power apparatus. It was
used to find the field distribution in magnetic structures such as motors by Chari in 1974
[12], in a case where super-conductivity was assumed for the current carrying conductors.
The method was applied to study the skin effect in a single current carrying conductor
by Chari et alin 1977 [14]. It was extended to study the skin effect in multiple current
carrying conductor systems by Konrad in 1981 and in 1982 [26][28]. In his papers, source
current density Js was related to measurable conductor currents; therefore, conductor

currents replaced Js to become the forcing function. It was also suggested in his papers



Chapter 1. Introduction 5

that thé impedance matrix of a multiconductor system could be calculated from the Jg
vector directly. "In 1982 Weiss et al combined the original FEM equations, which had
an unknown Js vector, with the equations which relate the Jg vector to the conductor
currents [31][32]. As a result, the field solution can be found in a single step.

The final linear equations in FEM generally have a symmetric, diagonally dominant,
banded, complex coeflicient matrix. It is easy for FEM to handle problems with regions
having different permeabilities. The method is also flexible with respect to the shape of
the elements and to the order of the approximating functions. Open boundary problems,
however, cannot be handled easily by FEM, though the ballooning technique can be used
for problems with Laplacian exterior regions. Also, the whole problem domain within
the closed boundary has to be discretized in FEM.

Instead of discretizing the whole problem domain, only the boundary of the problem
domain is divided into small elements with the boundary element method, over which
approximating functions with unknown coefficients are assumed. These unknown coeffi-
cients are found by applying Green’s theorem and the basic solution for impulse sources
(Green’s function). There are several applications of BEM to eddy-current related prob-
lems [24][33]. It has also been used to solve the field distribution in power cables [36].
However, few applications relate to the parameter calculation of multiconductor systems.
BEM handles open boundary problems with Laplacian exterior regions easily. It has fewer
variables because only the boundary is discretized. The final coefficient matrix, however,
is generally an unsymmetric full matrix, and there is no general procedure to derive the
Green’s functions for arbitrary problems. It may be difficult to apply BEM to the earth
impedance calculation where the cable systems are surrounded by the poorly conductive
earth occupying half space.

The hybrid method has been suggested to combine the advantages of FEM and BEM.

Several applications to eddy-current problems have been reported [30](35).
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In this thesis project, FEM is applied to the calculation of the series impedance
matrix and shunt admittance matrix of underground power cables. Although FEM has
been used to solve eddy-current related problems, most applications have been concerned
with the field distribution in the whole problem domain at low frequencies. Only a few
studies have been made on the parameter calculation of multiconductor systems[41][42].

The following topics were studied: selection of element types; selection of function
orders for high order approximating functions; optimal mesh generation; model develop-
ment for infinite earth region in FEM; algorithm for solving the final banded complex
matrix; and error analysis for different types of elements and for approximating functions
with different orders.

In Chapter 2 the principal equations for the calculation of the series impedance matrix
([Z)]) of underground power cables are derived. The FEM based on the Galerkin technique
is used to solve the principal equations. Two formulations for the [Z] calculation of a
multiconductor system from the field solution, the Js method and the loss-energy method,
are derived. These formulations are new in the literature, although the concepts already
exist.

In Chapter 3 two types of elements in [Z] calculations are discussed. They are high
order simplex elements and quadratic isoparametric elements. The accuracy in [Z] calcu-
lations, the computational efficiency, and the mesh generation schemes of these elements
are studied numerically by calculating the [Z] of SC coaxial cables. The Jg method
and the loss-energy method are also compared numerically. The integration matrices of
simplex elements are given in the exact fraction form for the first order up to the sixth
order.

In Chapter 4 a new technique is developed to include the infinitely large and con-
ductive earth in the FEM in [Z] calculations. This technique reduces the solution region
drastically.
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In Chapter 5 the principal equations for the shunt admittance matrix ([Y]) of under-
ground power cables, i.e. Laplace equations, are solved with the FEM, and the formula-
tions to calculate [Y] from the field solution are discussed.

In Chapter 6 the numerical results of several case studies are presénted. These studies
include the applications of Pollaczek’s earth return impedance formula to multiphase
underground cables with irregular structures; comparisons of parameters of PT cables or
of sector-shaped cables between the results from the FEM and those from the analytical
formulas; and the internal resistance calculation of stranded conductors with the FEM.

In Chapter 7 the conclusions of this thesis project are presented and possibilities for

future research work are discussed.



Chapter 2

Impedance Calculation with Finite Element Method

2.1 Introduction

This chapter is mainly concerned with the formulation of the field equations and the
corresponding FEM solution for the series impedance of underground power cables. The
line parameters, i.e. series impedance matrix per unit length ([Z]) and shunt admit-
tance matrix per unit length ([Y]), are defined in connection with the transmission line
equations. The principal equations describing the magnetic fields for the [Z] calculation
are derived. These equations are solved by FEM based on the Galerkin technique. In
order to retrieve [Z] from the field solution, two methods are suggested. One is to relate .
the source current density vector [Js] to [Z] directly, and the other is to split the power
loss and the stored magnetic energy in the system into summations of elements which
relate to the elements in [Z]. As the magnetic fields in SC coaxial cables can be solved
analytically, the analytical solutions can be used to check the accuracy of the numerical
approaches. In this chapter, a general form of [Z] for SC coaxial cables is given, which
will be used frequently in later chapters.

2.2 Definition of Transmission Line Parameters

An overhead transmission line or an underground power cable can be represented as a

general multiconductor system. The following assumptions are made for such a system.
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1. The system is composed of infinitely long metallic conductors and the earth. The

axes of the conductors are parallel to each other and to the surface of the earth.

2. The system is isotropic, linear, and longitudinally homogeneous. All the conductors
and dielectrics have constant permittivity €,, permeability y,, and conductivity o.

So does the earth.

3. There is no volume charge inside the conductors and the earth. The charges are

only located on the surfaces of the conductors and the earth.
4. Displacement currents in the conductors and the earth are ignored.

5. The frequencies used in the study are far below the value where the corresponding

wave length A becomes comparable with the lateral dimensions of the system.

With the above assumptions, a unique relationship between field quantities, £ and H,
and circuit quantities, V and I, can be established. Therefore, the electromagnetic
fields in the system can be represented by a distributed-parameter electric network. The
transmission line equations (telegraph equations), instead of Maxwell’s equations, can
then be used to describe the system.

Fig. 2.1 shows a longitudinal section with infinitesimal length dz of a (K'+1)-conductor
system. The (K+1)th conductor is used as a reference conductor. V;, V;, ..., Vi are
the conductor voltages with respect to the reference conductor K+1, and I, I, ..., Ix
afe the conductor currents. They are phasors. The z axis is in parallel with the axes of
conductors.

The circuit representation of the system in the frequency domain is shown in Fig. 2.2.
In Fig. 2.2, all the variables are in vector form, and all the parameters are in matrix form
and are quantities per unit length. [R(w)] and [L¢(w)] account for the power loss and

magnetic energy storage in the conductors, respectively. [Lp] accounts for the magnetic
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energy stored in the dielectrics. [C] and [G] represent the electric energy storage and the

power loss in the dielectrics, respectively.

L +dh
conductork___lk+dli

conductor 1

h

Vi

conductorK+1

—

Figure 2.1: A (K+1)-conductor system

[Lpldz [R(W)]dz [Lo(w)]dz

(r

(1+dlr1]

(vl — (V1+dlV]
l Cld: | Q& l
O o— O

Figure 2.2: Circuit representation of a multiconductor system

The transmission line equations corresponding to Fig. 2.2 are

S - () + etz = (2] (21)
“8 - (614 jelenv] = )Y (22)

in which

[V] = [Vl’V2a-'-7VK]T (23)
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[I] = [II’I2)'-"IK]T (24)
[Z(w)] = [R(w)] + jw[L(w)] = [R(w)] + jw([Lo(w)] + [Lp]) (2.5)
[Y(w)] =[G]+jw[C] (2.6)

[Z(w)] and [Y(w)] are the series impedance matrix per unit length and shunt admit-
tance matrix per unit length of the system, respectively. They are generally referred to
as transmission line parameters. In most cases, [Z(w)] is a nonlinear function of w, while
(Y (w)] can be simplified as jw[C] by ignoring [G]. For simplicity, w will be omitted from
12(w)] and [Y(@)]-

The transmission line equations are the fundamental equations on which all transient
analysis models for underground power cables are based [10][29][39]. [Z] and [Y] are the
input data for those models. According to the assumptions made before, [Z] and [Y] can
be calculated from a quasi-static magnetic field and a static electric field of the system,

respectively.

2.3 Principal Equations in Impedance Calculations

The matrix [Z] of an underground power cable can be found from the magnetic field
distribution in and around the cable. In order to do so, the principal equations describing
the magnetic fields have to be derived first.

Based on the assumptions 1 and 2 given in the previous section, the electromagnetic
field of a cable system is two-dimensional and linear. In order to isolate the magnetic field
of the system, displacement currents in dielectrics are also ignored in addition to assump-
tion 4. ‘As a result, the original electromagnetic field becomes a quasi-static magnetic field
which is excited solely by the conductor currents. Ignoring displacement currents in the
series impedance calculation is common practice[l1][2]. To justify this assumption, Wede-

pohl and Efthymiadis rigorously analyzed the overhead line case over the full frequency
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spectrum[18][19]. They found that the assumption was valid until the height of the con-
ductor above ground became comparable with 1/4 of the wavelength. The same result
will hold for a cable system, but since the dielectric spacings are only a few centimeters,
differences will only occur above several hundred MHz, which is orders of magnitude
above the frequencies of interest in power system transients. Recent comparisons be-
tween field tests and simulations also confirm the validity of the assumption[39]{43]. The
displacement currents are therefore ignored in the series impedance calculation.

With the discussed assumptions, the following equations are derived from Maxwell’s

equations
VXE = -—ij (27)
lyxB=3 (2.8)
n
V-E=0 (2.9)

Introducing the magnetic vector potential A as
B=VxA (2.10)

and inserting (2.10) into (2.8) and employing unity V x V x A = V(V - A) — V?A, the

following equation is obtained

1 1
~V(V-A)—-V?A =] 2.11
p (V-A) ” (2.11)
Assuming
V-A=0 (2.12)
(2.11) gives
- iva =J (2.13)

As the current density has only a longitudinal component, J, E, and A can be written

respectively as Ju,, Fu,, and Au,. u, is the unit vector along the z axis. By inserting
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(2.10) into (2.7), the following equation can be derived
(E + jwA)uy, = -V¢ (2.14)

where ¢ is a scalar function. Reference [28] gives the following properties of ¢ in a
conductor: the equal value surfaces of ¢ are perpendicular to the z axis and V¢ is a
constant within each conductor. These properties make it possible to define a unique
voltage between one conductor and the reference conductor at a location along the system.
Constant —V¢ in each conductor is defined as the source electric field Eg. The physical
meaning of Es (or —V¢) is the voltage drop along a unit length of the system. The
current density corresponding to Ejy is called the source current density Jg, which is a

constant over the cross section of a conductor. Three quantities are related by
Jsu; = cEsu; = —oV¢ (2.15) -

(2.14) can now be written as
J=—jwoecA+Js (2.16)

Combining (2.13) with (2.16), the following linear two-dimensional diffusion equation
can be derived

1
;V2A —JjwoA+Js=0 (2.17)

The integration of (2.16) over the cross section of a conductor gives
I=[ Jds=—jw / o Ads + SoJs (2.18)
Sc S¢

in which S¢ is the cross-section area of the conductor. For a multiconductor system, there
is one such equation for each conductor. (2.17) and (2.18) are the principal equations
describing the quasi-static magnetic fields needed for the [Z] calculation. These equations

are solved with FEM in the next section.
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2.4 FEM Based on the Galerkin Technique for the Principal Equations

For a multiconductor system with K conductors, the principal equations in the [Z] cal-

culation can be summarized as

',1;V2A —jwoA+Js = 0 in Sg (2.19)
jw /S cAds+ S5, ds, = L (k=1,2,...,K) (2.20)
C

k

with boundary conditions

Alr, = 9o(z,y) (2.21)
0A
Baly, = 0 (2.22)

Sk is the solution region surrounded by boundary I' = I'g+T';. S¢, and Jg, are the cross-
section area and the source current density of the kth conductor, respectively. go(z,y) is
a known function. I'g and I'; are the Dirichlet boundary and the homogeneous Neumann

boundary, respectively.

2.4.1 The Galerkin technique for solving differential equations

The Galerkin technique approximates the field distribution A satisfying the differential
equation (2.19) by a finite set of base functions ¢, (n =1,2,...,N) as

N .
A=v%0+ D anpn (2.23)
n=1
where a,, a,,...,ay are unknown coefficients. 1y is such that
Polr, = 9o (2.24)

Y1, P25 «-., N form a subset of the complete base functions of A. ¢, satisfies the
boundary condition

ealr, =0 (n=1,2,...,N) (2.25)
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Putting the approximate solution (2.23) into (2.19), a residual is introduced as

R(A) = %vm _jwoA+Js  inSa (2.26)
The Galerkin technique forces this residual to satisfy the following integral equation

/S R(A)pnds =0 (n=1,2,...,N) (2.27)

The above equation means that the projection of the residual on each base function is
zero, or the residual is orthogonal to all the base functions. As there are N integral
equations in (2.27), N unknown coefficients in (2.23) can be determined completely by
(2.27).

The forms of the base functions (also called trial or shape functions) will be discussed
in the next chapter. In general, they should be simple functions. Polynomials are among

popular base functions because they can be easily differentiated and integrated.

With (2.23) and (2.26), (2.27) becomes

N
[;RIIZ (V Vo + Y anson)) Pmds — / jwa (o + Z UnPn)Pmds +

n=1 n=1

+/ Jsomds = 0 (m=1,2,...,N) (2.28)
Sr

Applylng Green’s formula V - (vVu) = Vv - Vu + vV?u, the first term in the above

equation becomes

-/ _wm V(o + 3 anp)ds + / -v. <¢mv<¢o+2anwn»ds

n=1
1 31[’0 N B‘Pn
_/ VSOm V(%bo + ,;ansan d3 + To4T ,U Z
(m = 1,2, .. ,N) (2.29)

It is shown in [44] that boundary conditions in (2.22) and (2.25) can be automatically

satisfied if the second loop integral in the above equation is set to zero. Therefore, once ¢,
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is established, the N unknown coeflicients are found by solving the following equations

1 N . Y
. —/ —~Von - V(¢o + Z an‘Pn)dS - / Jwa('l/)o + z an‘P")‘Pmds +
S} n=1 Sr

n=1

+/SRJscpmds=0 (m=1,2,...,N) (2.30)

The differentiation order in the above equations is one order lower than that in (2.28).
It is very difficult to use simple form base functions to approximate the original
complicated field function over the whole solution region directly. If the solution region
is divided into small subregions such that the original field function changes smoothly in
each subregion, it will be possible to approximate the function by simple base functions,

such as polynomials, within each subregion. This is the main idea behind finite element

methods.

2.4.2 The FEM based on the Galerkin technique

With the FEM, the solution region is divided into elements (subregions) and the base
functions are systematically established in each element, as required by the Galerkin
technique or other techniques for solving the differential equations. The algebraic equa-
tions (2.30) can be assembled element by element, and the unknown variables can then
be found. The process for dividing the solution region is called meshing process, and the
resulting region made up of elements is called a finite element mesh. All the element
vertices and additional locations either on the element sides or inside the elements are
deﬁned'a,s nodes.

With the Galerkin technique, the values of the field variables at the nodes become
the unknowns in (2.23). In the [Z] calculation, the field variable is A, and its nodal
values are A, (n =1,2,...,N), with N being the number of nodes within the mesh. The
coordinates of A, are represented by (zn,ys). The shape function ¢, (n = 1,2,...,N)

in the [Z] calculation satisfies the following conditions.
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1. ¢, is continuous inside Si. Therefore, it is continuous across the interelement

boundary;

1l m=n
cpn(:cm,ym)z{ (n,m=1,2,...,N)

0 m#n
When the solution region is divided, the boundary is also discretized. The boundary
will be made of boundary element sides, and the nodes on the boundary element sides
become boundary nodes. The original continuous Dirichlet boundary condition is now
represented by those boundary nodes on I’y with prescribed values. A similar expression

can be written for ¥ as

Np
o =) Apipsi (2.31)

i=1
in which Ap; represents the known node value on the boundary Iy, ¢p; represents the
corresponding shape function which has the same characteristics as ¢, discussed above,
and Np is the number of Dirichlet boundary nodes on T.

The nodes can be renumbered such that the first N nodes are the nodes with unknown
node values and that the last Ng nodes are Dirichlet boundary nodes with prescribed
node values. The total node number is Ny = N + Np. The approximate solution for A
can be ;;vritten as

N

A= Z Anpn (232)

n=1

and (2.30) and (2.20) become

A 1 Np Nt
- -V, -V E Anpnds — / Jwopn, Z Anpnds + / Jspmds
i Sr SR

Sr n=1 n=1

Nt 1 .
= _"’X=:1A" '/;R <;v<p‘m : V‘Pn +]w0“P'm‘Pn> ds + LR JS(PmdS =0
(m=1,2,...,N) (2.33)
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N7
—jwy) A,,(/ opnds) + So,Js, = I (k=1,2,...,K) (2.34)
n=1 Sck
Equations (2.33) and (2.34) are combined together to form the following final algebraic

equations in matrix form

( U1+ julT) —[F])([A] )z([m) 23)
~julGa] [[FTT, [F5)7) 15o] )\ 1s) ) \ (I

in which
Unn =[5 -}‘-thm-chnds / m=12,...,N \
) Ton = Jsp OPmpnds n=12,...,Nr

Fri = s, pmds I=N+1,N+2,...,Nr

Fpy =[5, pids \ k=1,2,...,K /

[Ge]l = diagloy,o,...,0k] (2.36)
[Se] = diag[Sc,,Sc,,.-.,Sc.]

[A] = [A1,As,...,AN)T

[Js] = [IsirdsarererIselt

In matrices [F] and [Fg] only the elements corresponding to the nodes in the conductor
regions have non-zero values, and the others are zero. [S¢] is the conductor cross-section
area matrix. [0] is a zero vector. [Gc] is the conductivity matrix. It is assumed that
each conductor has uniform conductivity in its cross section; otherwise, [G¢] could not be
extracted explicitly as in submatrix [G¢] [[F]¥, [FB|” ]. In practice, (2.35) is assembled
element by element. That means all the integrals in (2.36) become the summations of

integrals over the elements as
M

= 2.37
L=/, (2.37)
M is the number of elements in the finite element mesh. Sg; (1 = 1,2,...,M) is the

region in the ith element. Sg = Sg, USE, U...USE,,, and S¢, € Sg. Inside the ith
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element (2.32) becomes
NE'-

A=Y AFE in Sg, (2.38)

n=1

in which Ng, is the number of nodes in the ith element, AZ is the node value of A, and

@F is the shape function defined locally in the element. U,,, and Ty, become

1
UE = — | VB .VeFids
m 4z, Jss, 12 ¥
TE = og [ ¢Bebds (2:39)
Sz,
FE = / Fids for conductor elements
SE‘-
Fg'; =/ wFids for conductor elements
Eq

where m = 1,2,...,Ng,

excluding boundary nodes, n = 1,2,...,Ng,, I = 1,2,..., NE,
excluding unknown nodes, and « = 1,2, ..., M. Boundary nodes are those on the bound-
ary I'o with prescribed node values whose global numbers are bigger than N, and unknown
nodes are the nodes with unknown node values whose global numbers are equal to or
smaller than N. The unknown nodes are made up of nodes inside the solution region and
of those on the boundary I';. pg, and og; are the permeability and conductivity in the
ith element, respectively. The above formulas use local node numbers, while each node
has a global node number. A node on an element side may be shared by several adjacent
elements. When the assembly (2.37) is done, those elements will have contributions to
the entry of the same global node in the final matrix (2.35).

In (2.35), the unknown variables are the unknown node values and the source current
density'Jg in all thé conductors, while the forcing factors are the Dirichlet boundary node
values ;nd the conductor currents. Once the boundary conditions and the conductor
currents are given, the magnetic field represented by the discrete node values of A can be
found by solving (2.35). From the field solutions, the series impedance can be calculated.

This is the topic of the next section.



Chapter 2. Impedance Calculation with Finite Element Method 20

2.5 [Z] Calculations from the Field Solutions

Two methods have been developed to calculate [Z] from the field solutions: the Jg
method and the loss-energy method. With the Jg method, [Z] is calculated directly from
the vector [Js]. With the loss-energy method, the power losses and the stored magnetic
energy are calculated from the field solution first. [R] is then calculated from the power
losses, and [L] from the stored magnetic energy. The basic concepts on which these two
methods are based have existed in the literature. However, they have not been applied
to the impedance calculation of multiconductor transmission line systems in the way
described here. The loss-energy method used in [41] for the impedance calculation differs

from the method of Section 2.5.2.

2.5.1 :The Js method

As mentioned in Section 2.3, the physical meaning of Eg in (2.15) from the field analysis
is the voltage drop per unit length along the system[28]. This corresponds to i%l in (2.1)

from the circuit analysis formulation. The relationship is

d[V]

[Bs] = - dz

(2.40)

where [Es] = [Esy, Esa, ..., Esk]T. Therefore,
d[V]

dz

[Js] = [GCl[Es] = —[Gel—= = [Gcl(Z][1] (2.41)

If [I] is assumed as I; = 0 and I; # 0 (¢,5 = 1,2,...,K;% # j), the jth column of [Z]

can be derived from the above equation as

Z; s (i=1,2,...,K) (2.42)

7 Ija,-
In order to find the whole [Z] matrix of a multiconductor system, the corresponding

equation (2.35) has to be solved K times. Each time only one conductor carries current,
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while the other conductors are open-circuited. This method is simple and straightforward.

There is no need to know all the field distributions before calculating [Z].

2.5.2 The loss-energy method

When the field distributions represented by A and J are known, the power loss and the
stored magnetic energy in the system can be calculated. They are related to the series
resistances and inductances in the system. However, as the system is made up of multiple
conductors, the power loss and the magnetic energy of the whole system cannot be used
directly in the [Z] calculation. In the following, the formulas for calculating [Z] from the
power loss and the stored magnetic energy are derived by comparing the corresponding
formulas in the circuit analysis and the field analysis formulations. In the derivation, the
loss and the energy are broken down into summations of elements. These elements are
then related to the elements in [Z]. Equation (2.1) can be represented by the equivalent

network shown in Fig. 2.3. For such a resistive-inductive passive network, the complex

[Z]1=[R]+jo[L]

Figure 2.3: An equivalent network for the line

power going into the network is

Tx .
s=p-jo=(-T4) m=urmn - e
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where S, P, and @ are time-average complex power, time-average power loss, and time-
average reactive power in the equivalent network. Assuming [I] = [Ig] + j[I]] and using

the fact that P = PT and Q = Q7, the following equations can be derived

P = [IR]T[R][IR]+[II]T[R][Iz]—ggm (2.44)
Q = w({r] [L][IR]+[11]T[L][11])—E_;JZ% (2.45)
in which
pii = Ri(Irlr, + IpIr) (2.46)
¢; = wlij(Indr, + Iy I1,) (2.47)

The time-average magnetic energy Wy stored in the system is related to Q by

Wir = 5-Q = (a7 (L] + (17217 = ;1 ; was (2.48)
in which
wyg,; = %Lij(IR.-IRj + I 1) (2.49)

Consequently, if p;; and way,; can be calculated from the field solution, R;; and L;; will
be given by (2.46) and (2.49), respectively.
The formulas to calculate the time-average power loss and the time-average magnetic

energy stored in the fields are

P=2/S

K
Wiy = -?:/SH BH*ds = 5,¢Z=:1Re( .. A9 ds) (2.51)

JI
- (2.50)

where all the phasors are in RMS. These formulas, however, only give the total power loss

or the magnetic energy in the system. When the system has an arbitrary combination of
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conductor currents, J in a conductor is caused by all the conductor currents. Because the
gystem is linear, J in the conductor can be written as a summation of different current
densities caused by different conductor currents. Assuming Jiy) is the current density in
the kth conductor, it can be written as
K
Jiwy = ;J(k;) (k=12,...,K) (2.52)

where J(1;) is the current density in the kth conductor caused by the current I; in the ¢th

conductor. (2.50) now becomes

K J(k)'](k) K K
P =Y [ S Z / =2 Jo X S ds
k=15, O Se, 9 i=1 i=1
. K 1 K K K K K J(k')Jk
= Y [ oy T dedigpds =YY [
k=1Y5¢c, 02131 i=1 j=1 k=1"5¢cy
K K
= 2.2 P (2.53)
=1j=1
SO
= d 2.54
pi o= 3 [, s (2:54)
Similarly,
1 & .
Wi = 53 Re ( J . A(k)J(k)ds)
K K 1 K K K
i=1j=1 “ k=1 Ck i=1j=1
wir, = lfjne(/ Ay ¢ ds) (2.56)
Ma = 2lc=1 Sc, () (ki) .

where Ay = Ef__l A(ki). Ari)is the A in the kth conductor caused by current I;. Relating
(2.54) and (2.56) with (2.46) and (2.49), respectively, gives R;; and L;; as

JikiyJ, ..
Ry = {z /S (k)(f(k])d}/(IRaIRj+IIiIIj) (,i=12,...,K) (257)

L; = {k‘; Re ( / A(k.)J(k])ds)} [(Irdr, + InIy) (ij=1,2,...,K)(2.58)
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In order to obtain Jix;y and Agyy (k,i =1,2,...,K), (2.35) of the system has also to be
solved K times with only one conductor carrying current at a time.

Compared with the Js method, the loss-energy method needs the full information
about the field distributions at least inside the conductors in order to retrieve the [Z]
matrix. It also requires additional calculations to evaluate the integrals in (2.57) and
(2.58). The two methods are applied to simple coaxial conductor systems in Chapter 3,

and the comparisons are made for the elements of [Z] with different kinds of elements.

2.6 Impedances of Single-Core Coaxial Cables

The quasi-static magnetic fields inside single-core (SC) coaxial cables can be solved ana-
Iytica]b; due to aﬁisymmetrical geometry of the cables. The field solutions were derived
by Schelkunoff in 1934(3]. The formulas for the impedance calculation of SC coaxial
cables can then be derived from the analytical field solutions. In later chapters, these
impedance formulas are used frequently to test various numerical approaches.

Fig. 2.4 shows a SC coaxial cable with K cylindrical conductors. r4; and rpg

conductor 1

conductor £

conductor X

Figure 2.4: A SC coaxial cable with K cylindrical conductors

are internal and external radii of the kth cylindrical conductor, respectively. With the
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same assumptions as made in Section 2.2, the transverse magnetic field Huy and the

longitudinal electric field Eu; satisfy the following equations in cylindrical coordinates

d (1d(rH)\ .
- (;— = ) = jwopH (2.59)
_ 1 d(rH)
E = — (2.60)

The solution for F inside the kth conductor is

1 .
E(r) = opk (Crilo(r/pr) — CrxKo(r/pi)) Tak ST STy (2.61)
where -
_ 1 IAk IBk
O = et (FKalrmule) + T2l
Crr = = (T8 s /o) + 250 (e 0) (2:62)
2rCpr \Tak TBk

Cpr = Li(rei/pe)Ki(rar/pe) — Li(rar/pe)Ki(ree/pr)

1
P = Y jworu

I, and Ig; are internal and external return currents of the kth conductor, respectively.

Pk is a complex penetration depth in the kth conductor. I,, and K, (n = 0,1) are the
modified Bessel functions of the nth order and respectively of the first and second kinds.

E on the internal and external surfaces of the kth conductor can be derived as

E(rar) = Zarlar + ZyiIpyi (2.63)
E(rei) = Zmrlar + Zprlsek (2.64)
where
Zpp = 27rTAk0'1kPkCDk (Io(rar/pe)Ka(re/pr) + Ko(rar/pr)(rar/pe)) (2:65)
Zok = e (lalrae/ p0Ks(ras/pe) + Kolran/p)h(ras ) (266)
IMp = . | (2.67)

27r axTBrOKCDk
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Zar, ZBi, and Zyq, are defined by Schelkunoff as internal surface impedance, external

surface impedance, and transfer impedance of the kth cylindrical conductor, respectively.
Suppose that the system in Fig. 2.4 has a superconductive surface at r4, ,. This

surface will be used as the reference for the conductor voltages and the return path for

the conductor currents. The series impedance matrix of the system can then be derived

as [10][23]

(23 23 22 ... 2% )

70t 74 zed ... 738

[2]=| 23 2z z¢ ... zZ (2.68)
\Z}}" zg Z‘,’(" Z}'(}
where
K K
Z¢ = Y Zpe, -2 ). Zm (i=1,2,...,K) (2.69)
k=1 k=i+1
K K
Z¢ = Y. Zpo,—Zmi—2 Y. Zu (:1=2,3,...,K) (2.70)
k=1 k=i+1
ZEQ}, = ZBk+ZDI¢+ZA]¢+1 (k=1,2,...,K—1) (2.71)
_Jwpo ., [ Takr .
Zpr = 5 ln( — ) (:=1,2,...,K) (2.73)

Z w41y ZBr, and Zpg, are given by (2.65)-(2.67). Zp; is the impedance related to the

inductance in the insulation between the kth conductor and the (k + 1)th conductor.

2.7 Summary

In this chapter the basic assumptions in the impedance calculation of underground power

cables with FEM are discussed, and the principal equations are derived from Maxwell’s
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equations. The principal equations are then solved with FEM using the Galerkin tech-
nique. The Js method and the loss-energy method are derived for the impedance calcu-
lation from the field solution. The general form of [Z] for SC coaxial cables is also given

in this chapter.



Chapter 3

Element Types and Shape Functions

3.1 Introduction

The finite element formulation derived in the last chapter is incomplete because the
shape function ¢ (n = 1,2,...,Ng,) inside an element is still unknown. The shape
function ¢F is related to element shapes and interpolation functions in the elements. In
this chapter two kinds of elements are discussed in connection with [Z] calculations: the
simplex element and the isoparametric element. The corresponding shape functions of
these elements are used to complete the finite element formulation.

In most two-dimensional eddy-current related problems, high-order simplex elements
are used to calculate the magnetic fields. These problems are generally dealing with
the fields in non-current-carrying conductor regions or non-conductor regions at low fre-
quencies. In [Z] calculations, however, the frequency will vary from 0 to 1 MHz, and
accurate solutions for the fields inside the current-carrying conductor regions are very
important to obtain [Z] with good accuracy. At high frequencies, the conductor currents
are concentrated in narrow regions near the conductor surfaces, which generally follow
the contours of conductor surfaces. Under this situation, the curve-sided isoparametric
element may be more suitable than the straight-sided simplex element due to the fact
that most underground power cables are made from round conductors.

Very little work has been done so far on the shape functions for [Z] calculations. To

28
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find out which element is more suitable, the high-order simplex element or the curve-
sided isoparametric element, several factors have to be considered: the accuracy of [Z];
the computation efficiency, which depends on the number of nodes in the mesh, on
the final matrix bandwidth and pivoting, and on the CPU requirement; and the mesh
generation.

In this chapter, SC coaxial cables are used to study the shape functions in [Z] calcu-
lations. Because the [Z] for a SC coaxial cable is known, the FEM results with different
shape functions can be compared with the theoretical results. This is used as an accuracy
criterion. The factors mentioned above are compared for different elements. Also, based
on the numerical results, the Js method and the loss-energy method for calculating [Z]

from the field solutions are compared.

3.2 High-Order Simplex Elements

The approximate field solution given by (2.32) in the preceding chapter can be viewed as a
two-dimensional interpolation formula. Once the field values at discrete nodes are known,
the field value at an arbitrary location within the solution region can be calculated with
the interpolation formula. The shape functions in (2.32) can also be established through
- setting up such an interpolation formula.

As briefly mentioned in Section 2.4.1, the polynomials are among the popular shape
functions used in finite element analysis, because they can be differentiated and integrated
easily. The corresponding shape functions of the simplex elements and the isoparamet-
ric elements discussed in this section and in the next section are based on polynomials.
Therefore, the shape functions to be discussed can be treated as interpolation polyno-
mials which satisfy the conditions given in Section 2.4.2: the shape function for the [Z]

calculation must be continuous across the interelement boundary; it must reach unity at



Chapter 3. Element Types and Shape Functions | 30

its associated node and it must be zero at other nodes.

A simplex in N-dimensional space is the minimal possible nontrivial geometric figure
defined by N +1 vertices. Therefore, a simplex in two dimensions is a triangle. A triangle
(simplex) with area S is shown in Fig. 3.1(a). An arbitrary point P inside the triangle
can be used to split the triangle into three subtriangles with areas S, S,, and S3 as

shown in the figure. Simplex coordinates are defined as

(== i=1,2,3 (3.1)

(x1, )
y
(x3' i
©) s ¢
(X2, %) 0,0 (1,0) 1
> X
(a) global coordinates (b) simplex (local) coordinates

Figure 3.1: Definition of simplex coordinates in a simplex with area S

From (3.1), the simplex coordinates are obviously varying in the range between zero
and one. They are independent of the location of the triangle in the original z-y coordi-

nate system. Only two of the three simplex coordinates are independent because

51+52+53_
— =

With (3.1) a triangle in z-y (global) coordinates in Fig. 3.1(a) will be transformed into

G+e+G= 1 (3.2)

another one in simplex (local) coordinates in Fig. 3.1(b).
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The interpolation polynomials required by FEM for [Z] calculations can be easily
established with simplex coordinates. The detailed derivations can be found in [7] and

[34]. Some key equations are given below, and the integrals in (2.39) are completed.

3.2.1 Shape functions in simplex elements

Applying the formula calculating the area of a triangle from the coordinates of its vertices
to (3.1), the relationship between the simplex coordinates, or local coordinates, and z-y

coordinates, or global coordinates, can be found as

G ToYs —T3Y2 Y2 — Y3 T3 — T 1
1
G | = ﬁ T3P —T1Y3s Y3s—Y1 T1 — T3 z (3-3)
3 T1Y2 —T2Yh N1 —Y2 T2 — Ty Yy
¢

In a simplex the shape functions can be expressed in terms of simplex coordinates as [34]
Amimyms = Py (Npy (1) Py (Npy (2) Py (Npy Ga)  mu+ma+ma=N,  (3.4)

in which Py, (Npy €1)y Pmy(Np,y(2), and P, (N, (3) are auxiliary polynomials given by

1 m-—1

PalNpn¢) = [N —F)  m=12...N, (3.5)
Po(Npy¢) = 1 | (3.6)

N, is the order of the polynomials. Integer indices m,, m;, and m3 have values from
0 to N, and are related to the locations of nodes inside the triangle. They will be
called location indices. The nodes inside a simplex element are at the intersections of
three groups of equally spaced parallel lines as shown in Fig. 3.2(a). Each group is in
parallel with one of the triangle sides. The lines in a group are numbered from 0 to N,
starting from the line aligned with the triangle side. Therefore, for each node there are

three numbers associated with three intersecting lines where the node is located. These
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numbers indicate the locations of the lines in different groups and are the location indices
mymymg in (3.4). The location indices can be easily extracted from Fig. 3.2(a) into an

explicit form as shown in Fig. 3.2(b).

400

103

130 004

(a) element node arrangement (b) the location indices of the nodes

Figure 3.2: The arrangement and location indices of the nodes in the fourth order simplex
element (N,=4)

3.2.2 Integral matrices of simplex elements

In practice, the nodes in a simplex element can be numbered in any order; however, each
node will have the fixed location indices. A commonly used node numbering scheme is
shown in Fig. 3.3. For this scheme, the shape functions in (2.38) are related to the shape
functions in (3.4) as ¢} = @ne0, P2° = Q(n_1)105- - -» and <pf,;._ = agon. For the nth order
polynomials, Ng; = (n + 1)(n + 2)/2.

With such a node numbering scheme and the shape functions given by (3.4), the
integral UZ: and T'Z in (2.39) can be derived as[34]

Z Q™ cot(85%) (3.7)

Ei k=1
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Figure 3.3: A commonly used node numbering scheme

Tff;l = O'E.. SE.‘ Tsmn (3 '8)
in which
0pfi  9pFi ) ( 0pl  fpF ) ds

L - L = n— — = k=1,2,3 3.9
Qran /Sn.- (3Ck+1 -1/ \ 041 O(k-1/ 2SE; ( ) (39)

ds

_ E; Ei 77
Tsmn - Sa, Pm Pn SE.' (3‘10)

0,‘?‘ is the included angle of vertex k in element E;. As all the shape functions are in the
form of (3.4), the integration functions in (3.9) and (3.10) are the functions of simplex
coordinates only. They are the same for all the elements, independent of the element
shapes and sizes. Therefore, they can be evaluated once and for all and tabulated.

From (3.3), the following equation can be derived

9z Oz

ds = dzdy = | % %¢ |d¢1d¢, = 2SE,dC1dC; (3.11)
8y by
81 8¢

As the integral functions in (3.9) and (3.10) can be broken into summations of product
terms of simplex coordinates, these integral equations are evaluated by

iljlk!
(G+j+k+2)!

|, ddicigge= [ [ dei - 6 - rdcudt = (3.12)
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Under the node numbering scheme shown in Fig. 3.3, the matrices [Q(")] and [Ts]
of the first order to the fourth order have been given in the exact rational form in [7].
These matrices and those of the fifth and the sixth orders are listed in Appendix A as
a reference. There are two typesetting errors in [7], one in [Q(!)] of the third order and
one in [Ts] of the fourth order.

[@®)] and [Q®)] are related to [Q(V)] by

1 2 1
le = Q(O()m)O(n) and QS’L = Q(O()m)o(n) = Q(O()O(m))O(O(n))

O() is the index string for [Q(¥)]. Fig. 3.4 shows how to find the index string for the fourth

order simplex element. The vertices have to be numbered counterclockwise. The nodes

Figure 3.4: [Q®)] index string of the fourth order simplex element

in the simplex are numbered in the scheme shown in Fig. 3.3 starting from vertex one.
The numbers are those without parentheses in Fig. 3.4. The nodes are renumbered in
the same way starting from vertex two. The numbers are those with parentheses. Then
the first group of numbers are to be the indices in O(), and the second group of numbers
are to be the corresponding values of O(). For the fourth order, O(1) = 15, O(2) = 10,
O(3) = 14, and so on. Tab.3.1 shows [Q™)] index strings for different orders.
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Table 3.1: [Q®)] index strings
Order Index string O()

2 4

5 8 1 2 4 7

9 13 3 5 8 12 1 2 4 7 11
14 19 6 9 13 18 3 5 8 12 17
11 16

28 21 27 15 20 26 10 14 19 25 6 9 13 18 24
3 5 8 12 17 23 1 2 4 7 11 16 22

=] K< 1 K &)

1

3

10 6
15 10 14

5

2

SRS LY

21 1

[~
(=1
—
N O| & Wi+

=]

FZi and F5' can be calculated from [T as

N,
F% = Sg ) Ts,, (3.13)

n=1

Nn'.
Fg. = Sg Y Ts,. (3.14)

n=1
where m = 1,2,..., Ng,, excluding boundary nodes, and !l = 1,2,..., Ng,, excluding

unknown nodes. Obviously, they can be calculated from the tabulated [T] directly. No
integral calculation is needed.

High order simplex elements satisfy the condition of interelement boundary continuity.
With the nth order shape function, the approximation in (2.38) will also be an nth order
polynomial which is uniquely defined by (n + 1) nodes on each element side. Therefore,
if two adjacent elements have the same node value for each node on the shared element
side, the function A will be continuous across the side.

High order simplex elements are simple. The integrations are exact and independent
of triangle shapes and sizes and can be done once and for all. The nodes for higher orders
can be easily created from the first order element mesh by the computer. Required by
the shape function, the element sides are straight, and the nodes are evenly located.
This may not be suitable for {Z] calculations of underground power cables because most

cables are made of round conductors. In the next section, the isoparametric element with
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curved sides will be discussed.

3.3 Isoparametric Elements

Cylindrical shells or round solids are common conductor shapes with underground power
cables. Although elements with straight sides such as simplex elements can always be
used to mesh a region with curved boundaries, many elements are required to fit the
mesh into those boundaries. If elements with curved sides are used, instead, the number
of elements in the mesh can be reduced.

For simplex elements, it can be seen from (3.3) that the relationship between the
global coordinates z-y and the simplex (local) coordinates {;-(;-(3 is linear. Therefore, a
straight side element in the local coordinates will be mapped into a straight side element
in the global coordinates. If a non-linear relationship is used, a straight side element in
the local coordinates can be mapped into a curved side element in the global coordinates.

In this section, two types of curved side elements are briefly discussed: the quadratic
quadrilateral isoparametric element and the quadratic triangular isoparametric element.

Detailed derivations can be found in the literature {27][37].

3.3.1 Quadratic quadrilateral isoparametric element

In an isoparametric element, the global coordinates z and y are expressed as the in-
terpolation functions of z coordinates and y coordinates, respectively, of the element
nodes. These interpolation functions are in the same form as those used for the field
variable in the element. In Fig. 3.5, a quadratic quadrilateral element is shown in both
global and local coordinates. If the element nodes are numbered as shown in Fig. 3.5(a),

interpolation formulas for A, z, and y in element E; can be written as

A = [BI[A%) (3.15)
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01 @1

x (-1.-1) ©.-1) -1

(a) global coordinates (b) local coordinates

Figure 3.5: Quadratic quadrilateral isoparametric element

z = [Bl5] (3.16)
v = [Blv™] (3.17)

where

[AE‘] = [Af:i7 Afi) ey A8£]T

%] = [of,25,..., 25" (3.18)
W5 = [z v )

[ﬂ] = [ﬂhﬂh' . '7138]
[B] is a row vector, and its elements are defined by the following expressions in the local

coordinates [37].

fr=31-v)1-v)(~1~-v—v) Bs = 3(1-v*)(1-v)
Br=5(1+v)A-v)(-1+v—v) Be = 3(1 +v)(1 —»?)
Bs=1+v)(L+v)(-1+v+v) Br=3(1—v)(1+v)
Bi=11—-v)(L+v)(-1—v+V) Bs = 3(1 —v)(1 —+?)

(3.19)
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From (3.16)-(3.18), the following equations can be derived

[ ] = [J2]! [ {F } (3.20)

ds = dzdy = det[J%)dvdv (3.21)

o Flo

where [JFi] is the Jacobian matrix of the transformation given by

8 & 8
[J2] = [ :; ;: } = ' o ] 5] ([zE"] [yE"]) (3.22)

The integrals UZ and TE: in (2.39) can now be evaluated in the local coordinates.
The matrix form will be used. [UZ] and [T%) are the matrices corresponding to UZ:
and T | respectively. These matrices are 8x8 square matrices. Some of their elements,
however, may not be used in the final matrix assembly because subscript m in UZ and
TE: only refers to the unknown nodes in the element. [U%] and [TFi] are given by

T

B = = [ Vig]- ViglTds = — =) (|7 (6]
B HE; /SB; °= HKE; /SB; 78% % ’
1 ! ! E; ‘ $
- /_ 1 /_ [DET (D det{JE)dvdv (3.23)
[T%] = oz /_ 1 /_ (BT [B)detl I dvdv (3.24)
in which
A KA
[DE*1=[";][ﬂ1=[Jfﬂ-‘[";][ﬂ1 (3.25)
By v

As the integrals in (3.23) and (3.24) are related to the element node coordinates [z
and [y%], [U¥] and [T%] cannot be evaluated once and for all. Also it would be too

complicated to integrate (3.23) and (3.24) analytically. Instead, numerical integration
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formulas are used. With Gaussian quadrature formulas, [U%] and [T'%] become

Ns Ng

[U%] = ”LE 3o S WiWi DB (v;, )] [D% (v, vi)|det[ T (vj, )] (3.26)
i =1 k=1
Ns Ngs

[T®] = og Z_;:é W;We[B(vj, vi)T [B(v;, va)ldet [T (vj, vie)] (3.27)

where (v;,1;) gives the sampling point location in local coordinates, W; and W, are the
weighting factors related to v; and v, respectively, and Ng is the number of sampling
points in one direction. v; and v are the sampling point locations in the Gaussian quadra-
ture formula. These locations and associated weighting factors are given in Tab.3.2[5].
If the integrand in (3.23) or in (3.24) is a polynomial of order 2Ng — 1 for one variable
(v or v), the integral associated with that variable can be exactly calculated with Ng
sampling points. Similar to (3.13) and (3.14), FZ and Fg' are calculated from [T5].

Table 3.2: Locations of sampling points and weighting factors for Gaussian quadrature

N. S vV Or V; Wj
1 0 2
2 +- 1

V3
8
3 0 9
+0.7745966692414834 %

4 £0.3399810435848563 | 0.6521451548625461
+0.8611363115940526 | 0.3478548451374539

0 0.5688888888888889
5 £0.5384693101056831 | 0.4786286704993665
$0.9061798459386640 | 0.2369268850561891

3.3.2 Quadratic triangular isoparametric element

For the quadratic triangular isoparametric element shown in Fig. 3.6, all the previous
equations, (3.15)-(3.17) and (3.20)-(3.25), are applicable except that the number of nodes
is six instead of eight. The shape functions are the same as those of the second order

simplex element, as indicated by the similarity between Fig. 3.1(b) and Fig. 3.6(b).
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x (0,0) 05,0 1o v
(a) global coordinates (b) local coordinates

Figure 3.6: Quadratic triangular isoparametric element

Using the node numbering scheme shown in Fig. 3.6 and assuming {; = v and {; = v,

the shape functions can be derived from (3.2) and (3.4) as

B = aze0 = (1(2¢1 — 1) = v(2v — 1)

B2 = a0 = ((2(; — 1) = v(2v - 1)

Bs = ooz = (3(26 — 1) = (1 —v —v)(1 — 2v — 20) (3.28)
Bs = ayio = 46162 = 4oy

Bs = aon = 4(als = (1 — v —v)

Bs = 11 = 4(1{s = dw(l —v —v)

The numerical integration formula is applied again to calculate [UFi] and [TF]

1 ¥

%] = r;Wj[DE‘(vj,V:')]T[DE‘(v:‘,”j)]det[-ff (5, 25)] (3.29)
Ns
[T%] = aE,.;W,-[ﬂ(v,-,u,-)]T[ﬂ(v,-,u,-)]det[Jf‘(vj,uj)] (3.30)

The locations and associated weighting factors are given in Tab.3.3 [11]. The error order

term o(h;) indicates that the integral can be exactly calculated if the integrand is a
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polynomial of order k — 1.

Compared with simplex elements, fewer elements are needed if the above isoparamet-
ric elements are used to mesh regions with curved boundaries. Consequently, the number
of nodes can be reduced. The procedure for evaluating the integrals of these isoparamet-
ric elements, however, is much more complicated. The integrals are solved numerically
and have to be calculated within each element. Therefore, the node number reduction
with isoparametric elements may not result in a reduction of computation time, as more

time may be needed by the integral evaluations. FZi and Fg’:‘. are calculated from [T'Fi].

Table 3.3: Locations of sampling points and weighting factors for quadratic triangular
element

Ns (vj,v;) W; Error
11 1
1 313 3 o( k)
1
(0,0.5) 8
1
3 (0.5,0) 3 o(h3)
1
(0.5,0.5) 3
1 pid
33 " 96
1 2 25
4 157 15 96 o(h4)
(2,1 25
15715 96
(2,2) 25
157 15 96
11
313 0.1125
(0.47014206,0.05961587) | 0.066197075
(0.47014206,0.47014206) | 0.066197075
7 | (0.05961587,0.47014206) | 0.066197075 | o(hg)
(0.10128651,0.10128651) | 0.06296959
(0.79742699,0.10128651) | 0.06296959
(0.10128651,0.79742699) | 0.06296959
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3.4 Calculation of Integrals in the Loss-Energy Method

In the loss-energy method for [Z] calculations, integrations (2.54) and (2.56) are used to
calculate the power losses and stored magnetic energy. With the shape functions given
in the preceding two sections, these integrations can be found. For high order simplex

elements, p;; in (2.54) becomes

zz/

Sgl

ki Ji S 1 -
Ju — oo ds = E}: R TSIV (3.31)

in which [ refers to elements in conductor k, [J(k‘i)] and | (k;)] are node value vectors
of current density distributions Ji;) and J(kj) in element E;, respectively. J(*,q-) is the

conjugate of Jix;). Similarly, way,; in (2.56) is given by

war,; = é{:Re (Xl: /S . A(k.-)J(‘,,j)ds) Z Re (E Se [ AE T (TSI, E,,;;]) (3.32)

in which [A(,“)] is the node value vector of magnetic vector potential distribution A in
element Ej;.

For quadratic isoparametric elements, p;; and wyy,; are respectively given by
J 1 T{TEx|[ JE
pij = Z Z k.)] [T™][J, k;)] (3.33)
ww, = 3Re (E AR T ) (330

where [T®] is given either by (3.27) for quadrilateral elements or by (3.30) for triangular

elements.

3.5 General Procedures for [Z] calculations with FEM

With the shape functions discussed in the preceding sections, all the entries in the final
matrix given by (2.35) can be calculated. This section concentrates on the procedures

for solving the final equations (2.35).
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As mentioned in Section 2.4.2 that boundary nodes are numbered after unknown

nodes, vector [A] can be partitioned as

[Av]
(Ag]

[4] = (3.35)

where [Ay] = [A1, A3,y ..., Ax]T and [AB] = [AN11, ANy2y---r ANg )T Correspondingly,

[U] + jw[T] is partitioned as
[U] + jw[T] = [ [D] [Dsg] ] (3.36)

where [D] is an N x N sparse complex symmetric matrix, [Dp] is an N x Np complex

matrix. With (3.35) and (3.36), (2.35) becomes

D] (P [Aul]z Iz] 5.37)
[Fa] [Sc] [Js] 1] + [Ig)
in which
[Fr] = —jw[Gc|[F]T
[Ig:] = —[Ds][AB] (3.38)

[Ig:] = jw[Gc][Fsl"[As]

(Ig1) and [Ig;] are equivalent current vectors due to Dirichlet boundary conditions. In
most cases of [Z] calculations, the boundary value vector [Ap] is a zero vector.

In order to make use of the sparsity of [ D], the node numbers are generally renumbered
with certain algorithms [15] such that the matrix has the structure shown in Fig. 3.7.
The shaded areas represent non-zero elements. [D] can now be factorized by algorithms

dealing with banded symmetric complex matrices into

(D] = (Dy)(Dy] (3:39)
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Figure 3.7: Matrix structure of the final equations for [Z] calculations

[Dy] is a banded lower triangular matrix and [Dy] is a banded upper triangular matrix.

Using the factors stored in [Dp], (3.37) becomes

Do) F1][140]| _[ Ul ] (5.40)
[Fa] [Sc] [Js) [1] + [Ig]
in which
[DL][F] = —[F] (3.41)

[Drlllg} = [Ie]
Because [Dy] is an upper triangular matrix, it can be used directly to delete [Fy] in

(3.40), and the following equation can be derived

_ [ (1] } (.42)
(1] + [Ig,)

[Du] [F]
[0] [Sel

[Av]
[Js]

in which
[Sc] = [Sc]—[Fg][F']

sl = [Ug2] — [FgllIE,] (3.43)

[Ful(Dv] = [Fal
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[I] in (3.42) is left intact. It is the main excitation factor in the [Z] calculation because
[I1] and [Ig,] are generally zero vectors. According to the discussions in Section 2.4 and
Section 2.5, for an N-conductor system (2.35) has to be solved N times in order to
calculate the whole [Z], with only one conductor carrying current at a time. (3.42) can
be used repeatedly to solve for [Js] and [AU] for different assignments to (I]. Once [I] is
assigned, [Js] and [Ay] are solved by

[Scllds] = ]+ [Ig)]
[DullAv] = [Ig:] - [F][Js]

(3.44)

The general procedure for [Z] calculations with FEM is summerized in the program

flowchart shown in Fig. 3.8.

3.6 [Z] Calculation of an SC Coaxial Cable with FEM

In this section, FEM is applied to calculate [Z] of a two-conductor SC coaxial cable. The
numerical results are compared with analytical results given by (2.68) in Section 2.6.
Optimum division and computation efficiency are studied and comparisons are made
among different kinds of elements and different orders of simplex elements. Both the Js
method and the loss-energy method discussed in Section 2.5 are used. The results show
that for [Z] calculations of SC coaxial cables isoparametric elements are more efficient
with respect to CPU time and storage requirements compared with simplex elements
under the same accuracy. The loss-energy method gives the same results (up to eight
digits) as the Js method. When solving the final symmetric banded complex linear
equations, a partial pivotal element selection algorithm gives the same solutions as a

variable bandwidth Choleski algorithm.
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(Start )

[ Process for simplex elements |

{ Renumber nodes |

| Form [U]’ [T]y [FL [FB]’ and [GC] I
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([0 [s¢] (1 12,]

i
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Calculate {Z ]

Plotfields and print [Z]

No

Figure 3.8: Program flow chart for [Z] calculations with FEM
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3.6.1 Optimum divisions for SC coaxial cables

Fig. 3.9(a) shows a two-conductor SC coaxial cable as an example for the [Z] calculation,

and (b) shows its FEM solution region. The first step in calculating [Z] with FEM is

o= 57000 S/mm unit: mm

T =0
o= 4800 S/mm 41
SSEETN =12 7

AN 24 _o\  [24 g
e N on V on
p,= 1 forall .

(a) cable data (b) solution region

Figure 3.9: Geometry of a SC coaxial cable and its FEM solution region

to mesh the solution region into elements. The fineness of the mesh will affect not only
the accuracy but also the amount of computation. In general, a fine mesh improves the
accuracy but has more elements and nodes; therefore, it takes more CPU time and more
storage.

An optimum division scheme should give a mesh with the least possible number of
nodes while maintaining a certain accuracy. For SC coaxial cables there are two relevant
factors for the fineness of the mesh: divisions along the radial direction and the span

angle 0 shown in Fig. 3.9(b)

Radial direction division

Because of axial symmetry, only a wedge-shaped region as shown in Fig. 3.9(b) is needed
for the [Z] calculation. A small suitable  can be used when studying the division scheme
along the radial direction.

The basic idea for meshing a solution region is to have fine elements at locations
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where the field changes fast and to have large elements where the field changes smoothly.
At high frequencies, the conductor currents will be concentrated in narrow regions near
the conductor surfaces because of skin and proximity effects, and the magnitude of thé
current density decays quickly towards the centre of the conductors. In the region near
the conductor surfaces, the field changes fast, and fine elements should be applied there
in order to achieve accurate results. The depth of these regions beneath the conductor

surfaces can be estimated by using the penetration depth

2
§= ope (3.45)

The divisions will then depend on é, which is a function of frequency, conductor conduc-
tivity, and conductor permeability.

The wedge-shaped region in Fig. 3.9(b) is enlarged in Fig. 3.10. The dashed lines in

the figure are possible radial divisions. d;; is the width of the jth division from a surface

Figure 3.10: Radial divisions for SC coaxial cables

of the ith conductor. d;; < d;;44. For the inner most conductor, divisions proceed from
the outer surface only, even if the conductor is hollow. For other conductors divisions
proceed from both the inner and outer surfaces as shown in Fig. 3.10.

The division width d;; is related to the penetration depth §. This relationship can be
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written as

di; = fa4;6; (3.46)

where fy; is a division factor for the jth division and independent of §;. fy; is to be
determined from numerical tests. The criteria are the error in [Z] and the error in the
J distribution. These two errors are related to each other.

For the cable shown in Fig. 3.9, the division factors found are listed in Tab.3.4, where

Table 3.4: Division factors f4; for the SC coaxial cable

element | fa, | fa, | fa, | fa,
siml | 03 |05 1}{09 1.8

isoorsim2 | 1.15 | 28 { — | —

sim3 [ 225 | — | — | —
simd | 31 | — | — | —
simb | 41 | — | — | —
sim6 5 — | — | —

”iso” stands for quadratic isoparametric elements including quadrilateral and triangular
elements, ”sim1” stands for the 1st order simplex element, ”sim2” stands for the 2nd
order simplex element, and so on. Based on the division factors in Tab.3.4 and the data
given in Fig. 3.9(a), the division radii for isoparametric and for the 2nd order simplex
elements are calculated and listed in Tab.3.5. Division radii are the radii of division lines.

a

The original material boundaries will also be division lines.

Table 3.5: Division radii for iso and sim2

F (Hz) division radii (mm)
60 12 18 22 24
60 {0 12 18 22 24
600 | 0 8.87 12 18 22 24
6000 | 0 8.601 11.01 12 18 20 - 22 24
60000 [ 0 10925 11.687 12 18 19.079 20.921 22 24
600000 { 0 11.66 11.901 12 18 18.341 19.171 20.829 21.659 22 24

The meshes generated according to Tab.3.4 are used to calculate [Z]. 8 = 6° is

used in the calculation. The [R] and [L] values are listed in Tab.3.6. "ana” stands for
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Table 3.6: [R] and [L] of a two-conductor SC coaxial cable

R (©2/km) L (pH/km)
f (HZ) element Rn R12 R22 Lu L12 L22
ana 0.0388114 0.216122x10~° 0.414466 | 188.610 36.1306 29.4773
iso 0.0388114 0.215176x10~¢ 0.414466 | 188.500 36.1314 29.4758
siml 0.0388839 0.215349x10-¢ 0.415225 | 187.280 36.1247 29.2811
sim2 0.0388823 0.214880x10~° 0.415225 | 188.592 36.1261 29.4689
6 sim3 0.0388823 0.215736x10-% 0.415225 | 188.607 36.1277 29.4742
sim4 0.0388823 0.215739x10-% 0.415225 | 188.607 36.1282 29.4747
simb 0.0388823 0.215740x10-¢ 0.415225 | 188.607 36.1283 29.4748
sim$§ 0.0388823 0.215740x10-% 0.415225 | 188.607 36.1283 29.47@_
ana 0.0417002 0.216120x10~% 0.414477 | 186.786 36.1304 29.4772
iso 0.0417370 0.215174x10~* 0.414477 { 186.965 36.1312 29.4758
siml 0.0418227 0.215352x10-% 0.415235 | 185.586 36.1245 29.2810
sim2 0.0418023 0.214878x10-* 0.415235 | 186.973 36.1259 29.4688
60 sim3 0.0417662 0.215733x10-* 0.415235 | 186.794 36.1275 29.4741
sim4 0.0417665 0.215737x10-* 0.415235 | 186.790 36.1280 29.4746
sim5 0.0417665 0.215737x10-% 0.415235 | 186.790 36.1281 29.4747
sim6 0.0417665 0.215737x10~* 0.415235 | 186.790 36.1281 29.4748
ana 0.100575 0.00215824 0.415564 | 160.987 36.1098 29.4672
iso 0.100431 0.00214979 0.415553 | 160.933 36.1141 29.4676
siml 0.100645 0.00215072 0.416317 | 160.109 36.1049 29.2716
sim2 0.100512  0.00214678 0.416310 | 160.938 36.1085 29.4605
600 sim3 0.100645 0.00215449 0.416320 | 161.067 36.1070 29.4642
sim4 0.100658 0.00215453 0.416320 | 161.005 36.1074 29.4647
sim5 0.100643 0.00215453 0.416320 | 161.003 36.1075 29.4648
sim6 0.100666 0.00215453 0.416320 ) 161.006 36.1076 29.4648
ana 0.683376 0.190695 0.512251 | 141.923 34.2940 28.5883
iso 0.682959  0.191040 0.512392 | 141.926 34.3098 28.5986
siml 0.683443 0.191763 0.513133 | 141.514 34.3483 28.4171
sim2 0.682408  0.190726 0.513005 | 141.928 34.3066 28.5928
6000 sim3 0.684061 0.190419 0.512891 | 141.999 34.2956 28.5911
sim4 0.682981 0.190437 0.512876 | 141.945 34.2972 28.5885
simb 0.682998 0.190439 0.512877 | 141.939 34.2974 28.5887
sim6 0.683092 0.190439 0.512877 | 141.939 34.2975 28.5887
ana 4.55387 1.70847 1.64196 110.103 21.5995 21.6613
iso 4.54685 1.70634 1.64644 110.053 21.5830 21.6629
siml 4.56176 1.71946 1.63998 109.402 21.4431 21.5415
sim2 4.55291 1.70905 1.64730 110.056 21.5819 21.6573
60000 sim3 4.57740 1.71047 1.64424 110.144 21.6141 21.6731
sim4 4.55865 1.71048 1.64354 110.105 21.6007 21.6620
simb 4.55860 1.71067 1.64278 110.109 21.5999 21.6622
sim6 4.55913 1.71055 1.64367 110.109 21.6004 21.6619
ana 13.9902 5.11638 5.11640 102.208 18.7503 18.7503
iso 13.9102 5.08706 5.08729 102.188 18.7471 18.7467
sim1l 13.8688 5.08011 5.07796 101.775 18.7058 18.7052
sim2 13.9682 5.10549 5.10596 102.169 18.7377 18.7375
600000 sim3 14.0963 5.12703 5.13941 102.214 18.7554 18.7562
sim4 14.0001 5.12097 5.12041 102.203 18.7487 18.7487
sim5 14.0028 5.12067 5.12070 102.204 18.7476 18.7476
sim6 14.0079 5.12252 5.12254 102.204 18.7475 18.7475

50
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analytical results given by (2.68). Compared with analytical results the overall errors of
the numerical results are less than i%. The division radii listed in Tab.3.5 are also used
for other frequencies with similar magnitudes. The overall errors of the numerical results
in the frequency range from 0 to 1MHz are less than 1.2% for isoparametric elements, less
than 1.8% for the 1st order simplex elements, and less than 1% for other order simplex
elements. The corresponding current density distributions in the radial direction at 6kHz

and 60kHz are plotted in Fig. 3.11 and Fig. 3.12, respectively.

Span angle

In practical problems, axial symmetry does not always exist to give the simple wedge-
shaped solution regions shown in Fig. 3.9(b). Instead, a whole circular region as in
Fig. 3.9(a) may have to be meshed. A larger span angle 8 results in a smaller number
of elements and nodes. For straight-sided simplex elements, a larger § means a larger
"misfit” of the element sides into the conductor shapes. This misfit will introduce errors.
Curve-sided isoparametric elements can be fitted into the conductor shapes nicely, even
with @ larger than 90°. This enables isoparametric elements to maintain almost the same
accuracy with large 8 as that with small 6.

Fig. 3.13 gives the maximum errors in numerical results of [R] and [L] as functions
of §. The divisions along the radial direction are still based on Tab.3.4. For the 4th,
5th, and 6th order simplex elements the results are very similar to the 3rd order simplex
element. From these results it can be seen that high orders in simplex elements do not

really improve the accuracy when 8 is large. For isoparametric elements the maximum

errors are less than 4% for [R] and 1.1% for [L] at 8 = 120°.
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Figure 3.11: Current density distribution in the SC coaxial cable at 6kHz
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Figure 3.12: Current density distribution in the SC coaxial cable at 60kHz
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3.6.2 Computation efficiency: CPU time, storage, and pivoting

From the preceding section it is seen that isoparametric elements can have larger 9
than simplex elements for the same accuracy. This will certainly reduce the number of
elements and number of nodes in the mesh if a whole circular region needs to be meshed.
Consequently, CPU time and memory storage will be reduced.

There are other factors affecting the computation efficiency, such as bandwidth (BW)
of the final equations depicted in Fig. 3.7, type of algorithm for solving the final equations,
and element types.

In order to achieve an overall comparison, a whole circular region is used in the
comparison study. When the error limit is given, different element types with different
are applied to mesh the circular region. Fig. 3.14 gives the meshes of isoparametric and

the 2nd order simplex elements at 60kHz with error limit of 2% and 15%, respectively.

isoparametric 2nd order simplex

(a) meshes with 2% error (b) meshes with 15% error

Figure 3.14: FEM meshes at 60kHz for different error Limits

In isoparametric element meshes, circles in division radii are also drawn for the pur-
pose of misfit observation. The misfit in the mesh in Fig. 3.14(a) is almost unnoticeable,
while it is very large in Fig. 3.14(b). Tab.3.7 lists some of the main computation parame-
ters for different elements and different order of simplex elements at 2% error limit. The

final matrix is a complex matrix in double precision. M and N are the number of elements
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and number of unknown nodes, respectively. Tab.3.8 lists the corresponding CPU time
for the calculation. The calculation is done on a VAX 11/750 having a speed of .6 ~ .7

million instructions per second with floating point accelerator. As a variable bandwidth

Table 3.7: Storage and other parameters for different elements

element 6 matrix storage | Max errors (%)
type | (degree) | M | N | BW | dimension | (bytes) | R L
iso 90 32 89 17 1088x1 83900 | 0.85 0.06
siml 22.5 464 | 225 | 20 3666x1 227084 | 1.87 1.59
sim?2 18 300 | 581 | 119 | 28474x1 | 1372376 | 1.65 0.52
sim3 18 220§ 961 | 206 | 70636x1 | 3838008 | 1.81 0.25
sim4 22.5 176 | 1377 | 319 | 1513851 | 7387372 | — —

Table 3.8: CPU time requirements for different elements

element | matrix matrix loss-energy total
type formation | factorization | solution method others | CPU time
iso 24s 18s 0.5s 32s 14s 9.3 s
(26.0%) (19.5%) (5.4%) (34.3%) (14.8%)
siml 23s 6.7s 16s 35s 43 s 184s
(12.5%) (36.8%) ( 8.5%) (18.9%) (23.4%)
sim2 46 s 130.4 s 104s 7.1s 64s 158.9 s
( 2.9%) (82.1%) ( 6.5%) ( 4.5%) ( 4.0%)
sim3 11.0s 506.7 s 26.7 s 119s 139 s 570.2 s
( 1.9%) (88.9%) (4.7%) (21%) (2.4%)

Choleski algorithm was used[15], the final matrix was stored as a one-dimensional array.
For the 4th order simplex element the calculation was not completed and the CPU time
is not available.

Tab.3.8 shows that the loss-energy method for calculating [Z] from the field solution
takes a substantial amount of CPU time. The results, however, are the same as those
from the Js method (up to eight digits), which takes negligible time. The agreement
between these two methods exists in all the [Z] calculation of the SC cable.

The variable bandwidth Choleski algorithm is modified from the one applied to real
matrices. It takes advantage of the symmetry and sparsity of the matrix. However, it

does not select a pivotal element when factorizing the matrix. Partial pivoting was also
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used in the solutions, and the results were the same as those without pivoting. The CPU

time required by the pivoting algorithm is much higher, and the corresponding CPU time

and storage requirements are listed in Tab.3.9.

Table 3.9: Storage and CPU time requirements for pivoting

For 15% error limit, similar comparisons are given in Tab.3.10 to Tab.3.12. A Pivoting

algorithm again gives the same results as the variable bandwidth Choleski algorithm. In

element | matrix storage CPU time
type | dimension | (bytes) | factorization | solution
iso 49x89 136268 28s 0.7s
siml 58x225 377228 10.7s 22s
sim?2 355x581 | 4216872 403.9 s 289 s
sim3 616x961 | 12179448 1703.7 s 103.1s
sim4 955x1377 | 26005772 — —

Table 3.10: Storage and other parameters for different elements

element 6 matrix storage | Max errors (%)
type | (degree) | M | N | BW | dimension | (bytes) R L
iso 180 16 | 45 9 303x1 33928 | 10.10 2.09
siml 60 174 | 85 9 611x1 55604 9.75 8.06
sim2 60 90 | 175 | 29 3158x1 170384 | 14.06 6.45
sim3 60 66 | 289 | 61 9628x1 454104 | 14.30 6.14
sim4 60 66 | 517 | 105 | 27845x1 | 1230332 | 14.14 5.81
simb 60 54 | 661 | 161 | 50056x1 | 2214940 | 13.70 5.59
sim6 60 54 | 955 | 229 | 99610x1 | 4335336 | 13.43 5.35

this case the loss-energy method gives faulty results with isoparametric elements. The

reason is that the two centre triangular isoparametric elements in Fig. 3.14(b) have 180°

as their vertex angles.

Based on the above comparisons isoparametric elements are more efficient than sim-

plex elements with respect to CPU time and memofy storage within the same error

limit.
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Table 3.11: CPU time requirements for different elements

element | matrix matrix loss-energy total

type formation | factorization | solution method others | CPU time

iso 12s 05s 0.2s 1.7s 08s 44s
(28.2%) (10.6%) ( 4.6%) (38.7%) (17.8%)

siml 10s 09s 04s 13s 1.7s 5.3 s
(18.3%) (16.7%) ( 6.8%) (25.5%) (32.7%)

sim2 11s 6.2s 13s 22s 20s 128 s
( 8.9%) (48.2%) (10.3%) (17.3%) (15.2%)

sim3 21s 32.7s 3.7s 3.7s 33s 45.5 s
(4.5%) (71.9%) ( 8.2%) ( 8.2%) (7.2%)

sim4 48s 154.0 s 109 s 79s 7.6s 185.2 s
( 2.6%) (83.2%) ( 5.9%) ( 4.3%) (4.1%)

sim$ 8.6s 367.5s 184 s 11.1s 16.1s 421.7 s
( 2.0%) (87.1%) ( 4.4%) (2.6%) (3.8%)

sim6 172 s 1017.2 s 39.7s 199 s 36.8s 1130.8 s
(1.5%) (90.0%) (3.5%) (1.8%) ( 3.3%)

Table 3.12: Storage and CPU time requirements for pivoting

element matrix storage CPU time
type dimension | (bytes) | factorization | solution
iso 25x45 47080 06s 03s
siml 25x85 79828 11s 05s
sim?2 85x175 357856 118 s 22s
sim3 181x289 | 1137000 669 s 6.6s
sim4 313x517 | 3373948 333.0s 23.1s
simb 481x661 | 6501100 897.6 s 44.1s
sim6 685x955 | 13208376 2569.4 s 1173 s

3.7 Summary

In this chapter shape functions are discussed for high-order simplex elements and for
quadratic isoparametric elements. The integral matrices [Q()] and [Ts] of the 5th and
6th order simplex elements are given in the exact integer form. This supplements the
tables given in [7]. The general procedure for [Z] calculations with FEM is also discussed.

[Z] of a two-conductor SC coaxial cable is calculated by FEM with both simplex
elements and isoparametric elements. Division factors for meshing SC cables are obtained
through numerical tests. The results show that isoparametric elements are more efficient

in the [Z] calculation of SC coaxial cables than simplex elements. Under the same error
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limit isoparametric elements can have larger span angles; consequently, the FEM mesh
has fewer elements and nodes. For large span angles the accuracy cannot be improved
by increasing the order of the simplex elements. The results also show that the loss-
energy method discussed in Section 2.5.2 takes a large amount of CPU time and gives
the same results (up to eight digits) as the Js method. In solving the final symmetric
banded complex equations the partial pivotal element selection algorithm gives the same

solutions as the variable bandwidth Choleski algorithm.



Chapter 4

Earth Region Reduction Technique for [Z] Calculation with FEM

4.1 Introduction

Power cables may be buried directly in the earth or installed in ducts or tunnels un-
derneath the earth surface. Being a conductor itself, the earth often serves as a return
path for the unbalanced currents in the cable system. Undoubtedly, the earth has to be
included in the parameter calculation of underground power cables.

The earth is generally represented as a uniform half space imperfect conductor for the
parameter calculation of underground cables. With this assumption a formula for the
impedance of a shallowly buried SC coaxial cable can be derived from the field distribu-
tion of a buried current filament by applying the perturbation concept. It is uncertain,
however, whether this formula can be applied to other systems with different structures,
such as tunnel installed cable systems. It is also uncertain where the perturbation concept
becomes invalid as the earth penetration depth becomes smaller and smaller.

The above uncertainties can be studied by FEM. Because the earth region extends
to infinity, it is impossible for FEM to solve the field in the whole region. Fortunately,
the earth never appears as an independent conductor, and it always exists as a reference
conductor in the cable system. Consequently, the field to be calculated in the earth is
always created by a loop current between one of the conductors in the cable system and
the earth, and is concentrated around the cable system. Therefore, a boundary can be

set up in the earth for FEM at a location sufficiently far away from the cable, where the

60
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field becomes negligible, and FEM can then be used to calculate the parameters of the
cable system together with the earth. Such a boundary is referred to as a field truncation
boundary, and FEM with such a boundary shall be called ”conventional FEM” here.

With the help of the penetration depth, the field truncation boundary for FEM can
easily be established. In the earth the penetration depth can be very large in the low
frequency range due to the poor conductivity of the earth. As a result, the FEM solution
region becomes very large. More elements are needed to mesh such a solution region,
and the computation time will increase. This is a weak point for the conventional FEM
with the field truncation boundary.

There are several techniques for FEM to handle problems with infinitely large regions.
Among them are the ballooning téchnique and the singular element technique. The
ballooning technique can handle problems with regions of known Green’s functions[45],
but may be difﬁéult to apply to the earth impedance calculation. The singular element
technique assumes an approximate function representing the decay pattern of the field
and creates inﬁnitely long element sides to cover the infinitely large region by using
singular shape functions. It is difficult to find suitable decay functions for this technique,
although it is possible in principle to apply it to cable systems.

In this chapter, a technique is proposed to reduce the earth region when the earth
penetration depth is large. It is based on the same perturbation concept used to derive
the impédance formulas of directly buried SC coaxial cables from the field solution of a
current filament. The boundary established by this technique has non-zero values, while
the conventional field truncation boundary has zero values. The non-zero boundary
values and the earth return current surrounded by such a boundary are calculated from
the field solution of the equivalent current filament. The proposed technique creates a
much smaller fixed solution region, and computation time can be saved if the earth return

current is calculated only once. It is much easier to mesh a small region than a very large
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one.

For a deeply buried SC coaxial cable, the earth can be assumed to occupy the whole
space, and the field in the earth can be solved theoretically. Therefore, such a cable is
used first to study the division schemes and the locations of the field truncation boundary
in the earth for the conventional FEM. The impedances of the cable are calculated by
the FEM with the field truncation boundary and with the new proposed technique. The
results are compared with those of analytical formulas. The comparisons show that the
conventional FEM gives accurate results if the field truncation boundary is at a location
three times the earth penetration depth away from the cable. For the new proposed
technique, the accuracy of results depends on the ratios r, /6, and r./§.. The parameters
7y and r. are the boundary radius and inner earth radius, respectively. For r,=24mm,
accurate results can be obtained if /68, < 0.2.

The impedances of shallowly buried and tunnel installed SC coaxial cables are also
calculated with the conventional FEM, as well as with the proposed technique. The
numerical results show that r, > 124, is required for the conventional FEM. Comparisons
with the conventional FEM for shallowly buried cables show that Pollaczek’s formula
gives noticeable errors when the earth penetration is small. The results of a tunnel
installed cable show that Pollaczek’s formula can also be applied to such a cable by using

an approximate r. if the earth penetration is large.

4.2  Analytical Formulas for [Z] of Buried SC Coaxial Cables

For shallowly buried SC coaxial cables approximate formulas for the [Z] calculation
can be derived from the field solution of an equivalent current filament by applying the
perturbation concept. For deeply buried SC coaxial cables, the earth can be assumed to

occupy the whole space, and the corresponding fields become axisymmetrical. This leads
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to analytical formulas.

Fig. 4.1(a) shows a shallowly buried SC coaxial cable. In order to calculate [Z] of the
cable, the field distribution in the earth has to be found. The impedance formulas can
be derived from the E value on the inner surface of the earth, on which point P sits as
shown in Fig. 4.1(a). The earth always serves as a return path for the current unbalance
in the cable, and the field inside the earth is caused by a loop current between the cable

and the earth. This loop current is the sum of all the conductor currents in the cable.

(a) real structure (b) equivalent current filament
Figure 4.1: A shallowly buried SC coaxial cable

No formula exists for finding the field distribution in the earth caused by the above
loop current if the actual geometry of the cable is considered. To overcome this difficulty,
an equivalent current filament shown in Fig. 4.1(b) is used to replace the original cable.
The filament is located at the centre of the cable and is insulated from the earth. If the
earth is assumed to be uniform in half space, with its surface being parallel to the buried
current ﬁlamegt, the field distribution in the earth caused by the loop current between
the filament and the earth can be solved analytically. Such field solutions were first given
by Pollaczek [2] and later by Wedepohl et al[10].

Applying the assumptions made in Section 2.2 to the structure in Fig. 4.1(b), with
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z-y axes as shown in the figure, the E field distributions are [2][10]

cos(za)da y=>0 (4.1)

jwll’aI /OO e-ya_hm
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where
D = /z?2+(y+ h)? (4.3)
D' = \[z2+(y—h)? (4.4)
Pe
e = . 4.5

P Fop (4.5)

E, and F, are the E fields in the air and in the earth, respectively, and their detailed
derivations are given in Appendix B. A is the burial depth of the cable. I is the current
in the filament. p,. is the complex penetration depth in the earth. Kj is the zero order
second kind modified Bessel function. g, is the permeability of the air. u. and p. are,
respectively, the permeability and the resistivity of the earth.

The penetration depth in a conductor is a measure of the field attenuation in the
conductor. It can be used to approximately find the region within which the most
significant part of the field exists. For convenience, real penetration depth § defined
in (3.45) is often used which relates to p through §=1/2|p|. Because the earth is a poor
conductor, its penetration depth will be quite large, especially in the low frequency range.
With g, = po and typical value of p, = 100Q2m for the earth, the real penetration depth
in the earth §, is 5033 m at 1 Hz and 5.03 m at 1 MHz.

Based on the perturbation concept, the impedance formulas for shallowly buried SC

coaxial cables can be derived from (4.2). Considering the large differences between the
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earth penetration depth and the dimensions of the cable structure, it is assumed that
the field of the current filament in Fig. 4.1(b) would not be disturbed significantly if
the filament were replaced by the original SC coaxial cable in Fig. 4.1(a). Therefore,
E.(zp,yp), the E value at point P on the inner surface of the earth as shown in Fig. 4.1(a),

can be calculated approximately from (4.2). The surface impedance at point P is defined

as
E.(zp,yr)
be = ——7
jwpe (K (\/w%» +(p + h)?) K (\/z"’p +(vp — h)z)
w0 — R *
pe pe ‘
o 9elvp—h)y/a®+1/p}
+/ cos(zpa)da (4.6)
° fa+y/a?+1/p2

Strictly speaking, Z, would be different at different locations on the inner surface of the
earth. The differences, however, are very small, and can be ignored. If zp = =, and
yp = —h, (4.6) becomes

1 /T2 + 4h? ) ~2h\/a?+1/p}
Z, = _Jwie (Ko (2) ~ Ko (_____) +/ 2e cos(r,a)da)
0

2 Bt yfa? + 1/

e e

(4.7)

7. is the inner surface radius of the earth. Z, is also called "earth return impedance.”

Equation (4.7) was first derived by Pollaczek, and shall be called "Pollaczek’s formula.”

Once Z, is known, [Z] of a buried SC coaxial cable can be calculated with (2.68),
except that Zgq, in (2.72) has to be modified into

ZEQK = ZBK + ZDK + Z, (4.8)

Z. in (4.7) can be found by numerical integration. It should be noted from (2.69) and
(2.70) that every element in matrix (2.68) has Zgq, as one of its components. Therefore,

Z. must be added to every element in [Z] of a SC coaxial cable.
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If a SC coaxial cable is buried deeply in the earth (h >> é.), the earth can be assumed
to occupy the whole space, and the field becomes axisymmetrical again. For such a case
the earth becomes a coaxial conductor with infinite outer radius, and its inner surface
impedance will be derived from (2.65) by letting rg, — oo and r4, = r.. The resulting

formula is

7 = Viwpepe Ko (relpe)
‘ 2rr, K, (re/pe)

re is the inner surface radius of the earth. The above equation is to be used in (4.8)

together with (2.68) to calculate [Z] of deeply buried SC coaxial cables.

(4.9)

There are some uncertainties when applying the above formulas to the [Z] calculation
of practical underground cable systems. For example, for the tunnel installed SC coaxial
cable shown in Fig. 1.1, (4.7) cannot be applied directly because r, does not exist. Also,
it is not clear how the tunnel structure will affect the impedance calculation with respect
to the insulation within the tunnel. Similarly, Z, for shallowly buried SC coaxial cables
: is derived by using an approximation with the perturbation concept, and it is uncertain
when this concept is no longer applicable. These uncertainties can be studied numerically
with FEM.

Before FEM is applied to the [Z] calculation of a general underground cable system,
it is first applied to the [Z] calculation of a deeply buried SC coaxial cable, where the
field can be found analytically. This case is used to study the division schemes in the
earth and the locations of the field truncation boundary for FEM. It is also used to

develop a new technique for reducing the earth region in FEM solutions in Section 4.4.
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4.3 [Z] Calculation of Deeply Buried SC Coaxial Cables by Conventional
FEM with a Field Truncation Boundary

It is assumed that the two-conductor SC coaxial cable in Fig. 3.9(a) is buried deeply
in the earth as shown in Fig. 4.2(a). To calculate [Z] of the cable numerically by
conventional FEM, a field truncation boundary located at r, shown in Fig. 4.2(b) has to
be established, which should enclose the most significant part of the field distribution.

Because the earth is a very poor conductor, the division scheme for conductors discussed

field truncation
boundary with
A=0
Pe= 100 Q-m
He=Ho
r,= 24 mm
(a) adeeply buried cable (b) FEM solution region

Figure 4.2: A deeply buried SC coaxial cable and its FEM solution region

in Section 3.6 is not applicable to the earth, and new division schemes need to be found.
Two questions to be answered in this section are therefore: where to locate the field
truncation boundary and how to mesh the earth.

For the system in Fig. 4.2(a) [Z] can be calculated analytically. Therefore, the
numerical results from FEM can always be checked by comparing them with those from
analytical formulas.

As the earth serves as a return path or as a reference conductor, the general FEM
solution procedure discussed in Section 3.5 needs to be modified slightly. Assuming a

system has K+1 conductors with the reference conductor being conductor K+1, [Z] will
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be a K x K matrix. To calculate the jth column of [Z], a loop current I; between the
jth conductor and the reference conductor is used to excite the field. The jth element
and the (K +1)th element of [I] in (3.37) will be I; and —I;, respectively. Once the field
is solved the elements in the jth column of [Z] are given by the following formula with
the Js method

1 .
Zy = T(Js../d,- — Isp /0K 41) (:=1,2,...,K) (4.10)
F)

where Js; and Js,,, are the source current densities in the ith and the reference con-
ductors, respectively. o; and ok, are the conductivities in the ith and the reference

conductors, respectively. With the loss-energy method, [Z]is given by

K1 Jkt . .
R; = {E/S T T 4 }/(IR,IR +I.IL) (5,5 =1,2,...,K) (4.11)

o

K+1
L; = {kz: Re (/ A(kt)J(kJ)ds)}/(Iﬁ'-IR’- + I Iy;) (4,7=12,...,K) (4.12)

where J(1) and Ay are, respectively, the current density distribution and magnetic
vector potential distribution caused by I;, the loop current between the ith conductor
and the reference conductor. For both methods the system has to be solved K times.

To locate the optimum boundary is to find the minimum r;. For the system in Fig. 4.2
the earth current enclosed by 7, can be calculated analytically. If a loop current of 1+50 A
is assumed between the cable and the earth, with typical resistivity and permeability
values as shown in Fig. 4.2(b), the earth return current I, from the analytical formula is
shown in Fig. 4.3(a), as a function of ry at 6kHz. &, is 64.97m at this frequency. Similar
curves can be obtained for other frequencies. It can be seen that I, ~1 A and I., =0
at 58.. This means that the most significant part of the field is enclosed by a boundary
at 58, for the deeply buried SC coaxial cable.

FEM is applied to calculate [Z] of the system in Fig. 4.2 for different ;. Isoparametric

elements are used in the calculation, and the solution region is reduced to a wedged region
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Figure 4.3: Earth return current and maximum errors in [Z] for different r,

similar to the one in Fig. 3.9(b) with § = 6° due to axial symmetry. Six frequencies are
used: 6Hz, 60Hz, 600Hz, 6kHz, 60kHz, and 600kHz. To mesh the solution region, the
division radii listed in Tab.3.5 are used for meshing the conductors, while the division
pattern 10™,107+3,10"*5,10"*! discussed later in this section is used for meshing the
earth. The maximum errors in R and L are plotted in Fig. 4.3(b). These maximum
errors are selected from the errors in all the six elements of [R] or [L] at all the six
frequencies. The figure shows that accurate results can be obtained for the deeply buried
SC coaxial cable when r,=34,.

For the same system, p,. is varied from 1000Qm to 0.01Qm, and the results show that
the maximum errors in R and L always decrease to less than one percent when r,=36..
Therefore, for [Z] calculations of deeply buried SC coaxial cabies, 36, can be used as the
location of a field truncation boundary for the conventional FEM.

The optimum division in the earth means that the corresponding FEM mesh should
achieve accurate results with the least possible number of elements and nodes. Due to
the large difference between the size of the cable and the size of the earth region, it is

impossible to have similar element sizes everywhere in the whole region. The general
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practice is to use element sizes similar to those in the cable to mesh the areas in the
earth region next to the cable. When meshing the areas in the earth region away from
the cable, the element sizes will be increased gradually to the boundary at 7.

Several division radius patterns are tried out for isoparametric elements with different
earth resistivities. These patterns use several division radii in each decade from 10" to
10"+, These patterns are listed in Tab.4.1. The first earth division radius is r, and the
last one is r,=38,. Between r. and 7, the earth is divided by division radii listed in
Tab.4.1.

Table 4.1: Earth division radius patterns for isoparametric elements in the decade from
10™ to 107*!

pattern division radii
1 10" 107*3 1073 10nt!
2 10" 107t: 107+
3 10" Ix10"71 Z x 10°F! 10°7!
4 107 L x 10°TT  10°F!
5 10" 1071

The numerical results show that the first pattern in Tab.4.1 always achieves high
accuracy. For the system in Fig. 4.2, the division radii in the earth given by this pattern at

different frequencies are listed in Tab.4.2, and the resistances and inductances calculated

Table 4.2: Earth division radii for isoparametric elements

f (Hz) division radii (m)

6| 0.024 0.0464 0.1 0.215 0.464 1 215 464 10 215
46.4 100 215 464 1000 2150 4640 6164
60 | 0.024 0.0464 0.1 0.215 0.464 1 215 464 10 21.5
46.4 100 215 464 1000 1949
600 | 0.024 0.0464 0.1 0.215 0.464 1 2.15 4.64 10 215
46.4 100 215 464 616
6000 | 0.024 0.0464 0.1 0.215 0.464 1 215 464 10 215
46.4 100 195
60000 | 0.024 0.0464 0.1 0.215 0.464 1 215 464 10 215
46.4 61.6
600000 | 0.024 0.0464 0.1 0.215 0.464 1 215 4.64 10 195
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from the corresponding meshes are given in Tab.4.3, together with the values calculated
by the analytical formulas. The solution region has 8 = 6°.

Table 4.3: [R] and [L] of the deeply buried SC coaxial cable

R (Q/km) L (mH/km)

f (HZ) element Ru R12 R22 Ln ng ng
ana 0.0447332 0.0059220 0.420388 | 2.41400 2.26152 2.25486
6 iso 0.0447221 0.0059109 0.420377 | 2.41099 2.25853 2.25188
ana 0.100918 0.0592392 0.473695 | 2.18191 2.03126 2.02461
60 iso 0.100821 0.0591056 0.473561 | 2.17968 2.02884 2.02219
ana 0.692750  0.594334 1.00774 | 1.92586 1.80098 1.79434
600 iso 0.691494 0.593213 1.00662 1.92364 1.79882 1.79218
ana 6.60507 6.11239 6.43395 1.67654 1.56891 1.56320
6000 iso 6.59130 6.09938 6.42073 | 1.67495 1.56733 1.56162
ana 63.7665 60.9211 60.8546 1.41446 1.32596 1.32602
60000 iso 63.6482 60.8077 60.7478 1.41308 1.32461 1.32469
ana 605.816 596.942 596.942 1.17633 1.09287 1.09287
600000 iso 604.401 595.578 595.578 1.17555 1.09210 1.09210

The first pattern is also tested with different earth resistivities and with different r,,
and the results show that overall errors in the frequency range from 0 to 1MHz for all the
elements in [R] and [L] are less than 1%. The resistivities used in the study are 1000Qm,
10Qm, 1Qm, 0.1Qm, and 0.01Qm, with the other parameters remaining the same. 7. is
varied among the values: 50mm, 100mm, 250mm, 500mm, and 1000mm with p,=100Qm,
while the other parameters remain the same. When r, is larger than 50mm, additional
division radii are needed for the insulation between the outer conductor of the cable and
the earth. The first pattern listed in Tab.4.1 emerges as a good choice in meshing the
insulation.

If a unit loop current is assumed for the system in Fig. 4.2 between the inner conductor
of the cable and the earth, the corresponding J distributions in the earth calculated by
FEM at different frequencies are shown in Fig. 4.4. The analytical J distributions in the
earth are also plotted in the figure. Good agreements between the numerical solutions and

the analytical solutions can be observed from the curves in the figure. The J distributions
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in the conductors of the cable at corresponding frequencies remain almost the same as
those plotted in Fig. 3.11 and Fig. 3.12 because both cases have the same conductor
currents and the same conductor division radii.

The results also show that the errors in [Z] are directly proportional to the errors
in J on the inner surface of the earth. By definition the earth return impedance for a
deeply buried SC coaxial cable is obtained by dividing the inner surface E of the earth
by the earth current. Therefore, errors in the inner surface J of the earth will be directly
reflected in the earth return impedance.

In meshing the solution region of the system in Fig. 4.2, different angles 6 are used
for the isoparametric elements and for the second order simplex elements. Based on
the results at six frequencies (6Hz, 60Hz, 600Hz, 6kHz, 60kHz, and 600kHz), the overall
errors with isoparametric elements at § = 90° are approximately 1.2% for R and 0.2%
for L. The same accuracy can only be achieved with the second order simplex element
at = 15°.

The Js and the loss-energy methods for calculating [Z] from the field solutions always
give the same results (identical to 8 digits) for all cases used in this section.

It can be concluded from the results presented in this section that the impedances
of deeply buried SC coaxial cables calculated by FEM with a field truncation boundary
are sufficiently accurate provided that the boundary is at least 36, away from the cables
and that the earth is meshed properly. This can serve as a guideline for choosing the
field truncation boundaries of other types of underground cable systems where analytical
"solutions are not available for comparison purpose.

Though the earth division pattern 10",10™+3,10"+%, 10! gives accurate results, the
number of elements in the earth is quite large, especially in the low frequency range.
This increases computation time. Also, the large difference between the size of the cable

and the size of the earth region make it difficult to mesh the whole solution region unless
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a specific auto-mesh program is used. It is therefore worthwhile to search for ways of

reducing the earth solution region. One such technique is proposed in the next section.

4.4 Earth Reduction Technique

In Section 4.2 the formulas for a shallowly buried SC coaxial cable are derived with two
approximations: the cable structure will not disturb the field distribution of an equivalent
filament current located at the centre of the cable, and the field inside the inner surface
of the earth is still axisymmetrical. The second approximation ignores the influence of
the earth on the field inside the SC coaxial cable. It also ignores the differences among
the E values at different points on the inner surface of the earth.

These two approximations can be removed by applying FEM with field truncation
boundary. Therefore, the influences of these approximations for shallowly buried SC
coaxial cables can be studied. The method can also be used for underground cable
systems with arbitrary structures, such as the tunnel installed SC coaxial cables shown
in Fig. 1.1.

From the discussions and results in the preceding section, it is clear that the con-
ventional FEM requires an earth solution region which is very large compared with the
dimension of the cables. This increases computation time and creates problems for gen-
eral auto-mesh programs in meshing such a large region as well as the details around the
cable. To overcome these problems, a technique based on the perturbation concept is
proposed to reduce the earth solution region.

If the earth penetration depth is much larger than the cable structure, the structure
will only slightly disturb the field of a buried current filament located at the centre of the
cable. Therefore, a small solution region can be used for FEM with non-zero boundary

values and with partial earth return current enclosed by the boundary. The boundary
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values and the partial earth return current are calculated approximately from the FE field
solution of the filament. The E ﬁeld solution of a deeply buried current filament can be
derived analytically, while that of a shallowly buried current filament has been derived
by Pollaczek[2] and Wedepohl et al[10].

In general, the boundary is set up at a distance which is large compared with the
dimension of the cable structure. The resulting boundary will then only be located in
the earth and the air. Assuming that E, and A, stand for the £ and A values on the

reduced boundary, respectively, the following equations are used in the solutions

A, = —EE in air (4.13)
jw

A = —ﬂ+ _1 Js in earth (4.14)
jw  jwo.

where Js and o, are the source current density and conductivity in the earth, respectively.
E, is given by filament formulas and is proportional to the filament current. For a system
of K+1 conductors with conductor K+1 as the reference conductor, if [Ep] are the E,
values of boundary nodes in the FEM mesh, [A] in (3.35) will become

_ [EB] + [IV]JSK+1

[AB] = -
jw | jwogy

(4.15)

where [1y] is a vector with Np elements. If the boundary nodes are numbered such that
the first Np, nodes are the boundary nodes in the earth, and the remaining Ng—Np,
nodes are in the air, the first Np, elements in [1y] will be unity and the rest of the
elements will be zero. [Ap] becomes a partially known vector. [Ig,] and [Ig,] in (3.38)

become
Ie,] = —[Ds] (—[F.)B] + [I.V]Jsx“) = [Ig,] — [Fv]Jsks, (4.16)
Jjw JWOK+1
[Is,] = jwlGcl[Fel” (—[E.”]+“."”s"“)=[IE‘1+[scv1Jsx+l (4.17)
Jjw Jwok
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where
Iz,] = [Ds]lE5]/(jw)
[Ie] = —[GclIFs]"(Es]
[Fv] = [Dslllv]/ (jwok+1)
[Scv] = [GellFsl*[1v]/ox+1

[Fy] and [Sg, ] are vectors. Putting [Ig,]| and [Ig,] in (4.16) and (4.17) into (3.37) and

(4.18)

moving Js, ., terms to the left side produces

[D) —[F4] [Au]}=[ (7] } (4.19)

[Fr] [Sc.] [Js] (1] + [1E4]

[F] becomes [Fy4] if [Fy] is subtracted from its last column, and [S¢] becomes [S¢,] if
[Scy] is subtracted from its last column. [I] always corresponds to a loop current. For
a loop current I; between conductor j and the earth, the jth and (K+1)th elements in
{I] will be I; and I.,, respectively. I, is the partial earth return current enclosed by the
reduced boundary. Once (4.19) is solved for the loop current, (4.10) will be used to find
[Z] . The loss-energy method is not applicable here.

Although [Ap] in (4.15) is only partially known due to unknown Js,,, in the earth,
the corresponding boundary nodes are still treated as having fixed boundary values. They
do not appear in the final equations of the solution as shown by (4.19). Their values will
be evaluated by (4.15) after solving for Js,,,.

For a deeply buried SC cable, the field solutions of both the original cable and the
buried current filament have simple forms. Therefore, the proposed technique is first
tested for such a cable. The cable shown in Fig. 4.2(a) is redrawn in Fig. 4.5(a), while
the corresponding buried current filament is drawn in Fig. 4.5(b). Ec(r) and Ep(r) in
Fig. 4.5 are the E fields associated with the cable and the filament, respectively. They
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(a) original SC cable (b) current filament replacement
Figure 4.5: Replacing a deeply buried SC cable with a current filament

are given by

_ _J.wll'eI Ko (r/p.) r>nr
EC(T) - ] 2m (re/pe) K, (re/pc) 2 e ' (420)
Er(r) = _J“;*"r‘f Ko(r/p)  7>0 (4.21)

I is the loop current between the cable or the filament and the earth. The partial earth

return currents between radii r, and r for both cases in Fig. 4.5 are

L) = —I (1 - %) r > (4.22)
lorl) = I50) 1000 =~y (1 TR ) (49

where
Ir(r) = Lpe(r)|, o = =T (1 = (r/pe)Ka(r/pc)) (4.24)

Ip(r) is the earth return current enclosed by radius r with the filament. By defining a

perturbation coefficient ¢, as

Ec(r) and I.,.(r) can be respectively related to Er(r) and I.,,.(r) as

Eg(r) = Ep(r)/, T2 (4.26)
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Ipo(r) = cpleps(r) T2, (4.27)

The values of ¢, at different |r./p.| are plotted in Fig. 4.6. From Fig. 4.6 it can be

seen that ¢, is close to 1.0 when the earth penetration is large compared with r., since

Re(cp)
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Figure 4.6: Perturbation coefficient ¢, as a function of |r./p.|

the influence of the cable structure on the field distribution in the earth of the filament
becomes negligible in this case. This confirms the basic assumption on which the proposed
technique is based. For |r./p.|=0.02, f=1MHz, p.=100Qm, and p.=pgo, |p.|=3.56m and
r.=71.2mm.

By using the exact formulas in (4.20) and (4.22) to find [Ep] in (4.18) and I, for [I] in
(4.19), [Z] should become reasonably accurate. The impedances of the cable in Fig. 4.2
are calculated with reduced earth regions with exact Ej and I, for 7,=0.24m, 1m, 2.5m,
10m, and 25m, and the results are listed in Tab.4.4. The results show that accurate
[Z] is obtained in the low frequency range where r, < §.. When the frequency is high
enough such that §, becomes comparable to r, or even smaller than ry, the final matrix
of the equations becomes ill-conditioned, and the results becomes erroneous. This may
be due to the fact that [Ag] is an unknown vector for the deeply buried cable although

it is treated technically as a known vector.



Chapter 4. Earth Region Reduction Technique for [Z] Calculation with FEM 79

Different earth resistivities and r, are tested for the above case with the », listed in
Tab.4.4, and the numerical results show that the errors are less than 1% in [R] for m < &,
and in [L] for r, < 26,. p. is varied among 1000Qm, 102m, 12m, 0.1Q¢m, and 0.01Qm
with r,=24mm, while r, is varied among 50mm, 100mm, 250mm, 500mm, 1000mm, and

2000mm with p,=100Qm.

Table 4.4: [Z] of the deeply buried cable found from a reduced earth region

7 ™o R (9/km) L (mH/km)
(HZ) (m) R, R,, R;, L Ly, Lo,
ana | 0.0447332 0.00592198 0.420388 | 2.41400 2.26152 2.25486
0.24 | 0.0447332 0.00592198 0.420388 | 2.41323 2.26079 2.25413
1.00 | 0.0447332 0.00592200 0.420388 | 2.41274 2.26028 2.25362
6 2.50 | 0.0447332 0.00592198 0.420388 | 2.41247 2.26001 2.25336
10.00 | 0.0447332 0.00592198 0.420388 { 2.41191 2.25945 2.25280
25.00 | 0.0447332 0.00592198 0.420388 | 2.41164 2.25918 2.25253
ana | 0.100918  0.0592392  0.473695 | 2.18191 2.03126 2.02461
0.24 | 0.100954 0.0692391 0.473695 | 2.18138 2.03055 2.02390
1.00 | 0.100955 0.0592392  0.473695 | 2.18086 2.03002 2.02337
60 2.50 | 0.100955 0.0592393  0.473695 | 2.18059 2.02975 2.02310
10.00 | 0.100955  0.0592391  0.473695 | 2.18003 2.02920 2.02254
25.00 | 0.100955  0.0592392  0.473695 | 2.17976 2.02892 2.02227
ana | 0.692750  0.594334 1.00774 | 1.92586 1.80098 1.79434
0.24 | 0.692605  0.594326 1.00773 | 1.92508 1.80027 1.79362
1.00 | 0.692607  0.594326 1.00773 | 1.92457 1.79975 1.79310
600 2.50 | 0.692607  0.594326 1.00773 | 1.92430 1.79948 1.79283
10.00 | 0.692606 0.594325 1.00773 | 1.92374 1.79892 1.79228
25.00 | 0.692577  0.594295 1.00770 | 1.92347 1.79865 1.79200
ana | 6.60507 6.11239 6.43395 | 1.67654 1.56891 1.56320
0.24 | 6.60474 6.11280 6.43415 | 1.67583 1.56821 1.56250
1.00 | 6.60466 6.11274 6.43409 | 1.67530 1.56768 1.56197
6000 2.50 | 6.60467 6.11275 6.43410 | 1.67503 1.56741 1.56170
10.00 | 6.60393 6.11204 6.43340 | 1.67448 1.56686 1.56115
25.00 | 6.60439 6.11248 6.43383 | 1.67421 1.56659 1.56088
ana | 63.7665 60.9211 60.8546 1.41446 1.32596 1.32602
0.24 | 63.7597 60.9191 60.8592 | 1.41369 1.32523 1.32531
1.00 | 63.7593 60.9189 60.8590 | 1.41317 1.32470 1.32478
60000 | 2.50 | 63.7588 60.9184 60.8585 | 1.41290 1.32443 1.32451
10.00 | 63.7098 60.8736 60.8137 | 1.41235 1.32388 1.32396
25.00 | 63.8667 61.0229 60.9630 | 1.41131 1.32287 1.32295
ana | 605.816 596.942 596.942 | 1.17633 1.09287 1.09287
0.24 | 605.736 596.914 596.914 1§ 1.17559 1.09215 1.09215
1.00 | 605.711 596.892 596.892 | 1.17507 1.09163 1.09163
600000 | 2.50 | 605.635 596.826 596.826 | 1.17480 1.09136 1.09136
10.00 | 598.441 590.205 590.205 | 1.17388 1.09047 1.09047
25.00 | 586.913 579.558 579.558 | 1.18241 1.09834 1.09834
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The earth is meshed with the pattern 10", 10", 10"+3, 10"+, The numerical results
also show that the impedance errors are sensitive to E, and I, and are proportional to
the errors in J on the inner surface of the earth.

With the proposed technique, the exact Ej and I, for the reduced solution region are
replaced by the approximate ones from the filament formulas in (4.21) and (4.23). Errors
are introduced into E, and I, by such a replacement as indicated by (4.26) and (4.27).
It has been shown, however, that these errors become negligible if the earth penetration
depth is much larger than the cable structure.

The impedances of the cable in Fig. 4.2 calculated with reduced regions with approx-
imate E; and I, from the filament field solutions for different r;, are given in Tab.4.5.
I., is calculated by numerical integration based on Ep(r). The FEM solution meshes are
used for the numerical integration as well.

With r.=24mm, the results show a similar pattern as with the exact E, and I,:
accurate impedances are obtained for the r, listed in Tab.4.5 if §. is much larger than
75, and erroneous impedances are obtained if §, is comparable with r,. For the r, listed
in Tab.4.5, if the earth resistivity is varied among 1000Qm, 10Q2m, 1Qm, 0.1Qm, and
0.01Qm with the same r., the errors are less than 1% in [R] for r, < 0.28, and in [L] for
ry < 0.54,.

For the same 6., the larger the r., the larger the ratio r./§., and the larger the errors
in E, and I, given by the filament formulas. Therefore, for a large r., the ratio r./é.
has to be less than a certain value in order to achieve accurate results with the proposed
technique. By varying r, among 50mm, 100mm, 250mm, 500mm, 1000mm, and 2000mm
with p=100Qm, the results show that the errors are less than 1% in [R] for r./é. < 0.012,
and in [L] for r./8. < 0.055.

The frequency range within which the proposed technique achieves high accuracy
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is mainly determined by the relationship between r, and 8, for small r., and by the
relationship between r. and é, for lé.rge re. For the cable with p=100Qm, the ratio r./é,

becomes more influential in determining the frequency range if r, > 250mm.

Table 4.5: [Z] found with the proposed technique based on Er

7T R (Q/km) T (mH/km)
(Hz) | (m) Ry Ry, Ry Ly, Ly Ly,
ana | 0.0447332 0.00592198 0.420388 | 2.41400 2.26152 2.25486
0.24 | 0.0447332 0.00592197 0.420388 | 2.41322 2.26079 2.25413
1.00 | 0.0447332 0.00592198 0.420388 | 2.41274 2.26028 2.25362
6 2.50 | 0.0447332 0.00592198 0.420388 | 2.41247 2.26001 2.25336
10.00 | 0.0447332 0.00592198 0.420388 | 2.41191 2.25945 2.25280
25.00 | 0.0447332 0.00592198 0.420388 | 2.41164 2.25918 2.25253
ana | 0.100918 0.0592392 0.473695 | 2.18191 2.03126 2.02461
0.24 | 0.100954 0.0592391 0.473695 | 2.18138 2.03055 2.02390
1.00 | 0.100955 0.0592391 0.473695 | 2.18086 2.03002 2.02337
60 2.50 | 0.100955 0.0592391 0.473695 | 2.18059 2.02975 2.02310
10.00 | 0.100955 0.0592391 0.473695 | 2.18003 2.02920 2.02254
25.00 | 0.100955 0.0592391 0.473695 | 2.17976 2.02893 2.02227
ana | 0.692750 0.594334 1.00774 1.92586 1.80098 1.79434
0.24 | 0.692605 0.594326 1.00773 1.92508 1.80027 1.79362
1.00 | 0.692607 0.594326 1.00773 1.92457 1.79975 1.79310
600 2.50 | 0.692607 0.594326 1.00773 1.92430 1.79948 1.79283
10.00 | 0.692606 0.594324 1.00773 1.92374 1.79892 1.79228
25.00 | 0.692575 0.594292 1.00770 1.92347 1.79866 1.79201
ana | 6.60507 6.11239 6.43395 1.67654 1.56891 1.56320
0.24 | 6.60480 6.11285 6.43420 1.67583 1.56821 1.56250
1.00 | 6.60470 6.11278 6.43414 1.67530 1.56768 1.56197
6000 2.50 | 6.60472 6.11280 6.43415 1.67503 1.56741 1.56170
10.00 | 6.60399 6.11210 6.43345 1.67448 1.56686 1.56115
25.00 | 6.60443 6.11252 6.43387 1.67421 1.56659 1.56088
ana 63.7665 60.9211 60.8546 1.41446 1.32596 1.32602
0.24 | 63.7646 60.9237 60.8638 141369 1.32522 1.32530
1.00 | 63.7643 60.9235 60.8637 1.41317 1.32470 1.32478
60000 2.50 | 63.7633 60.9226 60.8627 1.41290 1.32443 1.32451
.| 10.00 | 63.7145 60.8780 60.8181 1.41235 1.32388 1.32396
25.00 | 63.8656 61.0218 60.9617 1.41132 1.32287 1.32295
ana | 605.816 596.942 596.942 1.17633 1.09287 1.09287
0.24 | 606.086 597.237 597.237 1.17556 1.09213 1.09213
1.00 | 606.059 597.214 597.214 1.17504 1.09160 1.09160
600000 | 2.50 | 605.980 597.146 597.146 1.17477 1.09133 1.09133
10.00 | 598.766 590.504 590.504 1.17386 1.09045 1.09045
25.00 | 586.921 579.565 579.566 1.18240 1.09833 1.09833

If r.=500mm with p=100Qm, the minimum é, will be 41.7m, and the corresponding
frequency is f=p./(np.82)~15kHz. Therefore, the frequency range for the proposed
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technique is from 1Hz to 15kHz, and 7, is assigned a fixed value, say 2.5m, for this
frequency range. For the conventional FEM, r;>38,. is required for the deeply buried
SC cable, and the corresponding r;, for the above frequency range will be from 15,100m
to 125m. Thus the proposed technique achieves the goal of reducing the earth solution

region in the low frequency range in this case.

4.5 [Z] Calculations of Shallowly Buried SC Coaxial Cables with FEM

In this section the conventional FEM and the proposed technique discussed in the pre-
ceding section are applied to the [Z] calculation of shallowly buried SC coaxial cables.
The impedances from Pollaczek’s formula are compared against those from the FEM for
different earth resistivities and for different r.. The impedances of a SC cable with an
arbitrary structure are also calculated with FEM and with Pollaczek’s formula.

The numerical results show that for the conventional FEM a solution region with r, >
126, will give reasonably accurate results. Based on the comparison with the conventional
FEM it is shown that accurate results can be obtained with the proposed technique for
different p, and r.. Good agreements are observed among the field distributions around
the cable from the conventional method, from the proposed technique, and from the
approximate analytical solution. The comparisons between Pollaczek’s formula and the
FEM show that accurate results are obtained with Pollaczek’s formula when r. /§, is small.
For r,.=24mm, the maximum differences between the results from Pollaczek’s formula and
those from the FEM are less than 1% in R if r./6. < 0.03 and in L if r./§. <0.095. For
7.=1000mm, the maximum differences are less than 1% in R if ./§. <0.018 and in L if
re/8. <0.154. The numerical results for the cable with an arbitrary structure show that

Pollaczek’s formula can still be used with an approximate ..



Chapter 4. Earth Region Reduction Technique for [Z] Calculation with FEM 83

4.5.1 Determination of the solution region for the conventional FEM in [Z]

calculations of shallowly buried cables

With a shallowly buried SC coaxial cable, there is no exact field solution which could be
used as a comparison base. The solution region for the conventional FEM is, therefore,
determined by an iterative procedure. The boundary radius r, will be increased gradu-
ally, and the difference between results from two consecutive iterations should become
smaller as r, becomes larger. This difference is used as a criterion in the solution region
determination. When the earth penetration is large, Pollaczek’s formula (4.7) could also
be used as a reference in the solution region determination.

It is assumed that the SC coaxial cable shown in Fig. 3.9 is .buried 1.5m beneath the
earth surface. Therefore, h=1.5m and r.=24mm in Fig. 4.1(a). It is also assumed that
pe=100Qm and p.=po. Once 7, is chosen, the earth is divided with the isoparametric
elements in the pattern 107, 10™+3, 10™+3, 10™+! discussed in Section 4.3. The mesh for

ry=26, at 6kHz is shown in Fig. 4.7.

(a) entire mesh (b) detailed mesh around the cable

Figure 4.7: FEM mesh at 6kHz for r,=26,

The impedances calculated with r, being equal to 54., 104., and 156,., and with



Chapter 4. FEarth Region Reduction Technique for [Z] Calculation with FEM 84

Pollaczek’s formula are listed in Tab.4.6. It can be seen that for [L] there is a good
agreement between the results from the conventional FEM and from Pollaczek’s formula

at 7,=>56,. For [R] good agreement exists at r,=156,.

Table 4.6: {Z] of the shallowly buried SC coaxial cable from the conventional FEM

i - R (9/km) L (mH/km)
(HZ) R, Ry, Ry, Ly Ly, Ly,
58, 0.0445242 0.00570694 0.420238 { 2.507756 2.35534 2.34869
106, 0.0446705 0.00585330 0.420384 | 2.50897 2.35656 2.34990
6 158, 0.0447053 0.00588803 0.420419 | 2.50916 2.35675 2.35010
Pollaczek | 0.0447405 0.00592928 0.420395 | 2.51380 2.36132 2.35467
58, 0.0989151 0.0571899  0.471710 | 2.27548 2.12469 2.11803
106, 0.1004902 0.0587650  0.473285 | 2.27677 2.12598 2.11932
60 156, 0.1008098 0.0590845  0.473605 | 2.27695 2.12615 2.11950
Pollaczek | 0.1011468 0.0594682  0.473924 | 2.28130 2.13064 2.12399
58, 0.677598  0.579357 0.992824 | 2.01881 1.89399 1.88734
108, 0.692109  0.593867 1.007335 | 2.01996 1.89514 1.88849
600 158, 0.695547  0.597305 1.010773 | 2.02014 1.89532 1.88867
Pollaczek | 0.699820  0.601403 1.014809 | 2.02392 1.89904 1.89240
568, 6.59260 6.10068 6.42211 1.76564 1.65802 1.65231
104, 6.74617 6.25425 6.57568 1.76670 1.65908 1.65337
6000 158, 6.77707 6.28515 6.60658 1.76683 1.65921 1.65350
Pollaczek | 6.81484 6.32215 6.64371 1.77047 1.66284 1.65713
56, 67.3478 64.5070 64.4471 1.49249 1.40402 1.40410
108, 68.6650 65.8243 65.7643 1.49300 1.40453 1.40461
60000 158, 68.9727 66.1319 66.0720 1.49306 1.40458 1.40466
Pollaczek | 69.3549 66.5095 66.4430 1.49589 1.40739 1.40745
58, 698.632 689.808 689.808 1.22252 1.13908 1.13908
106, 709.490 700.667 700.667 | 1.22201 1.13856 1.13856
600000 156, T711.493 702.670 702.670 1.22186 1.13842 1.13842
Pollaczek | 714.613 705.740 705.740 1.22453 1.14107 1.14107

The earth return current enclosed by the boundary is calculated from E, in (4.2) with
numerical integration over the FEM mesh, and its real and imaginary parts are plotted
in Fig. 4.8(a). A loop current of 1+30 A is assumed between the centre conductor of the
cable and the earth. Comparing with Fig. 4.3 for the deeply buried SC cable, the earth
current approaches its final value of 1450 much slower as r; increases. In Fig. 4.8(b) is the
plot of the maximum differences. The maximum differences between the [Z] calculated
with r,=né, and the [Z] calculated with ry=(n-1)6, is defined as the nth maximum

difference. It is taken from all the elements in [Z] in the frequency range from 1Hz to
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Figure 4.8: Earth return current and maximum differences in [Z] for different 7,

1MHz. Fig. 4.8 shows that the maximum difference in [R] decreases slowly. It reaches
0.07% at r,=158.. The maximum difference in [L] reaches 0.027% even at rb=65¢.

If the nth ma.ximum difference is defined as the one between r,=(n-3)é. and ry=né,
and if 0.5% is chosen as the threshold value of the maximum difference in [R] for stopping
the iteration, r,=128, will be the iteration result because the maximum difference in [R]
is 0.55% at 128, and .27% at 155,. The numerical results show that the maximum
difference in [R] between 126, and 158, maintains the value 0.27% at different p, and
re. For p,=100Qm and r.,=24mm, the differences between the results found with the
FEM having r,=126, and those found with Pollaczek’s formula are less than 1.1% in
[R] and less than 0.25% in [L] in the frequency range from 1Hz to 1MHz. Therefore,
for the conventional FEM, a solution region with r, >12§, will give reasonably accurate

impedances for the shallowly buried SC cables.
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4.5.2 Application of the proposed technique to [Z] calculations of shallowly
buried SC cables

The proposed technique discussed in Section 4.4 is applied to the same cable used in the
preceding subsection with h=1.5m, r.=24mm, p.=1002m, and p.=po. Four different r,
are used: 2.5m, 5m, 10m, and 25m. The meshes are similar to those in Fig. 4.7.

The impedances found with the proposed technique at different ), are listed in Tab.4.7.
"conventional” in the table represents the results found with the conventional FEM, and
"Pollaczek” represents the results given by Pollaczek’s formula. Good agreement can
be observed among the three approaches. The partial earth return current I, used in
the calculations at 60Hz, 6kHz, and 600kHz are listed in Tab.4.8. They correspond to a
1470 A loop current between the cable and the earth.

If the earth return current is 1+;0 A at 6kHz, the corresponding F field distributions
in the air and the earth, given by (4.1) and (4.2), respectively, are plotted in Fig. 4.9.
It can be seen that E is very smooth, except that it becomes singular at the location
of the equivalent current filament. This smoothness makes the numerical integration
easier. For the same earth current and frequency, the corresponding J contour lines in
the earth from the three approaches are plotted in Fig. 4.10. "proposed” represents the
results found with the proposed technique with 7,=5m, and ”analytical” represents the
results derived from (4.2). The plotting area is 2.5m by 3.5m. Good agreement in the J
distributions among the three approaches can be observed from Fig. 4.10.

The efficiency of the proposed technique is compared with that of the conventional
FEM. For the above calculations, storage and CPU.time requirements for the proposed
technique with r,=5m are listed in Tab.4.9 and Tab.4.10, respectively. The CPU time
is taken from a VAX-750. I, represents the time in calculating the earth return current

with numerical integration. M, N, and BW are the same as in Subsection 3.6.2.
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Table 4.7: [Z] of the shallowly buried SC coaxial cable from the proposed technique

f Ty "R (2/km) L (mH/km)
(HZ) (m) Ry, R, R, Ly, L1, Ly,
conventional | 0.0447186 0.00590137 0.420432 | 2.50922 2.35681 2.35015
2.5 0.0447465 0.00592928 0.420460 | 2.51230 2.35989 2.35323 |
5 0.0447465 0.00592928 0.420460 | 2.51207 2.35966 2.35300
6 10 0.0447465 0.00592928 0.420460 | 2.51172 2.35931 2.35266
25 0.0447465 0.00592928 0.420460 | 2.51144 2.35903 2.35238
Pollaczek 0.0447405 0.00592928 0.420395 | 2.51380 2.36132 2.35467
conventional | 0.100950 0.0592246  0.473745 | 2.27700 2.12620 2.11955
2.5 0.101193  0.0594680  0.473988 | 2.28000 2.12921 2.12255
5 0.101193  0.0594680  0.473988 | 2.27977 2.12898 2.12232
60 10 0.101193  0.0594680  0.473988 | 2.27943 2.12863 2.12198
25 0.101193  0.0594681  0.473988 | 2.279156 2.12835 2.12170
Pollaczek 0.101147  0.0594682  0.473924 | 2.28130 2.13064 2.12399
conventional | 0.696866  0.598624 1.01209 | 2.02019 1.89537 1.88872
2.5 0.699635  0.601394 1.01486 | 2.02243 1.89761 1.89096
5 0.699635  0.601394 1.01486 | 2.02220 1.89738 1.89073
600 10 0.699636  0.601394 1.01486 | 2.02185 1.89703 1.89039
25 0.699640  0.601399 1.01487 | 2.02157 1.89675 1.89011
Pollaczek 0.699820  0.601403 1.01481 | 2.02392 1.89904 1.89240
conventional | 6.79056 6.29865 6.62008 1.76687 1.65925 1.65354
2.5 6.81436 6.32245 6.64388 1.76903 1.66142 1.65570
5 6.81438 6.32246 6.64389 1.76880 1.66119 1.65547
6000 10 6.81443 6.32251 6.64394 | 1.76846 1.66084 1.65513
25 6.81482 6.32290 6.64433 1.76818 1.66056 1.65485
Pollaczek 6.81484 6.32215 6.64371 1.77047 1.66284 1.65713
conventional | 69.0895 66.2488 66.1888 1.49306 1.40459 1.40467
2.5 69.3455 66.5047 66.4448 1.49441 1.40594 1.40602
5 69.3470 66.5063 66.4463 1.49418 1.40571 1.40579
60000 10 69.3523 66.5115 66.4516 1.49383 1.40536 1.40544
25 69.3739 66.5332 66.4732 1.49350 1.40503 1.40511
Pollaczek 69.3549 66.5095 66.4430 1.49589 1.40739 1.40745
conventional | 712.336 703.512 703.512 1.22179 1.13835 1.13835
2.5 714.293 705.469 705.469 1.22308 1.13964 1.13964
5 714.421 705.597 705.597 1.22284 1.13940 1.13940
600000 10 714.270 705.447 705.447 1.22235 1.13891 1.13891
25 713.826 705.003 705.003 1.22215 1.13871 1.13871
Pollaczek 714.613 705.740 705.740 1.22453 1.14107 1.14107

Table 4.8: I, found with numerical integrations for the proposed technique

f Re(I,,) and Im(Z,,) (p.u.)
(Hz) r,=2.5m r,=5m 75=10m r,=25m

60 Re(I.,) | 0.583064x10~> | 0.233561x10~* | 0.936563x10~* | 0.589085x10~3
Im(I,,) | 0.486857x10~* | 0.174161x10~3 | 0.603340x10~3 | 0.302400x10~2
6000 Re(I.p) 0.598188x10~3 | 0.241264x10-2 | 0.973100x10-2 | 0.598538x10~}

Im(I,,) 0.314763x10~2 | 0.105046x10~1 | 0.324944x10-! | 0.125884

600000 Re(I,,) 0.641595%x10~* | 0.233091 0.646749 1.005062
Im(I,,) | 0.130791 0.310736 0.434091 0.895586x10~1
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Figure 4.10: J distributions in the earth at 6kHz from the three approaches
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Table 4.9: Storage and other parameters for the proposed technique (r,=5m)

Table 4.10: CPU time requirements for the proposed technique (r,=5m)

Earth Region Reduction Technique for [Z] Calculation with FEM

f matrix | storage
(Hz) | M | N | BW | dimension | (bytes)
60 | 283 | 88 | 36 4351x1 | 302064
6k | 343 ] 106 | 36 5356x1 | 365976
600k | 403 | 124 | 36 6361x1 | 429888

Ji matrix matrix
(Hz) | formation | factorization | solution | others Ip total | total-I,,
60 68s 9.9s 80s 4.2s 504s | 793s 289s
( 8.6%) (12.4%) (10.1%) | ( 5.3%) | (63.5%)
6k 8.7s 118 s 778 5.1s 55.1s | 884s| 333s
(9.9%) (13.4%) (8.7%) | (5.7%) | (62.3%)
600k 10.1s 13.8 s 8.1s 58s 51.8s | 89.6s 378 s
(11.3%) (15.4%) (9.1%) | (6.5%) | (57.8%)

89

For the conventional FEM with r,=126,, the storage and CPU time requirements for

the same problem are listed in Tab.4.11 and Tab.4.12, respectively.

Table 4.11: Storage and other parameters for the conventional FEM (r,=126,)

f matrix storage
(Hz) | M | N | BW | dimension | (bytes)
60 | 463 | 142 32 | 9196x 1 | 507600
6k | 463 | 142 | 32 | 9196x 1 | 509328
600k | 463 | 142 | 33 | 9259x 1 | 512064

Tab.4.9-Tab.4.12 indicate that less storage is needed for the proposed technique than

for the conventional FEM due to a smaller solution region. As the frequency becomes

large, the storage requirement becomes similar for both approaches. The total CPU

time with the proposed technique is much higher than with the conventional FEM. On

average, about 60% of the total time is spent on the I, calculation. As long as the earth

parameters p., f., and 7., as well as the locations of the equivalent current filaments do

not change, I,, only needs to be calculated once. By deducting the time for calculating

I., from the total CPU time, the proposed technique will reqﬁire less CPU time than the
conventional FEM.
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Table 4.12: CPU time requirements for the conventional FEM (r,=124,)

I matrix matrix
(Hz) | formation | factorization | solution | others | total
60 113 s 219s 41s 6.5 s 438 s
(25.8%) (50.0%) (9.4%) | (14.7%)
6k 116 s 20.7s 40s 6.5s 428 s
(27.0%) (48.4%) (9.3%) | (15.2%)
600k 119s 213s 39s 65s 436 s
(1.2%) | (48.8%) | (9.0%) | (15.0%)

If p. is varied with r, remaining at 24mm, the maximum differences between the re-
sults from the conventional FEM and from the proposed technique are listed in Tab.4.13.
They are chosen from all the elements in [Z] in the frequency range from 1Hz to 1IMHz.

Table 4.13: Maximum differences in [Z] with the proposed technique at different p,.

Pe rp=2.5m r=5m r3=10m rn=25m
(Qm) | inR | inL | inR | inL | imR | inL | inR | inL
1000 | 1.05% | 0.15% | 1.05% | 0.14% | 1.05% | 0.13% | 1.05% | 0.12%

100 | 1.05% | 0.16% | 1.05% | 0.14% | 1.05% | 0.12% | 1.05% | 0.11%

10 1.05% | 0.14% | 1.05% | 0.13% | 1.05% | 0.12% | 1.05% | 0.10%

1 1.02% | 0.14% | 1.02% | 0.13% | 1.02% | 0.11% | 1.02% | 0.09%

0.1 1.02% | 0.13% | 1.02% | 0.12% | 1.02% | 0.10% | 1.02% | 0.08%

If r, is varied with p, remaining at 100Qm, the corresponding maximum differences are
listed in Tab.4.14
Table 4.14: Maximum differences in [Z] with the proposed technique at different r,

Te ry=2.5m rp=5m r3=10m r3=256m
(mm) { mR [ mL [ mR|[inZL | mR | mL | mR | ink
50 1.05% | 0.15% | 1.05% [ 0.14% | 1.05% | 0.12% | 1.05% | 0.11%
100 | 1.05% | 0.15% | 1.05% { 0.14% | 1.05% | 0.12% | 1.05% | 0.11%
250 | 1.52% | 0.15% | 1.23% | 0.14% | 1.13% | 0.13% | 1.05% | 0.11%
500 | 4.11% | 0.62% | 2.89% | 0.53% | 1.91% | 0.45% | 1.23% | 0.15%
1000 -— — 7.99% | 1.72% | 4.56% | 1.42% | 2.20% | 0.48%

From the results presented in this subsection it can be seen that for small r./é,
accurate impedances of shallowly buried SC cables can be obtained with the proposed
technique. With this technique, the solution region in the earth becomes small and fixed.

In contrast, the solution region with the conventional FEM varies with the frequency in
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order to save time, and becomes very large at low frequencies. Small regions are easier
to mesh than larger ones. The proposed technique takes more CPU time compared to

the conventional FEM, but if I, is calculated only once, it will require less time.

4.5.3 Comparisons between analytical results and FEM results for shallowly
buried SC cables

The conventional FEM is used to investigate the errors of Pollaczek’s formula under dif-
ferent conditions. With the same assumption that the cable in Fig. 3.9(a) is buried 1.5m
beneath the earth, the impedances of the cable are calculated with both the conventional
FEM and Pollaczek’s formula for different p. and r.,. The maximum differences between
the impedances from the two approaches are listed in Tab.4.15, within the frequency
range of 1Hz to 1MHz.

Table 4.15: Maximum differences in [Z] with Pollaczek’s formula at different p,

Pe re=24mm r.=100mm r.=250m r.=1000mm
(Qm) { mR | inL in R in L in R m L m R in L
1000 [ 0.48% | 0.22% | 0.48% | 0.22% | 0.64% | 0.24% 4.35% 0.26%

100 | 0.48% | 0.24% | 0.97% | 0.22% | 2.80% | 0.23% 13.35% | 2.20%

10 | 0.48% | 0.25% | 3.28% | 0.25% | 8.85% | 1.57% 16.49% | 8.50%

1 2.56% | 0.24% | 12.36% | 2.91% | 20.29% | 8.22% | 172.49% | 9.71%

0.1 |9.66% | 3.29% | 20.34% | 15.98% | 47.96% | 15.47% | 14394.04% | 9.66%

Tab.4.15 indicates that large discrepancies between the two approaches appear mainly
in [R]. For [L] the overall differences for the listed combinations of p. and r. are less
than 20%.

If p., pte, and r. are fixed, there is generally a frequency beyond which the differences
become larger than a specified tolerance value. This frequency shall be called threshold
frequency.” For a 1% tolerance, the threshold frequencies for different p. and r, are listed
in Tab.4.16. By converting the threshold frequencies together with the corresponding p.,

Ue, and 7. into a parameter 7. /4., it is found out that for a given r., this parameter r. /4,
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is almost constant for different p.. With r,=24mm, r./§, is 0.0213 in [R] and 0.0674 in

[L]). This means that if r./6. <0.0213, the differences between Pollaczek’s formula and

FEM are less than 1%. r./§, related to each r, is listed at the bottom of Tab.4.16.

Table 4.16: Threshold f with Pollaczek’s formula for maximum differences<1%

Pe r,=24mm r.=100mm r,=250m r,=1000mm
(Qm) in R m L in R in L in R in L m R in L
1000 | > 1MHz | > 1MHz | > 1IMHz | > 1MHz | > 1MHz | > 1MHsz | 60kHz | > 1MHz
100 | > 1MHz | > 1MHz | > 1MHz | > 1MHz | 100kHz | > 1MHz | 6kHs 400kHz

10 > 1MHz | > 1MHz | 100kHz | > 1MHz | 10kHz 400kHgz | 600Hz 40kHz

1 200kHz | > 1IMHz | 10kHsz 200kHz 1kHz 40kHsz 60Hz 4kHz

0.1 20kHz 200kH3z 1kHz 20kHsz 100Hz 4kHz 6Hz 400Hz

[+./8, | 0.02133 | 0.06744 | 0.01987 | 0.08886 | 0.01571 | 0.09935 ] 0.01539 | 0.12566 |

For a 10% tolerance the threshold frequencies are shown in Tab.4.17, and for a 30%

tolerance the threshold frequencies are shown in Tab.4.18.

Table 4.17: Threshold f with Pollaczek’s formula for maximum differences<10%

Pe r,=24mm r.=100mm r,=250m 7,=1000mm
(im) in R in L mn R in L in R in L in R in L
1000 | > 1IMHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz
100 | >1MHz { > 1IMHz | > 1MHz | > 1IMHz | > 1MHz | > 1MHz | 400kHz | > 1MHz

10 > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | 40kHz | > 1MHz

1 > 1MHz | > 1MHz | 600kHz | > 1MHz | 100kHz | > 1MHz 4kHz > 1MHz
0.1 > 1MHz | > 1MHz | 60kHz 400kHz 10kHz 100kHz 400Hz | > 1MHz

{ re/be | — | — | 0.15391 | 0.39738 | 0.15708 | 0.49673 | 0.12566 | — |

Table 4.18: Threshold f with Pollaczek’s formula for maximum differences<30%

Pe r,=24mm r.=100mm r.=250m r,=1000mm
(Qm) m R in L in R in L in R in L in R in L
1000 | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MH=z
160 | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1IMHz | > 1MHs | > 1MHz | > 1MH:

10 > 1MHz | > 1MHz | > IMHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz

1 > 1MHz | > 1IMHz | > 1MHz | > 1MHz | > 1MHz | > 1MHz | 400kHz | > 1MHz
0.1 > 1MHz | > 1MHz | > 1MHz | > 1MHz | 800kHz | > 1MHz | 40kHs > 1IMHz

[ re/be l —_ | —_ [ —_ —_ [ 1.40496 | — | 1.25664 [ — ]

From the results presented in this subsection, it can be concluded that Pollaczek’s

formula for the self impedances of shallowly buried SC cables gives reasonably accurate
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results for p, in the range of 10002m to 1Qm, and for r, in the range of 24mm to 250mm,

within the frequency range of 1Hz to 1MHa.

4.5.4  [Z] calculations for a cable layout of arbitrary structure

It is assumed that the cable in Fig. 3.9(a) is located in an tunnel as shown in Fig. 4.11(a),
with h=1.5m, h,=0.25m, w=0.5m, p,=10dm, and p.=p,. The impedances of the cable
are calculated with the conventional FEM and with the proposed technique. As there is
no definite r, here, Pollaczek’s formula is used with two approximate r. of 250mm and
500mm. r,=5m is used with the proposed technique and the corresponding FEM mesh
at 600kHz is shown in Fig. 4.11(b).

(a) cable layout (b) FEM mesh at 600kHz (r,=5m)
Figure 4.11: The layout of a tunnel installed cable and the FEM mesh at 600kHz

The impedances found with three approaches are listed in Tab.4.19. ”Pollaczekl”
represents the results from Pollaczek’s formula with r.=250mm, and ”"Pollaczek2” rep-
resents the results with r,=500mm. Tab.4.19 indicates that for small r./§,, Pollaczek’s
formula gives results which are almost independent of .. The maximum differences be-
tween the proposed technique and the conventional FEM are 4.37% in [R] and 0.91%

in [L] from 1Hz to IMHz. The maximum differences between Pollaczek’s formula and



Chapter 4. Earth Region Reduction Technique for [Z] Calculation with FEM 94

Table 4.19: [Z] of the tunnel installed cable from three approaches

f approach R (2/km) L (mH/km)
(Hz) Ry, Ry Ry, L Ly, Ly,
conventional | 0.0447930 0.00597572 0.420506 | 2.04825 1.89584 1.88918
proposed 0.0448095 0.00599228 0.420523 | 2.05020 1.89779 1.89113
6 Pollaczekl | 0.0448038 0.00599263 0.420459 | 2.05154 1.89906 1.89241
Pollaczek2 | 0.0448038 0.00599255 0.420458 | 2.05154 1.89906 1.89241
conventional | 0.102843 0.0611180 0.475638 | 1.81237 1.66158 1.65492
proposed 0.103030 0.0613047 0.475825 | 1.81420 1.66341 1.65675
60 Pollaczekl | 0.103012 0.0613333  0.475789 | 1.81533 1.66467 1.65802
Pollaczek2 | 0.103005 0.0613260 0.475781 | 1.81533 1.66467 1.65802
conventional | 0.741197 0.642955 1.05642 1.54492 1.42010 1.41345
proposed 0.745902  0.647661 1.06113 1.54557 1.42075 1.41410
600 Pollaczekl | 0.748330  0.649913 1.06332 1.54678 1.42191 1.41526
Pollaczek?2 0.747710 0.649293 1.06270 1.54680 1.42193 1.41528
conventional | 7.39506 6.90314 7.22457 1.26626 1.15864 1.15293
proposed 7.50986 7.01794 7.33937 1.26433 1.15671 1.15100
6000 Pollaczekl 7.66821 7.17553 7.49709 1.26433 1.15670 1.15099
Pollaczek?2 7.61851 7.12583 7.44739 1.26459 1.15696 1.15125
conventional | 61.1415 58.3008 58.2408 0.97484 0.88637 0.88645
proposed 60.5850 57.7442 57.6843 0.96679 0.87832 0.87840
60000 Pollaczekl | 68.8430 65.9976 65.9311 0.95450 0.86600 0.86606
Pollaczek?2 65.5297 62.6843 62.6177 0.95774 0.86923 0.86930
conventional | 362.441 353.617 353.617 0.79508 0.71164 0.71164
proposed 355.463 346.639 346.639 0.79609 0.71264 0.71264
600000 Pollaczekl 506.977 498.103 498.103 0.72688 0.64342 0.64342
Pollaczek?2 361.874 353.000 353.000 0.75557 0.67211 0.67211

the conventional FEM are 30.87% in [R] and 14.25% in [L] with r7.=250mm, and are
14.88% in [R] and 6.95% in [L] with r.=500mm. If p. is 100Qm, the maximum differ-
ences become 5.23% in [R] and 0.42% in [L] with r,=250mm, and become 4.18% in [R]
and 0.38% in [L] with r.=500mm. These results suggest that the impedances of a cable
layout of arbitrary structures can still be calculated with Pollaczek’s formula by using
an approximate r..

For a loop current of 1470 A at 600kHz between the centre conductor of the cable and
the earth, the J contours found with the proposed technique and with the conventional
FEM are plotted in Fig. 4.12. The plotted area is 2m horizontally by 2.5m vertically.
Fig. 4.12 shows good agreement between the field distributions of the proposed technique

and of the conventional FEM. It also shows that the tunnel structure does not have a
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strong impact on the field distribution, although small deformations can be observed in

Jgr near the tunnel.

z, : 1
N
S S

JRr,=0.37006-0.01807-(i-1) Jr,=0.36736-0.01921-(i-1)

V¥

N otia oy =
et

L4

J1,=0.83914-0.04282-(i-1) J1,=0.84298-0.04604. (i-1)
conventional proposed (r,=5m)

Figure 4.12: J distributions in the earth at 600kHz from the FEM

4.6 Summary

In this chapter, a technique is proposed to reduce the earth region when the earth pene-
tration depth is large. Good agreements are observed for the calculated impedances and
for the field distributions between the conventional FEM and the proposed technique.

The solution region is small and independent of frequency, which helps in the meshing
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process. The comparisons show that the proposed technique requires less CPU time than
the conventional FEM if partial earth return currents are calculated only once.

The conventional FEM and the proposed technique are applied to deeply and shal-
lowly buried cables and tunnel installed cables. In the impedance calculation of deeply
buried SC coaxial cables, accurate results can be obtained with the conventional FEM
if 7, > 36.. With the proposed technique, accurate results are obtained if r5/§, is small
at small r,, or if r./é, is small at large r.. For r.=24mm, the errors of the proposed
technique are less than 1% compared with the conventional FEM if r, /8, < 0.2.

In the impedance calculation of shallowly buried and tunnel installed SC coaxial
cables, r, > 126, is required for the conventional FEM. Comparisons with Pollaczek’s
formula for the shallowly buried cables show that there are discrepancies with the con-
ventional FEM when the earth penetration is small. For typical ranges of p. and 7.,
however, the discrepancies are reasonably small. With p. varying between 1000Qm to
1Qm and with r, varying between 24mm to 250mm, the maximum discrepancies are less
than 21% in [R] and less than 9% in [L]. The field solutions of a tunnel installed cable
show that arbitrary structures inside the earth do not have a strong influence on the field
distribution. Pollaczek’s formula can still be applied to find impedances of such a cable

by using an approximate r,.



Chapter 5

Admittance Calculation with Finite Element Method

5.1 Introduction

If the insulating materials in a multiconductor system have complicated geometries, then
[Y] of the system cannot be calculated analytically. Instead, numerical methods have to
be used. In general, shunt conductances among conductors are ignored. Therefore, the
task of the [Y] calculation is simplified into a [C] calculation.

According to the assumptions given in Section 2.2, only surface charges exist, and the
parallel conductors have uniform cross section longitudinally. This simplifies the capaci-
tance calculation into a two-dimensional steady-state electric field solution problem. The
solution region is set up by removing all the regions inside conductors from the solution
region in the [Z] calculation.

Several numerical methods could be applied, including BEM and FEM. Because the
steady-state electric field solution is a special case of the quasi steady-state magnetic
field solution, most of the FEM techniques for solving the magnetic field can be applied
directly to solve the electric field. The corresponding software can easily be adapted to
handle the electric field solution. Therefore, only FEM is used in this thesis.

In this chapter the general procedures for applying FEM to the steady-state electric
field solution are first discussed. The energy method and the surface charge method to
calculate the capacitances from the field solutions are derived next. The general form of

[C] for SC coaxial cables is also given. The results of the [C] calculation of a SC coaxial

97
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cable by FEM show that isoparametric elements are better than simplex elements in this

case.

5.2 Principal Equation and FEM solution

The assumption that there is no volume charge inside the conductors is justified in [10],

based on the equation

p 1 1dp
E=£f=Cv.3=_22¢ .
\Y - aVJ oy (5.1)

where € is permittivity, p is volume charge density, and o is conductivity. It is pointed
out in [10] that, as p = poe~(?/9" any charges introduced into a conductor will dilute
themselves to the surface with a time constant of ¢/o. For a poor conducting earth with
pe = 1000 Qm, the corresponding time constant is still a very small value in the order of
108 5. In cable related transient studies, the smallest time step is typically in the order
of 107 s. Compared to the above time constant, such a time step is large enough to
ensure that there is no volume charge inside the conductors.

Because the charges are on the conductor surfaces only and there is no field inside
the conductors, the solution region for the electric field will be composed of insulations

bounded partly by conductor surfaces. Introducing the scalar potential ¢ as

E=-V¢ (5.2)
the following Laplace equation can be derived

Vi =0 (5.3)

This is the governing equation describing the electric field. The boundary conditions are
still Dirichlet boundary conditions on I'y and homogeneous Neumann boundary condi-

tions on T';.
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¢ also appeared in the [Z] calculation. In that case, ¢ is the longitudinal potential in
conductors which is caused by applied conductor currents. It is constant in the transverse
direction in each conductor. In the [C] calculation, however, ¢ represents the transverse
potential function caused by voltages applied on the conductor surfaces.

Comparing the governing equations (5.3) in the [C] calculation with (2.17) in the [Z]
calculation, it can be seen that (2.17) will be reduced to the same form as (5.3) if there is
no conductor region. With suitable boundary conditions, the real part of the A solution
for (2.17) will be the ¢ solution for (5.3). That is the reason why the steady-state electric

field solution is a special case of the quasi steady-state magnetic field solution.

With FEM, ¢ is assumed as
Nrp
$=72 bupn (5.4)
n=1
where @, is the value of ¢ at FEM node n, and Nr and ¢, are the same as before. With

the same procedure as discussed in Chapter 2, the following algebraic equation can be

derived
[Ull¢] = [0] (5.5)
where
[¢] = [¢1’ ¢27 veey ¢NT]T (56)
Unn = ‘/; eV, Vods (m=12,...,N;n=1,2,...,Ny) (5.7)

Sr and N remain the same as before, and ¢ is the permittivity. By dividing Sgr into

elements and assuming that ¢ has the following form in element E;

Nz,
¢=Y ¢FpPds in Sg (5.8)

n=1

where ¢Zi is the node value of ¢ in the element, the integral U,,, in Sg, becomes

UE — ¢, / VB . VipFids (5.9)
Sa,
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where m = 1,2,..., Ng, excluding boundary nodes, n = 1,2,...,Ng,, and i=1,2,...,M.
Ng, and M remain the same as before. Obviously, all the discussions and formulas in
Chapter 2 and Chapter 3 referring to the formulation of [U] for different elements and
to the solution of the final algebraic equations are applicable here, provided that % is

replaced by e.

5.3  [C] Calculation from the Field Solutions

[C] can easily be calculated from the solved potential field distribution under specific
boundary conditions. Similar to the [Z] calculation, there are two methods for finding
[C] : the energy method and the surface charge method.

Before discussing these two methods, the capacitances of a multiconductor system are
first defined: C,,, is the direct capacitance per unit length between conductor ¢ and the
reference conductor, and G, is the direct mutual capacitance per unit length between

conductors 7 and j. These capacitances are shown in Fig. 5.1.

Figure 5.1: Direct capacitances for multiconductor systems
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For conductor ¢ shown in Fig. 5.1, the following equation is derived

K
I — (jwC,,d2)V; — Z (jwCm, d2)(V; — Vi) = I; + dI; (5.10)
k=1
k#4d
or
dI: K K K
- d—' = jw(C,..o + E Cmn)Vi —jw Z Cm-’ka = jw Z C‘k‘/" (5'11)
¥4 k=1
k=1 k=1
k#1 k#£1

where Cj; is the element in [C] , which is related to the direct capacitances by

K

Ci = Cip+ Y. Cuma (1=12,...,K) (5.12)
k=1
k#i

Cik = —Chn, (5,k =1,2,...,K;k # 1) (5.13)

For the complete system, (5.11) has the matrix form

-4 _ juienw (5.14)

This equation is essentially (2.2) provided that [G] is ignored. (5.12) and (5.13) are used
in the energy method to find [C] from the field solutions.

5.3.1 The energy method

With this method, the electric energy stored in the field under specific boundary con-
ditions is calculated, and the elements of [C] are derived from the energy. Once the

potential distribution is known, the following equation is used to find the electric energy

from the field

1 1
Wep = 5 sneE-Eds:-z—/;ReVgo-chds
1 M
= 23 enldBTIUR5] (5.15)

=1
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where
(6] = (#7243 -+ bl (5.16)
[#%] is the node value vector of ¢ in element E;. eg, is the permittivity in E;.
Fig. 5.2 shows the cross section of the conductor system in Fig. 5.1. From circuit
analysis, if V; = Vp #0and V; =0 (j = 1,2,...,K;j # i), the stored electric energy is
ST
i1

Csio Csjo

0

Figure 5.2: Direct capacitances under DC condition |

given by
i _ 1 2, 1 & 2 _ 1 2
Wge =50V t3 Y. CuuVo = 5CuVo (5.17)
k=1
k#i

For these conductor voltage conditions, the corresponding boundary conditions in the
field solution are that all potentials at the boundary nodes on the surface of conductor ¢
are Vp and that the potentials at the rest of the boundary nodes are zero. If the energy
calculated from the potential distribution is represented by ng, C;; becomes

(5.18)

By assuming V; = V; =V #0and V, =0 (k= 1,2,...,K;k # i;k # j), the stored
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electric energy from circuit analysis becomes

K

Wi = 5045 3 CnaVi = 50m, W
k=1
k#i

1 1 & 1

+ '2‘Csjovo2+'2' Z Cmik‘/oz—gcmij‘/g
k=1
k#3

1
= 5(Ci+Cj + 2Ci;)Vs (5.19)

For the field solution, the potentials at the boundary nodes on the surfaces of conductors
¢ and j are V. The potentials at the rest of the boundary nodes are zero. If W};’F

represents the stored energy in the field, C;; will be

Wi Ci Cj
L= _ w3 5.20
CJ ‘/02 2 2 ( )

As the system is linear, the field needs to be solved only K times, with one conductor
surface having non-zero potential each time. From these K solutions, WEF is calculated
and Cj; is evaluated. By superimposing two solutions, ng and C}; can then be found.

This method is simple, and the potential distribution solved by FEM is used directly
to find [C] . One interpretation of FEM for the Laplace equation is that FEM trys
to find a solution that will minimize the energy in the field. Therefore, [C] calculated
with the energy method should always be slightly larger than the exact value, unless the

solution itself is exact.

5.3.2 The surface charge method

With this method, [C] is found from the surface charges per unit length on the con-
ductors under specific boundary conditions. The surface charges are calculated from the

integration of D along the contours of the conductors.
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From electrostatic field analysis, the surface charges per unit length on the conductors

in Fig. 5.2 are related to [C] through the following equation
[q] = [C][V] (5.21)
where

[q] = [QI’ q2’°°-,qK]T (522)

g; is the surface charge per unit length on conductor i. [V] is the same as before. If
Vi=Vo#0and V; =0 (j =1,2,...,K;j # i), the elements of the ith column in [C]

can be found from the corresponding surface charges as
Cji== (1=1,2,...,K) (5.23)

g; is given by
- .dl = 2 2 )
g; ./[:cj D-dl /ch +|D|\/dz? + dy (5.24)

where I'c; is the periphery of the cross-section area of the jth conductor. dlis an integral
element with a direction normal to I'c;. The plus and minus signs in the above formula

are related to the direction of D. |D| is calculated from

ID| = €|E| = ¢|V¢| = e\j (-g—:i) + (g—j) (5.25)

The system of equations needs to be solved K times, with one conductor surface having

non-zero potential each time.

In order to evaluate the integral (5.24) in a simplex element, the vertices are numbered
in the same way as shown in Fig. 3.1. Three possible combinations can be obtained by
permuting three node numbers: (1,2,3), (2,3,1), and (3,1,2). (m,n,o0) is used to represent

these three combinations.
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Assuming that the integral (5.24) in element E; is along the side from vertices m to

n on which {, = 0 and d¢, = 0, the corresponding integral Aq can be derived as

Agq = eg\/(Tn = Tm)? + (¥n — Ym)? /01 :t\J (%)2 + (aj) d¢, (5.26)

and
= ﬁ ii 95" ((yn - ya)%%:i + (o ym)aai1'> (5.27)

g_z - 531?%; oF ((mo - xn)%"’f + (2 — xo)agzi ) (5.28)

O Olnllnnlp (i, ) 2l = = o (5.29)

ol B ) 220 e) P L = o) (5.30)

where Pj,, P;,, and P;, are ngen by (3.5) and (3.6). i and QQ in (5. 27) and (5.28) can
E. E,'
also be expressed in terms of —J— and ——Z’— or in terms of 5%— an d , if (5.29) and

(5.30) are modified correspondingly.

By
% P, (N,, () is changed into real

. . ) 85 ;
In order to simplify the calculation of —5%: and 5

polynomial form

NP’( = _Zamt (531)

m =0
in which d,, is the common denominator. a,,; is the polynomial coefficient. d,, and a,,;
are associated with order IV, and with m, and they are listed for order 1 to 6 in Tab.5.1.

As g—f and %f can be found for any given ((m, (n, {,) from (5.27) to (5.30), Agin (5.26)

can now be evaluated by applying the Gaussian quadrature discussed in Section 3.3.1.
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Table 5.1: dr, and am; in Py(Np, () =_-;:E:’_l_o ami(?

Np | m " dm " amo am1 Qm2 l Qm3 QAm4 Qs Qme
o] 1 J 1
1 11 ][ o 1
0 1 1
2 1 1 0 p)
p) 1 0 | 2
0 1 [ 1
T T 0 3
3 22 o 3 9
3 2 | 0 p) ] 9
o 1 1
1 [ 1 | © 4
4 2 | 1 || o 2 8
33 || 0 1 Y 371
T 3 || o 3 22 48 32
0 1 1
1 1 0 5
) p) 0 3 75
5 3 6 0 10 75 125
3 21 0 30 | 275 | -750 | 625
5 21 0 24 | 250 | 875 | -1250 | 625
0 1 1
i 1 0 3
P i 0 3 8
6 3 1 0 2 18 36
3 p) 0 3 33 | -108 | 108
5 5 ) 3 75 | 315 | -540 | 324
5 10 0 10 | 137 | 675 | 1530 | -1620 | 848
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For isoparametric elements, dz, dy, gf, and %é in element E; can be derived as
z v

og

L 9y

d:cw
dy |

8z
8¢

8z
dv
8y
v

A
oz

K2
8y

Sz
a d’U
Sy
v dv

oz

[B1[¢™] = [D™][¢"™]

dv
dv

(5.32)

(5.33)

where [J5i] and [ D] are given by (3.22) and (3.25), respectively. [8] is given by (3.19) for

quadrilateral isoparametric elements, or by (3.28) for triangular isoparametric elements.

If the integration within a quadrilateral element is along the side from local nodes 1
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to 2 as shown in Fig. 3.5, » = —1 and dv = 0, and from (5.32)

] e

The corresponding integral Ag becomes

s [T EE G o

Once the local coordinates of sampling points for the numerical integration are known

along this side, %f, %%, %, and g% are calculated from (5.33) and (5.34), respectively, and
Agq from (5.35). For integrations along the other sides, similar formulas can be derived.
If the integration is within a triangular element along the side from local nodes 1 to

2 as shown in Fig. 3.6, v = —v + 1; therefore,

[;j ) [in]r[;_u] aal [ _11] o)

with Ag having the same form as in (5.35).

<

The concept of this method is very simple; however, the software implementation is
rather complicated compared with the energy method. Although ¢ is continuous in FEM

solutions, E is not. This may introduce errors in [C] .

5.4 [C] Calculation of SC Coaxial Cables

In this section the capacitances of SC coaxial cables are obtained, and the results are

compared with those from analytical formulas.

5.4.1 General form of [C] for SC coaxial cables

The same notations will be used as in Section 2.6 or as shown in Fig. 2.4. For the SC

cable shown in Fig. 2.4 there are K insulations. The kth insulation is between conductors
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k and k+1, and the capacitance per unit length related to the insulation is

2me
Cin, = r—"
In (—*—-"’ ‘)

rB,

(k=1,2,...,K) (5.37)

where ¢ is the permittivity of the kth insulation. The general form of [C] for SC coaxial
cables, which only has three diagonals[10], is

ct o3
Cot i Cd 0
cH ¢f o
[C] = oo (5.38)
0 Cc¥g, Cci, C¥
Ccg Ck
where
C! = Cin,
C¢ = Cin,_, +Cu, (k=2,3,...,K) (5.39)
C;:d = —CIn,_, (k=2,3,...,K)

5.4.2  [C] calculation of a SC coaxial cable by FEM

[C] of the SC coaxial cable shown in Fig. 3.9 is calculated by FEM. As shown in the
figure, €,=1 is assumed for both insulations. The solution region is similar to Fig. 3.9(b),
except that the two conductor regions are removed.

As in the [Z] calculation, the span angle § and the division radii will affect the
results. When studying the influence of division radii on [C] , a small 8 is used. In
Tab.5.2 five different radius divisions are listed. As the solution region is made up by
two disconnected insulation regions, the division radii for each division scheme are listed

for these two regions separately.
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Table 5.2: Radius divisions in [C] calculation of the SC coaxial cable

division radii (mm)
division inner insulation outer insulation
divisionl | 12 18 22 24
division2 | 12 15 18 22 23 24
division3 | 12 14 16 18 22 227 233 24
division4 | 12 13 15 17 18122 223 23 23.7 24
divisionb | 12 12.3 17.7 18 22 221 239 24

The results of the [C] calculation are given in Tab.5.3 for different division schemes
with § = 1°. Values from the analytical formula (5.38) are also included in the table.
It can be seen that, with all division schemes, the capacitances calculated by the energy
method have four digit accuracy for all types of elements except the first order simplex
element. With this method, the calculated values for C,; and C,, are the same as —C};.
The capacitances calculated by the surface charge method depend on division scheme.
C)2 is the same as —C\; and C5, is slightly different from C,; due to different integration
surfaces in the surface charge calculation.

It can be seen from Tab.5.3 that for simplex elements higher order methods give more
accurate results, at the expense of more nodes and of longer computation time. For all
the division schemes, the 3rd order simplex element seems to be an optimum choice, since
the results are not improved significantly by further increasing the order of the element.

For the numerical integration in the surface charge method the number of sampling
points in the Gaussian quadrature can easily be decided for a simplex element. For a
N,th order simplex element, with ¢ being a polynomial function of order N, E calculated
from ¢ by differentiation will be a polynomial function of order N, — 1. Therefore, the
number of sampling points will be ((N, + 1)/2), truncated to the nearest integer. For
isoparametric elements, the results do not change very much after the number of sampling
points goes beyond five.

Tab.5.3 shows that different radius division schemes will mostly affect the results
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Table 5.3: [C] of a two-conductor SC coaxial cable

110

Energy Method (¢F/km) || Surface charge method (pF/km)
element | c;; (~C12,-C21) I C22 Cn (-Ci12) I Cx I C22
| analytical | 0137017 | 0.775503 || 0137017 | -0.137017 [ 0.775503 |
1so 0.137037 0.775523 0.133333 |} -0.133333 0.771014
sim2 0.137039 0.775533 0.133337 | -0.133337 0.771034
sim3 0.137018 0.775507 0.136559 | -0.137476 0.775724
divisionl sim4 0.137017 0.775505 0.136963 | -0.136963 0.775439
simb 0.137017 0.775504 0.136999 | -0.137035 0.775278
sim6 0.137017 0.775504 0.137014 | -0.137014 0.775487
iso 0.137018 0.775504 0.135886 | -0.136261 0.774537
siml 0.137503 0.776107 0.122225 | -0.150004 0.774416
sim2 0.137019 0.775509 0.135882 | -0.136274 0.774382
sim3 0.137017 0.775505 0.136932 | -0.137069 0.775334
division2 sim4 0.137017 0.775504 0.137001 | -0.137026 0.775290
simb 0.137017 0.775504 0.137004 | -0.137029 0.775312
sim6 0.137017 0.775504 0.137004 | -0.137029 0.775346
1s0 0.137017 0.775503 0.136476 | -0.136701 0.775082
siml 0.137236 0.775784 0.126680 | -0.145309 0.773857
sim2 0.137018 0.775507 0.136467 | -0.136719 0.774854
sim3 0.137017 0.775505 0.136978 | -0.137045 0.775232
division3 sim4 0.137017 0.775504 0.137000 | -0.137035 0.775239
sim5 0.137017 0.775504 0.137000 | -0.137036 0.775291
sim6 0.137017 0.775504 0.137000 | -0.137036 0.775349
iso 0.137017 0.775503 0.136871 | -0.136942 0.775409
siml 0.137178 0.7756717 0.131691 | -0.141097 0.775312
sim2 0.137017 0.775505 0.136852 | -0.136976 0.774867
sim3 0.137017 0.775504 0.136987 | -0.137053 0.774995
division4 sim4 0.137017 0.775504 0.136988 | -0.137053 0.775182
simb 0.137017 0.775504 0.136987 | -0.137052 0.775321
sim6 0.137017 0.775504 0.136989 | -0.137048 0.775380
150 0.137029 0.775515 0.137015 | -0.137022 0.775506
siml 0.138374 0.777170 0.136666 | -0.139537 0.776884
sim2 0.137029 0.775517 0.136955 | -0.137140 0.774046
sim3 0.137017 0.775504 0.136938 | -0.137119 0.775028
division5 sim4 0.137017 0.775504 0.136948 | -0.137091 0.775356
simb 0.137017 0.775504 0.136966 | -0.137064 0.775324
sim6 0.137017 0.775504 0.136981 | -0.137049 0.775392
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from the surface charge method. If the potentials of the centre conductor and on the
outmost boundary in Fig. 3.9(b) are zero, and the potential of the second conductor is
1 V, the corresponding surface |E| calculated by FEM with isoparametric elements are

given in Tab.5.4. The table shows that a closer division radius towards the boundary

Table 5.4: Surface |E| for different divisions with isoparametric elements
|E(r)| (V/mm)

r=12mm | »=18 mm | »=22 mm | »=24 mm
analytical | 0.205525 | 0.137017 | 0.522398 | 0.478865
divisionl | 0.200000 | 0.133333 | 0.521739 | 0.478261
division2 | 0.203829 | 0.136261 | 0.522226 | 0.478720
division3 | 0.204713 | 0.136701 | 0.522312 | 0.478795
division4 | 0.205306 | 0.136943 | 0.522381 | 0.478852
divisiond | 0.205522 | 0.137023 | 0.522396 | 0.478863

will improve the surface E results and consequently improve the accuracy of the surface
charge method, as indicated in Tab.5.3.

When 8 varies, the FEM mesh will be changed. If the whole circular region in
Fig. 3.9(a) is considered, different 8 will create different numbers of nodes and num-
bers of elements. The relative errors of numerical results compared with those given by
the analytical formula are plotted in Fig. 5.3 for isoparametric elements and for the 3rd
order simplex element. In the figure, EM stands for the energy method and SCM for
the surface charge method. iso and sim3 are the same as before. It can be seen that
isoparametric elements produce accurate results even at very large span angles, while the
3rd order simplex element only produces accurate results at small span angles. For other
orders the results are similar. Therefore, isoparametric elements are more computation

efficient, as less computation time will be required by fewer nodes and fewer elements in

the FEM mesh.
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Figure 5.3: Errors in [C] calculation of a SC coaxial cable for different span angles

5.5 Summary

In this chapter general procedures for solving the electrostatic field with FEM are dis-
cussed. The energy method and the surface charge method for calculating [C] from the
field solutions are derived. The energy method is simple and easy to implement compared
with the surface charge method.

Both methods are applied to the SC cable shown in Fig. 3.9. For this case the
results show that isoparametric elements achieve higher accuracy with fewer elements

and nodes in the FEM mesh than simplex elements. The results also show that the



Chapter 5. Admittance Calculation with Finite Element Method 113

energy method has less stringent requirements on the mesh, and has higher accuracy
than the surface charge method. For isoparametric elements a division radius close to
the conductor surface will improve the [C] results found by the surface charge method,
while for simplex elements similar improvements can be achieved by increasing the radial

divisions.



Chapter 6

Case Studies in [Z] and [C] Calculations

6.1 Introduction

There are analytical formulas for the calculation of parameters of most types of power
cables. These formulas are generally derived with certain approximations. For example,
the impedance formulas of PT cables are derived by replacing the conductors inside the
pipe with current filaments located at the centres of the conductors. By applying FEM,
the parameters can be calculated without some of these approximations. This provides
a way of verifying the validity of analytical formulas. |

In this chapter, FEM is applied to the [Z] calculation of buried or tunnel installed
multiphase SC cables, of PT cables, of sector-shaped cables, and of stranded conductors.
Capacitances of PT cables and sector-shaped cables are also calculated with FEM. The
numerical results of [Z] and [C] are compared with those from the analytical formulas.

The comparisons show that for buried multiphase SC cables, accurate self and mutual
impedances can be obtained with Pollaczek’s formula. For tunnel installed SC cables,
reasonably accurate self and mutual impedances can still be obtained with Pollaczek’s
formula. With PT cables, the analytical formulas may introduce errors at high frequencies
due to neglected proximity effects. For sector-shaped cables, FEM results are compared
with those from an approximate analytical formula recently suggested by Ametani{40].
Discrepancies are observed. For stranded conductors, comparisons are made among the

results found with FEM, the subdivision method, the GSW formula, and Borges da Silva’s

114
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formula. These comparisons show that close agreement is obtained between FEM results
and the GSW formula if a factor of 1.6 is used in the formula instead of 2.25. Good

agreement exists between FEM results and Borges da Silva’s formula.

6.2 [Z] Calculations of Buried or Tunnel Installed Multiphase Cable Sys-

tems

In Section 4.5 the impedances of a single phase cable are calculated, where mutual
impedances only exist between the conductors within the cable. For multiphase ca-
ble systems, the mutual impedances among the conductors of different phases must be
calculated as well. To use the formula (4.6) for the impedance between two phases, (0,h)
and (zp,yp) are assumed to correspond to the locations of the two phases, respecfively.

In this section, the impedances of two 230kV three-phase SC cable systems are cal-
culated with (4.6), with the conventional FEM, and with the proposed technique. Each
phase consists of a two-conductor SC cable, as shown in Fig. 6.1(a). One system is buried
as shown in Fig. 6.1(b), and the other is installed in a tunnel as shown in Fig. 6.1(c). The

FEM meshes around the cables at 60Hz are given in Fig. 6.2. As there are six conductors

sheath: 0=4800 S/mm air

core: = 57000 S/mm

rA]:]Z_lmm 731_245mm h= 12"1 s—300mm r¢—509mm h=12m hzﬂOOmm h3=100mm

a2=42.3mm 7’3,=46mm = 100Qm 5=300mm  w =150mm
43=50.9mm z Pe #e=Ho Pe=100Qm  p=H,
(a) cable data (b) buried system (c) tunnel installed system

Figure 6.1: 230kV three-phase cable systems
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N § /
A\ /
| i
(a) buried cable system (b) tunnel installed cable system

Figure 6.2: Meshes around the cables at 60Hz for the two systems

in each system, the final [Z] has the form of

[ZaA] [ZAB] [ZAc]
[Z]=| (ZaB] [ZBB] [ZBCI (6.1)
[Zac] [ZBcl [Z¢c)
Subscripts A, B, and C represent the phases. All submatrices are 2x2 matrices, and

[Za A, [ZBB)s and [Z (] are symmetric. The sheath conductor is numbered after the
core conductor in each phase.

The impedances of the buried cable system are listed in Tab.6.1 and Tab.6.2. Be-
cause the meshes are symmetrical with respect to the center cable, [Zj 5 ]|=[Z((] and
[ZpBl=[Z2B]- With Pollaczek’s formula, it is assumed that [Zj 5 |=[Zgg] =[Z( ), that
all four elements in [Z g] are the same, and that all four elements in [Z o] are the same.
Tab.6.1 and Tab.6.2 confirm that these assumptions are reasonably accurate for the given
p.=100Qm. The tables show that the differences between the results from Pollaczek’s
formula and from FEM are small at low frequencies, but noticeable at high frequencies.
Good agreement is observed between the conventional FEM and the proposed technique.

The maximum differences between Pollaczek’s formula and the
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Table 6.1: [Z5 Al([Zg(]) and [Zgpg] of the buried three-phase cable system
f R (Q/km) L (mH/km)
(Hz) Ru Rz Ry, Ly Ly L
[Zoal | conv. | 0.0748300 0.0597006 0.262705 | 2.10829 1.96073 1.95793
prop. | 0.0749538 0.0598244 0.262829 | 2.11098 1.96342 1.96062
60 [Zgg] | conv. [ 0.0750753 0.0599458 0.262950 | 2.10904 1.96147 1.95868
prop. | 0.0751972 0.0600678 0.263072 | 2.11172 1.96416 1.96137
Pollaczek 0.0745183 0.0594093 0.262382 | 2.12015 1.97267 1.96988
[Zpa] | conv. | 6.37885 6.16838 6.33678 | 1.61213 1.49146 1.48897
prop. | 6.39170 6.18123 6.34963 | 1.61402 1.49335 1.49086
6000 | [zgg] | conv. | 6.38720 6.17672 6.34512 | 1.61034 1.48967 1.48718
prop. | 6.39999 6.18952 6.35792 | 1.61225 1.49158 1.48909
Pollaczek 6.37657 6.16547 6.33386 | 1.62790 1.50717 1.50468
[Zaal | conv. | 694.949 691.010 691.011 | 1.09676 0.98654 0.98654
prop. | 696.979 693.041 693.041 | 1.09769 0.98747 0.98747
600000 | [zgp] | conv. | 694.819 690.880 690.881 | 1.09482 0.98460 0.98460
prop. | 696.919 692.980 692.981 | 1.09576 0.98554 0.98554
Pollaczek 698.287 694.327 694.327 | 1.11182 1.00154 1.00154
Table 6.2: [Z5 gl([Zg(]) and [Z o] of the buried three-phase cable system
7 R (/) T (wi/km)
(Hz) R Riy Ry Ry, | Ln Lz Ly Ly
conv. | 0.05944 0.05944 0.05944 0.05944 | 1.586 1.586 1.586 1.586
(Zag) | prop. | 0.05957 0.05957 0.05957 0.05957 | 1.589 1.589 1.589 1.589
Poll. | 0.05940 1.589
60 conv. | 0.05895 0.05895 0.00895 0.05895 | 1.449 1.449 1.449 1.449
(Zoc) | prop. | 0.05908 0.05908 0.05908 0.05908 | 1.452 1.452 1.452 1.452
Poll. | 0.05940 1.451
conv. | 6.085 6.085 6.085 6.085 1.120 1.120 1.120 1.120
{ZxB] | prop. | 6.098 6.098 6.098 6.098 1.122 1.122 1.122 1.122
Poll. | 6.092 1.125
6000 conv. | 6.066 6.066 6.066 6.066 0.989 0.989 0.989 0.989
(Zoc] | prop. | 6.079 6.079 6.079 6.079 0.990 0.990 0.990 0.990
Poll. | 6.091 0.986
conv. | 685.9 685.9 685.9 685.9 0.622 0.622 0.622 0.622
{Z5B) | prop. | 687.9 687.9 687.9 687.9 0.623 0.623 0.623 0.623
Poll. | 689.1 0.626
600000 conv. | 679.9 679.9 679.9 679.9 0492 0.492 0.492 0.492
[Z5c) | prop. | 681.8 681.8 681.8 681.8 0.492 0.492 0.492 0.492
Poll. | 682.5 ‘ 0.488

conventional FEM are 1.8% in [R] and 1.78% in [L} from 1Hz to 1MHz, and the maximum

differences between the proposed technique and the conventional FEM are 0.49% in [R]
and 0.18% in [L] from 1Hz to 1MHz.

The impedances of the tunnel installed cable system are listed in Tab.6.3 and
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Tab.6.4. 7.=300mm is used with Pollaczek’s formula. Again, the differences between

Pollaczek’s formula and the conventional FEM become noticeable at high frequencies.

Table 6.3: [ZA Al([Zog]) and [Zgg| of the tunnel installed three-phase cable system

f R (2/km) L (mH/km)

(Hz) Ry, Ry, Ry, Ly Ly, Ly,
[ZoA) | conv. | 0.0748252 0.0596958 0.262700 | 2.11131 1.963756 1.96096
prop. | 0.0749517 0.0598223 0.262827 | 2.11394 1.96637 1.96358
60 [Zgg] | conv. | 0.0750711  0.05699417 0.262046 | 2.11116 1.96360 1.96080
prop. | 0.0751999 0.0600705 0.263075 | 2.11376 1.96620 1.96340
Pollaczek 0.0745182 0.0594092 0.262382 | 2.12015 1.97267 1.96988
[ZoA) | conv. | 6.37058 6.16010 6.32850 1.61540 1.49473 1.49224
prop. | 6.38852 6.17804 6.34644 1.61716 1.49649 1.49400
6000 {Zgg] | conv. | 6.37804 6.16757 6.33597 1.61276 1.49209 1.48960
prop. | 6.39624 6.18576 6.35416 1.61448 1.49381 1.49132
Pollaczek 6.37618 6.16508 6.33347 1.62790 '1.50717 1.50468
(Zoal | conv. | 675.093 671.155 671.155 1.10341 0.99319 0.99319
prop. | 685.630 681.692 681.692 1.10176 0.99154 0.99154
600000 [Zgg] | conv. | 672.579 668.641 668.641 1.10084 0.99061 0.99061
prop. | 683.822 679.884 679.884 1.09903 0.98881 0.98881
Pollaczek 695.484 691.523 691.523 1.11193 1.00166 1.00166

Table 6.4: [ZpBl([Zg]) and [Z ] of the tunnel installed three-phase cable system

f R (92/km) L (mH/km)
(Hz) R Ry, Ro Ry | Lu Liz Ln Ly

conv. | 0.056944 0.05944 0.05944 0.05944 | 1.584 1.584 1.584 1.584
[ZsB] | prop. | 0.05957 0.05957 0.05957 0.05957 | 1.587 1.587 1.587 1.587

Poll. | 0.05940 1.589
60 conv. | 0.05804  0.05894 0.05894 0.05804 [ 1.448 1.448 1.448 1.448
' [Zoc] | prop. | 0.05907 0.05907 0.05907 0.05907 | 1.450 1.450 1.450 1.450
Poll. | 0.05940 1.451

comv. | 6.077  6.077  6.077  6.077 | 1.118 1.118 1.118 1.118
(Zsp) | prop. | 6.095  6.095  6.095  6.095 | 1.120 1.120 1.120 1.120

Poll. | 6.092 1.125
6000 conv. | 6.060 6.060 6.060 6.060 0.987 0.987 0.987 0.987
[Z5c] | prop. | 6.078 6.078 6.078 6.078 0.989 0.980 0.989 0.989

Poll. | 6.091 0.986

conv. | 665.5 665.5 665.5 665.5 0.624 0.624 0.624 0.624
[Zog] | prop. | 676.0 676.0 676.0 676.0 0.622 0.622 0.622 0.622
Poll. | 689.1 0.626
600000 conv. | 661.4 661.4 661.4 661.4 0.494 0.494 0.494 0.494
[Zpcl | prop. | 671.9 671.9 671.9 671.9 0.492 0.492 0.492 0.492
Poll. | 682.5 0.488
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The maximum differences are 4.81% in [R] and 1.87% in [L] from 1Hz to IMHz. The
maximum differences between the proposed technique and the conventional FEM are 2%
in [R] and 0.75% in [L].

For both systems, the J distributions in the earth from the proposed technique and
the conventional FEM are given in Fig. 6.3. In this distribution, a loop current of 1450 A
is assumed between the left phase and the earth at 600kHz. The field plotting area is 3m
vertically by 3m horizontally. Comparing the fields of the buried cable system with the
tunnel installed cable system shows that the tunnel structure does not have a significant
influence on the field. Fig. 6.3 also indicates a good agreement between the fields from

the proposed technique and the fields from the conventional FEM.

6.3 [Z] and [C] Calculations of PT Cables

6.3.1 The [Z] calculation of PT cables

For the three-phase PT cable with SC coaxial cables inside, as shown in Fig. 1.1(a), it is
very difficult, if not impossible, to obtain an analytical field solution. If the conductors
inside the pipe are replaced by current filaments, however, the fields inside the pipe
and within the pipe conductor can be solved analytically, and approximate impedance
formulas can then be derived from the field solutions. The fields inside the pipe and within
the pipe conductor were solved first by Tegopoulos et alin 1971[8], and the approximate
formulas for the [Z] calculation were developed first by Brown et alin 1976[13]. These
formulas are widely used in cable parameter programs[23}.

Several of the assumptions in the approximate formulas ignore factors which may
influence the results of the [Z] calculation. It is assumed that the fields within each SC
coaxial cable inside the pipe remain cylindrical, to be able to use the formulas discussed

in Section 2.6. This ignores the influence of the pipe and adjacent cables on the field
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distribution of the concerned cable. As the field solutions were derived for a loop current
between a single current filament and the pipe, the influence of the other non-current
carrying conductors on the field distributions inside the pipe and within the pipe conduc-
tor is ignored. The influence of the finite dimension of the current carrying conductor,
which is replaced by a current filament for the formula derivation, is also ignored.

With FEM, these factors can be considered, and their effects of can be studied. A
three-phase 230kV PT cable is given in Fig. 6.4. Each phase consists of a two-conductor
SC cable as shown in Fig. 6.4(a). The non-linearity of the steel pipe is ignored, and a

240 mm

[ >
231.8 mm

sheath: 6= 4800 S/mm pipe: <:l==3§(0)g.7 S/mm

core: 5= 34060 S/mm

n,=0 rs, =24.25mm -
n2=4025mm 7r3,=42.25mm - ”
=438 6=0
’43=44.25mm ana: a c3=§i'!:mmm u'= 1 GA = aa = 8¢ = 64.4 mm
(a) cable data (b) triangle arrangement (c) cradle arrangement

Figure 6.4: A 230kV PT cable system

constant y,=500 is assumed instead. Two arrangements of the SC cables inside the pipe
are analyzed: the triangle arrangement and the cradle arrangement shown in Fig. 6.4(b)
and (c), respectively. The meshes at 6kHz for both arrangements are plotted in Fig. 6.5.
In the calculation, the pipe will be used as the return path, and the earth is not included.
A=0 is assumed on the boundary in the meshes in Fig. 6.5. The structure of [Z] is the
same as in (6.1).

For the triangle arrangement the impedances are listed in Tab.6.5 and Tab.6.6. Due
to symmetry, [Zggl=[Z¢c] and [Zp g]|=[Z A ]- "ana” in the tables stands for the results
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(a) triangle arrangement (b) cradle arrangement
Figure 6.5: Meshes for the PT cables at 6kHz

found with the analytical formulas[23]. Large differences are observed between the results
from FEM and those formulas at high frequencies. The maximum differences are 88% in
[R] and 68% in [L] from 1Hz to 1MHz.

As mentioned earlier in this section, the formulas ignore the influence of non-current
carrying conductors on the field distributions inside the pipe and within the pipe con-
ductor. To study this influence, a 1470 A loop current is assumed between the sheath
of the upper SC cable and the pipe. |A| distributions caused by the loop current with or
without two lower cables are plotted for 60Hz and 6kHz in Fig. 6.6. The corresponding
|J| distributions on the inner surface of the pipe are given in Fig. 6.7. The A contour
lines represent the magnetic flux lines[34]. It can be seen in Fig. 6.6 that the distortion
of the |A| distribution caused by the presence of the two lower cables is severe at 6kHz
but not severe at 60Hz. Similarly, the |J| distribution at 6kHz on the inner surface of
the pipe is altered greatly near the two lower cables if the two cables are present, while
at 60Hz the |J| distribution is only slightly affected by the lower cables. As reflected in
the impedances in Tab.6.5 and Tab.6.6, the differences between the results from FEM
and those from the analytical formulas are small at 60Hz (< 3.1%) and large at 6kHz
(£ 26.9%).
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Table 6.5: [Z o] and [ZgR|([Z¢(]) of the PT cable with a triangle arrangement

f R (©/km) L (mH/km)
(Hz) Ry, R, R, Ly Ly, L,
[Zaal | FEM | 0.282226 0.260819 0.662920 | 1.01507 0.86707 0.86545
ana. | 0.275526 0.254153 0.656159 | 1.03926 0.89132 0.88969
60 fzgg]l | FEM [ 0.285957 0.264551 0.666666 | 1.04822 0.90023 0.39862
ana. | 0.279190 0.257818 0.659823 ] 1.07678 0.92884 0.92721
[Zpal | FEM | 0.975600 0.916694 1.31873 | 0.48853 0.36789 0.36628
ana. | 0.908456 0.849402 1.25125 | 0.53731 0.41660 0.41498 |
600 Zgg] | FEM | 1.01266 0.953773 1.35584 | 0. , X R
ana. | 0.977012 0.917958 1.31981 | 0.55370 0.43298 0.43137
{Zaa] | FEM | 3.20001  3.00974 3.40539 | 0.29346 0.18268 0.18108
ana. | 3.20516 3.01413  3.40962 | 0.36005 0.24922 0.24762
6000 (zgp] | FEM | 3.53022  3.33996  3.73563 [ 0.29957 0.18879 0.18719
ana. | 3.89726 3.70623 4.10172 | 0.34546 0.23464 0.23304
[Zpal | FEM | 119585  10.6357  10.7013 | 0.23325 0.12740 0.12666
ana. | 12.4560 11.1361 11.2030 | 0.29353 0.18764 0.18691
60000 [T[zgg] [ FEM | 16.3469 15.0241 15.0897 | 0.22250 0.11665 0.11591
ana. | 16.3205 15.0007 15.0675 | 0.25717 0.15128 0.15055
[Zoa) | FEM | 42.6742  38.1846  38.1927 ] 0.20765 0.10516 0.10516
ana. | 41.3592 36.8655 36.8741 | 0.26805 0.16552 0.16552
600000 [ [zgg] | FEM | 76.1295 71.6399 71.6480 | 0.18052 0.07303 0.07803
ana. | 56.6433 52.1496 52.1582 | 0.22257 0.12004 0.12004

Table 6.6: [Z5Bl([ZA¢]) and [Zg(] of the PT cable with a triangle arrangement

f R (Q/km) L (mH/km)

(HZ) Ry, Ry, R R;, Ly Ly, Ly Lj,
(Zag] | FEM | 0.2498 0.2498 0.2498 0.2498 | 0.6857 0.6857 0.6857 0.6858

ana. | 0.2493 0.2493 0.2493 0.2493 | 0.6824 0.6824 0.6824 0.6824

60 (Zgcl | FEM | 0.2479 0.2479 0.2479 0.2479 | 0.6470 0.6470 0.6470 0.6470
ana. | 0.2482 0.2482 0.2482 0.2482 | 0.6396 0.6396 0.6396 0.6396

[Zog] { FEM | 0.7763 0.7764 0.7763 0.7764 | 0.2357 0.2357 0.2357 0.2357

ana. | 0.7611 0.7611 0.7611 0.7611 | 0.2357 0.2357 0.2357 0.2357

600 [Zgc) | FEM | 0.7529 0.7528 0.7528 0.7528 | 0.2055 0.2055 0.2055 0.2055
ana. | 0.7425 0.7425 0.7425 0.7425 | 0.1988 0.1988 0.1988 0.1988 |

(zyg] | FEM | 2.506 2.506 2.506 2.506 0.0947 0.0947 0.0947 0.0947

ana. | 2.184 2.184 2.184 2.184 0.1069 0.1069 0.1069 0.1069

6000 (Zgc] | FEM | 2.372 2.372 2.372 2.372 0.0722 0.0722 0.0722 0.0722
ana. | 2.010 2.010 2.010 2.010 0.0782 0.0782 0.0782 0.0782

(z5g] | FEM | 8.729 8.729  8.729 8.729 0.0466 0.0466 0.0466 0.0466

ana. | 6.283 6.283 6.283 6.283 0.0711 0.0711 0.0711 0.0711

60000 (Zgc] | FEM | 7.696 7.696 7.696 7.696 0.0282 0.0282 0.0282 0.0282
ana. | 5.428 5.428 5.428 5.428 0.0474 0.0474 0.0474 0.0474

{Zpg] | FEM | 33.58 33.58 33.58 33.58 0.0283 0.0283 0.0283 0.0283

ana. | 18.98 18.98 18.98 18.98 0.0604 0.0604 0.0604 0.0604

600000 {Zgc) | FEM [ 256.92 25.92 75.92 25.92 0.0136 0.0136 0.0136 0.0136
ana. | 15.86 15.86 15.86 15.86 0.0386 0.0386 0.0386 0.0386
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Figure 6.6: |A| distributions caused by the loop current at 60Hz and 6kHz
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If only the upper cable is in the pipe, the maximum differences between the results
from FEM and those from the formulas will be 15.79% in [R] and 4.54% in {L] from 1Hz to
1MHz. By deci’easing the conductor radii of SC cables, the distances between the cables:
and the pipe will be increased, which is likely to decrease the errors. As a test case, if
rB,=15mm; r4,=20mm, rp,=23mm, and r4,=25mm for the PT cable in Fig. 6.4(b) with
the other parameters remaining the same, the maximum differences between the results
from FEM and those from the formulas will be 13.46% in [R] and 24.18% in [L] from 1Hz
to 1IMHz. A similar PT cable was studied in reference[42]. The distances between the
SC cables and the pipe in that case are larger than those in Fig. 6.4, but smaller than
in the above test case. Accordingly, the differences between the results from FEM and
those from the formulas lie also in the middle.

From the above discussions, it is concluded that the formulas for the impedance
calculation of PT cables give accurate results in the low frequency range. They yield
reasonably accurate results in the high frequency range if the cable dimensions are small
compared with the dimension of the pipe and if the cables and the pipe are not too close
to each other.

For the cradle arrangement, the impedances are listed in Tab.6.7 and Tab.6.8 with
[Zaal=[Z¢ccl and [Zp g]=[Zg]- The maximum differences between the results from
FEM and those from the formulas are 81% in [R] and 72% in [L] from 1Hz to 1MHz.

6.3.2 The [C] calculation of PT cables

[C] matrices for the two arrangements are given in Tab.6.9 and Tab.6.10, respectively.
They are calculated with FEM and with the analytical formulas[23]. Both the energy
method and the surface charge method discussed in Section 5.3 are used to calculate the
capacitances. €,=1 is used for all the regions. The meshes are similar to the ones in

Fig. 6.5 except that the conductor regions are removed.
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Table 6.7: [Zp Al([Z¢oc]) and [Zgg] of the PT cable with a cradle arrangement

f R (©/km) L (mH/km)
(Hz) Ry, Ry, Ry, Ly Ly, Ly
[Zoa) | FEM | 0.285638 0.264232 0.666324 | 1.04983 0.90185 0.90024
ana. | 0.279190 0.257818 0.659823 | 1.07678 0.92884 0.92721
60 (ZgBl FEM | 0.287647 0.266144 0.668125 | 1.04277 0.89478 0.89317
ana. | 0.279190 0.257818 0.659823 | 1.07678 0.92884 0.92721
[Z254) | FEM | 1.01671 0.957819 1.35986 0.50716 0.38652 0.38491
ana. | 0.977012 0.917958 1.31981 0.56370 0.43298 0.43137
600 (ZgB] FEM | 1.04002 0.981136 1.38306 0.49151 0.37087 0.36926
ana. | 0.977012 0.917958 1.31981 0.55370 0.43298 0.43137
[Z54) | FEM | 3.65653 3.46628 3.86192 0.29510 0.18432 0.18272
ana. | 3.89726 3.70623 4.10172 0.34546 0.23464 0.23304
6000 {zgg] | FEM | 3.56767 3.37744 3.77298 0.27689 0.16611 0.16451
ana. | 3.89726 3.70623 410172 0.34546 0.23464 0.23304
[Zpal | FEM | 16.2286 14.9059 14.9714 0.21712 0.11126 0.11053
ana. | 16.3205 15.0007 15.0675 0.25717 0.15128 0.15055
60000 {zgg] | FEM | 14.9878 13.6651 13.7306 0.20428 0.09843 0.09769
ana. | 16.3205 15.0007 15.0675 0.25717 0.15128 0.15055
[Zpa) FEM | 73.0357 68.5463 68.5544 0.17656 0.07407 0.07407
ana. | 56.6433 52.1496 52.1582 0.22257 0.12004 0.12004
600000 [zZgg] | FEM | 64.4238 59.9349 59.9430 0.16819 0.06570 0.06570
ana. | 56.6433 52.1496 52.1582 0.22257 0.12004 0.12004

Table 6.8: [ZABl([Zg(]) and [Z ] of the PT cable with a cradle arrangement

f R (Q/km) L (mH/km)
(HZ) Ry, R, Ry R, Ly Ly, Ly Ly,
[Zsg) | FEM | 0.2513 0.2513 0.2513 0.2513 | 0.7003 0.7003 0.7003 0.7003
ana. | 0.2508 0.2508 0.2508 0.2508 | 0.6981 0.6981 0.6981 0.6981
60 [Zacl | FEM [ 0.2446 0.2446 0.2446 0.2446 | 0.6716 0.6115 0.6115 0.6115
ana. | 0.2461 0.2461 0.2461 0.2461 | 0.5975 0.5975 0.5975 0.5975
[Zag] | FEM | 0.7972 0.7972 0.7972 0.7972 | 0.2426 0.2426 0.2426 0.2426
. ana. | 0.7855 0.7855 0.7855 0.7855 | 0.2429 0.2429 0.2429 0.2429
600 [Zoc) | FEM | 0.7149 0.7149 0.7149 0.7149 | 0.1845 0.1845 0.1845 0.1845
ana. | 0.7071 0.7071 0.7071 0.7071 ] 0.1689 0.1689 0.1689 0.1689
[Zpg] | FEM | 2,663 2.663 2.663 2.663 0.0940 0.0940 0.0940 0.0940
ana. | 2.351 2.351  2.351 2.351 0.1046 0.1046 0.1046 0.1046
6000 [Zpcl | FEM | 2.218 2.218 2.218 2.218 | 0.0635 0.0635 0.0635 0.0635
ana. | 1.759 1.759 1.759 1.759 | 0.0622 0.0622 0.0622 0.0622
(Zspl | FEM | 9.605 9.605  9.605 9.605 0.0407 0.0407 0.0407 0.0407
ana. | 6.832 6.832 6.832 6.832 0.0651 0.0651 0.0651 0.0651
60000 [Zpc] | FEM | 7.024  7.024 7.024 7.024 | 0.0218 0.0218 0.0218 0.0218
ana. | 4502 4502 4502 4.502 0.0374 0.0374 0.0374 0.0374
[Zpg] | FEM | 35.39 3539 3539  35.39 [ 0.0208 0.0208 0.0208 0.0208
ana. | 20.51 20.51 20.51 20.51 0.0534 0.0534 0.0534 0.0534
600000 (Zpc)l | FEM | 2159 21.59 21.59 21.59 0.0094 0.0094 0.0094 0.0094
ana. | 12.93 12.93 12.93 12.93 0.0302 0.0302 0.0302 0.0302




Chapter 6.

Case Studies in [Z] and [C] Calculations

Table 6.9: [C] of the PT cable with the triangle arrangement (u¢F/km)

[C] found with FEM using energy method

0.109652 -0.109652 0 0 0 0
-0.109652  0.243091 0 -0.040218 0 -0.040218
0 0 0.109652 -0.109652 0 0
0 -0.040218 -0.109652 0.342047 0 -0.014692
0 0 0 0 0.109652 -0.109652
0 -0.040218 0 -0.014692 -0.109652 0.342052
[C] found with FEM using surface charge method
0.109442 -0.109442 0 0 0 0
-0.109592  0.243030 0 -0.040217 0 -0.040217
0 0 0.109442 -0.109442 0 0
0 -0.040217 -0.109593 0.341983 0 -0.014692
0 0 0 0 0.109442 -0.109442
0 -0.040217 0 -0.014692 -0.109593 0.341988
[C] found with analytical formulas
0.109795 -0.109795 0 0 0 0
-0.109795  0.209431 0 -0.039429 0 -0.039429
0 0 0.109795 -0.109795 0 0
0 -0.039429 -0.109795 0.243418 0 -0.022992
0 0 0 0 0.109795 -0.109795
0 -0.039429 0 -0.022992 -0.109795 0.243418

Table 6.10: [C] of the PT cable with the cradle arrangement (pF/km)

[C] found with FEM using energy method

0.109653 -0.109653 0 0 0 0
-0.109653  0.348885 0 -0.053153 0 -0.007603
0 0 0.109651 -0.109651 0 0
0 -0.053153 -0.109651 0.386509 0 -0.053166
0 0 0 0 0.109653 -0.109653
0 -0.007603 0 -0.053166 -0.109653 0.348895
[C] found with FEM using surface charge method
0.109442 -0.109442 0 0 0 0
-0.109593  0.348820 0 -0.053152 0 -0.007603
0 0 0.109440 -0.109440 0 0
0 -0.053152 -0.109590 0.386443 0 -0.053165
0 0 0 0 0.109442 -0.109442
0 -0.007603 0 -0.053165 -0.109593 0.348831
[C] found with analytical formulas
0.109795 -0.109795 0 0 0 0
-0.109795  0.243352 0 -0.057283 0 -0.007962
0 0 0.109795 -0.109795 0 0
0 -0.057283 -0.109795 0.267446 0 -0.057283
0 0 0 0 0.109795 -0.109795
0 -0.007962 0 -0.057283 -0.109795 0.243352
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6.4 [Z] and [C] Calculations of Sector-Shaped Cables

6.4.1 The [Z] calculation of sector-shaped cables

There is no analytical formula for the impedance calculation of sector-shaped cables of
the type on the right in Fig. 1.1(a). The sheath indicated in that figure may or may not
exist. For a sector-shaped cable with a sheath, Ametani suggested that its impedances
can be calculated approximately with the formulas for PT cables[40]. If Lo and S¢
represent the contour length and cross-section area of a sector-shaped core conductor in
Fig. 1.1(a), respectively, the conductor can be transformed into an equivalent circular

conductor with its outer and inner radii as[40]

. Lc
outer radius rp = o (6.2)

. & _|a Sc
inner radius 14 =/t - —
®

(6.3)

Reference [40] did not mention, however, how to determine the position of the equivalent
conductor inside the sheath.

The impedances of the sector-shaped cable in Fig. 6.8(a) are calculated with FEM
and with the analytical formulas for PT cables using the equivalent radii. For one
sector-shaped conductor, S¢=300mm? and Ly=70.834mm, with the equivalent radii be-
ing 74=5.622mm and rp=11.274mm. It is assumed that the three equivalent circular
conductors are 13.1mm away from the center of the cable. The sheath is used as the
return path and the earth is not considered. A=0 is assumed on the boundary located
at 74 in Fig. 6.8(a). The FEM mesh around the cable at 60kHz is plotted in Fig. 6.8(b).

The impedances of the cable are listed in Tab.6.11. Due to symmetry, Z,,=2Z3,=2Z3;3
and Z,,=27,3=2,3. "app” in the table represents the results found with the approximate
formulas for PT cables using equivalent radii. For a loop current 14350 A between the
upper conductor and the sheath, with the upper conductor current being 1 A, the |A|
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(a) cable data (b) FEM mesh around cable at 60kHz
Figure 6.8: A sector-shaped cable

distributions at 60Hz and 60kHz are given in Fig. 6.9(a) and (b), respectively. The
plotting area is 100mm by 100mm.

Table 6.11: [Z] of the sector-shaped cable

7 E(@/km) [ L (i/km)

(Hz) Ru Ry, Ly, L,
FEM | 2.84006 2.78246 | 232.020 40.4454
6 app | 2.83996 2.78239 | 196.081 25.0563
FEM | 2.84987 2.78317 | 220.673 40.1914
60 app | 2.84334 2.78105 | 191.259 27.3958
FEM | 2.96756 2.78308 | 156.797 35.7225
600 app | 2.93723 2.75504 | 164.736 36.4771
FEM | 3.52505 2.69462 | 120.400 38.3245
6000 app | 3.52328 2.58640 | 125.467 47.2753
FEM | 5.15051 2.88824 | 105.090 40.6921
60000 | app | 5.89100 2.22645 | 108.540 52.1332
FEM | 15.9166 8.82314 | 99.0031 38.0609
600000 | app | 18.8742 6.42831 | 100.191 51.1033

The results show that in the low frequency range the differences in [R] between FEM
and the formulas are very small because the equivalent circular conductor has the same
cross-section area as a sector-shaped conductor. The differences in [L], however, are very
large at low frequencies because the magnetic field is not confined within the cable. This
is clearly indicated by the |A| distribution at 60Hz in Fig. 6.9(a). In the high frequency

range, large differences in [R] and in L;; can be observed, while the differences in L;,
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I

|4i| = 18777 + 14.298. (i-1) | 4] = 0.04552 + 5.7462. (i-1)
(a) |A| at 60Hz (pusV/km) (b) |A| at 60kHz (usV/km)

Figure 6.9: |A| distribution in the sector-shaped cable caused by the loop current

become very small. The magnetic field becomes confined within the cable as shown by
the |A| distribution at 60kHz in Fig. 6.9(b). The maximum differences are 41.25% in [R]
and 62.11% in [L] from 1Hz to 1MHz.

If the sheath is made of steel with high permeability u,, the magnetic field will be
confined within the cable even at low frequencies, as seen in Fig. 6.6(a) in the preceding
section. The formulas may give reasonably accurate results for [L] in the low frequency
range as well. If 4,=500 for the sheath, the difference in [L] between FEM and the
formulas is less than 5% if the frequency is less than 2kHz, and the maximum differences

are 23.86% in [R] and 17.57% in [L] from 1Hz to 1MHz.

6.4.2 The [C] calculation of sector-shaped cables

Capacitances of the cable are calculated with FEM and with the formula for PT cables.
The results are listed in Tab.6.12 for ¢,=1. If the potential of the upper conductor is 1V

and the other conductors and the sheath have zero potentials, the potential distribution
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Table 6.12: [C] of the sector-shaped cable (uF/km)

method 011(022,033) 012(013,023)
FEM (energy method) 0.147049 -0.0401938
FEM (surface charge method) 0.147323 -0.0402814
analytical formula 0.181528 -0.0620687

found with FEM is plotted in Fig. 6.10. Fringe effects around the corners of the upper
conductor can be observed. Because of numerical round-off errors, ¢; given in Fig. 6.10

starts from -0.000003 instead of zero.

¢; = -0.000003 + 0.05- (:-1) V
Figure 6.10: Potential distribution in the sector-shaped cable

6.5 The Calculation of Internal Resistance of Stranded Conductors

Stranded conductors are used for overhead transmission lines. In such lines, the external
inductance is much larger than the internal inductance of the conductors. The internal
inductance is therefore ignored, or calculated approximately. However, the internal re-

sistance of the conductors is of great importance. By ignoring the spiralling effect, the
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strands of a stranded conductor can be assumed as parallel circular subconductors. With
s-uch an assumption, analytical formulas can be derived for the calculation of the internal
resistance of stranded conductors.

Galloway, Shorrocks, and Wedepohl derived the following formula in 1964 for the
internal resistance in the high frequency range[4]

K,

Ro = (2 + n)réo

(6.4)

where n is the number of the outer strands, r is the radius of the outer strands, §
is the real penetration depth defined in (3.45), o is the conductivity of the stranded
conductor, and K;=2.25 is a factor found from measurements in an electrolytic tank.
" The formula shall be called the GSW formula for simplicity. Borges da Silva suggested
in 1979 that a stranded conductor could be replaced with a circular conductor having an
equivalent radius[21]. The internal resistance can then be calculated with the formula for

the impedance calculation of circular conductors, using the equivalent radius given as

: n
Teqg =T, (0.92122679 ~ 4.385693977 — 2.30718697 — 1.2479854) (6:5)

where 7. is the outer radius of the stranded conductor. n is the same as in (6.4). This
method shall be called Borges da Silva’s formula.

Arizon et al applied the conductor subdivision method to calculate the internal
impedances of stranded conductors in 1987[38]. In that paper differences were reported
between the results from the subdivision method and those from the GSW formula, which
become small if K;=1.6 is used in the formula instead of K;=2.25.

With the assumption that the strands are parallel, FEM can be applied to the cal-
culation of internal resistance of stranded conductors. A two-layer stranded conductor
is given in Fig. 6.11(a). It is assumed that the conductor is surrounded by the air. A

circular boundary away from the conductor is set up, with A=0 on the boundary. The
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real part of the impedance for such a single conductor system would be the internal re-
sistance of the conductor. Due to symmetry, only one twelfth of the conductor is used
in the FEM solution, as shown in Fig. 6.11(b). The FEM mesh around the conductor at
60kHz is plotted in Fig. 6.11(c).

6=31153S/mm MH,=1
(a) data (b) solution region (c) FEM mesh at 60kHz (partial)
Figure 6.11: A two-layer stranded conductor

The internal resistance of the conductor in Fig. 6.11 is given in Tab.6.13. The max-
imum differences between the results from FEM and those from the other methods are

Table 6.13: The internal resistance of the two-layer stranded conductor

Ro (01/km)
f GSW formula subdivision | Borges da Silva’s
(kHz) FEM K;=2.25 | K;=1.6 | method formula
43 1.0446 1.4524 1.0328 1.3479 1.0215
80 1.4160 1.9811 1.4088 1.6305 1.3864
100 1.5905 2.2149 1.5751 1.8187 1.5479
130 1.7951 2.5254 1.7959 2.1126 1.7622
| max diff with FEM | 40.68% | 1.13% | 29.04% | 2.68% |

given at the bottom of Tab.6.13. With r.=13mm and n=12, r.,=11.7171mm is found
from (6.5). It can be seen that differences between FEM and Borges da Silva’s formula
are small. There are large differences between FEM and the GSW formula with K;=2.25.
If K;=1.6 is used in the GSW formula, the differences between FEM and the formula

become insignificant, as shown in Tab.6.13.
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If the current in the stranded conductor is 1 A, the |J| distribution at 60Hz and
60kHz are plotted in Fig. 6.12. At 60Hz the currents are almost evenly distributed over

|7:] = 2455.8 + 8.21- (i-1) il = 3520.7- (i-1)
(a) |J]| at 60Hz (A/m?) (b) |J| at 60kHz (A/m?)

Figure 6.12: |J| distribution in the stranded conductor

the conductor, while at 60kHz a strong skin effect can be observed.
If the stranded conductor in Fig. 6.11(a) has only one layer, the corresponding internal

resistance is given in Tab.6.14, for n=6, r,=7.8mm, and r.,=6.8578mm. The differences

Table 6.14: The internal resistance of the one-layer stranded conductor

Ro (0/km)
f GSW formula subdivision | Borges da Silva’s
(kHz) FEM K;=2.25| K;=1.6 | method formula
20 1.2436 1.7335 1.2327 1.7122 1.2246
43 1.7882 2.5418 1.8075 1.8466 1.7688
80 2.4094 3.4669 2.4654 2.4815 2.3920
100 2.7013 3.8761 2.7564 2.8160 2.6677
130 3.0466 4.4195 3.1427 3.2965 3.0338
[[max diff with FEM | 45.06% | 3.15% | 37.68% | 1.563% ]

are very small among the results of FEM, Borges da Silva’s formula, and the GSW
formula with K;=1.6. Good agreement is observed between FEM and the conductor
subdivision method for the listed frequencies, except at 20kHz. For three-layer and
four-layer stranded conductors with the same D as in Fig. 6.11(a), n will be 18 and

24, respectively, and r. will be 18.2mm and 23.4mm, respectively, with r.,= 16.5286mm
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for the three-layer stranded conductor and r.,= 21.3293mm for the four-layer stranded

conductor. The internal resistance is listed in Tab.6.15 and Tab.6.16, respectively.

Table 6.15: The internal resistance of the three-layer stranded conductor

Rc (0/km)

b i GSW formula Borges da Silva’s
(kHz) FEM K;=2.25 | K;=1.6 formula

20 0.50658 0.69338 | 0.49307 | 0.49425

60 0.87271 1.2010 | 0.85403 0.84906

100 1.1174 1.5505 1.1025 1.0934

140 1.3169 1.8345 1.3045 1.2920

180 1.4950 2.0802 1.4792 1.4637

220 1.6610 2.2997 1.6353 1.6172

[max diff with FEM | 30.30% | 2.67% |  2.11% ]

Table 6.16: The internal resistance of the four-layer stranded conductor

Re (0/km)

f GSW formula Borges da Silva’s
(kHz) FEM K;=2.25 | K;=1.6 formula

20 0.39099 0.53337 | 0.37929 0.38133

60 0.67642 0.92383 | 0.65694 0.65630

100 0.86673 1.1927 0.84811 0.84563

140 1.0229 1.4112 1.0035 0.99951

180 1.1627 1.6001 1.1379 1.1326

220 1.2934 1.7690 1.2580 1.2515

[max &iff with FEM | 37.95% | 2.99% | 3.24% |

It should be noted that even though the GSW formula with a factor of 2.25 does not
agree with the other methods, it does seem to come closer to field tests[20]. The reason

may be that the factor 2.25 takes the spiralling effect into account.

6.6 Summary

In this chapter FEM is applied to the parameter calculation of buried or tunnel installed

multiphase cables, of three-phase PT cables and sector-shaped cables, and of stranded
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conductors. The earth region reduction technique discussed in Chapter 4 is also used in
the impedance calculation of buried or tunnel installed.cables.

The results show that for typical earth resistivities Pollaczek’s formula gives reason-
ably accurate self and mutual impedances for multiphase buried cables, and for tunnel
installed cables using approximate inner earth radii. Good agreement between the pro-
posed technique and the conventional FEM are shown by the results. For PT cables,
the analytical formulas may introduce errors at high frequencies because the influence of
non-current carrying conductors on the fields inside the pipe and within the pipe conduc-
tor are not considered in the formulas. For sector-shaped cables comparisons show that
reasonably accurate self and mutual resistances can be obtained in the low frequency
range with the formulas for PT cables by using equivalent core conductor radii suggested
by Ametani. Accurate self and mutual inductances cannot be obtained in the low fre-
quency range with the formulas if the sheath is non-magnetic or if there is no sheath. In
the high frequency range, large differences between the results from FEM and those from
the formulas for both resistances and inductances are observed. For the internal resis-
tance of stranded conductors, good agreement is obtained among the results from FEM,
Borges da Silva’s formula, and the GSW formula with K;=1.6. There is also Good agree-
ment between the results from FEM and those from the conductor subdivision method
for a one-layer stranded conductor at f>43kHz. With respect to the factor in the GSW
formula, good agreement was reported between the GSW formula with K;=2.25 and
field tests[20]. This may be due to the fact that the factor 2.25 takes the spiralling effect

into account.



Chapter 7

Conclusions and Recommendations for Future Work

In this thesis, the finite element method (FEM) was applied to the parameter calculation
of underground power cables. The parameters most often needed in power system analysis
are the series impedances and shunt capacitances. The principal equations describing
the quasi-magnetic fields and static electric fields were solved with FEM based on the
Galerkin technique. Quadratic isoparametric elements as well as high-order simplex
elements were studied. A technique based on the perturbation concept was proposed to
reduce the solution region in the earth. The parameters of shallowly buried or tunnel
installed multiphase single core (SC) cables, pipe-type (PT) cables, sector-shaped cables,

and stranded conductors were calculated with FEM. The major conclusions are:

1. The Js method and the loss-energy method derived in the thesis for the [Z] cal-
culation from the field solution gave the same results. The loss-energy method is
time-consuming and requires a complete field solution. Much less computation is

needed with the Js method, and a complete field solution is not required.

2. Quadratic isoparametric elements proved to be more eflicient than high-order sim-
plex elements, in both the impedance calculation and the capacitance calculation.
For the same error tolerance, isoparametric elements can have larger span angles.
The low accuracy of simplex elements for large span angles cannot be improved by
increasing the order of polynomials of the elements. Fewer elements are needed in

meshing a circular region with isoparametric elements.

137
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3. Accurate impedances could be obtained for deeply buried SC cables with the con-
ventional FEM if the field truncation boundary is at least 38, away from the cables
(r» > 38.), and if the earth is divided with the pattern 107, 103, 107+3, 10~ in
each decade in the radial direction. For shallowly buried SC cables, the iterative
results showed that r, > 12§, is required to make the differences in [Z] from two

consecutive steps less than 0.5%.

4. Good agreement was obtained between the proposed technique and the conventional
FEM for shallowly buried SC cables. As shown in Section 4.5.2, for »,=5m, with
P.=100Qm and with r, varying between 24mm and 1m, the maximum errors with
the proposed technique are less than 8% in [R] and less than 2% in [L]. The earth
solution region is reduced significantly with the proposed technique in the low
frequency range, and CPU time is saved if partial earth return currents required

for the technique are calculated only once.

5. Comparisons between Pollaczek’s formula and the FEM for a single-phase shal-
lowly buried SC cable in Chapter 4 showed that accurate results were obtained
with Pollaczek’s formula when »./§, is small. For r.=24mm, the maximum differ-
ences between the results from Pollaczek’s formula and from the FEM are less than
1% in [R] if r./8. <0.03 and in [L] if r./§. <0.095. For large r./4., the differences
become large. With typical ranges of p. and r., however, the maximum differences
between the two approaches from 1Hz to 1MHz are reasonably small. With p,
varying between 1000Qm to 1Qm and with r, varying between 24mm to 250mm,
the maximum differences are less than 21% in [R] and less than 9% in [L]. Results
also showed that Pollaczek’s formula could be applied to find the impedances of
tunnel installed cables as well, if an approximate r, is used. For typical earth resis-

tivities, Pollaczek’s formula gave reasonably accurate self and mutual impedances
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for multiphase buried cables, and for tunnel installed cables with an approximate

Te.

6. For a PT cable, the magnetic flux distribution in the pipe and the current density
distribution within the pipe conductor are significantly influenced by the presence
of non-current carrying conductors at high frequencies. This influence is ignored in
approximate formulas, which therefore produce noticeable errors at high frequen-

cies.

7. For a sector-shaped cable with a magnetic sheath, the the analytical formulas sug-
gested by Ametani produce reasonably accurate resistances and inductances in the
low frequency range. If the sheath is non-magnetic or nonexistent, then the in-
ductance has a large error. In the high frequency range, these formulas are too

Inaccurate.

8. For the calculation of the internal resistance of stranded conductors, the spiralling
effect was ignored by assuming that all strands are in parallel. Close agreement
was obtained among the results from FEM, Borges da Silva’s formula, and the
GSW formula with K;=1.6, for stranded conductors with one to four layers. It has
been reported, however, that the GSW formula with K;=2.25 comes closer to field
tests. This may be due to the fact that the factor 2.25 takes the spiralling effect
into account. There was also good agreement between the results from FEM and

those from the conductor subdivision method for a one-layer stranded conductor

at f>43kHz.

9. For the capacitance calculation from the field solution, the energy method is sim-
ple and easy to implement. It has less stringent requirements on the mesh and

has higher accuracy than the surface charge method. The surface charge method,
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however, is faster, and its accuracy can be improved with a finer mesh near the

conductor surfaces.
Future research could be conducted in the following areas:

1. The mesh should be automatically generated for cable geometries, for user-friendly
interfaces with the FEM. The auto-mesh program developed for this project is not

flexible enough, and is incomplete.

2. More field tests are needed to compare the calculated impedances against measured

impedances.

3. If the conductance of insulating materials is available from tests and is to be con-

sidered as well, then the FEM should be modified to include it.

4. the FEM program could be used as a verification tool for developing simpler ap-

proximate formulas for PT cables, sector-shaped cables, and other types of cables.
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Appendix A

Integral matrices [Q(!)] and [Ts] of simplex elements

Table A.1: [Q("] and [Ts] of the 1st order simplex element

(a) [@W)] (b) [Ts]
common denominator = 2 common denominator = 12
0 symm. 2 symm.
0 1 1 2
0 -1 1 1 1 2

Table A.2: [Q("] and [Ts] of the 2nd order simplex element

(a) [@M] (b) [Ts]
common denominator = 6 common denominator = 180
0 6
0 8 symm. 0 32 symm.
0 -8 8 0 16 32
0 0 0 3 -1 0 -4 6
0 0 0 -4 8 -4 16 16 0 32
0O 00 1 -4 3 -1 4 0 -1 0 6
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Appendix A. Integral matrices [Q(")] and [Ts] of simplex elements

Table A.3: {Q(")] and [Ts] of the 3rd
(a) (@]

common denominator = 80

order simplex element

(b) [Ts]

common denominator = 6720

0 76
0 135 symm. 18 540 symm.
0 -135 135 18 270 540
0 -27 27 135 0 -189 -135 540
0 0 0-162 324 36 162 162 162 1944
0 27 -27 27.162 135 0 -135 -189 -54 162 540
0 3 3 3 0 -3 34 11 0 27 18 36 27 76
0 0 0 0 0 0 -54 135 27 -135 -54 270 162 -135 18 540
0 0 0 0 6 0 27-108 135 27 .54 -135 -135 162 270 0 -189 540
0 3 3 3 0 3 -7 27 -54 34 11 27 0 27 36 18 11 0 18
Table A.4: [Q(")] and [Ts] of the 4th order simplex element
(a) [Q™] ( common denominator = 1890 )
0
0 3968
0 3968 3968
0 -1440 1440 4632
0 0 0 -5376 10752 Symm.
0 1440 -1440 744 -5376 4632
0 640 -640 -1248 1536 -288 13456
0 0 0 768 -1536 768 -4608 10752
0 0 0 768 -1536 768 1536 -7680 10752
0 640 640 -288 1536 -1248 -384 1536 4608 3456
0 -80 8 80 -160 80 240 -160 -160 80 705
0 0 0 -128 25 -128 -256 256 256 256 -1232 3456
0 0 0 9 -192 9 192 -192 -192 192 884 -3680 5592
0 0 0 -128 256 -128 256 256 256 256 -464 1920 -3680 3456
0 8 80 80 -160 8 80 -160 -160 240 107 -464 884 -1232 705
(b) [Tg] (common denominator = 56700 )
290
160 2560
160 1280 2560
80 -1280 960 3168
160 1280 1280 384 10752 Symm.
80 -960 -1280 48 384 3168
0 768 512 -1280 256 64 2560
160 256 256 384 -1536 -768 1280 10752
160 256 256 -768 -1536 384 256 -1536 10752
0 512 768 64 256 -1280 256 256 1280 2560
27 0 -112 80 -160 -12 160 160 -160 -112 290
112 512 256 -960 256 64 1280 1280 256 S12 160 2560
-2 64 64 48 768 48 960 384 384 960 -80 -1280 3168
112 256 512 64 256 960 S12 256 1280 1280 0 768 -1280 2560
21 12 0 -12 -160 -80 112 -160 160 160 -27 0 -8 160 290
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0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

5344
45270
45270
-36720

-36720
17730
-37350
-37350
17730
-880
33700
24900
33700
-880
4747
13935

7940
13935
4747

743750
743750
-405000

0

405000

260000

563500
281750
-367250
392500
-281750
295250
3750
-146250
220750
-152125
-107500
-52500

95125
-880
95125
-1750
-55500
-15750
13935

(a) [Q"] (common denominator = 290304 )

577500

-100000 -818750 2050000

393750-1837500 2887500
800000 -1837500 2050000

-193750
41250
58725

-83125
83125

-104375

57500
-11850

-193750
-62500
146250

-177500
197500

-135000

31250

393750 -818750
-15625 31250
14375 -135000

1250 197500

1250 -177500
14375 146250
-15625 -62500

symm.
$77500

-11850 99402

57500 -188125 577500
-104375 172500 -745625 1282500
83125

-83125

58725 -11902 58750 -130625

(b) [T;] (common denominator = 19160064 )

743750
405000 1072500
0-1150000 2300000
405000  77500-1150000 1072500
-260000 -523750 587500 -63750 892500
0 293750 -587500 293750-1106250 2512500
0 293750 -587500 293750 300000-1706250 2512500
260000 -63750 587500 -523750 -86250 300000-1106250 892500
98750 237500 -287500 50000 -263125 346875 -121875 38125
0 -150000 300000 -150000 212500 -525000 412500
0 12500 -25000 12500 112500 -112500 -112500 112500
0 -150000 300000 -150000 -100000 412500 -525000 212500
-98750 50000 -287500 237500 38125 -121875 346875 -263125
-11850 -20225 31250 -11025 -4600 -15625 31250 -11025
0 20625 41250 20625 -14375 61250 -79375 32500
0 -5000 10000 -5000 30000 -92500 95000 -32500
0 -5000 10000 -5000 -32500 95000 -92500 30000
0 20625 41250 20625 32500 -79375 61250 -14375
11850 -11025 31250 -20225 -11025 31250 -15625 -4600
563500
-281750 846000
392500 -55000 2700000
-367250 113000 -55000 846000
220750 -516500 195000 -52000 846000
-146250 202500 -600000 -210000 202500 2925000
3750 -210000 -600000 202500 -22500 -450000 2925000
295250 -52000 195000 -516500 108000 -22500 202500 846000
-95125 295250 -107500 -1750 -367250 3750 -52500 -55500
30000 195000 450000 120000 -55000 -600000 150000 120000
-52500 -22500 150000 -22500 -210000 -450000 -450000 -210000
-107500 120000 450000 195000 120000 150000 -600000 -55000
-152125  -1750 -107500 295250 -55500 -52500 3750 -367250
13935 17730 33700 7940 -36720 -37350 24900 7940
-15750 220750 30000 -55500 -281750 -146250 -52500 -1750
-55500 -52000 120000 108000 113000 -210000 -22500 -52000
<1750 108000 120000 -52000 -52000 -22500 -210000 113000
-95125 -55500 30000 220750 -1750 -52500 -146250 -281750
-880 7940 33700 17730 7940 24900 -37350 -36720

563500

392500 2700000
-146250 -600000 2925000

30000
-15750
45270
281750
-281750
220750
95125
13935

450000
30000
34200

392500

-55000
195000
-107500
33700

-600000 2700000
-146250 392500
-37350 33700
3750 -107500
202500 195000
202500 -55000
3750 392500
-37350 34200

-130625 570000-1148750 1282500
58750 -272500 570000 -745625 577500

172500 -188125 99402

-880 -152125 295250 -367250 563500

symm.
563500

13935 53244

95125 45270 563500

220750 -36720 -367250 846000
281750 17730 295250 -516500 846000
281750

45270 4747 880 17730

-36720 45270

53244
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Appendix A. Integral matrices [Q")] and [Ts] of simplex elements
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Appendix B

Detailed Derivation of Pollaczek’s Formula

Fig. B.1 shows the buried current filament in the earth. The properties of the air and
the earth are given in the figure. = and y axes are established from origin O as shown
in the figure. ¢ axis is in the opposite direction of y. The location coordinates for the

filament are (z4,yys) or (zy,t;) with t; = —y; > 0.

region 1: air (HKa)

Figure B.1: A current filament buried in the earth

Applying the assumptions in Section 2.2 to this case the principal equations can be

derived. Because of

V xE = —jwB (B.1)
%VxB:J (B.2)
V-E=0 (B.3)
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the following equation is got
VxVXE = V(V-E)-VE=-V’E
= —jwV xB = —jupd = #E (B.4)

The current density has one direction only. Therefore, the two-dimensional principal

equation descibing the field in the problem is

. 1
V2E = jwpd = ?E (B.5)
where
2 4
= — B.6
P=— (B.6)

p is the complex penetration depth. If E, and E, respectively represent E fields in the

air and in the earth, (B.5) can now be splitted into two equations

VZEa = 0 yzo (B‘7)
1 .
VIE, = Ji B+ jopclb(z —2)5(t ~t7) t20 (B.8)
where
2 Pe
2= B.9
pe= s (B.9)

I is the magnitude of the filament current. The Delta function is associated with the

filament. The boundary conditions are

E,=E,=E, y=0  (B.10)

1 0F 1 0F 1 OF,

108 10% 102 =0;t=0 (B.11

Ba Oy  pe Oy pe Ot v (B-11)
0E, QE. O0E, OJE. _ _

E,=E, = 5z ~ 0z ~ Oy 3y'_0 ¢ =00 and/ory = o0 (B.12)

In order to solve (B.7) and (B.8) the integral transformation technique is applied. To

z the following Fourier transformation pair is applied

fla) = /_o:of(z)e‘j“"’dz (B.13)
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fe) = o [ Fla)e=da

To y and ¢ the following Fourier sine transformation pair is applied

i

) = [ f@sin()dy
&) = 2 [TT)sin(A)ax

For region 1, z and y are used as the coordinates. Define

/_O:o E e **dz

= /oo E, sin(\y)dy
0

SIS

Applying the Fourier transformation to z as

0°F * © JF,
a _Jaz _ _ G —Jaz _ a —Jal!
/oo O0z? dz = ( ]a) —oo —00 Oz ( ]a)dz

= — E,e7%%( ]a)2 +/ E.e77**(—ja)’dz

= —a2/ E,e”7*%dz = —a*E,

o §2 oy
0’E, emior gy 0°FE,
—co Oy Oy?
Then (B.7) becomes
Yo
-o’E, + I L, =0
oy?

Applying the Fourier sine transformation to y as

/ - —a’E,sin(Ay)dy = —o’E,
0
= §°E, JE, . = = JE,
N Zsin(Ay)dy = 6—ys1n( i —/\/0 Ecos(ky)dy

= - AEcos(Ay)|;o — )2 /oooEsin(/\y)dy
= A\E - NE,
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(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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(B.21) is changed to
=B (B.24)
For region2, z and ¢ are used as the coordinates. Define
E = / °:° E.e-i°ds (B.25)
T = /0 ~E sin(M)dt (B.26)
By similar process, the following equations can be derived
—a’E, + %2-?23. = I—’IEE + jwp.Te~ =1 §(t — t4) (B.27)
(e + pif + /\2)?5—: = ME, — jwpeIe'j“f sin(Aty) (B.28)
By assigning
P =t (B.29)
(B.28) becomes ‘
E. = 97 ;\_ 3 E, — jwp.cIe'j"‘"soi—?(_%t/\-%)— (B.30)

The inverse Fourier sine transformation is applied to (B.24) and (B.30) to get E, and
E,

_— 2_ /\sm(y/\)
E. = = / it (B.31)
= 24 [ Asin(t)) J2Whe oz, /°° sin(t;)) sin(tA)
F. = %[ i — IRt [P IR0 (B.3)
According to the mathematical handbook
c Asin(yA) T oy
s = —e® > M .
[ SRR = e azty>0 (B.33)
- .’25 laly y>0 (B.34)
% sin(tzA)sin(tA) T (o=(t5=008 _ —(ts40)0
_ T _ b >t .
/0 s G e ) 6>0;4,>t>0 (B.35)
= T (e-(t-ts)0 _ —(t+ts)8 :
= 40( N8 _e=(tH)8) 9> 06>t >0 (B.36)
= T (e-lt-=tsliol _ —lt+tylie] B.3
7 (¢ emHslll) (B37)
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Therefore,

= Ege ol ' (B.38)

SIS
|

_ Tl _ iy Jemioe “le=ty116] _ g lt+tsll6
. = Ege jwpele™ leol (e t eIttt ) (B.39)

Using boundary condition (B.11) E; can be solved from the above two equations.

Because

IE, — —

e - _ —laly -
o, la|Eqe |,,=0 la| By (B.40)
IE, — o1

e - _ ~lole|  _ ; —jazy > (|g](t-ts)16] (~t=ts)l6]
at t=0 B IolEOe |t=0 ]wPeIe !2|0l (lole ’ + Iale ! ) t=0

= —|0|Eq — jwp Te io=te=t110l (B.41)

the following equation is got

= —lafFs = - (~16[Fs — jupceoresM) (B.42)
a B

Therefore, E, is given by
gy jwle—ia=t e~ts1l ije‘5°=f et Va2+1/p2
Q= — 1 1 —_— ——
sl #5000 Lal + L \/o? + 1/

The final solution of E, and E, can be got by applying the inverse Fourier transfor-

(B.43)

mation to (B.38) and (B.39) with E, being replaced by (B.43). Also, t and ¢; can now

be changed back to —y and —yy, respectively. E, and E, are given by

1 foo— .
E. = = [ Eé™da
27 J-co
ij/oo etV +1/pi-laly
2 oo Lol + £ fa? + 172
jwl /oo e-ya+y;\/m
™ et/ 1

@2ty

cos((z — z4)a)da (B.44)
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E. = i/oo E.é**da
27 J-oo
jwI /oo e=ts /T H1/r- 1ol
2w oo Llal + k/fa? +1/p2
Jwpd oo emlt=tsl8l _ g—lt+ts]l6]
- /-oo 2)0]
oo e(”“’f)m
l st /el +1/p
Jwped oo e"'”"'”f'\/m:_e—l-y—wlm’:
g [ e

=21 dq

-2 gy

27
—J:I cos((z — z4)a)da

@22 dq  (B.45)

E, in the above equation can be further simplified into

jwl‘l'eI ) R 2e(y+y!) Clz+l/p3
E.=— Ko(D/p.) — Ko(D'/pe) + [ ' cos((z — z5)a)dax
27 ( 0 ﬁa+\/a2+1/p3 :
(B.46)
where
o g—l-vtysl\/e?+1/p;

Ko(D/p.) = / ¢ FE==negq (B.47)

-0 2/a? +1/p
Ko(D'fpe) = [~ S temsirag (BAg)
'Ipe) = =21 do 48

’ —° 2y/a’ +1/p}
D = \Jz—=zs+(y— ) (B.49)
D’ = \/(z—zf)2+(y+yf)2 (B.50)

K, is the zero order second kind modified Bessel funciton.
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Appendix C

List of Symbols

magnetic vector potential

A vector

A function values on FEM boundary

A vector of Dirichlet boundary nodes

element of [Ap]

distance to centre of PT cable of the kth SC cable (k=A,B,C)
unknown coefficient for trial function ¢,

polynomial coefficient in P, (N, ()

value of A at global node n

A distribution in conductor k

A distribution in conductor k caused by conductor current I;
vector of A(xi) values in element E;

vector of A values at local nodes in element E;

element of [AF]

A vector of unknown nodes

magnetic field density

shunt capacitance matrix per unit length of transmission lines
coefficient in the formulas of SC coaxial cables

coefficient in the formulas of SC coaxial cables

capacitance of the kth insulation in a SC cable
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Ck. :

(D] :
[Dg] :
[Dy] :
[Dy] :

Eb:

ij
det[] :
diag( ) :
dl :

E, F:
E, :

coefficient in the formulas of SC coaxial cables
diagonal element in [C] of SC coaxial cables

off diagonal element in [C] of SC coaxial cables

direct self capacitance of conductor 2

direct mutual capacitance between conductors 7 and j
element of [C]

perturbation coefficient of the earth

differentiation

shape function differentiation matrix in element E;
charge density

distance between a field point and a cable or diameter of strands
distance between a field point and the image of a cable
submatrix in [U] + jw[T] related to unknown nodes
submatrix in [U] + jw[T] related to boundary nodes
banded lower triangular matrix

banded upper triangular matrix

common denominator in P,,(N,, ()

width of the jth division from a surface of the ith conductor
determinant of a matrix

a diagonal matrix

integral element

electrical field

E value on the earth surface

E field in the air

E function values on FEM boundary
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fO
[F] :
[F] -
[Fa] :
[FB] :

List of Symbols 158

vector of node values of E; in a FEM mesh

E field in the earth with a deeply buried SC cable
E field in the earth

E field in the earth with a deeply buried current filament
element ¢ in a FEM mesh

source electrical field vector

source electrical field in conductor 1

inverse Fourier transformation of f()

integral coeflicient matrix related to unknown nodes
update of [F|

a matrix modified from [F]

integral coefficient matrix related to Dirichlet nodes
division factor for the jth division

elements in matrix [F)|

elements in matrix [Fjp)

F,.; in local node numbers in element E;

Fg,, in local node numbers in element E;

horizontal vector related to [F]

update of [Fg]

inverse Fourier sine transformation of f()

a vector related to [Epg]

shunt conductance matrix per unit length of transmission lines
diagonal conductivity matrix of conductors
Dirichlet boundary function

burial depth of an underground cable or a current filament



Appendix C.
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ha,h3 :
T

I:

1] :
I, I, :
I, :

[r], [11] :
Lo(), () :
I; :

Ip, Iy, :

Ip(r) :
(g1, [IEa] :
[es], [TEd] :
[IE1l, E] :

I, -

Ip. :

I

]
J, J:
J(,') .
Jii)

epp -
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magnetic field

layout geometry parameters of tunnel installed SC cables
index

conductor current

conductor current vector

real and imaginary parts of the earth current

the 1st kind modified Bessel function of the nth order

real part and imaginary part of [I]

first kind modified Bessel functions in 1st and 2nd order
conductor current in conductor 2

real part and imaginary part of [;

internal return current of cylindrical conductor 2

external return current of cylindrical conductor @

earth current within r of a deeply buried current filament
equivalent current vectors due to boundary conditions
equivalent current vectors due to boundary condition [Ej]
updates of [Ig;] and {Ig,]

partial earth return current

partial earth return current of a deeply buried SC coaxial cable
partial earth return current of a deeply buried current filament
complex number exclaimer or index

current density

J distribution inv conductor ¢

J distribution in conductor ¢ caused by conductor current I;

vector of J(;;) values in element E;
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JryJr ¢
Js :
[Js] :
Js, :

(7]
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real and imaginary part of J
source current density
source current density vector

source current density in conductor i

: Jacobian transformation matrix in element E;
k:

K :

Ko(), Ki() :
Ky :

K., :
(L(w)], (2] :
l:

L¢ :
[Lo(w)] :

index

number of conductors

second kind modified Bessel functions in 1st and 2nd order
factor in the GSW formula

the 2st kind modified Bessel function of the nth order

series inductance matrix per unit length of transmission lines
index

contour length of a sector-shaped core conductor

series inductance matrix per unit length related to conductors
series inductance matrix per unit length related to dielectrics
elements of [L]

number of elements in a FEM mesh

index

number of unknown nodes in a FEM mesh, number of space dimension
index or the number of outer strands

number of Dirichlet boundary nodes in a FEM mesh

number of Dirichlet boundary nodes in the earth

number of nodes in element E;

degree of the auxiliary polynomials for simplex elements

number of sampling points in an isoparametric element
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o() :
o(hg) :

Pm(Np’ C) :
Pe

Pij

q;

QW) :
Q) -

Ty -

Te :

A,
T4;,,TB; *
[B(w)], [R] :
Rc :
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total number of nodes in a FEM mesh Ny = N + Np

origin of z-y coordinates

index sting for [Q™]

order of estimate errors

complex penetration depth

time-average power loss in a system or a field point

auxiliary polynomials of degree N,

earth complex penetration depth

time-average power loss related to conductor currents I; and I;
complex penetration depth of conductor ¢

time-average reactive power in a system

vector of surface charges on conductors

surface charge on conductor 3

time-average reactive power related to conductor currents I; and I;
surface charge on an element side

real integral matrices in simplex elements (k = 1,2,3)

element of [Q(*)]

radius in polar coordinate system or the radius of outer strands
FEM boundary radius

inner earth radius or the outer radius of a stranded conductor
equivalent radius from Borges da Silva’s formula

inner and outer radii of an equivalent circular conductor
internal and external radii of cylindrical conductor ¢

series resistance matrix per unit length of transmission lines

internal resistance of stranded conductors from the GSW formula
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R;; :
Re() :

51,52,53 :
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elements of [R]

real part of the function

separation distance of SC cables

time-average complex power, or the eara of a triangle
areas of subtriangles

cross-section area of a sector-shaped core conductor
solution region

conductor cross-section area matrix

update of [S¢]

a matrix modified from [S¢]

cross-section area of conductor k

a vector related to [Epg]

region or area of element E;

time or ¢ axis in the opposition direction of y axis

t coordinate of a buried filament

coefficient matrix

elements of [T

imaginary integral matrix for isoparametric element E;
element of [T5i]

imaginary integral matrix for simplex elements
elements of [Ts]

coefficient matrix

[U] in element E;

elements of [U]

Unmn in local node numbers in element F;
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uz :
Uy

(V] :

Wgp :
i
Wg, :

WL ¢
T,y :

Ty, L2, 23 ©
Ty Yys ot
[z5] -
TnyYn :
Tp,Yp
Y1,Y2,¥3 ¢
[v5] -
[Y(w)], [¥] :
z:

[Z(w)), [2] :
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unit vector of z axis in Cartician coordinate system

unit vector of § axis in Polar coordinate system

conductor voltage vector with respect to the reference conductor
conductor voltage of conductor i

layout geometry parameter of tunnel installed SC cables

electric energy found from the numerical field solution

WEg, with conductors ¢ and j energized

electric energy from circuit analysis with conductors ¢ and j energized
weighting factor of numerical integration for isoparametric elements
time-average magnetic energy stored in a system

time-average magnetic energy related to conductor currents I; and I;
z and y axes perpendicular to the transmission line

z coordinates of vertices in a simplex

z and y of a buried filament

vector of z coordinates of vertices for isoparametric element E;

z and y coordinates of node n in a FEM mesh

z and y coordinates of field point P

y coordinates of vertices in a simplex

vector of y coordinates of vertices for isoparametric element E;
shunt admittance matrix per unit length of transmission lines

z axis parallel with the transmission line

series impedance matrix per unit length of transmission lines

earth return impedance

elements of [Z]

submatrix in [Z] related to phases k and ! (k,I=A,B,C)
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Zgg; :

Amymomz

(1v] :
[}
[]*:
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internal surface impedance of cylindrical conductor 2

external surface impedance of cylindrical conductor i

transfer impedance of cylindrical conductor 2

diagonal element (k,k) in [Z] of a SC coaxial cable

off diagonal element (2, k) and (k, j) (¢,7 < k) in [Z] of a SC coaxial cable
equivalent impedance related to cylindrical conductors ¢ nad ¢ + 1
impedance related to the dielectrics between cylindrical conductors ¢ and j
a vector filled with 1 and 0

transposition of the matrix

conjugate of the function

absolute value of the function

variable in Fourier transformation

shape function for simplex elements

shape function vector for isoparametric elements

shape function for isoparametric elements

real penetration depth in conductors

§ in conductor 2

6 in the earth

Deric function

real penetration depth in conductors

permittivity

permittivity in element E;

permittivity of the k insulation

relative permittivity

simplex coordinate
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G

9,.‘ H

Yo :

Ha ®
Pe
Ko :
Br
Bk ¢
HE; *

Pe

o
O :
(v,v) :
(vjy ) ¢

(v,v)

4] :
b :

[¢%] -
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simplex coordinate ¢

a variable or span angle of sector-shaped regions
include angle of vertex k in simplex element E;
wave length or variable in Fourier sine transformation
function to enforce the Dirichlet boundary condition
permeability

permeability in the air

permeability in the earth

permeability in the vacuum

relative permeability

permeability in conductor k

permeability in element E;

volume charge density or conductor resistivity

earth resistivity

conductivity

conductivity in conductor k

conductivity in element E;

local coordinates for isoparametric elements
sampling point local coordinates in isoparametric elements
local coordinates for isoparametric elements
electrical scalar potential or position angle

electrical scalar potential vector

value of ¢ at global node n

local node value of ¢ in element E;

[#] in element E;
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Pn ¢
¥B; ¢

radius frequency

trial function for global node n

trial function for Dirichlet node 2

trial function for local node n in element E;
boundary surrounding the solution region Sg
Dirichlet boundary

homogeneous Neumann boundary

periphery of the cross-section area of conductor j
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